1
|
Oakes A, Liu Y, Dubielecka PM. Complement or insult: the emerging link between complement cascade deficiencies and pathology of myeloid malignancies. J Leukoc Biol 2024; 116:966-984. [PMID: 38836653 PMCID: PMC11531810 DOI: 10.1093/jleuko/qiae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The complement cascade is an ancient and highly conserved arm of the immune system. The accumulating evidence highlights elevated activity of the complement cascade in cancer microenvironment and emphasizes its effects on the immune, cancer, and cancer stroma cells, pointing to a role in inflammation-mediated etiology of neoplasms. The role the cascade plays in development, progression, and relapse of solid tumors is increasingly recognized, however its role in hematological malignancies, especially those of myeloid origin, has not been thoroughly assessed and remains obscure. As the role of inflammation and autoimmunity in development of myeloid malignancies is becoming recognized, in this review we focus on summarizing the links that have been identified so far for complement cascade involvement in the pathobiology of myeloid malignancies. Complement deficiencies are primary immunodeficiencies that cause an array of clinical outcomes including an increased risk of a range of infectious as well as local or systemic inflammatory and thrombotic conditions. Here, we discuss the impact that deficiencies in complement cascade initiators, mid- and terminal-components and inhibitors have on the biology of myeloid neoplasms. The emergent conclusions indicate that the links between complement cascade, inflammatory signaling, and the homeostasis of hematopoietic system exist, and efforts should continue to detail the mechanistic involvement of complement cascade in the development and progression of myeloid cancers.
Collapse
Affiliation(s)
- Alissa Oakes
- Department of Medicine, Alpert Medical School, Brown University, 69 Brown St, Providence, RI 02906, USA
- Division of Hematology/Oncology, Rhode Island Hospital, 69 Brown St, Providence, RI 02906, USA
- Therapeutic Sciences Graduate program, Brown University, 69 Brown St, Providence, RI 02906, USA
| | - Yuchen Liu
- Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, 22. S. Greene St., Baltimore, MD 21201-1595, USA
| | - Patrycja M Dubielecka
- Department of Medicine, Alpert Medical School, Brown University, 69 Brown St, Providence, RI 02906, USA
- Division of Hematology/Oncology, Rhode Island Hospital, 69 Brown St, Providence, RI 02906, USA
- Therapeutic Sciences Graduate program, Brown University, 69 Brown St, Providence, RI 02906, USA
- Legorreta Cancer Center, Brown University, One Hoppin St., Coro West, Suite 5.01, Providence, RI 02903, USA
| |
Collapse
|
2
|
O'Brien RM, Meltzer S, Buckley CE, Heeran AB, Nugent TS, Donlon NE, Reynolds JV, Ree AH, Redalen KR, Hafeez A, O'Ríordáin DS, Hannon RA, Neary P, Kalbassi R, Mehigan BJ, McCormick PH, Dunne C, Kelly ME, Larkin JO, O'Sullivan J, Lysaght J, Lynam-Lennon N. Complement is increased in treatment resistant rectal cancer and modulates radioresistance. Cancer Lett 2024; 604:217253. [PMID: 39278399 DOI: 10.1016/j.canlet.2024.217253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Resistance to neoadjuvant chemoradiation therapy (neo-CRT) is a significant clinical problem in the treatment of locally advanced rectal cancer. Identification of novel therapeutic targets and biomarkers predicting therapeutic response is required to improve patient outcomes. Increasing evidence supports a role for the complement system in resistance to anti-cancer therapy. In this study, increased expression of complement effectors C3 and C5 and increased production of anaphylatoxins, C3a and C5a, was observed in radioresistant rectal cancer cells. Modulation of the central complement effector, C3, was demonstrated to functionally alter the radioresponse, with C3 overexpression significantly enhancing radioresistance, whilst C3 inhibition significantly increased sensitivity to a clinically-relevant dose of radiation. Inhibition of C3 was demonstrated to increase DNA damage and alter cell cycle distribution, mediating a shift towards a radiosensitive cell cycle phenotype suggesting a role for C3 in reprogramming of the tumoural radioresponse. Expression of the complement effectors C3 and C5 was significantly increased in human rectal tumour tissue, as was expression of CFB, a component of the alternative pathway of activation. Elevated levels of C3a and C5b-9 in pre-treatment sera from rectal cancer patients was associated with subsequent poor responses to neo-CRT and poorer survival. Together these data demonstrate a role for complement in the radioresistance of rectal cancer and identify key complement components as potential biomarkers predicting response to neo-CRT and outcome in rectal cancer.
Collapse
Affiliation(s)
- Rebecca M O'Brien
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway.
| | - Croí E Buckley
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Aisling B Heeran
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Timothy S Nugent
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Department of Surgery, Beacon Hospital, Dublin, Ireland.
| | - Noel E Donlon
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Department of Surgery, Beacon Hospital, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - John V Reynolds
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Kathrine Røe Redalen
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Adnan Hafeez
- Department of Surgery, Beacon Hospital, Dublin, Ireland.
| | | | | | - Paul Neary
- Department of Surgery, Beacon Hospital, Dublin, Ireland.
| | - Reza Kalbassi
- Department of Surgery, Beacon Hospital, Dublin, Ireland.
| | - Brian J Mehigan
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - Paul H McCormick
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - Cara Dunne
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - Michael E Kelly
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - John O Larkin
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - Jacintha O'Sullivan
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Niamh Lynam-Lennon
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Yang H, Li G, Zhang J, Zhao J, Zhao Y, Wu Y, Sun Z, Song S, Zou Y, Zou Z, Han X, Deng B, Wang L, Rao H, Xu G, Wang S, Guo S, Ding H, Shi Y, Wu Y, Chen J. A novel hollow iron nanoparticle system loading PEG-Fe 3O 4 with C5a receptor antagonist for breast cancer treatment. Front Immunol 2024; 15:1466180. [PMID: 39483473 PMCID: PMC11524822 DOI: 10.3389/fimmu.2024.1466180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Breast cancer is the most diagnosed malignancy and major cause of cancer death among women population in the worldwide. Ferroptosis is a recently discovered iron-dependent regulated cell death involved in tumor progression and therapeutic response. Moreover, increasing studies have implied that ferroptosis is a promising approach to eliminating cancer cells like developing iron nanoparticles as a therapeutic agent. However, resistance to ferroptosis is a vital distinctive hallmark of cancer. Therefore, further investigation of the mechanism of ferroptosis resistance to enhance its tumor sensitivity is essential for ferroptosis-target breast cancer therapy. Our results revealed that the activation of C5a/C5aR pathway can drive resistance to ferroptosis and reshaping breast cancer immune microenvironment. Accordingly, loading PEG-Fe3O4 with C5aRA significantly improved the anti-tumor effect of PEG- Fe3O4 by inhibiting ferroptosis resistance and increasing macrophage polarization toward M1 phenotype. Our findings presented a novel cancer therapy strategy that combined cancer cell metal metabolism regulation and immunotherapy. The study also provided support for further evaluation of PEG- Fe3O4@C5aRA as a novel therapeutic strategy for breast cancer in clinical trials.
Collapse
Affiliation(s)
- Hong Yang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guiqing Li
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ji Zhang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Zhao
- Biomedical Analysis Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yunpei Zhao
- Department of Cardio-renal, Chinese People’s Liberation Army 74th Group Military Hospital, Guangzhou, China
| | - Yufei Wu
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zihan Sun
- Breast Disease Center, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuangshuang Song
- The First Affiliated Hospital of Army Military Medical University, Department of General Practice, Chongqing, China
| | - Ying Zou
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhihao Zou
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao Han
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Boshao Deng
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lulu Wang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hang Rao
- Department of General Surgery, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guilian Xu
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shufeng Wang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Sheng Guo
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huanyu Ding
- Institute of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yan Shi
- Department of General Surgery, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuzhang Wu
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian Chen
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
4
|
Liu B, Sun Y, Geng T, Wang H, Wu Z, Xu L, Zhang M, Niu X, Zhao C, Shang J, Shang F. C5AR1-induced TLR1/2 pathway activation drives proliferation and metastasis in anaplastic thyroid cancer. Mol Carcinog 2024; 63:1938-1952. [PMID: 38934768 DOI: 10.1002/mc.23784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
This study aimed to elucidate the role and mechanisms of Complement C5a receptor 1 (C5AR1) in driving the malignant progression of anaplastic thyroid carcinoma (ATC). C5AR1 expression was assessed in ATC tissues and cell lines. Functional assays evaluated the effects of C5AR1 knockdown on the malignant features of ATC cells. The interaction between C5AR1 and miR-335-5p was confirmed using a luciferase reporter assay and Fluorescence in situ hybridization, and the impact of C5AR1 knockdown on the Toll-like receptor (TLR) 1/2 signaling pathway was examined. In vivo studies evaluated the effects of C5AR1 modulation on tumor growth and metastasis. C5AR1 levels were elevated in ATC tumor samples and associated with poor survival in ATC patients. C5AR1 knockdown impeded ATC cell proliferation, migration, and invasion in vitro. MiR-335-5p was identified as an upstream regulator of C5AR1, which negatively modulates C5AR1 expression. C5AR1 knockdown diminished TLR1, TLR2, and myeloid differentiation primary response 88 (MyD88) levels, while C5AR1 overexpression activated this pathway. Blocking TLR1/2 signaling abrogated the oncogenic effects of C5AR1 overexpression. C5AR1 silencing inhibited tumor growth and lung metastasis of ATC cells in nude mice. C5AR1 contributes to ATC tumorigenesis and metastasis by activating the TLR1/2 pathway, and is negatively regulated by miR-335-5p. Targeting the miR-335-5p/C5AR1/TLR1/2 axis represents a potential therapeutic strategy for ATC.
Collapse
Affiliation(s)
- Bo Liu
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yueyao Sun
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tongyao Geng
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haobo Wang
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhenyu Wu
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lei Xu
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Miao Zhang
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xupeng Niu
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chenxu Zhao
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jin Shang
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fangjian Shang
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Felberg A, Bieńkowski M, Stokowy T, Myszczyński K, Polakiewicz Z, Kitowska K, Sądej R, Mohlin F, Kuźniewska A, Kowalska D, Stasiłojć G, Jongerius I, Spaapen R, Mesa-Guzman M, Montuenga LM, Blom AM, Pio R, Okrój M. Elevated expression of complement factor I in lung cancer cells associates with shorter survival-Potentially via non-canonical mechanism. Transl Res 2024; 269:1-13. [PMID: 38395390 DOI: 10.1016/j.trsl.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/27/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
While numerous membrane-bound complement inhibitors protect the body's cells from innate immunity's autoaggression, soluble inhibitors like complement factor I (FI) are rarely produced outside the liver. Previously, we reported the expression of FI in non-small cell lung cancer (NSCLC) cell lines. Now, we assessed the content of FI in cancer biopsies from lung cancer patients and associated the results with clinicopathological characteristics and clinical outcomes. Immunohistochemical staining intensity did not correlate with age, smoking status, tumor size, stage, differentiation grade, and T cell infiltrates, but was associated with progression-free survival (PFS), overall survival (OS) and disease-specific survival (DSS). Multivariate Cox analysis of low vs. high FI content revealed HR 0.55, 95 % CI 0.32-0.95, p=0.031 for PFS, HR 0.51, 95 % CI 0.25-1.02, p=0.055 for OS, and HR 0.32, 95 % CI 0.12-0.84, p=0.021 for DSS. Unfavorable prognosis might stem from the non-canonical role of FI, as the staining pattern did not correlate with C4d - the product of FI-supported degradation of active complement component C4b. To elucidate that, we engineered three human NSCLC cell lines naturally expressing FI with CRISPR/Cas9 technology, and compared the transcriptome of FI-deficient and FI-sufficient clones in each cell line. RNA sequencing revealed differentially expressed genes engaged in intracellular signaling pathways controlling proliferation, apoptosis, and responsiveness to growth factors. Moreover, in vitro colony-formation assays showed that FI-deficient cells formed smaller foci than FI-sufficient NSCLC cells, but their size increased when purified FI protein was added to the medium. We postulate that a non-canonical activity of FI influences cellular physiology and contributes to the poor prognosis of lung cancer patients.
Collapse
Affiliation(s)
- Anna Felberg
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 street, 80-211 Gdańsk, Poland
| | | | - Tomasz Stokowy
- Scientific Computing Group, IT Division, University of Bergen, Norway
| | - Kamil Myszczyński
- Centre of Biostatistics and Bioinformatics Analysis, Medical University of Gdańsk, Poland
| | - Zuzanna Polakiewicz
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Poland
| | - Kamila Kitowska
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Poland
| | - Rafał Sądej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Poland
| | - Frida Mohlin
- Department of Translational Medicine, Lund University, Sweden
| | - Alicja Kuźniewska
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 street, 80-211 Gdańsk, Poland
| | - Daria Kowalska
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 street, 80-211 Gdańsk, Poland
| | - Grzegorz Stasiłojć
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 street, 80-211 Gdańsk, Poland
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research, Amsterdam and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, The Netherlands; Emma Children's Hospital, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam University Medical Center, The Netherlands
| | - Robbert Spaapen
- Emma Children's Hospital, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam University Medical Center, The Netherlands
| | - Miguel Mesa-Guzman
- Department of Thoracic Surgery, Clinica Universidad de Navarra, Pamplona, Spain
| | - Luis M Montuenga
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain; Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Instituto de Investigación Sanitaria de Navarra (IdisNa), Pamplona, Spain
| | - Anna M Blom
- Department of Translational Medicine, Lund University, Sweden
| | - Ruben Pio
- Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Instituto de Investigación Sanitaria de Navarra (IdisNa), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Marcin Okrój
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 street, 80-211 Gdańsk, Poland.
| |
Collapse
|
6
|
Shu LZ, Ding YD, Zhang JY, He RS, Xiao L, Pan BX, Deng H. Interactions between MDSCs and the Autonomic Nervous System: Opportunities and Challenges in Cancer Neuroscience. Cancer Immunol Res 2024; 12:652-662. [PMID: 38568775 DOI: 10.1158/2326-6066.cir-23-0976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/11/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Myeloid-derived suppressor cells (MDSC) are a population of heterogeneous immune cells that are involved in precancerous conditions and neoplasms. The autonomic nervous system (ANS), which is composed of the sympathetic nervous system and the parasympathetic nervous system, is an important component of the tumor microenvironment that responds to changes in the internal and external environment mainly through adrenergic and cholinergic signaling. An abnormal increase of autonomic nerve density has been associated with cancer progression. As we discuss in this review, growing evidence indicates that sympathetic and parasympathetic signals directly affect the expansion, mobilization, and redistribution of MDSCs. Dysregulated autonomic signaling recruits MDSCs to form an immunosuppressive microenvironment in chronically inflamed tissues, resulting in abnormal proliferation and differentiation of adult stem cells. The two components of the ANS may also be responsible for the seemingly contradictory behaviors of MDSCs. Elucidating the underlying mechanisms has the potential to provide more insights into the complex roles of MDSCs in tumor development and lay the foundation for the development of novel MDSC-targeted anticancer strategies.
Collapse
Affiliation(s)
- Lin-Zhen Shu
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yi-Dan Ding
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jin-Yao Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Rui-Shan He
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Li Xiao
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huan Deng
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Tumor Immunology Institute, Nanchang University, Nanchang, Jiangxi, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Dai X, Xue P, Bian L. Molecular recognition and interaction between human plasminogen Kringle 5 and A2M domain in human complement C5 by biospecific methods coupled with molecular dynamics simulation. Int J Biol Macromol 2024; 270:132356. [PMID: 38754659 DOI: 10.1016/j.ijbiomac.2024.132356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
The potent angiogenesis inhibitor known as human plasminogen Kringle 5 has shown promise in the treatment of vascular disorders and malignancies. The study aimed to investigate the recognition and interaction between Kringle 5 and the A2M domain of human complement component C5 using bio-specific methodologies and molecular dynamics (MD) simulation. Initially, the specific interaction between Kringle 5 and A2M was confirmed and characterized through Ligand Blot and ELISA, yielding the dissociation constant (Kd) of 1.70 × 10-7 mol/L. Then, Kringle 5 showcased a dose-dependent inhibition of the production of C5a in lung cancer A549 cells, consequently impeding their proliferation and migration. Following the utilization of frontal affinity chromatography (FAC), it was revealed that there exists a singular binding site with the binding constant (Ka) of 3.79 × 105 L/mol. Following the implementation of homology modeling and MD optimization, the detailed results indicate that only a specific segment of the N-terminal structure of the A2M molecule engages in interaction with Kringle 5 throughout the binding process and the principal driving forces encompass electrostatic force, hydrogen bonding, and van der Waals force. In conclusion, the A2M domain of human complement C5 emerges as a plausible binding target for Kringle 5 in vivo.
Collapse
Affiliation(s)
- Xufen Dai
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Pengli Xue
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
8
|
Huang X, Nepovimova E, Adam V, Sivak L, Heger Z, Valko M, Wu Q, Kuca K. Neutrophils in Cancer immunotherapy: friends or foes? Mol Cancer 2024; 23:107. [PMID: 38760815 PMCID: PMC11102125 DOI: 10.1186/s12943-024-02004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Neutrophils play a Janus-faced role in the complex landscape of cancer pathogenesis and immunotherapy. As immune defense cells, neutrophils release toxic substances, including reactive oxygen species and matrix metalloproteinase 9, within the tumor microenvironment. They also modulate the expression of tumor necrosis factor-related apoptosis-inducing ligand and Fas ligand, augmenting their capacity to induce tumor cell apoptosis. Their involvement in antitumor immune regulation synergistically activates a network of immune cells, bolstering anticancer effects. Paradoxically, neutrophils can succumb to the influence of tumors, triggering signaling cascades such as JAK/STAT, which deactivate the immune system network, thereby promoting immune evasion by malignant cells. Additionally, neutrophil granular constituents, such as neutrophil elastase and vascular endothelial growth factor, intricately fuel tumor cell proliferation, metastasis, and angiogenesis. Understanding the mechanisms that guide neutrophils to collaborate with other immune cells for comprehensive tumor eradication is crucial to enhancing the efficacy of cancer therapeutics. In this review, we illuminate the underlying mechanisms governing neutrophil-mediated support or inhibition of tumor progression, with a particular focus on elucidating the internal and external factors that influence neutrophil polarization. We provide an overview of recent advances in clinical research regarding the involvement of neutrophils in cancer therapy. Moreover, the future prospects and limitations of neutrophil research are discussed, aiming to provide fresh insights for the development of innovative cancer treatment strategies targeting neutrophils.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic.
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| |
Collapse
|
9
|
Li D, Wang L, Zhao Z, Bai C, Li X. Enhancing prognostic prediction of invasive candidiasis among cancer patients with a serum C5a-based scoring model. Support Care Cancer 2024; 32:356. [PMID: 38750396 DOI: 10.1007/s00520-024-08567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
PURPOSE Invasive candidiasis poses a life-threatening risk, and early prognosis assessment is vital for timely interventions to reduce mortality. Serum C5a levels have recently been linked to prognosis, but confirmation in cancer patients is pending. METHODS We detected the concentrations of serum C5a in hospitalized cancer patients with invasive candidiasis from 2020 to 2023, and retrospectively analyzed the clinical data. RESULTS 372 cases were included in this study, with a 90-day mortality rate of 21.8%. Candida albicans (48.7%) remained the predominant pathogen, followed by Candida glabrata (25.5%), Candida tropicalis (12.4%), and Candida parapsilosis (8.3%). Gastrointestinal cancer was the most diagnosed pathology type (37.6%). Serum C5a demonstrated a noteworthy correlation with 90-day mortality, and employing a cutoff value of 36.7 ng/ml revealed significantly higher 90-day mortality in low-C5a patients (41.2%) compared to high-C5a patients (6.3%) (p < 0.001). We also identified no source control, no surgery, metastasis, or chronic renal failure independently correlated with the 90-day mortality. Based on this, a prognostic model combining C5a and clinical parameters was constructed, which performed better than models built solely on C5a or clinical parameters. Furthermore, we weighted scores to each parameter in the model and presented diagnostic sensitivity and specificity corresponding to different score points calculated by the model. CONCLUSION We constructed a prognostic scoring model including serum C5a and clinical parameters, which would contribute to precise prognosis assessment and benefit the outcome among cancer patients.
Collapse
Affiliation(s)
- Ding Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, 300060, China.
| | - Lin Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Zhihong Zhao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Changsen Bai
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Xichuan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Binshuixi Road, Xiqing District, Tianjin, 300387, China.
| |
Collapse
|
10
|
Perrino MR, Ahmari N, Hall A, Jackson M, Na Y, Pundavela J, Szabo S, Woodruff TM, Dombi E, Kim MO, Köhl J, Wu J, Ratner N. C5aR plus MEK inhibition durably targets the tumor milieu and reveals tumor cell phagocytosis. Life Sci Alliance 2024; 7:e202302229. [PMID: 38458648 PMCID: PMC10923703 DOI: 10.26508/lsa.202302229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/10/2024] Open
Abstract
Plexiform neurofibromas (PNFs) are nerve tumors caused by loss of NF1 and dysregulation of RAS-MAPK signaling in Schwann cells. Most PNFs shrink in response to MEK inhibition, but targets with increased and durable effects are needed. We identified the anaphylatoxin C5a as increased in PNFs and expressed largely by PNF m acrophages. We defined pharmacokinetic and immunomodulatory properties of a C5aR1/2 antagonist and tested if peptide antagonists augment the effects of MEK inhibition. MEK inhibition recruited C5AR1 to the macrophage surface; short-term inhibition of C5aR elevated macrophage apoptosis and Schwann cell death, without affecting MEK-induced tumor shrinkage. PNF macrophages lacking C5aR1 increased the engulfment of dying Schwann cells, allowing their visualization. Halting combination therapy resulted in altered T-cell distribution, elevated Iba1+ and CD169+ immunoreactivity, and profoundly altered cytokine expression, but not sustained trumor shrinkage. Thus, C5aRA inhibition independently induces macrophage cell death and causes sustained and durable effects on the PNF microenvironment.
Collapse
Affiliation(s)
- Melissa R Perrino
- https://ror.org/01hcyya48 Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Niousha Ahmari
- https://ror.org/01hcyya48 Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ashley Hall
- https://ror.org/01hcyya48 Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mark Jackson
- https://ror.org/01hcyya48 Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Youjin Na
- https://ror.org/01hcyya48 Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jay Pundavela
- https://ror.org/01hcyya48 Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sara Szabo
- https://ror.org/01hcyya48 Departmentd of Pediatrics and Pediatric Pathology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| | - Eva Dombi
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Mi-Ok Kim
- Department Biostatistics, University of California, San Francisco, CA, USA
| | - Jörg Köhl
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Institute for Systemic Inflammation Research, Lübeck, Germany
- https://ror.org/01hcyya48 Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jianqiang Wu
- https://ror.org/01hcyya48 Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Nancy Ratner
- https://ror.org/01hcyya48 Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
11
|
Flippot R, Teixeira M, Rey-Cardenas M, Carril-Ajuria L, Rainho L, Naoun N, Jouniaux JM, Boselli L, Naigeon M, Danlos FX, Escudier B, Scoazec JY, Cassard L, Albiges L, Chaput N. B cells and the coordination of immune checkpoint inhibitor response in patients with solid tumors. J Immunother Cancer 2024; 12:e008636. [PMID: 38631710 PMCID: PMC11029261 DOI: 10.1136/jitc-2023-008636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
Immunotherapy profoundly changed the landscape of cancer therapy by providing long-lasting responses in subsets of patients and is now the standard of care in several solid tumor types. However, immunotherapy activity beyond conventional immune checkpoint inhibition is plateauing, and biomarkers are overall lacking to guide treatment selection. Most studies have focused on T cell engagement and response, but there is a growing evidence that B cells may be key players in the establishment of an organized immune response, notably through tertiary lymphoid structures. Mechanisms of B cell response include antibody-dependent cellular cytotoxicity and phagocytosis, promotion of CD4+ and CD8+ T cell activation, maintenance of antitumor immune memory. In several solid tumor types, higher levels of B cells, specific B cell subpopulations, or the presence of tertiary lymphoid structures have been associated with improved outcomes on immune checkpoint inhibitors. The fate of B cell subpopulations may be widely influenced by the cytokine milieu, with versatile roles for B-specific cytokines B cell activating factor and B cell attracting chemokine-1/CXCL13, and a master regulatory role for IL-10. Roles of B cell-specific immune checkpoints such as TIM-1 are emerging and could represent potential therapeutic targets. Overall, the expanding field of B cells in solid tumors of holds promise for the improvement of current immunotherapy strategies and patient selection.
Collapse
Affiliation(s)
- Ronan Flippot
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Marcus Teixeira
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Macarena Rey-Cardenas
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Lucia Carril-Ajuria
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
- Medical Oncology, CHU Brugmann, Brussels, Belgium
| | - Larissa Rainho
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Natacha Naoun
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Jean-Mehdi Jouniaux
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Lisa Boselli
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Marie Naigeon
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Francois-Xavier Danlos
- LRTI, INSERM U1015, Gustave Roussy, Villejuif, France
- Drug Development Department, Gustave Roussy, Villejuif, France
| | - Bernard Escudier
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | | | - Lydie Cassard
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Laurence Albiges
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Nathalie Chaput
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
12
|
Li Y, Liu W, Xu H, Zhou Y, Xie W, Guo Y, Liao Z, Jiang X, Liu J, Ren C. Aptamers combined with immune checkpoints for cancer detection and targeted therapy: A review. Int J Biol Macromol 2024; 262:130032. [PMID: 38342267 DOI: 10.1016/j.ijbiomac.2024.130032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
In recent years, remarkable strides have been made in the field of immunotherapy, which has emerged as a standard treatment for many cancers. As a kind of immunotherapy drug, monoclonal antibodies employed in immune checkpoint therapy have proven beneficial for patients with diverse cancer types. However, owing to the extensive heterogeneity of clinical responses and the complexity and variability of the immune system and tumor microenvironment (TME), accurately predicting its efficacy remains a challenge. Recent advances in aptamers provide a promising approach for monitoring alterations within the immune system and TME, thereby facilitating targeted immunotherapy, particularly focused on immune checkpoint blockade, with enhanced antitumor efficiency. Aptamers have been widely used in tumor cell detection, biosensors, drug discovery, and biomarker screening due to their high specificity and high affinity with their targets. This review aims to comprehensively examine the research status and progress of aptamers in cancer diagnosis and immunotherapy, with a specific emphasis on those related to immune checkpoints. Additionally, we will discuss the future research directions and potential therapeutic targets for aptamer-based immune checkpoint therapy, aiming to provide a theoretical basis for targeting immunotherapy molecules and blocking tumor immune escape.
Collapse
Affiliation(s)
- Yihan Li
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Weidong Liu
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Hongjuan Xu
- NHC Key Laboratory of Biological Nanotechnology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yao Zhou
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Wen Xie
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Youwei Guo
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Ziling Liao
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Xingjun Jiang
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jie Liu
- Department of Critical care medicine, Hainan Hospital of Chinese PLA General Hosptial; project supported by Hainan Province Clinical Medical Center, China.
| | - Caiping Ren
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
13
|
Luan X, Lei T, Fang J, Liu X, Fu H, Li Y, Chu W, Jiang P, Tong C, Qi H, Fu Y. Blockade of C5a receptor unleashes tumor-associated macrophage antitumor response and enhances CXCL9-dependent CD8 + T cell activity. Mol Ther 2024; 32:469-489. [PMID: 38098230 PMCID: PMC10861991 DOI: 10.1016/j.ymthe.2023.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/17/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023] Open
Abstract
Macrophages play a crucial role in shaping the immune state within the tumor microenvironment (TME) and are often influenced by tumors to hinder antitumor immunity. However, the underlying mechanisms are still elusive. Here, we observed abnormal expression of complement 5a receptor (C5aR) in human ovarian cancer (OC), and identified high levels of C5aR expression on tumor-associated macrophages (TAMs), which led to the polarization of TAMs toward an immunosuppressive phenotype. C5aR knockout or inhibitor treatment restored TAM antitumor response and attenuated tumor progression. Mechanistically, C5aR deficiency reprogrammed macrophages from a protumor state to an antitumor state, associating with the upregulation of immune response and stimulation pathways, which in turn resulted in the enhanced antitumor response of cytotoxic T cells in a manner dependent on chemokine (C-X-C motif) ligand 9 (CXCL9). The pharmacological inhibition of C5aR also improved the efficacy of immune checkpoint blockade therapy. In patients, C5aR expression associated with CXCL9 production and infiltration of CD8+ T cells, and a high C5aR level predicted poor clinical outcomes and worse benefits from anti-PD-1 therapy. Thus, our study sheds light on the mechanisms underlying the modulation of TAM antitumor immune response by the C5a-C5aR axis and highlights the potential of targeting C5aR for clinical applications.
Collapse
Affiliation(s)
- Xiaojin Luan
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ting Lei
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jie Fang
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Xue Liu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Huijia Fu
- Department of Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yiran Li
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Chu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Jiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chao Tong
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Hongbo Qi
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China.
| | - Yong Fu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
14
|
Panebianco M, Ciccarese C, Strusi A, Beccia V, Carbone C, Agostini A, Piro G, Tortora G, Iacovelli R. The Role of the Complement in Clear Cell Renal Carcinoma (ccRCC)-What Future Prospects Are There for Its Use in Clinical Practice? Cancers (Basel) 2024; 16:490. [PMID: 38339243 PMCID: PMC10854780 DOI: 10.3390/cancers16030490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
In recent years, the first-line available therapeutic options for metastatic renal cell carcinoma (mRCC) have radically changed with the introduction into clinical practice of new immune checkpoint inhibitor (ICI)-based combinations. Many efforts are focusing on identifying novel prognostic and predictive markers in this setting. The complement system (CS) plays a central role in promoting the growth and progression of mRCC. In particular, mRCC has been defined as an "aggressive complement tumor", which encompasses a group of malignancies with poor prognosie and highly expressed complement components. Several preclinical and retrospective studies have demonstrated the negative prognostic role of the complement in mRCC; however, there is little evidence on its possible role as a predictor of the response to ICIs. The purpose of this review is to explore more deeply the physio-pathological role of the complement in the development of RCC and its possible future use in clinical practice as a prognostic and predictive factor.
Collapse
Affiliation(s)
- Martina Panebianco
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Chiara Ciccarese
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Alessandro Strusi
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| | - Viria Beccia
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Antonio Agostini
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Geny Piro
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Giampaolo Tortora
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| | - Roberto Iacovelli
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| |
Collapse
|
15
|
Detsika MG, Palamaris K, Dimopoulou I, Kotanidou A, Orfanos SE. The complement cascade in lung injury and disease. Respir Res 2024; 25:20. [PMID: 38178176 PMCID: PMC10768165 DOI: 10.1186/s12931-023-02657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The complement system is an important arm of immune defense bringing innate and adaptive immunity. Although originally regarded as a major complementary defense mechanism against pathogens, continuously emerging evidence has uncovered a central role of this complex system in several diseases including lung pathologies. MAIN BODY Complement factors such as anaphylatoxins C3a and C5a, their receptors C3aR, C5aR and C5aR2 as well as complement inhibitory proteins CD55, CD46 and CD59 have been implicated in pathologies such as the acute respiratory distress syndrome, pneumonia, chronic obstructive pulmonary disease, asthma, interstitial lung diseases, and lung cancer. However, the exact mechanisms by which complement factors induce these diseases remain unclear. Several complement-targeting monoclonal antibodies are reported to treat lung diseases. CONCLUSIONS The complement system contributes to the progression of the acute and chronic lung diseases. Better understanding of the underlying mechanisms will provide groundwork to develop new strategy to target complement factors for treatment of lung diseases.
Collapse
Affiliation(s)
- M G Detsika
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece.
| | - K Palamaris
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - I Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece
| | - A Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece
| | - S E Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece.
| |
Collapse
|
16
|
Meri S, Magrini E, Mantovani A, Garlanda C. The Yin Yang of Complement and Cancer. Cancer Immunol Res 2023; 11:1578-1588. [PMID: 37902610 DOI: 10.1158/2326-6066.cir-23-0399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023]
Abstract
Cancer-related inflammation is a crucial component of the tumor microenvironment (TME). Complement activation occurs in cancer and supports the development of an inflammatory microenvironment. Complement has traditionally been considered a mechanism of immune resistance against cancer, and its activation is known to contribute to the cytolytic effects of antibody-based immunotherapeutic treatments. However, several studies have recently revealed that complement activation may exert protumoral functions by sustaining cancer-related inflammation and immunosuppression through different molecular mechanisms, targeting both the TME and cancer cells. These new discoveries have revealed that complement manipulation can be considered a new strategy for cancer therapies. Here we summarize our current understanding of the mechanisms by which the different elements of the complement system exert antitumor or protumor functions, both in preclinical studies and in human tumorigenesis. Complement components can serve as disease biomarkers for cancer stratification and prognosis and be exploited for tumor treatment.
Collapse
Affiliation(s)
- Seppo Meri
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University and University Hospital of Helsinki, Helsinki, Finland
| | | | - Alberto Mantovani
- IRCCS-Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Cecilia Garlanda
- IRCCS-Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
17
|
Cheng D, Wang J, Wang Y, Xue Y, Yang Q, Yang Q, Zhao H, Huang J, Peng X. Chemokines: Function and therapeutic potential in bone metastasis of lung cancer. Cytokine 2023; 172:156403. [PMID: 37871366 DOI: 10.1016/j.cyto.2023.156403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Lung cancer is a rapidly progressing disease with a poor prognosis. Bone metastasis is commonly found in 40.6% of advanced-stage patients. The mortality rate of lung cancer patients with bone metastasis can be significantly decreased by implementing novel diagnostic techniques, improved staging and classification systems, precise surgical interventions, and advanced treatment modalities. However, it is important to note that there is currently a lack of radical procedures available for these patients due to the development of drug resistance. Consequently, palliative care approaches are commonly employed in clinical practice. Therefore, new understandings of the process of bone metastasis of lung cancer are critical for developing better treatment strategies to improve patient's clinical cure rate and quality of life. Chemokines are cell-secreted small signaling proteins in cancer occurrence, proliferation, invasion, and metastasis. In this study, we review the development of bone metastasis in lung cancer and discuss the mechanisms of specific chemokine families (CC, CXC, CX3C, and XC) in regulating the biological activities of tumors and promoting bone metastasis. We also highlight some preclinical studies and clinical trials on chemokines for lung cancer and bone metastasis.
Collapse
Affiliation(s)
- Dezhou Cheng
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiancheng Wang
- Department of Radiology, The Second People's Hospital of Jingzhou, China
| | - Yiling Wang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yanfang Xue
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qing Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qun Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huichuan Zhao
- Department of Pathology of the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jinbai Huang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Department of Medical Imaging, the First Affiliated Hospital of Yangtze University, and School of Medicine of Yangtze University, Jingzhou, Hubei, China.
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
18
|
Molika P, Leetanaporn K, Rungkamoltip P, Roytrakul S, Hanprasertpong J, Navakanitworakul R. Proteomic analysis of small extracellular vesicles unique to cervical cancer. Transl Cancer Res 2023; 12:3113-3128. [PMID: 38130315 PMCID: PMC10731333 DOI: 10.21037/tcr-23-517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/22/2023] [Indexed: 12/23/2023]
Abstract
Background Cervical cancer (CC) is the fourth most common cancer in females worldwide. Existing biomarkers for CC, such as squamous cell carcinoma antigens, show low specificity. Hence, a novel biomarker for the diagnosis of CC is required. Through proteomic analysis, this study aimed to distinguish between the small extracellular vesicle (sEV) protein profiles of healthy controls (HC) and CC sera and to identify potential sEV proteins that can serve as biomarkers for CC diagnosis. Methods The number and size distribution of sEVs in HC and CC sera were measured using nanoparticle tracking analysis. Differential ultracentrifugation combined with size-exclusion chromatography was used to isolate and purify sEVs. Liquid chromatography-tandem mass spectrometry was used to identify and compare the protein profiles between patients with CC and HC. Differentially expressed extracellular vesicle (EV) proteins were validated using The Cancer Genome Atlas database. Results The EV particle concentration in patients with CC was marginally higher than that in HC. Proteomic and functional protein analyses revealed a difference in the EV protein profiles between HC and CC and identified proteins that can serve as biomarkers for CC. Conclusions This study provides insights into the potential of sEVs as less invasive biomarkers for CC diagnosis. Validation with a well-designed cohort should be performed to determine the clinical diagnostic value of specific protein markers for CC.
Collapse
Affiliation(s)
- Piyatida Molika
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Kittinun Leetanaporn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Phetploy Rungkamoltip
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Jitti Hanprasertpong
- Department of Research and Medical Innovation, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Raphatphorn Navakanitworakul
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
19
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
20
|
Li J, Zhu Z, Zhu Y, Li J, Li K, Zhong W. METTL3-mediated m6A methylation of C1qA regulates the Rituximab resistance of diffuse large B-cell lymphoma cells. Cell Death Discov 2023; 9:405. [PMID: 37907575 PMCID: PMC10618261 DOI: 10.1038/s41420-023-01698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Rituximab has been incorporated into the standard treatment regimen for diffuse large B-cell lymphoma (DLBCL), and induces the death of tumor cells via complement-dependent cytotoxicity (CDC). Unfortunately, the resistance of DLBCL cells to Rituximab limits its clinical usefulness. It remains unclear whether the complement system is related to Rituximab resistance in DLBCL. A Rituximab-resistant DLBCL cell line (Farage/R) was generated under the stress of Rituximab. Constituent proteins of the complement system in wild-type Farage cells (Farage/S) and Farage/R cells were analyzed by qPCR, western blotting, and immunofluorescence. In vitro and in vivo knockdown and overexpression studies confirmed that the complement 1Q subcomponent A chain (C1qA) was a regulator of Rituximab resistance. Finally, the mechanism by which C1qA is regulated by m6A methylation was explored. The reader and writer were identified by pull-down studies and RIP-qPCR. Activity of the complement system in Farage/R cells was suppressed. C1qA expression was reduced in Farage/R cells due to post-transcriptional regulation. Furthermore, in vitro and in vivo results showed that C1qA knockdown in Farage/S cells decreased their sensitivity to Rituximab, and C1qA overexpression in Farage/R cells attenuated the Rituximab resistance of those cells. Moreover, METTL3 and YTHDF2 were proven to be the reader and writer for m6A methylation of C1qA, respectively. Knockdown of METTL3 or YTHDF2 in Farage/R cells up-regulated C1qA expression and reduced their resistance to Rituximab. In summary, the aberrant downregulation of C1qA was related to Rituximab resistance in DLBCL cells, and C1qA was found to be regulated by METTL3- and YTHDF2-mediated m6A methylation. Enhancing the response of the complement system via regulation of C1qA might be an effective strategy for inhibiting Rituximab resistance in DLBCL.
Collapse
Affiliation(s)
- Junping Li
- Department of Geriatrics, Hematology & Oncology Ward, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Zhigang Zhu
- Department of Geriatrics, Hematology & Oncology Ward, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Yuan Zhu
- Department of Geriatrics, Hematology & Oncology Ward, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Jinqing Li
- Department of Geriatrics, Hematology & Oncology Ward, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Kangbao Li
- Department of Geriatrics, Gastroenterology Ward, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510180, Guangzhou, Guangdong, China.
| | - Weijie Zhong
- Department of Geriatrics, Hematology & Oncology Ward, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510180, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Yang Y, Xu S, Jia G, Yuan F, Ping J, Guo X, Tao R, Shu XO, Zheng W, Long J, Cai Q. Integrating genomics and proteomics data to identify candidate plasma biomarkers for lung cancer risk among European descendants. Br J Cancer 2023; 129:1510-1515. [PMID: 37679517 PMCID: PMC10628278 DOI: 10.1038/s41416-023-02419-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Plasma proteins are potential biomarkers for complex diseases. We aimed to identify plasma protein biomarkers for lung cancer. METHODS We investigated genetically predicted plasma levels of 1130 proteins in association with lung cancer risk among 29,266 cases and 56,450 controls of European descent. For proteins significantly associated with lung cancer risk, we evaluated associations of genetically predicted expression of their coding genes with the risk of lung cancer. RESULTS Nine proteins were identified with genetically predicted plasma levels significantly associated with overall lung cancer risk at a false discovery rate (FDR) of <0.05. Proteins C2, MICA, AIF1, and CTSH were associated with increased lung cancer risk, while proteins SFTPB, HLA-DQA2, MICB, NRP1, and GMFG were associated with decreased lung cancer risk. Stratified analyses by histological types revealed the cross-subtype consistency of these nine associations and identified an additional protein, ICAM5, significantly associated with lung adenocarcinoma risk (FDR < 0.05). Coding genes of NRP1 and ICAM5 proteins are located at two loci that have never been reported by previous GWAS. Genetically predicted blood levels of genes C2, AIF1, and CTSH were associated with lung cancer risk, in directions consistent with those shown in protein-level analyses. CONCLUSION Identification of novel plasma protein biomarkers provided new insights into the biology of lung cancer.
Collapse
Affiliation(s)
- Yaohua Yang
- Center for Public Health Genomics, Department of Public Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Shuai Xu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fangcheng Yuan
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
22
|
Zhang C, Cao K, Yang M, Wang Y, He M, Lu J, Huang Y, Zhang G, Liu H. C5aR1 blockade reshapes immunosuppressive tumor microenvironment and synergizes with immune checkpoint blockade therapy in high-grade serous ovarian cancer. Oncoimmunology 2023; 12:2261242. [PMID: 37791232 PMCID: PMC10543342 DOI: 10.1080/2162402x.2023.2261242] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
High-grade serous ovarian cancer (HGSC), with a modest response to immune checkpoint blockade (ICB) targeting PD-1/PD-L1 monotherapy, is densely infiltrated by M2-polarized tumor-associated macrophages (TAMs) and regulatory T (Treg) cells. The complement C5a/C5aR1 axis contributes to the programming of the immunosuppressive phenotype of TAMs in solid tumors and represents a promising immunomodulatory target for treating HGSCs. Here, we aimed to identify the relevance of C5aR1 in prognosis, immune microenvironment, and immunotherapy response in HGSCs. The expression and relationship of C5aR1 with tumor-infiltrating immune cells were assessed by immunohistochemistry and flow cytometry in the training cohort (n = 120) and fresh HGSC tissues (n = 36). Transcriptomic analyses of the xenografts delineated the mechanisms driving the immunomodulatory activity of PMX53, an orally bioavailable C5aR1 inhibitor. Therapeutic relevance was confirmed in ex vivo tumor cultures and The Cancer Genome Atlas (TCGA) datasets. C5aR1 expression independently predicted dismal prognosis and was linked to the immunoevasive subtype of HGSC, characterized by increased infiltration of pro-tumor cells (Treg cells, M2-polarized macrophages, and neutrophils) and impaired CD8+T functions. PMX53 antagonized subcutaneous tumor growth, modulated immunosuppressive mechanisms and synergized with aPD-1 in several tumor types. Single-cell RNA-seq analysis revealed predominant C5aR1 expression in TAMs, with an immunosuppressive-related expression signature in C5aR1+TAMs. Furthermore, the combination of C5aR1 and PD-L1 was associated with specific molecular characteristics and matched clinical response annotations. Therefore, the abundance of C5aR1 could predict an inferior prognosis in HGSCs, and incorporating PD-L1 may serve as a novel predictive biomarker to guide therapeutic options.
Collapse
Affiliation(s)
- Chen Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Kankan Cao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Moran Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yiying Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Mengdi He
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jiaqi Lu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yan Huang
- Department of Gynecologic Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Guodong Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Haiou Liu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Kauser S, Mughees M, Mangangcha IR, Swami S, Wajid S. Secretome profiling of Artemisia absinthium extract-loaded polymeric nanoparticle-treated MCF-7 and MDA-MB-231 revealed perturbation in microtubule assembly and cell migration. Front Oncol 2023; 13:1209168. [PMID: 37719007 PMCID: PMC10502211 DOI: 10.3389/fonc.2023.1209168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/04/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Artemisia absinthium (wormwood) exhibits anticancer properties by inhibiting proliferation and causing cell death in breast cancer. Targeted drug delivery of A. absinthium nanoformulation using N-isopropyl acrylamide, N-vinyl pyrrolidone, and acrylic acid-based polymeric nanoparticles (NVA-AA NPs) was ensured by utilizing features of the tumor microenvironment, although their mechanism of action involved in cytotoxicity remains unknown. Methods The present study employed nano LC-MS/MS to identify differences in secretory protein expression associated with the treatment of breast cancer cell lines (MCF-7; MDA-MB-231) by NVA-AA NPs for the determination of affected pathways and easily accessible therapeutic targets. Different bioinformatics tools were used to identify signature differentially expressed proteins (DEPs) using survival analysis by GENT2 and correlation analysis between their mRNA expressions and sensitivity toward small-molecule drugs as well as immune cell infiltration by GSCA. Results Analysis by GENT2 revealed 22 signature DEPs with the most significant change in their expression regulation, namely, gelsolin, alpha-fetoprotein, complement component C3, C7, histone H2B type 1-K, histone H2A.Z, H2AX, heat shock cognate 71 kDa protein, heat shock 70 kDa protein 1-like, cytochrome c somatic, GTP-binding nuclear protein Ran, tubulin beta chain, tubulin alpha-1B chain, tubulin alpha-1C chain, phosphoglycerate mutase 1, kininogen 1, carboxypeptidase N catalytic chain, fibulin-1, peroxiredoxins 4, lactate dehydrogenase C, SPARC, and SPARC-like protein 1. Correlation analysis between their mRNA expressions versus immune cell infiltrates showed a positive correlation with antitumor immune response elicited by these NPs as well as a correlation with drug response shown by the GDSC and CTRP drugs in different cancer cells. Discussion Our results suggest that NVA-AA NPs were able to invade the tumor microenvironment; transformed the communication network between the cancer cells; affected potential drivers of microtubular integrity, nucleosome assembly, and cell cycle; and eventually caused cell death.
Collapse
Affiliation(s)
- Sana Kauser
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd Mughees
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | | | - Sanskriti Swami
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
24
|
Jordaens S, Oeyen E, Willems H, Ameye F, De Wachter S, Pauwels P, Mertens I. Protein Biomarker Discovery Studies on Urinary sEV Fractions Separated with UF-SEC for the First Diagnosis and Detection of Recurrence in Bladder Cancer Patients. Biomolecules 2023; 13:932. [PMID: 37371512 DOI: 10.3390/biom13060932] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Urinary extracellular vesicles (EVs) are an attractive source of bladder cancer biomarkers. Here, a protein biomarker discovery study was performed on the protein content of small urinary EVs (sEVs) to identify possible biomarkers for the primary diagnosis and recurrence of non-muscle-invasive bladder cancer (NMIBC). The sEVs were isolated by ultrafiltration (UF) in combination with size-exclusion chromatography (SEC). The first part of the study compared healthy individuals with NMIBC patients with a primary diagnosis. The second part compared tumor-free patients with patients with a recurrent NMIBC diagnosis. The separated sEVs were in the size range of 40 to 200 nm. Based on manually curated high quality mass spectrometry (MS) data, the statistical analysis revealed 69 proteins that were differentially expressed in these sEV fractions of patients with a first bladder cancer tumor vs. an age- and gender-matched healthy control group. When the discriminating power between healthy individuals and first diagnosis patients is taken into account, the biomarkers with the most potential are MASP2, C3, A2M, CHMP2A and NHE-RF1. Additionally, two proteins (HBB and HBA1) were differentially expressed between bladder cancer patients with a recurrent diagnosis vs. tumor-free samples of bladder cancer patients, but their biological relevance is very limited.
Collapse
Affiliation(s)
- Stephanie Jordaens
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Eline Oeyen
- Health Unit, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
- Centre for Proteomics (CfP), University of Antwerp, 2020 Antwerp, Belgium
| | - Hanny Willems
- Health Unit, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Filip Ameye
- Department of Urology, AZ Maria Middelares, 9000 Ghent, Belgium
| | - Stefan De Wachter
- Department of Urology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Inge Mertens
- Health Unit, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
- Centre for Proteomics (CfP), University of Antwerp, 2020 Antwerp, Belgium
| |
Collapse
|
25
|
Ghosh M, Rana S. The anaphylatoxin C5a: Structure, function, signaling, physiology, disease, and therapeutics. Int Immunopharmacol 2023; 118:110081. [PMID: 36989901 DOI: 10.1016/j.intimp.2023.110081] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The complement system is one of the oldest known tightly regulated host defense systems evolved for efficiently functioning cell-based immune systems and antibodies. Essentially, the complement system acts as a pivot between the innate and adaptive arms of the immune system. The complement system collectively represents a cocktail of ∼50 cell-bound/soluble glycoproteins directly involved in controlling infection and inflammation. Activation of the complement cascade generates complement fragments like C3a, C4a, and C5a as anaphylatoxins. C5a is the most potent proinflammatory anaphylatoxin, which is involved in inflammatory signaling in a myriad of tissues. This review provides a comprehensive overview of human C5a in the context of its structure and signaling under several pathophysiological conditions, including the current and future therapeutic applications targeting C5a.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
26
|
Segal BH, Giridharan T, Suzuki S, Khan ANH, Zsiros E, Emmons TR, Yaffe MB, Gankema AAF, Hoogeboom M, Goetschalckx I, Matlung HL, Kuijpers TW. Neutrophil interactions with T cells, platelets, endothelial cells, and of course tumor cells. Immunol Rev 2023; 314:13-35. [PMID: 36527200 PMCID: PMC10174640 DOI: 10.1111/imr.13178] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neutrophils sense microbes and host inflammatory mediators, and traffic to sites of infection where they direct a broad armamentarium of antimicrobial products against pathogens. Neutrophils are also activated by damage-associated molecular patterns (DAMPs), which are products of cellular injury that stimulate the innate immune system through pathways that are similar to those activated by microbes. Neutrophils and platelets become activated by injury, and cluster and cross-signal to each other with the cumulative effect of driving antimicrobial defense and hemostasis. In addition, neutrophil extracellular traps are extracellular chromatin and granular constituents that are generated in response to microbial and damage motifs and are pro-thrombotic and injurious. Although neutrophils can worsen tissue injury, neutrophils may also have a role in facilitating wound repair following injury. A central theme of this review relates to how critical functions of neutrophils that evolved to respond to infection and damage modulate the tumor microenvironment (TME) in ways that can promote or limit tumor progression. Neutrophils are reprogrammed by the TME, and, in turn, can cross-signal to tumor cells and reshape the immune landscape of tumors. Importantly, promising new therapeutic strategies have been developed to target neutrophil recruitment and function to make cancer immunotherapy more effective.
Collapse
Affiliation(s)
- Brahm H Segal
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Thejaswini Giridharan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sora Suzuki
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Anm Nazmul H Khan
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Tiffany R Emmons
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Angela A F Gankema
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Hoogeboom
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Ines Goetschalckx
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children's Hospital Amsterdam University Medical Center (Amsterdam UMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Linde IL, Prestwood TR, Qiu J, Pilarowski G, Linde MH, Zhang X, Shen L, Reticker-Flynn NE, Chiu DKC, Sheu LY, Van Deursen S, Tolentino LL, Song WC, Engleman EG. Neutrophil-activating therapy for the treatment of cancer. Cancer Cell 2023; 41:356-372.e10. [PMID: 36706760 PMCID: PMC9968410 DOI: 10.1016/j.ccell.2023.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 11/02/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils in vitro, enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization and tumor infiltration of neutrophils along with complement activation in tumors. Complement component C5a activates neutrophils to produce leukotriene B4, which stimulates reactive oxygen species production via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance of multiple tumor types. These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory pathway that can be harnessed to drive neutrophil-mediated eradication of cancer.
Collapse
Affiliation(s)
- Ian L Linde
- Program in Immunology, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Tyler R Prestwood
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Jingtao Qiu
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Genay Pilarowski
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Miles H Linde
- Program in Immunology, Stanford University, Stanford, CA 94305, USA
| | - Xiangyue Zhang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lei Shen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | | | - Lauren Y Sheu
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Simon Van Deursen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lorna L Tolentino
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edgar G Engleman
- Program in Immunology, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
28
|
Complement and Fungal Dysbiosis as Prognostic Markers and Potential Targets in PDAC Treatment. Curr Oncol 2022; 29:9833-9854. [PMID: 36547187 PMCID: PMC9777542 DOI: 10.3390/curroncol29120773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still hampered by a dismal prognosis. A better understanding of the tumor microenvironment within the pancreas and of the factors affecting its composition is of utmost importance for developing new diagnostic and treatment tools. In this context, the complement system plays a prominent role. Not only has it been shown to shape a T cell-mediated immune response, but it also directly affects proliferation and apoptosis of the tumor cells, influencing angiogenesis, metastatic spread and therapeutic resistance. This makes complement proteins appealing not only as early biomarkers of PDAC development, but also as therapeutic targets. Fungal dysbiosis is currently the new kid on the block in tumorigenesis with cancer-associated mycobiomes extracted from several cancer types. For PDAC, colonization with the yeast Malassezia seems to promote cancer progression, already in precursor lesions. One responsible mechanism appears to be complement activation via the lectin pathway. In the present article, we review the role of the complement system in tumorigenesis, presenting observations that propose it as the missing link between fungal dysbiosis and PDAC development. We also present the results of a small pilot study supporting the crucial interplay between the complement system and Malassezia colonization in PDAC pathogenesis.
Collapse
|
29
|
Ettl T, Grube M, Schulz D, Bauer RJ. Checkpoint Inhibitors in Cancer Therapy: Clinical Benefits for Head and Neck Cancers. Cancers (Basel) 2022; 14:4985. [PMID: 36291769 PMCID: PMC9599671 DOI: 10.3390/cancers14204985] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/20/2022] Open
Abstract
Recently, considerable progress has been achieved in cancer immunotherapy. Targeted immune checkpoint therapies have been established for several forms of cancers, which resulted in a tremendous positive impact on patient survival, even in more advanced tumor stages. With a better understanding of cellular responses to immune checkpoint therapies, it will soon be feasible to find targeted compounds which will make personalized medicine practicable. This is a great opportunity, but it also sets tremendous challenges on both the scientific and clinical aspects. Head and neck tumors evade immune surveillance through various mechanisms. They contain fewer lymphocytes (natural killer cells) than normal tissue with an accumulation of immunosuppressive regulatory T cells. Standard therapies for HNSCC, such as surgery, radiation, and chemotherapy, are becoming more advantageous by targeting immune checkpoints and employing combination therapies. The purpose of this review is to provide an overview of the expanded therapeutic options, particularly the combination of immune checkpoint inhibition with various conventional and novel therapeutics for head and neck tumor patients.
Collapse
Affiliation(s)
- Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Matthias Grube
- Department of Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Richard Josef Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
30
|
Monteran L, Ershaid N, Doron H, Zait Y, Scharff Y, Ben-Yosef S, Avivi C, Barshack I, Sonnenblick A, Erez N. Chemotherapy-induced complement signaling modulates immunosuppression and metastatic relapse in breast cancer. Nat Commun 2022; 13:5797. [PMID: 36184683 PMCID: PMC9527249 DOI: 10.1038/s41467-022-33598-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Mortality from breast cancer is almost exclusively a result of tumor metastasis and resistance to therapy and therefore understanding the underlying mechanisms is an urgent challenge. Chemotherapy, routinely used to treat breast cancer, induces extensive tissue damage, eliciting an inflammatory response that may hinder efficacy and promote metastatic relapse. Here we show that systemic treatment with doxorubicin, but not cisplatin, following resection of a triple-negative breast tumor induces the expression of complement factors in lung fibroblasts and modulates an immunosuppressive metastatic niche that supports lung metastasis. Complement signaling derived from cancer-associated fibroblasts (CAFs) mediates the recruitment of myeloid-derived suppressor cells (MDSCs) to the metastatic niche, thus promoting T cell dysfunction. Pharmacological targeting of complement signaling in combination with chemotherapy alleviates immune dysregulation and attenuates lung metastasis. Our findings suggest that combining cytotoxic treatment with blockade of complement signaling in triple-negative breast cancer patients may attenuate the adverse effects of chemotherapy, thus offering a promising approach for clinical use. Accumulating evidence suggest that chemotherapy could paradoxically promote cancer metastasis. Here the authors report that, in preclinical breast cancer models, adjuvant treatment with doxorubicin induces the formation of an immunosuppressive metastatic niche that promotes relapse but that can be reverted with pharmacological blockade of complement signaling.
Collapse
Affiliation(s)
- Lea Monteran
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nour Ershaid
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hila Doron
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Zait
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ye'ela Scharff
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Ben-Yosef
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Camila Avivi
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - Amir Sonnenblick
- Oncology Division, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
31
|
Analyzing integrated network of methylation and gene expression profiles in lung squamous cell carcinoma. Sci Rep 2022; 12:15799. [PMID: 36138066 PMCID: PMC9500023 DOI: 10.1038/s41598-022-20232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Gene expression, DNA methylation, and their organizational relationships are commonly altered in lung squamous cell carcinoma (LUSC). To elucidate these complex interactions, we reconstructed a differentially expressed gene network and a differentially methylated cytosine (DMC) network by partial information decomposition and an inverse correlation algorithm, respectively. Then, we performed graph union to integrate the networks. Community detection and enrichment analysis of the integrated network revealed close interactions between the cell cycle, keratinization, immune system, and xenobiotic metabolism gene sets in LUSC. DMC analysis showed that hypomethylation targeted the gene sets responsible for cell cycle, keratinization, and NRF2 pathways. On the other hand, hypermethylated genes affected circulatory system development, the immune system, extracellular matrix organization, and cilium organization. By centrality measurement, we identified NCAPG2, PSMG3, and FADD as hub genes that were highly connected to other nodes and might play important roles in LUSC gene dysregulation. We also found that the genes with high betweenness centrality are more likely to affect patients’ survival than those with low betweenness centrality. These results showed that the integrated network analysis enabled us to obtain a global view of the interactions and regulations in LUSC.
Collapse
|
32
|
Naryzhny S, Ronzhina N, Zorina E, Kabachenko F, Klopov N, Zgoda V. Construction of 2DE Patterns of Plasma Proteins: Aspect of Potential Tumor Markers. Int J Mol Sci 2022; 23:ijms231911113. [PMID: 36232415 PMCID: PMC9569744 DOI: 10.3390/ijms231911113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The use of tumor markers aids in the early detection of cancer recurrence and prognosis. There is a hope that they might also be useful in screening tests for the early detection of cancer. Here, the question of finding ideal tumor markers, which should be sensitive, specific, and reliable, is an acute issue. Human plasma is one of the most popular samples as it is commonly collected in the clinic and provides noninvasive, rapid analysis for any type of disease including cancer. Many efforts have been applied in searching for “ideal” tumor markers, digging very deep into plasma proteomes. The situation in this area can be improved in two ways—by attempting to find an ideal single tumor marker or by generating panels of different markers. In both cases, proteomics certainly plays a major role. There is a line of evidence that the most abundant, so-called “classical plasma proteins”, may be used to generate a tumor biomarker profile. To be comprehensive these profiles should have information not only about protein levels but also proteoform distribution for each protein. Initially, the profile of these proteins in norm should be generated. In our work, we collected bibliographic information about the connection of cancers with levels of “classical plasma proteins”. Additionally, we presented the proteoform profiles (2DE patterns) of these proteins in norm generated by two-dimensional electrophoresis with mass spectrometry and immunodetection. As a next step, similar profiles representing protein perturbations in plasma produced in the case of different cancers will be generated. Additionally, based on this information, different test systems can be developed.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
- Correspondence: ; Tel.: +7-911-176-4453
| | - Natalia Ronzhina
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Elena Zorina
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
| | - Fedor Kabachenko
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Nikolay Klopov
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
| |
Collapse
|
33
|
Senent Y, Tavira B, Pio R, Ajona D. The complement system as a regulator of tumor-promoting activities mediated by myeloid-derived suppressor cells. Cancer Lett 2022; 549:215900. [PMID: 36087681 DOI: 10.1016/j.canlet.2022.215900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Tumor progression relies on the interaction between tumor cells and their surrounding tumor microenvironment (TME), which also influences therapeutic responses. The complement system, an essential part of innate immunity, has been traditionally considered an effector arm against tumors. However, established tumors co-opt complement-mediated immune responses in the TME to support chronic inflammation, activate cancer-related signaling pathways and hamper antitumor immune responses. In this context, myeloid-derived suppressor cells (MDSCs), a heterogeneous population of myeloid progenitors with immunosuppressive functions, are recognized as major mediators of tumor-associated complement activities. This review focuses on the impact of complement activation within the TME, with a special emphasis on MDSC functions and the involvement of the C5a/C5aR1 axis. We also discuss the translation of these findings into therapeutic advances based on complement inhibition.
Collapse
Affiliation(s)
- Yaiza Senent
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain
| | - Beatriz Tavira
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Medicine, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Ruben Pio
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain; Navarra Institute for Health Research (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Daniel Ajona
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain; Navarra Institute for Health Research (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
34
|
Ruocco A, Sirico A, Novelli R, Iannelli S, Van Breda SV, Kyburz D, Hasler P, Aramini A, Amendola PG. The role of C5a-C5aR1 axis in bone pathophysiology: A mini-review. Front Cell Dev Biol 2022; 10:957800. [PMID: 36003145 PMCID: PMC9393612 DOI: 10.3389/fcell.2022.957800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Bone remodeling is a physiological, dynamic process that mainly depends on the functions of 2 cell types: osteoblasts and osteoclasts. Emerging evidence suggests that complement system is crucially involved in the regulation of functions of these cells, especially during inflammatory states. In this context, complement component 5a (C5a), a powerful pro-inflammatory anaphylatoxin that binds the receptor C5aR1, is known to regulate osteoclast formation and osteoblast inflammatory responses, and has thus been proposed as potential therapeutic target for the treatment of inflammatory bone diseases. In this review, we will analyze the role of C5a-C5aR1 axis in bone physiology and pathophysiology, describing its involvement in the pathogenesis of some of the most frequent inflammatory bone diseases such as rheumatoid arthritis, and also in osteoporosis and bone cancer and metastasis. Moreover, we will examine C5aR1-based pharmacological approaches that are available and have been tested so far for the treatment of these conditions. Given the growing interest of the scientific community on osteoimmunology, and the scarcity of data regarding the role of C5a-C5aR1 axis in bone pathophysiology, we will highlight the importance of this axis in mediating the interactions between skeletal and immune systems and its potential use as a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | - Diego Kyburz
- Departement Biomedizin, University of Basel, Basel, Switzerland
| | - Paul Hasler
- Division of Rheumatology, Kantonsspital Aarau AG, Aarau, Switzerland
| | | | | |
Collapse
|
35
|
Choi H, Hwang W. Perioperative Inflammatory Response and Cancer Recurrence in Lung Cancer Surgery: A Narrative Review. Front Surg 2022; 9:888630. [PMID: 35898583 PMCID: PMC9309428 DOI: 10.3389/fsurg.2022.888630] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/24/2022] [Indexed: 11/14/2022] Open
Abstract
While surgical resection is the gold standard treatment for solid tumors, cancer recurrence after surgery is common. Immunosurveillance of remnant tumor cells is an important protective mechanism. Therefore, maintenance of anti-tumor cell activity and proper levels of inflammatory mediators is crucial. An increasing body of evidence suggests that surgery itself and perioperative interventions could affect these pathophysiological responses. Various factors, such as the extent of tissue injury, perioperative medications such as anesthetics and analgesics, and perioperative management including transfusions and methods of mechanical ventilation, modulate the inflammatory response in lung cancer surgery. This narrative review summarizes the pathophysiological mechanisms involved in cancer recurrence after surgery and perioperative management related to cancer recurrence after lung cancer surgery.
Collapse
|
36
|
Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol 2022; 15:61. [PMID: 35585567 PMCID: PMC9118588 DOI: 10.1186/s13045-022-01282-8] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023] Open
Abstract
Immunotherapies like the adoptive transfer of gene-engineered T cells and immune checkpoint inhibitors are novel therapeutic modalities for advanced cancers. However, some patients are refractory or resistant to these therapies, and the mechanisms underlying tumor immune resistance have not been fully elucidated. Immunosuppressive cells such as myeloid-derived suppressive cells, tumor-associated macrophages, tumor-associated neutrophils, regulatory T cells (Tregs), and tumor-associated dendritic cells are critical factors correlated with immune resistance. In addition, cytokines and factors secreted by tumor cells or these immunosuppressive cells also mediate the tumor progression and immune escape of cancers. Thus, targeting these immunosuppressive cells and the related signals is the promising therapy to improve the efficacy of immunotherapies and reverse the immune resistance. However, even with certain success in preclinical studies or in some specific types of cancer, large perspectives are unknown for these immunosuppressive cells, and the related therapies have undesirable outcomes for clinical patients. In this review, we comprehensively summarized the phenotype, function, and potential therapeutic targets of these immunosuppressive cells in the tumor microenvironment.
Collapse
|
37
|
Anliker M, Drees D, Loacker L, Hafner S, Griesmacher A, Hoermann G, Fux V, Schennach H, Hörtnagl P, Dopler A, Schmidt S, Bellmann-Weiler R, Weiss G, Marx-Hofmann A, Körper S, Höchsmann B, Schrezenmeier H, Schmidt CQ. Upregulation of Checkpoint Ligand Programmed Death-Ligand 1 in Patients with Paroxysmal Nocturnal Hemoglobinuria Explained by Proximal Complement Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1248-1258. [PMID: 35173033 DOI: 10.4049/jimmunol.2100031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare hemolytic disease driven by impaired complement regulation. Mutations in genes encoding the enzymes that build the GPI anchors are causative, with somatic mutations in the PIG-A gene occurring most frequently. As a result, the important membrane-bound complement regulators CD55 and CD59 are missing on the affected hematopoietic stem cells and their progeny, rendering those cells vulnerable to complement attack. Immune escape mechanisms sparing affected PNH stem cells from removal are suspected in the PNH pathogenesis, but molecular mechanisms have not been elucidated. We hypothesized that exuberant complement activity in PNH results in enhanced immune checkpoint interactions, providing a molecular basis for the potential immune escape in PNH. In a series of PNH patients, we found increased expression levels of the checkpoint ligand programmed death-ligand 1 (PD-L1) on granulocytes and monocytes, as well as in the plasma of PNH patients. Mechanistically, we demonstrate that complement activation leading to the decoration of particles/cells with C3- and/or C4-opsonins increased PD-L1 expression on neutrophils and monocytes as shown for different in vitro models of classical or alternative pathway activation. We further establish in vitro that complement inhibition at the level of C3, but not C5, inhibits the alternative pathway-mediated upregulation of PD-L1 and show by means of soluble PD-L1 that this observation translates into the clinical situation when PNH patients are treated with either C3 or C5 inhibitors. Together, the presented data show that the checkpoint ligand PD-L1 is increased in PNH patients, which correlates with proximal complement activation.
Collapse
Affiliation(s)
- Markus Anliker
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria
| | - Daniela Drees
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Lorin Loacker
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria
| | - Susanne Hafner
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Andrea Griesmacher
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria
| | - Gregor Hoermann
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria.,MLL Munich Leukemia Laboratory, Munich, Germany
| | - Vilmos Fux
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria
| | - Harald Schennach
- Central Institute of Blood Transfusion and Immunology, University Hospital Innsbruck, Innsbruck, Austria
| | - Paul Hörtnagl
- Central Institute of Blood Transfusion and Immunology, University Hospital Innsbruck, Innsbruck, Austria
| | - Arthur Dopler
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Stefan Schmidt
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria; and
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Astrid Marx-Hofmann
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Sixten Körper
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Britta Höchsmann
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany; .,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany;
| |
Collapse
|
38
|
Qian X, Yang Z, Gao L, Liu Y, Yan J. The role of complement in the clinical course of hepatocellular carcinoma. Immun Inflamm Dis 2022; 10:e569. [PMID: 34813686 PMCID: PMC8926509 DOI: 10.1002/iid3.569] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 01/10/2023] Open
Abstract
Background The complement system, an innate immune system, may either play an antitumor role, or promote tumorigenesis and cancer progression in different kinds of cancer. The function of complement in hepatocellular carcinoma (HCC) is unclear. Methods The gene expressions of the complement system were based on data obtained from TCGA and GEO. We explored gene expressions, mutation, enrichment analysis, clinicopathology, patients' outcome, and immune infiltration via Gepia2, cBioPortal, Metascape, UALCAN, Kaplan–Meier Plotter, and TIMER 2. Results Five complement genes, including C1R, C6, C7, CFP, and CFHR3, were not only found to be significantly downregulated in HCC samples compared with normal liver samples, but also found to be significantly associated with overall survival, disease‐free survival, and progress‐free survival in HCC patients. In addition, lower mRNA expression of C1R, C6, C7, and CFHR3 were found correlated with advanced cancer stages and higher tumor grades in HCC patients. Also, the expression levels of CFP were correlated with many sets of immune markers of tumor immune cells, such as those of CD8+ T cells, CD4+ T cells, B cells, M2 macrophages, neutrophils, DCs, Th1 cells, Th2 cells, and T cell exhaustion in HCC. Based on that, we developed a prognostic model for HCC patients—Riskscore = (−0.0053)*C6+(−0.0498)*C7+(−0.1045)*CFHR3. Conclusion C1R, C6, C7, CFP, and CFHR3 could be prognostic biomarkers for patients with HCC.
Collapse
Affiliation(s)
- Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Zhoujing Yang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Gao
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yipiao Liu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
39
|
Complement activation in cancer: Effects on tumor-associated myeloid cells and immunosuppression. Semin Immunol 2022; 60:101642. [PMID: 35842274 DOI: 10.1016/j.smim.2022.101642] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 01/15/2023]
Abstract
Cancer-related inflammation plays a central role in the establishment of tumor-promoting mechanisms. Tumor-associated myeloid cells, which engage in complex interactions with cancer cells, as well as stromal and tumor immune infiltrating cells, promote cancer cell proliferation and survival, angiogenesis, and the generation of an immunosuppressive microenvironment. The complement system is one of the inflammatory mechanisms activated in the tumor microenvironment. Beside exerting anti-tumor mechanisms such as complement-dependent cytotoxicity and phagocytosis induced by therapeutic monoclonal antibodies, the complement system may promote immunosuppression and tumor growth and invasiveness, in particular, through the anaphylatoxins which target both leukocytes and cancer cells. In this review, we will discuss complement-mediated mechanisms acting on leukocytes, in particular on cells of the myelomonocytic cell lineage (macrophages, neutrophils, myeloid derived suppressor cells), which promote myeloid cell recruitment and functional skewing, leading to immunosuppression and resistance to tumor-specific immunity. Pre-clinical studies, which have elucidated the role of complement in activating pro-tumor mechanisms in myeloid cells, showing the relevance of these mechanisms in human, and therapeutic approaches based on complement targeting support the hypothesis that complement directly and indirectly interferes with many of the effector pathways associated with the cancer-immunity cycle, suggesting the relevance of complement targeting to improve responses to immunotherapeutic approaches.
Collapse
|
40
|
Talaat IM, Elemam NM, Saber-Ayad M. Complement System: An Immunotherapy Target in Colorectal Cancer. Front Immunol 2022; 13:810993. [PMID: 35173724 PMCID: PMC8841337 DOI: 10.3389/fimmu.2022.810993] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor and the second most fatal cancer worldwide. Several parts of the immune system contribute to fighting cancer including the innate complement system. The complement system is composed of several players, namely component molecules, regulators and receptors. In this review, we discuss the complement system activation in cancer specifically CRC and highlight the possible interactions between the complement system and the various TME components. Additionally, the role of the complement system in tumor immunity of CRC is reviewed. Hence, such work could provide a framework for researchers to further understand the role of the complement system in CRC and explore the potential therapies targeting complement activation in solid tumors such as CRC.
Collapse
Affiliation(s)
- Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Noha Mousaad Elemam, ; Maha Saber-Ayad,
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Cairo University, Cairo, Egypt
- *Correspondence: Noha Mousaad Elemam, ; Maha Saber-Ayad,
| |
Collapse
|
41
|
Kou W, Li B, Shi Y, Zhao Y, Yu Q, Zhuang J, Xu Y, Peng W. High complement protein C1q levels in pulmonary fibrosis and non-small cell lung cancer associated with poor prognosis. BMC Cancer 2022; 22:110. [PMID: 35078421 PMCID: PMC8790889 DOI: 10.1186/s12885-021-08912-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is the most common type of interstitial pneumonia. Lung cancer, mainly non-small cell lung cancer (NSCLC), is a complication of idiopathic pulmonary fibrosis. IPF is also an independent risk factor of lung cancer. Some studies have shown that the complement system can promote the progression of interstitial pulmonary fibrosis. In addition, C1q has also demonstrated to exert a tumor-promoting effect in many tumors. However, the role of C1q in idiopathic pulmonary fibrosis and lung cancer still remain unclear. METHODS We selected common differentially expressed genes in IPF and non-small cell lung cancer using datasets from GEO, and investigated common hub gene. The hub genes were validated in IPF by establishing mouse model of IPF and using another four datasets from the GEO. Multiple databases were analyzed including those of Kaplan-Meier Plotter, Tumor Immune Estimation Resource (TIMER2.0) and the Human Protein Atlas (HPA) for NSCLC. RESULTS In this study, 37 common DEGs were identified in IPF and NSCLC including 32 up-regulated genes and 5 down-regulated genes, and C1q was identified as common hub gene. The methylation status of C1q decreased and the expression levels of C1q increased in both lung cancer and idiopathic pulmonary fibrosis. The prognosis of non-small cell lung cancer and IPF patients with high levels of C1q is poor. CONCLUSIONS These results show that C1q participates in pulmonary fibrosis and non-small cell lung cancer, and may be a potential diagnostic / prognostic biomarker or a therapeutic target.
Collapse
Affiliation(s)
- Wenxin Kou
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Bo Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Yeifei Shi
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Yifan Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Qing Yu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Jianhui Zhuang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
42
|
Abstract
Chronic inflammation increases the risk of several cancers, including gastric, colon, and hepatic cancers. Conversely, tumors, similar to tissue injury, trigger an inflammatory response coordinated by the innate immune system. Cellular and molecular mediators of inflammation modulate tumor growth directly and by influencing the adaptive immune response. Depending on the balance of immune cell types and signals within the tumor microenvironment, inflammation can support or restrain the tumor. Adding to the complexity, research from the past two decades has revealed that innate immune cells are highly heterogeneous and plastic, with variable phenotypes depending on tumor type, stage, and treatment. The field is now on the cusp of being able to harness this wealth of data to (a) classify tumors on the basis of their immune makeup, with implications for prognosis, treatment choice, and clinical outcome, and (b) design therapeutic strategies that activate antitumor immune responses by targeting innate immune cells.
Collapse
Affiliation(s)
- Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | | | - Lijuan Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; , ,
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; , ,
| |
Collapse
|
43
|
Ortiz-Espinosa S, Morales X, Senent Y, Alignani D, Tavira B, Macaya I, Ruiz B, Moreno H, Remírez A, Sainz C, Rodriguez-Pena A, Oyarbide A, Ariz M, Andueza MP, Valencia K, Teijeira A, Hoehlig K, Vater A, Rolfe B, Woodruff TM, Lopez-Picazo JM, Vicent S, Kochan G, Escors D, Gil-Bazo I, Perez-Gracia JL, Montuenga LM, Lambris JD, Ortiz de Solorzano C, Lecanda F, Ajona D, Pio R. Complement C5a induces the formation of neutrophil extracellular traps by myeloid-derived suppressor cells to promote metastasis. Cancer Lett 2021; 529:70-84. [PMID: 34971753 DOI: 10.1016/j.canlet.2021.12.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) play a major role in cancer progression. In this study, we investigated the mechanisms by which complement C5a increases the capacity of polymorphonuclear MDSCs (PMN-MDSCs) to promote tumor growth and metastatic spread. Stimulation of PMN-MDSCs with C5a favored the invasion of cancer cells via a process dependent on the formation of neutrophil extracellular traps (NETs). NETosis was dependent on the production of high mobility group box 1 (HMGB1) by cancer cells. Moreover, C5a induced the surface expression of the HMGB1 receptors TLR4 and RAGE in PMN-MDSCs. In a mouse lung metastasis model, inhibition of C5a, C5a receptor-1 (C5aR1) or NETosis reduced the number of circulating-tumor cells (CTCs) and the metastatic burden. In support of the translational relevance of these findings, C5a was able to stimulate migration and NETosis in PMN-MDSCs obtained from lung cancer patients. Furthermore, myeloperoxidase (MPO)-DNA complexes, as markers of NETosis, were elevated in lung cancer patients and significantly correlated with C5a levels. In conclusion, C5a induces the formation of NETs from PMN-MDSCs in the presence of cancer cells, which may facilitate cancer cell dissemination and metastasis.
Collapse
Affiliation(s)
- Sergio Ortiz-Espinosa
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Xabier Morales
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Imaging Platform, CIMA, Pamplona, Spain
| | - Yaiza Senent
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Diego Alignani
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Cytometry Unit, Cima-University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Beatriz Tavira
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Irati Macaya
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain
| | - Borja Ruiz
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain
| | - Haritz Moreno
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain
| | - Ana Remírez
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Cristina Sainz
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Alejandro Rodriguez-Pena
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Imaging Platform, CIMA, Pamplona, Spain
| | - Alvaro Oyarbide
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Imaging Platform, CIMA, Pamplona, Spain
| | - Mikel Ariz
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Imaging Platform, CIMA, Pamplona, Spain
| | - Maria P Andueza
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Karmele Valencia
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Alvaro Teijeira
- Program in Immunology and Immunotherapy, Cima-University of Navarra, Pamplona, Spain
| | | | | | - Barbara Rolfe
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Queensland, Australia
| | - Jose Maria Lopez-Picazo
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Silvestre Vicent
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Grazyna Kochan
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Immunomodulation Group, Navarrabiomed-Biomedical Research Center, Pamplona, Spain
| | - David Escors
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Immunomodulation Group, Navarrabiomed-Biomedical Research Center, Pamplona, Spain
| | - Ignacio Gil-Bazo
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jose Luis Perez-Gracia
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Luis M Montuenga
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carlos Ortiz de Solorzano
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Imaging Platform, CIMA, Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Fernando Lecanda
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Daniel Ajona
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| | - Ruben Pio
- Program in Solid Tumors, Cima-University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
44
|
Gorman DM, Li XX, Lee JD, Fung JN, Cui CS, Lee HS, Rolfe BE, Woodruff TM, Clark RJ. Development of Potent and Selective Agonists for Complement C5a Receptor 1 with In Vivo Activity. J Med Chem 2021; 64:16598-16608. [PMID: 34762432 DOI: 10.1021/acs.jmedchem.1c01174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The anaphylatoxin C5a is a complement peptide associated with immune-related disorders. C5a binds with equal potency to two GPCRs, C5aR1 and C5aR2. Multiple C5a peptide agonists have been developed to interrogate the C5a receptor function but none show selectivity for C5aR1. To address these limitations, we developed potent and stable peptide C5aR1 agonists that display no C5aR2 activity and over 1000-fold selectivity for C5aR1 over C3aR. This includes BM213, which induces C5aR1-mediated calcium mobilization and pERK1/2 signaling but not β-arrestin recruitment, and BM221, which exhibits no signaling bias. Both ligands are functionally similar to C5a in human macrophage cytokine release assays and in a murine in vivo neutrophil mobilization assay. BM213 showed antitumor activity in a mouse model of mammary carcinoma. We anticipate that these C5aR1-selective agonists will be useful research tools to investigate C5aR1 function.
Collapse
Affiliation(s)
- Declan M Gorman
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xaria X Li
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jenny N Fung
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cedric S Cui
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Han Siean Lee
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Barbara E Rolfe
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
45
|
Wang Z, Qu K, Zhou L, Ren L, Ren B, Meng F, Yu W, Wang H, Fan H. Apaf1 nanoLuc biosensors identified lentinan as a potent synergizer of cisplatin in targeting hepatocellular carcinoma cells. Biochem Biophys Res Commun 2021; 577:45-51. [PMID: 34507064 DOI: 10.1016/j.bbrc.2021.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022]
Abstract
Liver cancer is one of the most common malignancies that is difficult to treat due to late diagnosis and chemo-resistance. In the present study, we developed and validated a cell based split nanoLuc biosensor to monitor the Apaf1-Apaf1 interactions in response to apoptosis-inducing drugs such as cisplatin. We showed that the activity of split nanoLuc is reconstituted only in response to apoptotic inducer, cisplatin and in a dose-dependent manner. Apaf1 mutants which were unable to oligomerize failed to recover nanoLuc activity while constitutively active variant increased the nanoLuc activity. Generation of Apaf1 knockout HepG2 and treatment with cisplatin showed dramatic reduction in cell death suggesting that cisplatin mainly targets liver cancer cells through apoptosis. As the natural products are potent sources of compounds for adjuvant therapy, we screened a collection of natural products and identified lentinan as an inducer of apoptosome formation, a key step for induction of apoptosis. Lentinan is a polysaccharide with antitumor, pro-apoptotic properties that functions with poorly understood mechanisms. Lentinan was shown to have cytotoxic effects with the IC50 of 650 μM. Sub-lethal lentinan concentration doubled the nanoLuc activity when co-treated with cisplatin. We also showed that lentinan hugely reduced the dose of cisplatin to induce certain amount of death and that lentinan co-treatment with cisplatin enhanced the Apaf1 transcription in HepG2 cells while lentinan or cisplatin alone failed to alter the transcription. In addition, lentinan and cisplatin co-treatment induced mitochondrial depolarization. This suggested that lentinan combinatorial therapy with cisplatin engaged a different signalling pathway to kill the liver cancer cells and that adjuvant therapy with lentinan can reduce the dose of cisplatin and thus reduce the possibility of chemo-resistance.
Collapse
Affiliation(s)
- Zhixin Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi 'an Jiaotong University, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, China
| | - Li Ren
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, China
| | - Bin Ren
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, China
| | - Fandi Meng
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi 'an Jiaotong University, China
| | - Wenhao Yu
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, China
| | - Haijiu Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, China
| | - Haining Fan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, China.
| |
Collapse
|
46
|
Tipping the balance: intricate roles of the complement system in disease and therapy. Semin Immunopathol 2021; 43:757-771. [PMID: 34698894 PMCID: PMC8547127 DOI: 10.1007/s00281-021-00892-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
The ability of the complement system to rapidly and broadly react to microbial intruders, apoptotic cells and other threats by inducing forceful elimination responses is indispensable for its role as host defense and surveillance system. However, the danger sensing versatility of complement may come at a steep price for patients suffering from various immune, inflammatory, age-related, or biomaterial-induced conditions. Misguided recognition of cell debris or transplants, excessive activation by microbial or damaged host cells, autoimmune events, and dysregulation of the complement response may all induce effector functions that damage rather than protect host tissue. Although complement has long been associated with disease, the prevalence, impact and complexity of complement’s involvement in pathological processes is only now becoming fully recognized. While complement rarely constitutes the sole driver of disease, it acts as initiator, contributor, and/or exacerbator in numerous disorders. Identifying the factors that tip complement’s balance from protective to damaging effects in a particular disease continues to prove challenging. Fortunately, however, molecular insight into complement functions, improved disease models, and growing clinical experience has led to a greatly improved understanding of complement’s pathological side. The identification of novel complement-mediated indications and the clinical availability of the first therapeutic complement inhibitors has also sparked a renewed interest in developing complement-targeted drugs, which meanwhile led to new approvals and promising candidates in late-stage evaluation. More than a century after its description, complement now has truly reached the clinic and the recent developments hold great promise for diagnosis and therapy alike.
Collapse
|
47
|
Zhang D, Li Y, Li H, Tang T, Zheng Y, Guo X, Xu X. A Preliminary Study of the Complement Component 1q Levels in Predicting the Efficacy of Combined Immunotherapy in Patients with Lung Cancer. Cancer Manag Res 2021; 13:7131-7137. [PMID: 34531687 PMCID: PMC8439965 DOI: 10.2147/cmar.s314369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023] Open
Abstract
Objective To evaluate the value of serum complement component 1q (C1q) levels in predicting the efficacy of combined immunotherapy in patients with lung cancer. Methods A total of 42 patients with lung cancer who received combined immunotherapy in the cancer center of Renmin Hospital of Wuhan University were included in this study. The clinical data of serum C1q and lactate dehydrogenase (LDH) levels before and three weeks after immunotherapy were collected. Results Response evaluation showed that the number of patients with complete response (CR), partial response (PR), stable disease (SD), and progressive disease (PD) was 0 (0%), 26 (61.9%), 14 (33.3%), and 2 (4.8%), respectively. The CR/PR group (patients with CR or PR) showed higher pC1q (C1q level before immunotherapy) and iC1q (C1q level 3 weeks after immunotherapy) than the SD/PD group (patients with SD or PD). The LDH reduction (96.2%) and C1q increment (84.6%) in the CR/PR group 3 weeks after immunotherapy were higher than those of the SD/PD group, and the differences were statistically significant. Logistic regression analysis indicated that pC1q, iC1q, and LDH level trends 3 weeks after the treatment were significantly correlated to the efficacy of combined immunotherapy with odds ratios of 8.185, 5.500, and 0.031, respectively. Conclusion High C1q levels before immunotherapy and increased C1q levels and decreased LDH levels 3 weeks afterward suggest good therapeutic effects of combined immunotherapy in patients with lung cancer. Serum C1q levels have certain clinical significance in predicting the efficacy of combined immunotherapy.
Collapse
Affiliation(s)
- Daoming Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yuan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Haoyue Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Tian Tang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yongfa Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xufeng Guo
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
48
|
Netti GS, Franzin R, Stasi A, Spadaccino F, Dello Strologo A, Infante B, Gesualdo L, Castellano G, Ranieri E, Stallone G. Role of Complement in Regulating Inflammation Processes in Renal and Prostate Cancers. Cells 2021; 10:cells10092426. [PMID: 34572075 PMCID: PMC8471315 DOI: 10.3390/cells10092426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/10/2023] Open
Abstract
For decades, the complement system, the central pillar of innate immune response, was recognized as a protective mechanism against cancer cells and the manipulation of complement effector functions in cancer setting offered a great opportunity to improve monoclonal antibody-based cancer immunotherapies. Similarly, cellular senescence, the process of cell cycle arrest that allow DNA and tissue repair has been traditionally thought to be able to suppress tumor progression. However, in recent years, extensive research has identified the complement system and cellular senescence as two main inducers of tumour growth in the context of chronic, persistent inflammation named inflammaging. Here, we discuss the data describing the ambivalent role of senescence in cancer with a particular focus on tumors that are strongly dependent on complement activation and can be understood by a new, senescence-related point of view: prostate cancer and renal cell carcinoma.
Collapse
Affiliation(s)
- Giuseppe Stefano Netti
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.S.N.); (F.S.)
| | - Rossana Franzin
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, 70124 Bari, Italy; (R.F.); (A.S.); (L.G.)
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, 70124 Bari, Italy; (R.F.); (A.S.); (L.G.)
| | - Federica Spadaccino
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.S.N.); (F.S.)
| | - Andrea Dello Strologo
- Department of Medical and Surgical Sciences-Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), University of Foggia, 71122 Foggia, Italy; (A.D.S.); (B.I.); (G.C.)
| | - Barbara Infante
- Department of Medical and Surgical Sciences-Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), University of Foggia, 71122 Foggia, Italy; (A.D.S.); (B.I.); (G.C.)
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, 70124 Bari, Italy; (R.F.); (A.S.); (L.G.)
| | - Giuseppe Castellano
- Department of Medical and Surgical Sciences-Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), University of Foggia, 71122 Foggia, Italy; (A.D.S.); (B.I.); (G.C.)
| | - Elena Ranieri
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.S.N.); (F.S.)
- Correspondence: (E.R.); (G.S.); Tel.: +39-0881-732611 (E.R.); +39-0881-736002 (G.S.)
| | - Giovanni Stallone
- Department of Medical and Surgical Sciences-Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), University of Foggia, 71122 Foggia, Italy; (A.D.S.); (B.I.); (G.C.)
- Correspondence: (E.R.); (G.S.); Tel.: +39-0881-732611 (E.R.); +39-0881-736002 (G.S.)
| |
Collapse
|
49
|
Lawal B, Tseng SH, Olugbodi JO, Iamsaard S, Ilesanmi OB, Mahmoud MH, Ahmed SH, Batiha GES, Wu ATH. Pan-Cancer Analysis of Immune Complement Signature C3/C5/C3AR1/C5AR1 in Association with Tumor Immune Evasion and Therapy Resistance. Cancers (Basel) 2021; 13:4124. [PMID: 34439277 PMCID: PMC8394789 DOI: 10.3390/cancers13164124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 01/08/2023] Open
Abstract
Despite the advances in our understanding of the genetic and immunological basis of cancer, cancer remains a major public health burden with an ever-increasing incidence rate globally. Nevertheless, increasing evidence suggests that the components of the complement system could regulate the tumor microenvironment (TME) to promote cancer progression, recurrence, and metastasis. In the present study, we used an integrative multi-omics analysis of clinical data to explore the relationships between the expression levels of and genetic and epigenetic alterations in C3, C5, C3AR1, and C5AR1 and tumor immune evasion, therapy response, and patient prognosis in various cancer types. We found that the complements C3, C5, C3AR1, and C5AR1 have deregulated expression in human malignancies and are associated with activation of immune-related oncogenic processes and poor prognosis of cancer patients. Furthermore, we found that the increased expression levels of C3, C5, C3AR1, and C5AR1 were primarily predicted by copy number variation and gene methylation and were associated with dysfunctional T-cell phenotypes. Single nucleotide variation in the gene signature co-occurred with multiple oncogenic mutations and is associated with the progression of onco-immune-related diseases. Further correlation analysis revealed that C3, C5, C3AR1, and C5AR1 were associated with tumor immune evasion via dysfunctional T-cell phenotypes with a lesser contribution of T-cell exclusion. Lastly, we also demonstrated that the expression levels of C3, C5, C3AR1, and C5AR1 were associated with context-dependent chemotherapy, lymphocyte-mediated tumor killing, and immunotherapy outcomes in different cancer types. In conclusion, the complement components C3, C5, C3AR1, and C5AR1 serve as attractive targets for strategizing cancer immunotherapy and response follow-up.
Collapse
Affiliation(s)
- Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan;
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Sung-Hui Tseng
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | | | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine and Research Institute for Human High Performance and Health Promotion (HHP&HP), Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Omotayo B. Ilesanmi
- Department of Biochemistry, Faculty of Science, Federal University Otuoke, Ogbia 23401, Bayelsa State, Nigeria;
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sahar H. Ahmed
- Medical Laboratory Technology Department, Faculty of Applied Medical Science, Misr University For Science &Technology, Cairo 3245310, Egypt;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
| | - Alexander T. H. Wu
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Taipei Heart Institute (THI), Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
50
|
Senent Y, Ajona D, González-Martín A, Pio R, Tavira B. The Complement System in Ovarian Cancer: An Underexplored Old Path. Cancers (Basel) 2021; 13:3806. [PMID: 34359708 PMCID: PMC8345190 DOI: 10.3390/cancers13153806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecological cancers. Current therapeutic strategies allow temporary control of the disease, but most patients develop resistance to treatment. Moreover, although successful in a range of solid tumors, immunotherapy has yielded only modest results in ovarian cancer. Emerging evidence underscores the relevance of the components of innate and adaptive immunity in ovarian cancer progression and response to treatment. Particularly, over the last decade, the complement system, a pillar of innate immunity, has emerged as a major regulator of the tumor microenvironment in cancer immunity. Tumor-associated complement activation may support chronic inflammation, promote an immunosuppressive microenvironment, induce angiogenesis, and activate cancer-related signaling pathways. Recent insights suggest an important role of complement effectors, such as C1q or anaphylatoxins C3a and C5a, and their receptors C3aR and C5aR1 in ovarian cancer progression. Nevertheless, the implication of these factors in different clinical contexts is still poorly understood. Detailed knowledge of the interplay between ovarian cancer cells and complement is required to develop new immunotherapy combinations and biomarkers. In this context, we discuss the possibility of targeting complement to overcome some of the hurdles encountered in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yaiza Senent
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
| | - Daniel Ajona
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Antonio González-Martín
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Oncology, Clinica Universidad de Navarra, 28027 Madrid, Spain
| | - Ruben Pio
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Beatriz Tavira
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|