1
|
Onrust-van Schoonhoven A, de Bruijn MJW, Stikker B, Brouwer RWW, Braunstahl GJ, van IJcken WFJ, Graf T, Huylebroeck D, Hendriks RW, Stik G, Stadhouders R. 3D chromatin reprogramming primes human memory T H2 cells for rapid recall and pathogenic dysfunction. Sci Immunol 2023; 8:eadg3917. [PMID: 37418545 DOI: 10.1126/sciimmunol.adg3917] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
Memory T cells provide long-lasting defense responses through their ability to rapidly reactivate, but how they efficiently "recall" an inflammatory transcriptional program remains unclear. Here, we show that human CD4+ memory T helper 2 (TH2) cells carry a chromatin landscape synergistically reprogrammed at both one-dimensional (1D) and 3D levels to accommodate recall responses, which is absent in naive T cells. In memory TH2 cells, recall genes were epigenetically primed through the maintenance of transcription-permissive chromatin at distal (super)enhancers organized in long-range 3D chromatin hubs. Precise transcriptional control of key recall genes occurred inside dedicated topologically associating domains ("memory TADs"), in which activation-associated promoter-enhancer interactions were preformed and exploited by AP-1 transcription factors to promote rapid transcriptional induction. Resting memory TH2 cells from patients with asthma showed premature activation of primed recall circuits, linking aberrant transcriptional control of recall responses to chronic inflammation. Together, our results implicate stable multiscale reprogramming of chromatin organization as a key mechanism underlying immunological memory and dysfunction in T cells.
Collapse
Affiliation(s)
- Anne Onrust-van Schoonhoven
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marjolein J W de Bruijn
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bernard Stikker
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rutger W W Brouwer
- Center for Biomics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gert-Jan Braunstahl
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Respiratory Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | - Wilfred F J van IJcken
- Center for Biomics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Thomas Graf
- Centre for Genomic Regulation (CRG) and Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Grégoire Stik
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
2
|
Daniels MA, Luera D, Teixeiro E. NFκB signaling in T cell memory. Front Immunol 2023; 14:1129191. [PMID: 36911729 PMCID: PMC9998984 DOI: 10.3389/fimmu.2023.1129191] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Memory T cells play an essential role in protecting against infectious diseases and cancer and contribute to autoimmunity and transplant rejection. Understanding how they are generated and maintained in the context of infection or vaccination holds promise to improve current immune-based therapies. At the beginning of any immune response, naïve T cells are activated and differentiate into cells with effector function capabilities. In the context of infection, most of these cells die once the pathogenic antigen has been cleared. Only a few of them persist and differentiate into memory T cells. These memory T cells are essential to host immunity because they are long-lived and can perform effector functions immediately upon re-infection. How a cell becomes a memory T cell and continues being one for months and even years past the initial infection is still not fully understood. Recent reviews have thoroughly discussed the transcriptional, epigenomic, and metabolic mechanisms that govern T cell memory differentiation. Yet much less is known of how signaling pathways that are common circuitries of multiple environmental signals regulate T cell outcome and, precisely, T cell memory. The function of the NFκB signaling system is perhaps best understood in innate cells. Recent findings suggest that NFκB signaling plays an essential and unique role in generating and maintaining CD8 T cell memory. This review aims to summarize these findings and discuss the remaining questions in the field.
Collapse
Affiliation(s)
- Mark A. Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Dezzarae Luera
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
3
|
Pliasas VC, Menne Z, Aida V, Yin JH, Naskou MC, Neasham PJ, North JF, Wilson D, Horzmann KA, Jacob J, Skountzou I, Kyriakis CS. A Novel Neuraminidase Virus-Like Particle Vaccine Offers Protection Against Heterologous H3N2 Influenza Virus Infection in the Porcine Model. Front Immunol 2022; 13:915364. [PMID: 35874791 PMCID: PMC9300842 DOI: 10.3389/fimmu.2022.915364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A viruses (IAVs) pose a global health threat, contributing to hundreds of thousands of deaths and millions of hospitalizations annually. The two major surface glycoproteins of IAVs, hemagglutinin (HA) and neuraminidase (NA), are important antigens in eliciting neutralizing antibodies and protection against disease. However, NA is generally ignored in the formulation and development of influenza vaccines. In this study, we evaluate the immunogenicity and efficacy against challenge of a novel NA virus-like particles (VLPs) vaccine in the porcine model. We developed an NA2 VLP vaccine containing the NA protein from A/Perth/16/2009 (H3N2) and the matrix 1 (M1) protein from A/MI/73/2015, formulated with a water-in-oil-in-water adjuvant. Responses to NA2 VLPs were compared to a commercial adjuvanted quadrivalent whole inactivated virus (QWIV) swine IAV vaccine. Animals were prime boost vaccinated 21 days apart and challenged four weeks later with an H3N2 swine IAV field isolate, A/swine/NC/KH1552516/2016. Pigs vaccinated with the commercial QWIV vaccine demonstrated high hemagglutination inhibition (HAI) titers but very weak anti-NA antibody titers and subsequently undetectable NA inhibition (NAI) titers. Conversely, NA2 VLP vaccinated pigs demonstrated undetectable HAI titers but high anti-NA antibody titers and NAI titers. Post-challenge, NA2 VLPs and the commercial QWIV vaccine showed similar reductions in virus replication, pulmonary neutrophilic infiltration, and lung inflammation compared to unvaccinated controls. These data suggest that anti-NA immunity following NA2 VLP vaccination offers comparable protection to QWIV swine IAV vaccines inducing primarily anti-HA responses.
Collapse
Affiliation(s)
- Vasilis C. Pliasas
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Zach Menne
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Virginia Aida
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Ji-Hang Yin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Maria C. Naskou
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Peter J. Neasham
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - J. Fletcher North
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Dylan Wilson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Katharine A. Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Joshy Jacob
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Ioanna Skountzou
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Constantinos S. Kyriakis, ; Ioanna Skountzou,
| | - Constantinos S. Kyriakis
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
- *Correspondence: Constantinos S. Kyriakis, ; Ioanna Skountzou,
| |
Collapse
|
4
|
McDaniel MM, Meibers HE, Pasare C. Innate control of adaptive immunity and adaptive instruction of innate immunity: bi-directional flow of information. Curr Opin Immunol 2021; 73:25-33. [PMID: 34425435 PMCID: PMC8648974 DOI: 10.1016/j.coi.2021.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022]
Abstract
The ability of the innate and adaptive immune systems to communicate with each other is central to protective immune responses and maintenance of host health. Myeloid cells of the innate immune system are able to sense microbial ligands, perturbations in cellular homeostasis, and virulence factors, thereby allowing them to relay distinct pathogen-specific information to naïve T cells in the form of pathogen-derived peptides and a unique cytokine milieu. Once primed, effector T helper cells produce lineage-defining cytokines to help combat the original pathogen, and a subset of these cells persist as memory or effector-memory populations. These memory T cells then play a dual role in host protection by not only responding rapidly to reinfection, but by also directly instructing myeloid cells to express licensing cytokines. This means there is a bi-directional flow of information first from the innate to the adaptive immune system, and then from the adaptive back to innate immune system. Here, we focus on how signals, first from pathogens and then from primed effector and memory T cells, are integrated by myeloid cells and its consequences for protective immunity or systemic inflammation.
Collapse
Affiliation(s)
- Margaret M McDaniel
- Immunology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Hannah E Meibers
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45220, United States
| | - Chandrashekhar Pasare
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45220, United States.
| |
Collapse
|
5
|
Pruner KB, Pepper M. Local memory CD4 T cell niches in respiratory viral infection. J Exp Med 2021; 218:212432. [PMID: 34160551 PMCID: PMC8225681 DOI: 10.1084/jem.20201733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022] Open
Abstract
Respiratory viral infections present a major threat to global health and prosperity. Over the past century, several have developed into crippling pandemics, including the SARS-CoV-2 virus. Although the generation of neutralizing serum antibodies in response to natural immunity and vaccination are considered to be hallmarks of viral immune protection, antibodies from long-lived plasma cells are subject to immune escape from heterologous clades of zoonotic, recombined, or mutated viruses. Local immunity in the lung can be generated through resident memory immune subsets that rapidly respond to secondary infection and protect from heterologous infection. Although many immune cells are required to achieve the phenomenon of resident memory, herein we highlight the pleiotropic functions of CD4 tissue resident memory T cells in the lung and discuss the implications of resident memory for vaccine design.
Collapse
Affiliation(s)
- Kurt B Pruner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
6
|
Yan J, Pandey SP, Barnes BJ, Turner JR, Abraham C. T Cell-Intrinsic IRF5 Regulates T Cell Signaling, Migration, and Differentiation and Promotes Intestinal Inflammation. Cell Rep 2021; 31:107820. [PMID: 32610123 PMCID: PMC7409536 DOI: 10.1016/j.celrep.2020.107820] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 04/17/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
IRF5 polymorphisms are associated with multiple immune-mediated diseases, including ulcerative colitis. IRF5 contributions are attributed to its role in myeloid lineages. How T cell-intrinsic IRF5 contributes to inflammatory outcomes is not well understood. We identify a previously undefined key role for T cell-intrinsic IRF5. In mice, IRF5 in CD4+ T cells promotes Th1- and Th17-associated cytokines and decreases Th2-associated cytokines. IRF5 is required for the optimal assembly of the TCR-initiated signaling complex and downstream signaling at early times, and at later times binds to promoters of Th1- and Th17-associated transcription factors and cytokines. IRF5 also regulates chemokine receptor-initiated signaling and, in turn, T cell migration. In vivo, IRF5 in CD4+ T cells enhances the severity of experimental colitis. Importantly, human CD4+ T cells from high IRF5-expressing disease-risk genetic carriers demonstrate increased chemokine-induced migration and Th1/Th17 cytokines and reduced Th2-associated and anti-inflammatory cytokines. These data demonstrate key roles for T cell-intrinsic IRF5 in inflammatory outcomes.
Collapse
Affiliation(s)
- Jie Yan
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Surya P Pandey
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Betsy J Barnes
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Jerrold R Turner
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Liu Q, Sun Z, Chen L. Memory T cells: strategies for optimizing tumor immunotherapy. Protein Cell 2020; 11:549-564. [PMID: 32221812 PMCID: PMC7381543 DOI: 10.1007/s13238-020-00707-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/08/2020] [Indexed: 12/15/2022] Open
Abstract
Several studies have demonstrated that memory T cells including stem cell memory (Tscm) T cells and central memory (Tcm) T cells show superior persistence and antitumor immunity compared with effector memory T (Tem) cells and effector T (Teff) cells. Furthermore, the Tcm/Teff ratio has been reported to be a predictive biomarker of immune responses against some tumors. Thus, a system-level understanding of the mechanisms underlying the differentiation of effector and memory T cells is of increasing importance for developing immunological strategies against various tumors. This review focuses on recent advances in efficacy against tumors, the origin, formation mechanisms of memory T cells, and the role of the gut microbiota in memory T cell formation. Furthermore, we summarize strategies to generate memory T cells in (ex) vivo that, might be applicable in clinical practice.
Collapse
Affiliation(s)
- Qingjun Liu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.,Newish Technology (Beijing) Co., Ltd., Xihuan South Road 18, Economic & Technical Development Zone, Beijing, 100176, China.,Moon (Guangzhou) Biotech Co., Ltd., Room 301, Building B5, Enterprise Accelerator, No. 11 Kaiyuan Avenue, Huangpu District, Guangzhou, 510000, China
| | - Zhongjie Sun
- Newish Technology (Beijing) Co., Ltd., Xihuan South Road 18, Economic & Technical Development Zone, Beijing, 100176, China.
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China. .,Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100088, China.
| |
Collapse
|
8
|
Patrick MS, Cheng NL, Kim J, An J, Dong F, Yang Q, Zou I, Weng NP. Human T Cell Differentiation Negatively Regulates Telomerase Expression Resulting in Reduced Activation-Induced Proliferation and Survival. Front Immunol 2019; 10:1993. [PMID: 31497023 PMCID: PMC6712505 DOI: 10.3389/fimmu.2019.01993] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/07/2019] [Indexed: 01/10/2023] Open
Abstract
Maintenance of telomeres is essential for preserving T cell proliferative responses yet the precise role of telomerase in human T cell differentiation, function, and aging is not fully understood. Here we analyzed human telomerase reverse transcriptase (hTERT) expression and telomerase activity in six T cell subsets from 111 human adults and found that levels of hTERT mRNA and telomerase activity had an ordered decrease from naïve (TN) to central memory (TCM) to effector memory (TEM) cells and were higher in CD4+ than their corresponding CD8+ subsets. This differentiation-related reduction of hTERT mRNA and telomerase activity was preserved after activation. Furthermore, the levels of hTERT mRNA and telomerase activity were positively correlated with the degree of activation-induced proliferation and survival of T cells in vitro. Partial knockdown of hTERT by an anti-sense oligo in naïve CD4+ cells led to a modest but significant reduction of cell proliferation. Finally, we found that activation-induced levels of telomerase activity in CD4+ TN and TCM cells were significantly lower in old than in young subjects. These findings reveal that hTERT/telomerase expression progressively declines during T cell differentiation and age-associated reduction of activation-induced expression of hTERT/telomerase mainly affects naïve CD4+ T cells and suggest that enhancing telomerase activity could be a strategy to improve T cell function in the elderly.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nan-ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
9
|
Iglesias M, Arun A, Chicco M, Lam B, Talbot CC, Ivanova V, Lee WPA, Brandacher G, Raimondi G. Type-I Interferons Inhibit Interleukin-10 Signaling and Favor Type 1 Diabetes Development in Nonobese Diabetic Mice. Front Immunol 2018; 9:1565. [PMID: 30061883 PMCID: PMC6054963 DOI: 10.3389/fimmu.2018.01565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/25/2018] [Indexed: 01/19/2023] Open
Abstract
Destruction of insulin-producing β-cells by autoreactive T lymphocytes leads to the development of type 1 diabetes. Type-I interferons (TI-IFN) and interleukin-10 (IL-10) have been connected with the pathophysiology of this disease; however, their interplay in the modulation of diabetogenic T cells remains unknown. We have discovered that TI-IFN cause a selective inhibition of IL-10 signaling in effector and regulatory T cells, altering their responses. This correlates with diabetes development in nonobese diabetic mice, where the inhibition is also spatially localized to T cells of pancreatic and mesenteric lymph nodes. IL-10 signaling inhibition is reversible and can be restored via blockade of TI-IFN/IFN-R interaction, paralleling with the resulting delay in diabetes onset and reduced severity. Overall, we propose a novel molecular link between TI-IFN and IL-10 signaling that helps better understand the complex dynamics of autoimmune diabetes development and reveals new strategies of intervention.
Collapse
Affiliation(s)
- Marcos Iglesias
- Vascularized and Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Anirudh Arun
- Vascularized and Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Maria Chicco
- Vascularized and Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Brandon Lam
- Vascularized and Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Vera Ivanova
- Vascularized and Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - W P A Lee
- Vascularized and Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Gerald Brandacher
- Vascularized and Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Giorgio Raimondi
- Vascularized and Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
M2e-tetramer-specific memory CD4 T cells are broadly protective against influenza infection. Mucosal Immunol 2018; 11:273-289. [PMID: 28295019 DOI: 10.1038/mi.2017.14] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/24/2017] [Indexed: 02/04/2023]
Abstract
Matrix protein 2 ectodomain (M2e) is considered an attractive component of a broadly protective, universal influenza A vaccine. Here we challenge the canonical view that antibodies against M2e are the prime effectors of protection. Intranasal immunizations of Balb/c mice with CTA1-3M2e-DD-generated M2e-specific memory CD4 T cells that were I-Ad restricted and critically protected against infection, even in the complete absence of antibodies, as observed in JhD mice. Whereas some M2e-tetramer-specific memory CD4 T cells resided in spleen and lymph nodes, the majority were lung-resident Th17 cells, that rapidly expanded upon a viral challenge infection. Indeed, immunized IL-17A-/- mice were significantly less well protected compared with wild-type mice despite exhibiting comparable antibody levels. Similarly, poor protection was also observed in congenic Balb/B (H-2b) mice, which failed to develop M2e-specific CD4 T cells, but exhibited comparable antibody levels. Lung-resident CD69+ CD103low M2e-specific memory CD4 T cells were αβ TCR+ and 50% were Th17 cells that were associated with an early influx of neutrophils after virus challenge. Adoptively transferred M2e memory CD4 T cells were strong helper T cells, which accelerated M2e- but more importantly also hemagglutinin-specific IgG production. Thus, for the first time we demonstrate that M2e-specific memory CD4 T cells are broadly protective.
Collapse
|
11
|
Das A, Ranganathan V, Umar D, Thukral S, George A, Rath S, Bal V. Effector/memory CD4 T cells making either Th1 or Th2 cytokines commonly co-express T-bet and GATA-3. PLoS One 2017; 12:e0185932. [PMID: 29088218 PMCID: PMC5663332 DOI: 10.1371/journal.pone.0185932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/21/2017] [Indexed: 11/23/2022] Open
Abstract
Naïve CD4 T (NCD4T) cells post-activation undergo programming for inducible production of cytokines leading to generation of memory cells with various functions. Based on cytokine based polarization of NCD4T cells in vitro, programming for either ‘Th1’ (interferon-gamma [IFNg]) or ‘Th2’ (interleukin [IL]-4/5/13) cytokines is thought to occur via mutually exclusive expression and functioning of T-bet or GATA-3 transcription factors (TFs). However, we show that a high proportion of mouse and human memory-phenotype CD4 T (MCD4T) cells generated in vivo which expressed either Th1 or Th2 cytokines commonly co-expressed T-bet and GATA-3. While T-bet levels did not differ between IFNg-expressing and IL-4/5/13-expressing MCD4T cells, GATA-3 levels were higher in the latter. These observations were also confirmed in MCD4T cells from FVB/NJ or aged C57BL/6 or IFNg-deficient mice. While MCD4T cells from these strains showed greater Th2 commitment than those from young C57BL/6 mice, pattern of co-expression of TF was similar. Effector T cells generated in vivo following immunization also showed TF co-expression in Th1 or Th2 cytokine producing cells. We speculated that the difference in TF expression pattern of MCD4T cells generated in vivo and those generated in cytokine polarized cultures in vitro could be due to relative absence of polarizing conditions during activation in vivo. We tested this by NCD4T cell activation in non-polarizing conditions in vitro. Anti-CD3 and anti-CD28-mediated priming of polyclonal NCD4T cells in vitro without polarizing milieu generated cells that expressed either IFNg or IL-4/5/13 but not both, yet both IFNg- and IL-4/5/13-expressing cells showed upregulation of both TFs. We also tested monoclonal T cell populations activated in non-polarizing conditions. TCR-transgenic NCD4T cells primed in vitro by cognate peptide in non-polarizing conditions which expressed either IFNg or IL-4/5/13 also showed a high proportion of cells co-expressing TFs, and their cytokine commitment varied depending on genetic background or priming conditions, without altering pattern of TF co-expression. Thus, the model of mutually antagonistic differentiation programs driven by mutually exclusively expressed T-bet or GATA-3 does not completely explain natural CD4 T cell priming outcomes.
Collapse
Affiliation(s)
| | | | - Danish Umar
- National Institute of Immunology, New Delhi, India
| | | | - Anna George
- National Institute of Immunology, New Delhi, India
| | | | - Vineeta Bal
- National Institute of Immunology, New Delhi, India
- * E-mail:
| |
Collapse
|
12
|
Spurlock CF, Shaginurova G, Tossberg JT, Hester JD, Chapman N, Guo Y, Crooke PS, Aune TM. Profiles of Long Noncoding RNAs in Human Naive and Memory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:547-558. [PMID: 28600289 PMCID: PMC5508595 DOI: 10.4049/jimmunol.1700232] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/12/2017] [Indexed: 12/24/2022]
Abstract
We employed whole-genome RNA-sequencing to profile mRNAs and both annotated and novel long noncoding RNAs (lncRNAs) in human naive, central memory, and effector memory CD4+ T cells. Loci transcribing both lineage-specific annotated and novel lncRNA are adjacent to lineage-specific protein-coding genes in the genome. Lineage-specific novel lncRNA loci are transcribed from lineage-specific typical- and supertranscriptional enhancers and are not multiexonic, thus are more similar to enhancer RNAs. Novel enhancer-associated lncRNAs transcribed from the IFNG locus bind the transcription factor NF-κB and enhance binding of NF-κB to the IFNG genomic locus. Depletion of the annotated lncRNA, IFNG-AS1, or one IFNG enhancer-associated lncRNA abrogates IFNG expression by memory T cells, indicating these lncRNAs have biologic function.
Collapse
Affiliation(s)
- Charles F Spurlock
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Guzel Shaginurova
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - John T Tossberg
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jonathan D Hester
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Nathaniel Chapman
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Yan Guo
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, TN 37240; and
| | - Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232;
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
13
|
Pulmonary immunity to viruses. Clin Sci (Lond) 2017; 131:1737-1762. [PMID: 28667071 DOI: 10.1042/cs20160259] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022]
Abstract
Mucosal surfaces, such as the respiratory epithelium, are directly exposed to the external environment and therefore, are highly susceptible to viral infection. As a result, the respiratory tract has evolved a variety of innate and adaptive immune defenses in order to prevent viral infection or promote the rapid destruction of infected cells and facilitate the clearance of the infecting virus. Successful adaptive immune responses often lead to a functional state of immune memory, in which memory lymphocytes and circulating antibodies entirely prevent or lessen the severity of subsequent infections with the same virus. This is also the goal of vaccination, although it is difficult to vaccinate in a way that mimics respiratory infection. Consequently, some vaccines lead to robust systemic immune responses, but relatively poor mucosal immune responses that protect the respiratory tract. In addition, adaptive immunity is not without its drawbacks, as overly robust inflammatory responses may lead to lung damage and impair gas exchange or exacerbate other conditions, such as asthma or chronic obstructive pulmonary disease (COPD). Thus, immune responses to respiratory viral infections must be strong enough to eliminate infection, but also have mechanisms to limit damage and promote tissue repair in order to maintain pulmonary homeostasis. Here, we will discuss the components of the adaptive immune system that defend the host against respiratory viral infections.
Collapse
|
14
|
Zeng W, Liu Z, Liu X, Zhang S, Khanniche A, Zheng Y, Ma X, Yu T, Tian F, Liu XR, Fan J, Lin Y. Distinct Transcriptional and Alternative Splicing Signatures of Decidual CD4 + T Cells in Early Human Pregnancy. Front Immunol 2017; 8:682. [PMID: 28659920 PMCID: PMC5466981 DOI: 10.3389/fimmu.2017.00682] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/26/2017] [Indexed: 01/28/2023] Open
Abstract
Decidual CD4+ T (dCD4 T) cells are crucial for the maternal-fetal immune tolerance required for a healthy pregnancy outcome. However, their molecular and functional characteristics are not well elucidated. In this study, we performed the first analysis of transcriptional and alternative splicing (AS) landscapes for paired decidual and peripheral blood CD4+ T (pCD4 T) cells in human early pregnancy using high throughput mRNA sequencing. Our data showed that dCD4 T cells are endowed with a unique transcriptional signature when compared to pCD4 T cells: dCD4 T cells upregulate 1,695 genes enriched in immune system process whereas downregulate 1,011 genes mainly related to mRNA catabolic process and the ribosome. Moreover, dCD4 T cells were observed to be at M phase, and show increased activation, proliferation, and cytokine production, as well as display an effector-memory phenotype and a heterogenous nature containing Th1, Th17, and Treg cell subsets. However, dCD4 T cells undergo a comparable number of upregulated and downregulated AS events, both of which are enriched in the genes related to cellular metabolic process. And the changes at the AS event level do not reflect measurable differences at the gene expression level in dCD4 T cells. Collectively, our findings provide a comprehensive portrait of the unique transcriptional signature and AS profile of CD4+ T cells in human decidua and help us gain more understanding of the functional characteristic of these cells during early pregnancy.
Collapse
Affiliation(s)
- Weihong Zeng
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicui Liu
- Department of Dermatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinmei Liu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siming Zhang
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Asma Khanniche
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zheng
- Out-patient Operating Room, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Ma
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiantian Yu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuju Tian
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Rui Liu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxia Fan
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Tu WJ, Hardy K, Sutton CR, McCuaig R, Li J, Dunn J, Tan A, Brezar V, Morris M, Denyer G, Lee SK, Turner SJ, Seddiki N, Smith C, Khanna R, Rao S. Priming of transcriptional memory responses via the chromatin accessibility landscape in T cells. Sci Rep 2017; 7:44825. [PMID: 28317936 PMCID: PMC5357947 DOI: 10.1038/srep44825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/14/2017] [Indexed: 12/17/2022] Open
Abstract
Memory T cells exhibit transcriptional memory and “remember” their previous pathogenic encounter to increase transcription on re-infection. However, how this transcriptional priming response is regulated is unknown. Here we performed global FAIRE-seq profiling of chromatin accessibility in a human T cell transcriptional memory model. Primary activation induced persistent accessibility changes, and secondary activation induced secondary-specific opening of previously less accessible regions associated with enhanced expression of memory-responsive genes. Increased accessibility occurred largely in distal regulatory regions and was associated with increased histone acetylation and relative H3.3 deposition. The enhanced re-stimulation response was linked to the strength of initial PKC-induced signalling, and PKC-sensitive increases in accessibility upon initial stimulation showed higher accessibility on re-stimulation. While accessibility maintenance was associated with ETS-1, accessibility at re-stimulation-specific regions was linked to NFAT, especially in combination with ETS-1, EGR, GATA, NFκB, and NR4A. Furthermore, NFATC1 was directly regulated by ETS-1 at an enhancer region. In contrast to the factors that increased accessibility, signalling from bHLH and ZEB family members enhanced decreased accessibility upon re-stimulation. Interplay between distal regulatory elements, accessibility, and the combined action of sequence-specific transcription factors allows transcriptional memory-responsive genes to “remember” their initial environmental encounter.
Collapse
Affiliation(s)
- Wen Juan Tu
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Kristine Hardy
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Christopher R Sutton
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Robert McCuaig
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Jasmine Li
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Department of Microbiology &Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Jenny Dunn
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Abel Tan
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Vedran Brezar
- INSERM U955 Eq16 Faculte de medicine Henri Mondor and Universite Paris-Est, Creteil/Vaccine Research Institute, Creteil 94010, France
| | - Melanie Morris
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Gareth Denyer
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW, Australia
| | - Sau Kuen Lee
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stephen J Turner
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Department of Microbiology &Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Nabila Seddiki
- INSERM U955 Eq16 Faculte de medicine Henri Mondor and Universite Paris-Est, Creteil/Vaccine Research Institute, Creteil 94010, France
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sudha Rao
- Faculty of Education, Science, Technology &Mathematics, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| |
Collapse
|
16
|
NFκB-Pim-1-Eomesodermin axis is critical for maintaining CD8 T-cell memory quality. Proc Natl Acad Sci U S A 2017; 114:E1659-E1667. [PMID: 28193872 DOI: 10.1073/pnas.1608448114] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T-cell memory is critical for long-term immunity. However, the factors involved in maintaining the persistence, function, and phenotype of the memory pool are undefined. Eomesodermin (Eomes) is required for the establishment of the memory pool. Here, we show that in T cells transitioning to memory, the expression of high levels of Eomes is not constitutive but rather requires a continuum of cell-intrinsic NFκB signaling. Failure to maintain NFκB signals after the peak of the response led to impaired Eomes expression and a defect in the maintenance of CD8 T-cell memory. Strikingly, we found that antigen receptor [T-cell receptor (TCR)] signaling regulates this process through expression of the NFκB-dependent kinase proviral integration site for Moloney murine leukemia virus-1 (PIM-1), which in turn regulates NFκB and Eomes. T cells defective in TCR-dependent NFκB signaling were impaired in late expression of Pim-1, Eomes, and CD8 memory. These defects were rescued when TCR-dependent NFκB signaling was restored. We also found that NFκB-Pim-1 signals were required at memory to maintain memory CD8 T-cell longevity, effector function, and Eomes expression. Hence, an NFκB-Pim-1-Eomes axis regulates Eomes levels to maintain memory fitness.
Collapse
|
17
|
Barski A, Cuddapah S, Kartashov AV, Liu C, Imamichi H, Yang W, Peng W, Lane HC, Zhao K. Rapid Recall Ability of Memory T cells is Encoded in their Epigenome. Sci Rep 2017; 7:39785. [PMID: 28054639 PMCID: PMC5215294 DOI: 10.1038/srep39785] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022] Open
Abstract
Even though T-cell receptor (TCR) stimulation together with co-stimulation is sufficient for the activation of both naïve and memory T cells, the memory cells are capable of producing lineage specific cytokines much more rapidly than the naïve cells. The mechanisms behind this rapid recall response of the memory cells are still not completely understood. Here, we performed epigenetic profiling of human resting naïve, central and effector memory T cells using ChIP-Seq and found that unlike the naïve cells, the regulatory elements of the cytokine genes in the memory T cells are marked by activating histone modifications even in the resting state. Therefore, the ability to induce expression of rapid recall genes upon activation is associated with the deposition of positive histone modifications during memory T cell differentiation. We propose a model of T cell memory, in which immunological memory state is encoded epigenetically, through poising and transcriptional memory.
Collapse
Affiliation(s)
- Artem Barski
- Divisions of Allergy &Immunology and Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Suresh Cuddapah
- Department of Environmental Medicine, New York University School of Medicine, NY, 10987, USA
| | - Andrey V Kartashov
- Divisions of Allergy &Immunology and Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Chong Liu
- Divisions of Allergy &Immunology and Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Hiromi Imamichi
- Clinical and Molecular Retrovirology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wenjing Yang
- Department of Physics, The George Washington University, D.C., 20052, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University, D.C., 20052, USA
| | - H Clifford Lane
- Clinical and Molecular Retrovirology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Bevington SL, Cauchy P, Cockerill PN. Chromatin priming elements establish immunological memory in T cells without activating transcription: T cell memory is maintained by DNA elements which stably prime inducible genes without activating steady state transcription. Bioessays 2016; 39. [PMID: 28026028 DOI: 10.1002/bies.201600184] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have identified a simple epigenetic mechanism underlying the establishment and maintenance of immunological memory in T cells. By studying the transcriptional regulation of inducible genes we found that a single cycle of activation of inducible factors is sufficient to initiate stable binding of pre-existing transcription factors to thousands of newly activated distal regulatory elements within inducible genes. These events lead to the creation of islands of active chromatin encompassing nearby enhancers, thereby supporting the accelerated activation of inducible genes, without changing steady state levels of transcription in memory T cells. These studies also highlighted the need for more sophisticated definitions of gene regulatory elements. The chromatin priming elements defined here are distinct from classical enhancers because they function by maintaining chromatin accessibility rather than directly activating transcription. We propose that these priming elements are members of a wider class of genomic elements that support correct developmentally regulated gene expression.
Collapse
Affiliation(s)
- Sarah L Bevington
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, West Midlands, UK
| | - Pierre Cauchy
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, West Midlands, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
19
|
Tiwari D, Bose PD, Sultana R, Das CR, Bose S. Preterm delivery and associated negative pregnancy outcome - A tale of faulty progesterone receptor signalling pathway and linked derailed immunomodulation: A study from Northeast India. J Reprod Immunol 2016; 118:76-84. [PMID: 27728856 DOI: 10.1016/j.jri.2016.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/07/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
Abstract
Preterm delivery (PTD) is one of the potent contributor of neonatal mortality and morbidity, and the underlying cause in some situation is elusive. This study attempts to delineate the association of deregulation in progesterone receptor (PR) pathway and deleterious immune responses in predisposing patients to PTD in Northeast India, a region with high rate of PTD cases. A total of 109 cases of PTD and 100 term delivery cases were enrolled with all clinical details. The PTD cases were stratified based on gestation age at delivery. The differential expression of PR and key downstream effectors and cytokines were evaluated for correlation with PTD susceptibility, gestational period, and pregnancy outcome. The results indicated a sharp downregulation in PR expression is associated with PTD susceptibility, lower gestational period and negative pregnancy outcome. The PR downstream effector PIBF was also found to be downregulated in PTD, and is associated with gestational period and negative pregnancy outcome. The downregulation of PR and PIBF expression was found to correlate with a predominant Th1 state with higher CD56+NK cell counts and pro-inflammatory burst lead by hyper TNF-α, NF-kB and IFNγ expression, and complicated by lower IL10 expression, contributing to PTD as well as negative pregnancy outcome in the PTD cases. TNF-α expression in placenta inversely correlated with placental PR expression. To conclude, deregulation in PR pathway is a hallmark of preterm delivery and negative pregnancy outcome. Differential expression of several markers such as PR, PIBF and TNF-α has prognostic significance, and hence is of clinical significance.
Collapse
Affiliation(s)
- Diptika Tiwari
- Department of Biological Science, Gauhati University, Guwahati, Assam, India; Department of Molecular Biology and Biotechnology, CCSU, Guwahati, Assam, India
| | - Purabi Deka Bose
- Department of Molecular Biology and Biotechnology, CCSU, Guwahati, Assam, India
| | - Rizwana Sultana
- Department of Biological Science, Gauhati University, Guwahati, Assam, India
| | - Chandana Ray Das
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India; Guwahati Medical College Hospital (GMCH), Guwahati, Assam, India
| | - Sujoy Bose
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India.
| |
Collapse
|
20
|
Lartey S, Pathirana RD, Zhou F, Jul-Larsen Å, Montomoli E, Wood J, Cox RJ. Single dose vaccination of the ASO3-adjuvanted A(H1N1)pdm09 monovalent vaccine in health care workers elicits homologous and cross-reactive cellular and humoral responses to H1N1 strains. Hum Vaccin Immunother 2016; 11:1654-62. [PMID: 26009966 PMCID: PMC4514283 DOI: 10.1080/21645515.2015.1048939] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Healthcare workers (HCW) were prioritized for vaccination during the 2009 influenza A(H1N1)pdm09 pandemic. We conducted a clinical trial in October 2009 where 237 HCWs were immunized with a AS03-adjuvanted A(H1N1)pdm09 monovalent vaccine. In the current study, we analyzed the homologous and cross-reactive H1N1 humoral responses using prototype vaccine strains dating back to 1977 by the haemagglutinin inhibition (HI), single radial hemolysis SRH), antibody secreting cell (ASC) and memory B cell (MBC) assays. The cellular responses were assessed by interferon-γ (IFN-γ) ELISPOT and by intracellular staining (ICS) for the Th1 cytokines IFN-γ, interleukin-2 (IL-2) and tumor necrosis factor-α (TNF-α). All assays were performed using blood samples obtained prior to (day 0) and 7, 14 and 21 d post-pandemic vaccination, except for ASC (day 7) and ICS (days 0 and 21). Vaccination elicited rapid HI, SRH and ASC responses against A(H1N1)pdm09 which cross reacted with seasonal H1N1 strains. MBC responses were detected against the homologous and seasonal H1N1 strains before vaccination and were boosted 2 weeks post-vaccination. An increase in cellular responses as determined by IFN-γ ELISPOT and ICS were observed 1–3 weeks after vaccination. Collectively, our data show that the AS03-adjuvanted A(H1N1)pdm09 vaccine induced rapid cellular and humoral responses against the vaccine strain and the response cross-reacted against prototype H1N1 strains dating back to 1977.
Collapse
Affiliation(s)
- Sarah Lartey
- a The Influenza Centre; Department of Clinical Science; University of Bergen ; Bergen , Norway
| | | | | | | | | | | | | |
Collapse
|
21
|
Clark MP, Leaman DW, Hazelhurst LA, Hwang ES, Quinn A. An aza-anthrapyrazole negatively regulates Th1 activity and suppresses experimental autoimmune encephalomyelitis. Int Immunopharmacol 2016; 31:74-87. [DOI: 10.1016/j.intimp.2015.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/16/2015] [Accepted: 12/08/2015] [Indexed: 12/24/2022]
|
22
|
Richards KA, Nayak J, Chaves FA, DiPiazza A, Knowlden ZAG, Alam S, Treanor JJ, Sant AJ. Seasonal Influenza Can Poise Hosts for CD4 T-Cell Immunity to H7N9 Avian Influenza. J Infect Dis 2015; 212:86-94. [PMID: 25492919 PMCID: PMC4481611 DOI: 10.1093/infdis/jiu662] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/11/2014] [Indexed: 01/26/2023] Open
Abstract
The emergence of avian H7N9 viruses has raised concerns about its pandemic potential and prompted vaccine trials. At present, it is unknown whether there will be sufficient cross-reactive hemagglutinin (HA)-specific CD4 T-cell memory with seasonal influenza to facilitate antibody production to H7 HA. There has also been speculation that H7N9 will have few CD4 T-cell epitopes. In this study, we quantified the potential of seasonal influenza to provide memory CD4 T cells that can cross-reactively recognize H7 HA-derived peptides. These studies have revealed that many humans have substantial H7-reactive CD4 T cells, whereas up to 40% are lacking such reactivity. Correlation studies indicate that CD4 T cells reactive with H7 HA are drawn from reactivity generated from seasonal strains. Overall, our findings suggest that previous exposure of humans to seasonal influenza can poise them to respond to avian H7N9, but this is likely to be uneven across populations.
Collapse
Affiliation(s)
- Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Jennifer Nayak
- Department of Pediatrics, and David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, New York
| | - Francisco A. Chaves
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Anthony DiPiazza
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Zackery A. G. Knowlden
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Shabnam Alam
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | | | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| |
Collapse
|
23
|
MaruYama T, Kobayashi S, Ogasawara K, Yoshimura A, Chen W, Muta T. Control of IFN-γ production and regulatory function by the inducible nuclear protein IκB-ζ in T cells. J Leukoc Biol 2015; 98:385-93. [PMID: 26019294 DOI: 10.1189/jlb.2a0814-384r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 04/30/2015] [Indexed: 01/12/2023] Open
Abstract
The transcriptional regulator IκB-ζ is important for the control of apoptosis in keratinocytes. Thus, IκB-ζ-deficient mice develop autoimmune diseases, such as Sjögren's syndrome. However, T cells also play a pivotal role in Sjögren's syndrome. To study the role of IκB-ζ in T cells, we generated T cell-specific, IκB-ζ-deficient mice. We observed increased numbers of peripheral effector/memory CD4(+) cells and IFN-γ-producing CD4(+) cells in 3-week-old mice. We found that IκB-ζ can be up-regulated by TGF-β1 in naïve CD4(+) T cells and that it negatively regulates IFN-γ expression. In addition, we generated Treg-specific, IκB-ζ deficient mice and found that IκB-ζ is dispensable for the plasticity and stability of Tregs. However, Tregs from T cell-specific, IκB-ζ-deficient mice have reduced immunoregulatory function. Thus, our data reveal a previously unappreciated role for IκB-ζ in IFN-γ production in T cells and the immunoregulatory function of Tregs.
Collapse
Affiliation(s)
- Takashi MaruYama
- *Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, and Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; School of Medicine, Gifu University, Gifu, Japan; Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan; and Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Shuhei Kobayashi
- *Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, and Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; School of Medicine, Gifu University, Gifu, Japan; Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan; and Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Kouetsu Ogasawara
- *Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, and Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; School of Medicine, Gifu University, Gifu, Japan; Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan; and Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Akihiko Yoshimura
- *Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, and Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; School of Medicine, Gifu University, Gifu, Japan; Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan; and Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - WanJun Chen
- *Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, and Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; School of Medicine, Gifu University, Gifu, Japan; Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan; and Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Tatsushi Muta
- *Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, and Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; School of Medicine, Gifu University, Gifu, Japan; Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan; and Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Dunn J, McCuaig R, Tu WJ, Hardy K, Rao S. Multi-layered epigenetic mechanisms contribute to transcriptional memory in T lymphocytes. BMC Immunol 2015; 16:27. [PMID: 25943594 PMCID: PMC4422045 DOI: 10.1186/s12865-015-0089-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/31/2015] [Indexed: 12/24/2022] Open
Abstract
Background Immunological memory is the ability of the immune system to respond more rapidly and effectively to previously encountered pathogens, a key feature of adaptive immunity. The capacity of memory T cells to “remember” previous cellular responses to specific antigens ultimately resides in their unique patterns of gene expression. Following re-exposure to an antigen, previously activated genes are transcribed more rapidly and robustly in memory T cells compared to their naïve counterparts. The ability for cells to remember past transcriptional responses is termed “adaptive transcriptional memory”. Results Recent global epigenome studies suggest that epigenetic mechanisms are central to establishing and maintaining transcriptional memory, with elegant studies in model organisms providing tantalizing insights into the epigenetic programs that contribute to adaptive immunity. These epigenetic mechanisms are diverse, and include not only classical acetylation and methylation events, but also exciting and less well-known mechanisms involving histone structure, upstream signalling pathways, and nuclear localisation of genomic regions. Conclusions Current global health challenges in areas such as tuberculosis and influenza demand not only more effective and safer vaccines, but also vaccines for a wider range of health priorities, including HIV, cancer, and emerging pathogens such as Ebola. Understanding the multi-layered epigenetic mechanisms that underpin the rapid recall responses of memory T cells following reactivation is a critical component of this development pathway.
Collapse
Affiliation(s)
- Jennifer Dunn
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| | - Robert McCuaig
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| | - Wen Juan Tu
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| | - Kristine Hardy
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| | - Sudha Rao
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| |
Collapse
|
25
|
Christie D, Zhu J. Transcriptional regulatory networks for CD4 T cell differentiation. Curr Top Microbiol Immunol 2015; 381:125-72. [PMID: 24839135 DOI: 10.1007/82_2014_372] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4(+) T cells play a central role in controlling the adaptive immune response by secreting cytokines to activate target cells. Naïve CD4(+) T cells differentiate into at least four subsets, Th1Th1 , Th2Th2 , Th17Th17 , and inducible regulatory T cellsregulatory T cells , each with unique functions for pathogen elimination. The differentiation of these subsets is induced in response to cytokine stimulation, which is translated into Stat activation, followed by induction of master regulator transcription factorstranscription factors . In addition to these factors, multiple other transcription factors, both subset specific and shared, are also involved in promoting subset differentiation. This review will focus on the network of transcription factors that control CD4(+) T cell differentiation.
Collapse
Affiliation(s)
- Darah Christie
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
26
|
Yu SF, Zhang YN, Yang BY, Wu CY. Human memory, but not naive, CD4+ T cells expressing transcription factor T-bet might drive rapid cytokine production. J Biol Chem 2014; 289:35561-9. [PMID: 25378399 DOI: 10.1074/jbc.m114.608745] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We found that after stimulation for a few hours, memory but not naive CD4(+) T cells produced a large amount of IFN-γ; however, the mechanism of rapid response of memory CD4(+) T cells remains undefined. We compared the expression of transcription factors in resting or activated naive and memory CD4(+) T cells and found that T-bet, but not pSTAT-1 or pSTAT-4, was highly expressed in resting memory CD4(+) T cells and that phenotypic characteristics of T-bet(+)CD4(+) T cells were CD45RA(low)CD62L(low) CCR7(low). After short-term stimulation, purified memory CD4(+) T cells rapidly produced effector cytokines that were closely associated with the pre-existence of T-bet. By contrast, resting naive CD4(+) T cells did not express T-bet, and they produced cytokines only after sustained stimulation. Our further studies indicated that T-bet was expressed in the nuclei of resting memory CD4(+) T cells, which might have important implications for rapid IFN-γ production. Our results indicate that the pre-existence and nuclear mobilization of T-bet in resting memory CD4(+) T cells might be a possible transcriptional mechanism for rapid production of cytokines by human memory CD4(+) T cells.
Collapse
Affiliation(s)
- Si-fei Yu
- From the Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yan-nan Zhang
- From the Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Bin-yan Yang
- From the Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Chang-you Wu
- From the Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Collier SP, Henderson MA, Tossberg JT, Aune TM. Regulation of the Th1 genomic locus from Ifng through Tmevpg1 by T-bet. THE JOURNAL OF IMMUNOLOGY 2014; 193:3959-65. [PMID: 25225667 DOI: 10.4049/jimmunol.1401099] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs), critical regulators of protein-coding genes, are likely to be coexpressed with neighboring protein-coding genes in the genome. How the genome integrates signals to achieve coexpression of lncRNA genes and neighboring protein-coding genes is not well understood. The lncRNA Tmevpg1 (NeST, Ifng-AS1) is critical for Th1-lineage-specific expression of Ifng and is coexpressed with Ifng. In this study, we show that T-bet guides epigenetic remodeling of Tmevpg1 proximal and distal enhancers, leading to recruitment of stimulus-inducible transcription factors, NF-κB and Ets-1, to the locus. Activities of Tmevpg1-specific enhancers and Tmevpg1 transcription are dependent upon NF-κB. Thus, we propose that T-bet stimulates epigenetic remodeling of Tmevpg1-specific enhancers and Ifng-specific enhancers to achieve Th1-lineage-specific expression of Ifng.
Collapse
Affiliation(s)
- Sarah P Collier
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Melodie A Henderson
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - John T Tossberg
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Thomas M Aune
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; and Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
28
|
Kim C, Jay DC, Williams MA. Dynamic functional modulation of CD4+ T cell recall responses is dependent on the inflammatory environment of the secondary stimulus. PLoS Pathog 2014; 10:e1004137. [PMID: 24854337 PMCID: PMC4031222 DOI: 10.1371/journal.ppat.1004137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 04/07/2014] [Indexed: 12/27/2022] Open
Abstract
The parameters that modulate the functional capacity of secondary Th1 effector cells are poorly understood. In this study, we employ a serial adoptive transfer model system to show that the functional differentiation and secondary memory potential of secondary CD4+ effector T cells are dependent on the inflammatory environment of the secondary challenge. Adoptive transfer of TCR transgenic lymphocytic choriomeningitis virus (LCMV) Glycoprotein-specific SMARTA memory cells into LCMV-immune hosts, followed by secondary challenge with Listeria monocytogenes recombinantly expressing a portion of the LCMV Glycoprotein (Lm-gp61), resulted in the rapid emergence of SMARTA secondary effector cells with heightened functional avidity (as measured by their ability to make IFNγ in response to ex vivo restimulation with decreasing concentrations of peptide), limited contraction after pathogen clearance and stable maintenance secondary memory T cell populations. In contrast, transfer of SMARTA memory cells into naïve hosts prior to secondary Lm-gp61 challenge, which resulted in a more extended infectious period, resulted in poor functional avidity, increased death during the contraction phase and poor maintenance of secondary memory T cell populations. The modulation of functional avidity during the secondary Th1 response was independent of differences in antigen load or persistence. Instead, the inflammatory environment strongly influenced the function of the secondary Th1 response, as inhibition of IL-12 or IFN-I activity respectively reduced or increased the functional avidity of secondary SMARTA effector cells following rechallenge in a naïve secondary hosts. Our findings demonstrate that secondary effector T cells exhibit inflammation-dependent differences in functional avidity and memory potential, and have direct bearing on the design of strategies aimed at boosting memory T cell responses.
Collapse
Affiliation(s)
- Chulwoo Kim
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - David C. Jay
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew A. Williams
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
29
|
Abstract
The initiation and perpetuation of autoimmunity recognize numerous checkpoints, from the genomic susceptibility to the breakdown of tolerance. This latter phenomenon includes the loss of B cell anergy and T regulatory cell failure, as well as the production of autoantibodies and autoreactive T cells. These mechanisms ultimately lead to tissue injury via different mechanisms that span from the production of proinflammatory cytokines to the chemotaxis of immune cells to the target sites. The pathways to autoimmunity have been widely investigated over the past year and resulted in a number of articles in peer-reviewed journals that has increased by nearly 10 % compared to 2011. We herein follow on the attempt to provide a brief discussion of the majority of articles on autoimmune diseases that were published in the major immunology journals in the previous solar year. The selection is necessarily arbitrary and may thus not be seen as comprehensive but reflects current research trends. Indeed, 2012 articles were mostly dedicated to define new and old mechanisms with potential therapeutic implications in autoimmunity in general, though based on specific clinical conditions or animal models. As paradigmatic examples, the environmental influence on autoimmunity, Th17 changes modulating the autoimmune response, serum autoantibodies and B cell changes as biomarkers and therapeutic targets were major issues addressed by experimental articles in 2012. Further, a growing number of studies investigated the sex bias of autoimmunity and supported different working hypotheses to explain the female predominance, including sex chromosome changes and reproductive life factors. In conclusion, the resulting scenario illustrates that common factors may underlie different autoimmune diseases and this is well represented by the observed alterations in interferon-α and TGFβ or by the shared signaling pathways.
Collapse
Affiliation(s)
- Carlo Selmi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy,
| |
Collapse
|
30
|
Abstract
Influenza A virus is a significant cause of morbidity and mortality worldwide, particularly among young children and the elderly. Current vaccines induce neutralizing antibody responses directed toward highly variable viral surface proteins, resulting in limited heterosubtypic protection to new viral serotypes. By contrast, memory CD4 T cells recognize conserved viral proteins and are cross-reactive to multiple influenza strains. In humans, virus-specific memory CD4 T cells were found to be the protective correlate in human influenza challenge studies, suggesting their key role in protective immunity. In mouse models, memory CD4 T cells can mediate protective responses to secondary influenza infection independent of B cells or CD8 T cells, and can influence innate immune responses. Importantly, a newly defined, tissue-resident CD4 memory population has been demonstrated to be retained in lung tissue and promote optimal protective responses to an influenza infection. Here, we review the current state of results regarding the generation of memory CD4 T cells following primary influenza infection, mechanisms for their enhanced efficacy in protection from secondary challenge including their phenotype, localization, and function in the context of both mouse models and human infection. We also discuss the generation of memory CD4 T cells in response to influenza vaccines and its future implications for vaccinology.
Collapse
|
31
|
CD4 T cell help is limiting and selective during the primary B cell response to influenza virus infection. J Virol 2013; 88:314-24. [PMID: 24155379 DOI: 10.1128/jvi.02077-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Influenza virus vaccination strategies are focused upon the elicitation of protective antibody responses through administration of viral protein through either inactivated virions or live attenuated virus. Often overlooked in this strategy is the CD4 T cell response: how it develops into memory, and how it may support future primary B cell responses to heterologous infection. Through the utilization of a peptide-priming regimen, this study describes a strategy for developing CD4 T cell memory with the capacity to robustly expand in the lung-draining lymph node after live influenza virus infection. Not only were frequencies of antigen-specific CD4 T cells enhanced, but these cells also supported an accelerated primary B cell response to influenza virus-derived protein, evidenced by high anti-nucleoprotein (NP) serum antibody titers early, while there is still active viral replication ongoing in the lung. NP-specific antibody-secreting cells and heightened frequencies of germinal center B cells and follicular T helper cells were also readily detectable in the draining lymph node. Surprisingly, a boosted memory CD4 T cell response was not sufficient to provide intermolecular help for antibody responses. Our study demonstrates that CD4 T cell help is selective and limiting to the primary antibody response to influenza virus infection and that preemptive priming of CD4 T cell help can promote effective and rapid conversion of naive B cells to mature antibody-secreting cells.
Collapse
|
32
|
IL-27 receptor signaling regulates memory CD4+ T cell populations and suppresses rapid inflammatory responses during secondary malaria infection. Infect Immun 2013; 82:10-20. [PMID: 24101691 DOI: 10.1128/iai.01091-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interleukin-27 (IL-27) is known to control primary CD4(+) T cell responses during a variety of different infections, but its role in regulating memory CD4(+) T responses has not been investigated in any model. In this study, we have examined the functional importance of IL-27 receptor (IL-27R) signaling in regulating the formation and maintenance of memory CD4(+) T cells following malaria infection and in controlling their subsequent reactivation during secondary parasite challenge. We demonstrate that although the primary effector/memory CD4(+) T cell response was greater in IL-27R-deficient (WSX-1(-/-)) mice following Plasmodium berghei NK65 infection than in wild-type (WT) mice, there were no significant differences in the size of the maintained memory CD4(+) T population(s) at 20 weeks postinfection in the spleen, liver, or bone marrow of WSX-1(-/-) mice compared with WT mice. However, the composition of the memory CD4(+) T cell pool was slightly altered in WSX-1(-/-) mice following clearance of primary malaria infection, with elevated numbers of late effector memory CD4(+) T cells in the spleen and liver and increased production of IL-2 in the spleen. Crucially, WSX-1(-/-) mice displayed significantly enhanced parasite control compared with WT mice following rechallenge with homologous malaria parasites. Improved parasite control in WSX-1(-/-) mice during secondary infection was associated with elevated systemic production of multiple inflammatory innate and adaptive cytokines and extremely rapid proliferation of antigen-experienced T cells in the liver. These data are the first to demonstrate that IL-27R signaling plays a role in regulating the magnitude and quality of secondary immune responses during rechallenge infections.
Collapse
|
33
|
von Essen MR, Kongsbak M, Levring TB, Hansen AK, Boding L, Lauritsen JPH, Woetmann A, Baier G, Ødum N, Bonefeld CM, Geisler C. PKC-θ exists in an oxidized inactive form in naive human T cells. Eur J Immunol 2013; 43:1659-66. [DOI: 10.1002/eji.201243140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/01/2013] [Accepted: 02/18/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Marina Rode von Essen
- Department of International Health; Immunology and Microbiology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen; Denmark
| | - Martin Kongsbak
- Department of International Health; Immunology and Microbiology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen; Denmark
| | - Trine Bøegh Levring
- Department of International Health; Immunology and Microbiology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen; Denmark
| | - Ann Kathrine Hansen
- Department of International Health; Immunology and Microbiology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen; Denmark
| | - Lasse Boding
- Department of International Health; Immunology and Microbiology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen; Denmark
| | - Jens Peter Holst Lauritsen
- Department of International Health; Immunology and Microbiology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen; Denmark
| | - Anders Woetmann
- Department of International Health; Immunology and Microbiology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen; Denmark
| | - Gottfried Baier
- Department of Medical Genetics; Molecular and Clinical Pharmacology; Innsbruck Medical University; Innsbruck; Austria
| | - Niels Ødum
- Department of International Health; Immunology and Microbiology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen; Denmark
| | - Charlotte Menné Bonefeld
- Department of International Health; Immunology and Microbiology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen; Denmark
| | - Carsten Geisler
- Department of International Health; Immunology and Microbiology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen; Denmark
| |
Collapse
|
34
|
Paul S, Schaefer BC. A new look at T cell receptor signaling to nuclear factor-κB. Trends Immunol 2013; 34:269-81. [PMID: 23474202 DOI: 10.1016/j.it.2013.02.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 01/20/2013] [Accepted: 02/04/2013] [Indexed: 12/20/2022]
Abstract
Antigen stimulation of T cell receptor (TCR) signaling to nuclear factor (NF)-κB is required for T cell proliferation and differentiation of effector cells. The TCR-to-NF-κB pathway is generally viewed as a linear sequence of events in which TCR engagement triggers a cytoplasmic cascade of protein-protein interactions and post-translational modifications, ultimately culminating in the nuclear translocation of NF-κB. However, recent findings suggest a more complex picture in which distinct signalosomes, previously unrecognized proteins, and newly identified regulatory mechanisms play key roles in signal transmission. In this review, we evaluate recent data and suggest areas of future emphasis in the study of this important pathway.
Collapse
Affiliation(s)
- Suman Paul
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | | |
Collapse
|
35
|
Abstract
The mechanisms leading to the onset and perpetuation of systemic and tissue-specific autoimmune diseases are complex, and numerous hypotheses have been proposed or confirmed over the past 12 months. It is particularly of note that the number of articles published during 2011 in the major immunology and autoimmunity journals increased by 3 % compared to the previous year. The present article is dedicated to a brief review of the reported data and, albeit not comprehensive of all articles, is aimed at identifying common and future themes. First, clinical researchers were particularly dedicated to defining refractory forms of diseases and to discuss the use and switch of therapeutic monoclonal antibodies in everyday practice. Second, following the plethora of genome-wide association studies reported in most multifactorial diseases, it became clear that genomics cannot fully explain the individual susceptibility and additional environmental or epigenetic factors are necessary. Both these components were widely investigated, both in organ-specific (i.e., type 1 diabetes) and systemic (i.e., systemic lupus erythematosus) diseases. Third, a large number of 2011 works published in the autoimmunity area are dedicated to dissect pathogenetic mechanisms of tolerance breakdown in general or in specific conditions. While our understanding of T regulatory and Th17 cells has significantly increased in 2011, it is of note that most of the proposed lines of evidence identify potential targets for future treatments and should not be overlooked.
Collapse
|
36
|
The Th1:th2 dichotomy of pregnancy and preterm labour. Mediators Inflamm 2012; 2012:967629. [PMID: 22719180 PMCID: PMC3376783 DOI: 10.1155/2012/967629] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/18/2012] [Indexed: 12/25/2022] Open
Abstract
Pregnancy is a unique immunological state in which a balance of immune tolerance and suppression is needed to protect the fetus without compromising the mother. It has long been established that a bias from the T helper 1 cytokine profile towards the T helper 2 profile contributes towards successful pregnancy maintenance. The majority of publications that report on aberrant Th1:Th2 balance focus on early pregnancy loss and preeclampsia. Over the last few decades, there has been an increased awareness of the role of infection and inflammation in preterm labour, and the search for new biomarkers to predict preterm labour continues. In this paper, we explore the evidence for an aberrant Th1:Th2 profile associated with preterm labour. We also consider the potential for its use in screening women at high risk of preterm labour and for prophylactic therapeutic measures for the prevention of preterm labour and associated neonatal adverse outcomes.
Collapse
|
37
|
Weng NP, Araki Y, Subedi K. The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nat Rev Immunol 2012; 12:306-15. [PMID: 22421787 DOI: 10.1038/nri3173] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
How the immune system remembers a previous encounter with a pathogen and responds more efficiently to a subsequent encounter has been one of the central enigmas for immunologists for over a century. The identification of pathogen-specific memory lymphocytes that arise after an infection provided a cellular basis for immunological memory. But the molecular mechanisms of immunological memory remain only partially understood. The emerging evidence suggests that epigenetic changes have a key role in controlling the distinct transcriptional profiles of memory lymphocytes and thus in shaping their function. In this Review, we summarize the recent progress that has been made in assessing the differential gene expression and chromatin modifications in memory CD4(+) and CD8(+) T cells, and we present our current understanding of the molecular basis of memory T cell function.
Collapse
Affiliation(s)
- Nan-ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | | | |
Collapse
|