1
|
Mahmoudi F, Jalayeri MHT, Montaseri A, MohamedKhosroshahi L, Baradaran B. Microbial natural compounds and secondary metabolites as Immunomodulators: A review. Int J Biol Macromol 2024; 278:134778. [PMID: 39153680 DOI: 10.1016/j.ijbiomac.2024.134778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Immunomodulatory therapies are beneficial strategies for the improvement of immune system function. Today, due to the increasing prevalence of immune disorders, cancer, and new viral diseases, there is a greater need to introduce immunomodulatory compounds with more efficiency and fewer side effects. Microbial derivatives are fertile and attractive grounds for discovering lots of novel compounds with various medical properties. The discovery of many natural compounds derived from bacterial sources, such as secondary metabolites with promising immunomodulating activities, represents the importance of this topic in drug discovery and emphasizes the necessity for a coherent source of study in this area. Considering this need, in this review, we aim to focus on the current information about the immunomodulatory effects of bacterial secondary metabolites and natural immunomodulators derived from microorganisms.
Collapse
Affiliation(s)
- Fariba Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hadi Tajik Jalayeri
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital Golestan University of Medical Sciences, Gorgan, Iran
| | - Azadeh Montaseri
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Leila MohamedKhosroshahi
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Szukiewicz D. Histaminergic System Activity in the Central Nervous System: The Role in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2024; 25:9859. [PMID: 39337347 PMCID: PMC11432521 DOI: 10.3390/ijms25189859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Histamine (HA), a biogenic monoamine, exerts its pleiotropic effects through four H1R-H4R histamine receptors, which are also expressed in brain tissue. Together with the projections of HA-producing neurons located within the tuberomammillary nucleus (TMN), which innervate most areas of the brain, they constitute the histaminergic system. Thus, while remaining a mediator of the inflammatory reaction and immune system function, HA also acts as a neurotransmitter and a modulator of other neurotransmitter systems in the central nervous system (CNS). Although the detailed causes are still not fully understood, neuroinflammation seems to play a crucial role in the etiopathogenesis of both neurodevelopmental and neurodegenerative (neuropsychiatric) diseases, such as autism spectrum disorders (ASDs), attention-deficit/hyperactivity disorder (ADHD), Alzheimer's disease (AD) and Parkinson's disease (PD). Given the increasing prevalence/diagnosis of these disorders and their socioeconomic impact, the need to develop effective forms of therapy has focused researchers' attention on the brain's histaminergic activity and other related signaling pathways. This review presents the current state of knowledge concerning the involvement of HA and the histaminergic system within the CNS in the development of neurodevelopmental and neurodegenerative disorders. To this end, the roles of HA in neurotransmission, neuroinflammation, and neurodevelopment are also discussed.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
3
|
Uceda S, Echeverry-Alzate V, Reiriz-Rojas M, Martínez-Miguel E, Pérez-Curiel A, Gómez-Senent S, Beltrán-Velasco AI. Gut Microbial Metabolome and Dysbiosis in Neurodegenerative Diseases: Psychobiotics and Fecal Microbiota Transplantation as a Therapeutic Approach-A Comprehensive Narrative Review. Int J Mol Sci 2023; 24:13294. [PMID: 37686104 PMCID: PMC10487945 DOI: 10.3390/ijms241713294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The comprehensive narrative review conducted in this study delves into the mechanisms of communication and action at the molecular level in the human organism. The review addresses the complex mechanism involved in the microbiota-gut-brain axis as well as the implications of alterations in the microbial composition of patients with neurodegenerative diseases. The pathophysiology of neurodegenerative diseases with neuronal loss or death is analyzed, as well as the mechanisms of action of the main metabolites involved in the bidirectional communication through the microbiota-gut-brain axis. In addition, interventions targeting gut microbiota restructuring through fecal microbiota transplantation and the use of psychobiotics-pre- and pro-biotics-are evaluated as an opportunity to reduce the symptomatology associated with neurodegeneration in these pathologies. This review provides valuable information and facilitates a better understanding of the neurobiological mechanisms to be addressed in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Uceda
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Víctor Echeverry-Alzate
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Manuel Reiriz-Rojas
- BRABE Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Esther Martínez-Miguel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Ana Pérez-Curiel
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | - Silvia Gómez-Senent
- Health Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain
| | | |
Collapse
|
4
|
Ashraf H, Solla P, Sechi LA. Current Advancement of Immunomodulatory Drugs as Potential Pharmacotherapies for Autoimmunity Based Neurological Diseases. Pharmaceuticals (Basel) 2022; 15:ph15091077. [PMID: 36145298 PMCID: PMC9504155 DOI: 10.3390/ph15091077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Dramatic advancement has been made in recent decades to understand the basis of autoimmunity-mediated neurological diseases. These diseases create a strong influence on the central nervous system (CNS) and the peripheral nervous system (PNS), leading to various clinical manifestations and numerous symptoms. Multiple sclerosis (MS) is the most prevalent autoimmune neurological disease while NMO spectrum disorder (NMOSD) is less common. Furthermore, evidence supports the presence of autoimmune mechanisms contributing to the pathogenesis of amyotrophic lateral sclerosis (ALS), which is a neurodegenerative disorder characterized by the progressive death of motor neurons. Additionally, autoimmunity is believed to be involved in the basis of Alzheimer’s and Parkinson’s diseases. In recent years, the prevalence of autoimmune-based neurological disorders has been elevated and current findings strongly suggest the role of pharmacotherapies in controlling the progression of autoimmune diseases. Therefore, this review focused on the current advancement of immunomodulatory drugs as novel approaches in the management of autoimmune neurological diseases and their future outlook.
Collapse
Affiliation(s)
- Hajra Ashraf
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Paolo Solla
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Leonardo Atonio Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Complex Structure of Microbology and Virology, AOU Sassari, 07100 Sassari, Italy
- Correspondence:
| |
Collapse
|
5
|
Liu G, Li J, Pang B, Li Y, Xu F, Liao N, Shao D, Jiang C, Shi J. Potential role of selenium in alleviating obesity-related iron dyshomeostasis. Crit Rev Food Sci Nutr 2022; 63:10032-10046. [PMID: 35574661 DOI: 10.1080/10408398.2022.2074961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Obesity is a serious health problem in modern life and increases the risk of many comorbidities including iron dyshomeostasis. In contrast to malnourished anemia, obesity-related iron dyshomeostasis is mainly caused by excessive fat accumulation, inflammation, and disordered gut microbiota. In obesity, iron dyshomeostasis also induces disorders associated with gut microbiota, neurodegenerative injury, oxidative damage, and fat accumulation in the liver. Selenium deficiency is often accompanied by obesity or iron deficiency, and selenium supplementation has been shown to alleviate obesity and overcome iron deficiency. Selenium inhibits fat accumulation and exhibits anti-inflammatory activity. It regulates gut microbiota, prevents neurodegenerative injury, alleviates oxidative damage to the body, and ameliorates hepatic fat accumulation. These effects theoretically meet the requirements for the inhibition of factors underlying obesity-related iron dyshomeostasis. Selenium supplementation may have a potential role in the alleviation of obesity-related iron dyshomeostasis. This review verifies this hypothesis in theory. All the currently reported causes and results of obesity-related iron dyshomeostasis are reviewed comprehensively, together with the effects of selenium. The challenges and strategies of selenium supplementation are also discussed. The findings demonstrate the possibility of selenium-containing drugs or functional foods in alleviating obesity-related iron dyshomeostasis.
Collapse
Affiliation(s)
- Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Whelan R, Hargaden GC, Knox AJS. Modulating the Blood-Brain Barrier: A Comprehensive Review. Pharmaceutics 2021; 13:1980. [PMID: 34834395 PMCID: PMC8618722 DOI: 10.3390/pharmaceutics13111980] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
The highly secure blood-brain barrier (BBB) restricts drug access to the brain, limiting the molecular toolkit for treating central nervous system (CNS) diseases to small, lipophilic drugs. Development of a safe and effective BBB modulator would revolutionise the treatment of CNS diseases and future drug development in the area. Naturally, the field has garnered a great deal of attention, leading to a vast and diverse range of BBB modulators. In this review, we summarise and compare the various classes of BBB modulators developed over the last five decades-their recent advancements, advantages and disadvantages, while providing some insight into their future as BBB modulators.
Collapse
Affiliation(s)
- Rory Whelan
- School of Biological and Health Sciences, Technological University Dublin, Central Quad, Grangegorman, D07 XT95 Dublin, Ireland;
- Chemical and Structural Biology, Environmental Sustainability and Health Institute, Technological University Dublin, D07 H6K8 Dublin, Ireland
| | - Grainne C. Hargaden
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, Central Quad, Grangegorman, D07 XT95 Dublin, Ireland;
| | - Andrew J. S. Knox
- School of Biological and Health Sciences, Technological University Dublin, Central Quad, Grangegorman, D07 XT95 Dublin, Ireland;
- Chemical and Structural Biology, Environmental Sustainability and Health Institute, Technological University Dublin, D07 H6K8 Dublin, Ireland
| |
Collapse
|
7
|
Sun P, Su L, Zhu H, Li X, Guo Y, Du X, Zhang L, Qin C. Gut Microbiota Regulation and Their Implication in the Development of Neurodegenerative Disease. Microorganisms 2021; 9:microorganisms9112281. [PMID: 34835406 PMCID: PMC8621510 DOI: 10.3390/microorganisms9112281] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, human gut microbiota have become one of the most promising areas of microorganism research; meanwhile, the inter-relation between the gut microbiota and various human diseases is a primary focus. As is demonstrated by the accumulating evidence, the gastrointestinal tract and central nervous system interact through the gut–brain axis, which includes neuronal, immune-mediated and metabolite-mediated pathways. Additionally, recent progress from both preclinical and clinical studies indicated that gut microbiota play a pivotal role in gut–brain interactions, whereas the imbalance of the gut microbiota composition may be associated with the pathogenesis of neurological diseases (particularly neurodegenerative diseases), the underlying mechanism of which is insufficiently studied. This review aims to highlight the relationship between gut microbiota and neurodegenerative diseases, and to contribute to our understanding of the function of gut microbiota in neurodegeneration, as well as their relevant mechanisms. Furthermore, we also discuss the current application and future prospects of microbiota-associated therapy, including probiotics and fecal microbiota transplantation (FMT), potentially shedding new light on the research of neurodegeneration.
Collapse
Affiliation(s)
- Peilin Sun
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Lei Su
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Hua Zhu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Xue Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Yaxi Guo
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Xiaopeng Du
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
- Correspondence: ; Tel.: +86-10-8777-8141
| |
Collapse
|
8
|
Sharma A, Muresanu DF, Patnaik R, Menon PK, Tian ZR, Sahib S, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Skaper SD, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Histamine H3 and H4 receptors modulate Parkinson's disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy. PROGRESS IN BRAIN RESEARCH 2021; 266:1-73. [PMID: 34689857 DOI: 10.1016/bs.pbr.2021.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Military personnel deployed in combat operations are highly prone to develop Parkinson's disease (PD) in later lives. PD largely involves dopaminergic pathways with hallmarks of increased alpha synuclein (ASNC), and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) precipitating brain pathology. However, increased histaminergic nerve fibers in substantia nigra pars Compacta (SNpc), striatum (STr) and caudate putamen (CP) associated with upregulation of Histamine H3 receptors and downregulation of H4 receptors in human cases of PD is observed in postmortem cases. These findings indicate that modulation of histamine H3 and H4 receptors and/or histaminergic transmission may induce neuroprotection in PD induced brain pathology. In this review effects of a potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist, in association with monoclonal anti-histamine antibodies (AHmAb) in PD brain pathology is discussed based on our own observations. Our investigation shows that chronic administration of conventional or TiO2 nanowired BF 2649 (1mg/kg, i.p.) or CLBPT (1mg/kg, i.p.) once daily for 1 week together with nanowired delivery of HAmAb (25μL) significantly thwarted ASNC and p-tau levels in the SNpC and STr and reduced PD induced brain pathology. These observations are the first to show the involvement of histamine receptors in PD and opens new avenues for the development of novel drug strategies in clinical strategies for PD, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stephen D Skaper
- Anesthesiology & Intensive Care, Department of Pharmacology, University of Padua, Padova, Italy
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Sarasola MDLP, Táquez Delgado MA, Nicoud MB, Medina VA. Histamine in cancer immunology and immunotherapy. Current status and new perspectives. Pharmacol Res Perspect 2021; 9:e00778. [PMID: 34609067 PMCID: PMC8491460 DOI: 10.1002/prp2.778] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of death globally and its incidence and mortality are rapidly increasing worldwide. The dynamic interaction of immune cells and tumor cells determines the clinical outcome of cancer. Immunotherapy comes to the forefront of cancer treatments, resulting in impressive and durable responses but only in a fraction of patients. Thus, understanding the characteristics and profiles of immune cells in the tumor microenvironment (TME) is a necessary step to move forward in the design of new immunomodulatory strategies that can boost the immune system to fight cancer. Histamine produces a complex and fine-tuned regulation of the phenotype and functions of the different immune cells, participating in multiple regulatory responses of the innate and adaptive immunity. Considering the important actions of histamine-producing immune cells in the TME, in this review we first address the most important immunomodulatory roles of histamine and histamine receptors in the context of cancer development and progression. In addition, this review highlights the current progress and foundational developments in the field of cancer immunotherapy in combination with histamine and pharmacological compounds targeting histamine receptors.
Collapse
Affiliation(s)
- María de la Paz Sarasola
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mónica A Táquez Delgado
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
The Histamine and Multiple Sclerosis Alliance: Pleiotropic Actions and Functional Validation. Curr Top Behav Neurosci 2021; 59:217-239. [PMID: 34432258 DOI: 10.1007/7854_2021_240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Multiple sclerosis (MS) is a disease with a resilient inflammatory component caused by accumulation into the CNS of inflammatory infiltrates and macrophage/microglia contributing to severe demyelination and neurodegeneration. While the causes are still in part unclear, key pathogenic mechanisms are the direct loss of myelin-producing cells and/or their impairment caused by the immune system. Proposed etiology includes genetic and environmental factors triggered by viral infections. Although several diagnostic methods and new treatments are under development, there is no curative but only palliative care against the relapsing-remitting or progressive forms of MS. In recent times, there has been a boost of awareness on the role of histamine signaling in physiological and pathological functions of the nervous system. Particularly in MS, evidence is raising that histamine might be directly implicated in the disease by acting at different cellular and molecular levels. For instance, constitutively active histamine regulates the differentiation of oligodendrocyte precursors, thus playing a central role in the remyelination process; histamine reduces the ability of myelin-autoreactive T cells to adhere to inflamed brain vessels, a crucial step in the development of MS; histamine levels are found increased in the cerebrospinal fluid of MS patients. The aim of the present work is to present further proofs about the alliance of histamine with MS and to introduce the most recent and innovative histamine paradigms for therapy. We will report on how a long-standing molecule with previously recognized immunomodulatory and neuroprotective functions, histamine, might still provide a renewed and far-reaching role in MS.
Collapse
|
11
|
Carthy E, Ellender T. Histamine, Neuroinflammation and Neurodevelopment: A Review. Front Neurosci 2021; 15:680214. [PMID: 34335160 PMCID: PMC8317266 DOI: 10.3389/fnins.2021.680214] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
The biogenic amine, histamine, has been shown to critically modulate inflammatory processes as well as the properties of neurons and synapses in the brain, and is also implicated in the emergence of neurodevelopmental disorders. Indeed, a reduction in the synthesis of this neuromodulator has been associated with the disorders Tourette's syndrome and obsessive-compulsive disorder, with evidence that this may be through the disruption of the corticostriatal circuitry during development. Furthermore, neuroinflammation has been associated with alterations in brain development, e.g., impacting synaptic plasticity and synaptogenesis, and there are suggestions that histamine deficiency may leave the developing brain more vulnerable to proinflammatory insults. While most studies have focused on neuronal sources of histamine it remains unclear to what extent other (non-neuronal) sources of histamine, e.g., from mast cells and other sources, can impact brain development. The few studies that have started exploring this in vitro, and more limited in vivo, would indicate that non-neuronal released histamine and other preformed mediators can influence microglial-mediated neuroinflammation which can impact brain development. In this Review we will summarize the state of the field with regard to non-neuronal sources of histamine and its impact on both neuroinflammation and brain development in key neural circuits that underpin neurodevelopmental disorders. We will also discuss whether histamine receptor modulators have been efficacious in the treatment of neurodevelopmental disorders in both preclinical and clinical studies. This could represent an important area of future research as early modulation of histamine from neuronal as well as non-neuronal sources may provide novel therapeutic targets in these disorders.
Collapse
Affiliation(s)
- Elliott Carthy
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Gokina NI, Fairchild RI, Prakash K, DeLance NM, Bonney EA. Deficiency in CD4 T Cells Leads to Enhanced Postpartum Internal Carotid Artery Vasoconstriction in Mice: The Role of Nitric Oxide. Front Physiol 2021; 12:686429. [PMID: 34220551 PMCID: PMC8242360 DOI: 10.3389/fphys.2021.686429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
The risk of postpartum (PP) stroke is increased in complicated pregnancies. Deficiency in CD4 T cell subsets is associated with preeclampsia and may contribute to PP vascular disease, including internal carotid artery (ICA) stenosis and stroke. We hypothesized that CD4 T cell deficiency in pregnancy would result in ICA dysregulation, including enhanced ICA vasoconstriction. We characterized the function, mechanical behavior, and structure of ICAs from C57BL/6 (WT) and CD4 deficient (CD4KO) mice, and assessed the role of NO in the control of ICA function at pre-conception and PP. WT and CD4KO mice were housed under pathogen-free conditions, mated to same-strain males, and allowed to litter or left virgin. At 3 days or 4 weeks PP, mice were euthanized. The responses to phenylephrine (PE), high K+ and acetylcholine (ACh) were assessed in pressurized ICAs before and after NOS inhibition. Passive lumen diameters were measured at 3–140 mmHg. eNOS and iNOS expression as well as the presence of T cells were evaluated by immunohistochemistry. Constriction of WT ICAs to PE was not modified PP. In contrast, responses to PE were significantly increased in ICAs from PP as compared to virgin CD4KO mice. Constriction to high K+ was not enhanced PP. ICAs from WT and CD4KO mice were equally sensitive to ACh with a significant rightward shift of dose-response curves after L-NNA treatment. NOS inhibition enhanced PE constriction of ICAs from WT virgin and PP mice. Although a similar effect was detected in ICAs of virgin CD4KO mice, no such changes were observed in vessels from PP CD4KO mice. Passive arterial distensibility at physiological levels of pressure was not modified at PP. ICA diameters were significantly increased in PP with no change in vascular wall thickness. Comparison of eNOS expression in virgin, 3 days and 4 weeks PP revealed a reduced expression in ICA from CD4 KO vs. WT PP vessels which reached significance at 4 weeks PP. iNos expression was similar and decreased over the PP period in vessels from WT and CD4KO mice. Dysregulation of the CD4 T cell population in pregnancy may make ICA vulnerable to vasospasm due to decreased NO-dependent control of ICA constriction. This may lead to cerebral hypoperfusion and increase the risk of maternal PP stroke.
Collapse
Affiliation(s)
- Natalia I Gokina
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Rebecca I Fairchild
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Kirtika Prakash
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Nicole M DeLance
- Microscopy Imaging Center, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
13
|
The Function of the Histamine H4 Receptor in Inflammatory and Inflammation-Associated Diseases of the Gut. Int J Mol Sci 2021; 22:ijms22116116. [PMID: 34204101 PMCID: PMC8200986 DOI: 10.3390/ijms22116116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Histamine is a pleiotropic mediator involved in a broad spectrum of (patho)-physiological processes, one of which is the regulation of inflammation. Compounds acting on three out of the four known histamine receptors are approved for clinical use. These approved compounds comprise histamine H1-receptor (H1R) antagonists, which are used to control allergic inflammation, antagonists at H2R, which therapeutically decrease gastric acid release, and an antagonist at H3R, which is indicated to treat narcolepsy. Ligands at H4R are still being tested pre-clinically and in clinical trials of inflammatory diseases, including rheumatoid arthritis, asthma, dermatitis, and psoriasis. These trials, however, documented only moderate beneficial effects of H4R ligands so far. Nevertheless, pre-clinically, H4R still is subject of ongoing research, analyzing various inflammatory, allergic, and autoimmune diseases. During inflammatory reactions in gut tissues, histamine concentrations rise in affected areas, indicating its possible biological effect. Indeed, in histamine-deficient mice experimentally induced inflammation of the gut is reduced in comparison to that in histamine-competent mice. However, antagonists at H1R, H2R, and H3R do not provide an effect on inflammation, supporting the idea that H4R is responsible for the histamine effects. In the present review, we discuss the involvement of histamine and H4R in inflammatory and inflammation-associated diseases of the gut.
Collapse
|
14
|
Peng Y, Tao H, Wang S, Xiao J, Wang Y, Su H. Dietary intervention with edible medicinal plants and derived products for prevention of Alzheimer's disease: A compendium of time-tested strategy. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
15
|
Lichterman JN, Reddy SM. Mast Cells: A New Frontier for Cancer Immunotherapy. Cells 2021; 10:cells10061270. [PMID: 34063789 PMCID: PMC8223777 DOI: 10.3390/cells10061270] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Mast cells are unique tissue-resident immune cells of the myeloid lineage that have long been implicated in the pathogenesis of allergic and autoimmune disorders. More recently, mast cells have been recognized as key orchestrators of anti-tumor immunity, modulators of the cancer stroma, and have also been implicated in cancer cell intrinsic properties. As such, mast cells are an underrecognized but very promising target for cancer immunotherapy. In this review, we discuss the role of mast cells in shaping cancer and its microenvironment, the interaction between mast cells and cancer therapies, and strategies to target mast cells to improve cancer outcomes. Specifically, we address (1) decreasing cell numbers through c-KIT inhibition, (2) modulating mast cell activation and phenotype (through mast cell stabilizers, FcεR1 signaling pathway activators/inhibitors, antibodies targeting inhibitory receptors and ligands, toll like receptor agonists), and (3) altering secreted mast cell mediators and their downstream effects. Finally, we discuss the importance of translational research using patient samples to advance the field of mast cell targeting to optimally improve patient outcomes. As we aim to expand the successes of existing cancer immunotherapies, focused clinical and translational studies targeting mast cells in different cancer contexts are now warranted.
Collapse
Affiliation(s)
- Jake N. Lichterman
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sangeetha M. Reddy
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: ; Tel.: +1-214-648-4180
| |
Collapse
|
16
|
Morin F, Singh N, Mdzomba JB, Dumas A, Pernet V, Vallières L. Conditional Deletions of Hdc Confirm Roles of Histamine in Anaphylaxis and Circadian Activity but Not in Autoimmune Encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2029-2037. [PMID: 33846226 DOI: 10.4049/jimmunol.2000719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Histamine is best known for its role in allergies, but it could also be involved in autoimmune diseases such as multiple sclerosis. However, studies using experimental autoimmune encephalomyelitis (EAE), the most widely used animal model for multiple sclerosis, have reported conflicting observations and suggest the implication of a nonclassical source of histamine. In this study, we demonstrate that neutrophils are the main producers of histamine in the spinal cord of EAE mice. To assess the role of histamine by taking into account its different cellular sources, we used CRISPR-Cas9 to generate conditional knockout mice for the histamine-synthesizing enzyme histidine decarboxylase. We found that ubiquitous and cell-specific deletions do not affect the course of EAE. However, neutrophil-specific deletion attenuates hypothermia caused by IgE-mediated anaphylaxis, whereas neuron-specific deletion reduces circadian activity. In summary, this study refutes the role of histamine in EAE, unveils a role for neutrophil-derived histamine in IgE-mediated anaphylaxis, and establishes a new mouse model to re-explore the inflammatory and neurologic roles of histamine.
Collapse
MESH Headings
- Anaphylaxis/genetics
- Anaphylaxis/immunology
- Anaphylaxis/metabolism
- Animals
- Cells, Cultured
- Circadian Rhythm/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Histamine/immunology
- Histamine/metabolism
- Histidine Decarboxylase/genetics
- Histidine Decarboxylase/immunology
- Histidine Decarboxylase/metabolism
- Humans
- Kaplan-Meier Estimate
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Neutrophils/cytology
- Neutrophils/immunology
- Neutrophils/metabolism
- Spinal Cord/immunology
- Spinal Cord/metabolism
- Mice
Collapse
Affiliation(s)
- Françoise Morin
- Neuroscience Unit, University Hospital Center of Quebec, Laval University, Quebec City, Quebec, Canada
| | - Noopur Singh
- Neuroscience Unit, University Hospital Center of Quebec, Laval University, Quebec City, Quebec, Canada
| | - Julius Baya Mdzomba
- Regenerative Medicine Unit, University Hospital Center of Quebec, Laval University, Quebec City, Quebec, Canada
| | - Aline Dumas
- Neuroscience Unit, University Hospital Center of Quebec, Laval University, Quebec City, Quebec, Canada
| | - Vincent Pernet
- Regenerative Medicine Unit, University Hospital Center of Quebec, Laval University, Quebec City, Quebec, Canada
- Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland
| | - Luc Vallières
- Neuroscience Unit, University Hospital Center of Quebec, Laval University, Quebec City, Quebec, Canada;
| |
Collapse
|
17
|
Aneman I, Pienaar D, Suvakov S, Simic TP, Garovic VD, McClements L. Mechanisms of Key Innate Immune Cells in Early- and Late-Onset Preeclampsia. Front Immunol 2020; 11:1864. [PMID: 33013837 PMCID: PMC7462000 DOI: 10.3389/fimmu.2020.01864] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022] Open
Abstract
Preeclampsia is a complex cardiovascular disorder of pregnancy with underlying multifactorial pathogeneses; however, its etiology is not fully understood. It is characterized by the new onset of maternal hypertension after 20 weeks of gestation, accompanied by proteinuria, maternal organ damage, and/or uteroplacental dysfunction. Preeclampsia can be subdivided into early- and late-onset phenotypes (EOPE and LOPE), diagnosed before 34 weeks or from 34 weeks of gestation, respectively. Impaired placental development in early pregnancy and subsequent growth restriction is often associated with EOPE, while LOPE is associated with maternal endothelial dysfunction. The innate immune system plays an essential role in normal progression of physiological pregnancy and fetal development. However, inappropriate or excessive activation of this system can lead to placental dysfunction or poor maternal vascular adaptation and contribute to the development of preeclampsia. This review aims to comprehensively outline the mechanisms of key innate immune cells including macrophages, neutrophils, natural killer (NK) cells, and innate B1 cells, in normal physiological pregnancy, EOPE and LOPE. The roles of the complement system, syncytiotrophoblast extracellular vesicles and mesenchymal stem cells (MSCs) are also discussed in the context of innate immune system regulation and preeclampsia. The outlined molecular mechanisms, which represent potential therapeutic targets, and associated emerging treatments, are evaluated as treatments for preeclampsia. Therefore, by addressing the current understanding of innate immunity in the pathogenesis of EOPE and LOPE, this review will contribute to the body of research that could lead to the development of better diagnosis, prevention, and treatment strategies. Importantly, it will delineate the differences in the mechanisms of the innate immune system in two different types of preeclampsia, which is necessary for a more personalized approach to the monitoring and treatment of affected women.
Collapse
Affiliation(s)
- Ingrid Aneman
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Dillan Pienaar
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Sonja Suvakov
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Tatjana P. Simic
- Faculty of Medicine, Institute of Medical and Clinical Biochemistry, University of Belgrade, Belgrade, Serbia
- Department of Medical Sciences, Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Vesna D. Garovic
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Lana McClements
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Nicoud MB, Táquez Delgado MA, Sarasola MDLP, Vidal A, Speisky D, Cremaschi GA, Sterle HA, Medina VA. Impact of histamine H4 receptor deficiency on the modulation of T cells in a murine breast cancer model. Cancer Immunol Immunother 2020; 70:233-244. [PMID: 32700092 DOI: 10.1007/s00262-020-02672-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The histamine H4 receptor (H4R) is preferentially expressed in immune cells and is a potential therapeutic target for inflammatory and autoimmune diseases. This study aimed at further exploring the role of H4R in the immunobiology of breast cancer. METHODS We used wild type (WT) and H4R deficient mice (KO) to evaluate whether H4R genotypes show a different distribution of T cell subsets in spleens, tumours and tumour draining lymph nodes (TDLN) in a syngeneic ErbB2-positive breast cancer model developed orthotopically with LM3 cells and its impact on tumour growth. RESULTS The presence of tumours had a differential impact on the distribution of T cells in TDLN from KO mice compared to WT ones. At day 21 post-inoculation (p.i.) of cells, despite no significant changes in the tumour weight, TDLN from KO mice showed a significantly increased proportion of CD8+ T cells compared to WT mice. At day 38 p.i. of cells a reduced tumour weight was evident in KO mice. This was accompanied by a decreased proportion of CD4+CD25+FoxP3+ regulatory T cells in TDLN of KO compared to WT mice. Tumour-bearing KO mice showed a better survival compared to WT mice. CONCLUSIONS H4R-mediated mechanisms may modulate the immune tumour microenvironment, promoting an immunosuppressive milieu. Results suggest that H4R could be explored as an immunotherapeutic target with potential benefit in combination with immunotherapy. Further preclinical and clinical studies are necessary to confirm this hypothesis.
Collapse
Affiliation(s)
- Melisa B Nicoud
- Laboratory of Tumour Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mónica A Táquez Delgado
- Laboratory of Tumour Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - María de la Paz Sarasola
- Laboratory of Tumour Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Agustina Vidal
- Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Daniela Speisky
- Pathology Department, British Hospital, Buenos Aires, Argentina
| | - Graciela A Cremaschi
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Helena A Sterle
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Vanina A Medina
- Laboratory of Tumour Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
19
|
Yahfoufi N, Matar C, Ismail N. Adolescence and Aging: Impact of Adolescence Inflammatory Stress and Microbiota Alterations on Brain Development, Aging, and Neurodegeneration. J Gerontol A Biol Sci Med Sci 2020; 75:1251-1257. [PMID: 31917834 PMCID: PMC7302172 DOI: 10.1093/gerona/glaa006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Indexed: 12/16/2022] Open
Abstract
Puberty/adolescence is a critical phase during neurodevelopment with numerous structural, neurochemical, and molecular changes occurring in response to genetic and environmental signals. A consequence of this major neuronal reorganizing and remodeling is a heightened level of vulnerability to stressors and immune challenges. The gut microbiota is a fundamental modulator of stress and immune responses and has been found to play a role in mental health conditions and neurodegenerative disorders. Environmental insults (stress, infection, neuroinflammation, and use of antibiotics) during adolescence can result in dysbiosis subsidizing the development of brain disorders later in life. Also, pubertal neuroinflammatory insults can alter neurodevelopment, impact brain functioning in an enduring manner, and contribute to neurological disorders related to brain aging, such as Alzheimer's disease, Parkinson's disease, and depression. Exposure to probiotics during puberty can mitigate inflammation, reverse dysbiosis, and decrease vulnerabilities to brain disorders later in life. The goal of this review is to reveal the consequences of pubertal exposure to stress and immune challenges on the gut microbiota, immune reactivity within the brain, and the risk or resilience to stress-induced mental illnesses and neurodegenerative disorders. We propose that the consumption of probiotics during adolescence contribute to the prevention of brain pathologies in adulthood.
Collapse
Affiliation(s)
- Nour Yahfoufi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ontario, Canada
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ontario, Canada
| | - Nafissa Ismail
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Type 2 Inflammatory Responses in Autoimmune Demyelination of the Central Nervous System: Recent Advances. J Immunol Res 2019; 2019:4204512. [PMID: 31205957 PMCID: PMC6530110 DOI: 10.1155/2019/4204512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/17/2019] [Indexed: 12/28/2022] Open
Abstract
Type 2 immunity has long been confined to a restricted spectrum of responses, mostly including allergic reactions to innocuous environmental triggers. However, growing evidence suggests that cells and mediators typically associated with type 2 inflammation are involved in several physiopathological conditions, such as defense against toxic substances, anticancer immunity, and autoimmune diseases. In neuromyelitis optica, an autoimmune demyelinating disorder of the spinal cord and optic nerve, eosinophils extensively infiltrate lesions in the central nervous system (CNS) and promote tissue pathology in experimental models of this disease. Next-generation sequencing of CD4+ T cells isolated from a specific subtype of multiple sclerosis plaque has uncovered an unexpectedly Th2 profile of these cells. Even mast cells and other allergic mediators have been implicated in the modulation and/or effector mechanisms of autoimmune reactions against the CNS. In this review article, the most recent developments showing the involvement of type 2 inflammatory components in CNS autoimmunity are summarised and possible lines of further investigation are discussed.
Collapse
|
21
|
Skaper SD. Oligodendrocyte precursor cells as a therapeutic target for demyelinating diseases. PROGRESS IN BRAIN RESEARCH 2019; 245:119-144. [PMID: 30961866 DOI: 10.1016/bs.pbr.2019.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanisms regulating differentiation of multipotent oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes (OLs) are critical to our understanding of myelination and remyelination. Following acute demyelination in the central nervous system, adult OPCs migrate to the injury site, differentiate into OLs and generate new myelin sheaths. A common feature of regenerative processes is the fact that remyelination efficiency declines with aging and, accounts for the observation that chronic demyelinating diseases like multiple sclerosis (MS) are characterized by an ineffective remyelination. Without doubt, impairment of OPC differentiation is an essential determinant of the aging effects in remyelination. However, spontaneous remyelination is limited in demyelinating diseases such as MS, owing in part to the failure of adult OPCs to differentiate into myelinating OLs. The inability to restore myelin after injury compromises axon integrity and renders them vulnerable to degeneration. Although the genes that regulate the proliferation and differentiation of OPCs during development have been intensively studied, relatively little is known about the molecular signals that regulate the function of adult OPCs after demyelination. Elucidating the mechanisms regulating OPC differentiation are key to identifying pharmacological targets for remyelination-enhancing therapy. This review will discuss OPC biology, myelination, and possible pharmacological targets for promoting the differentiation of OPCs as a strategy to enhance remyelination, including the potential for nanoscale delivery.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
22
|
Tatarkiewicz J, Rzodkiewicz P, Żochowska M, Staniszewska A, Bujalska-Zadrożny M. New antihistamines - perspectives in the treatment of some allergic and inflammatory disorders. Arch Med Sci 2019; 15:537-553. [PMID: 30899308 PMCID: PMC6425212 DOI: 10.5114/aoms.2017.68534] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/13/2017] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jan Tatarkiewicz
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Rzodkiewicz
- Department of Biochemistry and Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Department of General and Experimental Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Żochowska
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Staniszewska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Sterle HA, Nicoud MB, Massari NA, Táquez Delgado MA, Herrero Ducloux MV, Cremaschi GA, Medina VA. Immunomodulatory role of histamine H4 receptor in breast cancer. Br J Cancer 2019; 120:128-138. [PMID: 29988113 PMCID: PMC6325108 DOI: 10.1038/s41416-018-0173-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Although the role of histamine H4 receptor (H4R) in immune cells is being extensively investigated, its immunomodulatory function in cancer is completely unknown. This study aimed to investigate the role of H4R in antitumour immunity in a model of triple-negative breast cancer. METHODS We evaluated growth parameters, histological characteristics and the composition of tumour, splenic and tumour draining lymph node (TDLN) immune subsets, in a syngeneic model, developed orthotopically with 4T1 cells in H4R knockout (H4R-KO) and wild-type mice. RESULTS Mice lacking H4R show reduced tumour size and weight, decreased number of lung metastases and percentage of CD4+ tumour-infiltrating T cells, while exhibiting increased infiltration of NK cells and CD19+ lymphocytes. Likewise, TDLN of H4R-KO mice show decreased CD4+ T cells and T regulatory cells (CD4+CD25+FoxP3+), and increased percentages of NK cells. Finally, H4R-deficient mice show decreased Tregs in spleens and non-draining lymph nodes, and a negative correlation between tumour weight and the percentages of CD4+, CD19+ and NK splenic cells, suggesting that H4R also regulates antitumour immunity at a systemic level. CONCLUSIONS This is the first report that demonstrates the participation of H4R in antitumour immunity, suggesting that H4R could be a target for cancer treatment.
Collapse
Affiliation(s)
- Helena A Sterle
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Noelia A Massari
- Immunology Department, School of Natural Sciences, National University of Patagonia San Juan Bosco, Chubut, Argentina
| | - Mónica A Táquez Delgado
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - María V Herrero Ducloux
- Pathology Department, School of Natural Sciences, National University of Patagonia San Juan Bosco, Chubut, Argentina
| | - Graciela A Cremaschi
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
24
|
Shan Y, Gao Y, Zhang L, Ma L, Shi Y, Liu X. H4 Receptor Inhibits Lipopolysaccharide-induced NF-κB Activation by Interacting with Tumor Necrosis Factor Receptor-Associated Factor 6. Neuroscience 2018; 398:113-125. [PMID: 30528857 DOI: 10.1016/j.neuroscience.2018.11.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), are activated at the beginning of the inflammatory response and induce detrimental neuroinflammation by producing excessive pro-inflammatory cytokines. Nuclear factor kappa B (NF-κB) signaling facilitates the onset of microglia activation. However, the molecular mechanisms underlying the negative regulation of NF-κB remain to be fully elucidated. In the present study, our results indicated that H4R expression increased in a rat model of lipopolysaccharide (LPS)-induced CNS inflammation. Knockdown of H4R in microglia HAPI cells enhanced the production of cytokines following LPS stimulation. Co-immunoprecipitation experiments further revealed an interaction between H4R and tumor necrosis factor receptor-associated factor 6 (TRAF6) in microglia, which was verified both in vivo and in vitro. Our experimental results support our hypothesis that H4R interacts with TRAF6 to inhibit the release of inflammatory cytokines in LPS-induced microglia cells by decreasing TRAF6-mediated ubiquitination of K63. These findings provide theoretical and experimental evidence regarding the role of H4R in the microglia inflammatory response, which may aid in the development of novel treatments for inflammation.
Collapse
Affiliation(s)
- Yanfeng Shan
- Department of Pathophysiology, Medical College of Nantong University, 19 Qixiu Street, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, 19 Qixiu Street, Nantong 226001, Jiangsu Province, China
| | - Yining Gao
- Department of Pathophysiology, Medical College of Nantong University, 19 Qixiu Street, Nantong 226001, Jiangsu Province, China
| | - Li Zhang
- Department of Pathophysiology, Medical College of Nantong University, 19 Qixiu Street, Nantong 226001, Jiangsu Province, China
| | - Lili Ma
- Department of Pathophysiology, Medical College of Nantong University, 19 Qixiu Street, Nantong 226001, Jiangsu Province, China
| | - Yuwen Shi
- Department of Pathophysiology, Medical College of Nantong University, 19 Qixiu Street, Nantong 226001, Jiangsu Province, China
| | - Xia Liu
- Department of Pathophysiology, Medical College of Nantong University, 19 Qixiu Street, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
25
|
Apolloni S, Fabbrizio P, Amadio S, Napoli G, Verdile V, Morello G, Iemmolo R, Aronica E, Cavallaro S, Volonté C. Histamine Regulates the Inflammatory Profile of SOD1-G93A Microglia and the Histaminergic System Is Dysregulated in Amyotrophic Lateral Sclerosis. Front Immunol 2017; 8:1689. [PMID: 29250069 PMCID: PMC5714870 DOI: 10.3389/fimmu.2017.01689] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disease where activated glia release pro-inflammatory cytokines that trigger a vicious cycle of neurodegeneration in the absence of resolution of inflammation. Given the well-established role of histamine as a neuron-to-glia alarm signal implicated in brain disorders, the aim of this study was to investigate the expression and regulation of the histaminergic pathway in microglial activation in ALS mouse model and in humans. By examining the contribution of the histaminergic system to ALS, we found that particularly via H1 and H4 receptors, histamine promoted an anti-inflammatory profile in microglia from SOD1-G93A mice by modulating their activation state. A decrease in NF-κB and NADPH oxidase 2 with an increase in arginase 1 and P2Y12 receptor was induced by histamine only in the ALS inflammatory environment, but not in the healthy microglia, together with an increase in IL-6, IL-10, CD163, and CD206 phenotypic markers in SOD1-G93A cells. Moreover, histaminergic H1, H2, H3, and H4 receptors, and histamine metabolizing enzymes histidine decarboxylase, histamine N-methyltransferase, and diamine oxidase were found deregulated in spinal cord, cortex, and hypothalamus of SOD1-G93A mice during disease progression. Finally, by performing a meta-analysis study, we found a modulated expression of histamine-related genes in cortex and spinal cord from sporadic ALS patients. Our findings disclose that histamine acts as anti-inflammatory agent in ALS microglia and suggest a dysregulation of the histaminergic signaling in ALS.
Collapse
Affiliation(s)
- Savina Apolloni
- Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy
| | - Paola Fabbrizio
- Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy.,National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy
| | - Susanna Amadio
- Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy
| | - Giulia Napoli
- National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy
| | | | - Giovanna Morello
- National Research Council, Institute of Neurological Sciences, Catania, Italy
| | - Rosario Iemmolo
- National Research Council, Institute of Neurological Sciences, Catania, Italy
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, Netherlands
| | | | - Cinzia Volonté
- Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy.,National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy
| |
Collapse
|
26
|
Thurmond RL, Venable J, Savall B, La D, Snook S, Dunford PJ, Edwards JP. Clinical Development of Histamine H 4 Receptor Antagonists. Handb Exp Pharmacol 2017; 241:301-320. [PMID: 28233185 DOI: 10.1007/164_2016_130] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of the histamine H4 receptor (H4R) provided a new avenue for the exploration of the physiological role of histamine, as well as providing a new drug target for the development of novel antihistamines. The first step in this process was the identification of selective antagonists to help unravel the pharmacology of the H4R relative to other histamine receptors. The discovery of the selective H4R antagonist JNJ 7777120 was vital for showing a role for the H4R in inflammation and pruritus. While this compound has been very successful as a tool for understanding the function of the receptor, it has drawbacks, including a short in vivo half-life and hypoadrenocorticism toxicity in rats and dogs, that prevented advancing it into clinical studies. Further research let to the discovery of JNJ 39758979, which, similar to JNJ 7777120, was a potent and selective H4R antagonist and showed anti-inflammatory and anti-pruritic activity preclinically. JNJ 39758979 advanced into human clinical studies and showed efficacy in reducing experimental pruritus and in patients with atopic dermatitis. However, development of this compound was terminated due to the occurrence of drug-induced agranulocytosis. This was overcome by developing another H4R antagonist with a different chemical structure, toreforant, that does not appear to have this side effect. Toreforant has been tested in clinical studies in patients with rheumatoid arthritis, asthma, or psoriasis. In conclusions there have been many H4R antagonists reported in the literature, but only a few have been studied in humans underscoring the difficulty in finding ligands with all of the properties necessary for testing in the clinic. Nevertheless, the clinical data to date suggests that H4R antagonists can be beneficial in treating atopic dermatitis and pruritus.
Collapse
Affiliation(s)
| | | | - Brad Savall
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| | - David La
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| | - Sandra Snook
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| | - Paul J Dunford
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| | - James P Edwards
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| |
Collapse
|
27
|
Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci 2017; 74:3769-3787. [PMID: 28643167 PMCID: PMC11107790 DOI: 10.1007/s00018-017-2550-9] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/05/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
Abstract
The gut microbiota is essential to health and has recently become a target for live bacterial cell biotherapies for various chronic diseases including metabolic syndrome, diabetes, obesity and neurodegenerative disease. Probiotic biotherapies are known to create a healthy gut environment by balancing bacterial populations and promoting their favorable metabolic action. The microbiota and its respective metabolites communicate to the host through a series of biochemical and functional links thereby affecting host homeostasis and health. In particular, the gastrointestinal tract communicates with the central nervous system through the gut-brain axis to support neuronal development and maintenance while gut dysbiosis manifests in neurological disease. There are three basic mechanisms that mediate the communication between the gut and the brain: direct neuronal communication, endocrine signaling mediators and the immune system. Together, these systems create a highly integrated molecular communication network that link systemic imbalances with the development of neurodegeneration including insulin regulation, fat metabolism, oxidative markers and immune signaling. Age is a common factor in the development of neurodegenerative disease and probiotics prevent many harmful effects of aging such as decreased neurotransmitter levels, chronic inflammation, oxidative stress and apoptosis-all factors that are proven aggravators of neurodegenerative disease. Indeed patients with Parkinson's and Alzheimer's diseases have a high rate of gastrointestinal comorbidities and it has be proposed by some the management of the gut microbiota may prevent or alleviate the symptoms of these chronic diseases.
Collapse
Affiliation(s)
- Susan Westfall
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada
| | - Nikita Lomis
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada
- Department of Experimental Medicine, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada
| | - Imen Kahouli
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada
- Department of Experimental Medicine, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada
| | - Si Yuan Dia
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada
| | - Surya Pratap Singh
- Department of Biochemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada.
- Department of Experimental Medicine, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada.
| |
Collapse
|
28
|
Tauber PA, Pickl WF. Pharmacological targeting of allergen-specific T lymphocytes. Immunol Lett 2017; 189:27-39. [PMID: 28322861 DOI: 10.1016/j.imlet.2017.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022]
Abstract
Allergic disorders are the result of a complex pathophysiology, involving major cellular lineages and a multitude of humoral factors of the innate and adaptive immune system, and have the tendency to involve multiple organs. Consequently, even standard pharmacological treatment of allergies is rarely specific but usually targets more than one pathway/cellular system at a time. Accordingly, many of the classic anti-allergic drugs have a critical impact also on T helper cells, which are pivotal not only during the sensitization but also the maintenance phase of allergic diseases. Recent years have seen a dramatic increase of novel drugs with the potency to interfere, more or less specifically, with T lymphocyte function, which might, possibly together with classic anti-allergic drugs, help harnessing one of the central cellular players in allergic responses. A major theme in the years to come will be a thoughtful combination of previously established with recently developed treatment modalities.
Collapse
Affiliation(s)
- Peter A Tauber
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
29
|
Abstract
The maternal immune system is complex and governed by multiple hormonal and metabolic factors, including those provided to the mother via the fetus. Understanding of the balance between maternal tolerance and protection of the fetus may require thinking from multiple theoretical approaches to the general problem of immune activation and tolerance. This article provides a brief review of the immune system, with aspects relevant to pregnancy. The references include reviews that expand on the elements discussed. The article also uses different models of immune system activation and tolerance to provide a theoretical understanding of the problem of maternal tolerance.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Given Building Room C-246, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
30
|
Wang M, Han J, Domenico J, Shin YS, Jia Y, Gelfand EW. Combined blockade of the histamine H1 and H4 receptor suppresses peanut-induced intestinal anaphylaxis by regulating dendritic cell function. Allergy 2016; 71:1561-1574. [PMID: 27059534 DOI: 10.1111/all.12904] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Signaling through histamine receptors on dendritic cells (DCs) may be involved in the effector phase of peanut-induced intestinal anaphylaxis. OBJECTIVES The objective of this study was to determine the role of histamine H1 (H1R) and H4 receptors (H4R) in intestinal allergic responses in a model of peanut allergy. METHODS Balb/c mice were sensitized and challenged with peanut. During the challenge phase, mice were treated orally with the H1R antagonist, loratadine, and/or the H4R antagonist, JNJ7777120. Bone marrow-derived DCs (BMDCs) were adoptively transferred to nonsensitized WT mice. Symptoms, intestinal inflammation, and mesenteric lymph node and intestine mucosal DCs were assessed. Effects of the drugs on DC chemotaxis, calcium mobilization, and antigen-presenting cell function were measured. RESULTS Treatment with loratadine or JNJ7777120 individually partially suppressed the development of diarrhea and intestinal inflammation and decreased the numbers of DCs in the mesenteric lymph nodes and lamina propria. Combined treatment with both drugs prevented the development of diarrhea and intestinal inflammation. In vitro, the combination suppressed DC antigen-presenting cell function to T helper cells and DC calcium mobilization and chemotaxis to histamine. CONCLUSION Blockade of both H1R and H4R in the challenge phase had additive effects in preventing the intestinal consequences of peanut sensitization and challenge. These effects were mediated through the limitation of mesenteric lymph node and intestinal DC accumulation and function. Identification of this histamine H1R/H4R-DC-CD4+ T-cell axis provides new insights into the development of peanut-induced intestinal allergic responses and for prevention and treatment of peanut allergy.
Collapse
Affiliation(s)
- M. Wang
- Division of Cell Biology; Department of Pediatrics; National Jewish Health; Denver CO USA
| | - J. Han
- Division of Cell Biology; Department of Pediatrics; National Jewish Health; Denver CO USA
| | - J. Domenico
- Division of Cell Biology; Department of Pediatrics; National Jewish Health; Denver CO USA
| | - Y. S. Shin
- Division of Cell Biology; Department of Pediatrics; National Jewish Health; Denver CO USA
| | - Y. Jia
- Division of Cell Biology; Department of Pediatrics; National Jewish Health; Denver CO USA
| | - E. W. Gelfand
- Division of Cell Biology; Department of Pediatrics; National Jewish Health; Denver CO USA
| |
Collapse
|
31
|
Abstract
The maternal immune system is complex and governed by multiple hormonal and metabolic factors, including those provided to the mother via the fetus. Understanding of the balance between maternal tolerance and protection of the fetus may require thinking from multiple theoretical approaches to the general problem of immune activation and tolerance. This article provides a brief review of the immune system, with aspects relevant to pregnancy. The references include reviews that expand on the elements discussed. The article also uses different models of immune system activation and tolerance to provide a theoretical understanding of the problem of maternal tolerance.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Given Building Room C-246, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
32
|
Schneider EH, Seifert R. The histamine H4-receptor and the central and peripheral nervous system: A critical analysis of the literature. Neuropharmacology 2016; 106:116-28. [PMID: 25986697 DOI: 10.1016/j.neuropharm.2015.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 12/22/2022]
Abstract
Expression and function of histamine H4R in central and peripheral nervous system have been a matter of controversy for more than a decade. The scientific discussion is often limited to a few publications postulating the presence of functional H4R on neurons of the central and peripheral nervous system, but the even larger number of reports showing negative data is often neglected. In this article, we critically review the existing literature on H4R in central and peripheral nervous system and discuss the weak points often overlooked by the community. We identified as most important problems (i) insufficient validation or quality of antibodies, (ii) missing knockout controls, (iii) uncritical interpretation of RT-PCR results instead of qPCR experiments, (iv) insufficient controls to confirm specificity of pharmacological tools, (v) uncritical reliance on results produced by a single method and (vi) uncritical reliance on results not reproduced by independent research groups. Additionally, there may be a publication as well as a citation bias favoring the awareness of positive results, but neglecting negative data. We conclude that H4R expression on neurons of the brain is not convincingly supported by the current literature, at least as long as the positive data are not reproduced by independent research groups. Expression and function of H4R on peripheral neurons or non-neuronal cells of the nervous system, specifically on microglia is an interesting alternative hypothesis that, however, requires further verification. This article is part of a Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- Erich H Schneider
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
33
|
Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WLS, Stark H, Thurmond RL, Haas HL. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol Rev 2016; 67:601-55. [PMID: 26084539 DOI: 10.1124/pr.114.010249] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein-coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated.
Collapse
Affiliation(s)
- Pertti Panula
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Paul L Chazot
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Marlon Cowart
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Ralf Gutzmer
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Rob Leurs
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Wai L S Liu
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Holger Stark
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Robin L Thurmond
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Helmut L Haas
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| |
Collapse
|
34
|
Albrecht M, Dittrich AM. Expression and function of histamine and its receptors in atopic dermatitis. Mol Cell Pediatr 2015; 2:16. [PMID: 26690068 PMCID: PMC4686460 DOI: 10.1186/s40348-015-0027-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 12/10/2015] [Indexed: 01/08/2023] Open
Abstract
Background Atopic dermatitis constitutes a most burdensome chronic inflammatory skin disease. Standard treatment is cumbersome and often targets its main symptom, pruritus, only insufficiently. Findings Recent advances in our understanding of the role of histamine and its four receptors suggest new approaches which target the histamine receptors alone or as combination therapies to more efficiently combat pruritus and inflammation in atopic dermatitis. Conclusions With this review, we provide an overview on histamine and the expression of its four receptors on skin resident and nonresident cells. Furthermore, we summarize recent studies which suggest anti-histamine therapy to efficiently combat pruritus and inflammation in atopic dermatitis and discuss possible approaches to incorporate these findings into more effective treatment strategies for atopic dermatitis in childhood.
Collapse
Affiliation(s)
- M Albrecht
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover School of Medicine, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - A M Dittrich
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover School of Medicine, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
35
|
c-kit plays a critical role in induction of intravenous tolerance in experimental autoimmune encephalomyelitis. Immunol Res 2015; 61:294-302. [PMID: 25588867 DOI: 10.1007/s12026-015-8624-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
c-kit (CD117) is a tyrosine kinase receptor found in various types of immune cells. It has been shown that c-kit plays a role in the pathogenesis of multiple sclerosis, an inflammatory demyelinating disorder of the CNS. Recent data have suggested an immunoregulatory effect of c-kit. We therefore examined the role of c-kit in autoantigen-induced i.v. tolerance in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Our results show that induction of intravenous tolerance against EAE in B6 mice is characterized by increased numbers of CD117(+) cells and altered mast cell-associated molecules in the periphery and in the CNS. W(-sh) (c-kit-deficient) mice were resistant to i.v autoantigen-induced tolerance, with increased proinflammatory cytokine production in the periphery. I.v. autoantigen in WT mice suppressed the production of proinflammatory cytokines IFN-γ and IL-6 and up-regulated the expression of FoxP3, a transcription factor of Tregs; however, in W(-sh) mice, IFN-γ and IL-6 were increased with a failure of FoxP3 induction upon i.v. autoantigen injection and is thus a mechanism for resistance to i.v. tolerance induction in these mice. We conclude that c-kit signaling has a regulatory role in i.v. tolerance and could be a target for potential immunotherapy in autoimmune disorders.
Collapse
|
36
|
Sedeyn JC, Wu H, Hobbs RD, Levin EC, Nagele RG, Venkataraman V. Histamine Induces Alzheimer's Disease-Like Blood Brain Barrier Breach and Local Cellular Responses in Mouse Brain Organotypic Cultures. BIOMED RESEARCH INTERNATIONAL 2015; 2015:937148. [PMID: 26697497 PMCID: PMC4677161 DOI: 10.1155/2015/937148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/30/2015] [Accepted: 11/08/2015] [Indexed: 11/18/2022]
Abstract
Among the top ten causes of death in the United States, Alzheimer's disease (AD) is the only one that cannot be cured, prevented, or even slowed down at present. Significant efforts have been exerted in generating model systems to delineate the mechanism as well as establishing platforms for drug screening. In this study, a promising candidate model utilizing primary mouse brain organotypic (MBO) cultures is reported. For the first time, we have demonstrated that the MBO cultures exhibit increased blood brain barrier (BBB) permeability as shown by IgG leakage into the brain parenchyma, astrocyte activation as evidenced by increased expression of glial fibrillary acidic protein (GFAP), and neuronal damage-response as suggested by increased vimentin-positive neurons occur upon histamine treatment. Identical responses-a breakdown of the BBB, astrocyte activation, and neuronal expression of vimentin-were then demonstrated in brains from AD patients compared to age-matched controls, consistent with other reports. Thus, the histamine-treated MBO culture system may provide a valuable tool in combating AD.
Collapse
Affiliation(s)
- Jonathan C. Sedeyn
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Hao Wu
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Reilly D. Hobbs
- Department of Cell Biology, Rowan School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Eli C. Levin
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Robert G. Nagele
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
- Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Venkat Venkataraman
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
- Department of Cell Biology, Rowan School of Osteopathic Medicine, Stratford, NJ 08084, USA
| |
Collapse
|
37
|
Thurmond RL. The histamine H4 receptor: from orphan to the clinic. Front Pharmacol 2015; 6:65. [PMID: 25873897 PMCID: PMC4379874 DOI: 10.3389/fphar.2015.00065] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/12/2015] [Indexed: 01/10/2023] Open
Abstract
The histamine H4 receptor (H4R) was first noted as a sequence in genomic databases that had features of a class A G-protein coupled receptor. This putative receptor was found to bind histamine consistent with its homology to other histamine receptors and thus became the fourth member of the histamine receptor family. Due to the previous success of drugs that target the H1 and H2 receptors, an effort was made to understand the function of this new receptor and determine if it represented a viable drug target. Taking advantage of the vast literature on the function of histamine, a search for histamine activity that did not appear to be mediated by the other three histamine receptors was undertaken. From this asthma and pruritus emerged as areas of particular interest. Histamine has long been suspected to play a role in the pathogenesis of asthma, but antihistamines that target the H1 and H2 receptors have not been shown to be effective for this condition. The use of selective ligands in animal models of asthma has now potentially filled this gap by showing a role for the H4R in mediating lung function and inflammation. A similar story exists for chronic pruritus associated with conditions such as atopic dermatitis. Antihistamines that target the H1 receptor are effective in reducing acute pruritus, but are ineffective in pruritus experienced by patients with atopic dermatitis. As for asthma, animal models have now suggested a role for the H4R in mediating pruritic responses, with antagonists of the H4R reducing pruritus in a number of different conditions. The anti-pruritic effect of H4R antagonists has recently been shown in human clinical studies, validating the preclinical findings in the animal models. A selective H4R antagonist inhibited histamine-induced pruritus in health volunteers and reduced pruritus in patients with atopic dermatitis. The history to date of the H4R provides an excellent example of the deorphanization of a novel receptor and the translation of this into clinical efficacy in humans.
Collapse
|
38
|
Costanza M, Di Dario M, Steinman L, Farina C, Pedotti R. Gene expression analysis of histamine receptors in peripheral blood mononuclear cells from individuals with clinically-isolated syndrome and different stages of multiple sclerosis. J Neuroimmunol 2014; 277:186-8. [DOI: 10.1016/j.jneuroim.2014.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 12/20/2022]
|
39
|
Mirzahosseini A, Kovács M, Kánai K, Csutora P, Dalmadi B. BODIPY(®) FL histamine as a new modality for quantitative detection of histamine receptor upregulation upon IgE sensitization in murine bone marrow-derived mast cells. Cytometry A 2014; 87:23-31. [PMID: 25212523 DOI: 10.1002/cyto.a.22566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/17/2014] [Accepted: 08/22/2014] [Indexed: 11/06/2022]
Abstract
Flow cytometry is one of the most widely used methods for the qualitative and quantitative analysis of cell surface expressed proteins by making use of fluorescent specific antibodies. Lacking an antibody validated for flow cytometry, an alternative approach for labeling cell surface receptors is the use of fluorescently tagged ligands. In this study, histamine H4 receptor transfected Chinese hamster ovary cells and murine bone marrow-derived mast cells (mBMMCs) were selected for studying the possibility of staining individual histamine receptors using BODIPY(®) FL histamine and selective antagonists. Flow cytometric measurements and supporting calculations showed that BODIPY FL histamine is suitable tool for quantitating cell surface histamine receptors. The binding, and competitive inhibition of this fluorescent ligand were characterized, which were in good agreement with a semi-empirical model constructed from fundamental protein-binding relationships. Using this method it was shown for the first time that even though mature mBMMCs express H2R and H4R to the same extent, immunoglobulin E sensitization results in H4R upregulation only, while the surface expression of H2R remains unchanged.
Collapse
Affiliation(s)
- Arash Mirzahosseini
- Sanofi Research and Development, Tó utca 1-5, H-1045, Budapest, Hungary; Faculty of Pharmacy, Semmelweis University, Hőgyes Endre utca 9, H-1092, Budapest, Hungary
| | | | | | | | | |
Collapse
|
40
|
Ballerini C, Aldinucci A, Luccarini I, Galante A, Manuelli C, Blandina P, Katebe M, Chazot PL, Masini E, Passani MB. Antagonism of histamine H4 receptors exacerbates clinical and pathological signs of experimental autoimmune encephalomyelitis. Br J Pharmacol 2014; 170:67-77. [PMID: 23735232 DOI: 10.1111/bph.12263] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/17/2013] [Accepted: 05/29/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE The histamine H4 receptor has a primary role in inflammatory functions, making it an attractive target for the treatment of asthma and refractory inflammation. These observations suggested a facilitating action on autoimmune diseases. Here we have assessed the role of H4 receptors in experimental autoimmune encephalomyelitis (EAE) a model of multiple sclerosis (MS). EXPERIMENTAL APPROACH We induced EAE with myelin oligodendrocyte glycoprotein (MOG35-55 ) in C57BL/6 female mice as a model of MS. The histamine H4 receptor antagonist 5-chloro-2-[(4-methylpiperazin-1-yl)carbonyl]-1H-indole (JNJ7777120) was injected i.p. daily starting at day 10 post-immunization (D10 p.i.). Disease severity was monitored by clinical and histopathological evaluation of inflammatory cells infiltrating into the spinal cord, anti-MOG35-55 antibody production, assay of T-cell proliferation by [(3) H]-thymidine incorporation, mononucleate cell phenotype by flow cytometry, cytokine production by elisa assay and transcription factor quantification of mRNA expression. KEY RESULTS Treatment with JNJ7777120 exacerbated EAE, increased inflammation and demyelination in the spinal cord of EAE mice and increased IFN-γ expression in lymph nodes, whereas it suppressed IL-4 and IL-10, and augmented expression of the transcription factors Tbet, FOXP3 and IL-17 mRNA in lymphocytes. JNJ7777120 did not affect proliferation of anti-MOG35-55 T-cells, anti-MOG35-55 antibody production or mononucleate cell phenotype. CONCLUSIONS AND IMPLICATIONS H4 receptor blockade was detrimental in EAE. Given the interest in the development of H4 receptor antagonists as anti-inflammatory compounds, it is important to understand the role of H4 receptors in immune diseases to anticipate clinical benefits and also predict possible detrimental effects.
Collapse
Affiliation(s)
- C Ballerini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Neurology, Universita' di Firenze, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Karlstedt K, Jin C, Panula P. Expression of histamine receptor genes Hrh3 and Hrh4 in rat brain endothelial cells. Br J Pharmacol 2014; 170:58-66. [PMID: 23488566 DOI: 10.1111/bph.12173] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/11/2013] [Accepted: 01/29/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Brain vascular endothelial cells express histamine H1 and H2 receptors, which regulate brain capillary permeability. We investigated whether H3 and H4 receptors are also expressed in these cells and may thus play a role in permeability regulation. EXPERIMENTAL APPROACH An immortalized rat brain endothelial cell line RBE4 was used to assess the presence of H3 and H4 receptors. Reverse transcription-PCR (RT-PCR) and sequencing were used to identify the receptor mRNAs. The receptors were stimulated with histamine and immepip, and specific inverse agonists/antagonists ciproxifan and JNJ 7777120 were used to block H3 and H4 receptors, respectively. KEY RESULTS RT-PCR of mRNA extracted from cultured immortalized RBE4 cells revealed two rat H4 receptor gene (Hrh4) transcripts, one full-length (coding sequence 1173 bp), and one with a 164 bp deletion. Also, two rat H3 receptor gene (Hrh3) isoform mRNAs were expressed in RBE4 cells, and sequencing showed they were the full-length H3 receptor and the 144 bp deletion form. Both histamine and immepip (H3 and H4 receptor agonists) activated the Erk1/2 MAPK pathway in the RBE4 cells and in vivo in brain blood vessels by activating H4 receptors, as the H4 receptor-specific inverse agonists/antagonist JNJ 7777120, but not ciproxifan, H3 receptor antagonist, dose-dependently blocked this effect in RBE4 cells. CONCLUSIONS AND IMPLICATIONS Both Hrh3 and Hrh4 receptors are expressed in rat brain endothelial cells, and activation of the histamine H4 receptor activates the Erk1/2 cascade. H3 and H4 receptors in endothelial cells are potentially important for regulation of blood-brain barrier permeability, including trafficking of immunocompetent cells.
Collapse
Affiliation(s)
- K Karlstedt
- Institute of Biomedicine, Physiology, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | |
Collapse
|
42
|
Oldford SA, Marshall JS. Mast cells as targets for immunotherapy of solid tumors. Mol Immunol 2014; 63:113-24. [PMID: 24698842 DOI: 10.1016/j.molimm.2014.02.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 01/09/2023]
Abstract
Mast cells have historically been studied mainly in the context of allergic disease. In recent years, we have come to understand the critical importance of mast cells in tissue remodeling events and their role as sentinel cells in the induction and development of effective immune responses to infection. Studies of the role of mast cells in tumor immunity are more limited. The pro-tumorigenic role of mast cells has been widely reported. However, mast cell infiltration predicts improved prognosis in some cancers, suggesting that their prognostic value may be dependent on other variables. Such factors may include the nature of local mast cell subsets and the various activation stimuli present within the tumor microenvironment. Experimental models have highlighted the importance of mast cells in orchestrating the anti-tumor events that follow immunotherapies that target innate immunity. Mast cells are long-lived tissue resident cells that are abundant around many solid tumors and are radiation resistant making them unique candidates for combined treatment modalities. This review will examine some of the key roles of mast cells in tumor immunity, with a focus on potential immunotherapeutic interventions that harness the sentinel role of mast cells.
Collapse
Affiliation(s)
- Sharon A Oldford
- Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jean S Marshall
- Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
43
|
Thurmond RL, Chen B, Dunford PJ, Greenspan AJ, Karlsson L, La D, Ward P, Xu XL. Clinical and preclinical characterization of the histamine H(4) receptor antagonist JNJ-39758979. J Pharmacol Exp Ther 2014; 349:176-84. [PMID: 24549371 DOI: 10.1124/jpet.113.211714] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The histamine H4 receptor (H(4)R) has been shown to have preclinical involvement in both inflammatory and pruritic responses. JNJ-39758979 [(R)-4-(3-amino-pyrrolidin-1-yl)-6-isopropyl-pyrimidin-2-ylamine] is a potent and selective H(4)R antagonist with a Ki at the human receptor of 12.5 ± 2.6 nM and greater than 80-fold selectivity over other histamine receptors. The compound also exhibited excellent selectivity versus other targets. JNJ-39758979 showed dose-dependent activity in models of asthma and dermatitis consistent with other H(4)R antagonists. Preclinical toxicity studies of up to 6 months in rats and 9 months in monkeys indicated an excellent safety profile, supporting the clinical testing of the compound. An oral formulation of JNJ-39758979 was studied in a phase 1 human volunteer study to assess safety, pharmacokinetics, and pharmacodynamics. The compound was well tolerated, with the exception of dose-dependent nausea, and no safety issues were noted in the phase 1 study. JNJ-39758979 exhibited good pharmacokinetics upon oral dosing with a plasma half-life of 124-157 hours after a single oral dose. In addition, dose-dependent inhibition of histamine-induced eosinophil shape change was detected, suggesting that the H4R was inhibited in vivo. In conclusion, JNJ-39758979 is a potent and selective H(4)R antagonist that exhibited good preclinical and phase 1 safety in healthy volunteers with evidence of a pharmacodynamics effect in humans.
Collapse
|
44
|
Neuroendocrine immunoregulation in multiple sclerosis. Clin Dev Immunol 2013; 2013:705232. [PMID: 24382974 PMCID: PMC3870621 DOI: 10.1155/2013/705232] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/29/2013] [Accepted: 09/30/2013] [Indexed: 12/03/2022]
Abstract
Currently, it is generally accepted that multiple sclerosis (MS) is a complex multifactorial disease involving genetic and environmental factors affecting the autoreactive immune responses that lead to damage of myelin. In this respect, intrinsic or extrinsic factors such as emotional, psychological, traumatic, or inflammatory stress as well as a variety of other lifestyle interventions can influence the neuroendocrine system. On its turn, it has been demonstrated that the neuroendocrine system has immunomodulatory potential. Moreover, the neuroendocrine and immune systems communicate bidirectionally via shared receptors and shared messenger molecules, variously called hormones, neurotransmitters, or cytokines. Discrepancies at any level can therefore lead to changes in susceptibility and to severity of several autoimmune and inflammatory diseases. Here we provide an overview of the complex system of crosstalk between the neuroendocrine and immune system as well as reported dysfunctions involved in the pathogenesis of autoimmunity, including MS. Finally, possible strategies to intervene with the neuroendocrine-immune system for MS patient management will be discussed. Ultimately, a better understanding of the interactions between the neuroendocrine system and the immune system can open up new therapeutic approaches for the treatment of MS as well as other autoimmune diseases.
Collapse
|
45
|
Neumann D, Schneider EH, Seifert R. Analysis of Histamine Receptor Knockout Mice in Models of Inflammation. J Pharmacol Exp Ther 2013; 348:2-11. [DOI: 10.1124/jpet.113.204214] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
46
|
The histaminergic network in the brain: basic organization and role in disease. Nat Rev Neurosci 2013; 14:472-87. [DOI: 10.1038/nrn3526] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Saligrama N, Case LK, del Rio R, Noubade R, Teuscher C. Systemic lack of canonical histamine receptor signaling results in increased resistance to autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2013; 191:614-22. [PMID: 23772030 DOI: 10.4049/jimmunol.1203137] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Histamine (HA) is a key regulator of experimental allergic encephalomyelitis (EAE), the autoimmune model of multiple sclerosis. HA exerts its effects through four known G-protein-coupled receptors: H1, H2, H3, and H4 (histamine receptors; H(1-4)R). Using HR-deficient mice, our laboratory has demonstrated that H1R, H2R, H3R, and H4R play important roles in EAE pathogenesis, by regulating encephalitogenic T cell responses, cytokine production by APCs, blood-brain barrier permeability, and T regulatory cell activity, respectively. Histidine decarboxylase-deficient mice (HDCKO), which lack systemic HA, exhibit more severe EAE and increased Th1 effector cytokine production by splenocytes in response to myelin oligodendrocyte gp35-55. In an inverse approach, we tested the effect of depleting systemic canonical HA signaling on susceptibility to EAE by generating mice lacking all four known G-protein-coupled-HRs (H(1-4)RKO mice). In this article, we report that in contrast to HDCKO mice, H(1-4)RKO mice develop less severe EAE compared with wild-type animals. Furthermore, splenocytes from immunized H(1-4)RKO mice, compared with wild-type mice, produce a lower amount of Th1/Th17 effector cytokines. The opposing results seen between HDCKO and H1-4RKO mice suggest that HA may signal independently of H1-4R and support the existence of an alternative HAergic pathway in regulating EAE resistance. Understanding and exploiting this pathway has the potential to lead to new disease-modifying therapies in multiple sclerosis and other autoimmune and allergic diseases.
Collapse
Affiliation(s)
- Naresha Saligrama
- Department of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
48
|
Mirzahosseini A, Dalmadi B, Csutora P. Histamine receptor H4 regulates mast cell degranulation and IgE induced FcεRI upregulation in murine bone marrow-derived mast cells. Cell Immunol 2013; 283:38-44. [PMID: 23850674 DOI: 10.1016/j.cellimm.2013.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/11/2013] [Accepted: 05/21/2013] [Indexed: 12/18/2022]
Abstract
There is increasing evidence that histamine regulates the immune system via histamine H4 receptors, therefore we sought to investigate the functions of the H4 receptor on mast cells. Mast cells were differentiated from murine bone marrow stem cells, and the expression of mast cell surface markers FcεRI and CD117 were measured using flow cytometry. Real-time qRT-PCR was used to determine the expression of mH4R; as a measure of antigen-dependent degranulation, β-hexosaminidase release assay was carried out using IgE sensitized mast cells. We determined that the expression kinetics of FcεRI and mH4R can be described with a function that has one maximum value in the time range of the culture's differentiation. Antigen-dependent degranulation of murine bone marrow-derived mast cells could be inhibited by a selective H4 antagonist/inverse agonist only when it was present during the IgE sensitization phase of degranulation. In addition, flow cytometric analysis revealed that the H4 antagonist/inverse agonist also inhibited IgE induced FcεRI upregulation. The inhibition percentage of H4 antagonist on IgE induced FcεRI upregulation was determined to be dependent upon the maturity of the mast cell cultures, and this time-dependency was consistent with the expression kinetics of both mH4R and FcεRI. These results imply that H4R has regulatory roles in FcεRI expression and FcεRI mediated functions in mast cells. In conclusion the present study shows that H4 receptors potentially play a role in IgE induced FcεRI upregulation and in the sensitization phase but not the effector phase of mast cell degranulation.
Collapse
Affiliation(s)
- Arash Mirzahosseini
- Immuno-Inflammation Unit, Sanofi Research and Development, Tó utca 1-5, H-1045 Budapest, Hungary.
| | | | | |
Collapse
|
49
|
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by beta-amyloid plaques accumulation and cognitive impairment. Both environmental factors and heritable predisposition have a role in AD. Histamine is a biogenic monoamine that plays a role in several physiological functions, including induction of inflammatory reactions, wound healing, and regeneration. The Histamine mediates its functions via its 4 G-protein-coupled Histamine H1 receptor (H1R) to histamine H1 receptor (H4R). The histaminergic system has a role in the treatment of brain disorders by the development of histamine receptor agonists, antagonists. The H1R and H4R are responsible for allergic inflammation. But recent studies show that histamine antagonists against H3R and regulation of H2R can be more efficient in AD therapy. In this review, we focus on the role of histamine and its receptors in the treatment of AD, and we hope that histamine could be an effective therapeutic factor in the treatment of AD.
Collapse
Affiliation(s)
- Fatemeh Naddafi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Funke U, Vugts DJ, Janssen B, Spaans A, Kruijer PS, Lammertsma AA, Perk LR, Windhorst AD. 11C-labeled and18F-labeled PET ligands for subtype-specific imaging of histamine receptors in the brain. J Labelled Comp Radiopharm 2013; 56:120-9. [DOI: 10.1002/jlcr.3038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/18/2013] [Accepted: 01/29/2013] [Indexed: 12/13/2022]
Affiliation(s)
| | - Danielle J. Vugts
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| | - Bieneke Janssen
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| | | | - Perry S. Kruijer
- BV Cyclotron VU; De Boelelaan 1081; 1081; HV; Amsterdam; The Netherlands
| | - Adriaan A. Lammertsma
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| | - Lars R. Perk
- BV Cyclotron VU; De Boelelaan 1081; 1081; HV; Amsterdam; The Netherlands
| | - Albert D. Windhorst
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| |
Collapse
|