1
|
Amubieya O, Todd JL, Neely ML, Kaner RJ, Lasky JA, Namen A, Hesslinger C, Palmer SM, Weigt SS, Belperio JA. Associations of circulating matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases with clinically relevant outcomes in idiopathic pulmonary fibrosis: Data from the IPF-PRO Registry. PLoS One 2024; 19:e0312044. [PMID: 39418259 PMCID: PMC11486396 DOI: 10.1371/journal.pone.0312044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION We assessed the prognostic utility of circulating levels of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) in patients with idiopathic pulmonary fibrosis (IPF) in the IPF-PRO Registry. METHODS MMP and TIMP concentrations were quantified by ELISA in plasma from 300 patients. A Cox proportional hazard regression model was used to assess associations between select MMPs and TIMPs and death and disease progression (absolute decline in forced vital capacity ≥10% predicted, death, or lung transplant). RESULTS Over a median follow-up of 30.4 months, 98 patients died and 182 patients had disease progression. In unadjusted analyses, higher concentrations of MMPs 2, 3, 8 and 9 and TIMPs 1, 2 and 4 were associated with an increased risk of death. MMPs 2 and 8 and TIMP1 remained associated with death after adjustment for clinical factors. In unadjusted analyses, higher concentrations of MMPs 8 and 9 and TIMPs 1 and 4 were associated with an increased risk of disease progression. MMPs 8 and 9 and TIMP1 remained associated with progression after adjustment for clinical factors. CONCLUSION Circulating levels of MMP8 and TIMP1 may provide information on the risk of outcomes in patients with IPF not captured by clinical measures.
Collapse
Affiliation(s)
- Olawale Amubieya
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jamie L. Todd
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Megan L. Neely
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Robert J. Kaner
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Joseph A. Lasky
- School of Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Andrew Namen
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Allergy and Immunologic Diseases, Atrium Health Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Christian Hesslinger
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Scott M. Palmer
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - S. Samuel Weigt
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - John A. Belperio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
2
|
Kamiya M, Carter H, Espindola MS, Doyle TJ, Lee JS, Merriam LT, Zhang F, Kawano-Dourado L, Sparks JA, Hogaboam CM, Moore BB, Oldham WM, Kim EY. Immune mechanisms in fibrotic interstitial lung disease. Cell 2024; 187:3506-3530. [PMID: 38996486 PMCID: PMC11246539 DOI: 10.1016/j.cell.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 07/14/2024]
Abstract
Fibrotic interstitial lung diseases (fILDs) have poor survival rates and lack effective therapies. Despite evidence for immune mechanisms in lung fibrosis, immunotherapies have been unsuccessful for major types of fILD. Here, we review immunological mechanisms in lung fibrosis that have the potential to impact clinical practice. We first examine innate immunity, which is broadly involved across fILD subtypes. We illustrate how innate immunity in fILD involves a complex interplay of multiple cell subpopulations and molecular pathways. We then review the growing evidence for adaptive immunity in lung fibrosis to provoke a re-examination of its role in clinical fILD. We close with future directions to address key knowledge gaps in fILD pathobiology: (1) longitudinal studies emphasizing early-stage clinical disease, (2) immune mechanisms of acute exacerbations, and (3) next-generation immunophenotyping integrating spatial, genetic, and single-cell approaches. Advances in these areas are essential for the future of precision medicine and immunotherapy in fILD.
Collapse
Affiliation(s)
- Mari Kamiya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Carter
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Milena S Espindola
- Division of Pulmonary and Critical Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tracy J Doyle
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Joyce S Lee
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Louis T Merriam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Fan Zhang
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Leticia Kawano-Dourado
- Hcor Research Institute, Hcor Hospital, Sao Paulo - SP 04004-030, Brazil; Pulmonary Division, Heart Institute (InCor), University of Sao Paulo, São Paulo - SP 05403-900, Brazil
| | - Jeffrey A Sparks
- Harvard Medical School, Boston, MA 02115, USA; Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Cory M Hogaboam
- Division of Pulmonary and Critical Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Edy Y Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Barbosa-Matos C, Borges-Pereira C, Libório-Ramos S, Fernandes R, Oliveira M, Mendes-Frias A, Silvestre R, Osório NS, Bastos HN, Santos RF, Guimarães S, Morais A, Mazzone M, Carvalho A, Cunha C, Costa S. Deregulated immune cell recruitment orchestrated by c-MET impairs pulmonary inflammation and fibrosis. Respir Res 2024; 25:257. [PMID: 38909206 PMCID: PMC11193258 DOI: 10.1186/s12931-024-02884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) represents the pathologic end stage of several interstitial lung diseases (ILDs) associated with high morbidity and mortality rates. However, current treatments can only delay disease progression rather than provide a cure. The role of inflammation in PF progression is well-established, but new insights into immune regulation are fundamental for developing more efficient therapies. c-MET signaling has been implicated in the migratory capacity and effector functions of immune cells. Nevertheless, the role of this signaling pathway in the context of PF-associated lung diseases remains unexplored. METHODS To determine the influence of c-MET in immune cells in the progression of pulmonary fibrosis, we used a conditional deletion of c-Met in immune cells. To induce pulmonary fibrosis mice were administered with bleomycin (BLM) intratracheally. Over the course of 21 days, mice were assessed for weight change, and after euthanasia at different timepoints, bronchoalveolar lavage fluid cells and lung tissue were assessed for inflammation and fibrosis. Furthermore, c-MET expression was assessed in cryobiopsy sections, bronchoalveolar lavage fluid cells samples and single cell RNA-sequencing dataset from human patients with distinct interstitial lung diseases. RESULTS c-MET expression was induced in lung immune cells, specifically in T cells, interstitial macrophages, and neutrophils, during the inflammatory phase of BLM-induced PF mouse model. Deletion of c-Met in immune cells correlated with earlier weight recovery and improved survival of BLM-treated mice. Moreover, the deletion of c-Met in immune cells was associated with early recruitment of the immune cell populations, normally found to express c-MET, leading to a subsequent attenuation of the cytotoxic and proinflammatory environment. Consequently, the less extensive inflammatory response, possibly coupled with tissue repair, culminated in less exacerbated fibrotic lesions. Furthermore, c-MET expression was up-regulated in lung T cells from patients with fibrosing ILD, suggesting a potential involvement of c-MET in the development of fibrosing disease. CONCLUSIONS These results highlight the critical contribution of c-MET signaling in immune cells to their enhanced uncontrolled recruitment and activation toward a proinflammatory and profibrotic phenotype, leading to the exacerbation of lung injury and consequent development of fibrosis.
Collapse
Affiliation(s)
- Catarina Barbosa-Matos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Caroline Borges-Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sofia Libório-Ramos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marcela Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Mendes-Frias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Hélder N Bastos
- Department of Pneumology, Centro Hospitalar do São João, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita F Santos
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- School of Health Sciences - Polytechnic of Porto, Porto, Portugal
| | - Susana Guimarães
- Department of Pathology, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - António Morais
- Department of Pneumology, Centro Hospitalar do São João, Porto, Portugal
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Louvain, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Louvain, Belgium
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sandra Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
4
|
Karesvuo M, Sorsa T, Tuuminen R. Association between Oral Active-Matrix Metalloproteinase-8 Levels and Subretinal Fibrosis among Wet Age-Related Macular Degeneration Patients. Curr Eye Res 2024; 49:288-294. [PMID: 37975315 DOI: 10.1080/02713683.2023.2280442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Periodontitis causes low-grade systemic inflammation and has been associated with elevated active-matrix metalloproteinase (aMMP-8) levels, blood-ocular barrier breakdown and a risk of wet age-related macular degeneration. To assess the association between aMMP-8 levels and macular status among patients with wet age-related macular degeneration (AMD). METHODS Patients on anti-VEGF treatment for wet AMD were enrolled for oral aMMP-8 rinse test in Mehiläinen Private Hospital, Helsinki, Finland. Macular status was examined from spectral-domain optical coherence tomography (SD-OCT) scans by a medical retina specialist and aMMP-8 levels were analyzed with chairside point-of-care oral rinse (PerioSafe®) test and real-time quantitated by a dentist using the ORALyzer®- reader with a 10 ng/ml cut-off for aMMP-8 activity. RESULTS Elevated aMMP-8 levels were found in 10 out of 32 patients. Age, gender, anti-VEGF (bevacizumab or aflibercept) distribution, cumulative number of anti-VEGF injections and treatment interval were comparable between patients with aMMP-8 levels below and above the point-of-care level. Macular status differed in regard to aMMP-8 activity; among patients with aMMP-8 levels below the point-of-care subretinal fibrosis was found in 6 out of 22 eyes, whereas among patients with aMMP-8 levels above the point-of-care subretinal fibrosis was found in 8 out of 10 eyes (p = 0.005). Respectively, the mean thickness of subretinal fibrosis at fovea was 19.5 ± 44.1 and 92.3 ± 78.3 µm (p = 0.018). No differences were found in the presence and in the area of geographic atrophy, or fluid distribution, whereas thicknesses of serous pigment epithelial detachment (65.5 ± 99.5 and 12.9 ± 27.9 µm, p = 0.038) and neuroretina (204.2 ± 57.8 µm and 143.0 ± 43.7 µm, p = 0.006) were greater in the eyes of patients with physiological aMMP-8 levels compared to those with elevated aMMP-8 levels. CONCLUSION Elevated aMMP-8 levels may account for subretinal fibrosis formation in wet AMD.
Collapse
Affiliation(s)
- Minna Karesvuo
- Helsinki Retina Research Group, University of Helsinki, Helsinki, Finland
- Health Services Dental Care, City of Helsinki, Helsinki, Finland
- Department of Ophthalmology, Mehiläinen Private Hospital, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Medicine and Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Raimo Tuuminen
- Helsinki Retina Research Group, University of Helsinki, Helsinki, Finland
- Department of Ophthalmology, Mehiläinen Private Hospital, Helsinki, Finland
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Ophthalmology, Kymenlaakso Central Hospital, Kotka, Finland
| |
Collapse
|
5
|
Imaduddin UK, Berbudi A, Rohmawaty E. The Effect of Physalis angulata L. Administration on Gene Expressions Related to Lung Fibrosis Resolution in Mice-Induced Bleomycin. J Exp Pharmacol 2024; 16:49-60. [PMID: 38317831 PMCID: PMC10840535 DOI: 10.2147/jep.s439932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose To explore the potential therapeutic effects of Physalis angulata L. (Ciplukan) extract on lung fibrosis resolution in a Bleomycin-induced mouse model, researchers conducted a comprehensive study. The study focused on key genes associated with fibrosis progression, including Nox4, Mmp8, Klf4, and FAS, and assessed their mRNA expression levels following the administration of Ciplukan extract. Methods A Bleomycin-induced mice model was divided into seven groups to investigate the effects of ciplukan extract on fibrosis-related gene expressions. Mice were induced with subcutaneously injected Bleomycin to generate lung fibrosis and given different doses of the Ciplukan extract for four weeks. Lung fibrosis mRNA expression was analyzed by semi-quantitative PCR for Nox4, Klf4, Mmp8, and FAS. Results The administration of ciplukan extract resulted in a significant decrease in mRNA expression of Nox4 with p-value=0.000, Mmp8 with p-value =0.002, and Klf4 with p-value =0.007, indicating potential antifibrotic effects. However, FAS expression remained unchanged (p-value=0.127). Conclusion Ciplukan extract exhibited promising effects on fibrosis-related gene expressions, particularly Nox4, Mmp8, and Klf4. This study suggests that the extract has the potential to intervene in fibrosis progression, offering a potential avenue for therapeutic strategies.
Collapse
Affiliation(s)
- Ummul Khair Imaduddin
- Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Afiat Berbudi
- Parasitology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Enny Rohmawaty
- Pharmacology & Therapy Division, Departement of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| |
Collapse
|
6
|
Stoian M, Roman A, Boeriu A, Onișor D, Bandila SR, Babă DF, Cocuz I, Niculescu R, Costan A, Laszlo SȘ, Corău D, Stoian A. Long-Term Radiological Pulmonary Changes in Mechanically Ventilated Patients with Respiratory Failure due to SARS-CoV-2 Infection. Biomedicines 2023; 11:2637. [PMID: 37893011 PMCID: PMC10604756 DOI: 10.3390/biomedicines11102637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
From the first reports of SARS-CoV-2, at the end of 2019 to the present, the global mortality associated with COVID-19 has reached 6,952,522 deaths as reported by the World Health Organization (WHO). Early intubation and mechanical ventilation can increase the survival rate of critically ill patients. This prospective study was carried out on 885 patients in the ICU of Mureș County Clinical Hospital, Romania. After applying inclusion and exclusion criteria, a total of 54 patients were included. Patients were monitored during hospitalization and at 6-month follow-up. We analyzed the relationship between invasive mechanical ventilation (IMV) and non-invasive mechanical ventilation (NIMV) and radiological changes on thoracic CT scans performed at 6-month follow-up and found no significant association. Regarding paraclinical analysis, there was a statistically significant association between patients grouped by IMV and ferritin level on day 1 of admission (p = 0.034), and between patients grouped by PaO2/FiO2 ratio with metabolic syndrome (p = 0.03) and the level of procalcitonin (p = 0.01). A significant proportion of patients with COVID-19 admitted to the ICU developed pulmonary fibrosis as observed at a 6-month evaluation. Patients with oxygen supplementation or mechanical ventilation require dynamic monitoring and radiological investigations, as there is a possibility of long-term pulmonary fibrosis that requires pharmacological interventions and finding new therapeutic alternatives.
Collapse
Affiliation(s)
- Mircea Stoian
- Department of Anesthesiology and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 540139 Targu Mures, Romania;
| | - Adina Roman
- Gastroenterology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 540142 Targu Mures, Romania; (A.B.); (D.O.)
| | - Alina Boeriu
- Gastroenterology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 540142 Targu Mures, Romania; (A.B.); (D.O.)
| | - Danusia Onișor
- Gastroenterology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 540142 Targu Mures, Romania; (A.B.); (D.O.)
| | - Sergio Rareș Bandila
- Orthopedic Surgery and Traumatology Service, Marina Baixa Hospital, Av. Alcade En Jaume Botella Mayor, 03570 Villajoyosa, Spain;
| | - Dragoș Florin Babă
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 540142 Targu Mures, Romania;
| | - Iuliu Cocuz
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 540136 Targu Mures, Romania; (I.C.); (R.N.); (A.S.)
| | - Raluca Niculescu
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 540136 Targu Mures, Romania; (I.C.); (R.N.); (A.S.)
| | - Anamaria Costan
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 540142 Targu Mures, Romania;
| | - Sergiu Ștefan Laszlo
- Intensive Care Unit, Mureș County Hospital, Street Gheorghe Marinescu no 1, 540136 Targu Mures, Romania;
| | - Dragoș Corău
- Intensive Care Unit, Mureș County Hospital, Street Gheorghe Marinescu no 1, 540136 Targu Mures, Romania;
| | - Adina Stoian
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 540136 Targu Mures, Romania; (I.C.); (R.N.); (A.S.)
| |
Collapse
|
7
|
Lin H, Liu J, Li N, Zhang B, Nguyen VD, Yao P, Feng J, Liu Q, Chen Y, Li G, Zhou Y, Zhou L. NETosis promotes chronic inflammation and fibrosis in systemic lupus erythematosus and COVID-19. Clin Immunol 2023; 254:109687. [PMID: 37419296 DOI: 10.1016/j.clim.2023.109687] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/10/2023] [Accepted: 06/17/2023] [Indexed: 07/09/2023]
Abstract
Pulmonary fibrosis, a serious complication of systemic lupus erythematosus (SLE) and coronavirus disease 2019 (COVID-19), leads to irreversible lung damage. However, the underlying mechanism of this condition remains unclear. In this study, we revealed the landscape of transcriptional changes in lung biopsies from individuals with SLE, COVID-19-induced pulmonary fibrosis, and idiopathic pulmonary fibrosis (IPF) using histopathology and RNA sequencing, respectively. Despite the diverse etiologies of these diseases, lung expression of matrix metalloproteinase genes in these diseases showed similar patterns. Particularly, the differentially expressed genes were significantly enriched in the pathway of neutrophil extracellular trap formation, showing similar enrichment signature between SLE and COVID-19. The abundance of Neutrophil extracellular traps (NETs) was much higher in the lungs of individuals with SLE and COVID-19 compared to those with IPF. In-depth transcriptome analyses revealed that NETs formation pathway promotes epithelial-mesenchymal transition (EMT). Furthermore, stimulation with NETs significantly up-regulated α-SMA, Twist, Snail protein expression, while decreasing the expression of E-cadherin protein in vitro. This indicates that NETosis promotes EMT in lung epithelial cells. Given drugs that are efficacious in degrading damaged NETs or inhibiting NETs production, we identified a few drug targets that were aberrantly expressed in both SLE and COVID-19. Among these targets, the JAK2 inhibitor Tofacitinib could effectively disrupted the process of NETs and reversed NET-induced EMT in lung epithelial cells. These findings support that the NETs/EMT axis, activated by SLE and COVID-19, contributes to the progression of pulmonary fibrosis. Our study also highlights that JAK2 as a potential target for the treatment of fibrosis in these diseases.
Collapse
Affiliation(s)
- Huiqing Lin
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Jiejie Liu
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ning Li
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Birong Zhang
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Van Dien Nguyen
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Peipei Yao
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiments, Wuhan University School of Medicine, Wuhan 430071, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qianyun Liu
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guang Li
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China.
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiments, Wuhan University School of Medicine, Wuhan 430071, China.
| |
Collapse
|
8
|
Kooistra EJ, Dahm K, van Herwaarden AE, Gerretsen J, Nuesch Germano M, Mauer K, Smeets RL, van der Velde S, van den Berg MJW, van der Hoeven JG, Aschenbrenner AC, Schultze JL, Ulas T, Kox M, Pickkers P. Molecular mechanisms and treatment responses of pulmonary fibrosis in severe COVID-19. Respir Res 2023; 24:196. [PMID: 37559053 PMCID: PMC10413531 DOI: 10.1186/s12931-023-02496-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) patients can develop pulmonary fibrosis (PF), which is associated with impaired outcome. We assessed specific leukocytic transcriptome profiles associated with PF and the influence of early dexamethasone (DEXA) treatment on the clinical course of PF in critically ill COVID-19 patients. METHODS We performed a pre-post design study in 191 COVID-19 patients admitted to the Intensive Care Unit (ICU) spanning two treatment cohorts: the pre-DEXA- (n = 67) and the DEXA-cohort (n = 124). PF was identified based on radiological findings, worsening of ventilatory parameters and elevated circulating PIIINP levels. Longitudinal transcriptome profiles of 52 pre-DEXA patients were determined using RNA sequencing. Effects of prednisone treatment on clinical fibrosis parameters and outcomes were analyzed between PF- and no-PF-patients within both cohorts. RESULTS Transcriptome analyses revealed upregulation of inflammatory, coagulation and neutrophil extracellular trap-related pathways in PF-patients compared to no-PF patients. Key genes involved included PADI4, PDE4D, MMP8, CRISP3, and BCL2L15. Enrichment of several identified pathways was associated with impaired survival in a external cohort of patients with idiopathic pulmonary fibrosis. Following prednisone treatment, PF-related profiles reverted towards those observed in the no-PF-group. Likewise, PIIINP levels decreased significantly following prednisone treatment. PF incidence was 28% and 25% in the pre-DEXA- and DEXA-cohort, respectively (p = 0.61). ICU length-of-stay (pre-DEXA: 42 [29-49] vs. 18 [13-27] days, p < 0.001; DEXA: 42 [28-57] vs. 13 [7-24] days, p < 0.001) and mortality (pre-DEXA: 47% vs. 15%, p = 0.009; DEXA: 61% vs. 19%, p < 0.001) were higher in the PF-groups compared to the no-PF-groups within both cohorts. Early dexamethasone therapy did not influence these outcomes. CONCLUSIONS ICU patients with COVID-19 who develop PF exhibit upregulated coagulation, inflammation, and neutrophil extracellular trap-related pathways as well as prolonged ICU length-of-stay and mortality. This study indicates that early dexamethasone treatment neither influences the incidence or clinical course of PF, nor clinical outcomes.
Collapse
Affiliation(s)
- Emma J Kooistra
- Department of Intensive Care Medicine, Radboud University Medical Center, Postbus 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Kilian Dahm
- Translational Pediatrics, Department of Pediatrics, University Hospital Wuerzburg, 97080, Würzburg, Bavaria, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
| | - Antonius E van Herwaarden
- Radboudumc Laboratory for Diagnostics, Department of Laboratory Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Jelle Gerretsen
- Department of Intensive Care Medicine, Radboud University Medical Center, Postbus 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | | | - Karoline Mauer
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
| | - Ruben L Smeets
- Radboudumc Laboratory for Diagnostics, Department of Laboratory Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Laboratory for Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Sjef van der Velde
- Department of Intensive Care Medicine, Radboud University Medical Center, Postbus 9101, 6500 HB, Nijmegen, The Netherlands
| | - Maarten J W van den Berg
- Department of Intensive Care Medicine, Radboud University Medical Center, Postbus 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Johannes G van der Hoeven
- Department of Intensive Care Medicine, Radboud University Medical Center, Postbus 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Anna C Aschenbrenner
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Joachim L Schultze
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Thomas Ulas
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, Postbus 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Postbus 9101, 6500 HB, Nijmegen, The Netherlands.
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Hummersgaard Hansen A, Wallem Breisnes H, Skovhus Prior T, Hilberg O, Guldager Kring Rasmussen D, Genovese F, Vestergaard Lukassen M, Svensson B, Løcke Langholm L, Manon-Jensen T, Asser Karsdal M, Julie Leeming D, Bendstrup E, Marie Bülow Sand J. A serologically assessed neo-epitope biomarker of cellular fibronectin degradation is related to pulmonary fibrosis. Clin Biochem 2023; 118:110599. [PMID: 37343745 DOI: 10.1016/j.clinbiochem.2023.110599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/19/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is characterized by excessive extracellular matrix (ECM) remodeling, herein ECM degradation. Fibronectin (FN) is an important component of the ECM that is produced by multiple cell types, including fibroblasts. Extra domain B (EDB) is specific for a cellular FN isoform which is found in the ECM. We sought to develop a non-invasive test to investigate whether matrix metalloproteinase 8 (MMP-8) degradation of EDB in cellular FN results in a specific protein fragment that can be assessed serologically and if levels relate to pulmonary fibrosis. METHOD Cellular FN was cleaved in vitro by MMP-8 and a protein fragment was identified by mass spectrometry. A monoclonal antibody (mAb) was generated, targeting a neo-epitope originating from EDB in cellular FN. Utilizing this mAb, a neo-epitope specific enzyme-linked immunosorbent assay (FN-EDB) was developed and technically validated. Serum FN-EDB was assessed in an IPF cohort (n=98), registered at clinicaltrials.gov (NCT02818712), and in healthy controls (n=35). RESULTS The FN-EDB assay had high specificity for the MMP-8 degraded neo-epitope and was technically robust. FN-EDB serum levels were not influenced by age, sex, ethnicity, or BMI. Moreover, FN-EDB serum levels were significantly higher in IPF patients (median 31.38 [IQR 25.79-46.84] ng/mL) as compared to healthy controls (median 28.05 [IQR 21.58-33.88] ng/mL, p=0.023). CONCLUSION We developed the neo-epitope specific FN-EDB assay, a competitive ELISA, as a tool for serological assessment of MMP-8 mediated degradation of EDB in cellular FN. This study indicates that degradation of EDB in cellular FN is elevated in IPF and warrants further investigation.
Collapse
Affiliation(s)
- Annika Hummersgaard Hansen
- Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Helene Wallem Breisnes
- Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Skovhus Prior
- Center for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus Denmark
| | - Ole Hilberg
- Medical Department Vejle Hospital, Southern Danish University Hospital, Vejle, Denmark
| | | | | | | | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark
| | | | | | | | | | - Elisabeth Bendstrup
- Center for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus Denmark
| | | |
Collapse
|
10
|
Inoue R, Yasuma T, Fridman D’Alessandro V, Toda M, Ito T, Tomaru A, D’Alessandro-Gabazza CN, Tsuruga T, Okano T, Takeshita A, Nishihama K, Fujimoto H, Kobayashi T, Gabazza EC. Amelioration of Pulmonary Fibrosis by Matrix Metalloproteinase-2 Overexpression. Int J Mol Sci 2023; 24:ijms24076695. [PMID: 37047672 PMCID: PMC10095307 DOI: 10.3390/ijms24076695] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive and fatal disease with a poor prognosis. Matrix metalloproteinase-2 is involved in the pathogenesis of organ fibrosis. The role of matrix metalloproteinase-2 in lung fibrosis is unclear. This study evaluated whether overexpression of matrix metalloproteinase-2 affects the development of pulmonary fibrosis. Lung fibrosis was induced by bleomycin in wild-type mice and transgenic mice overexpressing human matrix metalloproteinase-2. Mice expressing human matrix metalloproteinase-2 showed significantly decreased infiltration of inflammatory cells and inflammatory and fibrotic cytokines in the lungs compared to wild-type mice after induction of lung injury and fibrosis with bleomycin. The computed tomography score, Ashcroft score of fibrosis, and lung collagen deposition were significantly reduced in human matrix metalloproteinase transgenic mice compared to wild-type mice. The expression of anti-apoptotic genes was significantly increased, while caspase-3 activity was significantly reduced in the lungs of matrix metalloproteinase-2 transgenic mice compared to wild-type mice. Active matrix metalloproteinase-2 significantly decreased bleomycin-induced apoptosis in alveolar epithelial cells. Matrix metalloproteinase-2 appears to protect against pulmonary fibrosis by inhibiting apoptosis of lung epithelial cells.
Collapse
Affiliation(s)
- Ryo Inoue
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Toshiyuki Ito
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Atsushi Tomaru
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | | | - Tatsuki Tsuruga
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Tomohito Okano
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Atsuro Takeshita
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kota Nishihama
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| |
Collapse
|
11
|
Ishida Y, Kuninaka Y, Mukaida N, Kondo T. Immune Mechanisms of Pulmonary Fibrosis with Bleomycin. Int J Mol Sci 2023; 24:ijms24043149. [PMID: 36834561 PMCID: PMC9958859 DOI: 10.3390/ijms24043149] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Fibrosis and structural remodeling of the lung tissue can significantly impair lung function, often with fatal consequences. The etiology of pulmonary fibrosis (PF) is diverse and includes different triggers such as allergens, chemicals, radiation, and environmental particles. However, the cause of idiopathic PF (IPF), one of the most common forms of PF, remains unknown. Experimental models have been developed to study the mechanisms of PF, and the murine bleomycin (BLM) model has received the most attention. Epithelial injury, inflammation, epithelial-mesenchymal transition (EMT), myofibroblast activation, and repeated tissue injury are important initiators of fibrosis. In this review, we examined the common mechanisms of lung wound-healing responses after BLM-induced lung injury as well as the pathogenesis of the most common PF. A three-stage model of wound repair involving injury, inflammation, and repair is outlined. Dysregulation of one or more of these three phases has been reported in many cases of PF. We reviewed the literature investigating PF pathogenesis, and the role of cytokines, chemokines, growth factors, and matrix feeding in an animal model of BLM-induced PF.
Collapse
|
12
|
Yao RQ, Shen Z, Ma QM, Ling P, Wei CR, Zheng LY, Duan Y, Li W, Zhu F, Sun Y, Wu GS. Combination of transcriptional biomarkers and clinical parameters for early prediction of sepsis indued acute respiratory distress syndrome. Front Immunol 2023; 13:1084568. [PMID: 36685531 PMCID: PMC9846102 DOI: 10.3389/fimmu.2022.1084568] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Objective As a common yet intractable complication of severe sepsis, acute respiratory distress syndrome (ARDS) is closely associated with poor clinical outcomes and elevated medical expenses. The aim of the current study is to generate a model combining transcriptional biomarkers and clinical parameters to alarm the development of ARDS in septic patients. Methods Gene expression profile (GSE66890) was downloaded from the Gene Expression Omnibus database and clinical data were extracted. Differentially expressed genes (DEGs) from whole blood leukocytes were identified between patients with sepsis alone and septic patients who develop ARDS. ARDS prediction model was constructed using backward stepwise regression and Akaike Information Criterion (AIC). Meanwhile, a nomogram based on this model was established, with subsequent internal validation. Results A total of 57 severe septic patients were enrolled in this study, and 28 (49.1%) developed ARDS. Based on the differential expression analysis, six DEGs (BPI, OLFM4, LCN2, CD24, MMP8 and MME) were screened. According to the outcome prediction model, six valuable risk factors (direct lung injury, shock, tumor, BPI, MME and MMP8) were incorporated into a nomogram, which was used to predict the onset of ARDS in septic patients. The calibration curves of the nomogram showed good consistency between the probabilities and observed values. The decision curve analysis also revealed the potential clinical usefulness of the nomogram. The area under the receiver operating characteristic (AUROC) for the prediction of ARDS occurrence in septic patients by the nomogram was 0.86 (95% CI = 0.767-0.952). A sensitivity analysis showed that the AUROC for the prediction of ARDS development in septic patients without direct lung injury was 0.967 (95% CI = 0.896-1.0). Conclusions The nomogram based on transcriptional biomarkers and clinical parameters showed a good performance for the prediction of ARDS occurrence in septic patients.
Collapse
Affiliation(s)
- Ren-Qi Yao
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zong Shen
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Qi-Min Ma
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ping Ling
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chen-Ru Wei
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yu Duan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Wei Li
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Feng Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yu Sun
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Guo-Sheng Wu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,*Correspondence: Guo-Sheng Wu,
| |
Collapse
|
13
|
The Role of Matrix Metalloproteinase in Inflammation with a Focus on Infectious Diseases. Int J Mol Sci 2022; 23:ijms231810546. [PMID: 36142454 PMCID: PMC9500641 DOI: 10.3390/ijms231810546] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in extracellular matrix remodeling through the degradation of extracellular matrix components and are also involved in the inflammatory response by regulating the pro-inflammatory cytokines TNF-α and IL-1β. Dysregulation in the inflammatory response and changes in the extracellular matrix by MMPs are related to the development of various diseases including lung and cardiovascular diseases. Therefore, numerous studies have been conducted to understand the role of MMPs in disease pathogenesis. MMPs are involved in the pathogenesis of infectious diseases through a dysregulation of the activity and expression of MMPs. In this review, we discuss the role of MMPs in infectious diseases and inflammatory responses. Furthermore, we present the potential of MMPs as therapeutic targets in infectious diseases.
Collapse
|
14
|
Ma H, Wu X, Li Y, Xia Y. Research Progress in the Molecular Mechanisms, Therapeutic Targets, and Drug Development of Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:963054. [PMID: 35935869 PMCID: PMC9349351 DOI: 10.3389/fphar.2022.963054] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Recent studies have identified the key role of crosstalk between dysregulated epithelial cells, mesenchymal, immune, and endothelial cells in IPF. In addition, genetic mutations and environmental factors (e.g., smoking) have also been associated with the development of IPF. With the recent development of sequencing technology, epigenetics, as an intermediate link between gene expression and environmental impacts, has also been reported to be implicated in pulmonary fibrosis. Although the etiology of IPF is unknown, many novel therapeutic targets and agents have emerged from clinical trials for IPF treatment in the past years, and the successful launch of pirfenidone and nintedanib has demonstrated the promising future of anti-IPF therapy. Therefore, we aimed to gain an in-depth understanding of the underlying molecular mechanisms and pathogenic factors of IPF, which would be helpful for the diagnosis of IPF, the development of anti-fibrotic drugs, and improving the prognosis of patients with IPF. In this study, we summarized the pathogenic mechanism, therapeutic targets and clinical trials from the perspective of multiple cell types, gene mutations, epigenetic and environmental factors.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
- *Correspondence: Yong Xia,
| |
Collapse
|
15
|
Bormann T, Maus R, Stolper J, Tort Tarrés M, Brandenberger C, Wedekind D, Jonigk D, Welte T, Gauldie J, Kolb M, Maus UA. Role of matrix metalloprotease-2 and MMP-9 in experimental lung fibrosis in mice. Respir Res 2022; 23:180. [PMID: 35804363 PMCID: PMC9270768 DOI: 10.1186/s12931-022-02105-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/29/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a diffuse parenchymal lung disease characterized by exuberant deposition of extracellular matrix (ECM) proteins in the lung interstitium, which contributes to substantial morbidity and mortality in IPF patients. Matrix metalloproteinases (MMPs) are a large family of zinc-dependent endopeptidases, many of which have been implicated in the regulation of ECM degradation in lung fibrosis. However, the roles of MMP-2 and -9 (also termed gelatinases A and B) have not yet been explored in lung fibrosis in detail. METHODS AdTGF-β1 was applied via orotracheal routes to the lungs of WT, MMP-2 KO, MMP-9 KO and MMP-2/-9 dKO mice on day 0 to induce lung fibrosis. Using hydroxyproline assay, FlexiVent based lung function measurement, histopathology, western blot and ELISA techniques, we analyzed MMP-2 and MMP-9 levels in BAL fluid and lung, collagen contents in lung and lung function in mice on day 14 and 21 post-treatment. RESULT IPF lung homogenates exhibited significantly increased levels of MMP-2 and MMP-9, relative to disease controls. Enzymatically active MMP-2 and MMP-9 was increased in lungs of mice exposed to adenoviral TGF-β1, suggesting a role for these metalloproteinases in lung fibrogenesis. However, we found that neither MMP-2 or MMP-9 nor combined MMP-2/-9 deletion had any effect on experimental lung fibrosis in mice. CONCLUSION Together, our data strongly suggest that both gelatinases MMP-2 and MMP-9 play only a subordinate role in experimental lung fibrosis in mice.
Collapse
Affiliation(s)
- Tina Bormann
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany
| | - Regina Maus
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany
| | - Jennifer Stolper
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany
| | - Meritxell Tort Tarrés
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Dirk Wedekind
- Institute of Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Danny Jonigk
- Department of Pathology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Tobias Welte
- Clinic for Pneumology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,German Center for Lung Research, Partner Site BREATH, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Jack Gauldie
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Martin Kolb
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Ulrich A Maus
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany. .,German Center for Lung Research, Partner Site BREATH, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
16
|
Chuliá-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J. Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play. Int J Mol Sci 2022; 23:ijms23136894. [PMID: 35805895 PMCID: PMC9267107 DOI: 10.3390/ijms23136894] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is characterized by aberrant extracellular matrix (ECM) deposition, activation of fibroblasts to myofibroblasts and parenchymal disorganization, which have an impact on the biomechanical traits of the lung. In this context, the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) is lost. Interestingly, several MMPs are overexpressed during PF and exhibit a clear profibrotic role (MMP-2, -3, -8, -11, -12 and -28), but a few are antifibrotic (MMP-19), have both profibrotic and antifibrotic capacity (MMP7), or execute an unclear (MMP-1, -9, -10, -13, -14) or unknown function. TIMPs are also overexpressed in PF; hence, the modulation and function of MMPs and TIMP are more complex than expected. EMMPRIN/CD147 (also known as basigin) is a transmembrane glycoprotein from the immunoglobulin superfamily (IgSF) that was first described to induce MMP activity in fibroblasts. It also interacts with other molecules to execute non-related MMP aactions well-described in cancer progression, migration, and invasion. Emerging evidence strongly suggests that CD147 plays a key role in PF not only by MMP induction but also by stimulating fibroblast myofibroblast transition. In this review, we study the structure and function of MMPs, TIMPs and CD147 in PF and their complex crosstalk between them.
Collapse
Affiliation(s)
- Lourdes Chuliá-Peris
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Cristina Carreres-Rey
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
| | - Julián Carretero
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Javier Pereda
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
- Correspondence:
| |
Collapse
|
17
|
Dieffenbach PB, Mallarino Haeger C, Rehman R, Corcoran AM, Coronata AMF, Vellarikkal SK, Chrobak I, Waxman AB, Vitali SH, Sholl LM, Padera RF, Lagares D, Polverino F, Owen CA, Fredenburgh LE. A Novel Protective Role for Matrix Metalloproteinase-8 in the Pulmonary Vasculature. Am J Respir Crit Care Med 2021; 204:1433-1451. [PMID: 34550870 PMCID: PMC8865706 DOI: 10.1164/rccm.202108-1863oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Rationale: Mechanical signaling through cell-matrix interactions plays a major role in progressive vascular remodeling in pulmonary arterial hypertension (PAH). MMP-8 (matrix metalloproteinase-8) is an interstitial collagenase involved in regulating inflammation and fibrosis of the lung and systemic vasculature, but its role in PAH pathogenesis remains unexplored. Objectives: To evaluate MMP-8 as a modulator of pathogenic mechanical signaling in PAH. Methods: MMP-8 levels were measured in plasma from patients with pulmonary hypertension (PH) and controls by ELISA. MMP-8 vascular expression was examined in lung tissue from patients with PAH and rodent models of PH. MMP-8-/- and MMP-8+/+ mice were exposed to normobaric hypoxia or normoxia for 4-8 weeks. PH severity was evaluated by right ventricular systolic pressure, echocardiography, pulmonary artery morphometry, and immunostaining. Proliferation, migration, matrix component expression, and mechanical signaling were assessed in MMP-8-/- and MMP-8+/+ pulmonary artery smooth muscle cells (PASMCs). Measurements and Main Results: MMP-8 expression was significantly increased in plasma and pulmonary arteries of patients with PH compared with controls and induced in the pulmonary vasculature in rodent PH models. Hypoxia-exposed MMP-8-/- mice had significant mortality, increased right ventricular systolic pressure, severe right ventricular dysfunction, and exaggerated vascular remodeling compared with MMP-8+/+ mice. MMP-8-/- PASMCs demonstrated exaggerated proliferation and migration mediated by altered matrix protein expression, elevated integrin-β3 levels, and induction of FAK (focal adhesion kinase) and downstream YAP (Yes-associated protein)/TAZ (transcriptional coactivator with PDZ-binding motif) activity. Conclusions: MMP-8 is a novel protective factor upregulated in the pulmonary vasculature during PAH pathogenesis. MMP-8 opposes pathologic mechanobiological feedback by altering matrix composition and disrupting integrin-β3/FAK and YAP/TAZ-dependent mechanical signaling in PASMCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Izabela Chrobak
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | | - Sally H. Vitali
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts; and
| | - Lynette M. Sholl
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Robert F. Padera
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - David Lagares
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | |
Collapse
|
18
|
Yeh CF, Chou C, Yang KC. Mechanotransduction in fibrosis: Mechanisms and treatment targets. CURRENT TOPICS IN MEMBRANES 2021; 87:279-314. [PMID: 34696888 DOI: 10.1016/bs.ctm.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
To perceive and integrate the environmental cues, cells and tissues sense and interpret various physical forces like shear, tensile, and compression stress. Mechanotransduction involves the sensing and translation of mechanical forces into biochemical and mechanical signals to guide cell fate and achieve tissue homeostasis. Disruption of this mechanical homeostasis by tissue injury elicits multiple cellular responses leading to pathological matrix deposition and tissue stiffening, and consequent evolution toward pro-inflammatory/pro-fibrotic phenotypes, leading to tissue/organ fibrosis. This review focuses on the molecular mechanisms linking mechanotransduction to fibrosis and uncovers the potential therapeutic targets to halt or resolve fibrosis.
Collapse
Affiliation(s)
- Chih-Fan Yeh
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Caroline Chou
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Washington University in St. Louis, St. Louis, MO, United States
| | - Kai-Chien Yang
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
19
|
Leong E, Bezuhly M, Marshall JS. Distinct Metalloproteinase Expression and Functions in Systemic Sclerosis and Fibrosis: What We Know and the Potential for Intervention. Front Physiol 2021; 12:727451. [PMID: 34512395 PMCID: PMC8432940 DOI: 10.3389/fphys.2021.727451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic debilitating idiopathic disorder, characterized by deposition of excessive extracellular matrix (ECM) proteins such as collagen which leads to fibrosis of the skin and other internal organs. During normal tissue repair and remodeling, the accumulation and turnover of ECM proteins are tightly regulated by the interaction of matrix metalloproteinases (MMPs) and endogenous tissue inhibitors of metalloproteinases (TIMPs). SSc is associated with dysregulation of the activity of these proteolytic and inhibitory proteins within the tissue microenvironment, tipping the balance toward fibrosis. The resultant ECM accumulation further perpetuates tissue stiffness and decreased function, contributing to poor clinical outcomes. Understanding the expression and function of these endogenous enzymes and inhibitors within specific tissues is therefore critical to the development of therapies for SSc. This brief review describes recent advances in our understanding of the functions and mechanisms of ECM remodeling by metalloproteinases and their inhibitors in the skin and lungs affected in SSc. It highlights recent progress on potential candidates for intervention and therapeutic approaches for treating SSc fibrosis.
Collapse
Affiliation(s)
- Edwin Leong
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Michael Bezuhly
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Jean S Marshall
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
20
|
Xiao H, Nguyen RY, LaRanger R, Herzog EL, Mak M. Integrated computational and experimental pipeline for quantifying local cell-matrix interactions. Sci Rep 2021; 11:16465. [PMID: 34385554 PMCID: PMC8361134 DOI: 10.1038/s41598-021-95935-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 07/31/2021] [Indexed: 11/30/2022] Open
Abstract
Cellular interactions with the extracellular matrix (ECM) play a key role in modulating biological processes. While studies have identified key molecular factors of these interactions, the mechanical regulation associated with these interactions is not well characterized. To address this, we present an image analysis platform to analyze time-dependent dynamics observed in lung fibroblasts embedded in a 3D collagen matrix. Combining drug studies with quantitative analysis of cell–matrix interactions, our results are able to provide cellular level quantitative insights for mechanical and biophysical phenomena relevant to cell-ECM interactions. This system overall represents an initial pipeline for understanding cell mechanics in a 3D collagen gel and their implications in a physiologically relevant context.
Collapse
Affiliation(s)
- Hugh Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ryan Y Nguyen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ryan LaRanger
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Erica L Herzog
- Department of Medicine (Pulmonary, Critical Care and Sleep), Yale University School of Medicine, New Haven, CT, USA
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
21
|
Yue L, Shi Y, Su X, Ouyang L, Wang G, Ye T. Matrix metalloproteinases inhibitors in idiopathic pulmonary fibrosis: Medicinal chemistry perspectives. Eur J Med Chem 2021; 224:113714. [PMID: 34315043 DOI: 10.1016/j.ejmech.2021.113714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/05/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal disease with limited therapeutic options and a particularly poor prognosis. Matrix metalloproteinases (MMPs), promising targets for the treatment of IPF, have been identified as playing a pivotal role in IPF. Although the pathological processes of MMPs and IPF have been verified, there are no MMP inhibitors for the treatment of IPF in the clinic. In this review, we will present the latest developments in MMP inhibitors, including pharmacophores, binding modes, selectivity and optimization strategies. In addition, we will also discuss the future development direction of MMP inhibitors based on emerging tools and techniques.
Collapse
Affiliation(s)
- Lin Yue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaojie Shi
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xingping Su
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liang Ouyang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guan Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
22
|
Wang X, Zhang D, Fucci QA, Dollery CM, Owen CA. Surface-bound matrix metalloproteinase-8 on macrophages: Contributions to macrophage pericellular proteolysis and migration through tissue barriers. Physiol Rep 2021; 9:e14778. [PMID: 33656791 PMCID: PMC7927794 DOI: 10.14814/phy2.14778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 01/21/2023] Open
Abstract
Objective MMP‐8 binds to surface‐bound tissue inhibitor of metalloproteinase‐1 (TIMP‐1) on PMNs to promote pericellular proteolysis during the development of inflammatory diseases associated with tissue destruction. Little is known about the biology of MMP‐8 in macrophages. We tested the hypotheses that: (1) MMP‐8 and TIMP‐1 are also expressed on the surface of activated macrophages, (2) surface‐bound MMP‐8 on macrophages promotes TIMP‐resistant pericellular proteolysis and macrophage migration through tissue barriers, and (3) MMP‐8 binds to surface‐bound TIMP‐1 on macrophages. Methods Surface MMP‐8 and TIMP‐1 levels were measured on human monocyte‐derived macrophages (MDM) and/or murine macrophages using immunostaining, biotin‐labeling, and substrate cleavage methods. The susceptibility of membrane‐bound Mmp‐8 on activated macrophages from wild‐type (WT) mice to TIMPs was measured. Migration of WT and Mmp‐8−/− macrophages through models of tissue barriers in vitro and the accumulation of peritoneal macrophages in WT versus Mmp‐8−/− mice with sterile peritonitis was compared. Surface levels of Mmp‐8 were compared on activated macrophages from WT and Timp‐1−/− mice. Results Lipopolysaccharides and a cluster of differentiation 40 ligand increased surface MMP‐8 and/or TIMP‐1 staining and surface type I collagenase activity on MDM and/or murine macrophages. Activated Mmp‐8−/− macrophages degraded less type I collagen than activated WT macrophages. The surface type‐I collagenase activity on WT macrophages was resistant to inhibition by Timp‐1. Peritoneal macrophage accumulation was similar in WT and Mmp‐8−/− mice with sterile acute peritonitis. However, Mmp‐8−/− macrophages migrated less efficiently through models of tissue barriers (especially those containing type I collagen) than WT cells. Activated WT and Timp‐1−/− macrophages had similar surface‐bound Mmp‐8 levels. Conclusions MMP‐8 and TIMP‐1 are expressed on the surface of activated human MDM and murine macrophages, but Mmp‐8 is unlikely to bind to surface‐bound Timp‐1 on these cells. Surface‐bound MMP‐8 contributes to TIMP‐resistant monocyte/macrophage pericellular proteolysis and macrophage migration through collagen‐containing tissue barriers.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.,Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Quynh-Anh Fucci
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clare M Dollery
- Whittington Hospital, Wittington Health NHS Trust, London, UK
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Wang X, Rojas-Quintero J, Zhang D, Nakajima T, Walker KH, Peh HY, Li Y, Fucci QA, Tesfaigzi Y, Owen CA. A disintegrin and metalloproteinase domain-15 deficiency leads to exaggerated cigarette smoke-induced chronic obstructive pulmonary disease (COPD)-like disease in mice. Mucosal Immunol 2021; 14:342-356. [PMID: 32690871 PMCID: PMC8422911 DOI: 10.1038/s41385-020-0325-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/21/2020] [Accepted: 07/06/2020] [Indexed: 02/04/2023]
Abstract
A disintegrin and metalloproteinase domain-15 (ADAM15) is expressed by cells implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD), but its contributions to COPD are unknown. To address this gap, ADAM15 levels were measured in samples from cigarette smoke (CS)-versus air-exposed wild-type (WT) mice. CS-induced COPD-like disease was compared in CS-exposed WT, Adam15-/-, and Adam15 bone marrow chimeric mice. CS exposure increased Adam15 expression in lung macrophages and CD8+ T cells and to a lesser extent in airway epithelial cells in WT mice. CS-exposed Adam15-/- mice had greater emphysema, small airway fibrosis, and lung inflammation (macrophages and CD8+ T cells) than WT mice. Adam15 bone marrow chimera studies revealed that Adam15 deficiency in leukocytes led to exaggerated pulmonary inflammation and COPD-like disease in mice. Adam15 deficiency in CD8+ T cells was required for the exaggerated pulmonary inflammation and COPD-like disease in CS-exposed Adam15-/- mice (as assessed by genetically deleting CD8+ T cells in Adam15-/- mice). Adam15 deficiency increased pulmonary inflammation by rendering CD8+ T cells and macrophages resistant to CS-induced activation of the mitochondrial apoptosis pathway by preserving mTOR signaling and intracellular Mcl-1 levels in these cells. These results strongly link ADAM15 deficiency to the pathogenesis of COPD.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Duo Zhang
- Program in Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA, 30901, USA,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Takahiro Nakajima
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Katherine H. Walker
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hong Yong Peh
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA,Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Yuhong Li
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Quynh-Anh Fucci
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yohannes Tesfaigzi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
24
|
Atabai K, Yang CD, Podolsky MJ. You Say You Want a Resolution (of Fibrosis). Am J Respir Cell Mol Biol 2020; 63:424-435. [PMID: 32640171 DOI: 10.1165/rcmb.2020-0182tr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In pathological fibrosis, aberrant tissue remodeling with excess extracellular matrix leads to organ dysfunction and eventual morbidity. Diseases of fibrosis create significant global health and economic burdens and are often deadly. Although fibrosis has traditionally been thought of as an irreversible process, a growing body of evidence demonstrates that organ fibrosis can reverse in certain circumstances, especially if an underlying cause of injury can be removed. This body of evidence has uncovered more and more contributors to persistent and nonresolving tissue fibrosis. Here, we review the present knowledge on resolution of organ fibrosis and restoration of near-normal tissue architecture. We emphasize three critical areas of tissue homeostasis that are necessary for fibrosis resolution, namely, the elimination of matrix-producing cells, the clearance of excess matrix, and the regeneration of normal tissue constituents. In so doing, we also highlight how profibrotic pathways interact with one another and where there may be therapeutic opportunities to intervene and remediate pathological persistent fibrosis.
Collapse
Affiliation(s)
- Kamran Atabai
- Cardiovascular Research Institute.,Lung Biology Center, and.,Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Michael J Podolsky
- Cardiovascular Research Institute.,Lung Biology Center, and.,Department of Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
25
|
Evani SJ, Karna SLR, Seshu J, Leung KP. Pirfenidone regulates LPS mediated activation of neutrophils. Sci Rep 2020; 10:19936. [PMID: 33203891 PMCID: PMC7672086 DOI: 10.1038/s41598-020-76271-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Excessive inflammation or its absence may result in impaired wound healing. Neutrophils are among the first innate immune cells to arrive at the injury site. They participate in infection control and debris removal to initiate healing. If not timely resolved, neutrophils can cause excessive tissue inflammation and damage. Drugs with anti-inflammatory and anti-fibrotic effects are of promise for improving healing by balancing the primary defensive functions and excessive tissue damage actions. Of interest, pirfenidone (Pf), an FDA approved anti-fibrotic drug to treat idiopathic pulmonary fibrosis, has been shown to ameliorate inflammation in several animal models including mouse deep partial-thickness burn wounds. However, there is a lack of mechanistic insights into Pf drug action on inflammatory cells such as neutrophils. Here, we examined the treatment effects of Pf on LPS-stimulated neutrophils as a model of non-sterile inflammation. Firstly, Pf reduced chemotaxis and production of pro-inflammatory ROS, cytokines, and chemokines by LPS-activated neutrophils. Secondly, Pf increased anti-inflammatory IL-1RA and reduced neutrophil degranulation, phagocytosis, and NETosis. Thirdly, Pf affected downstream signaling kinases which might directly or indirectly influence neutrophil responses to LPS. In conclusion, the results suggest that Pf lessens the inflammatory phenotypes of LPS-activated neutrophils.
Collapse
Affiliation(s)
- Shankar J Evani
- Division of Combat Wound Repair, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Building 3610, JBSA Fort Sam Houston, San Antonio, TX, 78234-7767, USA
| | - S L Rajasekhar Karna
- Division of Combat Wound Repair, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Building 3610, JBSA Fort Sam Houston, San Antonio, TX, 78234-7767, USA
| | - Janakiram Seshu
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Kai P Leung
- Division of Combat Wound Repair, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Building 3610, JBSA Fort Sam Houston, San Antonio, TX, 78234-7767, USA.
| |
Collapse
|
26
|
Xu P, Gärtner F, Gihring A, Liu C, Burster T, Wabitsch M, Knippschild U, Paschke S. Influence of obesity on remodeling of lung tissue and organization of extracellular matrix after blunt thorax trauma. Respir Res 2020; 21:238. [PMID: 32943048 PMCID: PMC7496205 DOI: 10.1186/s12931-020-01502-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background Previously, it has been shown that obesity is a risk factor for recovery, regeneration, and tissue repair after blunt trauma and can affect the rate of muscle recovery and collagen deposition after trauma. To date, lung tissue regeneration and extracellular matrix regulation in obese mice after injury has not been investigated in detail yet. Methods This study uses an established blunt thorax trauma model to analyze morphological changes and alterations on gene and protein level in lean or obese (diet-induced obesity for 16 ± 1 week) male C57BL/6 J mice at various time-points after trauma induction (1 h, 6 h, 24 h, 72 h and 192 h). Results Morphological analysis after injury showed lung parenchyma damage at early time-points in both lean and obese mice. At later time-points a better regenerative capacity of lean mice was observed, since obese animals still exhibited alveoli collapse, wall thickness as well as remaining filled alveoli structures. Although lean mice showed significantly increased collagen and fibronectin gene levels, analysis of collagen deposition showed no difference based on colorimetric quantification of collagen and visual assessment of Sirius red staining. When investigating the organization of the ECM on gene level, a decreased response of obese mice after trauma regarding extracellular matrix composition and organization was detectable. Differences in the lung tissue between the diets regarding early responding MMPs (MMP8/9) and late responding MMPs (MMP2) could be observed on gene and protein level. Obese mice show differences in regulation of extracellular matrix components compared to normal weight mice, which results in a decreased total MMP activity in obese animals during the whole regeneration phase. Starting at 6 h post traumatic injury, lean mice show a 50% increase in total MMP activity compared to control animals, while MMP activity in obese mice drops to 50%. Conclusions In conclusion, abnormal regulation of the levels of extracellular matrix genes in the lung may contribute to an aberrant regeneration after trauma induction with a delay of repair and pathological changes of the lung tissue in obese mice.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Adrian Gihring
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Congxing Liu
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave., 53, Nur-Sultan, 010000, Republic of Kazakhstan
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Ulm University Hospital for Pediatrics and Adolescent Medicine, Eythstraße 24, 89075, Ulm, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| | - Stephan Paschke
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| |
Collapse
|
27
|
Naim A, Baig MS. Matrix metalloproteinase-8 (MMP-8) regulates the activation of hepatic stellate cells (HSCs) through the ERK-mediated pathway. Mol Cell Biochem 2020; 467:107-116. [PMID: 32108279 DOI: 10.1007/s11010-020-03705-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 02/15/2020] [Indexed: 12/11/2022]
Abstract
Hepatic stellate cells (HSCs) are known to play a key role in the progression of liver fibrosis by producing excessive extracellular matrix (ECM). Matrix metalloproteinases (MMPs) belong to a family of endopeptidases, which have a well-established role in the degradation of ECM. Our study suggests that, besides the degradation of the extracellular matrix, matrix metalloproteinase-8 (MMP-8) has a non-canonical role in activating the quiescent HSCs to myofibroblasts by regulating the expression of Col1A1 and αSMA. We have identified that MMP-8 secreted from macrophages as a response to LPS stimulation activates HSCs via ERK1/2-dependent pathway. In addition to this, we determined that MMP-8 may regulate the homodimerization of c-Jun in LX-2 cells, during the trans-differentiation process from quiescent HSC to activate myofibroblasts. Macrophage-released MMP-8 plays a master role in activating the dormant HSCs to activate myofibroblasts through the Erk-mediated pathway and Jun cellular translocation leading to liver fibrosis. Significance MMP-8 can be used as a therapeutic target against liver fibrosis.
Collapse
Affiliation(s)
- Adnan Naim
- Discipline of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, 453552, India
| | - Mirza S Baig
- Discipline of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, 453552, India.
| |
Collapse
|
28
|
Matrix metalloproteinase: An upcoming therapeutic approach for idiopathic pulmonary fibrosis. Pharmacol Res 2020; 152:104591. [PMID: 31837390 DOI: 10.1016/j.phrs.2019.104591] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
|
29
|
Increased Ratio of Matrix Metalloproteinase-9 (MMP-9)/Tissue Inhibitor Metalloproteinase-1 from Alveolar Macrophages in Chronic Asthma with a Fast Decline in FEV 1 at 5-Year Follow-up. J Clin Med 2019; 8:jcm8091451. [PMID: 31547356 PMCID: PMC6780991 DOI: 10.3390/jcm8091451] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic asthma is associated with progressive airway remodeling, which may contribute to declining lung function. An increase in matrix metalloproteinases-9 (MMP-9)/tissue inhibitor metalloproteinase-1 (TIMP-1) may indicate airway inflammation and bronchial injury. Bronchial biopsy specimens and alveolar macrophages (AMs) were obtained from patients with asthma under regular treatment with inhaled corticosteroids or combination therapy and normal subjects (n = 10). Asthmatics included those with a slow forced expiratory volume in one second (FEV1) decline (<30 mL/year, n = 13) and those with a fast FEV1 decline (≥30 mL/year, n = 8) in 5-year follow-up. Immunostaining expression of MMP-9 and TIMP-1 was detected in airway tissues. MMP-9 and TIMP-1 was measured from AMs cultured for 24 h. After the 5-year treatment, the methacholine airway hyperresponsiveness of the slow FEV1 decline group was decreased, but that of the fast FEV1 decline group was increased (PC20, provocative concentration causing a 20% decrease in FEV1, 3.12 ± 1.10 to 1.14 ± 0.34 mg/dL, p < 0.05). AMs of asthma with a fast FEV1 decline released a higher level of MMP-9 (8.52 ± 3.53 pg/mL, p < 0.05) than those of a slow FEV1 decline (0.99 ± 0.20 pg/mL). The MMP-9/TIMP ratio in the fast FEV1 decline group (0.089 ± 0.032) was higher than that of the slow FEV1 decline group (0.007 ± 0.001, p < 0.01). The annual FEV1 decline in 5 years was proportional to the level of MMP-9 (r = 57, p < 0.01) and MMP-9/TIMP-1 ratio (r = 0.58, p < 0.01). The airways of asthma with greater yearly decline in FEV1 showed an increased thickness of submucosa and strong expression of MMP-9. An increase in MMP-9 and MMP-9/TIMP-1 in airways or AMs could be indicators of chronic airway inflammation and contribute to a greater decline in lung function of patients with chronic asthma.
Collapse
|
30
|
Almadori A, Griffin M, Ryan CM, Hunt DF, Hansen E, Kumar R, Abraham DJ, Denton CP, Butler PEM. Stem cell enriched lipotransfer reverses the effects of fibrosis in systemic sclerosis. PLoS One 2019; 14:e0218068. [PMID: 31314805 PMCID: PMC6636710 DOI: 10.1371/journal.pone.0218068] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
Oro-facial fibrosis in systemic sclerosis (Scleroderma;SSc) has a major impact on mouth function, facial appearance, and patient quality of life. Lipotransfer is a method of reconstruction that can be used in the treatment of oro-facial fibrosis. The effect of this treatment not only restores oro-facial volume but has also been found to reverse the effects of oro-facial fibrosis. Adipose derived stem cells (ADSCs) within the engrafted adipose tissue have been shown to be anti-fibrotic in SSc and are proposed as the mechanism of the anti-fibrotic effect of lipotransfer. A cohort of 62 SSc patients with oro-facial fibrosis were assessed before and after stem cell enriched lipotransfer treatment. Clinical evaluation included assessment of mouth function using a validated assessment tool (Mouth Handicap in Systemic Sclerosis Scale-MHISS), validated psychological measurements and pre and post-operative volumetric assessment. In addition, to understand the mechanism by which the anti-fibrotic effect of ADSCs occur, SSc derived fibroblasts and ADSCs from this cohort of patients were co-cultured in direct and indirect culture systems and compared to monoculture controls. Cell viability, DNA content, protein secretion of known fibrotic mediators including growth factor- β1 (TGF β-1) and connective tissue growth factor (CTGF) using ELISA analysis and fibrosis gene expression using a fibrosis pathway specific qPCR array were evaluated. Mouth function (MHISS) was significantly improved (6.85±5.07) (p<0.0001) after treatment. All psychological measures were significantly improved: DAS 24 (12.1±9.5) (p<0.0001); HADS-anxiety (2.8±3.2) (p<0.0001), HADS-depression (2.0±3.1) (p<0.0001); BFNE (2.9 ± 4.3) (p<0.0001); VAS (3.56±4.1) (p<0.0001). Multiple treatments further improved mouth function (p<0.05), DAS (p<0.0001) and VAS (p = 0.01) scores. SSc fibroblast viability and proliferation was significantly reduced in co-culture compared to monoculture via a paracrine effect over 14 days (p < 0.0001). Protein secretion of transforming growth factor (TGF-β1) and connective tissue growth factor (CTGF) was significantly reduced in co-culture compared to monoculture (p < 0.0001). Multiple fibrosis associated genes were down regulated in SSc co-culture compared to monoculture after 14 days including Matrix metalloproteinase-8 (MMMP-8), Platelet derived growth factor-β (PDGF-β) and Integrin Subunit Beta 6 (ITG-β6). Autologous stem cell enriched lipotransfer significantly improved the effects of oro-facial fibrosis in SSc in this open cohort study. Lipotransfer may reduce dermal fibrosis through the suppression of fibroblast proliferation and key regulators of fibrogenesis including TG-β1 and CTGF. Our findings warrant further investigation in a randomised controlled trial.
Collapse
Affiliation(s)
- Aurora Almadori
- UCL Division of Surgery & Interventional Science, University College London, London, United Kingdom
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
- The Charles Wolfson Center for Reconstructive Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
| | - Michelle Griffin
- UCL Division of Surgery & Interventional Science, University College London, London, United Kingdom
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
- The Charles Wolfson Center for Reconstructive Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
- * E-mail: (MG); (PEMB)
| | - Caroline M. Ryan
- UCL Division of Surgery & Interventional Science, University College London, London, United Kingdom
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
| | - Debbie F. Hunt
- UCL Division of Surgery & Interventional Science, University College London, London, United Kingdom
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
| | - Esther Hansen
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
| | - Ravi Kumar
- UCL Division of Surgery & Interventional Science, University College London, London, United Kingdom
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
- The Charles Wolfson Center for Reconstructive Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
| | - David J. Abraham
- Centre for Rheumatology, UCL Division of Medicine and Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
| | - Christopher P. Denton
- Centre for Rheumatology, UCL Division of Medicine and Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
| | - Peter E. M. Butler
- UCL Division of Surgery & Interventional Science, University College London, London, United Kingdom
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
- The Charles Wolfson Center for Reconstructive Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
- Centre for Rheumatology, UCL Division of Medicine and Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
- * E-mail: (MG); (PEMB)
| |
Collapse
|
31
|
Summer R, Krishna R, Schriner D, Cuevas-Mora K, Sales D, Para R, Roman J, Nieweld C, Gochuico BR, Romero F. Matrix metalloproteinase activity in the lung is increased in Hermansky-Pudlak syndrome. Orphanet J Rare Dis 2019; 14:162. [PMID: 31272455 PMCID: PMC6610946 DOI: 10.1186/s13023-019-1143-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder characterized by oculocutaneous albinism and platelet dysfunction and can sometimes lead to a highly aggressive form of pulmonary fibrosis that mimics the fatal lung condition called idiopathic pulmonary fibrosis (IPF). Although the activities of various matrix metalloproteinases (MMPs) are known to be dysregulated in IPF, it remains to be determined whether similar changes in these enzymes can be detected in HPS. RESULTS Here, we show that transcript and protein levels as well as enzymatic activities of MMP-2 and -9 are markedly increased in the lungs of mice carrying the HPS Ap3b1 gene mutation. Moreover, immunohistochemical staining localized this increase in MMP expression to the distal pulmonary epithelium, and shRNA knockdown of the Ap3b1 gene in cultured lung epithelial cells resulted in a similar upregulation in MMP-2 and -9 expression. Mechanistically, we found that upregulation in MMP expression associated with increased activity of the serine/threonine kinase Akt, and pharmacological inhibition of this enzyme resulted in a dramatic suppression of MMP expression in Ap3b1 deficient lung epithelial cells. Similarly, levels and activity of different MMPs were also found to be increased in the lungs of mice carrying the Bloc3 HPS gene mutation and in the bronchoalveolar lavage fluid of subjects with HPS. However, an association between MMP activity and disease severity was not detected in these individuals. CONCLUSIONS In summary, our findings indicate that MMP activity is dysregulated in the HPS lung, suggesting a role for these proteases as biological markers or pathogenic players in HPS lung disease.
Collapse
Affiliation(s)
- Ross Summer
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, USA
| | - Rachana Krishna
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, USA
| | - DeLeila Schriner
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, USA
| | - Karina Cuevas-Mora
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, USA
| | - Dominic Sales
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, USA
| | - Rachel Para
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, USA
| | - Jesse Roman
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, USA
| | - Carl Nieweld
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, USA
| | - Bernadette R. Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Freddy Romero
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, USA
- Center for Translational Medicine and Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, 1020 Locust Street, JAH 354, Philadelphia, PA 19107 USA
| |
Collapse
|
32
|
Evolving Genomics of Pulmonary Fibrosis. Respir Med 2019. [DOI: 10.1007/978-3-319-99975-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Rojas-Quintero J, Wang X, Tipper J, Burkett PR, Zuñiga J, Ashtekar AR, Polverino F, Rout A, Yambayev I, Hernández C, Jimenez L, Ramírez G, Harrod KS, Owen CA. Matrix metalloproteinase-9 deficiency protects mice from severe influenza A viral infection. JCI Insight 2018; 3:99022. [PMID: 30568032 DOI: 10.1172/jci.insight.99022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 11/06/2018] [Indexed: 02/06/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) cleaves various proteins to regulate inflammatory and injury responses. However, MMP-9's activities during influenza A viral (IAV) infections are incompletely understood. Herein, plasma MMP-9 levels were increased in patients with pandemic H1N1 and seasonal IAV infections. MMP-9 lung levels were increased and localized to airway epithelial cells and leukocytes in H1N1-infected WT murine lungs. H1N1-infected Mmp-9-/- mice had lower mortality rates, reduced weight loss, lower lung viral titers, and reduced lung injury, along with lower E-cadherin shedding in bronchoalveolar lavage fluid (BALF) samples than WT mice. H1N1-infected Mmp-9-/- mice had an altered immune response to IAV with lower BALF PMN and macrophage counts, higher Th1-like CD4+ and CD8+ T cell subsets, lower T regulatory cell counts, reduced lung type I interferon levels, and higher lung interferon-γ levels. Mmp-9 bone marrow-chimera studies revealed that Mmp-9 deficiency in lung parenchymal cells protected mice from IAV-induced mortality. H1N1-infected Mmp-9-/- lung epithelial cells had lower viral titers than H1N1-infected WT cells in vitro. Thus, H1N1-infected Mmp-9-/- mice are protected from IAV-induced lung disease due to a more effective adaptive immune response to IAV and reduced epithelial barrier injury due partly to reduced E-cadherin shedding. Thus, we believe that MMP-9 is a novel therapeutic target for IAV infections.
Collapse
Affiliation(s)
- Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoyun Wang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Tipper
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama-Birmingham, Birmingham, Alabama, USA
| | - Patrick R Burkett
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Joaquin Zuñiga
- Laboratory of Immunobiology and Genetics, and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Amit R Ashtekar
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama-Birmingham, Birmingham, Alabama, USA
| | - Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA.,Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Amit Rout
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Ilyas Yambayev
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Carmen Hernández
- Laboratory of Immunobiology and Genetics, and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Mexico City, Mexico
| | - Luis Jimenez
- Laboratory of Immunobiology and Genetics, and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Gustavo Ramírez
- Laboratory of Immunobiology and Genetics, and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama-Birmingham, Birmingham, Alabama, USA
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA.,Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| |
Collapse
|
34
|
Polverino F, Rojas-Quintero J, Wang X, Petersen H, Zhang L, Gai X, Higham A, Zhang D, Gupta K, Rout A, Yambayev I, Pinto-Plata V, Sholl LM, Cunoosamy D, Celli BR, Goldring J, Singh D, Tesfaigzi Y, Wedzicha J, Olsson H, Owen CA. A Disintegrin and Metalloproteinase Domain-8: A Novel Protective Proteinase in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2018; 198:1254-1267. [PMID: 29750543 PMCID: PMC6290938 DOI: 10.1164/rccm.201707-1331oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 05/11/2018] [Indexed: 11/16/2022] Open
Abstract
RATIONALE ADAM8 (a disintegrin and metalloproteinase domain-8) is expressed by leukocytes and epithelial cells in health, but its contribution to the pathogenesis of chronic obstructive pulmonary disease (COPD) is unknown. OBJECTIVES To determine whether the expression of ADAM8 is increased in the lungs of patients with COPD and cigarette smoke (CS)-exposed mice, and whether ADAM8 promotes the development of COPD. METHODS ADAM8 levels were measured in lung, sputum, plasma, and/or BAL fluid samples from patients with COPD, smokers, and nonsmokers, and wild-type (WT) mice exposed to CS versus air. COPD-like lung pathologies were compared in CS-exposed WT versus Adam8-/- mice. MEASUREMENTS AND MAIN RESULTS ADAM8 immunostaining was reduced in macrophages, and alveolar and bronchial epithelial cells in the lungs of patients with COPD versus control subjects, and CS- versus air-exposed WT mice. ADAM8 levels were similar in plasma, sputum, and BAL fluid samples from patients with COPD and control subjects. CS-exposed Adam8-/- mice had greater airspace enlargement and airway mucus cell metaplasia than WT mice, but similar small airway fibrosis. CS-exposed Adam8-/- mice had higher lung macrophage counts, oxidative stress levels, and alveolar septal cell death rates, but lower alveolar septal cell proliferation rates and soluble epidermal growth factor receptor BAL fluid levels than WT mice. Adam8 deficiency increased lung inflammation by reducing CS-induced activation of the intrinsic apoptosis pathway in macrophages. Human ADAM8 proteolytically shed the epidermal growth factor receptor from bronchial epithelial cells to reduce mucin expression in vitro. Adam8 bone marrow chimera studies revealed that Adam8 deficiency in leukocytes and lung parenchymal cells contributed to the exaggerated COPD-like disease in Adam8-/- mice. CONCLUSIONS Adam8 deficiency increases CS-induced lung inflammation, emphysema, and airway mucus cell metaplasia. Strategies that increase or prolong ADAM8's expression in the lung may have therapeutic efficacy in COPD.
Collapse
Affiliation(s)
- Francesca Polverino
- Division of Pulmonary and Critical Care Medicine and
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | | - Xiaoyun Wang
- Division of Pulmonary and Critical Care Medicine and
| | - Hans Petersen
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Li Zhang
- Division of Pulmonary and Critical Care Medicine and
| | - Xiaoyan Gai
- Division of Pulmonary and Critical Care Medicine and
| | - Andrew Higham
- Medicines Evaluation Unit, University of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Duo Zhang
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | | | - Amit Rout
- Division of Pulmonary and Critical Care Medicine and
| | | | | | - Lynette M. Sholl
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Danen Cunoosamy
- Respiratory, Inflammation and Autoimmunity Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Bartolomé R. Celli
- Division of Pulmonary and Critical Care Medicine and
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | | - Dave Singh
- Medicines Evaluation Unit, University of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | | | - Jadwiga Wedzicha
- Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - Henric Olsson
- Respiratory, Inflammation and Autoimmunity Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine and
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
35
|
Laucho‐Contreras ME, Polverino F, Rojas‐Quintero J, Wang X, Owen CA. Club cell protein 16 (Cc16) deficiency increases inflamm-aging in the lungs of mice. Physiol Rep 2018; 6:e13797. [PMID: 30084231 PMCID: PMC6079172 DOI: 10.14814/phy2.13797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022] Open
Abstract
Low serum CC16 levels are associated with accelerated lung function decline in human population studies, but it is not known whether low serum CC16 levels contribute to lung function decline, or are an epiphenomenon. We tested the hypothesis that unchallenged Cc16-/- mice develop accelerated rates of pulmonary function test abnormalities and pulmonary pathologies over time compared with unchallenged WT mice. Respiratory mechanics, airspace enlargement, and small airway fibrosis were measured in unchallenged wild-type (WT) versus Cc16-/- mice over 6-18 months of age. Lung leukocyte counts and lung levels of metalloproteinases (Mmps), cytokines, oxidative stress, cellular senescence markers (p19 and p21), and lung cell apoptosis, and serum C-reactive protein (CRP) levels were measured in age-matched WT versus Cc16-/- mice. Unchallenged Cc16-/- mice developed greater increases in lung compliance, airspace enlargement, and small airway fibrosis than age-matched WT mice over 6-18 months of age. Cc16-/- mice had greater: (1) lung leukocyte counts; (2) lung levels of Ccl2, Ccl-5, interleukin-10, Mmp-2, and Mmp-9; (3) pulmonary oxidative stress levels, (4) alveolar septal cell apoptosis and staining for p16 and p21; and (5) serum CRP levels. Unchallenged Cc16-/- mice had greater nuclear factor-κB (NF-κB) activation in their lungs than age-matched WT mice, but similar lung levels of secretory phospholipase-A2 activity. Cc16 deficiency in mice leads spontaneously to an accelerated lung aging phenotype with exaggerated pulmonary inflammation and COPD-like lung pathologies associated with increased activation of NF- κB in the lung. CC16 augmentation strategies may reduce lung aging in CC16-deficient individuals.
Collapse
Affiliation(s)
- Maria E. Laucho‐Contreras
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
| | - Francesca Polverino
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
- The Lovelace Respiratory Research InstituteAlbuquerqueNew Mexico
| | - Joselyn Rojas‐Quintero
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
| | - Xiaoyun Wang
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
- The Lovelace Respiratory Research InstituteAlbuquerqueNew Mexico
| |
Collapse
|
36
|
Afratis NA, Klepfish M, Karamanos NK, Sagi I. The apparent competitive action of ECM proteases and cross-linking enzymes during fibrosis: Applications to drug discovery. Adv Drug Deliv Rev 2018; 129:4-15. [PMID: 29627371 DOI: 10.1016/j.addr.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/11/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Progressive loss of organ function in most organs is associated with fibrosis, a tissue state associated with abnormal matrix buildup. If highly progressive, the fibrotic process eventually leads to organ failure and death. Fibrosis is a basic connective tissue lesion defined by the increase in the amount of fibrillar extracellular matrix (ECM) components in a tissue or organ. In addition, intrinsic changes in important structural cells can induce the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix-producing myofibroblasts. ECM enzymes belonging to the family of matrix metalloproteinases (MMPs) and lysyl oxidases (LOXs) play a crucial role in ECM remodeling and regeneration. MMPs have a catalytic role in degradation of ECM, whereas LOX/LOXLs mediate ECM, especially collagen, cross-linking and stiffening. Importantly, enzymes from both families are elevated during the fibrotic response to tissue injury and its resolution. Yet, the apparent molecular competition or antagonistic activities of these enzyme families during the various stages of fibrosis is often overlooked. In this review, we discuss the diverse roles of MMPs and LOX/LOXL2 in chronic organ fibrosis. Finally, we review contemporary therapeutic strategies for fibrosis treatment, based on neutralization of MMP and LOX activity, as well as the development of novel drug delivery approaches.
Collapse
Affiliation(s)
- Nikolaos A Afratis
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mordehay Klepfish
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
37
|
Zhou Y, Horowitz JC, Naba A, Ambalavanan N, Atabai K, Balestrini J, Bitterman PB, Corley RA, Ding BS, Engler AJ, Hansen KC, Hagood JS, Kheradmand F, Lin QS, Neptune E, Niklason L, Ortiz LA, Parks WC, Tschumperlin DJ, White ES, Chapman HA, Thannickal VJ. Extracellular matrix in lung development, homeostasis and disease. Matrix Biol 2018. [PMID: 29524630 DOI: 10.1016/j.matbio.2018.03.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, United States.
| | - Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, University of Michigan, United States.
| | - Alexandra Naba
- Department of Physiology & Biophysics, University of Illinois at Chicago, United States.
| | | | - Kamran Atabai
- Lung Biology Center, University of California, San Francisco, United States.
| | | | | | - Richard A Corley
- Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, United States.
| | - Bi-Sen Ding
- Weill Cornell Medical College, United States.
| | - Adam J Engler
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, United States.
| | - Kirk C Hansen
- Biochemistry & Molecular Genetics, University of Colorado Denver, United States.
| | - James S Hagood
- Pediatric Respiratory Medicine, University of California San Diego, United States.
| | - Farrah Kheradmand
- Division of Pulmonary and Critical Care, Baylor College of Medicine, United States.
| | - Qing S Lin
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, United States.
| | - Enid Neptune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, United States.
| | - Laura Niklason
- Department of Anesthesiology, Yale University, United States.
| | - Luis A Ortiz
- Division of Environmental and Occupational Health, University of Pittsburgh, United States.
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, United States.
| | - Daniel J Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, United States.
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, University of Michigan, United States.
| | - Harold A Chapman
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, United States.
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, United States.
| |
Collapse
|
38
|
Abstract
Fibrosis is the excessive accumulation of extracellular matrix that often occurs as a wound healing response to repeated or chronic tissue injury, and may lead to the disruption of organ architecture and loss of function. Although fibrosis was previously thought to be irreversible, recent evidence indicates that certain circumstances permit the resolution of fibrosis when the underlying causes of injury are eradicated. The mechanism of fibrosis resolution encompasses degradation of the fibrotic extracellular matrix as well as elimination of fibrogenic myofibroblasts through their adaptation of various cell fates, including apoptosis, senescence, dedifferentiation, and reprogramming. In this Review, we discuss the present knowledge and gaps in our understanding of how matrix degradation is regulated and how myofibroblast cell fates can be manipulated, areas that may identify potential therapeutic approaches for fibrosis.
Collapse
|
39
|
Morrison MI, Pither TL, Fisher AJ. Pathophysiology and classification of primary graft dysfunction after lung transplantation. J Thorac Dis 2017; 9:4084-4097. [PMID: 29268419 DOI: 10.21037/jtd.2017.09.09] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The term primary graft dysfunction (PGD) incorporates a continuum of disease severity from moderate to severe acute lung injury (ALI) within 72 h of lung transplantation. It represents the most significant obstacle to achieving good early post-transplant outcomes, but is also associated with increased incidence of bronchiolitis obliterans syndrome (BOS) subsequently. PGD is characterised histologically by diffuse alveolar damage, but is graded on clinical grounds with a combination of PaO2/FiO2 (P/F) and the presence of radiographic infiltrates, with 0 being absence of disease and 3 being severe PGD. The aetiology is multifactorial but commonly results from severe ischaemia-reperfusion injury (IRI), with tissue-resident macrophages largely responsible for stimulating a secondary 'wave' of neutrophils and lymphocytes that produce severe and widespread tissue damage. Donor history, recipient health and operative factors may all potentially contribute to the likelihood of PGD development. Work that aims to minimise the incidence of PGD in ongoing, with techniques such as ex vivo perfusion of donor lungs showing promise both in research and in clinical studies. This review will summarise the current clinical status of PGD before going on to discuss its pathophysiology, current therapies available and future directions for clinical management of PGD.
Collapse
Affiliation(s)
- Morvern Isabel Morrison
- Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, UK.,Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Thomas Leonard Pither
- Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, UK.,Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Andrew John Fisher
- Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, UK.,Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
40
|
The Preventive Role of Gemfibrozil on Bleomycin-Induced Lung Injury and Fibrosis in Rats. Jundishapur J Nat Pharm Prod 2017. [DOI: 10.5812/jjnpp.64314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Funke M, Knudsen L, Lagares D, Ebener S, Probst CK, Fontaine BA, Franklin A, Kellner M, Kühnel M, Matthieu S, Grothausmann R, Chun J, Roberts JD, Ochs M, Tager AM. Lysophosphatidic Acid Signaling through the Lysophosphatidic Acid-1 Receptor Is Required for Alveolarization. Am J Respir Cell Mol Biol 2017; 55:105-16. [PMID: 27082727 DOI: 10.1165/rcmb.2015-0152oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Lysophosphatidic acid (LPA) signaling through one of its receptors, LPA1, contributes to both the development and the pathological remodeling after injury of many organs. Because we found previously that LPA-LPA1 signaling contributes to pulmonary fibrosis, here we investigated whether this pathway is also involved in lung development. Quantitative assessment of lung architecture of LPA1-deficient knock-out (KO) and wild-type (WT) mice at 3, 12, and 24 weeks of age using design-based stereology suggested the presence of an alveolarization defect in LPA1 KO mice at 3 weeks, which persisted as alveolar numbers increased in WT mice into adulthood. Across the ages examined, the lungs of LPA1 KO mice exhibited decreased alveolar numbers, septal tissue volumes, and surface areas, and increased volumes of the distal airspaces. Elastic fibers, critical to the development of alveolar septa, appeared less organized and condensed and more discontinuous in KO alveoli starting at P4. Tropoelastin messenger RNA expression was decreased in KO lungs, whereas expression of matrix metalloproteinases degrading elastic fibers was either decreased or unchanged. These results are consistent with the abnormal lung phenotype of LPA1 KO mice, being attributable to reduced alveolar septal formation during development, rather than to increased septal destruction as occurs in the emphysema of chronic obstructive pulmonary disease. Peripheral septal fibroblasts and myofibroblasts, which direct septation in late alveolarization, demonstrated reduced production of tropoelastin and matrix metalloproteinases, and diminished LPA-induced migration, when isolated from LPA1 KO mice. Taken together, our data suggest that LPA-LPA1 signaling is critically required for septation during alveolarization.
Collapse
Affiliation(s)
- Manuela Funke
- 1 Departments of Pulmonary Medicine, Inselspital Berne, and.,2 Clinical Research, University of Berne, Berne, Switzerland.,3 Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases, and
| | - Lars Knudsen
- 4 Institute of Functional and Applied Anatomy, Hannover Medical School, and Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, REBIRTH Cluster of Excellence, Hannover, Germany; and
| | - David Lagares
- 3 Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases, and
| | - Simone Ebener
- 1 Departments of Pulmonary Medicine, Inselspital Berne, and.,2 Clinical Research, University of Berne, Berne, Switzerland
| | - Clemens K Probst
- 3 Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases, and
| | - Benjamin A Fontaine
- 3 Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases, and
| | - Alicia Franklin
- 3 Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases, and
| | - Manuela Kellner
- 4 Institute of Functional and Applied Anatomy, Hannover Medical School, and Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, REBIRTH Cluster of Excellence, Hannover, Germany; and
| | - Mark Kühnel
- 4 Institute of Functional and Applied Anatomy, Hannover Medical School, and Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, REBIRTH Cluster of Excellence, Hannover, Germany; and
| | - Stephanie Matthieu
- 4 Institute of Functional and Applied Anatomy, Hannover Medical School, and Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, REBIRTH Cluster of Excellence, Hannover, Germany; and
| | - Roman Grothausmann
- 4 Institute of Functional and Applied Anatomy, Hannover Medical School, and Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, REBIRTH Cluster of Excellence, Hannover, Germany; and
| | - Jerold Chun
- 5 Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, California
| | - Jesse D Roberts
- 6 Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Matthias Ochs
- 4 Institute of Functional and Applied Anatomy, Hannover Medical School, and Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, REBIRTH Cluster of Excellence, Hannover, Germany; and
| | - Andrew M Tager
- 3 Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases, and
| |
Collapse
|
42
|
Williams GP, Nightingale P, Southworth S, Denniston AKO, Tomlins PJ, Turner S, Hamburger J, Bowman SJ, Curnow SJ, Rauz S. Conjunctival Neutrophils Predict Progressive Scarring in Ocular Mucous Membrane Pemphigoid. Invest Ophthalmol Vis Sci 2017; 57:5457-5469. [PMID: 27760272 PMCID: PMC5072540 DOI: 10.1167/iovs.16-19247] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Ocular mucous membrane pemphigoid (OcMMP) is a rare autoimmune disorder resulting in progressive conjunctival fibrosis and ocular surface failure leading to sight loss in up to 50%. This study was designed to optimize an ocular surface sampling technique for identification of novel biomarkers associated with disease activity and/or progressive fibrosis. Methods Fifty-seven patients with OcMMP underwent detailed examination of conjunctival inflammation and fibrosis using fornix depth measurement. Ocular surface impression cytology (OSIC) to sample superior bulbar conjunctiva combined with flow cytometry (OSIC-flow) profiled infiltrating leukocytes. Profiles were compared with healthy controls (HC) and disease controls (primary Sjögren's syndrome, pSS). Thirty-five OcMMP patients were followed every 3 months for 12 months. Results Overall neutrophils were elevated in OcMMP eyes when compared to pSS or HC (109 [18%] neutrophils/impression [NPI]; 2 [0.2%]; 6 [0.8%], respectively [P < 0.0001]) and in OcMMP patients with no visible inflammation when compared with HC (44.3 [7.9%]; 5.8 [0.8%]; P < 0.05). At 12 months follow-up, 53% of OcMMP eyes progressed, and this was associated with baseline conjunctival neutrophilia (P = 0.004). As a potential biomarker, a value of 44 NPI had sensitivity, specificity, and positive predictive values of 75%, 70%, and 73%, respectively. Notably, eyes with no visible inflammation and raised conjunctival neutrophils were more likely to progress and have a greater degree of conjunctival shrinkage compared to those without raised neutrophils. Conclusions These data suggest that OSIC-flow cytometric analyses may facilitate repeated patient sampling. Neutrophils may act as a biomarker for monitoring disease activity, progressive fibrosis, and response to therapy in OcMMP even when the eye appears clinically uninflamed.
Collapse
Affiliation(s)
- Geraint P Williams
- Academic Unit of Ophthalmology, Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom 2Birmingham and Midland Eye Centre, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - Peter Nightingale
- Wellcome Trust Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Sue Southworth
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - Alastair K O Denniston
- Academic Unit of Ophthalmology, Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom 2Birmingham and Midland Eye Centre, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - Paul J Tomlins
- Academic Unit of Ophthalmology, Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom 2Birmingham and Midland Eye Centre, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - Stephen Turner
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - John Hamburger
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Simon J Bowman
- Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - S John Curnow
- Academic Unit of Ophthalmology, Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom 2Birmingham and Midland Eye Centre, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| |
Collapse
|
43
|
Intestine-Derived Matrix Metalloproteinase-8 Is a Critical Mediator of Polymicrobial Peritonitis. Crit Care Med 2016; 44:e200-6. [PMID: 26496446 DOI: 10.1097/ccm.0000000000001374] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Inhibition of matrix metalloproteinase-8 improves survival following cecal ligation and puncture in mice, making it a potential therapeutic target. In the current study, we expand our understanding of the role of matrix metalloproteinase-8 in sepsis by using an adoptive transfer approach and alternative sepsis models. DESIGN We used three different sepsis models: cecal ligation and puncture, cecal slurry, and intestinal implantation. In our first model, adoptive transfer experiments were followed by cecal ligation and puncture to test the hypothesis that matrix metalloproteinase-8-containing myeloid cells are a critical factor in sepsis following cecal ligation and puncture. Our second model, cecal slurry, used intraperitoneal injections of cecal contents to induce polymicrobial peritonitis without tissue compromise in the recipient. Our third model, intestinal implantation, involved ligating and puncturing a cecum from a donor, and then removing the cecum and placing it into the recipient's peritoneal cavity. Clinically, blood samples were drawn from pediatric patients within 24 hours of meeting criteria for septic shock. SETTING Basic science laboratory. SUBJECTS Wild type and genetically modified mice. INTERVENTIONS Experimental models of sepsis. MEASUREMENTS AND MAIN RESULTS In our adoptive transfer experiments, matrix metalloproteinase-8 null mice receiving wild-type marrow had a survival advantage when compared with wild-type mice receiving matrix metalloproteinase-8 null marrow, suggesting that matrix metalloproteinase-8-containing myeloid cells are not a critical factor in sepsis following cecal ligation and puncture. In our cecal slurry model, no survival advantage was seen among matrix metalloproteinase-8 null mice. Our third model, intestinal implantation, found that mice receiving matrix metalloproteinase-8 null intestine had a survival advantage when compared with mice receiving wild-type intestine, regardless of recipient genotype. Clinically, median matrix metalloproteinase-8 serum concentrations were higher in patients with sepsis and primary intestinal pathology than in septic patients without primary intestinal pathology. CONCLUSIONS Intestine-derived matrix metalloproteinase-8 is a critical component of septic peritonitis secondary to intestinal compromise.
Collapse
|
44
|
Non-canonical role of matrix metalloprotease (MMP) in activation and migration of hepatic stellate cells (HSCs). Life Sci 2016; 155:155-60. [DOI: 10.1016/j.lfs.2016.04.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/22/2016] [Accepted: 04/24/2016] [Indexed: 11/23/2022]
|
45
|
Koo HK, Hong Y, Lim MN, Yim JJ, Kim WJ. Relationship between plasma matrix metalloproteinase levels, pulmonary function, bronchodilator response, and emphysema severity. Int J Chron Obstruct Pulmon Dis 2016; 11:1129-37. [PMID: 27313452 PMCID: PMC4890689 DOI: 10.2147/copd.s103281] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Objective Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation in the airway and lung. A protease–antiprotease imbalance has been suggested as a possible pathogenic mechanism for COPD. We evaluated the relationship between matrix metalloproteinase (MMP) levels and COPD severity. Methods Plasma levels of MMP-1, MMP-8, MMP-9, and MMP-12 were measured in 57 COPD patients and 36 normal controls. The relationship between MMP levels and lung function, emphysema index, bronchial wall thickness, pulmonary artery pressure, and quality of life was examined using general linear regression analyses. Results There were significant associations of MMP-1 with bronchodilator reversibility and of MMP-8 and MMP-9 with lung function. Also, MMP-1, MMP-8, and MMP-9 levels were correlated with the emphysema index, independent of lung function. However, MMP-12 was not associated with lung function or emphysema severity. Associations between MMP levels and bronchial wall thickness, pulmonary artery pressure, and quality of life were not statistically significant. Conclusion Plasma levels of MMP-1, MMP-8, and MMP-9 are associated with COPD severity and can be used as a biomarker to better understand the characteristics of COPD patients.
Collapse
Affiliation(s)
- Hyeon-Kyoung Koo
- Department of Internal Medicine, Division of Pulmonary and Critical Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Yoonki Hong
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Myoung Nam Lim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Jae-Joon Yim
- Department of Internal Medicine and Lung Institute, Division of Pulmonary and Critical Care Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon-si, Republic of Korea
| |
Collapse
|
46
|
Pardo A, Cabrera S, Maldonado M, Selman M. Role of matrix metalloproteinases in the pathogenesis of idiopathic pulmonary fibrosis. Respir Res 2016; 17:23. [PMID: 26944412 PMCID: PMC4779202 DOI: 10.1186/s12931-016-0343-6] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/02/2016] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and devastating lung disorder of unknown origin, with very poor prognosis and no effective treatment. The disease is characterized by abnormal activation of alveolar epithelial cells, which secrete numerous mediators involved in the expansion of the fibroblast population, its differentiation to myofibroblasts, and in the exaggerated accumulation of extracellular matrix provoking the loss of lung architecture. Among the excessively produced mediators are several matrix metalloproteases (MMPs) which may contribute to modify the lung microenvironment by various mechanisms. Thus, these enzymes can not only degrade all the components of the extracellular matrix, but they are also able to release, cleave and activate a wide range of growth factors, cytokines, chemokines and cell surface receptors affecting numerous cell functions including adhesion, proliferation, differentiation, recruiting and transmigration, and apoptosis. Therefore, dysregulated expression of MMPs may have profound impact on the biopathological mechanisms implicated in the development of IPF. This review focuses on the current and emerging evidence regarding the role of MMPs on the fibrotic processes in IPF as well as in mouse models of lung fibrosis.
Collapse
Affiliation(s)
- Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF, Mexico.
| | - Sandra Cabrera
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF, Mexico
| | - Mariel Maldonado
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF, Mexico
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México, DF, Mexico
| |
Collapse
|
47
|
Development and Validation of a Small Single-domain Antibody That Effectively Inhibits Matrix Metalloproteinase 8. Mol Ther 2016; 24:890-902. [PMID: 26775809 DOI: 10.1038/mt.2016.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 12/31/2015] [Indexed: 12/15/2022] Open
Abstract
A detrimental role for matrix metalloproteinase 8 (MMP8) has been identified in several pathological conditions, e.g., lethal hepatitis and the systemic inflammatory response syndrome. Since matrix MMP8-deficient mice are protected in the above-mentioned diseases, specific MMP8 inhibitors could be of clinical value. However, targeting a specific matrix metalloproteinase remains challenging due to the strong structural homology of matrix metalloproteinases, which form a family of 25 members in mammals. Single-domain antibodies, called nanobodies, offer a range of possibilities toward therapy since they are easy to generate, express, produce, and modify, e.g., by linkage to nanobodies directed against other target molecules. Hence, we generated small MMP8-binding nanobodies, and established a proof-of-principle for developing nanobodies that inhibit matrix metalloproteinase activity. Also, we demonstrated for the first time the possibility of expressing nanobodies systemically by in vivo electroporation of the muscle and its relevance as a potential therapy in inflammatory diseases.
Collapse
|
48
|
Bernasconi L, Ramenzoni LL, Al-Majid A, Tini GM, Graber SM, Schmidlin PR, Irani S. Elevated Matrix Metalloproteinase Levels in Bronchi Infected with Periodontopathogenic Bacteria. PLoS One 2015; 10:e0144461. [PMID: 26656474 PMCID: PMC4681451 DOI: 10.1371/journal.pone.0144461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022] Open
Abstract
Objectives To determine whether bronchial colonisations/infections with periodontopathogenic bacteria are associated with elevated inflammatory markers such as MMPs, interleukins and Tumor necrosis factor alpha in the bronchial fluid. Methods Periodontal status was assessed in consecutive outpatients planned for elective bronchoscopies, and PCR for periodontopathogenic bacteria was performed from a protected specimen brush sample taken from the bronchial mucosa. Additionally, MMPs, interleukins and Tumor necrosis factor alpha were measured in the bronchial fluid. Results Out of the four species assessed, one species was found in 13 of 91 (14%) patients, and two in 12 (13%), three in 13 (14%) and all four in 1 (1%) patient, respectively. In multiple linear regression models the presence of Treponema denticola showed a consistent pattern of positive effects in bronchial fluid (Bonferroni adjusted p-values) on the levels of MMP9 (p adj.: 0.028) and MMP12 (p adj.: 0.029). Active smoking was independently associated with increased levels of aMMP8 (p adj.: 0.005) and MMP9 (p adj.: 0.009). Levels of IL-1 ß, IL-8 and Tumor necrosis factor alpha measured in the bronchial fluid were not affected by the presence of periodontopathogenic bacteria. Conclusions Bronchial colonisation/infection with Treponema denticola and smoking are independently associated with elevated MMPs (MMP9/MMP12 and MMP8/MMP9, respectively) in the bronchial fluid.
Collapse
Affiliation(s)
- Luca Bernasconi
- Centre for Laboratory Medicine, Cantonal Hospital Aarau, Tellstrasse, CH-5001 Aarau, Switzerland
| | - Liza L. Ramenzoni
- Clinic of Preventive Dentistry, Periodontology, and Cariology, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland
| | - Ahmed Al-Majid
- Clinic of Preventive Dentistry, Periodontology, and Cariology, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland
| | - Gabrielo M. Tini
- Clinic of Pulmonary and Sleep Medicine, Cantonal Hospital Aarau, Tellstrasse, CH-5001 Aarau, Switzerland
| | - Sereina M. Graber
- Anthropological Institute and Museum, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Patrick R. Schmidlin
- Clinic of Preventive Dentistry, Periodontology, and Cariology, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland
| | - Sarosh Irani
- Clinic of Pulmonary and Sleep Medicine, Cantonal Hospital Aarau, Tellstrasse, CH-5001 Aarau, Switzerland
- * E-mail:
| |
Collapse
|
49
|
Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2015; 53:585-600. [PMID: 26121236 PMCID: PMC4742954 DOI: 10.1165/rcmb.2015-0020tr] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/29/2015] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF.
Collapse
Affiliation(s)
- Vanessa J. Craig
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California–San Diego, La Jolla, California
| | - Li Zhang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
| | - James S. Hagood
- Division of Pediatric Respiratory Medicine, University of California–San Diego, La Jolla, California, and
- Rady Children’s Hospital of San Diego, San Diego, California; and
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
50
|
Rohani MG, McMahan RS, Razumova MV, Hertz AL, Cieslewicz M, Pun SH, Regnier M, Wang Y, Birkland TP, Parks WC. MMP-10 Regulates Collagenolytic Activity of Alternatively Activated Resident Macrophages. J Invest Dermatol 2015; 135:2377-2384. [PMID: 25927164 PMCID: PMC4567949 DOI: 10.1038/jid.2015.167] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/08/2015] [Accepted: 04/20/2015] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinase-10 (MMP-10) is expressed by macrophages and epithelium in response to injury, but its functions in wound repair are unknown. We observed increased collagen deposition and skin stiffness in Mmp10(-/-) wounds, with no difference in collagen expression or reepithelialization. Increased collagen deposition in Mmp10(-/-) wounds was accompanied by less collagenolytic activity and reduced expression of specific metallocollagenases, particularly MMP-8 and MMP-13, where MMP-13 was the key collagenase. Ablation and adoptive transfer approaches and cell-based models demonstrated that the MMP-10-dependent collagenolytic activity was a product of alternatively activated (M2) resident macrophages. These data demonstrate a critical role for macrophage MMP-10 in controlling the tissue remodeling activity of macrophages and moderating scar formation during wound repair.
Collapse
Affiliation(s)
- Maryam G Rohani
- Center for Lung Biology, University of Washington, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - Ryan S McMahan
- Center for Lung Biology, University of Washington, Seattle, Washington, USA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Maria V Razumova
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Angie L Hertz
- Center for Lung Biology, University of Washington, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Maryelise Cieslewicz
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Ying Wang
- Center for Lung Biology, University of Washington, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Timothy P Birkland
- Center for Lung Biology, University of Washington, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - William C Parks
- Center for Lung Biology, University of Washington, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|