1
|
Drysdale SB, Thwaites RS, Price J, Thakur D, McGinley J, McPherson C, Öner D, Aerssens J, Openshaw PJ, Pollard AJ. What have we learned from animal studies of immune responses to respiratory syncytial virus infection? J Clin Virol 2024; 175:105731. [PMID: 39368446 DOI: 10.1016/j.jcv.2024.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024]
Abstract
Respiratory syncytial virus (RSV) is a common cause of severe respiratory tract infection at the extremes of age and in vulnerable populations. However, it is difficult to predict the clinical course and most infants who develop severe disease have no pre-existing risk factors. With the recent licencing of RSV vaccines and monoclonal antibodies, it is important to identify high-risk individuals in order to prioritise those who will most benefit from prophylaxis. The immune response to RSV and the mechanisms by which the virus prevents the establishment of immunological memory have been extensively investigated but remain incompletely characterised. In animal models, beneficial and harmful immune responses have both been demonstrated. While only chimpanzees are fully permissive for human RSV replication, most research has been conducted in rodents, or in calves infected with bovine RSV. Based on these studies, components of innate and adaptive immune systems, cytokines, chemokines and metabolites, and specific genetic and transcriptomic signatures are identified as potential predictive indicators of RSV disease severity. These findings may inform the development of future human studies and contribute to the early identification of patients at high risk of severe infection. This narrative review summarises the factors involved in the immune response to RSV infection in these models and highlights the relationship between potential biomarkers and disease severity.
Collapse
Affiliation(s)
- Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom and the NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Devika Thakur
- St George's University Hospitals NHS Foundation Trust, London, UK
| | - Joseph McGinley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Calum McPherson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Deniz Öner
- Infectious Diseases Translational Biomarkers, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jeroen Aerssens
- Infectious Diseases Translational Biomarkers, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Peter Jm Openshaw
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
2
|
Anderson J, Imran S, Ng YY, Wang T, Ashley S, Minh Thang C, Quang Thanh L, Thi Trang Dai V, Van Thanh P, Thi Hong Nhu B, Ngoc Xuan Trang D, Thi Phuong Trinh P, Thanh Binh L, Thuong Vu N, Trong Toan N, Novakovic B, Tang MLK, Wurzel D, Mulholland K, Pellicci DG, Do LAH, Licciardi PV. Differential anti-viral response to respiratory syncytial virus A in preterm and term infants. EBioMedicine 2024; 102:105044. [PMID: 38447274 PMCID: PMC10933467 DOI: 10.1016/j.ebiom.2024.105044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Preterm infants are more likely to experience severe respiratory syncytial virus (RSV) disease compared to term infants. The reasons for this are multi-factorial, however their immature immune system is believed to be a major contributing factor. METHODS We collected cord blood from 25 preterm (gestational age 30.4-34.1 weeks) and 25 term infants (gestation age 37-40 weeks) and compared the response of cord blood mononuclear cells (CBMCs) to RSVA and RSVB stimulation using neutralising assays, high-dimensional flow cytometry, multiplex cytokine assays and RNA-sequencing. FINDINGS We found that preterm and term infants had similar maternally derived neutralising antibody titres to RSVA and RSVB. Preterm infants had significantly higher myeloid dendritic cells (mDC) RSV infection compared to term infants. Differential gene expression analysis of RSVA stimulated CBMCs revealed enrichment of genes involved in cytokine production and immune regulatory pathways involving IL-10, IL-36γ, CXCL1, CXCL2, SOCS1 and SOCS3 in term infants, while differentially expressed genes (DEGs) in preterm infants were related to cell cycle (CDK1, TTK, ESCO2, KNL1, CDC25A, MAD2L1) without associated expression of immune response genes. Furthermore, enriched genes in term infants were highly correlated suggesting an increased co-ordination of their immune response to RSVA. When comparing DEGs in preterm and term infants following RSVB stimulation, no differences in immune response genes were identified. INTERPRETATION Overall, our data suggests that preterm infants have a more restricted immunological response to RSVA compared with term infants. While further studies are required, these findings may help to explain why preterm infants are more susceptible to severe RSV disease and identify potential therapeutic targets to protect these vulnerable infants. FUNDING Murdoch Children's Research Institute Infection and Immunity theme grant.
Collapse
Affiliation(s)
- Jeremy Anderson
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| | - Samira Imran
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Yan Yung Ng
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Tongtong Wang
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia
| | - Sarah Ashley
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | - Boris Novakovic
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Mimi L K Tang
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Allergy and Lung Health Unit, University of Melbourne, Melbourne, Australia
| | - Danielle Wurzel
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Allergy and Lung Health Unit, University of Melbourne, Melbourne, Australia; Royal Children's Hospital, Melbourne, Australia
| | - Kim Mulholland
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Daniel G Pellicci
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Lien Anh Ha Do
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| | - Paul V Licciardi
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
3
|
Zelaya H, Arellano-Arriagada L, Fukuyama K, Matsumoto K, Marranzino G, Namai F, Salva S, Alvarez S, Agüero G, Kitazawa H, Villena J. Lacticaseibacillus rhamnosus CRL1505 Peptidoglycan Modulates the Inflammation-Coagulation Response Triggered by Poly(I:C) in the Respiratory Tract. Int J Mol Sci 2023; 24:16907. [PMID: 38069229 PMCID: PMC10707514 DOI: 10.3390/ijms242316907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Lacticaseibacillus rhamnosus CRL1505 beneficially modulates the inflammation-coagulation response during respiratory viral infections. This study evaluated the capacity of the peptidoglycan obtained from the CRL1505 strain (PG-Lr1505) to modulate the immuno-coagulative response triggered by the viral pathogen-associated molecular pattern poly(I:C) in the respiratory tract. Adult BALB/c mice were nasally treated with PG-Lr1505 for two days. Treated and untreated control mice were then nasally challenged with poly(I:C). Mice received three doses of poly(I:C) with a 24 h rest period between each administration. The immuno-coagulative response was studied after the last administration of poly(I:C). The challenge with poly(I:C) significantly increased blood and respiratory pro-inflammatory mediators, decreased prothrombin activity (PT), and increased von Willebrand factor (vWF) levels in plasma. Furthermore, tissue factor (TF), tissue factor pathway inhibitor (TFPI), and thrombomodulin (TM) expressions were increased in the lungs. PG-Lr1505-treated mice showed significant modulation of hemostatic parameters in plasma (PT in %, Control = 71.3 ± 3.8, PG-Lr1505 = 94.0 ± 4.0, p < 0.01) and lungs. Moreover, PG-Lr1505-treated mice demonstrated reduced TF in F4/80 cells from lungs, higher pro-inflammatory mediators, and increased IL-10 compared to poly(I:C) control mice (IL-10 in pg/mL, Control = 379.1 ± 12.1, PG-Lr1505 = 483.9 ± 11.3, p < 0.0001). These changes induced by PG-Lr1505 correlated with a significant reduction in lung tissue damage. Complementary in vitro studies using Raw 264.7 cells confirmed the beneficial effect of PG-Lr1505 on poly(I:C)-induced inflammation, since increased IL-10 expression, as well as reduced damage, production of inflammatory mediators, and hemostatic parameter expressions were observed. In addition, protease-activated receptor-1 (PAR1) activation in lungs and Raw 264.7 cells was observed after TLR3 stimulation, which was differentially modulated by PG-Lr1505. The peptidoglycan from L. rhamnosus CRL1505 is able to regulate inflammation, the procoagulant state, and PAR1 activation in mice and macrophages in the context of the activation of TLR3 signaling pathways, contributing to a beneficial modulation of inflammation-hemostasis crosstalk.
Collapse
Affiliation(s)
- Hortensia Zelaya
- Institute of Applied Biochemistry, Tucuman University, Tucuman 4000, Argentina; (H.Z.); (S.A.); (G.A.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
| | - Luciano Arellano-Arriagada
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
| | - Kaho Matsumoto
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
| | - Gabriela Marranzino
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
- Facultad de Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino (UNSTA), Tucuman 4000, Argentina
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
| | - Susana Alvarez
- Institute of Applied Biochemistry, Tucuman University, Tucuman 4000, Argentina; (H.Z.); (S.A.); (G.A.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
| | - Graciela Agüero
- Institute of Applied Biochemistry, Tucuman University, Tucuman 4000, Argentina; (H.Z.); (S.A.); (G.A.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
| |
Collapse
|
4
|
Abbott CA, Freimayer EL, Tyllis TS, Norton TS, Alsharifi M, Heng AHS, Pederson SM, Qu Z, Armstrong M, Hill GR, McColl SR, Comerford I. Determination of Tr1 cell populations correlating with distinct activation states in acute IAV infection. Mucosal Immunol 2023; 16:606-623. [PMID: 37321403 DOI: 10.1016/j.mucimm.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Type I regulatory (Tr1) cells are defined as FOXP3-IL-10-secreting clusters of differentiation (CD4+) T cells that contribute to immune suppression and typically express the markers LAG-3 and CD49b and other co-inhibitory receptors. These cells have not been studied in detail in the context of the resolution of acute infection in the lung. Here, we identify FOXP3- interleukin (IL)-10+ CD4+ T cells transiently accumulating in the lung parenchyma during resolution of the response to sublethal influenza A virus (IAV) infection in mice. These cells were dependent on IL-27Rα, which was required for timely recovery from IAV-induced weight loss. LAG-3 and CD49b were not generally co-expressed by FOXP3- IL-10+ CD4+ T cells in this model and four populations of these cells based on LAG-3 and CD49b co-expression were apparent [LAG-3-CD49b- (double negative), LAG-3+CD49b+ (double positive), LAG-3+CD49b- (LAG-3+), LAG-3-CD49b+ (CD49b+)]. However, each population exhibited suppressive potential consistent with the definition of Tr1 cells. Notably, differences between these populations of Tr1 cells were apparent including differential dependence on IL-10 to mediate suppression and expression of markers indicative of different activation states and terminal differentiation. Sort-transfer experiments indicated that LAG-3+ Tr1 cells exhibited the capacity to convert to double negative and double positive Tr1 cells, indicative of plasticity between these populations. Together, these data determine the features and suppressive potential of Tr1 cells in the resolution of IAV infection and identify four populations delineated by LAG-3 and CD49b, which likely correspond to different Tr1 cell activation states.
Collapse
Affiliation(s)
- Caitlin A Abbott
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| | - Emily L Freimayer
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Timona S Tyllis
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Todd S Norton
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Mohammed Alsharifi
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, Australia
| | - Aaron H S Heng
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Stephen M Pederson
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, Adelaide, Australia; Black Ochre Data Laboratories, Indigenous Genomics, Telethon Kids Institute, Adelaide, Australia
| | - Zhipeng Qu
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Mark Armstrong
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA; Division of Medical Oncology, University of Washington, Seattle, USA
| | - Shaun R McColl
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Iain Comerford
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
5
|
Agac A, Kolbe SM, Ludlow M, Osterhaus ADME, Meineke R, Rimmelzwaan GF. Host Responses to Respiratory Syncytial Virus Infection. Viruses 2023; 15:1999. [PMID: 37896776 PMCID: PMC10611157 DOI: 10.3390/v15101999] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Respiratory syncytial virus (RSV) infections are a constant public health problem, especially in infants and older adults. Virtually all children will have been infected with RSV by the age of two, and reinfections are common throughout life. Since antigenic variation, which is frequently observed among other respiratory viruses such as SARS-CoV-2 or influenza viruses, can only be observed for RSV to a limited extent, reinfections may result from short-term or incomplete immunity. After decades of research, two RSV vaccines were approved to prevent lower respiratory tract infections in older adults. Recently, the FDA approved a vaccine for active vaccination of pregnant women to prevent severe RSV disease in infants during their first RSV season. This review focuses on the host response to RSV infections mediated by epithelial cells as the first physical barrier, followed by responses of the innate and adaptive immune systems. We address possible RSV-mediated immunomodulatory and pathogenic mechanisms during infections and discuss the current vaccine candidates and alternative treatment options.
Collapse
Affiliation(s)
| | | | | | | | | | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (A.A.); (S.M.K.); (M.L.); (A.D.M.E.O.); (R.M.)
| |
Collapse
|
6
|
Churiso G, Husen G, Bulbula D, Abebe L. Immunity Cell Responses to RSV and the Role of Antiviral Inhibitors: A Systematic Review. Infect Drug Resist 2022; 15:7413-7430. [PMID: 36540102 PMCID: PMC9759992 DOI: 10.2147/idr.s387479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Antigen-presenting cells recognize respiratory syncytial virus antigens, and produce cytokines and chemokines that act on immune cells. Dendritic cells play the main role in inflammatory cytokine responses. Similarly, alveolar macrophages produce IFN-β, IFN-α, TNF-α, IL-6, CXCL10, and CCL3, while alternatively activated macrophages differentiate at the late phase, and require IL-13 or IL-4 cytokines. Furthermore, activated NKT cells secrete IL-13 and IL-4 that cause lung epithelial, endothelial and fibroblasts to secrete eotaxin that enhances the recruitment of eosinophil to the lung. CD8+ and CD4+T cells infection by the virus decreases the IFN-γ and IL-2 production. Despite this, both are involved in terminating virus replication. CD8+T cells produce a larger amount of IFN-γ than CD4+T cells, and CD8+T cells activated under type 2 conditions produce IL-4, down regulating CD8 expression, granzyme and IFN-γ production. Antiviral inhibitors inhibit biological functions of viral proteins. Some of them directly target the virus replication machinery and are effective at later stages of infection; while others inhibit F protein dependent fusion and syncytium formation. TMC353121 reduces inflammatory cytokines, TNF-α, IL-6, and IL-1β and chemokines, KC, IP-10, MCP and MIP1-α. EDP-938 inhibits viral nucleoprotein (N), while GRP-156784 blocks the activity of respiratory syncytial virus ribonucleic acid (RNA) polymerase. PC786 inhibits non-structural protein 1 (NS-1) gene, RANTES transcripts, virus-induced CCL5, IL-6, and mucin increase. In general, it is an immune reaction that is blamed for the disease severity and pathogenesis in respiratory syncytial virus infection. Anti-viral inhibitors not only inhibit viral entry and replication, but also may reduce inflammatory cytokines and chemokines. Many respiratory syncytial virus inhibitors are proposed; however, only palivizumab and ribavirin are approved for prophylaxis and treatment, respectively. Hence, this review is focused on immunity cell responses to respiratory syncytial virus and the role of antiviral inhibitors.
Collapse
Affiliation(s)
- Gemechu Churiso
- Department of Medical Laboratory Sciences, Dilla University, Dilla, Ethiopia,Correspondence: Gemechu Churiso, Email
| | - Gose Husen
- Department of Orthopedic Surgery, Dilla University, Dilla, Ethiopia
| | - Denebo Bulbula
- Department of Orthopedic Surgery, Dilla University, Dilla, Ethiopia
| | - Lulu Abebe
- Department of Psychiatry, Dilla University, Dilla, Ethiopia
| |
Collapse
|
7
|
Velayutham TS, Ivanciuc T, Garofalo RP, Casola A. Role of human metapneumovirus glycoprotein G in modulation of immune responses. Front Immunol 2022; 13:962925. [PMID: 35958551 PMCID: PMC9357950 DOI: 10.3389/fimmu.2022.962925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Human metapneumovirus (hMPV) is an important pathogen responsible for acute respiratory tract infections in children, the elderly, and immunocompromised patients, with no effective treatment or vaccine currently available. Knowledge of virus- and host-specific mechanisms contributing to the pathogenesis of hMPV infection is still limited. Studies have shown that hMPV surface glycoprotein G is an important virulence factor, by inhibiting innate immune signaling in airway epithelial cells and immune cells. In this study, we investigated the role of G protein in modulating innate and adaptive immune responses in mice infected with a recombinant virus with deletion of G protein (rhMPV-ΔG). Results show that rhMPV-ΔG was strongly attenuated, as it did not induce significant clinical disease, airway obstruction and airway hyperresponsiveness (AHR), compared to infection with a control strain (rhMPV-WT). By analysis of cells in bronchoalveolar fluid and lung tissue, as well as cytokine production, we found that G protein mediates aspects of both innate and adaptive immune responses, including neutrophils, dendritic cells, natural killer cells and B cells. Lung T cells recruited in response to rhMPV-ΔG had a significantly higher activated phenotype compared to those present after rhMPV-WT infection. Despite highly attenuation characterized by low levels of replication in the lung, rhMPV-ΔG was able to induce neutralizing antibodies and to protect mice from a secondary hMPV challenge. However, challenged mice that had received rhMPV-ΔG as primary infection showed some signs of lung disease at the earliest time points, which were less evident in mice that had received the rhMPV-WT strain as primary infection. These results demonstrate some of the mechanisms by which G protein could contribute to airway disease and modulate immune response to hMPV infection.
Collapse
Affiliation(s)
| | - Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Antonella Casola, ; Roberto P. Garofalo,
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Antonella Casola, ; Roberto P. Garofalo,
| |
Collapse
|
8
|
Bian L, Zheng Y, Guo X, Li D, Zhou J, Jing L, Chen Y, Lu J, Zhang K, Jiang C, Zhang Y, Kong W. Intramuscular Inoculation of AS02-Adjuvanted Respiratory Syncytial Virus (RSV) F Subunit Vaccine Shows Better Efficiency and Safety Than Subcutaneous Inoculation in BALB/c Mice. Front Immunol 2022; 13:938598. [PMID: 35935960 PMCID: PMC9354885 DOI: 10.3389/fimmu.2022.938598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
We previously explored a panel of adjuvants formulated with pre-fusion RSV-F protein and found that AS02 may be a promising candidate adjuvant for developing RSV-F subunit vaccines with improved immunogenicity and desired immune response type. In this study, we performed a head-to-head comparison of the effect of intramuscular injection to that of subcutaneous injection on the immune response and protective efficacy of recombinant RSV-F subunit vaccine with or without adjuvants (Alhydrogel, squalene-based emulsion adjuvants MF59, AS03, and AS02) in BALB/c mice. After inoculations, antigen-specific antibodies, neutralizing antibodies, antibody subtypes, cytokines, and the persistence of immune response were evaluated. Moreover, challenge tests were also performed to illustrate the possible effect of inoculation routes and adjuvant on virus clearance and histochemistry changes in the lungs of mice. The results indicated that intramuscular inoculation is a more effective and antigen dose-sparing route to enhance the immune response, although subcutaneous inoculation induced faster and stronger IgG antibodies after the initial immunization. Furthermore, adjuvant, but not immunization route, is a more critical factor to affect the humoral/cellular immune response and the immune bias. In addition, adjuvant inoculated via the intramuscular route is safer than that via the subcutaneous route, especially for AS02. This study highlights the importance of the adjuvant and immunization routes in the design and clinical transformation of adjuvanted vaccines. Further investigation is needed to illustrate the mechanism underlying the above difference in both efficiency and safety.
Collapse
Affiliation(s)
- Lijun Bian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yu Zheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xiaohong Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Dongdong Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jingying Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Linyao Jing
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, China
| | - Jingcai Lu
- R&D Center, Changchun BCHT Biotechnology Co., Changchun, China
| | - Ke Zhang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Department of Parasitology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, China
- R&D Center, Changchun BCHT Biotechnology Co., Changchun, China
- *Correspondence: Yong Zhang, ; ; Chunlai Jiang,
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, China
- *Correspondence: Yong Zhang, ; ; Chunlai Jiang,
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, China
- R&D Center, Changchun BCHT Biotechnology Co., Changchun, China
| |
Collapse
|
9
|
Amsden H, Kourko O, Roth M, Gee K. Antiviral Activities of Interleukin-27: A Partner for Interferons? Front Immunol 2022; 13:902853. [PMID: 35634328 PMCID: PMC9134790 DOI: 10.3389/fimmu.2022.902853] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022] Open
Abstract
Emergence of new, pandemic-level viral threats has brought to the forefront the importance of viral immunology and continued improvement of antiviral therapies. Interleukin-27 (IL-27) is a pleiotropic cytokine that regulates both innate and adaptive immune responses. Accumulating evidence has revealed potent antiviral activities of IL-27 against numerous viruses, including HIV, influenza, HBV and more. IL-27 contributes to the immune response against viruses indirectly by increasing production of interferons (IFNs) which have various antiviral effects. Additionally, IL-27 can directly interfere with viral infection both by acting similarly to an IFN itself and by modulating the differentiation and function of various immune cells. This review discusses the IFN-dependent and IFN-independent antiviral mechanisms of IL-27 and highlights the potential of IL-27 as a therapeutic cytokine for viral infection.
Collapse
Affiliation(s)
| | | | | | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
10
|
Reijnders TDY, Schuurman AR, van der Poll T. The Immune Response to Respiratory Viruses: From Start to Memory. Semin Respir Crit Care Med 2021; 42:759-770. [PMID: 34918319 DOI: 10.1055/s-0041-1736459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biomedical research has long strived to improve our understanding of the immune response to respiratory viral infections, an effort that has become all the more important as we live through the consequences of a pandemic. The disease course of these infections is shaped in large part by the actions of various cells of the innate and adaptive immune systems. While these cells are crucial in clearing viral pathogens and establishing long-term immunity, their effector mechanisms may also escalate into excessive, tissue-destructive inflammation detrimental to the host. In this review, we describe the breadth of the immune response to infection with respiratory viruses such as influenza and respiratory syncytial virus. Throughout, we focus on the host rather than the pathogen and try to describe shared patterns in the host response to different viruses. We start with the local cells of the airways, onto the recruitment and activation of innate and adaptive immune cells, followed by the establishment of local and systemic memory cells key in protection against reinfection. We end by exploring how respiratory viral infections can predispose to bacterial superinfection.
Collapse
Affiliation(s)
- Tom D Y Reijnders
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Alex R Schuurman
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Guo Z, Zhao Y, Zhang Z, Li Y. Interleukin-10-Mediated Lymphopenia Caused by Acute Infection with Foot-and-Mouth Disease Virus in Mice. Viruses 2021; 13:v13122358. [PMID: 34960627 PMCID: PMC8708299 DOI: 10.3390/v13122358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/06/2021] [Accepted: 11/20/2021] [Indexed: 12/14/2022] Open
Abstract
Foot-and-mouth disease (FMD) is characterized by a pronounced lymphopenia that is associated with immune suppression. However, the mechanisms leading to lymphopenia remain unclear. In this study, the number of total CD4+, CD8+ T cells, B cells, and NK cells in the peripheral blood were dramatically reduced in C57BL/6 mice infected with foot-and-mouth disease virus (FMDV) serotype O, and it was noted that mice with severe clinical symptoms had expressively lower lymphocyte counts than mice with mild or without clinical symptoms, indicating that lymphopenia was associated with disease severity. A further analysis revealed that lymphocyte apoptosis and trafficking occurred after FMDV infection. In addition, coinhibitory molecules were upregulated in the expression of CD4+ and CD8+ T cells from FMDV-infected mice, including CTLA-4, LAG-3, 2B4, and TIGIT. Interestingly, the elevated IL-10 in the serum was correlated with the appearance of lymphopenia during FMDV infection but not IL-6, IL-2, IL-17, IL-18, IL-1β, TNF-α, IFN-α/β, TGF-β, and CXCL1. Knocking out IL-10 (IL-10-/-) mice or blocking IL-10/IL-10R signaling in vivo was able to prevent lymphopenia via downregulating apoptosis, trafficking, and the coinhibitory expression of lymphocytes in the peripheral blood, which contribute to enhance the survival of mice infected with FMDV. Our findings support that blocking IL-10/IL-10R signaling may represent a novel therapeutic approach for FMD.
Collapse
Affiliation(s)
- Zijing Guo
- State Key Laboratory on Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (Z.G.); (Y.Z.)
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Yin Zhao
- State Key Laboratory on Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (Z.G.); (Y.Z.)
| | - Zhidong Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (Z.Z.); (Y.L.); Tel.: +86-028-85528276 (Y.L.)
| | - Yanmin Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (Z.Z.); (Y.L.); Tel.: +86-028-85528276 (Y.L.)
| |
Collapse
|
12
|
McGinley J, Thwaites R, Brebner W, Greenan-Barrett L, Aerssens J, Öner D, Bont L, Wildenbeest J, Martinón-Torres F, Nair H, Pollard AJ, Openshaw P, Drysdale S. A Systematic Review and Meta-analysis of Animal Studies Investigating the Relationship Between Serum Antibody, T Lymphocytes, and Respiratory Syncytial Virus Disease. J Infect Dis 2021; 226:S117-S129. [PMID: 34522970 DOI: 10.1093/infdis/jiab370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infections occur in human populations around the globe, causing disease of variable severity, disproportionately affecting infants and older adults (>65 years of age). Immune responses can be protective but also contribute to disease. Experimental studies in animals enable detailed investigation of immune responses, provide insights into clinical questions, and accelerate the development of passive and active vaccination. We aimed to review the role of antibody and T-cell responses in relation to RSV disease severity in animals. METHODS Systematic review and meta-analysis of animal studies examining the association between T-cell responses/phenotype or antibody titers and severity of RSV disease. The PubMed, Zoological Record, and Embase databases were screened from January 1980 to May 2018 to identify animal studies of RSV infection that assessed serum antibody titer or T lymphocytes with disease severity as an outcome. Sixty-three studies were included in the final review. RESULTS RSV-specific antibody appears to protect from disease in mice, but such an effect was less evident in bovine RSV. Strong T-cell, Th1, Th2, Th17, CD4/CD8 responses, and weak Treg responses accompany severe disease in mice. CONCLUSIONS Murine studies suggest that measures of T-lymphocyte activity (particularly CD4 and CD8 T cells) may be predictive biomarkers of severity. Further inquiry is merited to validate these results and assess relevance as biomarkers for human disease.
Collapse
Affiliation(s)
- Joseph McGinley
- Oxford Vaccine Group, Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Will Brebner
- Oxford Vaccine Group, Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Jeroen Aerssens
- Biomarkers Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Deniz Öner
- Biomarkers Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Louis Bont
- Department of Paediatric Infectious Diseases and Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Joanne Wildenbeest
- Department of Paediatric Infectious Diseases and Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Harish Nair
- University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Simon Drysdale
- Oxford Vaccine Group, Paediatrics, University of Oxford, Oxford, United Kingdom.,Paediatric Infectious Diseases Unit, St George's University Hospitals NHS Foundation Trust, London, United Kingdom.,Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | | |
Collapse
|
13
|
Fan X, Zhang Y, Ouyang R, Luo B, Li L, He W, Liu M, Jiang N, Yang F, Wang L, Zhou B. Cysticercus cellulosae Regulates T-Cell Responses and Interacts With the Host Immune System by Excreting and Secreting Antigens. Front Cell Infect Microbiol 2021; 11:728222. [PMID: 34540719 PMCID: PMC8447960 DOI: 10.3389/fcimb.2021.728222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022] Open
Abstract
Cysticercus cellulosae (C. cellulosae) excretes and secretes antigens during the parasitic process to regulate the host immune response; however, resulting immune response and cytokine production in the host during infection still remains unclear. We used C. cellulosae crude antigens (CAs) as controls to explore the effect of excretory secretory antigens (ESAs) on T-cell immune responses in piglets. C. cellulosae ESAs induced imbalanced CD4+/CD8+ T-cell proportions, increased the CD4+Foxp3+ and CD8+Foxp3+ T-cell frequencies, and induced lymphocytes to produce interleukin-10, which was mainly attributed to CD4+ and CD4-CD8- T cells. The ESAs also induced Th2-type immune responses. The results showed that the ability of C. cellulosae to escape the host immune attacks and establish a persistent infection may be related to host immune response regulation by the ESAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Biying Zhou
- Department of Parasitology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| |
Collapse
|
14
|
Khodakhah F, Tahamtan A, Marzban M, Shadab A, Tavakoli-Yaraki M, Hashemi SM, Mokhatri-Azad T, Nakstad B, Salimi V. Hyperglycemia results in decreased immune cell infiltration and increased viral load in the lung in a mouse model of RSV infection. Cytokine 2021; 143:155539. [PMID: 33893002 DOI: 10.1016/j.cyto.2021.155539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Respiratory Syncytial virus (RSV) infection is a feared disease in vulnerable populations with impaired immune responses. There is currently no vaccine against RSV and young children along with elderly people are at increased risk of severe or sometimes life-threatening RSV infection. Hyperglycemia with immunomodulatory patterns can impact on infectious disease outcomes and immune system responses in diabetic patients. Even though research continues to uncover the complex mechanisms underlying RSV immunopathogenesis and diabetes mellitus disease separately, limited information is available about interaction between these two phenomena. Here, we evaluated the influence of hyperglycemia as the hallmark of diabetes mellitus disease on the pathogenesis and immunopathogenesis of RSV in a mouse model. In this experiment, hyperglycemia was induced by intraperitoneal injection of Streptozotocin (STZ), and after diabetes confirmation, mice were infected with RSV-A2, and the immune responses were followed for 5 days until the mice were sacrificed. Analyses on airway immune cell influx, T-Lymphocyte subtypes, cytokines secretion, lung histopathology, and viral load were conducted. Our results showed that hyperglycemia resulted in reduced lung immune cells infiltration totally and it was associated with decreased pathological damage of the lung. Following RSV infection in hyperglycemic mice, the ratio of CD4/CD8 T-Lymphocytes due to CD8+ depletion, increased. Furthermore, the level of IFN-γ and IL-17A cytokines decreased, whereas IL-10 showed an upward trend and the viral load increased in hyperglycemic mice compared with normoglycemic mice. In conclusion, these findings indicate that hyperglycemia can ameliorate and downregulate RSV-induced inflammatory and antiviral responses, and result in increment of viral load.
Collapse
Affiliation(s)
- Farshad Khodakhah
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Tahamtan
- Infectious Diseases Research Centre, Golestan University of Medical Sciences, Gorgan, Iran; Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mona Marzban
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Shadab
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Talat Mokhatri-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Britt Nakstad
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Paediatric and Adolescent Health, University of Botswana, Gaborone, Botswana
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Mousavi Jam SA, Talebi M, Alipour B, Khosroushahi AY. The therapeutic effect of potentially probiotic Lactobacillus paracasei on dimethylhydrazine induced colorectal cancer in rats. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Shi T, Li N, He Y, Feng J, Mei Z, Du Y, Jie Z. Th17/Treg cell imbalance plays an important role in respiratory syncytial virus infection compromising asthma tolerance in mice. Microb Pathog 2021; 156:104867. [PMID: 33957244 DOI: 10.1016/j.micpath.2021.104867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022]
Abstract
Mucosal tolerance is induced early in life and is an important mechanism of protection from diseases, such as asthma. Respiratory syncytial virus (RSV) is a main cause of bronchiolitis and pneumonia in infants. Clinical studies have found that there is a strong association between RSV infection in infancy and later development of asthma, but the underlying mechanisms are unclear. A mouse model of immune tolerance induced by oral feeding of ovalbumin(OVA) was successfully established in our previous studies. We found that RSV infection could break the oral immune tolerance state.RSV infection increased the mRNA expression of IL-17A and IL-17A/Foxp3(the transcription factor forkhead box P3) in OT mice, but the mRNA expression of IL-4 and other T helper(Th)2 cytokines did not change significantly. As detected by flow cytometry analysis, RSV infection elevated Th17 cell levels and correspondingly decreased Regulatory T(Treg) cell levels in the hilar lymph nodes (HLNs) and mesenteric lymph nodes (MLNs), but there were no significant differences in the spleen or peripheral blood.We hypothesized that an imbalance in Th cells played an important role in RSV infection compromising asthma tolerance.RSV infection disrupted asthma tolerance by increasing the Th17/Treg ratio rather than the Th1/Th2 ratio'.Therefore, altering the Th17/Treg ratio has been identified as a potential therapeutic target in asthma caused by RSV or another virus.
Collapse
Affiliation(s)
- Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China
| | - Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China
| | - Yanchao He
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China
| | - Jingjing Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China
| | - Zhoufang Mei
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China
| | - Yong Du
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China.
| |
Collapse
|
17
|
Luangrath MA, Schmidt ME, Hartwig SM, Varga SM. Tissue-Resident Memory T Cells in the Lungs Protect against Acute Respiratory Syncytial Virus Infection. Immunohorizons 2021; 5:59-69. [PMID: 33536235 PMCID: PMC8299542 DOI: 10.4049/immunohorizons.2000067] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in young children. The T cell response plays a critical role in facilitating clearance of an acute RSV infection, and memory T cell responses are vital for protection against secondary RSV exposures. Tissue-resident memory (TRM) T cells have been identified as a subset of memory T cells that reside in nonlymphoid tissues and are critical for providing long-term immunity. There is currently limited information regarding the establishment and longevity of TRM T cell responses elicited following an acute RSV infection as well as their role in protection against repeated RSV infections. In this study, we examined the magnitude, phenotype, and protective capacity of TRM CD4 and CD8 T cells in the lungs of BALB/c mice following an acute RSV infection. TRM CD4 and CD8 T cells were established within the lungs and waned by 149 d following RSV infection. To determine the protective capacity of TRMs, FTY720 administration was used to prevent trafficking of peripheral memory T cells into the lungs prior to challenge of RSV-immune mice, with a recombinant influenza virus expressing either an RSV-derived CD4 or CD8 T cell epitope. We observed enhanced viral clearance in RSV-immune mice, suggesting that TRM CD8 T cells can contribute to protection against a secondary RSV infection. Given the protective capacity of TRMs, future RSV vaccine candidates should focus on the generation of these cell populations within the lung to induce effective immunity against RSV infection.
Collapse
Affiliation(s)
- Mitchell A Luangrath
- Division of Critical Care, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242
| | - Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Stacey M Hartwig
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242; and
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242;
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242; and
- Department of Pathology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
18
|
Asha K, Khanna M, Kumar B. Current Insights into the Host Immune Response to Respiratory Viral Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:59-83. [PMID: 34661891 DOI: 10.1007/978-3-030-67452-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Respiratory viral infections often lead to severe illnesses varying from mild or asymptomatic upper respiratory tract infections to severe bronchiolitis and pneumonia or/and chronic obstructive pulmonary disease. Common viral infections, including but not limited to influenza virus, respiratory syncytial virus, rhinovirus and coronavirus, are often the leading cause of morbidity and mortality. Since the lungs are continuously exposed to foreign particles, including respiratory pathogens, it is also well equipped for recognition and antiviral defense utilizing the complex network of innate and adaptive immune cells. Immediately upon infection, a range of proinflammatory cytokines, chemokines and an interferon response is generated, thereby making the immune response a two edged sword, on one hand it is required to eliminate viral pathogens while on other hand it's prolonged response can lead to chronic infection and significant pulmonary damage. Since vaccines to all respiratory viruses are not available, a better understanding of the virus-host interactions, leading to the development of immune response, is critically needed to design effective therapies to limit the severity of inflammatory damage, enhance viral clearance and to compliment the current strategies targeting the virus. In this chapter, we discuss the host responses to common respiratory viral infections, the key players of adaptive and innate immunity and the fine balance that exists between the viral clearance and immune-mediated damage.
Collapse
Affiliation(s)
- Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Madhu Khanna
- Department of Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Binod Kumar
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
19
|
Zheng Y, Bian L, Zhao H, Liu Y, Lu J, Liu D, Zhang K, Song Y, Luo Y, Jiang C, Chen Y, Zhang Y, Kong W. Respiratory Syncytial Virus F Subunit Vaccine With AS02 Adjuvant Elicits Balanced, Robust Humoral and Cellular Immunity in BALB/c Mice. Front Immunol 2020; 11:526965. [PMID: 33013922 PMCID: PMC7516270 DOI: 10.3389/fimmu.2020.526965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory illness, particularly in infants, the elderly, and immunocompromised adults. There is no licensed commercial vaccine against RSV. Importantly, formalin-inactivated RSV vaccines mediate enhanced respiratory disease. RSV fusion (F) protein with pre-fusion conformation is a promising candidate subunit vaccine. However, some problems remain to be solved, such as low immunogenicity and humoral immunity bias. Adjuvants can effectively enhance and adjust vaccine immune responses. In this study, we formulated pre-fusion RSV-F protein with the adjuvants, Alhydrogel, MF59, AS03, AS02, and glycol chitosan (GCS). We then conducted head-to-head comparisons of vaccine-induced immune responses in BALB/c mice. All adjuvanted vaccines enhanced antigen-specific and neutralizing antibody titers and viral clearance and gave an order of adjuvant activity: AS02 > AS03, MF59 > GCS, and Alhydrogel. Among them, AS02 elicited the highest antibody expression, which persisted until week 18. Moreover, AS02 significantly enhanced Th1 type immune response in immunized mice. Mice in the AS02 group also showed faster recovery from viral attacks in challenge tests. Further transcriptome analysis revealed that AS02 regulates immune balance by activating TLR-4 and promotes Th1-type immune responses. These results suggest that AS02 may be an excellent candidate adjuvant for RSV-F subunit vaccines. This study also provides valuable information regarding the effect of other adjuvants on immune responses of RSV-F subunit vaccines.
Collapse
Affiliation(s)
- Yu Zheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lijun Bian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Huiting Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yulan Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jingcai Lu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,R&D Center, Changchun BCHT Biotechnology Co., Changchun, China
| | - Dawei Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,R&D Center, Changchun BCHT Biotechnology Co., Changchun, China
| | - Ke Zhang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Department of Parasitology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yueshuang Song
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,R&D Center, Changchun BCHT Biotechnology Co., Changchun, China
| | - Yusi Luo
- Intensive Care Unit, Department of Emergency, Guizhou Medical University Affiliated Hospital, Guiyang, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
20
|
Schmidt ME, Meyerholz DK, Varga SM. Pre-existing neutralizing antibodies prevent CD8 T cell-mediated immunopathology following respiratory syncytial virus infection. Mucosal Immunol 2020; 13:507-517. [PMID: 31844172 PMCID: PMC7181396 DOI: 10.1038/s41385-019-0243-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 11/05/2019] [Accepted: 11/23/2019] [Indexed: 02/04/2023]
Abstract
Despite being a leading cause of severe respiratory disease, there remains no licensed respiratory syncytial virus (RSV) vaccine. Neutralizing antibodies reduce the severity of RSV-associated disease, but are not sufficient for preventing reinfection. In contrast, the role of memory CD8 T cells in protecting against a secondary RSV infection is less established. We recently demonstrated that high-magnitude memory CD8 T cells efficiently reduced lung viral titers following RSV infection, but induced fatal immunopathology that was mediated by IFN-γ. To evaluate the ability of RSV-specific neutralizing antibodies to prevent memory CD8 T cell-mediated immunopathology, mice with high-magnitude memory CD8 T cell responses were treated with neutralizing antibodies prior to RSV challenge. Neutralizing antibody treatment significantly reduced morbidity and prevented mortality following RSV challenge compared with IgG-treated controls. Neutralizing antibody treatment restricted early virus replication, which caused a substantial reduction in memory CD8 T cell activation and IFN-γ production, directly resulting in survival. In contrast, therapeutic neutralizing antibody administration did not impact morbidity, mortality, or IFN-γ levels, despite significantly reducing lung viral titers. Therefore, only pre-existing neutralizing antibodies prevent memory CD8 T cell-mediated immunopathology following RSV infection. Overall, our results have important implications for the development of future RSV vaccines.
Collapse
Affiliation(s)
- Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
21
|
Schorer M, Rakebrandt N, Lambert K, Hunziker A, Pallmer K, Oxenius A, Kipar A, Stertz S, Joller N. TIGIT limits immune pathology during viral infections. Nat Commun 2020; 11:1288. [PMID: 32152316 PMCID: PMC7062903 DOI: 10.1038/s41467-020-15025-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/17/2020] [Indexed: 12/30/2022] Open
Abstract
Co-inhibitory pathways have a fundamental function in regulating T cell responses and control the balance between promoting efficient effector functions and restricting immune pathology. The TIGIT pathway has been implicated in promoting T cell dysfunction in chronic viral infection. Importantly, TIGIT signaling is functionally linked to IL-10 expression, which has an effect on both virus control and maintenance of tissue homeostasis. However, whether TIGIT has a function in viral persistence or limiting tissue pathology is unclear. Here we report that TIGIT modulation effectively alters the phenotype and cytokine profile of T cells during influenza and chronic LCMV infection, but does not affect virus control in vivo. Instead, TIGIT has an important effect in limiting immune pathology in peripheral organs by inducing IL-10. Our data therefore identify a function of TIGIT in limiting immune pathology that is independent of viral clearance.
Collapse
Affiliation(s)
- Michelle Schorer
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nikolas Rakebrandt
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Katharina Lambert
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Annika Hunziker
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Katharina Pallmer
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10 8093, Zurich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10 8093, Zurich, Switzerland
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057, Zurich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nicole Joller
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
22
|
Kitcharoensakkul M, Bacharier LB, Yin-Declue H, Boomer JS, Sajol G, Leung MK, Wilson B, Schechtman KB, Atkinson JP, Green JM, Castro M. Impaired tumor necrosis factor-α secretion by CD4 T cells during respiratory syncytial virus bronchiolitis associated with recurrent wheeze. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:30-39. [PMID: 31901157 PMCID: PMC7016853 DOI: 10.1002/iid3.281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/06/2019] [Accepted: 12/07/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Infants with severe respiratory syncytial virus (RSV) bronchiolitis have an increased risk of recurrent wheezing and asthma. We aimed to evaluate the relationships between regulatory T cell (Treg) percentage and cytokine production of in vitro-stimulated CD4+ T cells during acute bronchiolitis and the development of recurrent wheezing in the first 3 years of life. METHODS We obtained peripheral blood from 166 infants hospitalized with their first episode of RSV-confirmed bronchiolitis. Granzyme B (GZB) expression, and interleukin-10, interferon-γ, tumor necrosis factor-α (TNF-α), IL-4, and IL-5 production by in vitro anti-CD3/CD28- and anti-CD3/CD46-activated CD4+ T cells, and percentage of peripheral Treg (CD4+CD25hi Foxp3hi ) cells were measured by flow cytometry. Wheezing was assessed every 6 months. Recurrent wheezing was defined as three or more episodes following the initial RSV bronchiolitis. RESULTS Sixty-seven percent (n = 111) of children had wheezing after their initial RSV infection, with 30% having recurrent wheezing. The percentage of peripheral Treg (CD4+CD25hi Foxp3hi ) cells was not significantly different between the wheezing groups. Decreased TNF-α production from anti-CD3/CD28- and anti-CD3/CD46- activated CD4+ T cells was observed in the recurrent wheezers, compared with nonwheezers (p = .048 and .03, respectively). There were no significant differences in the GZB+ CD4+ T cells and production of other inflammatory cytokines between these groups. CONCLUSIONS We demonstrated lower TNF-α production by in vitro stimulated CD4+ T cells during severe RSV bronchiolitis in children that subsequently developed recurrent wheezing, compared with children with no subsequent wheeze. These findings support the role of CD4+ T cell immunity in the development of subsequent wheezing in these children.
Collapse
Affiliation(s)
- Maleewan Kitcharoensakkul
- The Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Leonard B Bacharier
- The Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Huiqing Yin-Declue
- The Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jonathan S Boomer
- The Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Geneline Sajol
- The Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Marilyn K Leung
- The Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Brad Wilson
- The Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Kenneth B Schechtman
- The Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - John P Atkinson
- The Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | | - Mario Castro
- The Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
23
|
Fang D, Zhu J. Molecular switches for regulating the differentiation of inflammatory and IL-10-producing anti-inflammatory T-helper cells. Cell Mol Life Sci 2020; 77:289-303. [PMID: 31432236 PMCID: PMC11105075 DOI: 10.1007/s00018-019-03277-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
CD4 T-helper (Th) cells secret a variety of inflammatory cytokines and play critical roles in host defense against invading foreign pathogens. On the other hand, uncontrolled inflammatory responses mediated by Th cells may result in tissue damage and inflammatory disorders including autoimmune and allergic diseases. Thus, the induction of anti-inflammatory cytokine expression becomes an important "brake" to repress and/or terminate aberrant and/or unnecessary immune responses. Interleukin-10 (IL-10) is one of the most important anti-inflammatory cytokines to limit inflammatory Th cells and immunopathology and to maintain tissue homeostasis. Many studies have indicated that Th cells can be a major source of IL-10 under specific conditions both in mouse and human and that extracellular signals and cell intrinsic molecular switches are required to turn on and off Il10 expression in different Th cells. In this review, we will highlight the recent findings that have enhanced our understanding on the mechanisms of IL-10 induction in distinct Th-cell subsets, including Th1, Th2, and Th17 cells, as well as the importance of these IL-10-producing anti-inflammatory Th cells in immunity and inflammation.
Collapse
Affiliation(s)
- Difeng Fang
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Ali AK, Komal AK, Almutairi SM, Lee SH. Natural Killer Cell-Derived IL-10 Prevents Liver Damage During Sustained Murine Cytomegalovirus Infection. Front Immunol 2019; 10:2688. [PMID: 31803193 PMCID: PMC6873346 DOI: 10.3389/fimmu.2019.02688] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/31/2019] [Indexed: 11/25/2022] Open
Abstract
Natural Killer (NK) cells are lymphocytes of the innate immune response that play a vital role in controlling infections and cancer. Their pro-inflammatory role has been well-established; however, less is known about the regulatory functions of NK cells, in particular, their production of the anti-inflammatory cytokine IL-10. In this study, we investigated the immunoregulatory function of NK cells during MCMV infection and demonstrated that NK cells are major producers of IL-10 during the early stage of infection. To investigate the effect of NK cell-derived IL-10, we have generated NK cell-specific IL-10-deficient mice (NKp46-Cre-Il10fl/fl) displaying no signs of age-related spontaneous inflammation, with NK cells that show no detectable IL-10 production upon in vitro stimulation. In NKp46-Cre-Il10fl/fl mice, the levels of IL-10 and IFNγ, viral burdens and T cell activation were similar between NKp46-Cre-Il10fl/fl mice and their control littermates, suggesting that NK cell-derived IL-10 is dispensable during acute MCMV infection in immunocompetent hosts. In perforin-deficient mice that show a more sustained infection, NK cells produce more sustained levels of IL-10. By crossing NKp46-Cre-Il10fl/fl mice with perforin-deficient mice, we demonstrated that NK cell-derived IL-10 regulates T cell activation, prevents liver damage, and allows for better disease outcome. Taken together, NK cell-derived IL-10 can be critical in regulating the immune response during early phases of infection and therefore protecting the host from excessive immunopathology.
Collapse
Affiliation(s)
- Alaa Kassim Ali
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Amandeep Kaur Komal
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Saeedah Musaed Almutairi
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Botany and Microbiology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
25
|
Muralidharan A, Russell MS, Larocque L, Gravel C, Sauvé S, Chen Z, Li C, Chen W, Cyr T, Rosu-Myles M, Wang L, Li X. Chitosan alters inactivated respiratory syncytial virus vaccine elicited immune responses without affecting lung histopathology in mice. Vaccine 2019; 37:4031-4039. [DOI: 10.1016/j.vaccine.2019.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
|
26
|
Schmidt ME, Oomens AGP, Varga SM. Vaccination with a Single-Cycle Respiratory Syncytial Virus Is Immunogenic and Protective in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 202:3234-3245. [PMID: 31004010 DOI: 10.4049/jimmunol.1900050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe respiratory tract infection in infants and young children, but no vaccine is currently available. Live-attenuated vaccines represent an attractive immunization approach; however, balancing attenuation while retaining sufficient immunogenicity and efficacy has prevented the successful development of such a vaccine. Recently, a recombinant RSV strain lacking the gene that encodes the matrix (M) protein (RSV M-null) was developed. The M protein is required for virion assembly following infection of a host cell but is not necessary for either genome replication or gene expression. Therefore, infection with RSV M-null produces all viral proteins except M but does not generate infectious virus progeny, resulting in a single-cycle infection. We evaluated RSV M-null as a potential vaccine candidate by determining its pathogenicity, immunogenicity, and protective capacity in BALB/c mice compared with its recombinant wild-type control virus (RSV recWT). RSV M-null-infected mice exhibited significantly reduced lung viral titers, weight loss, and pulmonary dysfunction compared with mice infected with RSV recWT. Despite its attenuation, RSV M-null infection induced robust immune responses of similar magnitude to that elicited by RSV recWT. Additionally, RSV M-null infection generated serum Ab and memory T cell responses that were similar to those induced by RSV recWT. Importantly, RSV M-null immunization provided protection against secondary viral challenge by reducing lung viral titers as efficiently as immunization with RSV recWT. Overall, our results indicate that RSV M-null combines attenuation with high immunogenicity and efficacy and represents a promising novel live-attenuated RSV vaccine candidate.
Collapse
Affiliation(s)
- Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Antonius G P Oomens
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242; .,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242; and.,Department of Pathology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
27
|
Schmidt ME, Varga SM. Identification of Novel Respiratory Syncytial Virus CD4 + and CD8 + T Cell Epitopes in C57BL/6 Mice. Immunohorizons 2019; 3:1-12. [PMID: 31356172 DOI: 10.4049/immunohorizons.1800056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/15/2018] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection and hospitalization in infants. It is well established that both CD4+ and CD8+ T cells are critical for mediating viral clearance but also contribute to the induction of immunopathology following RSV infection. C57BL/6 mice are often used to study T cell responses following RSV infection given the wide variety of genetically modified animals available. To date, few RSV-derived CD4+ and CD8+ T cell epitopes have been identified in C57BL/6 mice. Using an overlapping peptide library spanning the entire RSV proteome, intracellular cytokine staining for IFN-γ was performed to identify novel CD4+ and CD8+ T cell epitopes in C57BL/6 mice. We identified two novel CD4+ T cell epitopes and three novel CD8+ T cell epitopes located within multiple RSV proteins. Additionally, we characterized the newly described T cell epitopes by determining their TCR Vβ expression profiles and MHC restriction. Overall, the novel RSV-derived CD4+ and CD8+ T cell epitopes identified in C57BL/6 mice will aid in future studies of RSV-specific T cell responses.
Collapse
Affiliation(s)
- Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242; .,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242; and.,Department of Pathology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
28
|
Muralidharan A, Russell M, Larocque L, Gravel C, Li C, Chen W, Cyr T, Lavoie JR, Farnsworth A, Rosu-Myles M, Wang L, Li X. Targeting CD40 enhances antibody- and CD8-mediated protection against respiratory syncytial virus infection. Sci Rep 2018; 8:16648. [PMID: 30413743 PMCID: PMC6226510 DOI: 10.1038/s41598-018-34999-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/24/2018] [Indexed: 01/01/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) infects almost all children under the age of one and is the leading cause of hospitalization among infants. Despite several decades of research with dozens of candidate vaccines being vigorously evaluated in pre-clinical and clinical studies, there is no licensed vaccine available to date. Here, the RSV fusion protein (F) was fused with CD40 ligand and delivered by an adenoviral vector into BALB/c mice where the CD40 ligand serves two vital functions as a molecular adjuvant and an antigen-targeting molecule. In contrast to a formaldehyde-inactivated vaccine, the vectored vaccine effectively protected animals against RSV without inducing enhanced respiratory disease. This protection involved a robust induction of neutralizing antibodies and memory CD8 T cells, which were not observed in the inactivated vaccine group. Finally, the vectored vaccine was able to elicit long-lasting protection against RSV, one of the most challenging issues in RSV vaccine development. Further studies indicate that the long lasting protection elicited by the CD40 ligand targeted vaccine was mediated by increased levels of effector memory CD8 T cell 3 months post-vaccination.
Collapse
Affiliation(s)
- Abenaya Muralidharan
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marsha Russell
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Louise Larocque
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Caroline Gravel
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Changgui Li
- National Institute for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Wangxue Chen
- Human Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, Canada
| | - Terry Cyr
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Jessie R Lavoie
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Aaron Farnsworth
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Michael Rosu-Myles
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
29
|
Park S, Lee Y, Kwon YM, Lee YT, Kim KH, Ko EJ, Jung JH, Song M, Graham B, Prausnitz MR, Kang SM. Vaccination by microneedle patch with inactivated respiratory syncytial virus and monophosphoryl lipid A enhances the protective efficacy and diminishes inflammatory disease after challenge. PLoS One 2018; 13:e0205071. [PMID: 30365561 PMCID: PMC6203256 DOI: 10.1371/journal.pone.0205071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023] Open
Abstract
Intramuscular (IM) vaccination with formalin-inactivated respiratory syncytial virus (FI-RSV) failed in clinical trials due to vaccine-enhanced respiratory disease. To test the efficacy of skin vaccination against respiratory syncytial virus (RSV), we investigated the immunogenicity, efficacy, and inflammatory disease after microneedle (MN) patch delivery of FI-RSV vaccine (FI-RSV MN) to the mouse skin with or without an adjuvant of monophosphoryl lipid A (MPL). Compared to IM vaccination, MN patch delivery of FI-RSV was more effective in clearing lung viral loads and preventing weight loss, and in diminishing inflammation, infiltrating immune cells, and T helper type 2 (Th2) CD4 T cell responses after RSV challenge. With MPL adjuvant, MN patch delivery of FI-RSV significantly increased the immunogenicity and efficacy as well as preventing RSV disease as evidenced by lung viral clearance and avoiding pulmonary histopathology. Improved efficacy and prevention of disease by FI-RSV MN with MPL were correlated with no sign of airway resistance, lower levels of Th2 cytokines and infiltrating innate inflammatory cells, and higher levels of Th1 T cell responses into the lung. This study suggests that MN patch delivery of RSV vaccines to the skin with MPL adjuvant would be a promising vaccination method.
Collapse
Affiliation(s)
- Soojin Park
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Jae Hwan Jung
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Manki Song
- International Vaccine Institute, Seoul, Korea
| | - Barney Graham
- Vaccine Research Center, National Institute of Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
30
|
Liu H, Osterburg AR, Flury J, Huang S, McCormack FX, Cormier SA, Borchers MT. NKG2D Regulation of Lung Pathology and Dendritic Cell Function Following Respiratory Syncytial Virus Infection. J Infect Dis 2018; 218:1822-1832. [PMID: 29554301 PMCID: PMC6195658 DOI: 10.1093/infdis/jiy151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) is a common cause of respiratory tract infection in vulnerable populations. Natural killer (NK) cells and dendritic cells (DC) are important for the effector functions of both cell types following infection. Methods Wild-type and NKG2D-deficient mice were infected with RSV. Lung pathology was assessed by histology. Dendritic cell function and phenotype were evaluated by enzyme-linked immunosorbent assay and flow cytometry. The expression of NKG2D ligands on lung and lymph node DCs was measured by immunostaining and flow cytometry. Adoptive transfer experiments were performed to assess the importance of NKG2D-dependent DC function in RSV infection. Results NKG2D-deficient mice exhibited greater lung pathology, marked by the accumulation of DCs following RSV infection. Dendritic cells isolated from NKG2D-deficient mice had impaired responses toward Toll-like receptor ligands. Dendritic cells expressed NKG2D ligands on their surface, which was further increased in NKG2D-deficient mice and during RSV infection. Adoptive transfer of DCs isolated from wild-type mice into the airways of NKG2D-deficient mice ameliorated the enhanced inflammation in NKG2D-deficient mice after RSV infection. Conclusion NKG2D-dependent interactions with DCs control the phenotype and function of DCs and play a critical role in pulmonary host defenses against RSV infection.
Collapse
Affiliation(s)
- Huan Liu
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Ohio
| | - Andrew R Osterburg
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Ohio
| | - Jennifer Flury
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Ohio
| | - Shuo Huang
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Ohio
| | - Francis X McCormack
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Ohio
- Cincinnati Veteran’s Affairs Medical Center, Ohio
| | - Stephania A Cormier
- Departments of Pediatrics, Memphis
- Infectious Disease, University of Tennessee, Memphis
| | - Michael T Borchers
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Ohio
- Cincinnati Veteran’s Affairs Medical Center, Ohio
| |
Collapse
|
31
|
Turi KN, Shankar J, Anderson LJ, Rajan D, Gaston K, Gebretsadik T, Das SR, Stone C, Larkin EK, Rosas-Salazar C, Brunwasser SM, Moore ML, Peebles RS, Hartert TV. Infant Viral Respiratory Infection Nasal Immune-Response Patterns and Their Association with Subsequent Childhood Recurrent Wheeze. Am J Respir Crit Care Med 2018; 198:1064-1073. [PMID: 29733679 PMCID: PMC6221572 DOI: 10.1164/rccm.201711-2348oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/07/2018] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Recurrent wheeze and asthma are thought to result from alterations in early life immune development following respiratory syncytial virus (RSV) infection. However, prior studies of the nasal immune response to infection have assessed only individual cytokines, which does not capture the whole spectrum of response to infection. OBJECTIVES To identify nasal immune phenotypes in response to RSV infection and their association with recurrent wheeze. METHODS A birth cohort of term healthy infants born June to December were recruited and followed to capture the first infant RSV infection. Nasal wash samples were collected during acute respiratory infection, viruses were identified by RT-PCR, and immune-response analytes were assayed using a multianalyte bead-based panel. Immune-response clusters were identified using machine learning, and association with recurrent wheeze at age 1 and 2 years was assessed using logistic regression. MEASUREMENTS AND MAIN RESULTS We identified two novel and distinct immune-response clusters to RSV and human rhinovirus. In RSV-infected infants, a nasal immune-response cluster characterized by lower non-IFN antiviral immune-response mediators, and higher type-2 and type-17 cytokines was significantly associated with first and second year recurrent wheeze. In comparison, we did not observe this in infants with human rhinovirus acute respiratory infection. Based on network analysis, type-2 and type-17 cytokines were central to the immune response to RSV, whereas growth factors and chemokines were central to the immune response to human rhinovirus. CONCLUSIONS Distinct immune-response clusters during infant RSV infection and their association with risk of recurrent wheeze provide insights into the risk factors for and mechanisms of asthma development.
Collapse
Affiliation(s)
- Kedir N. Turi
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| | - Jyoti Shankar
- Infectious Disease Group, J. Craig Venter Institute, Rockville, Maryland; and
| | | | - Devi Rajan
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Kelsey Gaston
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | | | - Suman R. Das
- Division of Infectious Diseases, Department of Medicine
- Infectious Disease Group, J. Craig Venter Institute, Rockville, Maryland; and
| | - Cosby Stone
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| | - Emma K. Larkin
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| | | | | | - Martin L. Moore
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | | | - Tina V. Hartert
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| |
Collapse
|
32
|
Notch ligand Delta-like 4 induces epigenetic regulation of Treg cell differentiation and function in viral infection. Mucosal Immunol 2018; 11:1524-1536. [PMID: 30038214 PMCID: PMC6160345 DOI: 10.1038/s41385-018-0052-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/10/2018] [Accepted: 05/31/2018] [Indexed: 02/04/2023]
Abstract
Notch ligand Delta-like ligand 4 (DLL4) has been shown to regulate CD4 T-cell differentiation, including regulatory T cells (Treg). Epigenetic alterations, which include histone modifications, are critical in cell differentiation decisions. Recent genome-wide studies demonstrated that Treg have increased trimethylation on histone H3 at lysine 4 (H3K4me3) around the Treg master transcription factor, Foxp3 loci. Here we report that DLL4 dynamically increased H3K4 methylation around the Foxp3 locus that was dependent upon upregulated SET and MYDN domain containing protein 3 (SMYD3). DLL4 promoted Smyd3 through the canonical Notch pathway in iTreg differentiation. DLL4 inhibition during pulmonary respiratory syncytial virus (RSV) infection decreased Smyd3 expression and Foxp3 expression in Treg leading to increased Il17a. On the other hand, DLL4 supported Il10 expression in vitro and in vivo, which was also partially dependent upon SMYD3. Using genome-wide unbiased mRNA sequencing, novel sets of DLL4- and Smyd3-dependent differentially expressed genes were discovered, including lymphocyte-activation gene 3 (Lag3), a checkpoint inhibitor that has been identified for modulating Th cell activation. Together, our data demonstrate a novel mechanism of DLL4/Notch-induced Smyd3 epigenetic pathways that maintain regulatory CD4 T cells in viral infections.
Collapse
|
33
|
Rogers MC, Williams JV. Quis Custodiet Ipsos Custodes? Regulation of Cell-Mediated Immune Responses Following Viral Lung Infections. Annu Rev Virol 2018; 5:363-383. [PMID: 30052492 DOI: 10.1146/annurev-virology-092917-043515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral lung infections are leading causes of morbidity and mortality. Effective immune responses to these infections require precise immune regulation to preserve lung function after viral clearance. One component of airway pathophysiology and lung injury associated with acute respiratory virus infection is effector T cells, yet these are the primary cells required for viral clearance. Accordingly, multiple immune mechanisms exist to regulate effector T cells, limiting immunopathology while permitting clearance of infection. Much has been learned in recent years about regulation of T cell function during chronic infection and cancer, and it is now clear that many of these mechanisms also control inflammation in acute lung infection. In this review, we focus on regulatory T cells, inhibitory receptors, and other cells and molecules that regulate cell-mediated immunity in the context of acute respiratory virus infection.
Collapse
Affiliation(s)
- Meredith C Rogers
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA;
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA.,Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224, USA;
| |
Collapse
|
34
|
Schmidt ME, Varga SM. Cytokines and CD8 T cell immunity during respiratory syncytial virus infection. Cytokine 2018; 133:154481. [PMID: 30031680 PMCID: PMC6551303 DOI: 10.1016/j.cyto.2018.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 01/10/2023]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection and hospitalization in infants. In spite of the enormous clinical burden caused by RSV infections, there remains no efficacious RSV vaccine. CD8 T cells mediate viral clearance as well as provide protection against a secondary RSV infection. However, RSV-specific CD8 T cells may also induce immunopathology leading to exacerbated morbidity and mortality. Many of the crucial functions performed by CD8 T cells are mediated by the cytokines they produce. IFN-γ and TNF are produced by CD8 T cells following RSV infection and contribute to both the acceleration of viral clearance and the induction of immunopathology. To prevent immunopathology, regulatory mechanisms are in place within the immune system to inhibit CD8 T cell effector functions after the infection has been cleared. The actions of a variety of cytokines, including IL-10 and IL-4, play a critical role in the regulation of CD8 T cell effector activity. Herein, we review the current literature on CD8 T cell responses and the functions of the cytokines they produce following RSV infection. Additionally, we discuss the regulation of CD8 T cell activation and effector functions through the actions of various cytokines.
Collapse
Affiliation(s)
- Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA; Department of Pathology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
35
|
Schmidt ME, Varga SM. The CD8 T Cell Response to Respiratory Virus Infections. Front Immunol 2018; 9:678. [PMID: 29686673 PMCID: PMC5900024 DOI: 10.3389/fimmu.2018.00678] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Humans are highly susceptible to infection with respiratory viruses including respiratory syncytial virus (RSV), influenza virus, human metapneumovirus, rhinovirus, coronavirus, and parainfluenza virus. While some viruses simply cause symptoms of the common cold, many respiratory viruses induce severe bronchiolitis, pneumonia, and even death following infection. Despite the immense clinical burden, the majority of the most common pulmonary viruses lack long-lasting efficacious vaccines. Nearly all current vaccination strategies are designed to elicit broadly neutralizing antibodies, which prevent severe disease following a subsequent infection. However, the mucosal antibody response to many respiratory viruses is not long-lasting and declines with age. CD8 T cells are critical for mediating clearance following many acute viral infections in the lung. In addition, memory CD8 T cells are capable of providing protection against secondary infections. Therefore, the combined induction of virus-specific CD8 T cells and antibodies may provide optimal protective immunity. Herein, we review the current literature on CD8 T cell responses induced by respiratory virus infections. Additionally, we explore how this knowledge could be utilized in the development of future vaccines against respiratory viruses, with a special emphasis on RSV vaccination.
Collapse
Affiliation(s)
- Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States.,Department of Pathology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
36
|
Altered regulatory cytokine profiles in cases of pediatric respiratory syncytial virus infection. Cytokine 2018; 103:57-62. [PMID: 29324262 PMCID: PMC7130056 DOI: 10.1016/j.cyto.2017.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022]
Abstract
Objectives Regulatory cytokines are associated with viral infection. The objective of this study was to evaluate the relation between serum regulatory cytokines concentrations and respiratory syncytial virus (RSV) disease. Methods We enrolled 325 children aged < 24 months who were diagnosed with acute respiratory tract infection. Twenty age-matched healthy children were enrolled as controls. Nasopharyngeal swabs were analyzed to identify virus by reverse transcription polymerase chain reaction, and blood samples were taken to quantify the regulatory cytokine concentrations, including interleukin (IL)-35, IL-10 and transforming growth factor (TGF)-β1 using the Bio-Plex immunoassay or enzyme-linked immunosorbent assay. Results RSV disease was associated with a great regulatory cytokine response than healthy children, among 89 RSV-infected patients, serum IL-35 (P = .0001) and IL-10 (P = .006) was significantly elevated in comparison with healthy controls. Young children (0< age ≤6 months) with RSV infection had significantly lower IL-35 and IL-10 expression but needed more oxygen therapy and more severe disease comparing with older children (12< age <24 months). Comparing with mild group, the expression levels of IL-10 were significantly lower in children with moderate and severe disease (P = .012 and P = .005, respectively). And levels of IL-10 was inversely associated with total duration of RSV infection symptoms (r = − 0.311, P = .019). Conclusion Children with RSV infected had increased serum regulatory cytokine IL-10 and IL-35 concentrations. Elevated expression of IL-10 and IL-35 were contributed to protect hypoxia and reduce the severity of disease.
Collapse
|
37
|
Memory CD8 T cells mediate severe immunopathology following respiratory syncytial virus infection. PLoS Pathog 2018; 14:e1006810. [PMID: 29293660 PMCID: PMC5766251 DOI: 10.1371/journal.ppat.1006810] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 01/12/2018] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
Memory CD8 T cells can provide protection from re-infection by respiratory viruses such as influenza and SARS. However, the relative contribution of memory CD8 T cells in providing protection against respiratory syncytial virus (RSV) infection is currently unclear. To address this knowledge gap, we utilized a prime-boost immunization approach to induce robust memory CD8 T cell responses in the absence of RSV-specific CD4 T cells and antibodies. Unexpectedly, RSV infection of mice with pre-existing CD8 T cell memory led to exacerbated weight loss, pulmonary disease, and lethal immunopathology. The exacerbated disease in immunized mice was not epitope-dependent and occurred despite a significant reduction in RSV viral titers. In addition, the lethal immunopathology was unique to the context of an RSV infection as mice were protected from a normally lethal challenge with a recombinant influenza virus expressing an RSV epitope. Memory CD8 T cells rapidly produced IFN-γ following RSV infection resulting in elevated protein levels in the lung and periphery. Neutralization of IFN-γ in the respiratory tract reduced morbidity and prevented mortality. These results demonstrate that in contrast to other respiratory viruses, RSV-specific memory CD8 T cells can induce lethal immunopathology despite mediating enhanced viral clearance. Memory CD8 T cells have been shown to provide protection against many respiratory viruses. However, the ability of memory CD8 T cells to provide protection against RSV has not been extensively examined. Unexpectedly, mice with pre-existing CD8 T cell memory, in the absence of memory CD4 T cells and antibodies, exhibited exacerbated morbidity and mortality following RSV infection. We demonstrate that the immunopathology is the result of early and excessive production of IFN-γ by memory CD8 T cells in the lung. Our research provides important new insight into the mechanisms of how memory T cells induce immunopathology. In addition, our findings serve as an important cautionary tale against the use of epitope-based T cell vaccines against RSV.
Collapse
|
38
|
Early IL-6 signalling promotes IL-27 dependent maturation of regulatory T cells in the lungs and resolution of viral immunopathology. PLoS Pathog 2017; 13:e1006640. [PMID: 28953978 PMCID: PMC5633202 DOI: 10.1371/journal.ppat.1006640] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/09/2017] [Accepted: 09/10/2017] [Indexed: 02/05/2023] Open
Abstract
Interleukin-6 is a pleiotropic, pro-inflammatory cytokine that can promote both innate and adaptive immune responses. In humans with respiratory virus infections, such as Respiratory Syncytial Virus (RSV), elevated concentrations of IL-6 are associated with more severe disease. In contrast the polymorphisms in the Il6 promoter which favour lower IL-6 production are associated with increased risk of both RSV and Rhinovirus infections. To determine the precise contribution of IL-6 to protection and pathology we used murine models of respiratory virus infection. RSV infection resulted in increased IL-6 production both in the airways and systemically which remained heightened for at least 2 weeks. IL-6 depletion early, but not late, during RSV or Influenza A virus infection resulted in significantly increased disease associated with an influx of virus specific TH1 and cytotoxic CD8+ T cells, whilst not affecting viral clearance. IL-6 acted by driving production of the immunoregulatory cytokine IL-27 by macrophages and monocytes, which in turn promoted the local maturation of regulatory T cells. Concordantly IL-27 was necessary to regulate TH1 responses in the lungs, and sufficient to limit RSV induced disease. Overall we found that during respiratory virus infection the prototypic inflammatory cytokine IL-6 is a critical anti-inflammatory regulator of viral induced immunopathology in the respiratory tract through its induction of IL-27. In clearing a respiratory virus, the host must strike a careful balance between the need to clear the infection and the potential of the immune response to damage the delicate structure of the lungs. Here we show that Interleukin-6, a soluble mediator commonly associated with inflammation and seen in humans with severe respiratory infection, is actually critical in promoting the resolution of the host response to respiratory virus infection and limiting disease. We have found that the early production of IL-6 after infection promotes the production of the regulatory mediator Interleukin-27 by lung resident immune cells, which in turn drives suppression of otherwise damaging inflammation. Removal of either IL-6 or IL-27 enhances disease during viral infection, while restoration of IL-27 is sufficient to allow faster recovery. Thus we have identified a novel immunological network within the respiratory tract which accelerates recovery after respiratory virus infection.
Collapse
|
39
|
Kanmani P, Clua P, Vizoso-Pinto MG, Rodriguez C, Alvarez S, Melnikov V, Takahashi H, Kitazawa H, Villena J. Respiratory Commensal Bacteria Corynebacterium pseudodiphtheriticum Improves Resistance of Infant Mice to Respiratory Syncytial Virus and Streptococcus pneumoniae Superinfection. Front Microbiol 2017; 8:1613. [PMID: 28878760 PMCID: PMC5572367 DOI: 10.3389/fmicb.2017.01613] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/08/2017] [Indexed: 01/09/2023] Open
Abstract
Corynebacterium pseudodiphtheriticum is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested that C. pseudodiphtheriticum may be potentially used as a next-generation probiotic for nasal application, although no deep studies were performed in this regard. We hypothesized that human isolate C. pseudodiphtheriticum strain 090104 is able to modulate the respiratory innate immune response and beneficially influence the resistance to viral and bacterial infections. Therefore, in the present study we investigated how the exposure of infant mice to nasal priming with viable or non-viable C. pseudodiphtheriticum 090104 influences the respiratory innate immune response triggered by Toll-like receptor (TLR)-3 activation, the susceptibility to primary Respiratory Synsytial Virus (RSV) infection, and the resistance to secondary Streptococcus pneumoniae pneumonia. We demonstrated that the nasal priming with viable C. pseudodiphtheriticum 090104 differentially modulated TLR3-mediated innate antiviral immune response in the respiratory tract of infant mice, improving their resistance to primary RSV infection, and secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal superinfection, we found that viable C. pseudodiphtheriticum improved lung CD3+CD4+IFN-γ+, and CD3+CD4+IL-10+ T cells as well as CD11c+SiglecF+IFN-β+ alveolar macrophages. Of interest, non-viable bacteria did not have the same protective effect, suggesting that C. pseudodiphtheriticum colonization is needed for achieving its protective effect. In conclusion, we present evidence that nasal application of viable C. pseudodiphtheriticum could be thought as an alternative to boost defenses against RSV and secondary pneumococcal pneumonia, which should be further studied and validated in clinical trials. Due to the absence of a long-lasting immunity, re-infection with RSV throughout life is common. Thus, a possible perspective use could be a seasonal application of a nasal probiotic spray to boost respiratory innate immunity in immunocompetent subjects.
Collapse
Affiliation(s)
- Paulraj Kanmani
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku UniversitySendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku UniversitySendai, Japan
| | - Patricia Clua
- Immunobiotics Research GroupTucuman, Argentina.,Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET)Tucuman, Argentina
| | - Maria G Vizoso-Pinto
- Faculty of Medicine, INSIBIO (UNT-CONICET), National University of TucumanTucuman, Argentina
| | - Cecilia Rodriguez
- Laboratory of Genetics, Reference Centre for Lactobacilli (CERELA-CONICET)Tucuman, Argentina
| | - Susana Alvarez
- Immunobiotics Research GroupTucuman, Argentina.,Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET)Tucuman, Argentina
| | - Vyacheslav Melnikov
- Gabrichevsky Institute of Epidemiology and MicrobiologyMoscow, Russia.,Central Research Institute of EpidemiologyMoscow, Russia
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku UniversitySendai, Japan.,Plant Immunology Unit, International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku UniversitySendai, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku UniversitySendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku UniversitySendai, Japan
| | - Julio Villena
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku UniversitySendai, Japan.,Immunobiotics Research GroupTucuman, Argentina.,Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET)Tucuman, Argentina
| |
Collapse
|
40
|
Meyerholz DK, Sieren JC, Beck AP, Flaherty HA. Approaches to Evaluate Lung Inflammation in Translational Research. Vet Pathol 2017; 55:42-52. [PMID: 28812529 DOI: 10.1177/0300985817726117] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammation is a common feature in several types of lung disease and is a frequent end point to validate lung disease models, evaluate genetic or environmental impact on disease severity, or test the efficacy of new therapies. Questions relevant to a study should be defined during experimental design and techniques selected to specifically address these scientific queries. In this review, the authors focus primarily on the breadth of techniques to evaluate lung inflammation that have both clinical and preclinical applications. Stratification of approaches to assess lung inflammation can diminish weaknesses inherent to each technique, provide data validation, and increase the reproducibility of a study. Specialized techniques (eg, imaging, pathology) often require experienced personnel to collect, evaluate, and interpret the data; these experts should be active contributors to the research team through reporting of the data. Scoring of tissue lesions is a useful method to transform observational pathologic data into semiquantitative or quantitative data for statistical analysis and enhanced rigor. Each technique to evaluate lung inflammation has advantages and limitations; understanding these parameters can help identify approaches that best complement one another to increase the rigor and translational significance of data.
Collapse
Affiliation(s)
- David K Meyerholz
- 1 Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jessica C Sieren
- 2 Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,3 Department of Biomedical Engineering, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amanda P Beck
- 4 Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Heather A Flaherty
- 5 Department of Veterinary Pathology, Iowa State University, Ames, IA, USA
| |
Collapse
|
41
|
Miyauchi K. Helper T Cell Responses to Respiratory Viruses in the Lung: Development, Virus Suppression, and Pathogenesis. Viral Immunol 2017. [DOI: 10.1089/vim.2017.0018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Kosuke Miyauchi
- RIKEN Center for Integrative Medical Science, Yokohama, Japan
| |
Collapse
|
42
|
Openshaw PJ, Chiu C, Culley FJ, Johansson C. Protective and Harmful Immunity to RSV Infection. Annu Rev Immunol 2017; 35:501-532. [DOI: 10.1146/annurev-immunol-051116-052206] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peter J.M. Openshaw
- Respiratory Infections, National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| | - Chris Chiu
- Respiratory Infections, National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| | - Fiona J. Culley
- Respiratory Infections, National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| | - Cecilia Johansson
- Respiratory Infections, National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
43
|
Abstract
Respiratory syncytial virus (RSV) is a common cause of upper respiratory tract infection in children and adults. However, infection with this virus sometimes leads to severe lower respiratory disease and is the major cause of infant hospitalisations in the developed world. Several risk factors such as baby prematurity and congenital heart disease are known to predispose towards severe disease but previously healthy, full-term infants can also develop bronchiolitis and viral pneumonia during RSV infection. The causes of severe disease are not fully understood but may include dysregulation of the immune response to the virus, resulting in excessive recruitment and activation of innate and adaptive immune cells that can cause damage. This review highlights recent discoveries on the balancing act of immune-mediated virus clearance versus immunopathology during RSV infection.
Collapse
Affiliation(s)
- Cecilia Johansson
- Respiratory Infections Section, St Mary's campus, National Heart and Lung Institute, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
44
|
Christiaansen AF, Syed MA, Ten Eyck PP, Hartwig SM, Durairaj L, Kamath SS, Varga SM. Altered Treg and cytokine responses in RSV-infected infants. Pediatr Res 2016; 80:702-709. [PMID: 27486703 PMCID: PMC6215710 DOI: 10.1038/pr.2016.130] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/20/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and pneumonia in children under 1 y of age in the USA. The host immune response is believed to contribute to RSV-induced disease. We hypothesize that severe RSV infection in infants is mediated by insufficient regulation of the host immune response of regulatory T cells (Tregs) resulting in immunopathology. METHODS Blood and nasal aspirates from 23 RSV-infected and 17 control infants under 1 y of age were collected. Treg frequencies were determined by flow cytometry from peripheral blood mononuclear cells. Analysis of 24 cytokines was measured by multiplex assay on nasal aspirates. RESULTS We demonstrate that the frequency of activated Tregs is significantly reduced in the peripheral blood of RSV-infected infants compared with age-matched controls. Surprisingly, T helper (Th)17 related cytokines including interleukin (IL)-1β, IL-17A, and IL-23 were associated with a reduction in clinical symptoms of respiratory distress. In addition, the amount of IL-33 protein in nasal washes, a cytokine important in maintaining Treg homeostasis in mucosal tissues, was decreased in RSV-infected children. CONCLUSION These results suggest that decreased Treg numbers and an inability to properly control the host inflammatory response results in severe RSV infection.
Collapse
Affiliation(s)
| | | | - Patrick P. Ten Eyck
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA
| | | | - Lakshmi Durairaj
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| | | | - Steven M. Varga
- Department of Microbiology, University of Iowa, Iowa City, IA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA
- Department of Pathology, University of Iowa, Iowa City, IA
| |
Collapse
|
45
|
Warren KJ, Simet SM, Pavlik JA, DeVasure JM, Sisson JH, Poole JA, Wyatt TA. RSV-specific anti-viral immunity is disrupted by chronic ethanol consumption. Alcohol 2016; 55:35-42. [PMID: 27788776 DOI: 10.1016/j.alcohol.2016.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 01/25/2023]
Abstract
Alcohol-use disorders (AUD) persist in the United States and are heavily associated with an increased susceptibility to respiratory viral infections. Respiratory syncytial virus (RSV) in particular has received attention as a viral pathogen commonly detected in children and immune-compromised populations (elderly, asthmatics), yet more recently was recognized as an important viral pathogen in young adults. Our study evaluated the exacerbation of RSV-associated illness in mice that chronically consumed alcohol for 6 weeks prior to infection. Prior studies showed that lung viral titers remained elevated in these animals, leading to a hypothesis that T-cell activation and immune specificity were deficient in controlling viral spread and replication in the lungs. Herein, we confirm a reduction in RSV-specific IFNγ production by CD8 T cells and a depolarization of Th1 (CD4+IFNγ+) and Th2 (CD4+IL-4+) T cells at day 5 after RSV infection. Furthermore, over the course of viral infection (day 1 to day 7 after RSV infection), we detected a delayed influx of neutrophils, monocytes/macrophages, and lymphocytes into the lungs. Taken together, the data show that both the early and late adaptive immunity to RSV infection are altered by chronic ethanol consumption. Future studies will determine the interactions between the innate and adaptive immune systems to delineate therapeutic targets for individuals with AUD often hospitalized by respiratory infection.
Collapse
|
46
|
Schuijs MJ, Hartmann S, Selkirk ME, Roberts LB, Openshaw PJM, Schnoeller C. The Helminth-Derived Immunomodulator AvCystatin Reduces Virus Enhanced Inflammation by Induction of Regulatory IL-10+ T Cells. PLoS One 2016; 11:e0161885. [PMID: 27560829 PMCID: PMC4999285 DOI: 10.1371/journal.pone.0161885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/12/2016] [Indexed: 12/20/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) is a major pathogen causing low respiratory tract disease (bronchiolitis), primarily in infants. Helminthic infections may alter host immune responses to both helminths and to unrelated immune triggers. For example, we have previously shown that filarial cystatin (AvCystatin/Av17) ameliorates allergic airway inflammation. However, helminthic immunomodulators have so far not been tested in virus-induced disease. We now report that AvCystatin prevents Th2-based immunopathology in vaccine-enhanced RSV lung inflammation, a murine model for bronchiolitis. AvCystatin ablated eosinophil influx, reducing both weight loss and neutrophil recruitment without impairing anti-viral immune responses. AvCystatin also protected mice from excessive inflammation following primary RSV infection, significantly reducing neutrophil influx and cytokine production in the airways. Interestingly, we found that AvCystatin induced an influx of CD4+ FoxP3+ interleukin-10-producing T cells in the airway and lungs, correlating with immunoprotection, and the corresponding cells could also be induced by adoptive transfer of AvCystatin-primed F4/80+ macrophages. Thus, AvCystatin ameliorates enhanced RSV pathology without increasing susceptibility to, or persistence of, viral infection and warrants further investigation as a possible therapy for virus-induced airway disease.
Collapse
Affiliation(s)
- Martijn J. Schuijs
- Respiratory Science Division, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Susanne Hartmann
- Centre for Infection Medicine, Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Murray E. Selkirk
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Luke B. Roberts
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Peter J. M. Openshaw
- Respiratory Science Division, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- * E-mail: (CS); (PJMO)
| | - Corinna Schnoeller
- Respiratory Science Division, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail: (CS); (PJMO)
| |
Collapse
|
47
|
A Human Trypanosome Suppresses CD8+ T Cell Priming by Dendritic Cells through the Induction of Immune Regulatory CD4+ Foxp3+ T Cells. PLoS Pathog 2016; 12:e1005698. [PMID: 27332899 PMCID: PMC4917094 DOI: 10.1371/journal.ppat.1005698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/20/2016] [Indexed: 12/14/2022] Open
Abstract
Although CD4+ Foxp3+ T cells are largely described in the regulation of CD4+ T cell responses, their role in the suppression of CD8+ T cell priming is much less clear. Because the induction of CD8+ T cells during experimental infection with Trypanosoma cruzi is remarkably delayed and suboptimal, we raised the hypothesis that this protozoan parasite actively induces the regulation of CD8+ T cell priming. Using an in vivo assay that eliminated multiple variables associated with antigen processing and dendritic cell activation, we found that injection of bone marrow-derived dendritic cells exposed to T. cruzi induced regulatory CD4+ Foxp3+ T cells that suppressed the priming of transgenic CD8+ T cells by peptide-loaded BMDC. This newly described suppressive effect on CD8+ T cell priming was independent of IL-10, but partially dependent on CTLA-4 and TGF-β. Accordingly, depletion of Foxp3+ cells in mice infected with T. cruzi enhanced the response of epitope-specific CD8+ T cells. Altogether, our data uncover a mechanism by which T. cruzi suppresses CD8+ T cell responses, an event related to the establishment of chronic infections. CD8+ T lymphocytes mediate immunity to intracellular pathogens by killing infected cells. However, some pathogens are able to evade the response of CD8+ T cells and, thus, establish chronic infections. This is the case of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. Here, we investigated the basis of the suboptimal response of CD8+ T cells during T. cruzi infection. We observed that cells incubated with the parasite and then adoptively transferred into mice are able to convert an optimal in vivo response of transgenic CD8+ T cells specific to an unrelated epitope into suboptimal. The mechanism of this disturbance relies on the induction of regulatory CD4+ Foxp3+ T cells that interfere with the priming of CD8+ T cells by dendritic cells. These findings illustrate the involvement of regulatory T cells in the regulation of CD8+ T cell priming and contribute to understand how T. cruzi evades host immunity to establish a chronic infection.
Collapse
|
48
|
Comas-García A, López-Pacheco CP, García-Zepeda EA, Soldevila G, Ramos-Martínez P, Ramos-Castañeda J. Neonatal respiratory syncytial virus infection has an effect on lung inflammation and the CD4(+) CD25(+) T cell subpopulation during ovalbumin sensitization in adult mice. Clin Exp Immunol 2016; 185:190-201. [PMID: 26990762 DOI: 10.1111/cei.12793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2016] [Indexed: 12/30/2022] Open
Abstract
In BALB/c adult mice, respiratory syncytial virus (RSV) infection enhances the degree of lung inflammation before and/or after ovalbumin (OVA) respiratory sensitization. However, it is unclear whether RSV infection in newborn mice has an effect on the immune response to OVA respiratory sensitization in adult mice. The aim of this study was to determine if RSV neonatal infection alters T CD4(+) population and lung inflammation during OVA respiratory sensitization in adult mice. BALB/c mice were infected with RSV on the fourth day of life and challenged by OVA 4 weeks later. We found that in adult mice, RSV neonatal infection prior to OVA sensitization reduces the CD4(+) CD25(+) and CD4(+) CD25(+) forkhead protein 3 (FoxP3)(+) cell populations in the lungs and bronchoalveolar lavage. Furthermore, it also attenuates the inflammatory infiltrate and cytokine/chemokine expression levels in the mouse airways. In conclusion, the magnitude of the immune response to a non-viral respiratory perturbation in adult mice is not enhanced by a neonatal RSV infection.
Collapse
Affiliation(s)
- A Comas-García
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - C P López-Pacheco
- CBRL, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - E A García-Zepeda
- CBRL, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - G Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - P Ramos-Martínez
- Escuela de Medicina, Universidad Cuauhtémoc, Plantel San Luis Potosí, San Luis Potosí, San Luis Potosí, Mexico
| | - J Ramos-Castañeda
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico.,Center for Tropical Disease, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
49
|
Cush SS, Reynoso GV, Kamenyeva O, Bennink JR, Yewdell JW, Hickman HD. Locally Produced IL-10 Limits Cutaneous Vaccinia Virus Spread. PLoS Pathog 2016; 12:e1005493. [PMID: 26991092 PMCID: PMC4798720 DOI: 10.1371/journal.ppat.1005493] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/15/2016] [Indexed: 12/29/2022] Open
Abstract
Skin infection with the poxvirus vaccinia (VV) elicits a powerful, inflammatory cellular response that clears virus infection in a coordinated, spatially organized manner. Given the high concentration of pro-inflammatory effectors at areas of viral infection, it is unclear how tissue pathology is limited while virus-infected cells are being eliminated. To better understand the spatial dynamics of the anti-inflammatory response to a cutaneous viral infection, we first screened cytokine mRNA expression levels after epicutaneous (ec.) VV infection and found a large increase the anti-inflammatory cytokine IL-10. Ex vivo analyses revealed that T cells in the skin were the primary IL-10-producing cells. To understand the distribution of IL-10-producing T cells in vivo, we performed multiphoton intravital microscopy (MPM) of VV-infected mice, assessing the location and dynamic behavior of IL-10 producing cells. Although virus-specific T cells were distributed throughout areas of the inflamed skin lacking overt virus-infection, IL-10+ cells closely associated with large keratinocytic foci of virus replication where they exhibited similar motility patterns to bulk antigen-specific CD8+ T cells. Paradoxically, neutralizing secreted IL-10 in vivo with an anti-IL-10 antibody increased viral lesion size and viral replication. Additional analyses demonstrated that IL-10 antibody administration decreased recruitment of CCR2+ inflammatory monocytes, which were important for reducing viral burden in the infected skin. Based upon these findings, we conclude that spatially concentrated IL-10 production limits cutaneous viral replication and dissemination, likely through modulation of the innate immune repertoire at the site of viral growth.
Collapse
Affiliation(s)
- Stephanie S. Cush
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Glennys V. Reynoso
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jack R. Bennink
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jonathan W. Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Heather D. Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
50
|
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a common cause of bronchiolitis in infants with a wide spectrum of disease severity. Besides environmental and genetic factors, it is thought that the innate immune system plays a pivotal role. The aim of this study was to investigate the expression of immune receptors on monocytes and the in vitro responsiveness from infants with severe RSV infections. METHODS Peripheral blood mononuclear cells (PBMCs) from infants with RSV infections were isolated. Classical, intermediate and nonclassical monocytes were immunophenotyped for the expression of CD14, CD16, human leukocyte antigen (HLA)-ABC and HLA-DR. PBMCs were stimulated with lipopolysaccharide to determine the secretion of tumor necrosis factor and interleukin (IL)-10 with enzyme-linked immunosorbent assay. RESULTS During RSV infection, intermediate monocytes are increased in the peripheral blood, whereas classical and nonclassical monocytes are reduced. The expression of CD14 and HLA-ABC is increased on monocytes, whereas the expression of HLA-DR is suppressed. Low HLA-DR expression is correlated with increased disease severity. PBMCs from infants with severe RSV infections show an impaired IL-10 response in vitro. CONCLUSIONS Phenotyping subpopulations of monocytes combined with in vitro responsiveness reveals significant differences between nonsevere and severe RSV infections. Reduced HLA-DR expression and impaired IL-10 production in vitro during severe RSV infections indicate that an imbalanced innate immune response may play an important role in disease severity.
Collapse
|