1
|
Wang L, Wei Y, Jin Z, Liu F, Li X, Zhang X, Bai X, Jia Q, Zhu B, Chu Q. IFN-α/β/IFN-γ/IL-15 pathways identify GBP1-expressing tumors with an immune-responsive phenotype. Clin Exp Med 2024; 24:102. [PMID: 38758367 PMCID: PMC11101573 DOI: 10.1007/s10238-024-01328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/09/2024] [Indexed: 05/18/2024]
Abstract
Immunotherapy is widely used in cancer treatment; however, only a subset of patients responds well to it. Significant efforts have been made to identify patients who will benefit from immunotherapy. Successful anti-tumor immunity depends on an intact cancer-immunity cycle, especially long-lasting CD8+ T-cell responses. Interferon (IFN)-α/β/IFN-γ/interleukin (IL)-15 pathways have been reported to be involved in the development of CD8+ T cells. And these pathways may predict responses to immunotherapy. Herein, we aimed to analyze multiple public databases to investigate whether IFN-α/β/IFN-γ/IL-15 pathways could be used to predict the response to immunotherapy. Results showed that IFN-α/β/IFN-γ/IL-15 pathways could efficiently predict immunotherapy response, and guanylate-binding protein 1 (GBP1) could represent the IFN-α/β/IFN-γ/IL-15 pathways. In public and private cohorts, we further demonstrated that GBP1 could efficiently predict the response to immunotherapy. Functionally, GBP1 was mainly expressed in macrophages and strongly correlated with chemokines involved in T-cell migration. Therefore, our study comprehensively investigated the potential role of GBP1 in immunotherapy, which could serve as a novel biomarker for immunotherapy and a target for drug development.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Yuxuan Wei
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Zheng Jin
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, People's Republic of China
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co., Ltd, Shanghai, 201318, People's Republic of China
| | - Fangfang Liu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Xuchang Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Xiao Zhang
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, People's Republic of China
| | - Xiumei Bai
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, People's Republic of China
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Naschberger E, Flierl C, Huang J, Erkert L, Gamez-Belmonte R, Gonzalez-Acera M, Bober M, Mehnert M, Becker C, Schellerer VS, Britzen-Laurent N, Stürzl M. Analysis of the interferon-γ-induced secretome of intestinal endothelial cells: putative impact on epithelial barrier dysfunction in IBD. Front Cell Dev Biol 2023; 11:1213383. [PMID: 37645250 PMCID: PMC10460912 DOI: 10.3389/fcell.2023.1213383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
The development of inflammatory bowel diseases (IBD) involves the breakdown of two barriers: the epithelial barrier and the gut-vascular barrier (GVB). The destabilization of each barrier can promote initiation and progression of the disease. Interestingly, first evidence is available that both barriers are communicating through secreted factors that may accordingly serve as targets for therapeutic modulation of barrier functions. Interferon (IFN)-γ is among the major pathogenesis factors in IBD and can severely impair both barriers. In order to identify factors transmitting signals from the GVB to the epithelial cell barrier, we analyzed the secretome of IFN-γ-treated human intestinal endothelial cells (HIEC). To this goal, HIEC were isolated in high purity from normal colon tissues. HIEC were either untreated or stimulated with IFN-γ (10 U/mL). After 48 h, conditioned media (CM) were harvested and subjected to comparative hyper reaction monitoring mass spectrometry (HRM™ MS). In total, 1,084 human proteins were detected in the HIEC-CM. Among these, 43 proteins were present in significantly different concentrations between the CM of IFN-γ- and control-stimulated HIEC. Several of these proteins were also differentially expressed in various murine colitis models as compared to healthy animals supporting the relevance of these proteins secreted by inflammatory activated HIEC in the inter-barrier communication in IBD. The angiocrine pathogenic impact of these differentially secreted HIEC proteins on the epithelial cell barrier and their perspectives as targets to treat IBD by modulation of trans-barrier communication is discussed in detail.
Collapse
Affiliation(s)
- Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian Flierl
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jinghao Huang
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lena Erkert
- Department of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Reyes Gamez-Belmonte
- Department of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Department of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | - Christoph Becker
- Department of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Vera S. Schellerer
- Department of Pediatric Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Nathalie Britzen-Laurent
- Division of Surgical Research, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
3
|
Qi P, Huang M, Li T. Identification of potential biomarkers and therapeutic targets for posttraumatic acute respiratory distress syndrome. BMC Med Genomics 2023; 16:54. [PMID: 36918848 PMCID: PMC10012314 DOI: 10.1186/s12920-023-01482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Despite improved supportive care, posttraumatic acute respiratory distress syndrome (ARDS) mortality has improved very little in recent years. Additionally, ARDS diagnosis is delayed or missed in many patients. We analyzed co-differentially expressed genes (co-DEGs) to explore the relationships between severe trauma and ARDS to reveal potential biomarkers and therapeutic targets for posttraumatic ARDS. METHODS Two gene expression datasets (GSE64711 and GSE76293) were downloaded from the Gene Expression Omnibus. The GSE64711 dataset included a subset of 244 severely injured trauma patients and 21 healthy controls. GSE76293 specimens were collected from 12 patients with ARDS who were recruited from trauma intensive care units and 11 age- and sex-matched healthy volunteers. Trauma DEGs and ARDS DEGs were identified using the two datasets. Subsequently, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction network analyses were performed to elucidate the molecular functions of the DEGs. Then, hub genes of the co-DEGs were identified. Finally, to explore whether posttraumatic ARDS and septic ARDS are common targets, we included a third dataset (GSE100159) for corresponding verification. RESULTS 90 genes were upregulated and 48 genes were downregulated in the two datasets and were therefore named co-DEGs. These co-DEGs were significantly involved in multiple inflammation-, immunity- and neutrophil activation-related biological processes. Ten co-upregulated hub genes (GAPDH, MMP8, HGF, MAPK14, LCN2, CD163, ENO1, CD44, ARG1 and GADD45A) and five co-downregulated hub genes (HERC5, IFIT2, IFIT3, RSAD2 and IFIT1) may be considered potential biomarkers and therapeutic targets for posttraumatic ARDS. Through the verification of the third dataset, posttraumatic ARDS may have its own unique targets worthy of further exploration. CONCLUSION This exploratory analysis supports a relationship between trauma and ARDS pathophysiology, specifically in relationship to the identified hub genes. These data may serve as potential biomarkers and therapeutic targets for posttraumatic ARDS.
Collapse
Affiliation(s)
- Peng Qi
- Department of Emergency, First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Mengjie Huang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Tanshi Li
- Department of Emergency, First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
4
|
Hunt EN, Kopacz JP, Vestal DJ. Unraveling the Role of Guanylate-Binding Proteins (GBPs) in Breast Cancer: A Comprehensive Literature Review and New Data on Prognosis in Breast Cancer Subtypes. Cancers (Basel) 2022; 14:cancers14112794. [PMID: 35681772 PMCID: PMC9179834 DOI: 10.3390/cancers14112794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/19/2022] Open
Abstract
At least one member of the Guanylate-Binding Protein (GBP) family of large interferon-induced GTPases has been classified as both a marker of good prognosis and as a potential drug target to treat breast cancers. However, the activity of individual GBPs appears to not just be tumor cell type–specific but dependent on the growth factor and/or cytokine environment in which the tumor cells reside. To clarify what we do and do not know about GBPs in breast cancer, the current literature on GBP-1, GBP-2, and GBP-5 in breast cancer has been assembled. In addition, we have analyzed the role of each of these GBPs in predicting recurrence-free survival (RFS), overall survival (OS), and distance metastasis-free survival (DMFS) as single gene products in different subtypes of breast cancers. When a large cohort of breast cancers of all types and stages were examined, GBP-1 correlated with poor RFS. However, it was the only GBP to do so. When smaller cohorts of breast cancer subtypes grouped into ER+, ER+/Her2-, and HER2+ tumors were analyzed, none of the GBPs influenced RFS, OS, or DMSF as single agents. The exception is GBP-5, which correlated with improved RFS in Her2+ breast cancers. All three GBPs individually predicted improved RFS, OS, and DMSF in ER- breast cancers, regardless of the PR or HER2 status, and TNBCs.
Collapse
|
5
|
Paul S, Balakrishnan S, Arumugaperumal A, Lathakumari S, Syamala SS, Vijayan V, Durairaj SCJ, Arumugaswami V, Sivasubramaniam S. Importance of clitellar tissue in the regeneration ability of earthworm Eudrilus eugeniae. Funct Integr Genomics 2022; 22:1-32. [PMID: 35416560 DOI: 10.1007/s10142-022-00849-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Among the annelids, earthworms are renowned for their phenomenal ability to regenerate the lost segments. The adult earthworm Eudrilus eugeniae contains 120 segments and the body segments of the earthworm are divided into pre-clitellar, clitellar and post-clitellar segments. The present study denoted that clitellum plays vital role in the successful regeneration of the species. We have performed histological studies to identify among the three skin layers of the earthworm, which cellular layer supports the blastema formation and regeneration of the species. The histological evidences denoted that the proliferation of the longitudinal cell layer at the amputation site is crucial for the successful regeneration of the earthworm and it takes place only in the presence of an intact clitellum. Besides we have performed clitellar transcriptome analysis of the earthworm Eudrilus eugeniae to monitor the key differentially expressed genes and their associated functions and pathways controlling the clitellar tissue changes during both anterior and posterior regeneration of the earthworm. A total of 4707 differentially expressed genes (DEGs) were identified between the control clitellum and clitellum of anterior regenerated earthworms and 4343 DEGs were detected between the control clitellum and clitellum of posterior regenerated earthworms. The functional enrichment analysis confirmed the genes regulating the muscle mass shape and structure were significantly downregulated and the genes associated with response to starvation and anterior-posterior axis specification were significantly upregulated in the clitellar tissue during both anterior and posterior regeneration of the earthworm. The RNA sequencing data of clitellum and the comparative transcriptomic analysis were helpful to understand the complex regeneration process of the earthworm.
Collapse
Affiliation(s)
- Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.,Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India
| | | | - Arun Arumugaperumal
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Saranya Lathakumari
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Sandhya Soman Syamala
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Vijithkumar Vijayan
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Selvan Christyraj Jackson Durairaj
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.,Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600 119, India
| | | | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.
| |
Collapse
|
6
|
Zhao Y, Wu J, Li L, Zhang H, Zhang H, Li J, Zhong H, Lei T, Jin Y, Xu B, Song Q. Guanylate-Binding Protein 1 as a Potential Predictor of Immunotherapy: A Pan-Cancer Analysis. Front Genet 2022; 13:820135. [PMID: 35222540 PMCID: PMC8867058 DOI: 10.3389/fgene.2022.820135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/11/2022] [Indexed: 01/14/2023] Open
Abstract
Background: Mainstream application of cancer immunotherapy is hampered by the low response rate of most cancer patients. A novel immunotherapeutic target or a biomarker predicting response to immunotherapy needs to be developed. Guanylate-binding protein 1 (GBP1) is an interferon (IFN)-inducible guanosine triphosphatases (GTPases) involving inflammation and infection. However, the immunological effects of GBP1 in pan-cancer patients are still obscure. Methods: Using large-scale public data, we delineated the landscape of GBP1 across 33 cancer types. The correlation between GBP1 expression or mutation and immune cell infiltration was estimated by ESTIMATE, TIMER, xCell, and quanTIseq algorithms. GBP1-related genes and proteins were subjected to function enrichment analysis. Clustering analysis explored the relationship between GBP1 expression and anti-tumor immune phenotypes. We assessed the patient’s response to immunotherapy using the tumor immune dysfunction and exclusion (TIDE) score and immunophenoscore (IPS). Furthermore, we validated the predictive power of GBP1 expression in four independent immunotherapy cohorts. Results: GBP1 was differentially expressed in tumors and normal tissues in multiple cancer types. Distinct correlations existed between GBP1 expression and prognosis in cancer patients. GBP1 expression and mutation were positively associated with immune cell infiltration. Function enrichment analysis showed that GBP1-related genes were enriched in immune-related pathways. Positive correlations were also observed between GBP1 expression and the expression of immune checkpoints, as well as tumor mutation burden (TMB). Pan-cancer patients with higher GBP1 expression were more inclined to display “hot” anti-tumor immune phenotypes and had lower TIDE scores and higher immunophenoscore, suggesting that these patients had better responses to immunotherapy. Patients with higher GBP1 expression exhibited improved overall survival and clinical benefits in immunotherapy cohorts, including the Gide et al. cohort [area under the curve (AUC): 0.813], the IMvigor210 cohort (AUC: 0.607), the Lauss et al. cohort (AUC: 0.740), and the Kim et al. cohort (AUC: 0.793). Conclusion: This study provides comprehensive insights into the role of GBP1 in a pan-cancer manner. We identify GBP1 expression as a predictive biomarker for immunotherapy, potentially enabling more precise and personalized immunotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Yaqi Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huibo Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technical University of Munich, Freising, Germany
| | - Haohan Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Zhong
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tianyu Lei
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Jin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Bin Xu, ; Qibin Song,
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Bin Xu, ; Qibin Song,
| |
Collapse
|
7
|
Gu T, Yu D, Xu L, Yao YL, Yao YG. Tupaia GBP1 Interacts with STING to Initiate Autophagy and Restrict Herpes Simplex Virus Type 1 Infection. THE JOURNAL OF IMMUNOLOGY 2021; 207:2673-2680. [PMID: 34732469 DOI: 10.4049/jimmunol.2100325] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Stimulator of IFN genes (STING) is a key molecule that binds to cyclic dinucleotides produced by the cyclic GMP-AMP synthase to activate IFN expression and autophagy in the fight against microbial infection. The regulation of STING in the activation of IFN expression has been extensively reported, whereas the regulation of STING in the initiation of autophagy is still insufficiently determined. IFN-inducible guanylate-binding proteins (GBPs) are central to the cell-autonomous immunity in defending a host against viral, bacterial, and protozoan infections. In this study using the Chinese tree shrew (Tupaia belangeri chinensis), which is genetically close to primates, we found that Tupaia GBP1 (tGBP1) combines with Tupaia STING (tSTING), promotes autophagy, and moderately inhibits HSV type 1 (HSV-1) infection. The antiviral effects of tGBP1 are IFN independent. Mechanistically, tGBP1 interacted with tSTING, Tupaia sequestosome 1, and Tupaia microtubule associated protein 1 L chain 3, forming a complex which promotes autophagy in response to HSV-1 infection. This function of tGBP1 against HSV-1 infection was lost in tSTING knockout cells. Overexpression of either tSTING or its mutant tSTING-ΔCTT that can only activate autophagy rescued the anti-HSV-1 activity of tGBP1 in tSTING knockout cells. Our study not only elucidated the underlying mechanism of tGBP1 antiviral activity against HSV-1 infection, but also uncovered the regulation of tSTING in the initiation of autophagy in response to HSV-1 infection.
Collapse
Affiliation(s)
- Tianle Gu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China.,College of Life Science, Yan'an University, Yan'an, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Dandan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; and.,National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; and.,National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yu-Lin Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China; .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; and.,National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
8
|
The Large GTPase, GBP-2, Regulates Rho Family GTPases to Inhibit Migration and Invadosome Formation in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13225632. [PMID: 34830789 PMCID: PMC8616281 DOI: 10.3390/cancers13225632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Too many women still die of breast cancer each year. Those breast cancers that kill are those with cells that have migrated away from the primary tumor in the breast and established new tumors at other sites in the body. These tumors are not reached when the original tumor in the breast is removed. This study was designed to determine why some breast cancers move away from their primary tumor and others do not. We have identified a protein that inhibits this movement. Understanding this finding may provide us with ways to inhibit tumor cell movement in patients. Abstract Breast cancer is the most common cancer in women. Despite advances in early detection and treatment, it is predicted that over 43,000 women will die of breast cancer in 2021. To lower this number, more information about the molecular players in breast cancer are needed. Guanylate-Binding Protein-2 has been correlated with better prognosis in breast cancer. In this study, we asked if the expression of GBP-2 in breast cancer merely provided a biomarker for improved prognosis or whether it actually contributed to improving outcome. To answer this, the 4T1 model of murine breast cancer was used. 4T1 cells themselves are highly aggressive and highly metastatic, while 67NR cells, isolated from the same tumor, do not leave the primary site. The expression of GBP-2 was examined in the two cell lines and found to be inversely correlated with aggressiveness/metastasis. Proliferation, migration, and invadosome formation were analyzed after altering the expression levels of GBP-2. Our experiments show that GBP-2 does not alter the proliferation of these cells but inhibits migration and invadosome formation downstream of regulation of Rho GTPases. Together these data demonstrate that GBP-2 is responsible for cell autonomous activities that make breast cancer cells less aggressive.
Collapse
|
9
|
Qiao G, Wu A, Chen X, Tian Y, Lin X. Enolase 1, a Moonlighting Protein, as a Potential Target for Cancer Treatment. Int J Biol Sci 2021; 17:3981-3992. [PMID: 34671213 PMCID: PMC8495383 DOI: 10.7150/ijbs.63556] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Enolase 1 (ENO1) is a moonlighting protein, function as a glycolysis enzyme, a plasminogen receptor and a DNA binding protein. ENO1 play an important role in the process of cancer development. The transcription, translation, post-translational modifying activities and the immunoregulatory role of ENO1 at the cancer development is receiving increasing attention. Some function model studies have shown that ENO1 is a potential target for cancer treatment. In this review, we provide a comprehensive overview of the characterization, function, related transduction cascades of ENO1 and its roles in the pathophysiology of cancers, which is a consequence of ENO1 signaling dysregulation. And the development of novels anticancer agents that targets ENO1 may provide a more attractive option for the treatment of cancers. The data of sarcoma and functional cancer models indicates that ENO1 may become a new potential target for anticancer therapy.
Collapse
Affiliation(s)
- Gan Qiao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China (Q.G, ).,School of Pharmacy, Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.,Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoliang Chen
- Schools of Medicine; Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Ye Tian
- The Eighth Affiliated Hospital Sun Yat-sen University,Shenzhen, Guangdong, China
| | - Xiukun Lin
- College of Life Sci., Shandong University of Technology, Zibo, Shandong, China
| |
Collapse
|
10
|
Zyulina V, Yan KK, Ju B, Schwarzenberger E, Passegger C, Tam-Amersdorfer C, Pan Q, Sconocchia T, Pollack C, Shaner B, Zebisch A, Easton J, Yu J, Silva JM, Strobl H. The miR-424(322)/503 gene cluster regulates pro- versus anti-inflammatory skin DC subset differentiation by modulating TGF-β signaling. Cell Rep 2021; 35:109049. [PMID: 33910004 DOI: 10.1016/j.celrep.2021.109049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/26/2020] [Accepted: 04/06/2021] [Indexed: 11/15/2022] Open
Abstract
Transforming growth factor β (TGF-β) family ligands are key regulators of dendritic cell (DC) differentiation and activation. Epidermal Langerhans cells (LCs) require TGF-β family signaling for their differentiation, and canonical TGF-β1 signaling secures a non-activated LC state. LCs reportedly control skin inflammation and are replenished from peripheral blood monocytes, which also give rise to pro-inflammatory monocyte-derived DCs (moDCs). By studying mechanisms in inflammation, we previously screened LCs versus moDCs for differentially expressed microRNAs (miRNAs). This revealed that miR-424/503 is the most strongly inversely regulated (moDCs > LCs). We here demonstrate that miR-424/503 is induced during moDC differentiation and promotes moDC differentiation in human and mouse. Inversely, forced repression of miR-424 during moDC differentiation facilitates TGF-β1-dependent LC differentiation. Mechanistically, miR-424/503 deficiency in monocyte/DC precursors leads to the induction of TGF-β1 response genes critical for LC differentiation. Therefore, the miR-424/503 gene cluster plays a decisive role in anti-inflammatory LC versus pro-inflammatory moDC differentiation from monocytes.
Collapse
Affiliation(s)
- Victoria Zyulina
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Koon-Kiu Yan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Bensheng Ju
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Elke Schwarzenberger
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Christina Passegger
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Carmen Tam-Amersdorfer
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Qingfei Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Tommaso Sconocchia
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Christian Pollack
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Bridget Shaner
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, 8010 Graz, Austria; Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jose M Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
| | - Herbert Strobl
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
11
|
Lim CX, Lee B, Geiger O, Passegger C, Beitzinger M, Romberger J, Stracke A, Högenauer C, Stift A, Stoiber H, Poidinger M, Zebisch A, Meister G, Williams A, Flavell RA, Henao-Mejia J, Strobl H. miR-181a Modulation of ERK-MAPK Signaling Sustains DC-SIGN Expression and Limits Activation of Monocyte-Derived Dendritic Cells. Cell Rep 2021; 30:3793-3805.e5. [PMID: 32187550 DOI: 10.1016/j.celrep.2020.02.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/29/2019] [Accepted: 02/20/2020] [Indexed: 01/10/2023] Open
Abstract
DC-SIGN+ monocyte-derived dendritic cells (mo-DCs) play important roles in bacterial infections and inflammatory diseases, but the factors regulating their differentiation and proinflammatory status remain poorly defined. Here, we identify a microRNA, miR-181a, and a molecular mechanism that simultaneously regulate the acquisition of DC-SIGN expression and the activation state of DC-SIGN+ mo-DCs. Specifically, we show that miR-181a promotes DC-SIGN expression during terminal mo-DC differentiation and limits its sensitivity and responsiveness to TLR triggering and CD40 ligation. Mechanistically, miR-181a sustains ERK-MAPK signaling in mo-DCs, thereby enabling the maintenance of high levels of DC-SIGN and a high activation threshold. Low miR-181a levels during mo-DC differentiation, induced by inflammatory signals, do not support the high phospho-ERK signal transduction required for DC-SIGNhi mo-DCs and lead to development of proinflammatory DC-SIGNlo/- mo-DCs. Collectively, our study demonstrates that high DC-SIGN expression levels and a high activation threshold in mo-DCs are linked and simultaneously maintained by miR-181a.
Collapse
Affiliation(s)
- Clarice X Lim
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria; DK Inflammation & Immunity Program, Medical University of Vienna, 1090 Vienna, Austria
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Biopolis, 138648 Singapore, Singapore
| | - Olivia Geiger
- Division of Hematology, Medical University of Graz, 8010 Graz, Austria
| | - Christina Passegger
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Michaela Beitzinger
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, 93053 Regensburg, Germany
| | - Johann Romberger
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Anika Stracke
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria
| | - Christoph Högenauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Anton Stift
- Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Biopolis, 138648 Singapore, Singapore
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, 8010 Graz, Austria; Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Gunter Meister
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, 93053 Regensburg, Germany
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Jorge Henao-Mejia
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Herbert Strobl
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
12
|
Ciccarese F, Grassi A, Pasqualini L, Rosano S, Noghero A, Montenegro F, Bussolino F, Di Camillo B, Finesso L, Toffolo GM, Mitola S, Indraccolo S. Genetic perturbation of IFN-α transcriptional modulators in human endothelial cells uncovers pivotal regulators of angiogenesis. Comput Struct Biotechnol J 2020; 18:3977-3986. [PMID: 33335694 PMCID: PMC7734228 DOI: 10.1016/j.csbj.2020.11.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Interferon-α (IFN-α) comprises a family of 13 cytokines involved in the modulation of antiviral, immune, and anticancer responses by orchestrating a complex transcriptional network. The activation of IFN-α signaling pathway in endothelial cells results in decreased proliferation and migration, ultimately leading to suppression of angiogenesis. In this study, we knocked-down the expression of seven established or candidate modulators of IFN-α response in endothelial cells to reconstruct a gene regulatory network and to investigate the antiangiogenic activity of IFN-α. This genetic perturbation approach, along with the analysis of interferon-induced gene expression dynamics, highlighted a complex and highly interconnected network, in which the angiostatic chemokine C-X-C Motif Chemokine Ligand 10 (CXCL10) was a central node targeted by multiple modulators. IFN-α-induced secretion of CXCL10 protein by endothelial cells was blunted by the silencing of Signal Transducer and Activator of Transcription 1 (STAT1) and of Interferon Regulatory Factor 1 (IRF1) and it was exacerbated by the silencing of Ubiquitin Specific Peptidase 18 (USP18). In vitro sprouting assay, which mimics in vivo angiogenesis, confirmed STAT1 as a positive modulator and USP18 as a negative modulator of IFN-α-mediated sprouting suppression. Our data reveal an unprecedented physiological regulation of angiogenesis in endothelial cells through a tonic IFN-α signaling, whose enhancement could represent a viable strategy to suppress tumor neoangiogenesis.
Collapse
Affiliation(s)
- Francesco Ciccarese
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Angela Grassi
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Lorenza Pasqualini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Stefania Rosano
- Candiolo Cancer Institute - IRCCS, Strada Provinciale 142, km 3.95, 10060 Candiolo, Italy
| | - Alessio Noghero
- Candiolo Cancer Institute - IRCCS, Strada Provinciale 142, km 3.95, 10060 Candiolo, Italy
| | - Francesca Montenegro
- Department of Surgery, Oncology and Gastroenterology, University of Padova, via Gattamelata 64, 35128 Padova, Italy
| | - Federico Bussolino
- Candiolo Cancer Institute - IRCCS, Strada Provinciale 142, km 3.95, 10060 Candiolo, Italy.,Department of Oncology, University of Torino Medical School, via Verdi 8, 10124 Torino, Italy
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, via Gradenigo 6, 35131 Padova, Italy.,CRIBI Innovative Biotechnology Center, University of Padova, viale Colombo 3, 35131 Padova, Italy
| | - Lorenzo Finesso
- Institute of Electronics, Computer and Telecommunication Engineering, CNR, corso Stati Uniti 4, 35127 Padova, Italy
| | - Gianna Maria Toffolo
- Department of Information Engineering, University of Padova, via Gradenigo 6, 35131 Padova, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, 35128 Padova, Italy
| |
Collapse
|
13
|
Fisch D, Clough B, Domart MC, Encheva V, Bando H, Snijders AP, Collinson LM, Yamamoto M, Shenoy AR, Frickel EM. Human GBP1 Differentially Targets Salmonella and Toxoplasma to License Recognition of Microbial Ligands and Caspase-Mediated Death. Cell Rep 2020; 32:108008. [PMID: 32783936 PMCID: PMC7435695 DOI: 10.1016/j.celrep.2020.108008] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Interferon-inducible guanylate-binding proteins (GBPs) promote cell-intrinsic defense through host cell death. GBPs target pathogens and pathogen-containing vacuoles and promote membrane disruption for release of microbial molecules that activate inflammasomes. GBP1 mediates pyroptosis or atypical apoptosis of Salmonella Typhimurium (STm)- or Toxoplasma gondii (Tg)- infected human macrophages, respectively. The pathogen-proximal detection-mechanisms of GBP1 remain poorly understood, as humans lack functional immunity-related GTPases (IRGs) that assist murine Gbps. Here, we establish that GBP1 promotes the lysis of Tg-containing vacuoles and parasite plasma membranes, releasing Tg-DNA. In contrast, we show GBP1 targets cytosolic STm and recruits caspase-4 to the bacterial surface for its activation by lipopolysaccharide (LPS), but does not contribute to bacterial vacuole escape. Caspase-1 cleaves and inactivates GBP1, and a cleavage-deficient GBP1D192E mutant increases caspase-4-driven pyroptosis due to the absence of feedback inhibition. Our studies elucidate microbe-specific roles of GBP1 in infection detection and its triggering of the assembly of divergent caspase signaling platforms.
Collapse
Affiliation(s)
- Daniel Fisch
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK; MRC Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Barbara Clough
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marie-Charlotte Domart
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Vesela Encheva
- Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Hironori Bando
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Ambrosius P Snijders
- Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Avinash R Shenoy
- MRC Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK; The Francis Crick Institute, London NW1 1AT, UK.
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
14
|
Schaffner-Reckinger E, Machado RAC. The actin-bundling protein L-plastin-A double-edged sword: Beneficial for the immune response, maleficent in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:109-154. [PMID: 32859369 DOI: 10.1016/bs.ircmb.2020.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dynamic organization of the actin cytoskeleton into bundles and networks is orchestrated by a large variety of actin-binding proteins. Among them, the actin-bundling protein L-plastin is normally expressed in hematopoietic cells, where it is involved in the immune response. However, L-plastin is also often ectopically expressed in malignant cancer cells of non-hematopoietic origin and is even considered as a marker for cancer progression. Post-translational modification modulates L-plastin activity. In particular, L-plastin Ser5 phosphorylation has been shown to be important for the immune response in leukocytes as well as for invasion and metastasis formation of carcinoma cells. This chapter discusses the physiological and pathological role of L-plastin with a special focus on the importance of L-plastin Ser5 phosphorylation for the protein functions. The potential use of Ser5 phosphorylated L-plastin as a biomarker and/or therapeutic target will be evoked.
Collapse
Affiliation(s)
- Elisabeth Schaffner-Reckinger
- Cancer Cell Biology and Drug Discovery Group, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Raquel A C Machado
- Cancer Cell Biology and Drug Discovery Group, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
15
|
Xu L, Pelosof L, Wang R, McFarland HI, Wu WW, Phue JN, Lee CT, Shen RF, Juhl H, Wu LH, Alterovitz WL, Petricon E, Rosenberg AS. NGS Evaluation of Colorectal Cancer Reveals Interferon Gamma Dependent Expression of Immune Checkpoint Genes and Identification of Novel IFNγ Induced Genes. Front Immunol 2020; 11:224. [PMID: 32265897 PMCID: PMC7103651 DOI: 10.3389/fimmu.2020.00224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/28/2020] [Indexed: 12/28/2022] Open
Abstract
To evaluate the expression of immune checkpoint genes, their concordance with expression of IFNγ, and to identify potential novel ICP related genes (ICPRG) in colorectal cancer (CRC), the biological connectivity of six well documented ("classical") ICPs (CTLA4, PD1, PDL1, Tim3, IDO1, and LAG3) with IFNγ and its co-expressed genes was examined by NGS in 79 CRC/healthy colon tissue pairs. Identification of novel IFNγ- induced molecules with potential ICP activity was also sought. In our study, the six classical ICPs were statistically upregulated and correlated with IFNγ, CD8A, CD8B, CD4, and 180 additional immunologically related genes in IFNγ positive (FPKM > 1) tumors. By ICP co-expression analysis, we also identified three IFNγ-induced genes [(IFNγ-inducible lysosomal thiol reductase (IFI30), guanylate binding protein1 (GBP1), and guanylate binding protein 4 (GBP4)] as potential novel ICPRGs. These three genes were upregulated in tumor compared to normal tissues in IFNγ positive tumors, co-expressed with CD8A and had relatively high abundance (average FPKM = 362, 51, and 25, respectively), compared to the abundance of the 5 well-defined ICPs (Tim3, LAG3, PDL1, CTLA4, PD1; average FPKM = 10, 9, 6, 6, and 2, respectively), although IDO1 is expressed at comparably high levels (FPKM = 39). We extended our evaluation by querying the TCGA database which revealed the commonality of IFNγ dependent expression of the three potential ICPRGs in 638 CRCs, 103 skin cutaneous melanomas (SKCM), 1105 breast cancers (BC), 184 esophageal cancers (ESC), 416 stomach cancers (STC), and 501 lung squamous carcinomas (LUSC). In terms of prognosis, based on Pathology Atlas data, correlation of GBP1 and GBP4, but not IFI30, with 5-year survival rate was favorable in CRC, BC, SKCM, and STC. Thus, further studies defining the role of IFI30, GBP1, and GBP4 in CRC are warranted.
Collapse
Affiliation(s)
- Lai Xu
- Office of Oncologic Diseases, Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, MD, United States
| | - Lorraine Pelosof
- Office of Oncologic Diseases, Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, MD, United States
| | - Rong Wang
- Office of Biotechnology Products, Division of Biotechnology Review and Research III (DBRRIII), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, MD, United States
| | - Hugh I. McFarland
- Office of Biotechnology Products, Division of Biotechnology Review and Research III (DBRRIII), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, MD, United States
| | - Wells W. Wu
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States
| | - Je-Nie Phue
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States
| | - Chun-Ting Lee
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States
| | | | - Lei-Hong Wu
- Division of Bioinformatics and Biostatistics (DBB), National Center for Toxicological Research (NCTR), FDA, Jefferson, AR, United States
| | - Wei-Lun Alterovitz
- HIVE, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States
| | - Emanuel Petricon
- Center for Applied Proteomics and Molecular Medicine (CAPMM), George Mason University, Fairfax, VA, United States
| | - Amy S. Rosenberg
- Office of Biotechnology Products, Division of Biotechnology Review and Research III (DBRRIII), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, MD, United States
| |
Collapse
|
16
|
Khatun A, Nazki S, Jeong CG, Gu S, Mattoo SUS, Lee SI, Yang MS, Lim B, Kim KS, Kim B, Lee KT, Park CK, Lee SM, Kim WI. Effect of polymorphisms in porcine guanylate-binding proteins on host resistance to PRRSV infection in experimentally challenged pigs. Vet Res 2020; 51:14. [PMID: 32075688 PMCID: PMC7031929 DOI: 10.1186/s13567-020-00745-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Guanylate-binding proteins (GBP1 and GBP5) are known to be important for host resistance against porcine reproductive and respiratory syndrome virus (PRRSV) infection. In this study, the effects of polymorphisms in GBP1 (GBP1E2 and WUR) and GBP5 on host immune responses against PRRSV were investigated to elucidate the mechanisms governing increased resistance to this disease. Seventy-one pigs [pre-genotyped based on three SNP markers (GBP1E2, WUR, and GBP5)] were assigned to homozygous (n = 36) and heterozygous (n = 35) groups and challenged with the JA142 PRRSV strain. Another group of nineteen pigs was kept separately as a negative control group. Serum and peripheral blood mononuclear cells (PBMCs) were collected at 0, 3, 7, 14, 21 and 28 days post-challenge (dpc). Viremia and weight gain were measured in all pigs at each time point, and a flow cytometry analysis of PBMCs was performed to evaluate T cell activation. In addition, 15 pigs (5 pigs per homozygous, heterozygous and negative groups) were sacrificed at 3, 14 and 28 dpc, and the local T cell responses were evaluated in the lungs, bronchoalveolar lavage cells (BALc), lymph nodes and tonsils. The heterozygous pigs showed lower viral loads in the serum and lungs and higher weight gains than the homozygous pigs based on the area under the curve calculation. Consistently, compared with the homozygous pigs, the heterozygous pigs exhibited significantly higher levels of IFN-α in the serum, proliferation of various T cells (γδT, Th1, and Th17) in PBMCs and tissues, and cytotoxic T cells in the lungs and BALc. These results indicate that the higher resistance in the pigs heterozygous for the GBP1E2, WUR and GBP5 markers could be mediated by increased antiviral cytokine (IFN-α) production and T cell activation.
Collapse
Affiliation(s)
- Amina Khatun
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea.,Department of Pathology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Salik Nazki
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Suna Gu
- College of Environmental & Biosource Science, Division of Biotechnology, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Sameer Ul Salam Mattoo
- College of Environmental & Biosource Science, Division of Biotechnology, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Sim-In Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Myun-Sik Yang
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Byeonghwi Lim
- College of Agriculture, Life & Environment Sciences, Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Kwan-Suk Kim
- College of Agriculture, Life & Environment Sciences, Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Kyoung-Tae Lee
- National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine, Kyoungpook National University, Daegu, South Korea
| | - Sang-Myeong Lee
- College of Environmental & Biosource Science, Division of Biotechnology, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea.
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea.
| |
Collapse
|
17
|
Honkala AT, Tailor D, Malhotra SV. Guanylate-Binding Protein 1: An Emerging Target in Inflammation and Cancer. Front Immunol 2020; 10:3139. [PMID: 32117203 PMCID: PMC7025589 DOI: 10.3389/fimmu.2019.03139] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/24/2019] [Indexed: 12/16/2022] Open
Abstract
Guanylate-binding protein 1 (GBP1) is a large GTPase of the dynamin superfamily involved in the regulation of membrane, cytoskeleton, and cell cycle progression dynamics. In many cell types, such as endothelial cells and monocytes, GBP1 expression is strongly provoked by interferon γ (IFNγ) and acts to restrain cellular proliferation in inflammatory contexts. In immunity, GBP1 activity is crucial for the maturation of autophagosomes infected by intracellular pathogens and the cellular response to pathogen-associated molecular patterns. In chronic inflammation, GBP1 activity inhibits endothelial cell proliferation even as it protects from IFNγ-induced apoptosis. A similar inhibition of proliferation has also been found in some tumor models, such as colorectal or prostate carcinoma mouse models. However, this activity appears to be context-dependent, as in other cancers, such as oral squamous cell carcinoma and ovarian cancer, GBP1 activity appears to anchor a complex, taxane chemotherapy resistance profile where its expression levels correlate with worsened prognosis in patients. This discrepancy in GBP1 function may be resolved by GBP1's involvement in the induction of a cellular senescence phenotype, wherein anti-proliferative signals coincide with potent resistance to apoptosis and set the stage for dysregulated proliferative mechanisms present in growing cancers to hijack GBP1 as a pro- chemotherapy treatment resistance (TXR) and pro-survival factor even in the face of continued cytotoxic treatment. While the structure of GBP1 has been extensively characterized, its roles in inflammation, TXR, senescence, and other biological functions remain under-investigated, although initial findings suggest that GBP1 is a compelling target for therapeutic intervention in a variety of conditions ranging from chronic inflammatory disorders to cancer.
Collapse
Affiliation(s)
- Alexander T Honkala
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Dhanir Tailor
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sanjay V Malhotra
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
18
|
IFN-γ-response mediator GBP-1 represses human cell proliferation by inhibiting the Hippo signaling transcription factor TEAD. Biochem J 2018; 475:2955-2967. [PMID: 30120107 PMCID: PMC6156764 DOI: 10.1042/bcj20180123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/28/2022]
Abstract
Interferon-gamma (IFN-γ) is a pleiotropic cytokine that exerts important functions in inflammation, infectious diseases, and cancer. The large GTPase human guanylate-binding protein 1 (GBP-1) is among the most strongly IFN-γ-induced cellular proteins. Previously, it has been shown that GBP-1 mediates manifold cellular responses to IFN-γ including the inhibition of proliferation, spreading, migration, and invasion and through this exerts anti-tumorigenic activity. However, the mechanisms of GBP-1 anti-tumorigenic activities remain poorly understood. Here, we elucidated the molecular mechanism of the human GBP-1-mediated suppression of proliferation by demonstrating for the first time a cross-talk between the anti-tumorigenic IFN-γ and Hippo pathways. The α9-helix of GBP-1 was found to be sufficient to inhibit proliferation. Protein-binding and molecular modeling studies revealed that the α9-helix binds to the DNA-binding domain of the Hippo signaling transcription factor TEA domain protein (TEAD) mediated by the 376VDHLFQK382 sequence at the N-terminus of the GBP-1-α9-helix. Mutation of this sequence resulted in abrogation of both TEAD interaction and suppression of proliferation. Further on, the interaction caused inhibition of TEAD transcriptional activity associated with the down-regulation of TEAD-target genes. In agreement with these results, IFN-γ treatment of the cells also impaired TEAD activity, and this effect was abrogated by siRNA-mediated inhibition of GBP-1 expression. Altogether, this demonstrated that the α9-helix is the proliferation inhibitory domain of GBP-1, which acts independent of the GTPase activity through the inhibition of the Hippo transcription factor TEAD in mediating the anti-proliferative cell response to IFN-γ.
Collapse
|
19
|
T lymphocytes facilitate brain metastasis of breast cancer by inducing Guanylate-Binding Protein 1 expression. Acta Neuropathol 2018; 135:581-599. [PMID: 29350274 PMCID: PMC5978929 DOI: 10.1007/s00401-018-1806-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 02/01/2023]
Abstract
The discovery of genes and molecular pathways involved in the formation of brain metastasis would direct the development of therapeutic strategies to prevent this deadly complication of cancer. By comparing gene expression profiles of Estrogen Receptor negative (ER-) primary breast tumors between patients who developed metastasis to brain and to organs other than brain, we found that T lymphocytes promote the formation of brain metastases. To functionally test the ability of T cells to promote brain metastasis, we used an in vitro blood–brain barrier (BBB) model. By co-culturing T lymphocytes with breast cancer cells, we confirmed that T cells increase the ability of breast cancer cells to cross the BBB. Proteomics analysis of the tumor cells revealed Guanylate-Binding Protein 1 (GBP1) as a key T lymphocyte-induced protein that enables breast cancer cells to cross the BBB. The GBP1 gene appeared to be up-regulated in breast cancer of patients who developed brain metastasis. Silencing of GBP1 reduced the ability of breast cancer cells to cross the in vitro BBB model. In addition, the findings were confirmed in vivo in an immunocompetent syngeneic mouse model. Co-culturing of ErbB2 tumor cells with activated T cells induced a significant increase in Gbp1 expression by the cancer cells. Intracardial inoculation of the co-cultured tumor cells resulted in preferential seeding to brain. Moreover, intracerebral outgrowth of the tumor cells was demonstrated. The findings point to a role of T cells in the formation of brain metastases in ER- breast cancers, and provide potential targets for intervention to prevent the development of cerebral metastases.
Collapse
|
20
|
Effect of Human Genetic Variability on Gene Expression in Dorsal Root Ganglia and Association with Pain Phenotypes. Cell Rep 2018; 19:1940-1952. [PMID: 28564610 DOI: 10.1016/j.celrep.2017.05.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/14/2017] [Accepted: 05/03/2017] [Indexed: 01/08/2023] Open
Abstract
Dorsal root ganglia (DRG) relay sensory information to the brain, giving rise to the perception of pain, disorders of which are prevalent and burdensome. Here, we mapped expression quantitative trait loci (eQTLs) in a collection of human DRGs. DRG eQTLs were enriched within untranslated regions of coding genes of low abundance, with some overlapping with other brain regions and blood cell cis-eQTLs. We confirm functionality of identified eQTLs through their significant enrichment within open chromatin and highly deleterious SNPs, particularly at the exon level, suggesting substantial contribution of eQTLs to alternative splicing regulation. We illustrate pain-related genetic association results explained by DRG eQTLs, with the strongest evidence for contribution of the human leukocyte antigen (HLA) locus, confirmed using a mouse inflammatory pain model. Finally, we show that DRG eQTLs are found among hits in numerous genome-wide association studies, suggesting that this dataset will help address pain components of non-pain disorders.
Collapse
|
21
|
Sprouse ML, Scavuzzo MA, Blum S, Shevchenko I, Lee T, Makedonas G, Borowiak M, Bettini ML, Bettini M. High self-reactivity drives T-bet and potentiates Treg function in tissue-specific autoimmunity. JCI Insight 2018; 3:97322. [PMID: 29367462 DOI: 10.1172/jci.insight.97322] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022] Open
Abstract
T cell receptor (TCR) affinity is a critical factor of Treg lineage commitment, but whether self-reactivity is a determining factor in peripheral Treg function remains unknown. Here, we report that a high degree of self-reactivity is crucial for tissue-specific Treg function in autoimmunity. Based on high expression of CD5, we identified a subset of self-reactive Tregs expressing elevated levels of T-bet, GITR, CTLA-4, and ICOS, which imparted significant protection from autoimmune diabetes. We observed that T-bet expression in Tregs, necessary for control of Th1 autoimmunity, could be induced in an IFNγ-independent fashion and, unlike in conventional T cells (Tconv), was strongly correlated with the strength of TCR signaling. The level of CD5 similarly identified human Tregs with an increased functional profile, suggesting that CD5hi Tregs may constitute an efficacious subpopulation appropriate for use in adoptive Treg therapies for treatment of inflammatory conditions. Overall, this work establishes an instrumental role of high TCR self-reactivity in driving Treg function.
Collapse
Affiliation(s)
- Maran L Sprouse
- Department of Pediatrics, Section of Diabetes and Endocrinology
| | | | - Samuel Blum
- Department of Pediatrics, Section of Diabetes and Endocrinology
| | - Ivan Shevchenko
- Department of Pediatrics, Section of Diabetes and Endocrinology
| | - Thomas Lee
- Department of Pediatrics, Section of Diabetes and Endocrinology
| | | | - Malgorzata Borowiak
- Department of Molecular and Cellular Biology, Center for Cell and Gene Therapy, and.,McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Matthew L Bettini
- Department of Pediatrics, Section of Diabetes and Endocrinology.,McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Maria Bettini
- Department of Pediatrics, Section of Diabetes and Endocrinology.,McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
22
|
López-Posadas R, Stürzl M, Atreya I, Neurath MF, Britzen-Laurent N. Interplay of GTPases and Cytoskeleton in Cellular Barrier Defects during Gut Inflammation. Front Immunol 2017; 8:1240. [PMID: 29051760 PMCID: PMC5633683 DOI: 10.3389/fimmu.2017.01240] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/19/2017] [Indexed: 12/24/2022] Open
Abstract
An essential role of the intestine is to build and maintain a barrier preventing the luminal gut microbiota from invading the host. This involves two coordinated physical and immunological barriers formed by single layers of intestinal epithelial and endothelial cells, which avoid the activation of local immune responses or the systemic dissemination of microbial agents, and preserve tissue homeostasis. Accordingly, alterations of epithelial and endothelial barrier functions have been associated with gut inflammation, for example during inflammatory bowel disease (IBD). The discriminative control of nutriment uptake and sealing toward potentially pathological microorganisms requires a profound regulation of para- and transcellular permeability. On the subcellular level, the cytoskeleton exerts key regulatory functions in the maintenance of cellular barriers. Increased epithelial/endothelial permeability occurs primarily as a result of a reorganization of cytoskeletal–junctional complexes. Pro-inflammatory mediators such as cytokines can induce cytoskeletal rearrangements, causing inflammation-dependent defects in gut barrier function. In this context, small GTPases of the Rho family and large GTPases from the Dynamin superfamily appear as major cellular switches regulating the interaction between intercellular junctions and actomyosin complexes, and in turn cytoskeleton plasticity. Strikingly, some of these proteins, such as RhoA or guanylate-binding protein-1 (GBP-1) have been associated with gut inflammation and IBD. In this review, we will summarize the role of small and large GTPases for cytoskeleton plasticity and epithelial/endothelial barrier in the context of gut inflammation.
Collapse
Affiliation(s)
| | | | - Imke Atreya
- Universitätsklinikum Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
23
|
Valent D, Arroyo L, Peña R, Yu K, Carreras R, Mainau E, Velarde A, Bassols A. Effects on pig immunophysiology, PBMC proteome and brain neurotransmitters caused by group mixing stress and human-animal relationship. PLoS One 2017; 12:e0176928. [PMID: 28475627 PMCID: PMC5419571 DOI: 10.1371/journal.pone.0176928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/19/2017] [Indexed: 12/19/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMC) are an interesting sample for searching for biomarkers with proteomic techniques because they are easy to obtain and do not contain highly abundant, potentially masking proteins. Two groups of pigs (n = 56) were subjected to mixing under farm conditions and afterwards subjected to different management treatments: negative handling (NH) and positive handling (PH). Serum and PBMC samples were collected at the beginning of the experiment one week after mixing (t0) and after two months of different handling (t2). Brain areas were collected after slaughter and neurotransmitters quantified by HPLC. Hair cortisol and serum acute phase proteins decreased and serum glutathione peroxidase increased at t2, indicating a lower degree of stress at t2 after adaptation to the farm. Differential gel electrophoresis (DIGE) was applied to study the effects of time and treatment on the PBMC proteome. A total of 54 differentially expressed proteins were identified, which were involved in immune system modulation, cell adhesion and motility, gene expression, splicing and translation, protein degradation and folding, oxidative stress and metabolism. Thirty-seven protein spots were up-regulated at t2 versus t0 whereas 27 were down-regulated. Many of the identified proteins share the characteristic of being potentially up or down-regulated by cortisol, indicating that changes in protein abundance between t0 and t2 are, at least in part, consequence of lower stress upon adaptation to the farm conditions after group mixing. Only slight changes in brain neurotransmitters and PBMC oxidative stress markers were observed. In conclusion, the variation in hair cortisol and serum APPs as well as the careful analysis of the identified proteins indicate that changes in protein composition in PBMC throughout time is mainly due to a decrease in the stress status of the individuals, following accommodation to the farm and the new group.
Collapse
Affiliation(s)
- Daniel Valent
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Laura Arroyo
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Raquel Peña
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Kuai Yu
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Eva Mainau
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- * E-mail:
| |
Collapse
|
24
|
Supper V, Hartl I, Boulègue C, Ohradanova-Repic A, Stockinger H. Dynamic Interaction- and Phospho-Proteomics Reveal Lck as a Major Signaling Hub of CD147 in T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:2468-2478. [DOI: 10.4049/jimmunol.1600355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 01/06/2017] [Indexed: 12/28/2022]
|
25
|
Britzen-Laurent N, Herrmann C, Naschberger E, Croner RS, Stürzl M. Pathophysiological role of guanylate-binding proteins in gastrointestinal diseases. World J Gastroenterol 2016; 22:6434-6443. [PMID: 27605879 PMCID: PMC4968125 DOI: 10.3748/wjg.v22.i28.6434] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/25/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
Guanylate-binding proteins (GBPs) are interferon-stimulated factors involved in the defense against cellular pathogens and inflammation. These proteins, particularly GBP-1, the most prominent member of the family, have been established as reliable markers of interferon-γ-activated cells in various diseases, including colorectal carcinoma (CRC) and inflammatory bowel diseases (IBDs). In CRC, GBP-1 expression is associated with a Th1-dominated angiostatic micromilieu and is correlated with a better outcome. Inhibition of tumor growth by GBP-1 is the result of its strong anti-angiogenic activity as well as its direct anti-tumorigenic effect on tumor cells. In IBD, GBP-1 mediates the anti-proliferative effects of interferon-γ on intestinal epithelial cells. In addition, it plays a protective role on the mucosa by preventing cell apoptosis, by inhibiting angiogenesis and by regulating the T-cell receptor signaling. These functions rely to a large extent on the ability of GBP-1 to interact with and remodel the actin cytoskeleton.
Collapse
|
26
|
Javed S, Marsay L, Wareham A, Lewandowski KS, Williams A, Dennis MJ, Sharpe S, Vipond R, Silman N, Ball G, Kempsell KE. Temporal Expression of Peripheral Blood Leukocyte Biomarkers in a Macaca fascicularis Infection Model of Tuberculosis; Comparison with Human Datasets and Analysis with Parametric/Non-parametric Tools for Improved Diagnostic Biomarker Identification. PLoS One 2016; 11:e0154320. [PMID: 27228113 PMCID: PMC4882019 DOI: 10.1371/journal.pone.0154320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/12/2016] [Indexed: 12/19/2022] Open
Abstract
A temporal study of gene expression in peripheral blood leukocytes (PBLs) from a Mycobacterium tuberculosis primary, pulmonary challenge model Macaca fascicularis has been conducted. PBL samples were taken prior to challenge and at one, two, four and six weeks post-challenge and labelled, purified RNAs hybridised to Operon Human Genome AROS V4.0 slides. Data analyses revealed a large number of differentially regulated gene entities, which exhibited temporal profiles of expression across the time course study. Further data refinements identified groups of key markers showing group-specific expression patterns, with a substantial reprogramming event evident at the four to six week interval. Selected statistically-significant gene entities from this study and other immune and apoptotic markers were validated using qPCR, which confirmed many of the results obtained using microarray hybridisation. These showed evidence of a step-change in gene expression from an ‘early’ FOS-associated response, to a ‘late’ predominantly type I interferon-driven response, with coincident reduction of expression of other markers. Loss of T-cell-associate marker expression was observed in responsive animals, with concordant elevation of markers which may be associated with a myeloid suppressor cell phenotype e.g. CD163. The animals in the study were of different lineages and these Chinese and Mauritian cynomolgous macaque lines showed clear evidence of differing susceptibilities to Tuberculosis challenge. We determined a number of key differences in response profiles between the groups, particularly in expression of T-cell and apoptotic makers, amongst others. These have provided interesting insights into innate susceptibility related to different host `phenotypes. Using a combination of parametric and non-parametric artificial neural network analyses we have identified key genes and regulatory pathways which may be important in early and adaptive responses to TB. Using comparisons between data outputs of each analytical pipeline and comparisons with previously published Human TB datasets, we have delineated a subset of gene entities which may be of use for biomarker diagnostic test development.
Collapse
Affiliation(s)
- Sajid Javed
- Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Leanne Marsay
- Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Alice Wareham
- Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Kuiama S. Lewandowski
- Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Ann Williams
- Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Michael J. Dennis
- Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Sally Sharpe
- Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Richard Vipond
- Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Nigel Silman
- Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, United Kingdom
| | - Karen E. Kempsell
- Public Health England, Infection Services, Health Protection Agency Porton, Porton Down, Salisbury, Wiltshire, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Supper V, Schiller HB, Paster W, Forster F, Boulègue C, Mitulovic G, Leksa V, Ohradanova-Repic A, Machacek C, Schatzlmaier P, Zlabinger GJ, Stockinger H. Association of CD147 and Calcium Exporter PMCA4 Uncouples IL-2 Expression from Early TCR Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 196:1387-99. [DOI: 10.4049/jimmunol.1501889] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/25/2015] [Indexed: 12/24/2022]
|
28
|
Human MicroRNA miR-532-5p Exhibits Antiviral Activity against West Nile Virus via Suppression of Host Genes SESTD1 and TAB3 Required for Virus Replication. J Virol 2015; 90:2388-402. [PMID: 26676784 DOI: 10.1128/jvi.02608-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/07/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED West Nile virus (WNV) is a mosquito-transmitted flavivirus that naturally circulates between mosquitos and birds but can also infect humans, causing severe neurological disease. The early host response to WNV infection in vertebrates primarily relies on the type I interferon pathway; however, recent studies suggest that microRNAs (miRNAs) may also play a notable role. In this study, we assessed the role of host miRNAs in response to WNV infection in human cells. We employed small RNA sequencing (RNA-seq) analysis to determine changes in the expression of host miRNAs in HEK293 cells infected with an Australian strain of WNV, Kunjin (WNVKUN), and identified a number of host miRNAs differentially expressed in response to infection. Three of these miRNAs were confirmed to be significantly upregulated in infected cells by quantitative reverse transcription (qRT)-PCR and Northern blot analyses, and one of them, miR-532-5p, exhibited a significant antiviral effect against WNVKUN infection. We have demonstrated that miR-532-5p targets and downregulates expression of the host genes SESTD1 and TAB3 in human cells. Small interfering RNA (siRNA) depletion studies showed that both SESTD1 and TAB3 were required for efficient WNVKUN replication. We also demonstrated upregulation of mir-532-5p expression and a corresponding decrease in the expression of its targets, SESTD1 and TAB3, in the brains of WNVKUN -infected mice. Our results show that upregulation of miR-532-5p and subsequent suppression of the SESTD1 and TAB3 genes represent a host antiviral response aimed at limiting WNVKUN infection and highlight the important role of miRNAs in controlling RNA virus infections in mammalian hosts. IMPORTANCE West Nile virus (WNV) is a significant viral pathogen that poses a considerable threat to human health across the globe. There is no specific treatment or licensed vaccine available for WNV, and deeper insight into how the virus interacts with the host is required to facilitate their development. In this study, we addressed the role of host microRNAs (miRNAs) in antiviral response to WNV in human cells. We identified miR-532-5p as a novel antiviral miRNA and showed that it is upregulated in response to WNV infection and suppresses the expression of the host genes TAB3 and SESTD1 required for WNV replication. Our results show that upregulation of miR-532-5p and subsequent suppression of the SESTD1 and TAB3 genes represent an antiviral response aimed at limiting WNV infection and highlight the important role of miRNAs in controlling virus infections in mammalian hosts.
Collapse
|
29
|
Niu P, Shabir N, Khatun A, Seo BJ, Gu S, Lee SM, Lim SK, Kim KS, Kim WI. Effect of polymorphisms in the GBP1, Mx1 and CD163 genes on host responses to PRRSV infection in pigs. Vet Microbiol 2015; 182:187-95. [PMID: 26711047 DOI: 10.1016/j.vetmic.2015.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/07/2015] [Accepted: 11/12/2015] [Indexed: 01/29/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most economically important disease to the swine industry, and effective prevention strategy for this disease is still required. Guanylate-binding protein 1 (GBP1) and myxovirus resistance protein 1 (Mx1) are two important proteins belonging to the GTPase superfamily that have been previously described to show antiviral effects. CD163 is considered the most important receptor for PRRSV attachment and internalization. Therefore, the aim of the present study was to evaluate the effects of these genes on host resistance against PRRSV infection in conjunction with the host immune response following PRRSV challenge. The results showed that pigs with AG genotype for the GBP1 exon2 exhibited a significantly higher average daily weight gain (ADWG) and lower average viremia than AA or GG genotype. Furthermore, pigs harbouring the AG genotype for the GBP1 gene presented greater CD4(+)CD25(+) and CD8(+)CD25(+) T cell populations at 4 and 18 days post challenge (dpc), respectively, as compared with other genotypes whereas pigs with CC genotype for the CD163 gene displayed significantly higher nucleocapsid-specific antibody titers at 11dpc. However, pigs with a single 11-bp deletion or insertion in the Mx1 gene did not show significant differences in either weight gain or viremia. Based on these results, we concluded that GBP1 is most significantly associated with resistance against PRRSV infection and efficient T cell activation in pigs.
Collapse
Affiliation(s)
- Pengxia Niu
- College of Agriculture, Life & Environment Sciences, Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Nadeem Shabir
- College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Amina Khatun
- College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Byoung-Joo Seo
- College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Suna Gu
- College of Environmental & Biosource Science, Division of Biotechnology, Chonbuk National University, Iksan, Republic of Korea
| | - Sang-Myoung Lee
- College of Environmental & Biosource Science, Division of Biotechnology, Chonbuk National University, Iksan, Republic of Korea
| | - Si-Kyu Lim
- Research and Development Center, GenoTech. Co., Daejeon, Republic of Korea
| | - Kwan-Suk Kim
- College of Agriculture, Life & Environment Sciences, Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea.
| |
Collapse
|
30
|
Gol S, Estany J, Fraile LJ, Pena RN. Expression profiling of the GBP1 gene as a candidate gene for porcine reproductive and respiratory syndrome resistance. Anim Genet 2015; 46:599-606. [PMID: 26358736 DOI: 10.1111/age.12347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 12/17/2022]
Abstract
A genomic region in pig chromosome 4 has been previously associated with higher viraemia levels and lower weight gain following porcine reproduction and respiratory syndrome virus (PRRSV) infection. The region includes the marker WUR1000125, a G>A polymorphism next to a putative polyadenylation site in the 3'-untranslated region (3'-UTR) of the guanylate-binding protein 1, interferon-induced (GBP1) gene. The protein encoded by GBP1 is a negative regulator of T-cell responses. We show here that GBP1 expression is lower in liver and tonsils of pigs carrying the WUR1000125-G allele due to differential allele expression (allele A expression is 1.9-fold higher than for allele G). We also show that the GBP1 gene has two active polyadenylation signals 421 bp apart and that polyadenylation usage is dependent on the WUR1000125 genotype. The distal site is the most prevalently used in all samples, but the presence of the A allele favours the generation of shorter transcripts from the proximal site. This is confirmed by a differential allele expression study in AG genotype liver and tonsil samples. The interaction between WUR1000125 and other mutations identified in the 5'- and 3'-UTR regions of this gene needs to be studied. In conclusion, our study indicates that the WUR1000125 mutation is associated with changes in the expression of the negative T-cell regulator GBP1 gene. However, the chromosome 4 locus for PRRSV viraemia levels and weight gain contains a cluster of four other GBP genes that remain to be studied as candidate genes for this QTL.
Collapse
Affiliation(s)
- S Gol
- Department of Animal Production, University of Lleida-Agrotecnio Center, 25198, Lleida, Spain
| | - J Estany
- Department of Animal Production, University of Lleida-Agrotecnio Center, 25198, Lleida, Spain
| | - L J Fraile
- Department of Animal Production, University of Lleida-Agrotecnio Center, 25198, Lleida, Spain
| | - R N Pena
- Department of Animal Production, University of Lleida-Agrotecnio Center, 25198, Lleida, Spain
| |
Collapse
|
31
|
Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 2014; 74:5-17. [PMID: 25458968 DOI: 10.1016/j.cyto.2014.09.011] [Citation(s) in RCA: 718] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
Abstract
CD4(+) T helper (Th) cells are critical for proper immune cell homeostasis and host defense, but are also major contributors to pathology of autoimmune and inflammatory diseases. Since the discovery of the Th1/Th2 dichotomy, many additional Th subsets were discovered, each with a unique cytokine profile, functional properties, and presumed role in autoimmune tissue pathology. This includes Th1, Th2, Th17, Th22, Th9, and Treg cells which are characterized by specific cytokine profiles. Cytokines produced by these Th subsets play a critical role in immune cell differentiation, effector subset commitment, and in directing the effector response. Cytokines are often categorized into proinflammatory and anti-inflammatory cytokines and linked to Th subsets expressing them. This article reviews the different Th subsets in terms of cytokine profiles, how these cytokines influence and shape the immune response, and their relative roles in promoting pathology in autoimmune and inflammatory diseases. Furthermore, we will discuss whether Th cell pathogenicity can be defined solely based on their cytokine profiles and whether rigid definition of a Th cell subset by its cytokine profile is helpful.
Collapse
Affiliation(s)
- Itay Raphael
- Department of Biology, University of Texas at San Antonio, TX 78249, United States
| | - Saisha Nalawade
- Department of Biology, University of Texas at San Antonio, TX 78249, United States
| | - Todd N Eagar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, TX 77030, United States
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, TX 78249, United States.
| |
Collapse
|
32
|
Pfisterer K, Forster F, Paster W, Supper V, Ohradanova-Repic A, Eckerstorfer P, Zwirzitz A, Donner C, Boulegue C, Schiller HB, Ondrovičová G, Acuto O, Stockinger H, Leksa V. The late endosomal transporter CD222 directs the spatial distribution and activity of Lck. THE JOURNAL OF IMMUNOLOGY 2014; 193:2718-32. [PMID: 25127865 DOI: 10.4049/jimmunol.1303349] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The spatial and temporal organization of T cell signaling molecules is increasingly accepted as a crucial step in controlling T cell activation. CD222, also known as the cation-independent mannose 6-phosphate/insulin-like growth factor 2 receptor, is the central component of endosomal transport pathways. In this study, we show that CD222 is a key regulator of the early T cell signaling cascade. Knockdown of CD222 hampers the effective progression of TCR-induced signaling and subsequent effector functions, which can be rescued via reconstitution of CD222 expression. We decipher that Lck is retained in the cytosol of CD222-deficient cells, which obstructs the recruitment of Lck to CD45 at the cell surface, resulting in an abundant inhibitory phosphorylation signature on Lck at the steady state. Hence, CD222 specifically controls the balance between active and inactive Lck in resting T cells, which guarantees operative T cell effector functions.
Collapse
Affiliation(s)
- Karin Pfisterer
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria
| | - Florian Forster
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria
| | - Wolfgang Paster
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria; Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Verena Supper
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria
| | - Anna Ohradanova-Repic
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria
| | - Paul Eckerstorfer
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria
| | - Alexander Zwirzitz
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria
| | - Clemens Donner
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria
| | - Cyril Boulegue
- Department of Molecular Medicine, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany; and
| | - Herbert B Schiller
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria; Department of Molecular Medicine, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany; and
| | - Gabriela Ondrovičová
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 84551 Bratislava, Slovak Republic
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Hannes Stockinger
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria;
| | - Vladimir Leksa
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A-1090, Austria; Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 84551 Bratislava, Slovak Republic
| |
Collapse
|