1
|
Ruiz Ortega M, Pogorelyy MV, Minervina AA, Thomas PG, Mora T, Walczak AM. Learning predictive signatures of HLA type from T-cell repertoires. PLoS Comput Biol 2025; 21:e1012724. [PMID: 39761303 PMCID: PMC11737854 DOI: 10.1371/journal.pcbi.1012724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2024] [Revised: 01/16/2025] [Accepted: 12/16/2024] [Indexed: 01/15/2025] Open
Abstract
T cells recognize a wide range of pathogens using surface receptors that interact directly with peptides presented on major histocompatibility complexes (MHC) encoded by the HLA loci in humans. Understanding the association between T cell receptors (TCR) and HLA alleles is an important step towards predicting TCR-antigen specificity from sequences. Here we analyze the TCR alpha and beta repertoires of large cohorts of HLA-typed donors to systematically infer such associations, by looking for overrepresentation of TCRs in individuals with a common allele.TCRs, associated with a specific HLA allele, exhibit sequence similarities that suggest prior antigen exposure. Immune repertoire sequencing has produced large numbers of datasets, however the HLA type of the corresponding donors is rarely available. Using our TCR-HLA associations, we trained a computational model to predict the HLA type of individuals from their TCR repertoire alone. We propose an iterative procedure to refine this model by using data from large cohorts of untyped individuals, by recursively typing them using the model itself. The resulting model shows good predictive performance, even for relatively rare HLA alleles.
Collapse
Affiliation(s)
- María Ruiz Ortega
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL Université, Sorbonne Université, and Université Paris-Cité, Paris, France
| | - Mikhail V. Pogorelyy
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Anastasia A. Minervina
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Paul G. Thomas
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Thierry Mora
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL Université, Sorbonne Université, and Université Paris-Cité, Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL Université, Sorbonne Université, and Université Paris-Cité, Paris, France
| |
Collapse
|
2
|
De Boer RJ, Kesmir C, Perelson AS, Borghans JAM. Is the exquisite specificity of lymphocytes generated by thymic selection or due to evolution? Front Immunol 2024; 15:1266349. [PMID: 38605941 PMCID: PMC11008227 DOI: 10.3389/fimmu.2024.1266349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
We have previously argued that the antigen receptors of T and B lymphocytes evolved to be sufficiently specific to avoid massive deletion of clonotypes by negative selection. Their optimal 'specificity' level, i.e., probability of binding any particular epitope, was shown to be inversely related to the number of self-antigens that the cells have to be tolerant to. Experiments have demonstrated that T lymphocytes also become more specific during negative selection in the thymus, because cells expressing the most crossreactive receptors have the highest likelihood of binding a self-antigen, and hence to be tolerized (i.e., deleted, anergized, or diverted into a regulatory T cell phenotype). Thus, there are two -not mutually exclusive- explanations for the exquisite specificity of T cells, one involving evolution and the other thymic selection. To better understand the impact of both, we extend a previously developed mathematical model by allowing for T cells with very different binding probabilities in the pre-selection repertoire. We confirm that negative selection tends to tolerize the most crossreactive clonotypes. As a result, the average level of specificity in the functional post-selection repertoire depends on the number of self-antigens, even if there is no evolutionary optimization of binding probabilities. However, the evolutionary optimal range of binding probabilities in the pre-selection repertoire also depends on the number of self-antigens. Species with more self antigens need more specific pre-selection repertoires to avoid excessive loss of T cells during thymic selection, and hence mount protective immune responses. We conclude that both evolution and negative selection are responsible for the high level of specificity of lymphocytes.
Collapse
Affiliation(s)
- Rob J. De Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Can Kesmir
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Alan S. Perelson
- Department of Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - José A. M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
3
|
Ortega MR, Pogorelyy MV, Minervina AA, Thomas PG, Walczak AM, Mora T. Learning predictive signatures of HLA type from T-cell repertoires. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577228. [PMID: 38352609 PMCID: PMC10862754 DOI: 10.1101/2024.01.25.577228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2025]
Abstract
T cells recognize a wide range of pathogens using surface receptors that interact directly with pep-tides presented on major histocompatibility complexes (MHC) encoded by the HLA loci in humans. Understanding the association between T cell receptors (TCR) and HLA alleles is an important step towards predicting TCR-antigen specificity from sequences. Here we analyze the TCR alpha and beta repertoires of large cohorts of HLA-typed donors to systematically infer such associations, by looking for overrepresentation of TCRs in individuals with a common allele.TCRs, associated with a specific HLA allele, exhibit sequence similarities that suggest prior antigen exposure. Immune repertoire sequencing has produced large numbers of datasets, however the HLA type of the corresponding donors is rarely available. Using our TCR-HLA associations, we trained a computational model to predict the HLA type of individuals from their TCR repertoire alone. We propose an iterative procedure to refine this model by using data from large cohorts of untyped individuals, by recursively typing them using the model itself. The resulting model shows good predictive performance, even for relatively rare HLA alleles.
Collapse
|
4
|
Mitchell AM, Baschal EE, McDaniel KA, Fleury T, Choi H, Pyle L, Yu L, Rewers MJ, Nakayama M, Michels AW. Tracking DNA-based antigen-specific T cell receptors during progression to type 1 diabetes. SCIENCE ADVANCES 2023; 9:eadj6975. [PMID: 38064552 PMCID: PMC10708189 DOI: 10.1126/sciadv.adj6975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/11/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
T cells targeting self-proteins are important mediators in autoimmune diseases. T cells express unique cell-surface receptors (TCRs) that recognize peptides presented by major histocompatibility molecules. TCRs have been identified from blood and pancreatic islets of individuals with type 1 diabetes (T1D). Here, we tracked ~1700 known antigen-specific TCR sequences, islet antigen or viral reactive, in bulk TCRβ sequencing from longitudinal blood DNA samples in at-risk cases who progressed to T1D, age/sex/human leukocyte antigen-matched controls, and a new-onset T1D cohort. Shared and frequent antigen-specific TCRβ sequences were identified in all three cohorts, and viral sequences were present across all ages. Islet sequences had different patterns of accumulation based upon antigen specificity in the at-risk cases. Furthermore, 73 islet-antigen TCRβ sequences were present in higher frequencies and numbers in T1D samples relative to controls. The total number of these disease-associated TCRβ sequences inversely correlated with age at clinical diagnosis, indicating the potential to use disease-relevant TCR sequences as biomarkers in autoimmune disorders.
Collapse
Affiliation(s)
- Angela M. Mitchell
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erin E. Baschal
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kristen A. McDaniel
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Theodore Fleury
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hyelin Choi
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Laura Pyle
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Aurora, CO, USA
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marian J. Rewers
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maki Nakayama
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aaron W. Michels
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
5
|
Clark F, Gil A, Thapa I, Aslan N, Ghersi D, Selin LK. Cross-reactivity influences changes in human influenza A virus and Epstein Barr virus specific CD8 memory T cell receptor alpha and beta repertoires between young and old. Front Immunol 2023; 13:1011935. [PMID: 36923729 PMCID: PMC10009332 DOI: 10.3389/fimmu.2022.1011935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2022] [Accepted: 12/30/2022] [Indexed: 03/03/2023] Open
Abstract
Older people have difficulty controlling infection with common viruses such as influenza A virus (IAV), RNA virus which causes recurrent infections due to a high rate of genetic mutation, and Epstein Barr virus (EBV), DNA virus which persists in B cells for life in the 95% of people that become acutely infected. We questioned whether changes in epitope-specific memory CD8 T cell receptor (TCR) repertoires to these two common viruses could occur with increasing age and contribute to waning immunity. We compared CD8 memory TCR alpha and beta repertoires in two HLA-A2+ EBV- and IAV-immune donors, young (Y) and older (O) donors to three immunodominant epitopes known to be cross-reactive, IAV-M158-66 (IAV-M1), EBV-BMLF1280-288 (EBV-BM), and EBV-BRLF1109-117 (EBV-BR). We, therefore, also designed these studies to examine if TCR cross-reactivity could contribute to changes in repertoire with increasing age. TCR high throughput sequencing showed a significant difference in the pattern of TRBV usage between Y and O. However, there were many more differences in AV and AJ usage, between the age groups suggesting that changes in TCRα usage may play a greater role in evolution of the TCR repertoire emphasizing the importance of studying TRAV repertoires. With increasing age there was a preferential retention of TCR for all three epitopes with features in their complementarity-determining region (CDR3) that increased their ease of generation, and their cross-reactive potential. Young and older donors differed in the patterns of AV/AJ and BV/BJ pairings and usage of dominant CDR3 motifs specific to all three epitopes. Both young and older donors had cross-reactive responses between these 3 epitopes, which were unique and differed from the cognate responses having features that suggested they could interact with either ligand. There was an increased tendency for the classic IAV-M1 specific clone BV19-IRSS-JB2.7/AV27-CAGGGSQGNLIF-AJ42 to appear among the cross-reactive clones, suggesting that the dominance of this clone may relate to its cross-reactivity with EBV. These results suggest that although young and older donors retain classic TCR features for each epitope their repertoires are gradually changing with age, maintaining TCRs that are cross-reactive between these two common human viruses, one with recurrent infections and the other a persistent virus which frequently reactivates.
Collapse
Affiliation(s)
- Fransenio Clark
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Anna Gil
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ishwor Thapa
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Nuray Aslan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Liisa K. Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
6
|
Kanduri C, Scheffer L, Pavlović M, Rand KD, Chernigovskaya M, Pirvandy O, Yaari G, Greiff V, Sandve GK. simAIRR: simulation of adaptive immune repertoires with realistic receptor sequence sharing for benchmarking of immune state prediction methods. Gigascience 2022; 12:giad074. [PMID: 37848619 PMCID: PMC10580376 DOI: 10.1093/gigascience/giad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2023] [Revised: 07/20/2023] [Accepted: 08/29/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Machine learning (ML) has gained significant attention for classifying immune states in adaptive immune receptor repertoires (AIRRs) to support the advancement of immunodiagnostics and therapeutics. Simulated data are crucial for the rigorous benchmarking of AIRR-ML methods. Existing approaches to generating synthetic benchmarking datasets result in the generation of naive repertoires missing the key feature of many shared receptor sequences (selected for common antigens) found in antigen-experienced repertoires. RESULTS We demonstrate that a common approach to generating simulated AIRR benchmark datasets can introduce biases, which may be exploited for undesired shortcut learning by certain ML methods. To mitigate undesirable access to true signals in simulated AIRR datasets, we devised a simulation strategy (simAIRR) that constructs antigen-experienced-like repertoires with a realistic overlap of receptor sequences. simAIRR can be used for constructing AIRR-level benchmarks based on a range of assumptions (or experimental data sources) for what constitutes receptor-level immune signals. This includes the possibility of making or not making any prior assumptions regarding the similarity or commonality of immune state-associated sequences that will be used as true signals. We demonstrate the real-world realism of our proposed simulation approach by showing that basic ML strategies perform similarly on simAIRR-generated and real-world experimental AIRR datasets. CONCLUSIONS This study sheds light on the potential shortcut learning opportunities for ML methods that can arise with the state-of-the-art way of simulating AIRR datasets. simAIRR is available as a Python package: https://github.com/KanduriC/simAIRR.
Collapse
Affiliation(s)
- Chakravarthi Kanduri
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, 0373 Oslo, Norway
| | - Lonneke Scheffer
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
| | - Milena Pavlović
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, 0373 Oslo, Norway
| | - Knut Dagestad Rand
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology and Oslo University Hospital, University of Oslo, 0373 Oslo, Norway
| | - Oz Pirvandy
- Faculty of Engineering, Bar-Ilan University, 5290002, Israel
| | - Gur Yaari
- Faculty of Engineering, Bar-Ilan University, 5290002, Israel
| | - Victor Greiff
- Department of Immunology and Oslo University Hospital, University of Oslo, 0373 Oslo, Norway
| | - Geir K Sandve
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, 0373 Oslo, Norway
| |
Collapse
|
7
|
Ruder J, Docampo MJ, Rex J, Obahor S, Naghavian R, Müller AM, Schanz U, Jelcic I, Martin R. Dynamics of T cell repertoire renewal following autologous hematopoietic stem cell transplantation in multiple sclerosis. Sci Transl Med 2022; 14:eabq1693. [DOI: 10.1126/scitranslmed.abq1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/12/2023]
Abstract
Autologous hematopoietic stem cell transplantation (aHSCT) is a highly effective treatment of multiple sclerosis (MS). It depletes autoreactive cells and subsequently renews adaptive immune cells. The possible proinflammatory potential of surviving T cells early after aHSCT has not been studied. Here, we examined the dynamics of new and surviving T cells in 27 patients after aHSCT by multidimensional flow cytometry, T cell receptor (TCR) sequencing, specificity testing, telomere length profiling, and HLA genotyping. Early after aHSCT, naïve T cells are barely detectable, whereas effector memory (EM) T cells quickly reconstitute to pre-aHSCT values. EM CD4+T cells early after aHSCT have shorter telomeres, have higher expression of senescence and exhaustion markers, and proliferate less than those before aHSCT. We find a median TCR repertoire overlap of 26% between the early post-aHSCT EM CD4+T cells and pre-aHSCT, indicating persistence of EM CD4+T cells early after transplantation. The EM CD4+TCR repertoire overlap declines to 15% at 12 months after aHSCT, whereas the naïve TCR repertoire entirely renews. HLA-DR–associated EM CD4+T cell reactivity toward MS-related antigens decreased after aHSCT, whereas reactivity toward EBV increased. Our data show substantial survival of pre-aHSCT EM CD4+T cells early after transplantation but complete renewal of the T cell repertoire by nascent T cells later.
Collapse
Affiliation(s)
- Josefine Ruder
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - María José Docampo
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jordan Rex
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Simon Obahor
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Reza Naghavian
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Antonia M.S. Müller
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Urs Schanz
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ilijas Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
8
|
Mitchell AM, Baschal EE, McDaniel KA, Simmons KM, Pyle L, Waugh K, Steck AK, Yu L, Gottlieb PA, Rewers MJ, Nakayama M, Michels AW. Temporal development of T cell receptor repertoires during childhood in health and disease. JCI Insight 2022; 7:161885. [PMID: 35998036 PMCID: PMC9675557 DOI: 10.1172/jci.insight.161885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2022] [Accepted: 08/17/2022] [Indexed: 12/05/2022] Open
Abstract
T cell receptor (TCR) sequences are exceptionally diverse and can now be comprehensively measured with next-generation sequencing technologies. However, a thorough investigation of longitudinal TCR repertoires throughout childhood in health and during development of a common childhood disease, type 1 diabetes (T1D), has not been undertaken. Here, we deep sequenced the TCR-β chain repertoires from longitudinal peripheral blood DNA samples at 4 time points beginning early in life (median age of 1.4 years) from children who progressed to T1D (n = 29) and age/sex-matched islet autoantibody-negative controls (n = 25). From 53 million TCR-β sequences, we show that the repertoire is extraordinarily diverse early in life and narrows with age independently of disease. We demonstrate the ability to identify specific TCR sequences, including those known to recognize influenza A and, separately, those specific for insulin and its precursor, preproinsulin. Insulin-reactive TCR-β sequences were more common and frequent in number as the disease progressed in those who developed T1D compared with genetically at risk nondiabetic children, and this was not the case for influenza-reactive sequences. As an independent validation, we sequenced and analyzed TCR-β repertoires from a cohort of new-onset T1D patients (n = 143), identifying the same preproinsulin-reactive TCRs. These results demonstrate an enrichment of preproinsulin-reactive TCR sequences during the progression to T1D, highlighting the importance of using disease-relevant TCR sequences as powerful biomarkers in autoimmune disorders.
Collapse
Affiliation(s)
- Angela M Mitchell
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Erin E Baschal
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Kristen A McDaniel
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Kimber M Simmons
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Laura Pyle
- Department of Biostatistics and Informatics, University of Colorado School of Pubic Health, Aurora, United States of America
| | - Kathleen Waugh
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Andrea K Steck
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Peter A Gottlieb
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Marian J Rewers
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Maki Nakayama
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Aaron W Michels
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| |
Collapse
|
9
|
Goncharov MM, Bryushkova EA, Sharaev NI, Skatova VD, Baryshnikova AM, Sharonov GV, Karnaukhov V, Vakhitova MT, Samoylenko IV, Demidov LV, Lukyanov S, Chudakov DM, Serebrovskaya EO. Pinpointing the tumor-specific T-cells via TCR clusters. eLife 2022; 11:77274. [PMID: 35377314 PMCID: PMC9023053 DOI: 10.7554/elife.77274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Adoptive cell transfer (ACT) is a promising approach to cancer immunotherapy, but its efficiency fundamentally depends on the extent of tumor-specific T cell enrichment within the graft. This can be estimated via activation with identifiable neoantigens, tumor-associated antigens (TAAs), or living or lysed tumor cells, but these approaches remain laborious, time-consuming, and functionally limited, hampering clinical development of ACT. Here, we demonstrate that homology cluster analysis of T cell receptor (TCR) repertoires efficiently identifies tumor-reactive TCRs allowing to: (1) detect their presence within the pool of tumor-infiltrating lymphocytes (TILs); (2) optimize TIL culturing conditions, with IL-2low/IL-21/anti-PD-1 combination showing increased efficiency; (3) investigate surface marker-based enrichment for tumor-targeting T cells in freshly isolated TILs (enrichment confirmed for CD4+ and CD8+ PD-1+/CD39+ subsets), or re-stimulated TILs (informs on enrichment in 4-1BB-sorted cells). We believe that this approach to the rapid assessment of tumor-specific TCR enrichment should accelerate T cell therapy development.
Collapse
Affiliation(s)
- Mikhail M Goncharov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | | | - Nikita I Sharaev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Valeria D Skatova
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Anastasiya M Baryshnikova
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - George V Sharonov
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Vadim Karnaukhov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Maria T Vakhitova
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Igor V Samoylenko
- Oncodermatology Department, NN Blokhin Russian Cancer Research Center, Moscow, Russian Federation
| | - Lev V Demidov
- Oncodermatology Department, NN Blokhin Russian Cancer Research Center, Moscow, Russian Federation
| | - Sergey Lukyanov
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Dmitriy M Chudakov
- Department of genomics of adaptive immunity, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | | |
Collapse
|
10
|
Francis JM, Leistritz-Edwards D, Dunn A, Tarr C, Lehman J, Dempsey C, Hamel A, Rayon V, Liu G, Wang Y, Wille M, Durkin M, Hadley K, Sheena A, Roscoe B, Ng M, Rockwell G, Manto M, Gienger E, Nickerson J, Moarefi A, Noble M, Malia T, Bardwell PD, Gordon W, Swain J, Skoberne M, Sauer K, Harris T, Goldrath AW, Shalek AK, Coyle AJ, Benoist C, Pregibon DC. Allelic variation in class I HLA determines CD8 + T cell repertoire shape and cross-reactive memory responses to SARS-CoV-2. Sci Immunol 2022; 7:eabk3070. [PMID: 34793243 PMCID: PMC9017864 DOI: 10.1126/sciimmunol.abk3070] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
Effective presentation of antigens by HLA class I molecules to CD8+ T cells is required for viral elimination and generation of long-term immunological memory. In this study, we applied a single-cell, multi-omic technology to generate a unified ex vivo characterization of the CD8+ T cell response to SARS-CoV-2 across 4 major HLA class I alleles. We found that HLA genotype conditions key features of epitope specificity, TCR α/β sequence diversity, and the utilization of pre-existing SARS-CoV-2 reactive memory T cell pools. Single-cell transcriptomics revealed functionally diverse T cell phenotypes of SARS-CoV-2-reactive T cells, associated with both disease stage and epitope specificity. Our results show that HLA variations significantly influence the CD8+ T cell repertoire shape and utilization of immune recall upon SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gang Liu
- Repertoire Immune Medicines, Cambridge, MA, USA
| | | | | | | | - Kane Hadley
- Repertoire Immune Medicines, Cambridge, MA, USA
| | | | | | - Mark Ng
- Repertoire Immune Medicines, Cambridge, MA, USA
| | | | | | | | | | -
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | - Tim Harris
- Repertoire Immune Medicines, Cambridge, MA, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, Molecular Biology Section, University of California, San Diego, San Diego, CA, USA
| | - Alex K Shalek
- Repertoire Immune Medicines, Cambridge, MA, USA.,Department of Chemistry and Koch Institute for Integrative Cancer Research, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | | |
Collapse
|
11
|
Marquez S, Babrak L, Greiff V, Hoehn KB, Lees WD, Luning Prak ET, Miho E, Rosenfeld AM, Schramm CA, Stervbo U. Adaptive Immune Receptor Repertoire (AIRR) Community Guide to Repertoire Analysis. Methods Mol Biol 2022; 2453:297-316. [PMID: 35622333 PMCID: PMC9761518 DOI: 10.1007/978-1-0716-2115-8_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
Abstract
Adaptive immune receptor repertoires (AIRRs) are rich with information that can be mined for insights into the workings of the immune system. Gene usage, CDR3 properties, clonal lineage structure, and sequence diversity are all capable of revealing the dynamic immune response to perturbation by disease, vaccination, or other interventions. Here we focus on a conceptual introduction to the many aspects of repertoire analysis and orient the reader toward the uses and advantages of each. Along the way, we note some of the many software tools that have been developed for these investigations and link the ideas discussed to chapters on methods provided elsewhere in this volume.
Collapse
Affiliation(s)
- Susanna Marquez
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Lmar Babrak
- Institute of Biomedical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - William D Lees
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Enkelejda Miho
- Institute of Biomedical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- aiNET GmbH, Basel, Switzerland
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Ulrik Stervbo
- Center for Translational Medicine, Immunology, and Transplantation, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany.
- Immundiagnostik, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany.
| |
Collapse
|
12
|
Hou X, Wang G, Fan W, Chen X, Mo C, Wang Y, Gong W, Wen X, Chen H, He D, Mo L, Jiang S, Ou M, Guo H, Liu H. T-cell receptor repertoires as potential diagnostic markers for patients with COVID-19. Int J Infect Dis 2021; 113:308-317. [PMID: 34688948 PMCID: PMC8530772 DOI: 10.1016/j.ijid.2021.10.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2021] [Revised: 09/25/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Objective Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing global health emergency. T-cell receptors (TCRs) are crucial mediators of antiviral adaptive immunity. This study sought to comprehensively characterize the TCR repertoire changes in patients with COVID-19. Methods A large sample size multi-center randomized controlled trial was implemented to study the features of the TCR repertoire and identify COVID-19 disease-related TCR sequences. Results It was found that some T-cell receptor beta chain (TCRβ) features differed markedly between COVID-19 patients and healthy controls, including decreased repertoire diversity, longer complementarity-determining region 3 (CDR3) length, skewed utilization of the TCRβ variable gene/joining gene (TRBV/J), and a high degree of TCRβ sharing in COVID-19 patients. Moreover, this analysis showed that TCR repertoire diversity declines with aging, which may be a cause of the higher infection and mortality rates in elderly patients. Importantly, a set of TCRβ clones that can distinguish COVID-19 patients from healthy controls with high accuracy was identified. Notably, this diagnostic model demonstrates 100% specificity and 82.68% sensitivity at 0–3 days post diagnosis. Conclusions This study lays the foundation for immunodiagnosis and the development of medicines and vaccines for COVID-19 patients.
Collapse
Affiliation(s)
- Xianliang Hou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Guangyu Wang
- College of Laboratory Medicine, Guilin Medical University, Guilin, 541199, China
| | - Wentao Fan
- Guangzhou Huayin Health Medical Group Co., Ltd, Guangzhou, China
| | - Xiaoyan Chen
- Department of State Owned Assets Management, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Chune Mo
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Yongsi Wang
- Guangzhou Huayin Health Medical Group Co., Ltd, Guangzhou, China
| | - Weiwei Gong
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Xuyan Wen
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Hui Chen
- Guangzhou Huayin Health Medical Group Co., Ltd, Guangzhou, China
| | - Dan He
- Guangzhou Huayin Health Medical Group Co., Ltd, Guangzhou, China
| | - Lijun Mo
- Clinical Laboratory, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Shaofeng Jiang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Minglin Ou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Haonan Guo
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China.
| | - Hongbo Liu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
| |
Collapse
|
13
|
Abstract
The human body detects foreign pathogens by T cells with specific receptors. These are not directly encoded in the genome but generated in a random process that combines small gene segments into functional subunits of the receptor. The β-chain of the T cell receptor is normally composed of three such gene segments. Here we identify a group of T cells that lack the middle segment in their receptor sequence. We find that such sequences are mostly generated before birth, persist over a human lifetime, and, as a result, are excessively shared between individuals. T cells play an important role in adaptive immunity. An enormous clonal diversity of T cells with a different specificity, encoded by the T cell receptor (TCR), protect the body against infection. Most TCRβ chains are generated from a V, D, and J segment during recombination in the thymus. Although complete absence of the D segment is not easily detectable from sequencing data, we find convincing evidence for a substantial proportion of TCRβ rearrangements lacking a D segment. Additionally, sequences without a D segment are more likely to be abundant within individuals and/or shared between individuals. Our analysis indicates that such sequences are preferentially generated during fetal development and persist within the elderly. Summarizing, TCRβ rearrangements without a D segment are not uncommon, and tend to allow for TCRβ chains with a high abundance in the naive repertoire.
Collapse
|
14
|
Johnson SA, Seale SL, Gittelman RM, Rytlewski JA, Robins HS, Fields PA. Impact of HLA type, age and chronic viral infection on peripheral T-cell receptor sharing between unrelated individuals. PLoS One 2021; 16:e0249484. [PMID: 34460826 PMCID: PMC8405014 DOI: 10.1371/journal.pone.0249484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022] Open
Abstract
The human adaptive immune system must generate extraordinary diversity to be able to respond to all possible pathogens. The T-cell repertoire derives this high diversity through somatic recombination of the T-cell receptor (TCR) locus, a random process that results in repertoires that are largely private to each individual. However, factors such as thymic selection and T-cell proliferation upon antigen exposure can affect TCR sharing among individuals. By immunosequencing the TCRβ variable region of 426 healthy individuals, we find that, on average, fewer than 1% of TCRβ clones are shared between individuals, consistent with largely private TCRβ repertoires. However, we detect a significant correlation between increased HLA allele sharing and increased number of shared TCRβ clones, with each additional shared HLA allele contributing to an increase in ~0.01% of the total shared TCRβ clones, supporting a key role for HLA type in shaping the immune repertoire. Surprisingly, we find that shared antigen exposure to CMV leads to fewer shared TCRβ clones, even after controlling for HLA, indicative of a largely private response to major viral antigenic exposure. Consistent with this hypothesis, we find that increased age is correlated with decreased overall TCRβ clone sharing, indicating that the pattern of private TCRβ clonal expansion is a general feature of the T-cell response to other infectious antigens as well. However, increased age also correlates with increased sharing among the lowest frequency clones, consistent with decreased repertoire diversity in older individuals. Together, all of these factors contribute to shaping the TCRβ repertoire, and understanding their interplay has important implications for the use of T cells for therapeutics and diagnostics.
Collapse
Affiliation(s)
- Sarah A. Johnson
- Adaptive Biotechnologies, Seattle, Washington, United States of America
| | - Spencer L. Seale
- Adaptive Biotechnologies, Seattle, Washington, United States of America
| | | | | | - Harlan S. Robins
- Adaptive Biotechnologies, Seattle, Washington, United States of America
| | - Paul A. Fields
- Adaptive Biotechnologies, Seattle, Washington, United States of America
| |
Collapse
|
15
|
Xu H, Jia J. Single-Cell RNA Sequencing of Peripheral Blood Reveals Immune Cell Signatures in Alzheimer's Disease. Front Immunol 2021; 12:645666. [PMID: 34447367 PMCID: PMC8382575 DOI: 10.3389/fimmu.2021.645666] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2020] [Accepted: 06/23/2021] [Indexed: 12/19/2022] Open
Abstract
The peripheral immune system is thought to affect the pathology of the central nervous system in Alzheimer’s disease (AD). However, current knowledge is inadequate for understanding the characteristics of peripheral immune cells in AD. This study aimed to explore the molecular basis of peripheral immune cells and the features of adaptive immune repertoire at a single cell level. We profiled 36,849 peripheral blood mononuclear cells from AD patients with amyloid-positive status and normal controls with amyloid-negative status by 5’ single-cell transcriptome and immune repertoire sequencing using the cell ranger standard analysis procedure. We revealed five immune cell subsets: CD4+ T cells, CD8+ T cells, B cells, natural killer cells, and monocytes–macrophages cells, and disentangled the characteristic alterations of cell subset proportion and gene expression patterns in AD. Thirty-one cell type-specific key genes, comprising abundant human leukocyte antigen genes, and multiple immune-related pathways were identified by protein–protein interaction network and pathway enrichment analysis. We also found high-frequency amplification clonotypes in T and B cells and decreased diversity in T cells in AD. As clone amplification suggested the activation of an adaptive immune response against specific antigens, we speculated that the peripheral adaptive immune response, especially mediated by T cells, may have a role in the pathogenesis of AD. This finding may also contribute to further research regarding disease mechanism and the development of immune-related biomarkers or therapy.
Collapse
Affiliation(s)
- Hui Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| |
Collapse
|
16
|
Zhang J, Wang Y, Yu H, Chen G, Wang L, Liu F, Yuan J, Ni Q, Xia X, Wan Y. Mapping the spatial distribution of T cells in repertoire dimension. Mol Immunol 2021; 138:161-171. [PMID: 34428621 DOI: 10.1016/j.molimm.2021.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2021] [Revised: 08/01/2021] [Accepted: 08/15/2021] [Indexed: 01/13/2023]
Abstract
T cells mediate adaptive immunity in diverse anatomic compartments through recognition of specific antigens via unique T cell receptor (TCR) structures. However, little is known about the spatial distribution of an organism's TCR repertoire. Here, using high-throughput TCR sequencing (TCRseq), we investigated the TCR repertoires of sixteen tissues in healthy C57B/L6 mice. We found that TCR repertoires generally classified into three categories (lymph nodes, non-lymph node tissues and small intestine) based on sequence similarity. Clonal distribution and diversity analyses showed that small intestine compartment had a more skewed repertoire as compared to lymph nodes and non-lymph node tissues. However, analysis of TRBV and TRBJ gene usage across tissue compartments, as well as comparison of CDR3 length distributions, showed no significant tissue-dependent differences. Interestingly, analysis of clonotype sharing between mice showed that although non-redundant public clonotypes were found more easily in lymph nodes, small intestinal CD4 + T cells harbored more abundant public clonotypes. These findings under healthy physiological conditions offer an important reference dataset, which may contribute to our ability to better manipulate T cell responses against infection and vaccination.
Collapse
Affiliation(s)
- Junying Zhang
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, 401331, China
| | - Yu Wang
- Zunyi Medical University, Zunyi, 563003, China
| | - Haili Yu
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Gang Chen
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Fang Liu
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Jiangbei Yuan
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong Province, 518036, China
| | - Qingshan Ni
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China.
| | - Xuefeng Xia
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, 401331, China.
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China; School of Big Data & Software Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
17
|
Mazouz S, Boisvert M, Abdel-Hakeem MS, Khedr O, Bruneau J, Shoukry NH. Expansion of Unique Hepatitis C Virus-Specific Public CD8 + T Cell Clonotypes during Acute Infection and Reinfection. THE JOURNAL OF IMMUNOLOGY 2021; 207:1180-1193. [PMID: 34341170 DOI: 10.4049/jimmunol.2001386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/10/2020] [Accepted: 06/09/2021] [Indexed: 11/19/2022]
Abstract
Hepatitis C virus (HCV) infection resolves spontaneously in ∼25% of acutely infected humans where viral clearance is mediated primarily by virus-specific CD8+ T cells. Previous cross-sectional analysis of the CD8+ TCR repertoire targeting two immunodominant HCV epitopes reported widespread use of public TCRs shared by different subjects, irrespective of infection outcome. However, little is known about the evolution of the public TCR repertoire during acute HCV and whether cross-reactivity to other Ags can influence infectious outcome. In this article, we analyzed the CD8+ TCR repertoire specific to the immunodominant and cross-reactive HLA-A2-restricted nonstructural 3-1073 epitope during acute HCV in humans progressing to either spontaneous resolution or chronic infection and at ∼1 y after viral clearance. TCR repertoire diversity was comparable among all groups with preferential usage of the TCR-β V04 and V06 gene families. We identified a set of 13 public clonotypes in HCV-infected humans independent of infection outcome. Six public clonotypes used the V04 gene family. Several public clonotypes were long-lived in resolvers and expanded on reinfection. By mining publicly available data, we identified several low-frequency CDR3 sequences in the HCV-specific repertoire matching human TCRs specific for other HLA-A2-restricted epitopes from melanoma, CMV, influenza A, EBV, and yellow fever viruses, but they were of low frequency and limited cross-reactivity. In conclusion, we identified 13 new public human CD8+ TCR clonotypes unique to HCV that expanded during acute infection and reinfection. The low frequency of cross-reactive TCRs suggests that they are not major determinants of infectious outcome.
Collapse
Affiliation(s)
- Sabrina Mazouz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Maude Boisvert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Mohamed S Abdel-Hakeem
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Omar Khedr
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Département de Médecine Familiale et de Médecine d'Urgence, Université de Montréal, Montreal, Quebec, Canada; and
| | - Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada; .,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Krishna C, DiNatale RG, Kuo F, Srivastava RM, Vuong L, Chowell D, Gupta S, Vanderbilt C, Purohit TA, Liu M, Kansler E, Nixon BG, Chen YB, Makarov V, Blum KA, Attalla K, Weng S, Salmans ML, Golkaram M, Liu L, Zhang S, Vijayaraghavan R, Pawlowski T, Reuter V, Carlo MI, Voss MH, Coleman J, Russo P, Motzer RJ, Li MO, Leslie CS, Chan TA, Hakimi AA. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell 2021; 39:662-677.e6. [PMID: 33861994 PMCID: PMC8268947 DOI: 10.1016/j.ccell.2021.03.007] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/30/2020] [Revised: 01/18/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
Clear cell renal cell carcinomas (ccRCCs) are highly immune infiltrated, but the effect of immune heterogeneity on clinical outcome in ccRCC has not been fully characterized. Here we perform paired single-cell RNA (scRNA) and T cell receptor (TCR) sequencing of 167,283 cells from multiple tumor regions, lymph node, normal kidney, and peripheral blood of two immune checkpoint blockade (ICB)-naïve and four ICB-treated patients to map the ccRCC immune landscape. We detect extensive heterogeneity within and between patients, with enrichment of CD8A+ tissue-resident T cells in a patient responsive to ICB and tumor-associated macrophages (TAMs) in a resistant patient. A TCR trajectory framework suggests distinct T cell differentiation pathways between patients responding and resistant to ICB. Finally, scRNA-derived signatures of tissue-resident T cells and TAMs are associated with response to ICB and targeted therapies across multiple independent cohorts. Our study establishes a multimodal interrogation of the cellular programs underlying therapeutic efficacy in ccRCC.
Collapse
Affiliation(s)
- Chirag Krishna
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Renzo G DiNatale
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fengshen Kuo
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Raghvendra M Srivastava
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lynda Vuong
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Diego Chowell
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sounak Gupta
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chad Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tanaya A Purohit
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ming Liu
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emily Kansler
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Briana G Nixon
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Ying-Bei Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vladimir Makarov
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyle A Blum
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyrollis Attalla
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stanley Weng
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Mahdi Golkaram
- Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Li Liu
- Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Shile Zhang
- Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | | | | | - Victor Reuter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, NY 10065, USA
| | - Martin H Voss
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, NY 10065, USA
| | - Jonathan Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul Russo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Robert J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, NY 10065, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Timothy A Chan
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA; Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; National Center for Regenerative Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - A Ari Hakimi
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
19
|
Yiu HH, Schoettle LN, Garcia‐Neuer M, Blattman JN, Johnson PLF. Selection influences naive CD8+ TCR-β repertoire sharing. Immunology 2021; 162:464-475. [PMID: 33345304 PMCID: PMC7968400 DOI: 10.1111/imm.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 11/28/2022] Open
Abstract
Within each individual, the adaptive immune system generates a repertoire of cells expressing receptors capable of recognizing diverse potential pathogens. The theoretical diversity of the T-cell receptor (TCR) repertoire exceeds the actual size of the T-cell population in an individual by several orders of magnitude - making the observation of identical TCRs in different individuals extremely improbable if all receptors were equally likely. Despite this disparity between the theoretical and the realized diversity of the repertoire, these 'public' receptor sequences have been identified in autoimmune, cancer and pathogen interaction contexts. Biased generation processes explain the presence of public TCRs in the naive repertoire, but do not adequately explain the different abundances of these public TCRs. We investigate and characterize the distribution of genomic TCR-β sequences of naive CD8+ T cells from three genetically identical mice, comparing non-productive (non-functional sequences) and productive sequences. We find public TCR-β sequences at higher abundances compared with unshared sequences in the productive, but not in the non-productive, repertoire. We show that neutral processes such as recombination biases, codon degeneracy and generation probability do not fully account for these differences, and conclude that thymic or peripheral selection plays an important role in increasing the abundances of public TCR-β sequences.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/physiology
- Cells, Cultured
- Clonal Selection, Antigen-Mediated
- Codon Usage
- Genes, T-Cell Receptor beta/genetics
- Humans
- Mice
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombination, Genetic
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Hao H. Yiu
- Department of BiologyUniversity of MarylandCollege ParkMDUSA
| | - Louis N. Schoettle
- School of Life SciencesThe Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Marlene Garcia‐Neuer
- School of Life SciencesThe Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Joseph N. Blattman
- School of Life SciencesThe Biodesign InstituteArizona State UniversityTempeAZUSA
| | | |
Collapse
|
20
|
A single donor is sufficient to produce a highly functional in vitro antibody library. Commun Biol 2021; 4:350. [PMID: 33742103 PMCID: PMC7979914 DOI: 10.1038/s42003-021-01881-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Antibody complementarity determining region diversity has been considered to be the most important metric for the production of a functional antibody library. Generally, the greater the antibody library diversity, the greater the probability of selecting a diverse array of high affinity leads. According to this paradigm, the primary means of elevating library diversity has been by increasing the number of donors. In the present study we explored the possibility of creating an in vitro antibody library from a single healthy individual, showing that the number of lymphocytes, rather than the number of donors, is the key criterion in the production of a diverse and functional antibody library. We describe the construction of a high-quality phage display library comprising 5 × 109 human antibodies by applying an efficient B cell extraction protocol from a single donor and a targeted V-gene amplification strategy favoring specific antibody families for their improved developability profiles. Each step of the library generation process was followed and validated by next generation sequencing to monitor the library quality and diversity. The functionality of the library was tested using several therapeutically relevant targets for which a vast number of different antibodies with desired biophysical properties were obtained.
Collapse
|
21
|
Wu M, Zhao M, Wu H, Lu Q. Immune repertoire: Revealing the "real-time" adaptive immune response in autoimmune diseases. Autoimmunity 2021; 54:61-75. [PMID: 33650440 DOI: 10.1080/08916934.2021.1887149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/22/2022]
Abstract
The diversity of the immune repertoire (IR) enables the human immune system to distinguish multifarious antigens (Ags) that humans may encounter throughout life. At the same time, bias or abnormalities in the IR also pay a contribution to the pathogenesis of autoimmune diseases. Rapid advancements in high-throughput sequencing (HTS) technology have ushered in a new era of immune studies, revealing novel molecules and pathways that might result in autoimmunity. In the field of IR, HTS can monitor the immune response status and identify disease-specific immune repertoires. In this review, we summarize updated progress on the mechanisms of the IR and current related studies on four autoimmune diseases, particularly focusing on systemic lupus erythematosus (SLE). These autoimmune diseases can exhibit slightly or significantly skewed IRs and provide novel insights that inform our comprehending of disease pathogenesis and provide potential targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Meiyu Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Fischer S, Stanke F, Tümmler B. VJ Segment Usage of TCR-Beta Repertoire in Monozygotic Cystic Fibrosis Twins. Front Immunol 2021; 12:599133. [PMID: 33708199 PMCID: PMC7940196 DOI: 10.3389/fimmu.2021.599133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2020] [Accepted: 01/28/2021] [Indexed: 11/26/2022] Open
Abstract
Sixteen monozygotic cystic fibrosis (CF) twin pairs of whom 14 pairs were homozygous for the most common p.Phe508del CFTR mutation were selected from the European Cystic Fibrosis Twin and Sibling Study Cohort. The monozygotic twins were examined in their T cell receptor (TCR) repertoire in peripheral blood by amplicon sequencing of the CDR3 variable region of the ß-chain. The recruitment of TCR J and V genes for recombination and selection in the thymus showed a strong genetic influence in the CF twin cohort as indicated by the shortest Jensen-Shannon distance to the twin individual. Exceptions were the clinically most discordant and/or most severely affected twin pairs where clonal expansion probably caused by recurrent pulmonary infections overshadowed the impact of the identical genomic blueprint. In general the Simpson clonality was low indicating that the population of TCRß clonotypes of the CF twins was dominated by the naïve T-cell repertoire. Intrapair sharing of clonotypes was significantly more frequent among monozygotic CF twins than among pairs of unrelated CF patients. Complete nucleotide sequence identity was observed in about 0.11% of CDR3 sequences which partially should represent persisting fetal clones derived from the same progenitor T cells. Complete amino acid sequence identity was noted in 0.59% of clonotypes. Of the nearly 40,000 frequent amino acid clonotypes shared by at least two twin siblings 99.8% were already known within the immuneACCESS database and only 73 had yet not been detected indicating that the CDR3ß repertoire of CF children and adolescents does not carry a disease-specific signature but rather shares public clones with that of the non-CF community. Clonotypes shared within twin pairs and between unrelated CF siblings were highly abundant among healthy non-CF people, less represented in individuals with infectious disease and uncommon in patients with cancer. This subset of shared CF clonotypes defines CDR3 amino acid sequences that are more common in health than in disease.
Collapse
Affiliation(s)
- Sebastian Fischer
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Frauke Stanke
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
23
|
Izraelson M, Metsger M, Davydov AN, Shagina IA, Dronina MA, Obraztsova AS, Miskevich DA, Mamedov IZ, Volchkova LN, Nakonechnaya TO, Shugay M, Bolotin DA, Staroverov DB, Sharonov GV, Kondratyuk EY, Zagaynova EV, Lukyanov S, Shams I, Britanova OV, Chudakov DM. Distinct organization of adaptive immunity in the long-lived rodent Spalax galili. NATURE AGING 2021; 1:179-189. [PMID: 37118630 DOI: 10.1038/s43587-021-00029-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/24/2020] [Accepted: 01/08/2021] [Indexed: 04/30/2023]
Abstract
A balanced immune response is a cornerstone of healthy aging. Here, we uncover distinctive features of the long-lived blind mole-rat (Spalax spp.) adaptive immune system, relative to humans and mice. The T-cell repertoire remains diverse throughout the Spalax lifespan, suggesting a paucity of large long-lived clones of effector-memory T cells. Expression of master transcription factors of T-cell differentiation, as well as checkpoint and cytotoxicity genes, remains low as Spalax ages. The thymus shrinks as in mice and humans, while interleukin-7 and interleukin-7 receptor expression remains high, potentially reflecting the sustained homeostasis of naive T cells. With aging, immunoglobulin hypermutation level does not increase and the immunoglobulin-M repertoire remains diverse, suggesting shorter B-cell memory and sustained homeostasis of innate-like B cells. The Spalax adaptive immune system thus appears biased towards sustained functional and receptor diversity over specialized, long-lived effector-memory clones-a unique organizational strategy that potentially underlies this animal's extraordinary longevity and healthy aging.
Collapse
Affiliation(s)
- M Izraelson
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M Metsger
- Central European Institute of Technology, Brno, Czech Republic
| | - A N Davydov
- Central European Institute of Technology, Brno, Czech Republic
| | - I A Shagina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M A Dronina
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - A S Obraztsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - D A Miskevich
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - I Z Mamedov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Brno, Czech Republic
| | - L N Volchkova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - T O Nakonechnaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M Shugay
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - D A Bolotin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - D B Staroverov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - G V Sharonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E Y Kondratyuk
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - E V Zagaynova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - S Lukyanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - I Shams
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - O V Britanova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| | - D M Chudakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia.
- Pirogov Russian National Research Medical University, Moscow, Russia.
- Central European Institute of Technology, Brno, Czech Republic.
| |
Collapse
|
24
|
Tolstykh EI, Vozilova AV, Degteva MO, Akleyev AV. Concept of T-Cell Genus as a Basis for Analysis of the Results of Cytogenetic Studies after Local Bone Marrow Exposure. BIOL BULL+ 2021. [DOI: 10.1134/s1062359020110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
25
|
Hong B, Wang L, Huang C, Hong X, Liu A, Li Q, Liu Q, Su L, Wang L, Wang C, Ying T. Decrease of Clone Diversity in IgM Repertoires of HBV Chronically Infected Individuals With High Level of Viral Replication. Front Microbiol 2021; 11:615669. [PMID: 33519772 PMCID: PMC7843509 DOI: 10.3389/fmicb.2020.615669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2020] [Accepted: 12/22/2020] [Indexed: 01/05/2023] Open
Abstract
High-throughput antibody sequencing allows in-depth insights into human antibody repertoires. To investigate the characteristics of antibody repertoires in patients with chronic HBV infection, we performed Illumina sequencing and IMGT/HighV-QUEST analysis of B lymphocytes from healthy adults and the HBV carriers with high or low level of viral replication. The comparative study revealed high levels of similarity between the IgM and IgG repertoires of the HBV carriers and the healthy adults, including the somatic mutations in V regions, the average CDR3 length, and the occurrence of junctional modifications. Nevertheless, the diversity of the unique clones decreased and some clusters of unique clones expanded in the IgM repertoire of chronic HBV carriers (CHB) compared with healthy adults (HH) and inactive HBV carriers (IHB). Such difference in clone diversity and expansion was not observed in the IgG repertoires of the three populations. More shared antibody clones were found between the IgM repertoires of IHB and HH than that found between CHB and HH (7079 clones vs. 2304 clones). Besides, the biased used IGHD genes were IGHD2-2 and IGHD3-3 in CHB library but were IGHD3-10 and IGHD3-22 in IHB and HH library. In contrast, for IgG repertories, the preferred used VDJ genes were similar in all the three populations. These results indicated that low level of serum HBV might not induce significant changes in BCR repertoires, and high level of HBV replication could have more impacts on IgM repertories than IgG repertoires. Taken together, our findings provide a better understanding of the antibody repertoires of HBV chronically infected individuals.
Collapse
Affiliation(s)
- Binbin Hong
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Lizhi Wang
- Traditional Chinese Medicine Department, Rehabilitation Hospital, Quanzhou, China
| | - Chunlan Huang
- Traditional Chinese Medicine Department, Rehabilitation Hospital, Quanzhou, China
| | - Xiaoju Hong
- Traditional Chinese Medicine Department, Rehabilitation Hospital, Quanzhou, China
| | - Alan Liu
- Traditional Chinese Medicine Department, Rehabilitation Hospital, Quanzhou, China
| | - Qiulan Li
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Qiaoling Liu
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Lili Su
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Lixing Wang
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Chunyu Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Savola P, Martelius T, Kankainen M, Huuhtanen J, Lundgren S, Koski Y, Eldfors S, Kelkka T, Keränen MA, Ellonen P, Kovanen PE, Kytölä S, Saarela J, Lähdesmäki H, Seppänen MR, Mustjoki S. Somatic mutations and T-cell clonality in patients with immunodeficiency. Haematologica 2020; 105:2757-2768. [PMID: 33256375 PMCID: PMC7716374 DOI: 10.3324/haematol.2019.220889] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Common variable immunodeficiency and other late-onset immunodeficiencies often co-manifest with autoimmunity and lymphoproliferation. The pathogenesis of most cases is elusive, as only a minor subset harbors known monogenic germline causes. The involvement of both B and T cells is however implicated. To study whether somatic mutations in CD4+ and CD8+ T cells associate with immunodeficiency, we recruited 17 patients and 21 healthy controls. Eight patients had late-onset common variable immunodeficiency and nine patients other immunodeficiency and/or severe autoimmunity. In total, autoimmunity occurred in 94% and lymphoproliferation in 65%. We performed deep sequencing of 2533 immune-associated genes from CD4+ and CD8+ cells. Deep T-cell receptor beta sequencing was used to characterize CD4+ and CD8+ T-cell receptor repertoires. The prevalence of somatic mutations was 65% in all immunodeficiency patients, 75% in common variable immunodeficiency and 48% in controls. Clonal hematopoiesis-associated variants in both CD4+ and CD8+ cells occurred in 24% of immunodeficiency patients. Results demonstrated mutations in known tumor suppressors, oncogenes, and genes that are critical for immune- and proliferative functions, such as STAT5B (two patients), C5AR1 (two patients), KRAS (one patient), and NOD2 (one patient). Additionally, as a marker of T-cell receptor repertoire perturbation, common variable immunodeficiency patients harbored increased frequencies of clones with identical complementarity determining region 3 sequences despite unique nucleotide sequences when compared to controls. In conclusion, somatic mutations in genes implicated for autoimmunity and lymphoproliferation are common in CD4+ and CD8+ cells of patients with immunodeficiency. They may contribute to immune dysregulation in a subset of immunodeficiency patients.
Collapse
Affiliation(s)
- Paula Savola
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, HUS Helsinki University Hospital Comprehensive Cancer Center, Helsinki
- Translational Immunology Research Program, University of Helsinki, Helsinki
| | - Timi Martelius
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki, HUS Helsinki University Hospital, Helsinki
| | - Matti Kankainen
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, HUS Helsinki University Hospital Comprehensive Cancer Center, Helsinki
- Translational Immunology Research Program, University of Helsinki, Helsinki
- Institute for Molecular Medicine Finland (FIMM), HILIFE, University of Helsinki, Helsinki
- Medical and Clinical Genetics, University of Helsinki and HUS Helsinki University Hospital, Helsinki
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, HUS Helsinki University Hospital Comprehensive Cancer Center, Helsinki
- Translational Immunology Research Program, University of Helsinki, Helsinki
| | - Sofie Lundgren
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, HUS Helsinki University Hospital Comprehensive Cancer Center, Helsinki
- Translational Immunology Research Program, University of Helsinki, Helsinki
| | - Yrjö Koski
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, HUS Helsinki University Hospital Comprehensive Cancer Center, Helsinki
- Translational Immunology Research Program, University of Helsinki, Helsinki
| | - Samuli Eldfors
- Institute for Molecular Medicine Finland (FIMM), HILIFE, University of Helsinki, Helsinki
| | - Tiina Kelkka
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, HUS Helsinki University Hospital Comprehensive Cancer Center, Helsinki
- Translational Immunology Research Program, University of Helsinki, Helsinki
| | - Mikko A.I. Keränen
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, HUS Helsinki University Hospital Comprehensive Cancer Center, Helsinki
- Translational Immunology Research Program, University of Helsinki, Helsinki
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland (FIMM), HILIFE, University of Helsinki, Helsinki
| | - Panu E. Kovanen
- Department of Pathology, University of Helsinki and HUSLAB, HUS Helsinki University Hospital, Helsinki
| | - Soili Kytölä
- Laboratory of Genetics, HUSLAB, HUS Helsinki University Hospital, Helsinki
| | - Janna Saarela
- Institute for Molecular Medicine Finland (FIMM), HILIFE, University of Helsinki, Helsinki
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University School of Science, Espoo
| | - Mikko R.J. Seppänen
- Translational Immunology Research Program, University of Helsinki, Helsinki
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki, HUS Helsinki University Hospital, Helsinki
- Rare Diseases Center and Pediatric Research Center, Children and Adolescents, University of Helsinki and HUS Helsinki University Hospital, Helsinki
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, HUS Helsinki University Hospital Comprehensive Cancer Center, Helsinki
- Translational Immunology Research Program, University of Helsinki, Helsinki
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
D’Ippolito E, Wagner KI, Busch DH. Needle in a Haystack: The Naïve Repertoire as a Source of T Cell Receptors for Adoptive Therapy with Engineered T Cells. Int J Mol Sci 2020; 21:E8324. [PMID: 33171940 PMCID: PMC7664211 DOI: 10.3390/ijms21218324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
T cell engineering with antigen-specific T cell receptors (TCRs) has allowed the generation of increasingly specific, reliable, and versatile T cell products with near-physiological features. However, a broad applicability of TCR-based therapies in cancer is still limited by the restricted number of TCRs, often also of suboptimal potency, available for clinical use. In addition, targeting of tumor neoantigens with TCR-engineered T cell therapy moves the field towards a highly personalized treatment, as tumor neoantigens derive from somatic mutations and are extremely patient-specific. Therefore, relevant TCRs have to be de novo identified for each patient and within a narrow time window. The naïve repertoire of healthy donors would represent a reliable source due to its huge diverse TCR repertoire, which theoretically entails T cells for any antigen specificity, including tumor neoantigens. As a challenge, antigen-specific naïve T cells are of extremely low frequency and mostly of low functionality, making the identification of highly functional TCRs finding a "needle in a haystack." In this review, we present the technological advancements achieved in high-throughput mapping of patient-specific neoantigens and corresponding cognate TCRs and how these platforms can be used to interrogate the naïve repertoire for a fast and efficient identification of rare but therapeutically valuable TCRs for personalized adoptive T cell therapy.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Neoplasms/genetics
- Precision Medicine/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
Collapse
Affiliation(s)
- Elvira D’Ippolito
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (E.D.); (K.I.W.)
| | - Karolin I. Wagner
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (E.D.); (K.I.W.)
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (E.D.); (K.I.W.)
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
- Focus Group ‘‘Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München (TUM), 81675 Munich, Germany
| |
Collapse
|
28
|
Abstract
Advances in reading, writing, and editing DNA are providing unprecedented insights into the complexity of immunological systems. This combination of systems and synthetic biology methods is enabling the quantitative and precise understanding of molecular recognition in adaptive immunity, thus providing a framework for reprogramming immune responses for translational medicine. In this review, we will highlight state-of-the-art methods such as immune repertoire sequencing, immunoinformatics, and immunogenomic engineering and their application toward adaptive immunity. We showcase novel and interdisciplinary approaches that have the promise of transforming the design and breadth of molecular and cellular immunotherapies.
Collapse
Affiliation(s)
- Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Roy A. Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| |
Collapse
|
29
|
Heikkilä N, Vanhanen R, Yohannes DA, Kleino I, Mattila IP, Saramäki J, Arstila TP. Human thymic T cell repertoire is imprinted with strong convergence to shared sequences. Mol Immunol 2020; 127:112-123. [PMID: 32961421 DOI: 10.1016/j.molimm.2020.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2019] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022]
Abstract
A highly diverse repertoire of T cell antigen receptors (TCR) is created in the thymus by recombination of gene segments and the insertion or deletion of nucleotides at the junctions. Using next-generation TCR sequencing we define here the features of recombination and selection in the human TCRα and TCRβ locus, and show that a strikingly high proportion of the repertoire is shared by unrelated individuals. The thymic TCRα nucleotide repertoire was more diverse than TCRβ, with 4.1 × 106 vs. 0.81 × 106 unique clonotypes, and contained nonproductive clonotypes at a higher frequency (69.2% vs. 21.2%). The convergence of distinct nucleotide clonotypes to the same amino acid sequences was higher in TCRα than in TCRβ repertoire (1.45 vs. 1.06 nucleotide sequences per amino acid sequence in thymus). The gene segment usage was biased, and generally all individuals favored the same genes in both TCRα and TCRβ loci. Despite the high diversity, a large fraction of the repertoire was found in more than one donor. The shared fraction was bigger in TCRα than TCRβ repertoire, and more common in in-frame sequences than in nonproductive sequences. Thus, both biases in rearrangement and thymic selection are likely to contribute to the generation of shared repertoire in humans.
Collapse
Affiliation(s)
- Nelli Heikkilä
- Research Programs Unit, Translational Immunology and Medicum, Department of Bacteriology and Immunology, University of Helsinki. Haartmaninkatu 3, 00290 Helsinki, Finland.
| | - Reetta Vanhanen
- Research Programs Unit, Translational Immunology and Medicum, Department of Bacteriology and Immunology, University of Helsinki. Haartmaninkatu 3, 00290 Helsinki, Finland.
| | - Dawit A Yohannes
- Research Programs Unit, Translational Immunology and Medicum, Department of Medical and Clinical Genetics, University of Helsinki. Haartmaninkatu 8, 00290 Helsinki, Finland.
| | - Iivari Kleino
- Research Programs Unit, Translational Immunology, University of Helsinki. Haartmaninkatu 3, 00290 Helsinki, Finland.
| | - Ilkka P Mattila
- Department of Pediatric Cardiac and Transplantation Surgery, Hospital for Children and Adolescents, Helsinki University Central Hospital. Stenbäckinkatu 9, 00290 Helsinki, Finland.
| | - Jari Saramäki
- Department of Computer Science, Aalto University. Konemiehentie 2, 02150 Espoo, Finland.
| | - T Petteri Arstila
- Research Programs Unit, Translational Immunology and Medicum, Department of Bacteriology and Immunology, University of Helsinki. Haartmaninkatu 3, 00290 Helsinki, Finland.
| |
Collapse
|
30
|
Starke CE, Vinton CL, Ladell K, McLaren JE, Ortiz AM, Mudd JC, Flynn JK, Lai SH, Wu F, Hirsch VM, Darko S, Douek DC, Price DA, Brenchley JM. SIV-specific CD8+ T cells are clonotypically distinct across lymphoid and mucosal tissues. J Clin Invest 2020; 130:789-798. [PMID: 31661461 DOI: 10.1172/jci129161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2019] [Accepted: 10/22/2019] [Indexed: 12/27/2022] Open
Abstract
CD8+ T cell responses are necessary for immune control of simian immunodeficiency virus (SIV). However, the key parameters that dictate antiviral potency remain elusive, conceivably because most studies to date have been restricted to analyses of circulating CD8+ T cells. We conducted a detailed clonotypic, functional, and phenotypic survey of SIV-specific CD8+ T cells across multiple anatomical sites in chronically infected rhesus macaques with high (>10,000 copies/mL plasma) or low burdens of viral RNA (<10,000 copies/mL plasma). No significant differences in response magnitude were identified across anatomical compartments. Rhesus macaques with low viral loads (VLs) harbored higher frequencies of polyfunctional CXCR5+ SIV-specific CD8+ T cells in various lymphoid tissues and higher proportions of unique Gag-specific CD8+ T cell clonotypes in the mesenteric lymph nodes relative to rhesus macaques with high VLs. In addition, public Gag-specific CD8+ T cell clonotypes were more commonly shared across distinct anatomical sites than the corresponding private clonotypes, which tended to form tissue-specific repertoires, especially in the peripheral blood and the gastrointestinal tract. Collectively, these data suggest that functionality and tissue localization are important determinants of CD8+ T cell-mediated efficacy against SIV.
Collapse
Affiliation(s)
- Carly E Starke
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Carol L Vinton
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Joseph C Mudd
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jacob K Flynn
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Stephen H Lai
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Fan Wu
- Nonhuman Primate Virology Section, Laboratory of Molecular Microbiology, and
| | - Vanessa M Hirsch
- Nonhuman Primate Virology Section, Laboratory of Molecular Microbiology, and
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom.,Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.,Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Park IA, Rajaei H, Kim YA, Lee H, Lee H, Seo JH, Heo SH, Song IH, Gong G, Lee HJ. T cell receptor repertoires of ex vivo-expanded tumor-infiltrating lymphocytes from breast cancer patients. Immunol Res 2020; 68:233-245. [PMID: 32886262 DOI: 10.1007/s12026-020-09150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
A higher level of tumor-infiltrating lymphocytes (TILs) is associated with better prognosis in breast cancer patients. Adoptive transfer of lymphocytes coupled with conventional therapies has appealed to many clinicians and investigators as an effective treatment strategy for cancer patients, which necessitates efficient activation and expansion of cytotoxic T lymphocytes precisely targeting cancer cells. To comprehensively understand composition of TILs and to provide a grounding in adoptive T cell therapy, we analyzed the T cell receptor (TCR) repertoires in ex vivo-expanded TILs from nine breast cancer patients via next-generation sequencing. For the three of them, TCR repertoires of TILs gathered after the initial culture during 2 weeks were additionally analyzed and compared to those of TILs that underwent ex vivo rapid expansion procedure (REP). Diversity of TCR repertoire was variable among the patients. V/J segment usage in the clonotypes was similar among patients, with variable distribution of read counts for each V/J segment. The top 50% of most frequently observed VJ combinations was present in > 80% of the total clonotypes. Compared with TCGA data, the samples contained a similar amount of recurrent CDR3 sequences, but clonotype expansion was variable among the samples. In terms of clinicopathologic factor, presence of in vitro reactivity among triple-negative breast cancer cases seemed to be related to lower Shannon's index, but p value was not statistically significant. In addition, the proportion of CD45RO+ cells out of CD8+ T cells were negatively correlated with Shannon's diversity index for both TCRα and TCRβ chains (p = 0.010) via Spearman test. In this study, we identified a heterogeneous pattern of expanded T cell clones and stable usage of V/J segments in ex vivo-expanded TILs from breast cancer patients. Further large-scale studies are requisite to elucidate the clinical significance of TCR repertoires.
Collapse
Affiliation(s)
- In Ah Park
- Department of Pathology and Tranlational Genomics, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Hajar Rajaei
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Young-Ae Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hyeonjin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Heejae Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jeong-Han Seo
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Sun-Hee Heo
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - In Hye Song
- Department of Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
32
|
Soto C, Bombardi RG, Kozhevnikov M, Sinkovits RS, Chen EC, Branchizio A, Kose N, Day SB, Pilkinton M, Gujral M, Mallal S, Crowe JE. High Frequency of Shared Clonotypes in Human T Cell Receptor Repertoires. Cell Rep 2020; 32:107882. [PMID: 32668251 PMCID: PMC7433715 DOI: 10.1016/j.celrep.2020.107882] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2019] [Revised: 04/18/2020] [Accepted: 06/16/2020] [Indexed: 01/30/2023] Open
Abstract
The collection of T cell receptors (TCRs) generated by somatic recombination is large but unknown. We generate large TCR repertoire datasets as a resource to facilitate detailed studies of the role of TCR clonotypes and repertoires in health and disease. We estimate the size of individual human recombined and expressed TCRs by sequence analysis and determine the extent of sharing between individual repertoires. Our experiments reveal that each blood sample contains between 5 million and 21 million TCR clonotypes. Three individuals share 8% of TCRβ- or 11% of TCRα-chain clonotypes. Sorting by T cell phenotypes in four individuals shows that 5% of naive CD4+ and 3.5% of naive CD8+ subsets share their TCRβ clonotypes, whereas memory CD4+ and CD8+ subsets share 2.3% and 0.4% of their clonotypes, respectively. We identify the sequences of these shared TCR clonotypes that are of interest for studies of human T cell biology.
Collapse
Affiliation(s)
- Cinque Soto
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robin G Bombardi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Morgan Kozhevnikov
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert S Sinkovits
- San Diego Supercomputer Center, University of California, San Diego, San Diego, CA 92093, USA
| | - Elaine C Chen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Andre Branchizio
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Samuel B Day
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mark Pilkinton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Madhusudan Gujral
- San Diego Supercomputer Center, University of California, San Diego, San Diego, CA 92093, USA
| | - Simon Mallal
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA.
| |
Collapse
|
33
|
de Greef PC, Oakes T, Gerritsen B, Ismail M, Heather JM, Hermsen R, Chain B, de Boer RJ. The naive T-cell receptor repertoire has an extremely broad distribution of clone sizes. eLife 2020; 9:e49900. [PMID: 32187010 PMCID: PMC7080410 DOI: 10.7554/elife.49900] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2019] [Accepted: 03/03/2020] [Indexed: 12/24/2022] Open
Abstract
The clone size distribution of the human naive T-cell receptor (TCR) repertoire is an important determinant of adaptive immunity. We estimated the abundance of TCR sequences in samples of naive T cells from blood using an accurate quantitative sequencing protocol. We observe most TCR sequences only once, consistent with the enormous diversity of the repertoire. However, a substantial number of sequences were observed multiple times. We detect abundant TCR sequences even after exclusion of methodological confounders such as sort contamination, and multiple mRNA sampling from the same cell. By combining experimental data with predictions from models we describe two mechanisms contributing to TCR sequence abundance. TCRα abundant sequences can be primarily attributed to many identical recombination events in different cells, while abundant TCRβ sequences are primarily derived from large clones, which make up a small percentage of the naive repertoire, and could be established early in the development of the T-cell repertoire.
Collapse
MESH Headings
- Adaptive Immunity
- Algorithms
- Antigens/immunology
- Clonal Evolution/genetics
- Computational Biology/methods
- High-Throughput Nucleotide Sequencing
- Humans
- Immunologic Memory
- Models, Biological
- Organ Specificity/genetics
- Organ Specificity/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- V(D)J Recombination
Collapse
Affiliation(s)
- Peter C de Greef
- Theoretical Biology and Bioinformatics, Utrecht UniversityUtrechtNetherlands
| | - Theres Oakes
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Bram Gerritsen
- Theoretical Biology and Bioinformatics, Utrecht UniversityUtrechtNetherlands
- Department of Pathology, Yale School of MedicineNew HavenUnited States
| | - Mazlina Ismail
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - James M Heather
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Rutger Hermsen
- Theoretical Biology and Bioinformatics, Utrecht UniversityUtrechtNetherlands
| | - Benjamin Chain
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Rob J de Boer
- Theoretical Biology and Bioinformatics, Utrecht UniversityUtrechtNetherlands
| |
Collapse
|
34
|
Gil A, Kamga L, Chirravuri-Venkata R, Aslan N, Clark F, Ghersi D, Luzuriaga K, Selin LK. Epstein-Barr Virus Epitope-Major Histocompatibility Complex Interaction Combined with Convergent Recombination Drives Selection of Diverse T Cell Receptor α and β Repertoires. mBio 2020; 11:e00250-20. [PMID: 32184241 PMCID: PMC7078470 DOI: 10.1128/mbio.00250-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 01/07/2023] Open
Abstract
Recognition modes of individual T cell receptors (TCRs) are well studied, but factors driving the selection of TCR repertoires from primary through persistent human virus infections are less well understood. Using deep sequencing, we demonstrate a high degree of diversity of Epstein-Barr virus (EBV)-specific clonotypes in acute infectious mononucleosis (AIM). Only 9% of unique clonotypes detected in AIM persisted into convalescence; the majority (91%) of unique clonotypes detected in AIM were not detected in convalescence and were seeming replaced by equally diverse "de novo" clonotypes. The persistent clonotypes had a greater probability of being generated than nonpersistent clonotypes due to convergence recombination of multiple nucleotide sequences to encode the same amino acid sequence, as well as the use of shorter complementarity-determining regions 3 (CDR3s) with fewer nucleotide additions (i.e., sequences closer to germ line). Moreover, the two most immunodominant HLA-A2-restricted EBV epitopes, BRLF1109 and BMLF1280, show highly distinct antigen-specific public (i.e., shared between individuals) features. In fact, TCRα CDR3 motifs played a dominant role, while TCRβ played a minimal role, in the selection of TCR repertoire to an immunodominant EBV epitope, BRLF1. This contrasts with the majority of previously reported repertoires, which appear to be selected either on TCRβ CDR3 interactions with peptide/major histocompatibility complex (MHC) or in combination with TCRα CDR3. Understanding of how TCR-peptide-MHC complex interactions drive repertoire selection can be used to develop optimal strategies for vaccine design or generation of appropriate adoptive immunotherapies for viral infections in transplant settings or for cancer.IMPORTANCE Several lines of evidence suggest that TCRα and TCRβ repertoires play a role in disease outcomes and treatment strategies during viral infections in transplant patients and in cancer and autoimmune disease therapy. Our data suggest that it is essential that we understand the basic principles of how to drive optimum repertoires for both TCR chains, α and β. We address this important issue by characterizing the CD8 TCR repertoire to a common persistent human viral infection (EBV), which is controlled by appropriate CD8 T cell responses. The ultimate goal would be to determine if the individuals who are infected asymptomatically develop a different TCR repertoire than those that develop the immunopathology of AIM. Here, we begin by doing an in-depth characterization of both CD8 T cell TCRα and TCRβ repertoires to two immunodominant EBV epitopes over the course of AIM, identifying potential factors that may be driving their selection.
Collapse
Affiliation(s)
- Anna Gil
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Larisa Kamga
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Nuray Aslan
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Fransenio Clark
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Katherine Luzuriaga
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Liisa K Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
35
|
Tanno H, Gould TM, McDaniel JR, Cao W, Tanno Y, Durrett RE, Park D, Cate SJ, Hildebrand WH, Dekker CL, Tian L, Weyand CM, Georgiou G, Goronzy JJ. Determinants governing T cell receptor α/β-chain pairing in repertoire formation of identical twins. Proc Natl Acad Sci U S A 2020; 117:532-540. [PMID: 31879353 PMCID: PMC6955297 DOI: 10.1073/pnas.1915008117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
The T cell repertoire in each individual includes T cell receptors (TCRs) of enormous sequence diversity through the pairing of diverse TCR α- and β-chains, each generated by somatic recombination of paralogous gene segments. Whether the TCR repertoire contributes to susceptibility to infectious or autoimmune diseases in concert with disease-associated major histocompatibility complex (MHC) polymorphisms is unknown. Due to a lack in high-throughput technologies to sequence TCR α-β pairs, current studies on whether the TCR repertoire is shaped by host genetics have so far relied only on single-chain analysis. Using a high-throughput single T cell sequencing technology, we obtained the largest paired TCRαβ dataset so far, comprising 965,523 clonotypes from 15 healthy individuals including 6 monozygotic twin pairs. Public TCR α- and, to a lesser extent, TCR β-chain sequences were common in all individuals. In contrast, sharing of entirely identical TCRαβ amino acid sequences was very infrequent in unrelated individuals, but highly increased in twins, in particular in CD4 memory T cells. Based on nucleotide sequence identity, a subset of these shared clonotypes appeared to be the progeny of T cells that had been generated during fetal development and had persisted for more than 50 y. Additional shared TCRαβ in twins were encoded by different nucleotide sequences, implying that genetic determinants impose structural constraints on thymic selection that favor the selection of TCR α-β pairs with entire sequence identities.
Collapse
Affiliation(s)
- Hidetaka Tanno
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Timothy M Gould
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94304
| | - Jonathan R McDaniel
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Wenqiang Cao
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94304
| | - Yuri Tanno
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Russell E Durrett
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Daechan Park
- Department of Life Sciences, Ajou University, Suwon 16499, South Korea
| | - Steven J Cate
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Cornelia L Dekker
- Department of Pediatrics (Infectious Diseases), Stanford University School of Medicine, Stanford, CA 94305
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94304
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712;
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94304
| |
Collapse
|
36
|
Arsenio J. Single-cell analysis of CD8 T lymphocyte diversity during adaptive immunity. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 12:e1475. [PMID: 31877242 DOI: 10.1002/wsbm.1475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/19/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 11/11/2022]
Abstract
An effective adaptive immune response to microbial infection relies on the generation of heterogeneous T lymphocyte fates and functions. CD8 T lymphocytes play a pivotal role in mediating immediate and long-term protective immune responses to intracellular pathogen infection. Systems-based analysis of the immune response to infection has begun to identify cell fate determinants and the molecular mechanisms underpinning CD8 T lymphocyte diversity at single-cell resolution. Resolving CD8 T lymphocyte heterogeneity during adaptive immunity highlights the advantages of single-cell technologies and computational approaches to better understand the ontogeny of CD8 T cellular diversity following infection. Future directions of integrating single-cell multiplex approaches capitalize on the importance of systems biology in the understanding of immune CD8 T cell differentiation and functional diversity. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Biological Mechanisms > Cell Fates.
Collapse
Affiliation(s)
- Janilyn Arsenio
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
| |
Collapse
|
37
|
Smith CJ, Venturi V, Quigley MF, Turula H, Gostick E, Ladell K, Hill BJ, Himelfarb D, Quinn KM, Greenaway HY, Dang THY, Seder RA, Douek DC, Hill AB, Davenport MP, Price DA, Snyder CM. Stochastic Expansions Maintain the Clonal Stability of CD8 + T Cell Populations Undergoing Memory Inflation Driven by Murine Cytomegalovirus. THE JOURNAL OF IMMUNOLOGY 2019; 204:112-121. [PMID: 31818981 PMCID: PMC6920548 DOI: 10.4049/jimmunol.1900455] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/23/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022]
Abstract
Clonal stability is a feature of memory inflation. Stochastic expansions maintain clonal stability during memory inflation. Persistent clonotypes are often public in the context of memory inflation.
CMV is an obligate and persistent intracellular pathogen that continually drives the production of highly differentiated virus-specific CD8+ T cells in an Ag-dependent manner, a phenomenon known as memory inflation. Extensive proliferation is required to generate and maintain inflationary CD8+ T cell populations, which are counterintuitively short-lived and typically exposed to limited amounts of Ag during the chronic phase of infection. An apparent discrepancy therefore exists between the magnitude of expansion and the requirement for ongoing immunogenic stimulation. To address this issue, we explored the clonal dynamics of memory inflation. First, we tracked congenically marked OT-I cell populations in recipient mice infected with murine CMV (MCMV) expressing the cognate Ag OVA. Irrespective of numerical dominance, stochastic expansions were observed in each population, such that dominant and subdominant OT-I cells were maintained at stable frequencies over time. Second, we characterized endogenous CD8+ T cell populations specific for two classic inflationary epitopes, M38 and IE3. Multiple clonotypes simultaneously underwent Ag-driven proliferation during latent infection with MCMV. In addition, the corresponding CD8+ T cell repertoires were stable over time and dominated by persistent clonotypes, many of which also occurred in more than one mouse. Collectively, these data suggest that stochastic encounters with Ag occur frequently enough to maintain oligoclonal populations of inflationary CD8+ T cells, despite intrinsic constraints on epitope display at individual sites of infection with MCMV.
Collapse
Affiliation(s)
- Corinne J Smith
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Vanessa Venturi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Maire F Quigley
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Holly Turula
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom
| | - Brenna J Hill
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Danielle Himelfarb
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kylie M Quinn
- Cellular Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Hui Yee Greenaway
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Thurston H Y Dang
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Robert A Seder
- Cellular Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ann B Hill
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - David A Price
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; .,Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107;
| |
Collapse
|
38
|
Carter JA, Preall JB, Grigaityte K, Goldfless SJ, Jeffery E, Briggs AW, Vigneault F, Atwal GS. Single T Cell Sequencing Demonstrates the Functional Role of αβ TCR Pairing in Cell Lineage and Antigen Specificity. Front Immunol 2019; 10:1516. [PMID: 31417541 PMCID: PMC6684766 DOI: 10.3389/fimmu.2019.01516] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/05/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022] Open
Abstract
Although structural studies of individual T cell receptors (TCRs) have revealed important roles for both the α and β chain in directing MHC and antigen recognition, repertoire-level immunogenomic analyses have historically examined the β chain alone. To determine the amount of useful information about TCR repertoire function encoded within αβ pairings, we analyzed paired TCR sequences from nearly 100,000 unique CD4+ and CD8+ T cells captured using two different high-throughput, single-cell sequencing approaches. Our results demonstrate little overlap in the healthy CD4+ and CD8+ repertoires, with shared TCR sequences possessing significantly shorter CDR3 sequences corresponding to higher generation probabilities. We further utilized tools from information theory and machine learning to show that while α and β chains are only weakly associated with lineage, αβ pairings appear to synergistically drive TCR-MHC interactions. Vαβ gene pairings were found to be the TCR feature most informative of T cell lineage, supporting the existence of germline-encoded paired αβ TCR-MHC interaction motifs. Finally, annotating our TCR pairs using a database of sequences with known antigen specificities, we demonstrate that approximately a third of the T cells possess α and β chains that each recognize different known antigens, suggesting that αβ pairing is critical for the accurate inference of repertoire functionality. Together, these findings provide biological insight into the functional implications of αβ pairing and highlight the utility of single-cell sequencing in immunogenomics.
Collapse
Affiliation(s)
- Jason A. Carter
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | | | - Kristina Grigaityte
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | | | | | | | | | - Gurinder S. Atwal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| |
Collapse
|
39
|
Minervina A, Pogorelyy M, Mamedov I. T‐cell receptor and B‐cell receptor repertoire profiling in adaptive immunity. Transpl Int 2019; 32:1111-1123. [DOI: 10.1111/tri.13475] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2019] [Revised: 05/09/2019] [Accepted: 06/25/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Anastasia Minervina
- Department of Genomics of Adaptive Immunity M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
| | - Mikhail Pogorelyy
- Department of Genomics of Adaptive Immunity M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
- Institute of Translational Medicine Pirogov Russian National Research Medical University Moscow Russia
| | - Ilgar Mamedov
- Department of Genomics of Adaptive Immunity M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
- Institute of Translational Medicine Pirogov Russian National Research Medical University Moscow Russia
- Laboratory of Molecular Biology Rogachev Federal Scientific and Clinical Centre of Pediatric Hematology Oncology and Immunology Moscow Russia
| |
Collapse
|
40
|
Fike AJ, Kumova OK, Carey AJ. Dissecting the defects in the neonatal CD8 + T-cell response. J Leukoc Biol 2019; 106:1051-1061. [PMID: 31260598 DOI: 10.1002/jlb.5ru0319-105r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022] Open
Abstract
The neonatal period presents a complex scenario where the threshold of reactivity toward colonizing microbiota, maternal antigens, autoantigens, and pathogens must be carefully moderated and balanced. CD8+ T cells are critical for the response against intracellular bacteria and viruses, but this immune compartment maintains altered function relative to adult counterparts because of the unique challenges which infants face. Here, we review our current understanding of the factors which may promote the attenuation and altered function of the neonatal CD8+ T-cell response and potential avenues for future study. Specifically, we have focused on the neonatal CD8+ T-cell ontogeny, memory formation, TCR structure and repertoire, TCR inhibitory receptors, and the clinical implications of altered neonatal CD8+ T-cell function. Special emphasis has been placed on examining the response of preterm neonates relative to term neonates and adults.
Collapse
Affiliation(s)
- Adam J Fike
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Ogan K Kumova
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Alison J Carey
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Chu ND, Bi HS, Emerson RO, Sherwood AM, Birnbaum ME, Robins HS, Alm EJ. Longitudinal immunosequencing in healthy people reveals persistent T cell receptors rich in highly public receptors. BMC Immunol 2019; 20:19. [PMID: 31226930 PMCID: PMC6588944 DOI: 10.1186/s12865-019-0300-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2018] [Accepted: 06/06/2019] [Indexed: 11/18/2022] Open
Abstract
Background The adaptive immune system maintains a diversity of T cells capable of recognizing a broad array of antigens. Each T cell’s specificity for antigens is determined by its T cell receptors (TCRs), which together across all T cells form a repertoire of millions of unique receptors in each individual. Although many studies have examined how TCR repertoires change in response to disease or drugs, few have explored the temporal dynamics of the TCR repertoire in healthy individuals. Results Here we report immunosequencing of TCR β chains (TCRβ) from the blood of three healthy individuals at eight time points over one year. TCRβ repertoires of all peripheral-blood T cells and sorted memory T cells clustered clearly by individual, systematically demonstrating that TCRβ repertoires are specific to individuals across time. This individuality was absent from TCRβs from naive T cells, suggesting that the differences resulted from an individual’s antigen exposure history, not genetic background. Many characteristics of the TCRβ repertoire (e.g., diversity, clonality) were stable across time, although we found evidence of T cell expansion dynamics even within healthy individuals. We further identified a subset of “persistent” TCRβs present across all time points. These receptors were rich in clonal and highly public receptors and may play a key role in immune system maintenance. Conclusions Our results highlight the importance of longitudinal sampling of the immune system, providing a much-needed baseline for TCRβ dynamics in healthy individuals. Such a baseline will improve interpretation of changes in the TCRβ repertoire during disease or treatment. Electronic supplementary material The online version of this article (10.1186/s12865-019-0300-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nathaniel D Chu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haixin Sarah Bi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Michael E Birnbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harlan S Robins
- Adaptive Biotechnologies, Seattle, WA, USA.,Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Broad Institute, Cambridge, MA, 02139, USA.
| |
Collapse
|
42
|
Pogorelyy MV, Minervina AA, Shugay M, Chudakov DM, Lebedev YB, Mora T, Walczak AM. Detecting T cell receptors involved in immune responses from single repertoire snapshots. PLoS Biol 2019; 17:e3000314. [PMID: 31194732 PMCID: PMC6592544 DOI: 10.1371/journal.pbio.3000314] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/05/2019] [Revised: 06/25/2019] [Accepted: 05/21/2019] [Indexed: 11/19/2022] Open
Abstract
Hypervariable T cell receptors (TCRs) play a key role in adaptive immunity, recognizing a vast diversity of pathogen-derived antigens. Our ability to extract clinically relevant information from large high-throughput sequencing of TCR repertoires (RepSeq) data is limited, because little is known about TCR-disease associations. We present Antigen-specific Lymphocyte Identification by Clustering of Expanded sequences (ALICE), a statistical approach that identifies TCR sequences actively involved in current immune responses from a single RepSeq sample and apply it to repertoires of patients with a variety of disorders - patients with autoimmune disease (ankylosing spondylitis [AS]), under cancer immunotherapy, or subject to an acute infection (live yellow fever [YF] vaccine). We validate the method with independent assays. ALICE requires no longitudinal data collection nor large cohorts, and it is directly applicable to most RepSeq datasets. Its results facilitate the identification of TCR variants associated with diseases and conditions, which can be used for diagnostics and rational vaccine design.
Collapse
Affiliation(s)
- Mikhail V. Pogorelyy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Mikhail Shugay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Center of Life Sciences, Skoltech, Moscow, Russia
- Masaryk University, Central European Institute of Technology, Brno, Czech Republic
| | - Dmitriy M. Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Center of Life Sciences, Skoltech, Moscow, Russia
- Masaryk University, Central European Institute of Technology, Brno, Czech Republic
| | - Yuri B. Lebedev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Moscow State University, Moscow, Russia
| | - Thierry Mora
- Laboratoire de physique statistique, CNRS, Sorbonne Université, Université Paris-Diderot, and École normale supérieure (PSL University), Paris, France
- * E-mail: (TM); (AW)
| | - Aleksandra M. Walczak
- Laboratoire de physique théorique, CNRS, Sorbonne Université, Université Paris-Diderot, and École normale supérieure (PSL University), Paris, France
- * E-mail: (TM); (AW)
| |
Collapse
|
43
|
Hou X, Zeng P, Zhang X, Chen J, Liang Y, Yang J, Yang Y, Liu X, Diao H. Shorter TCR β-Chains Are Highly Enriched During Thymic Selection and Antigen-Driven Selection. Front Immunol 2019; 10:299. [PMID: 30863407 PMCID: PMC6399399 DOI: 10.3389/fimmu.2019.00299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2018] [Accepted: 02/05/2019] [Indexed: 02/05/2023] Open
Abstract
The adaptive immune system uses several strategies to generate a repertoire of T cell receptors (TCR) with sufficient diversity to recognize the universe of potential pathogens. However, it remains unclear how differences in the T cell receptor (TCR) contribute to heterogeneity in T cell state. In this study, we used polychromatic flow cytometry to isolate highly pure CD4+/CD8+ naive and memory T cells, and applied deep sequencing to characterize corresponding TCR β-chain (TCRβ) complementary-determining region 3 (CDR3) repertoires. We find that shorter TCRβ CDR3s with fewer insertions were highly enriched during thymic selection. Antigen-experienced T cells (memory T cells) harbor shorter CDR3s vs. naive T cells. Moreover, the public TCRβ CDR3 clonotypes within cell subsets or interindividual tend to have shorter CDR3 length and a significantly larger size compared with “private” clonotypes. Taken together, shorter CDR3s highly enriched during thymic selection and antigen-driven selection, and further enriched in public T-cell responses. These results indicated that it may be evolutionary pressures drive short CDR3s to recognize most of antigen in nature.
Collapse
Affiliation(s)
- Xianliang Hou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangdong Liu
- College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Fink K. Can We Improve Vaccine Efficacy by Targeting T and B Cell Repertoire Convergence? Front Immunol 2019; 10:110. [PMID: 30814993 PMCID: PMC6381292 DOI: 10.3389/fimmu.2019.00110] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2018] [Accepted: 01/15/2019] [Indexed: 01/31/2023] Open
Abstract
Traditional vaccine development builds on the assumption that healthy individuals have virtually unlimited antigen recognition repertoires of receptors in B cells and T cells [the B cell receptor (BCR) and TCR respectively]. However, there are indications that there are "holes" in the breadth of repertoire diversity, where no or few B or T cell are able to bind to a given antigen. Repertoire diversity may in these cases be a limiting factor for vaccine efficacy. Assuming that it is possible to predict which B and T cell receptors will respond to a given immunogen, vaccine strategies could be optimized and personalized. In addition, vaccine testing could be simplified if we could predict responses through sequencing BCR and TCRs. Bulk sequencing has shown putatively specific converging sequences after infection or vaccination. However, only single cell technologies have made it possible to capture the sequence of both heavy and light chains of a BCR or the alpha and beta chains the TCR. This has enabled the cloning of receptors and the functional validation of a predicted specificity. This review summarizes recent evidence of converging sequences in infectious diseases. Current and potential future applications of single cell technology in immune repertoire analysis are then discussed. Finally, possible short- and long- term implications for vaccine research are highlighted.
Collapse
Affiliation(s)
- Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
45
|
Bradley P, Thomas PG. Using T Cell Receptor Repertoires to Understand the Principles of Adaptive Immune Recognition. Annu Rev Immunol 2019; 37:547-570. [PMID: 30699000 DOI: 10.1146/annurev-immunol-042718-041757] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
Adaptive immune recognition is mediated by antigen receptors on B and T cells generated by somatic recombination during lineage development. The high level of diversity resulting from this process posed technical limitations that previously limited the comprehensive analysis of adaptive immune recognition. Advances over the last ten years have produced data and approaches allowing insights into how T cells develop, evolutionary signatures of recombination and selection, and the features of T cell receptors that mediate epitope-specific binding and T cell activation. The size and complexity of these data have necessitated the generation of novel computational and analytical approaches, which are transforming how T cell immunology is conducted. Here we review the development and application of novel biological, theoretical, and computational methods for understanding T cell recognition and discuss the potential for improved models of receptor:antigen interactions.
Collapse
Affiliation(s)
- Philip Bradley
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; .,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA;
| |
Collapse
|
46
|
Chen Y, Zander R, Khatun A, Schauder DM, Cui W. Transcriptional and Epigenetic Regulation of Effector and Memory CD8 T Cell Differentiation. Front Immunol 2018; 9:2826. [PMID: 30581433 PMCID: PMC6292868 DOI: 10.3389/fimmu.2018.02826] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2018] [Accepted: 11/15/2018] [Indexed: 12/25/2022] Open
Abstract
Immune protection and lasting memory are accomplished through the generation of phenotypically and functionally distinct CD8 T cell subsets. Understanding how these effector and memory T cells are formed is the first step in eventually manipulating the immune system for therapeutic benefit. In this review, we will summarize the current understanding of CD8 T cell differentiation upon acute infection, with a focus on the transcriptional and epigenetic regulation of cell fate decision and memory formation. Moreover, we will highlight the importance of high throughput sequencing approaches and single cell technologies in providing insight into genome-wide investigations and the heterogeneity of individual CD8 T cells.
Collapse
Affiliation(s)
- Yao Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ryan Zander
- Blood Center of Wisconsin, Blood Research Institute, Milwaukee, WI, United States
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - David M Schauder
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Blood Center of Wisconsin, Blood Research Institute, Milwaukee, WI, United States
| |
Collapse
|
47
|
Attaf M, Malik A, Severinsen MC, Roider J, Ogongo P, Buus S, Ndung'u T, Leslie A, Kløverpris HN, Matthews PC, Sewell AK, Goulder P. Major TCR Repertoire Perturbation by Immunodominant HLA-B *44:03-Restricted CMV-Specific T Cells. Front Immunol 2018; 9:2539. [PMID: 30487790 PMCID: PMC6246681 DOI: 10.3389/fimmu.2018.02539] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Lack of disease during chronic human cytomegalovirus (CMV) infection depends on the maintenance of a high-frequency CMV-specific T cell response. The composition of the T cell receptor (TCR) repertoire underlying this response remains poorly characterised, especially within African populations in which CMV is endemic from infancy. Here we focus on the immunodominant CD8+ T cell response to the immediate-early 2 (IE-2)-derived epitope NEGVKAAW (NW8) restricted by HLA-B*44:03, a highly prevalent response in African populations, which in some subjects represents >10% of the circulating CD8+ T cells. Using pMHC multimer staining and sorting of NW8-specific T cells, the TCR repertoire raised against NW8 was characterised here using high-throughput sequencing in 20 HLA-B*44:03 subjects. We found that the CD8+ T cell repertoire raised in response to NW8 was highly skewed and featured preferential use of a restricted set of V and J gene segments. Furthermore, as often seen in immunity against ancient viruses like CMV and Epstein-Barr virus (EBV), the response was strongly dominated by identical TCR sequences shared by multiple individuals, or “public” TCRs. Finally, we describe a pair “superdominant” TCR clonotypes, which were germline or nearly germline-encoded and produced at remarkably high frequencies in certain individuals, with a single CMV-specific clonotype representing up to 17% of all CD8+ T cells. Given the magnitude of the NW8 response, we propose that this major skewing of CMV-specific immunity leads to massive perturbations in the overall TCR repertoire in HLA-B*44:03 individuals.
Collapse
Affiliation(s)
- Meriem Attaf
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Amna Malik
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Mai C Severinsen
- Africa Health Research Institute, Durban, South Africa.,Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julia Roider
- Africa Health Research Institute, Durban, South Africa.,Department of infectious diseases, Medizinische Klinik IV, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Paul Ogongo
- Africa Health Research Institute, Durban, South Africa.,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.,Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Søren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thumbi Ndung'u
- Africa Health Research Institute, Durban, South Africa.,Department of Infection and Immunity, University College London, London, United Kingdom
| | - Alasdair Leslie
- Africa Health Research Institute, Durban, South Africa.,Department of Infection and Immunity, University College London, London, United Kingdom
| | - Henrik N Kløverpris
- Africa Health Research Institute, Durban, South Africa.,Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infection and Immunity, University College London, London, United Kingdom
| | - Philippa C Matthews
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Bolotin DA, Poslavsky S, Davydov AN, Chudakov DM. Reply to "Evaluation of immune repertoire inference methods from RNA-seq data". Nat Biotechnol 2018; 36:1035-1036. [DOI: 10.1038/nbt.4296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2023]
|
49
|
Venturi V, Thomas PG. The expanding role of systems immunology in decoding the T cell receptor repertoire. ACTA ACUST UNITED AC 2018; 12:37-45. [PMID: 31106281 DOI: 10.1016/j.coisb.2018.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
T cells play a crucial role in the immune system's defense against many infectious diseases, including persistent infections for which no effective vaccines currently exist. The T cell component of the adaptive immune system is highly complex involving a constantly evolving landscape of various inter-related T cell populations. These T cell populations are characterized by their phenotypic and functional properties as well as the collection, or repertoire, of T cell receptors (TCR) that mediate T cell recognition of antigenic peptides derived from pathogens. Understanding the various processes and factors that impact the development and evolution of the broader T cell repertoire available to recognize and respond to pathogens and the characteristics of antigen-experienced T cell repertoires associated with effective immune control of pathogens is critical to the rational design of T cell-based vaccines and therapies. In this article we discuss, using examples of recent research, the promise that systems immunology approaches, involving quantitative analysis and mathematical and computational modeling of immunological data, hold for decoding the complex TCR repertoire system in the current era of advancing technologies.
Collapse
Affiliation(s)
- Vanessa Venturi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, NSW, Australia
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
50
|
Hwang MH, Darzentas N, Bienzle D, Moore PF, Morrison J, Keller SM. Characterization of the canine immunoglobulin heavy chain repertoire by next generation sequencing. Vet Immunol Immunopathol 2018; 202:181-190. [DOI: 10.1016/j.vetimm.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2018] [Revised: 06/16/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
|