1
|
Scheiber C, Klein HC, Schneider JM, Schulz T, Bechter K, Tumani H, Kapapa T, Flinkman D, Coffey E, Ross D, Čistjakovs M, Nora-Krūkle Z, Bortolotti D, Rizzo R, Murovska M, Schneider EM. HSV-1 and Cellular miRNAs in CSF-Derived Exosomes as Diagnostically Relevant Biomarkers for Neuroinflammation. Cells 2024; 13:1208. [PMID: 39056790 PMCID: PMC11275151 DOI: 10.3390/cells13141208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Virus-associated chronic inflammation may contribute to autoimmunity in a number of diseases. In the brain, autoimmune encephalitis appears related to fluctuating reactivation states of neurotropic viruses. In addition, viral miRNAs and proteins can be transmitted via exosomes, which constitute novel but highly relevant mediators of cellular communication. The current study questioned the role of HSV-1-encoded and host-derived miRNAs in cerebrospinal fluid (CSF)-derived exosomes, enriched from stress-induced neuroinflammatory diseases, mainly subarachnoid hemorrhage (SAH), psychiatric disorders (AF and SZ), and various other neuroinflammatory diseases. The results were compared with CSF exosomes from control donors devoid of any neuroinflammatory pathology. Serology proved positive, but variable immunity against herpesviruses in the majority of patients, except controls. Selective ultrastructural examinations identified distinct, herpesvirus-like particles in CSF-derived lymphocytes and monocytes. The likely release of extracellular vesicles and exosomes was most frequently observed from CSF monocytes. The exosomes released were structurally similar to highly purified stem-cell-derived exosomes. Exosomal RNA was quantified for HSV-1-derived miR-H2-3p, miR-H3-3p, miR-H4-3p, miR-H4-5p, miR-H6-3p, miR-H27 and host-derived miR-21-5p, miR-146a-5p, miR-155-5p, and miR-138-5p and correlated with the oxidative stress chemokine IL-8 and the axonal damage marker neurofilament light chain (NfL). Replication-associated miR-H27 correlated with neuronal damage marker NfL, and cell-derived miR-155-5p correlated with oxidative stress marker IL-8. Elevated miR-138-5p targeting HSV-1 latency-associated ICP0 inversely correlated with lower HSV-1 antibodies in CSF. In summary, miR-H27 and miR-155-5p may constitute neuroinflammatory markers for delineating frequent and fluctuating HSV-1 replication and NfL-related axonal damage in addition to the oxidative stress cytokine IL-8 in the brain. Tentatively, HSV-1 remains a relevant pathogen conditioning autoimmune processes and a psychiatric clinical phenotype.
Collapse
Affiliation(s)
- Christian Scheiber
- Clinic for Anaesthesiology and Intensive Care Medicine, Ulm University Hospital, 89081 Ulm, Germany; (C.S.); (J.M.S.); (T.S.)
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany;
| | - Hans C. Klein
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
- Research and Education Department Addiction Care Northern Netherlands, 9728 JR Groningen, The Netherlands
| | - Julian M. Schneider
- Clinic for Anaesthesiology and Intensive Care Medicine, Ulm University Hospital, 89081 Ulm, Germany; (C.S.); (J.M.S.); (T.S.)
| | - Tanja Schulz
- Clinic for Anaesthesiology and Intensive Care Medicine, Ulm University Hospital, 89081 Ulm, Germany; (C.S.); (J.M.S.); (T.S.)
| | - Karl Bechter
- Clinic for Psychiatry and Psychotherapy II, Ulm University, 89312 Guenzburg, Germany;
| | - Hayrettin Tumani
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany;
| | - Thomas Kapapa
- Department of Neurosurgery, Ulm University Hospital, 89081 Ulm, Germany;
| | - Dani Flinkman
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20521 Turku, Finland; (D.F.); (E.C.)
| | - Eleanor Coffey
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20521 Turku, Finland; (D.F.); (E.C.)
| | | | - Maksims Čistjakovs
- Institute of Microbiology and Virology, Riga Stradins University, 1067 Riga, Latvia; (M.Č.); (Z.N.-K.); (M.M.)
| | - Zaiga Nora-Krūkle
- Institute of Microbiology and Virology, Riga Stradins University, 1067 Riga, Latvia; (M.Č.); (Z.N.-K.); (M.M.)
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy; (D.B.); (R.R.)
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy; (D.B.); (R.R.)
- Laboratory for Advanced Therapeutic Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Modra Murovska
- Institute of Microbiology and Virology, Riga Stradins University, 1067 Riga, Latvia; (M.Č.); (Z.N.-K.); (M.M.)
| | - E. Marion Schneider
- Clinic for Anaesthesiology and Intensive Care Medicine, Ulm University Hospital, 89081 Ulm, Germany; (C.S.); (J.M.S.); (T.S.)
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany;
| |
Collapse
|
2
|
Peng Y, Xiao S, Zuo W, Xie Y, Xiao Y. Potential diagnostic value of miRNAs in sexually transmitted infections. Gene 2024; 895:147992. [PMID: 37977319 DOI: 10.1016/j.gene.2023.147992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
MiRNAs are small endogenous non-coding RNAs that have been demonstrated to be involved in post-transcriptional gene silencing, regulating a number of metabolic functions in the human body, including immune response, cellular physiology, organ development, angiogenesis, signaling, and other aspects. As popular molecules that have been studied in previous years, given their extensive regulatory functions, miRNAs hold considerable promise as non-invasive biomarkers. Sexually transmitted infections(STIs) are still widespread and have an adverse effect on individuals, communities, and society worldwide. miRNAs in the regulatory networks are generally involved in their molecular processes of formation and development. In this review, we discuss the value of miRNAs for the diagnosis of STIs.
Collapse
Affiliation(s)
- Yunchi Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuangwen Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wei Zuo
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yafeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
3
|
Liyanage TD, Nikapitiya C, De Zoysa M. Chitosan nanoparticles-based in vivo delivery of miR-155 modulates the Viral haemorrhagic septicaemia virus-induced antiviral immune responses in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109234. [PMID: 37984615 DOI: 10.1016/j.fsi.2023.109234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Viral haemorrhagic septicaemia virus (VHSV) is one of the highly pathogenic virus, which causes viral haemorrhagic septicaemia disease in both marine and freshwater fish. Micro RNA-155 (miRNA-155) is a multifunctional small non-coding RNA and it involves regulation of immune responses during viral infection. In this study, dre-miR-155 mimics were encapsulated into chitosan nanoparticles (CNPs). Resulted encapsulated product (miR-155-CNPs) was investigated for its immunomodulation role in zebrafish during experimentally challenged VHSV infection. Successful encapsulation of dre-miR-155 mimics into CNPs was confirmed through average nanoparticle (NPs) size (341.45 ± 10.00 nm), increased encapsulation efficiency percentage (98.80%), bound dre-miR-155 with chitosan, sustained release in vitro (up to 40%), and the integrity of RNA. Overexpressed miR-155 was observed in gills, muscle, and kidney tissues (5.42, 19.62, and 140.72-folds, respectively) after intraperitoneal delivery of miR-155-CNPs into zebrafish upon VHSV infection (miR-155-CNPs + VHSV). The miR-155-CNPs + VHSV infected fish had the highest cumulative survival (85%), which was associated with low viral copy numbers. The miR-155-overexpressing fish showed significantly decreased expression of ifnγ, irf2bpl, irf9, socs1a, il10, and caspase3, compared to that of the miR-155 inhibitor + VHSV infected fish group. In contrast, il1β, tnfα, il6, cd8a, and p53 expressions were upregulated in miR-155-overexpressed zebrafish compared to that of the control. The overall findings indicate the successful delivery of dre-miR-155 through miR-155-CNPs that enabled restriction of VHSV infection in zebrafish presumably by modulating immune gene expression.
Collapse
Affiliation(s)
- T D Liyanage
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea; Department of Microbiology and Immunology, University of Otago, 9054, Dunedin, New Zealand
| | - Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
4
|
Kimura M, Kothari S, Gohir W, Camargo JF, Husain S. MicroRNAs in infectious diseases: potential diagnostic biomarkers and therapeutic targets. Clin Microbiol Rev 2023; 36:e0001523. [PMID: 37909789 PMCID: PMC10732047 DOI: 10.1128/cmr.00015-23] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
MicroRNAs (miRNAs) are conserved, short, non-coding RNAs that play a crucial role in the post-transcriptional regulation of gene expression. They have been implicated in the pathogenesis of cancer and neurological, cardiovascular, and autoimmune diseases. Several recent studies have suggested that miRNAs are key players in regulating the differentiation, maturation, and activation of immune cells, thereby influencing the host immune response to infection. The resultant upregulation or downregulation of miRNAs from infection influences the protein expression of genes responsible for the immune response and can determine the risk of disease progression. Recently, miRNAs have been explored as diagnostic biomarkers and therapeutic targets in various infectious diseases. This review summarizes our current understanding of the role of miRNAs during viral, fungal, bacterial, and parasitic infections from a clinical perspective, including critical functional mechanisms and implications for their potential use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Muneyoshi Kimura
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Sagar Kothari
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Wajiha Gohir
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Jose F. Camargo
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shahid Husain
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
5
|
de Souza Carneiro VC, Leon LAA, de Paula VS. miRNAs: Targets to Investigate Herpesvirus Infection Associated with Neurological Disorders. Int J Mol Sci 2023; 24:15876. [PMID: 37958855 PMCID: PMC10650863 DOI: 10.3390/ijms242115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Herpesvirus is associated with various neurological disorders and a specific diagnosis is associated with a better prognosis. MicroRNAs (miRNAs) are potential diagnostic and prognostic biomarkers of neurological diseases triggered by herpetic infection. In this review, we discuss miRNAs that have been associated with neurological disorders related to the action of herpesviruses. Human miRNAs and herpesvirus-encoded miRNAs were listed and discussed. This review article will be valuable in stimulating the search for new diagnostic and prognosis alternatives and understanding the role of these miRNAs in neurological diseases triggered by herpesviruses.
Collapse
Affiliation(s)
- Vanessa Cristine de Souza Carneiro
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil; (V.C.d.S.C.); (V.S.d.P.)
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Luciane Almeida Amado Leon
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Vanessa Salete de Paula
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil; (V.C.d.S.C.); (V.S.d.P.)
| |
Collapse
|
6
|
Mulik S, Berber E, Sehrawat S, Rouse BT. Controlling viral inflammatory lesions by rebalancing immune response patterns. Front Immunol 2023; 14:1257192. [PMID: 37671156 PMCID: PMC10475736 DOI: 10.3389/fimmu.2023.1257192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
In this review, we discuss a variety of immune modulating approaches that could be used to counteract tissue-damaging viral immunoinflammatory lesions which typify many chronic viral infections. We make the point that in several viral infections the lesions can be largely the result of one or more aspects of the host response mediating the cell and tissue damage rather than the virus itself being directly responsible. However, within the reactive inflammatory lesions along with the pro-inflammatory participants there are also other aspects of the host response that may be acting to constrain the activity of the damaging components and are contributing to resolution. This scenario should provide the prospect of rebalancing the contributions of different host responses and hence diminish or even fully control the virus-induced lesions. We identify several aspects of the host reactions that influence the pattern of immune responsiveness and describe approaches that have been used successfully, mainly in model systems, to modulate the activity of damaging participants and which has led to lesion control. We emphasize examples where such therapies are, or could be, translated for practical use in the clinic to control inflammatory lesions caused by viral infections.
Collapse
Affiliation(s)
- Sachin Mulik
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sharvan Sehrawat
- Indian Institute of Science Education and Research, Department of Biological Sciences, Mohali, Punjab, India
| | - Barry Tyrrell Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
7
|
Soltani S, Shahbahrami R, Jahanabadi S, Siri G, Emadi MS, Zandi M. Possible role of CNS microRNAs in Human Mpox virus encephalitis-a mini-review. J Neurovirol 2023; 29:135-140. [PMID: 36964438 DOI: 10.1007/s13365-023-01125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/26/2023]
Abstract
In May 2022, a re-emerging viral pathogen belonging to the Poxviridae was first reported from the UK, and WHO confirmed the outbreak after the prevalence of the disease increased. As of February 15, 2023, more than 85,000 confirmed cases have been recorded in 110 countries. Due to the spread of the virus across multiple countries, WHO declared the mpox outbreak as a public health emergency. Human mpox virus is an enveloped virus with a linear double-stranded DNA that can cause encephalitis with neurological complications such as pharyngitis, fever, anorexia, adenopathy, vesiculopapular rash, and headache. Dysregulation of microRNAs in viral encephalitis has been reported in a variety of documents. In this mini-review, we aim to discuss the possibility of CNS-related microRNA dysregulation in mpox-related encephalitis.
Collapse
Affiliation(s)
- Saber Soltani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Shahbahrami
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaye Jahanabadi
- Specialist of Infectious and Tropical Diseases, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Goli Siri
- Department of Internal Medicine, School of Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeid Emadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
miRNAs in Herpesvirus Infection: Powerful Regulators in Small Packages. Viruses 2023; 15:v15020429. [PMID: 36851643 PMCID: PMC9965283 DOI: 10.3390/v15020429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
microRNAs are a class of small, single-stranded, noncoding RNAs that regulate gene expression. They can be significantly dysregulated upon exposure to any infection, serving as important biomarkers and therapeutic targets. Numerous human DNA viruses, along with several herpesviruses, have been found to encode and express functional viral microRNAs known as vmiRNAs, which can play a vital role in host-pathogen interactions by controlling the viral life cycle and altering host biological pathways. Viruses have also adopted a variety of strategies to prevent being targeted by cellular miRNAs. Cellular miRNAs can act as anti- or proviral components, and their dysregulation occurs during a wide range of infections, including herpesvirus infection. This demonstrates the significance of miRNAs in host herpesvirus infection. The current state of knowledge regarding microRNAs and their role in the different stages of herpes virus infection are discussed in this review. It also delineates the therapeutic and biomarker potential of these microRNAs in future research directions.
Collapse
|
9
|
Cassidy BR, Sonntag WE, Leenen PJM, Drevets DA. Systemic Listeria monocytogenes infection in aged mice induces long-term neuroinflammation: the role of miR-155. Immun Ageing 2022; 19:25. [PMID: 35614490 PMCID: PMC9130456 DOI: 10.1186/s12979-022-00281-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/12/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND Understanding mechanisms of pathologic neuroinflammation is essential for improving outcomes after central nervous system infections. Brain tissue-resident memory T cells (bTRM) are recruited during central nervous system infection and promote pathogen control as well as noxious inflammation. Our prior studies in young mice showed optimal recruitment of CD8+ bTRM during neuroinvasive Listeria monocytogenes (Lm) infection required miR-155, and was significantly inhibited by anti-miR-155 oligonucleotides. Since Lm is an important pathogen in the elderly, we hypothesized anti-miR-155 would also inhibit accumulation of CD8+ bTRM in aged mice infected with Lm. METHODS Young (2 mo) and aged (> 18 mo) male C57BL/6 mice were infected intra-peritoneally with wild-type Lm, or avirulent Lm mutants lacking the genes required for intracellular motility (ΔactA) or phagosomal escape (Δhly), then were given antibiotics. Brain leukocytes and their intracellular cytokine production were quantified by flow cytometry >28d post-infection (p.i.). The role of miR-155 was tested by injecting mice with anti-miR-155 or control oligonucleotides along with antibiotics. RESULTS Aged mice had significantly more homeostatic CD8+ bTRM than did young mice, which did not increase after infection with wild-type Lm despite 50% mortality, whereas young mice suffered no mortality after a larger inoculum. For direct comparison of post-infectious neuroinflammation after the same inoculum, young and aged mice were infected with 107 CFU ΔactA Lm. This mutant caused no mortality and significantly increased CD8+ bTRM 28d p.i. in both groups, whereas bone marrow-derived myeloid cells, particularly neutrophils, increased only in aged mice. Notably, anti-miR-155 reduced accumulation of brain myeloid cells in aged mice after infection, whereas CD8+ bTRM were unaffected. CONCLUSIONS Systemic infection with Lm ΔactA is a novel model for studying infection-induced brain inflammation in aged mice without excessive mortality. CD8+ bTRM increase in both young and aged mice after infection, whereas only in aged mice bone marrow-derived myeloid cells increase long-term. In aged mice, anti-miR-155 inhibits brain accumulation of myeloid cells, but not CD8+ bTRM. These results suggest young and aged mice differ in manifestations and mechanisms of infection-induced neuroinflammation and give insight for developing therapies to ameliorate brain inflammation following severe infection in the elderly.
Collapse
Affiliation(s)
- Benjamin R. Cassidy
- Infectious Diseases, Department of Internal Medicine, 800 Stanton L. Young, Suite 7300, Oklahoma City, OK 73104 USA
| | - William E. Sonntag
- grid.266902.90000 0001 2179 3618Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Pieter J. M. Leenen
- grid.5645.2000000040459992XDepartment of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Douglas A. Drevets
- Infectious Diseases, Department of Internal Medicine, 800 Stanton L. Young, Suite 7300, Oklahoma City, OK 73104 USA
| |
Collapse
|
10
|
Neuronal miR-138 Represses HSV-2 Lytic Infection by Regulating Viral and Host Genes with Mechanistic Differences from HSV-1. J Virol 2022; 96:e0034922. [PMID: 35404085 DOI: 10.1128/jvi.00349-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
HSV-1 and HSV-2 are closely related viruses with major differences. Both viruses establish latency in neurons from which they reactivate to cause disease.
Collapse
|
11
|
Bigley TM, Xiong M, Ali M, Chen Y, Wang C, Serrano JR, Eteleeb A, Harari O, Yang L, Patel SJ, Cruchaga C, Yokoyama WM, Holtzman DM. Murine roseolovirus does not accelerate amyloid-β pathology and human roseoloviruses are not over-represented in Alzheimer disease brains. Mol Neurodegener 2022; 17:10. [PMID: 35033173 PMCID: PMC8760754 DOI: 10.1186/s13024-021-00514-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/22/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The role of viral infection in Alzheimer Disease (AD) pathogenesis is an area of great interest in recent years. Several studies have suggested an association between the human roseoloviruses, HHV-6 and HHV-7, and AD. Amyloid-β (Aβ) plaques are a hallmark neuropathological finding of AD and were recently proposed to have an antimicrobial function in response to infection. Identifying a causative and mechanistic role of human roseoloviruses in AD has been confounded by limitations in performing in vivo studies. Recent -omics based approaches have demonstrated conflicting associations between human roseoloviruses and AD. Murine roseolovirus (MRV) is a natural murine pathogen that is highly-related to the human roseoloviruses, providing an opportunity to perform well-controlled studies of the impact of roseolovirus on Aβ deposition. METHODS We utilized the 5XFAD mouse model to test whether MRV induces Aβ deposition in vivo. We also evaluated viral load and neuropathogenesis of MRV infection. To evaluate Aβ interaction with MRV, we performed electron microscopy. RNA-sequencing of a cohort of AD brains compared to control was used to investigate the association between human roseolovirus and AD. RESULTS We found that 5XFAD mice were susceptible to MRV infection and developed neuroinflammation. Moreover, we demonstrated that Aβ interacts with viral particles in vitro and, subsequent to this interaction, can disrupt infection. Despite this, neither peripheral nor brain infection with MRV increased or accelerated Aβ plaque formation. Moreover, -omics based approaches have demonstrated conflicting associations between human roseoloviruses and AD. Our RNA-sequencing analysis of a cohort of AD brains compared to controls did not show an association between roseolovirus infection and AD. CONCLUSION Although MRV does infect the brain and cause transient neuroinflammation, our data do not support a role for murine or human roseoloviruses in the development of Aβ plaque formation and AD.
Collapse
Affiliation(s)
- Tarin M. Bigley
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Monica Xiong
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Division of Biology and Biomedical Sciences (DBBS), Washington University School of Medicine, St. Louis, MO 63110 USA
- Present address: Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Muhammad Ali
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO 63110 USA
| | - Yun Chen
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Division of Biology and Biomedical Sciences (DBBS), Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Chao Wang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Javier Remolina Serrano
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Abdallah Eteleeb
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO 63110 USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
| | - Oscar Harari
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO 63110 USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Swapneel J. Patel
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Carlos Cruchaga
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO 63110 USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
| | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
12
|
Zingale VD, Gugliandolo A, Mazzon E. MiR-155: An Important Regulator of Neuroinflammation. Int J Mol Sci 2021; 23:90. [PMID: 35008513 PMCID: PMC8745074 DOI: 10.3390/ijms23010090] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at the post-transcriptional level and that play an important role in many cellular processes, including modulation of inflammation. MiRNAs are present in high concentrations in the central nervous system (CNS) and are spatially and temporally expressed in a specific way. Therefore, an imbalance in the expression pattern of these small molecules can be involved in the development of neurological diseases. Generally, CNS responds to damage or disease through the activation of an inflammatory response, but many neurological disorders are characterized by uncontrolled neuroinflammation. Many studies support the involvement of miRNAs in the activation or inhibition of inflammatory signaling and in the promotion of uncontrolled neuroinflammation with pathological consequences. MiR-155 is a pro-inflammatory mediator of the CNS and plays an important regulatory role. The purpose of this review is to summarize how miR-155 is regulated and the pathological consequences of its deregulation during neuroinflammatory disorders, including multiple sclerosis, Alzheimer's disease and other neuroinflammatory disorders. Modulation of miRNAs' expression could be used as a therapeutic strategy in the treatment of pathological neuroinflammation.
Collapse
Affiliation(s)
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (V.D.Z.); (E.M.)
| | | |
Collapse
|
13
|
Berber E, Sumbria D, Newkirk KM, Rouse BT. Inhibiting Glucose Metabolism Results in Herpes Simplex Encephalitis. THE JOURNAL OF IMMUNOLOGY 2021; 207:1824-1835. [PMID: 34470854 DOI: 10.4049/jimmunol.2100453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/31/2021] [Indexed: 11/19/2022]
Abstract
This report evaluates how HSV enters the brain to cause herpes simplex encephalitis following infection at a peripheral site. We demonstrate that encephalitis regularly occurred when BALB/c mice were infected with HSV and treated daily with 2-deoxy-d-glucose (2DG), which inhibits glucose use via the glycolysis pathway. The outcome of infection in the trigeminal ganglion (TG), the site to which the virus spreads, replicates, and establishes latency, showed marked differences in viral and cellular events between treated and untreated animals. In control-untreated mice, the replicating virus was present only during early time points, whereas in 2DG recipients, replicating virus remained for the 9-d observation period. This outcome correlated with significantly reduced numbers of innate inflammatory cells as well as T cells in 2DG-treated animals. Moreover, T cells in the TG of treated animals were less activated and contained a smaller fraction of expressed IFN-γ production compared with untreated controls. The breakdown of latency was accelerated when cultures of TG cells taken from mice with established HSV latency were cultured in the presence of 2DG. Taken together, the results of both in vivo and in vitro investigations demonstrate that the overall effects of 2DG therapy impaired the protective effects of one or more inflammatory cell types in the TG that normally function to control productive infection and prevent spread of virus to the brain.
Collapse
Affiliation(s)
- Engin Berber
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN; and.,Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Deepak Sumbria
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN; and
| | - Kim M Newkirk
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN; and
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN; and
| |
Collapse
|
14
|
Sun B, Yang X, Hou F, Yu X, Wang Q, Oh HS, Raja P, Pesola JM, Vanni EAH, McCarron S, Morris-Love J, Ng AHM, Church GM, Knipe DM, Coen DM, Pan D. Regulation of host and virus genes by neuronal miR-138 favours herpes simplex virus 1 latency. Nat Microbiol 2021; 6:682-696. [PMID: 33558653 PMCID: PMC8221016 DOI: 10.1038/s41564-020-00860-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/20/2020] [Indexed: 01/30/2023]
Abstract
MicroRNA miR-138, which is highly expressed in neurons, represses herpes simplex virus 1 (HSV-1) lytic cycle genes by targeting viral ICP0 messenger RNA, thereby promoting viral latency in mice. We found that overexpressed miR-138 also represses lytic processes independently of ICP0 in murine and human neuronal cells; therefore, we investigated whether miR-138 has targets besides ICP0. Using genome-wide RNA sequencing/photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation followed by short interfering RNA knockdown of candidate targets, we identified the host Oct-1 and Foxc1 messenger mRNAs as miR-138's targets, whose gene products are transcription factors important for HSV-1 replication in neuronal cells. OCT-1 has a known role in the initiation of HSV transcription. Overexpression of FOXC1, which was not known to affect HSV-1, promoted HSV-1 replication in murine neurons and ganglia. CRISPR-Cas9 knockout of FOXC1 reduced viral replication, lytic gene expression and miR-138 repression in murine neuronal cells. FOXC1 also collaborated with ICP0 to decrease heterochromatin on viral genes and compensated for the defect of an ICP0-null virus. In summary, miR-138 targets ICP0, Oct-1 and Foxc1 to repress HSV-1 lytic cycle genes and promote epigenetic gene silencing, which together enable favourable conditions for latent infection.
Collapse
Affiliation(s)
- Boqiang Sun
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Infectious Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Thermo Fisher Scientific, Shanghai, China
| | - Xuewei Yang
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Infectious Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Innovent Biologics, Inc., Suzhou, China
| | - Fujun Hou
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Infectious Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofeng Yu
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Infectious Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiongyan Wang
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Infectious Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hyung Suk Oh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Priya Raja
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jean M Pesola
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Emilia A H Vanni
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Seamus McCarron
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jenna Morris-Love
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Graduate Program in Pathobiology, Brown University, Providence, RI, USA
| | - Alex H M Ng
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Donald M Coen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dongli Pan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Infectious Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
15
|
Campos EMN, Rodrigues LD, Oliveira LF, Dos Santos JCC. Dementia and cognitive impairment in adults as sequels of HSV-1-related encephalitis: a review. Dement Neuropsychol 2021; 15:164-172. [PMID: 34345357 PMCID: PMC8283880 DOI: 10.1590/1980-57642021dn15-020002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/01/2021] [Indexed: 11/24/2022] Open
Abstract
Considering the variety of mechanisms of Herpes simplex virus (HSV-1) contamination and its broad invasive potential of the nervous system, a life-long latent infection is established. Infected adult individuals may be susceptible to viral reactivation when under the influence of multiple stressors, especially regarding immunocompromised patients. This guides a series of neuroinflammatory events on the cerebral cortex, culminating, rarely, in encephalitis and cytotoxic / vasogenic brain edema. A sum of studies of such processes provides an explanation, even though not yet completely clarified, on how the clinical evolution to cognitive impairment and dementia might be enabled. In addition, it is of extreme importance to recognize the current dementia and cognitive deficit worldwide panorama. The aim of this literature review is to elucidate the available data upon the pathophysiology of HSV-1 infection as well as to describe the clinical panorama of the referred afflictions.
Collapse
Affiliation(s)
| | - Laís Damasceno Rodrigues
- Neuroscience Laboratory, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Leandro Freitas Oliveira
- Neuroscience Laboratory, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Júlio César Claudino Dos Santos
- Neuroscience Laboratory, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, SP, Brazil.,Faculty of Medicine, Christus University Center, Fortaleza, CE, Brazil
| |
Collapse
|
16
|
Zhang S, Amahong K, Sun X, Lian X, Liu J, Sun H, Lou Y, Zhu F, Qiu Y. The miRNA: a small but powerful RNA for COVID-19. Brief Bioinform 2021; 22:1137-1149. [PMID: 33675361 PMCID: PMC7989616 DOI: 10.1093/bib/bbab062] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a severe and rapidly evolving epidemic. Now, although a few drugs and vaccines have been proved for its treatment and prevention, little systematic comments are made to explain its susceptibility to humans. A few scattered studies used bioinformatics methods to explore the role of microRNA (miRNA) in COVID-19 infection. Combining these timely reports and previous studies about virus and miRNA, we comb through the available clues and seemingly make the perspective reasonable that the COVID-19 cleverly exploits the interplay between the small miRNA and other biomolecules to avoid being effectively recognized and attacked from host immune protection as well to deactivate functional genes that are crucial for immune system. In detail, SARS-CoV-2 can be regarded as a sponge to adsorb host immune-related miRNA, which forces host fall into dysfunction status of immune system. Besides, SARS-CoV-2 encodes its own miRNAs, which can enter host cell and are not perceived by the host's immune system, subsequently targeting host function genes to cause illnesses. Therefore, this article presents a reasonable viewpoint that the miRNA-based interplays between the host and SARS-CoV-2 may be the primary cause that SARS-CoV-2 accesses and attacks the host cells.
Collapse
Affiliation(s)
- Song Zhang
- College of Pharmaceutical Sciences in Zhejiang University and the First Affiliated Hospital of Zhejiang University School of Medicine, China
| | | | - Xiuna Sun
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Xichen Lian
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Jin Liu
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Yan Lou
- Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, the First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Feng Zhu
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, the First Affiliated Hospital, Zhejiang University School of Medicine, China
| |
Collapse
|
17
|
Sumbria D, Berber E, Rouse BT. Supplementing the Diet with Sodium Propionate Suppresses the Severity of Viral Immuno-inflammatory Lesions. J Virol 2021; 95:e02056-20. [PMID: 33208449 PMCID: PMC7851545 DOI: 10.1128/jvi.02056-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
This report evaluates a dietary manipulation approach to suppress the severity of ocular infections caused by herpes simplex virus infection. The virus causes chronic damage to the cornea that results from a T-cell-orchestrated inflammatory reaction to the infection. Lesion severity can be limited if cells with regulatory activity predominate over proinflammatory T cells and nonlymphoid inflammatory cells. In this report, we show that this outcome can be achieved by including the short-chain fatty acid (SCFA) salt sodium propionate (SP) in the drinking water. Animals given the SP supplement developed significantly fewer ocular lesions than those receiving no supplement. Corneas and lymphoid organs contained fewer CD4 Th1 and Th17 T cells, neutrophils, and macrophages than those of controls, but a higher frequency of regulatory T cells (Treg) was present. The inclusion of SP in cultures to induce CD4 T cell subsets in vitro reduced the magnitude of Th1 and Th17 responses but expanded Treg induction. Dietary manipulation was an effective approach to limit the severity of viral immuno-inflammatory lesions and may be worth exploring as a means to reduce the impact of herpetic lesions in humans.IMPORTANCE Herpetic lesions are a significant problem, and they are difficult to control with therapeutics. Our studies show that the severity of herpetic lesions in a mouse model can be diminished by changing the diet to include increased levels of SCFA, which act to inhibit the involvement of inflammatory T cells. We suggest that changing the diet to include higher levels of SCFA might be a useful approach to reducing the impact of recurrent herpetic lesions in humans.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cornea/immunology
- Cornea/virology
- Dietary Supplements
- Fatty Acids, Volatile/administration & dosage
- Herpesvirus 1, Human/immunology
- Keratitis, Herpetic/diet therapy
- Keratitis, Herpetic/immunology
- Keratitis, Herpetic/virology
- Macrophages/cytology
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophils/cytology
- Propionates/administration & dosage
- T-Lymphocytes, Helper-Inducer/cytology
- T-Lymphocytes, Regulatory/cytology
- Mice
Collapse
Affiliation(s)
- Deepak Sumbria
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Engin Berber
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
- Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
18
|
Renrick AN, Thounaojam MC, de Aquino MTP, Chaudhuri E, Pandhare J, Dash C, Shanker A. Bortezomib Sustains T Cell Function by Inducing miR-155-Mediated Downregulation of SOCS1 and SHIP1. Front Immunol 2021; 12:607044. [PMID: 33717088 PMCID: PMC7946819 DOI: 10.3389/fimmu.2021.607044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/07/2021] [Indexed: 01/18/2023] Open
Abstract
Suppressive mechanisms operating within T cells are linked to immune dysfunction in the tumor microenvironment. We have previously reported using adoptive T cell immunotherapy models that tumor-bearing mice treated with a regimen of proteasome inhibitor, bortezomib - a dipeptidyl boronate, show increased antitumor lymphocyte effector function and survival. Here, we identify a mechanism for the improved antitumor CD8+ T cell function following bortezomib treatment. Intravenous administration of bortezomib at a low dose (1 mg/kg body weight) in wild-type or tumor-bearing mice altered the expression of a number of miRNAs in CD8+ T cells. Specifically, the effect of bortezomib was prominent on miR-155 - a key cellular miRNA involved in T cell function. Importantly, bortezomib-induced upregulation of miR-155 was associated with the downregulation of its targets, the suppressor of cytokine signaling 1 (SOCS1) and inositol polyphosphate-5-phosphatase (SHIP1). Genetic and biochemical analysis confirmed a functional link between miR-155 and these targets. Moreover, activated CD8+ T cells treated with bortezomib exhibited a significant reduction in programmed cell death-1 (PD-1) expressing SHIP1+ phenotype. These data underscore a mechanism of action by which bortezomib induces miR-155-dependent downregulation of SOCS1 and SHIP1 negative regulatory proteins, leading to a suppressed PD-1-mediated T cell exhaustion. Collectively, data provide novel molecular insights into bortezomib-mediated lymphocyte-stimulatory effects that could overcome immunosuppressive actions of tumor on antitumor T cell functions. The findings support the approach that bortezomib combined with other immunotherapies would lead to improved therapeutic outcomes by overcoming T cell exhaustion in the tumor microenvironment.
Collapse
Affiliation(s)
- Ariana N Renrick
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Menaka C Thounaojam
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, United States
| | - Maria Teresa P de Aquino
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, United States
| | - Evan Chaudhuri
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Jui Pandhare
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States.,Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN, United States
| | - Chandravanu Dash
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States.,Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, United States.,Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN, United States.,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, United States
| | - Anil Shanker
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States.,Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, United States.,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, United States.,Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
19
|
Rastogi M, Singh SK. Japanese Encephalitis Virus exploits microRNA-155 to suppress the non-canonical NF-κB pathway in human microglial cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194639. [PMID: 32987149 DOI: 10.1016/j.bbagrm.2020.194639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/05/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Japanese Encephalitis Virus (JEV) is a single positive strand RNA virus, belongs to the Flaviviridae family. JEV is neurotropic in nature which accounts for 30-50% neurological, psychiatric sequelae and movement disorder, with 20-30% case fatality rate among children or elder population. JEV causes neuronal loss and microglial activation which leads to neuroinflammation. The microRNAs are the molecular switches, which regulate the gene expression post-transcriptionally. The microRNA-155 has been reported to be associated with CNS-related pathologies like, experimental autoimmune encephalitis, multiple sclerosis and amyotrophic lateral sclerosis. In the present study, we infected microglial cells with JEV, which resulted in the up-regulation of microRNA-155; quantified by real-time polymerase chain reaction. The gene target prediction databases revealed pellino 1 as a putative gene target for microRNA-155. The over-expression based studies of microRNA-155 mimics, scrambles, inhibitors, and cy3 negative control demonstrated the role of PELI1 in the regulation of the non-canonical NF-κB pathway via TRAF3. The luciferase assay showed the regulation of NF-κB promoter via microRNA-155 in JEV infected microglial cells. The suppression of NF-κB in JEV infected microglial cells led to the reduced expression of IL-6 and TNF-α. JEV exploits cellular microRNA-155 to suppress the expression of PELI1 in human microglial cells as a part of their immune evasion strategy.
Collapse
Affiliation(s)
- Meghana Rastogi
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., India
| | - Sunit Kumar Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., India.
| |
Collapse
|
20
|
Cassidy BR, Zhang M, Sonntag WE, Drevets DA. Neuroinvasive Listeria monocytogenes infection triggers accumulation of brain CD8 + tissue-resident memory T cells in a miR-155-dependent fashion. J Neuroinflammation 2020; 17:259. [PMID: 32878636 PMCID: PMC7466815 DOI: 10.1186/s12974-020-01929-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Background Brain inflammation is a key cause of cognitive decline after central nervous system (CNS) infections. A thorough understanding of immune responses to CNS infection is essential for developing anti-inflammatory interventions that improve outcomes. Tissue-resident memory T cells (TRM) are non-recirculating memory T cells that provide surveillance of previously infected tissues. However, in addition to protecting the brain against reinfection, brain TRM can contribute to post-infectious neuroinflammation. We hypothesized that accumulation of CD8+TRM in the brain could be reduced by inhibiting microRNA (miR)-155, a microRNA that influences development of cytotoxic CD8+ T lymphocytes during infection. Methods C57BL/6J mice were infected by intraperitoneal injection with a lethal inoculum of Listeria monocytogenes (Lm) then treated with antibiotics. Flow cytometry was used to quantify specific populations of brain leukocytes 28–29 days (d) post-infection (p.i.). To test the degree to which miR-155 altered leukocyte influxes into the brain, infected mice were injected with a miR-155 inhibitor or locked nucleic acid (LNA) scramble control 2d, 4d, 6d, and 8d p.i. along with antibiotic treatment. Bacterial loads in spleen and liver and body weights were measured up to 7d p.i. Brain leukocytes were analyzed 14d and 28d p.i. Confirmatory studies were performed in mutated mice lacking miR-155 (miR-155−/−) Results Lm infection significantly increased the numbers of brain CD3+CD8+ lymphocytes at 28d p.i. These cells were extravascular, and displayed markers characteristic of TRM, with the predominant phenotype of CD44+CD62L-CD69+CX3CR1−. Further analysis showed that > 75% of brain TRM also expressed CD49a, PD-1, Ly6C, CD103, and CD127. Mice injected with miR-155 inhibitor lost less weight through 7d p.i. than did control mice, whereas bacterial loads in brain, liver, and spleen were not different from controls. By 28d p.i., the numbers of brain CD8+ TRM cells were significantly decreased in mice treated with the inhibitor compared with controls. Similarly, miR-155−/− mice showed significantly reduced numbers of brain CD8+TRM cells by 28d p.i. Conclusions Brain CD8+ TRM populations are established during neuroinvasive Lm infection. Accumulation of brain CD8+ TRM cells is reduced by blocking miR-155 and in miR-155−/− mice, indicating that this molecule has a critical role in development of these specialized cells. Administering anti-miR-155 during infection could provide a novel avenue for reducing post-infectious neuroinflammation.
Collapse
Affiliation(s)
- Benjamin R Cassidy
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Miao Zhang
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William E Sonntag
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Douglas A Drevets
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA. .,Section of Infectious Diseases, 800 Stanton L. Young, Suite 7300, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
21
|
Arroyo M, Salka K, Chorvinsky E, Xuchen X, Abutaleb K, Perez GF, Weinstock J, Gaviria S, Gutierrez MJ, Nino G. Airway mir-155 responses are associated with TH1 cytokine polarization in young children with viral respiratory infections. PLoS One 2020; 15:e0233352. [PMID: 32442188 PMCID: PMC7244143 DOI: 10.1371/journal.pone.0233352] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/04/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND MicroRNAs (miRs) control gene expression and the development of the immune system and antiviral responses. MiR-155 is an evolutionarily-conserved molecule consistently induced during viral infections in different cell systems. Notably, there is still an unresolved paradox for the role of miR-155 during viral respiratory infections. Despite being essential for host antiviral TH1 immunity, miR-155 may also contribute to respiratory disease by enhancing allergic TH2 responses and NFkB-mediated inflammation. The central goal of this study was to define how airway miR-155 production is related to TH1, TH2, and pro-inflammatory cytokine responses during naturally occurring viral respiratory infections in young children. METHODS Normalized nasal airway levels of miR-155 and nasal protein levels of IFN-γ, TNF-α, IL-1β, IL-13, IL-4 were quantified in young children (≤2 years) hospitalized with viral respiratory infections and uninfected controls. These data were linked to individual characteristics and respiratory disease parameters. RESULTS A total of 151 subjects were included. Increased miR-155 levels were observed in nasal samples from patients with rhinovirus, RSV and all respiratory viruses analyzed. High miR-155 levels were strongly associated with high IFN-γ production, increased airway TH1 cytokine polarization (IFN-γ/IL-4 ratios) and increased pro-inflammatory responses. High airway miR-155 levels were linked to decreased respiratory disease severity in individuals with high airway TH1 antiviral responses. CONCLUSIONS The airway secretion of miR-155 during viral respiratory infections in young children is associated with enhanced antiviral immunity (TH1 polarization). Further studies are needed to define additional physiological roles of miR-155 in the respiratory tract of human infants and young children during health and disease.
Collapse
Affiliation(s)
- Maria Arroyo
- Department of Pediatrics, Division of Pediatric Pulmonary and Sleep Medicine, Children’s National Medical Center, George Washington University, Washington, DC, United States of America
| | - Kyle Salka
- Department of Pediatrics, Division of Pediatric Pulmonary and Sleep Medicine, Children’s National Medical Center, George Washington University, Washington, DC, United States of America
| | - Elizabeth Chorvinsky
- Department of Pediatrics, Division of Pediatric Pulmonary and Sleep Medicine, Children’s National Medical Center, George Washington University, Washington, DC, United States of America
| | - Xilei Xuchen
- Department of Pediatrics, Division of Pediatric Pulmonary and Sleep Medicine, Children’s National Medical Center, George Washington University, Washington, DC, United States of America
| | - Karima Abutaleb
- Department of Pediatrics, Division of Pediatric Pulmonary and Sleep Medicine, Children’s National Medical Center, George Washington University, Washington, DC, United States of America
| | - Geovanny F. Perez
- Department of Pediatrics, Division of Pediatric Pulmonary and Sleep Medicine, Children’s National Medical Center, George Washington University, Washington, DC, United States of America
| | - Jered Weinstock
- Department of Pediatrics, Division of Pediatric Pulmonology, University at Buffalo, The State University of New York, Buffalo, NY, United States of America
| | - Susana Gaviria
- Department of Pediatrics, Division of Pediatric Pulmonary and Sleep Medicine, Children’s National Medical Center, George Washington University, Washington, DC, United States of America
| | - Maria J. Gutierrez
- Department of Pediatrics, Division of Pediatric Pulmonary and Sleep Medicine, Children’s National Medical Center, George Washington University, Washington, DC, United States of America
| | - Gustavo Nino
- Department of Pediatrics, Division of Pediatric Pulmonary and Sleep Medicine, Children’s National Medical Center, George Washington University, Washington, DC, United States of America
- Division of Pediatric Allergy and Immunology, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
22
|
Cellular microRNA-155 Regulates Virus-Induced Inflammatory Response and Protects against Lethal West Nile Virus Infection. Viruses 2019; 12:v12010009. [PMID: 31861621 PMCID: PMC7019255 DOI: 10.3390/v12010009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022] Open
Abstract
West Nile virus (WNV) is a flavivirus that has disseminated globally as a significant cause of viral encephalitis in humans. MircoRNA-155 (miR-155) regulates various aspects of innate and adaptive immune responses. We previously reported that WNV infection induces upregulation of miR-155 in mice brains. In the current study, we demonstrate the critical role of miR-155 in restricting the pathogenesis of WNV infection in mice. Compared to wild-type (WT) mice, miR-155 knockout mice exhibited significantly higher morbidity and mortality after infection with either a lethal strain, WNV NY99, or a non-lethal strain, WNV Eg101. Increased mortality in miR-155−/− mice was associated with significantly high WNV burden in the serum and brains. Protein levels of interferon (IFN)-α in the serum and brains were higher in miR-155−/− mice. However, miR-155−/− mice exhibited significantly lower protein levels of anti-viral interleukin (IL)-1β, IL-12, IL-6, IL-15, and GM-CSF despite the high viral load. Primary mouse cells lacking miR-155 were more susceptible to infection with WNV compared to cells derived from WT mice. Besides, overexpression of miR-155 in human neuronal cells modulated anti-viral cytokine response and resulted in significantly lower WNV replication. These data collectively indicate that miR-155 restricts WNV production in mouse and human cells and protects against lethal WNV infection in mice.
Collapse
|
23
|
Sumbria D, Berber E, Rouse BT. Factors Affecting the Tissue Damaging Consequences of Viral Infections. Front Microbiol 2019; 10:2314. [PMID: 31636623 PMCID: PMC6787772 DOI: 10.3389/fmicb.2019.02314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Humans and animals are infected by multiple endogenous and exogenous viruses but few agents cause overt tissue damage. We review the circumstances which favor overt disease expression. These can include intrinsic virulence of the agent, new agents acquired from heterologous species, the circumstances of infection such as dose and route, current infection with other agents which includes the composition of the microbiome at mucosal and other sites, past history of exposure to other infections as well as the immune status of the host. We also briefly discuss promising therapeutic strategies that can expand immune response patterns that minimize tissue damaging responses to viral infections.
Collapse
Affiliation(s)
| | | | - Barry T. Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
24
|
Zeng Y, Liang J, Weng C, Lu Z, Zhou Y. β-Arrestin 2 protects against neurological function defects in HSV-1-induced encephalitis mice. J Med Virol 2019; 92:78-85. [PMID: 31469177 DOI: 10.1002/jmv.25578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Abstract
The pathogenesis of herpes simplex encephalitis (HSE) needs to be fully explored. β-Arrestin 2 (Arrb2) is highly expressed in brain tissues and plays a key role in the regulation of systemic immune reactions by modulating various signaling pathways. However, the expression of Arrb2 in microglial cells and its influence on HSE prognosis is still undefined. We explore the pathophysiological effect of Arrb2 in the brain using experimental HSE mice. The expression of Arrb2 in microglia was decreased significantly 48 hours following HSV-1 infection. Arrb2 overexpression transgenic (TG) mice had a significantly lower mortality and survival rate was improved by 40% compared to wild-type mice. Arrb2 suppressed the generation of proinflammatory cytokines TNF-α and IL-6 and increased anti-inflammatory cytokines IL-10 and IL-4 expression. Arrb2 also inhibited the activation of the transcription factor NF-κB in microglial cells. Arrb2 TG mice attenuated the blood-brain barrier breakdown and relieved cerebral edema, meanwhile, Arrb2 improved mice neurological function compared with wild-type mice. Overall, Arrb2 favored microglia of the M2 phenotype, attenuated brain proinflammatory responses, protected the blood vessel wall integrity, reduced HSV-1-induced neurological impairment, and improved the survival rate in HSE mice.
Collapse
Affiliation(s)
- Yanping Zeng
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Jingjing Liang
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Chao Weng
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yu Zhou
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Friedenson B. A Genome Model to Explain Major Features of Neurodevelopmental Disorders in Newborns. BIOMEDICAL INFORMATICS INSIGHTS 2019; 11:1178222619863369. [PMID: 31391780 PMCID: PMC6669855 DOI: 10.1177/1178222619863369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to test the hypothesis that infections are linked to chromosomal anomalies that cause neurodevelopmental disorders. In children with disorders in the development of their nervous systems, chromosome anomalies known to cause these disorders were compared with foreign DNAs, including known teratogens. Genes essential for neurons, lymphatic drainage, immunity, circulation, angiogenesis, cell barriers, structure, epigenetic and chromatin modifications were all found close together in polyfunctional clusters that were deleted or rearranged in neurodevelopmental disorders. In some patients, epigenetic driver mutations also changed access to large chromosome segments. These changes account for immune, circulatory, and structural deficits that accompany neurologic deficits. Specific and repetitive human DNA encompassing large deletions matched infections and passed rigorous artifact tests. Deletions of up to millions of bases accompanied infection-matching sequences and caused massive changes in human homologies to foreign DNAs. In data from 3 independent studies of private, familial, and recurrent chromosomal rearrangements, massive changes in homologous microbiomes were found and may drive rearrangements and encourage pathogens. At least 1 chromosomal anomaly was found to consist of human DNA fragments with a gap that corresponded to a piece of integrated foreign DNA. Microbial DNAs that match repetitive or specific human DNA segments are thus proposed to interfere with the epigenome and highly active recombination during meiosis, driven by massive changes in human DNA-foreign DNA homologies. Abnormal recombination in gametes produces zygotes containing rare chromosome anomalies that cause neurologic disorders and nonneurologic signs. Neurodevelopmental disorders may be examples of assault on the human genome by foreign DNAs at a critical stage. Some infections may be more likely tolerated because they resemble human DNA segments. Even rare developmental disorders can be screened for homology to infections within altered epigenomes and chromatin structures. Considering effects of foreign DNAs can assist prenatal and genetic counseling, diagnosis, prevention, and early intervention.
Collapse
Affiliation(s)
- Bernard Friedenson
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
MicroRNA 155 Contributes to Host Immunity against Leishmania donovani but Is Not Essential for Resolution of Infection. Infect Immun 2019; 87:IAI.00307-19. [PMID: 31182615 DOI: 10.1128/iai.00307-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
CD4+ T helper 1 (Th1) cells producing interferon gamma (IFN-γ) are critical for the resolution of visceral leishmaniasis (VL). MicroRNA 155 (miR155) promotes CD4+ Th1 responses and IFN-γ production by targeting suppressor of cytokine signaling-1 (SOCS1) and Src homology-2 domain-containing inositol 5-phosphatase 1 (SHIP-1) and therefore could play a role in the resolution of VL. To determine the role of miR155 in VL, we monitored the course of Leishmania donovani infection in miR155 knockout (miR155KO) and wild-type (WT) C57BL/6 mice. miR155KO mice displayed significantly higher liver and spleen parasite loads than WT controls and showed impaired hepatic granuloma formation. However, parasite growth eventually declined in miR155KO mice, suggesting the induction of a compensatory miR155-independent antileishmanial pathway. Leishmania antigen-stimulated splenocytes from miR155KO mice produced significantly lower levels of Th1-associated IFN-γ than controls. Interestingly, at later time points, levels of Th2-associated interleukin-4 (IL-4) and IL-10 were also lower in miR155KO splenocyte supernatants than in WT mice. On the other hand, miR155KO mice displayed significantly higher levels of IFN-γ, iNOS, and TNF-α gene transcripts in their livers than WT mice, indicating that distinct organ-specific antiparasitic mechanisms were involved in control of L. donovani infection in miR155KO mice. Throughout the course of infection, organs of miR155KO mice showed significantly more PDL1-expressing Ly6Chi inflammatory monocytes than WT mice. Conversely, blockade of Ly6Chi inflammatory monocyte recruitment in miR155KO mice significantly reduced parasitic loads, indicating that these cells contributed to disease susceptibility. In conclusion, we found that miR155 contributes to the control of L. donovani but is not essential for infection resolution.
Collapse
|
27
|
Jahanban‐Esfahlan R, Seidi K, Majidinia M, Karimian A, Yousefi B, Nabavi SM, Astani A, Berindan‐Neagoe I, Gulei D, Fallarino F, Gargaro M, Manni G, Pirro M, Xu S, Sadeghi M, Nabavi SF, Shirooie S. Toll‐like receptors as novel therapeutic targets for herpes simplex virus infection. Rev Med Virol 2019; 29:e2048. [DOI: 10.1002/rmv.2048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Rana Jahanban‐Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
- Drug Applied Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Khaled Seidi
- Immunology Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Maryam Majidinia
- Solid Tumor Research CenterUrmia University of Medical Sciences Urmia Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research InstituteBabol University of Medical Sciences Babol Iran
| | - Bahman Yousefi
- Molecular Medicine Research CenterTabriz University of Medical Sciences Tabriz Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of MedicineTabriz University of Medical Science Tabriz Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research CenterBaqiyatallah University of Medical Sciences Tehran Iran
| | - Akram Astani
- Department of MicrobiologyShahid Sadoughi University of Medical Sciences Yazd Iran
| | - Ioana Berindan‐Neagoe
- MEDFUTURE ‐Research Center for Advanced Medicine“Iuliu‐Hatieganu” University of Medicine and Pharmacy Cluj‐Napoca Romania
- Research Centerfor Functional Genomics, Biomedicine and Translational Medicine“Iuliu‐Hatieganu” University of Medicine and Pharmacy Cluj‐Napoca Romania
- Department of Functional Genomics and Experimental PathologyThe Oncology Institute “Prof. Dr. Ion Chiricuţă” Cluj‐Napoca Romania
| | - Diana Gulei
- MEDFUTURE ‐Research Center for Advanced Medicine“Iuliu‐Hatieganu” University of Medicine and Pharmacy Cluj‐Napoca Romania
| | | | - Marco Gargaro
- Department of Experimental MedicineUniversity of Perugia Italy
| | - Giorgia Manni
- Department of Experimental MedicineUniversity of Perugia Italy
| | - Matteo Pirro
- Department of MedicineUniversity of Perugia Italy
| | - Suowen Xu
- Aab Cardiovascular Research InstituteUniversity of Rochester Rochester NY USA
| | - Mahmoud Sadeghi
- Department of Transplantation ImmunologyUniversity of Heidelberg Heidelberg Germany
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research CenterBaqiyatallah University of Medical Sciences Tehran Iran
| | - Samira Shirooie
- Department of Pharmacology, Faculty of PharmacyKermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
28
|
MicroRNAs in Neuroinflammation: Implications in Disease Pathogenesis, Biomarker Discovery and Therapeutic Applications. Noncoding RNA 2019; 5:ncrna5020035. [PMID: 31022830 PMCID: PMC6632112 DOI: 10.3390/ncrna5020035] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022] Open
Abstract
The central nervous system can respond to threat via the induction of an inflammatory response. Under normal circumstances this response is tightly controlled, however uncontrolled neuroinflammation is a hallmark of many neurological disorders. MicroRNAs are small non-coding RNA molecules that are important for regulating many cellular processes. The ability of microRNAs to modulate inflammatory signaling is an area of ongoing research, which has gained much attention in recent years. MicroRNAs may either promote or restrict inflammatory signaling, and either exacerbate or ameliorate the pathological consequences of excessive neuroinflammation. The aim of this review is to summarize the mode of regulation for several important and well-studied microRNAs in the context of neuroinflammation, including miR-155, miR-146a, miR-124, miR-21 and let-7. Furthermore, the pathological consequences of miRNA deregulation during disorders that feature neuroinflammation are discussed, including Multiple Sclerosis, Alzheimer’s disease, Parkinson’s disease, Prion diseases, Japanese encephalitis, Herpes encephalitis, ischemic stroke and traumatic brain injury. There has also been considerable interest in the use of altered microRNA signatures as biomarkers for these disorders. The ability to modulate microRNA expression may even serve as the basis for future therapeutic strategies to help treat pathological neuroinflammation.
Collapse
|
29
|
Wang Z, Li K, Wang X, Huang W. MiR-155-5p modulates HSV-1 replication via the epigenetic regulation of SRSF2 gene expression. Epigenetics 2019; 14:494-503. [PMID: 30950329 PMCID: PMC6557561 DOI: 10.1080/15592294.2019.1600388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A previous study reported that miR-155-5p knockout mice were more resistant to herpes simplex virus type I (HSV-1) infection. However, the exact underlying molecular mechanism remains to be elucidated. Here, we demonstrated that HSV-1 infection upregulates miR-155-5p expression. By binding to the promoter of serine/arginine-rich splicing factor 2 (SRSF2), which is an important transcriptional activator of HSV-1 genes that was previously reported by our group, and altering the histone modification located near the transcription start site (TSS) of the SRSF2 gene, miR-155-5p promotes the transcription of the SRSF2 gene, ultimately increasing viral replication and viral gene expression. Our results provide insight for an understanding of the roles and molecular mechanism of miR-155-5p in HSV-1 replication and the epigenetic control of SRSF2 gene expression.
Collapse
Affiliation(s)
- Ziqiang Wang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine , Sun Yat-sen University Cancer Center , Guangzhou , P.R. China.,b Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital , First Affiliated Hospital of Shenzhen University , Shenzhen , P.R. China
| | - Kun Li
- c Department of Nuclear Medicine , Qianfoshan Hospital Affiliated to Shandong University , Jinan , P.R. China
| | - Xiaoxia Wang
- b Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital , First Affiliated Hospital of Shenzhen University , Shenzhen , P.R. China
| | - Weiren Huang
- b Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital , First Affiliated Hospital of Shenzhen University , Shenzhen , P.R. China
| |
Collapse
|
30
|
Cokarić Brdovčak M, Zubković A, Jurak I. Herpes Simplex Virus 1 Deregulation of Host MicroRNAs. Noncoding RNA 2018; 4:ncrna4040036. [PMID: 30477082 PMCID: PMC6316616 DOI: 10.3390/ncrna4040036] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023] Open
Abstract
Viruses utilize microRNAs (miRNAs) in a vast variety of possible interactions and mechanisms, apparently far beyond the classical understanding of gene repression in humans. Likewise, herpes simplex virus 1 (HSV-1) expresses numerous miRNAs and deregulates the expression of host miRNAs. Several HSV-1 miRNAs are abundantly expressed in latency, some of which are encoded antisense to transcripts of important productive infection genes, indicating their roles in repressing the productive cycle and/or in maintenance/reactivation from latency. In addition, HSV-1 also exploits host miRNAs to advance its replication or repress its genes to facilitate latency. Here, we discuss what is known about the functional interplay between HSV-1 and the host miRNA machinery, potential targets, and the molecular mechanisms leading to an efficient virus replication and spread.
Collapse
Affiliation(s)
- Maja Cokarić Brdovčak
- Laboratory for Molecular Virology, Department of Biotechnology, University of Rijeka, R. Matejčić 2, HR-51000 Rijeka, Croatia.
| | - Andreja Zubković
- Laboratory for Molecular Virology, Department of Biotechnology, University of Rijeka, R. Matejčić 2, HR-51000 Rijeka, Croatia.
| | - Igor Jurak
- Laboratory for Molecular Virology, Department of Biotechnology, University of Rijeka, R. Matejčić 2, HR-51000 Rijeka, Croatia.
| |
Collapse
|
31
|
Zhou Y, Song Y, Shaikh Z, Li H, Zhang H, Caudle Y, Zheng S, Yan H, Hu D, Stuart C, Yin D. MicroRNA-155 attenuates late sepsis-induced cardiac dysfunction through JNK and β-arrestin 2. Oncotarget 2018; 8:47317-47329. [PMID: 28525390 PMCID: PMC5564567 DOI: 10.18632/oncotarget.17636] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
Cardiac dysfunction is correlated with detrimental prognosis of sepsis and contributes to a high risk of mortality. After an initial hyperinflammatory reaction, most patients enter a protracted state of immunosuppression (late sepsis) that alters both innate and adaptive immunity. The changes of cardiac function in late sepsis are not yet known. MicroRNA-155 (miR-155) is previously found to play important roles in both regulations of immune activation and cardiac function. In this study, C57BL/6 mice were operated to develop into early and late sepsis phases, and miR-155 mimic was injected through the tail vein 48 h after cecal ligation and puncture (CLP). The effect of miR-155 on CLP-induced cardiac dysfunction was explored in late sepsis. We found that increased expression of miR-155 in the myocardium protected against cardiac dysfunction in late sepsis evidenced by attenuating sepsis-reduced cardiac output and enhancing left ventricular systolic function. We also observed that miR-155 markedly reduced the infiltration of macrophages and neutrophils into the myocardium and attenuated the inflammatory response via suppression of JNK signaling pathway. Moreover, overexpression of β-arrestin 2 (Arrb2) exacerbated the mice mortality and immunosuppression in late sepsis. Furthermore, transfection of miR-155 mimic reduced Arrb2 expression, and then restored immunocompetence and improved survival in late septic mice. We conclude that increased miR-155 expression through systemic administration of miR-155 mimic attenuates cardiac dysfunction and improves late sepsis survival by targeting JNK associated inflammatory signaling and Arrb2 mediated immunosuppression.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yan Song
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Zahir Shaikh
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Hui Li
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Haiju Zhang
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Yi Caudle
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Shouhua Zheng
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hui Yan
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Dan Hu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Charles Stuart
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Deling Yin
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
32
|
Varanasi SK, Jaggi U, Hay N, Rouse BT. Hexokinase II may be dispensable for CD4 T cell responses against a virus infection. PLoS One 2018; 13:e0191533. [PMID: 29352298 PMCID: PMC5774810 DOI: 10.1371/journal.pone.0191533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/05/2018] [Indexed: 11/18/2022] Open
Abstract
Activation of CD4 T cells leads to their metabolic reprogramming which includes enhanced glycolysis, catalyzed through hexokinase enzymes. Studies in some systems indicate that the HK2 isoform is the most up regulated isoform in activated T cells and in this report the relevance of this finding is evaluated in an infectious disease model. Genetic ablation of HK2 was achieved in only T cells and the outcome was evaluated by measures of T cell function. Our results show that CD4 T cells from both HK2 depleted and WT animals displayed similar responses to in vitro stimulation and yielded similar levels of Th1, Treg or Th17 subsets when differentiated in vitro. A modest increase in the levels of proliferation was observed in CD4 T cells lacking HK2. Deletion of HK2 led to enhanced levels of HK1 indicative of a compensatory mechanism. Finally, CD4 T cell mediated immuno-inflammatory responses to a virus infection were similar between WT and HK2 KO animals. The observations that the expression of HK2 appears non-essential for CD4 T cell responses against virus infections is of interest since it suggests that targeting HK2 for cancer therapy may not have untoward effects on CD4 T cell mediated immune response against virus infections.
Collapse
Affiliation(s)
- Siva Karthik Varanasi
- Department of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Ujjaldeep Jaggi
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Barry T. Rouse
- Department of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, United States of America
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
33
|
Cui L, Markou A, Stratton CW, Lianidou E. Diagnosis and Assessment of Microbial Infections with Host and Microbial MicroRNA Profiles. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2018. [PMCID: PMC7119978 DOI: 10.1007/978-3-319-95111-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) encoded by viral genome or host have been found participating in host-microbe interactions. Differential expression profiles of miRNAs were shown linking to specific disease pathologies which indicated its potency as diagnostic/prognostic biomarkers of infectious disease. This was emphasized by the discovery of circulating miRNAs which were found to be remarkably stable in mammalian biofluids. Standardized methods of miRNA quantification including RNA isolation should be established before they will be ready for use in clinical practice.
Collapse
|
34
|
Are miRNAs critical determinants in herpes simplex virus pathogenesis? Microbes Infect 2017; 20:461-465. [PMID: 29287990 DOI: 10.1016/j.micinf.2017.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
miRNAs are small noncoding RNA that play a crucial role in gene regulation by inhibiting translation or promoting mRNA degradation. Viruses themselves express miRNAs that can target either the host or viral mRNA transcriptome. Moreover, viral infection of cells causes a drastic change in host miRNAs. This complex interaction between the host and viruses often favors the virus to evade immune elimination and favors the establishment and maintenance of latency. In this review we discuss the function of both host and viral miRNAs in regulating herpes simplex virus pathogenesis and also discuss the prospect of using miRNAs as biomarkers and therapeutic tools.
Collapse
|
35
|
miR-31: a key player in CD8 T-cell exhaustion. Cell Mol Immunol 2017; 14:954-956. [PMID: 28890544 DOI: 10.1038/cmi.2017.89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
|
36
|
Varanasi SK, Donohoe D, Jaggi U, Rouse BT. Manipulating Glucose Metabolism during Different Stages of Viral Pathogenesis Can Have either Detrimental or Beneficial Effects. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1748-1761. [PMID: 28768727 PMCID: PMC5584583 DOI: 10.4049/jimmunol.1700472] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 12/16/2022]
Abstract
This report deals with physiological changes and their implication following ocular infection with HSV. This infection usually results in a blinding inflammatory reaction in the cornea, orchestrated mainly by proinflammatory CD4 T cells and constrained in severity by regulatory T cells. In the present report, we make the unexpected finding that blood glucose levels change significantly during the course of infection. Whereas levels remained normal during the early phase of infection when the virus was actively replicating in the cornea, they increased around 2-fold during the time when inflammatory responses to the virus was occurring. We could show that glucose levels influenced the extent of induction of the inflammatory T cell subset in vitro that mainly drives lesions, but not regulatory T cells. Additionally, if glucose utilization was limited in vivo as a consequence of therapy in the inflammatory phase with the drug 2-deoxy-glucose (2DG), lesions were diminished compared with untreated infected controls. In addition, lesions in 2DG-treated animals contained less proinflammatory effectors. Glucose metabolism also influenced the acute phase of infection when the replicating virus was present in the eye. Thus, therapy with 2DG to limit glucose utilization caused mice to become susceptible to the lethal effects of HSV infection, with the virus spreading to the brain causing encephalitis. Taken together, our results indicate that glucose metabolism changed during the course of HSV infection and that modulating glucose levels can influence the outcome of infection, being detrimental or beneficial according to the stage of viral pathogenesis.
Collapse
Affiliation(s)
- Siva Karthik Varanasi
- Department of Genome Science and Technology, College of Arts & Sciences, University of Tennessee, Knoxville, TN 37996
| | - Dallas Donohoe
- Department of Nutrition, College of Education, Health and Human Sciences, University of Tennessee, Knoxville, TN 37996; and
| | - Ujjaldeep Jaggi
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996
| | - Barry T Rouse
- Department of Genome Science and Technology, College of Arts & Sciences, University of Tennessee, Knoxville, TN 37996;
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
37
|
Oliveira BRSM, Vieira FV, de S Vieira D, da Silva SEL, Gameiro R, Flores EF, Cardoso TC. Expression of miR-155 associated with Toll-like receptors 3, 7, and 9 transcription in the olfactory bulbs of cattle naturally infected with BHV5. J Neurovirol 2017; 23:772-778. [PMID: 28831740 PMCID: PMC7095048 DOI: 10.1007/s13365-017-0564-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/14/2017] [Accepted: 07/30/2017] [Indexed: 12/16/2022]
Abstract
Bovine herpesvirus 5 (BHV5) infection of young cattle is frequently associated with fatal neurological disease and, as such, represents an attractive model for studying the pathogenesis of viral-induced meningoencephalitis. Following replication in the nasal mucosa, BHV5 invades the central nervous system (CNS) mainly through the olfactory pathway. The innate immune response triggered by the host face to virus replication through the olfactory route is poorly understood. Recently, an upregulation of conserved pathogen-associated molecular pattern, as Toll-like receptors (TLRs), has been demonstrated in the CNS of BHV5 experimentally infected cows. A new perspective to understand host-pathogen interactions has emerged elucidating microRNAs (miRNAs) network that interact with innate immune response during neurotropic viral infections. In this study, we demonstrated a link between the expression of TLRs 3, 7, and 9 and miR-155 transcription in the olfactory bulbs (OB) of 16 cows suffering from acute BHV5-induced neurological disease. The OBs were analyzed for viral antigens and genome, miR-155 and TLR 3, 7, and 9 expression considering three major regions: olfactory receptor neurons (ORNs), glomerular layer (GL), and mitral cell layer (ML). BHV5 antigens and viral genomes, corresponding to glycol-C gene, were detected in all OBs regions by fluorescent antibody assay (FA) and PCR, respectively. TLR 3, 7, and 9 transcripts were upregulated in ORNs and ML, yet only ORN layers revealed a positive correlation between TLR3 and miR-155 transcription. In ML, miR-155 correlated positively with all TLRs studied. Herein, our results evidence miR-155 transcription in BHV5 infected OB tissue associated to TLRs expression specifically ORNs which may be a new window for further studies.
Collapse
Affiliation(s)
- Bruna R S M Oliveira
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, SP, 16050-680, Brazil
| | - Flavia V Vieira
- College of Veterinary Medicine, Universidade Estadual do Norte do Paraná (UENP), Rodovia BR-369 km 54, Vila Maria, Bandeirantes, PR, 86360000, Brazil
| | - Dielson de S Vieira
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, SP, 16050-680, Brazil
| | - Sergio E L da Silva
- College of Veterinary Medicine, Universidade Federal Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Roberto Gameiro
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, SP, 16050-680, Brazil
| | - Eduardo F Flores
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Tereza C Cardoso
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, SP, 16050-680, Brazil.
| |
Collapse
|
38
|
Harrison EB, Emanuel K, Lamberty BG, Morsey BM, Li M, Kelso ML, Yelamanchili SV, Fox HS. Induction of miR-155 after Brain Injury Promotes Type 1 Interferon and has a Neuroprotective Effect. Front Mol Neurosci 2017; 10:228. [PMID: 28804446 PMCID: PMC5532436 DOI: 10.3389/fnmol.2017.00228] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/04/2017] [Indexed: 01/19/2023] Open
Abstract
Traumatic brain injury (TBI) produces profound and lasting neuroinflammation that has both beneficial and detrimental effects. Recent evidence has implicated microRNAs (miRNAs) in the regulation of inflammation both in the periphery and the CNS. We examined the expression of inflammation associated miRNAs in the context of TBI using a mouse controlled cortical impact (CCI) model and found increased levels of miR-21, miR-223 and miR-155 in the hippocampus after CCI. The expression of miR-155 was elevated 9-fold after CCI, an increase confirmed by in situ hybridization (ISH). Interestingly, expression of miR-155 was largely found in neuronal nuclei as evidenced by co-localization with DAPI in MAP2 positive neurons. In miR-155 knock out (KO) mice expression of type I interferons IFNα and IFNβ, as well as IFN regulatory factor 1 and IFN-induced chemokine CXCL10 was decreased after TBI relative to wild type (WT) mice. Unexpectedly, miR-155 KO mice had increased levels of microglial marker Iba1 and increased neuronal degeneration as measured by fluoro-jade C (FJC) staining, suggesting a neuroprotective role for miR-155 in the context of TBI. This work demonstrates a role for miR-155 in regulation of the IFN response and neurodegeneration in the aftermath of TBI. While the presence of neuronal nuclear miRNAs has been described previously, their importance in disease states is relatively unknown. Here, we show evidence of dynamic regulation and pathological function of a nuclear miRNA in TBI.
Collapse
Affiliation(s)
- Emily B Harrison
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| | - Katy Emanuel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| | - Benjamin G Lamberty
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| | - Brenda M Morsey
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| | - Min Li
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| | - Matthew L Kelso
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical CenterOmaha, NE, United States
| | - Sowmya V Yelamanchili
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical CenterOmaha, NE, United States
| |
Collapse
|
39
|
Bhela S, Varanasi SK, Jaggi U, Sloan SS, Rajasagi NK, Rouse BT. The Plasticity and Stability of Regulatory T Cells during Viral-Induced Inflammatory Lesions. THE JOURNAL OF IMMUNOLOGY 2017; 199:1342-1352. [PMID: 28710254 DOI: 10.4049/jimmunol.1700520] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/06/2017] [Indexed: 01/22/2023]
Abstract
Ocular infection with HSV causes a chronic T cell-mediated inflammatory lesion in the cornea. Lesion severity is affected by the balance of different CD4 T cell subsets, with greater severity occurring when the activity of regulatory T cells (Tregs) is compromised. In this study, fate-mapping mice were used to assess the stability of Treg function in ocular lesions. We show that cells that were once Foxp3+ functional Tregs may lose Foxp3 and become Th1 cells that could contribute to lesion expression. The instability primarily occurred with IL-2Rlo Tregs and was shown, in part, to be the consequence of exposure to IL-12. Lastly, in vitro-generated induced Tregs (iTregs) were shown to be highly plastic and capable of inducing stromal keratitis when adoptively transferred into Rag1-/- mice, with 95% of iTregs converting into ex-Tregs in the cornea. This plasticity of iTregs could be prevented when they were generated in the presence of vitamin C and retinoic acid. Importantly, adoptive transfer of these stabilized iTregs to HSV-1-infected mice prevented the development of stromal keratitis lesions more effectively than did control iTregs. Our results demonstrate that CD25lo Treg and iTreg instability occurs during a viral immunoinflammatory lesion and that its control may help to avoid lesion chronicity.
Collapse
Affiliation(s)
- Siddheshvar Bhela
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996
| | - Siva Karthik Varanasi
- Department of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996; and
| | - Ujjaldeep Jaggi
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996
| | - Sarah S Sloan
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996
| | - Naveen K Rajasagi
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996;
| |
Collapse
|
40
|
Coelho-Lima J, Spyridopoulos I. Non-coding RNA regulation of T cell biology: Implications for age-associated cardiovascular diseases. Exp Gerontol 2017; 109:38-46. [PMID: 28652179 DOI: 10.1016/j.exger.2017.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/26/2023]
Abstract
Prevalence of age-associated cardiovascular diseases (CVD) has dramatically increased as a result of improvements in life expectancy. Chronic inflammation is a shared pathophysiological feature of age-associated CVDs, indicating a role for the immune system in the onset and development of CVDs. Indeed, ageing elicits profound changes in both the cardiovascular and immune system, especially in the T cell compartment. Although such changes have been well described at the cellular level, the molecular mechanisms underlying immune-mediated cardiovascular ageing remain largely unexplored. Non-coding RNAs (ncRNAs) comprise a heterogeneous family of RNA transcripts that regulate gene expression at the epigenetic, transcriptional, post-transcriptional, and post-translational levels. Non-coding RNAs have recently emerged as master modulators of T cell immunity. In this review, the state-of-the-art knowledge on ncRNA regulatory effects over T cell differentiation, function, and ageing in the context of age-associated CVDs, such as atherosclerosis, acute coronary syndromes, and heart failure, is discussed.
Collapse
Affiliation(s)
- Jose Coelho-Lima
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Ioakim Spyridopoulos
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom; Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Freeman Road, High Heaton, Newcastle upon Tyne NE7 7DN, United Kingdom.
| |
Collapse
|
41
|
Yang X, Xie J, Jia L, Liu N, Liang Y, Wu F, Liang B, Li Y, Wang J, Sheng C, Li H, Liu H, Ma Q, Yang C, Du X, Qiu S, Song H. Analysis of miRNAs Involved in Mouse Brain Damage upon Enterovirus 71 Infection. Front Cell Infect Microbiol 2017; 7:133. [PMID: 28469998 PMCID: PMC5395563 DOI: 10.3389/fcimb.2017.00133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/31/2017] [Indexed: 12/02/2022] Open
Abstract
Enterovirus 71 (EV71) infects the central nervous system (CNS) and causes brainstem encephalitis in children. MiRNAs have been found to play various functions in EV71 infection in human cell lines. To identify potential miRNAs involved in the inflammatory injury in CNS, our study, for the first time, performed a miRNA microarray assay in vivo using EV71 infected mice brains. Twenty differentially expressed miRNAs were identified (four up- and 16 down-regulated) and confirmed by qRT-PCR. The target genes of these miRNAs were analyzed using KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, revealing that the miRNAs were mainly involved in the regulation of inflammation and neural system function. MiR-150-5p, -3082-5p, -3473a, -468-3p, -669n, -721, -709, and -5107-5p that regulate MAPK and chemokine signaling were all down-regulated, which might result in increased cytokine production. In addition, miR-3473a could also regulate focal adhesion and leukocyte trans-endothelial migration, suggesting a role in virus-induced blood-brain barrier disruption. The miRNAs and pathways identified in this study could help to understand the intricate interactions between EV71 and the brain injury, offering new insight for the future research of the molecular mechanism of EV71 induced brainstem encephalitis.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Jing Xie
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Leili Jia
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Nan Liu
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Yuan Liang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Fuli Wu
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Beibei Liang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Yongrui Li
- The Key Laboratory of Pharmacology and Molecular Biology, Medical College, Henan University of Science and TechnologyLuoyang, China
| | - Jinyan Wang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Chunyu Sheng
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Hao Li
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Hongbo Liu
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Qiuxia Ma
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Chaojie Yang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Xinying Du
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Shaofu Qiu
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| | - Hongbin Song
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China
| |
Collapse
|
42
|
Dickey LL, Hanley TM, Huffaker TB, Ramstead AG, O'Connell RM, Lane TE. MicroRNA 155 and viral-induced neuroinflammation. J Neuroimmunol 2017; 308:17-24. [PMID: 28139244 DOI: 10.1016/j.jneuroim.2017.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/11/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
MicroRNA (miRNA) regulation of gene expression is becoming an increasingly recognized mechanism by which host immune responses are governed following microbial infection. miRNAs are short, non-coding RNAs that repress translation of target genes, and have been implicated in a number of activities that modulate host immune responses, including the regulation of immune cell proliferation, survival, expansion, differentiation, migration, polarization, and effector function. This review highlights several examples in which mammalian-encoded miR-155 influences immune responses following viral infection of the CNS.
Collapse
Affiliation(s)
- Laura L Dickey
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| | - Timothy M Hanley
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| | - Thomas B Huffaker
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| | - Andrew G Ramstead
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| | - Ryan M O'Connell
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| | - Thomas E Lane
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| |
Collapse
|
43
|
Induction of Multiple miR-200/182 Members in the Brains of Mice Are Associated with Acute Herpes Simplex Virus 1 Encephalitis. PLoS One 2017; 12:e0169081. [PMID: 28045967 PMCID: PMC5207681 DOI: 10.1371/journal.pone.0169081] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
Important roles of microRNAs (miRNAs) in regulating the host response during viral infection have begun to be defined. However, little is known about the functional roles of miRNAs within an in vivo acute viral encephalitis model. We therefore identified global changes in miRNA expression during acute herpes simplex virus type 1 (HSV-1) encephalitis (HSVE) in mice. We found that many of the highly upregulated miRNAs (miR-155, miR-146a and miR-15b) detected in HSV-1 infected brain tissue are known regulators of inflammation and innate immunity. We also observed upregulation of 7 members belonging to the related group of miRNAs, the miR-200 family and miR-182 cluster (miR-200/182). Using in situ hybridization, we found that these miRNAs co-localized to regions of the brain with severe HSVE-related pathology and were upregulated in various cell types including neurons. Induction was apparent but not limited to cells in which HSV-1 was detected by immunohistochemistry, suggesting possible roles of these miRNAs in the host response to viral-induced tissue damage. Bioinformatic prediction combined with gene expression profiling revealed that the induced miR-200/182 members could regulate the biosynthesis of heparan sulfate proteoglycans. Using luciferase assays, we found that miR-96, miR-141, miR-183 and miR-200c all potentially targeted the syndecan-2 gene (Sdc2), which codes for a cell surface heparan sulfate proteoglycan involved in HSV-1 cellular attachment and entry.
Collapse
|
44
|
Dickey LL, Worne CL, Glover JL, Lane TE, O’Connell RM. MicroRNA-155 enhances T cell trafficking and antiviral effector function in a model of coronavirus-induced neurologic disease. J Neuroinflammation 2016; 13:240. [PMID: 27604627 PMCID: PMC5015201 DOI: 10.1186/s12974-016-0699-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/20/2016] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are noncoding RNAs that modulate cellular gene expression, primarily at the post-transcriptional level. We sought to examine the functional role of miR-155 in a model of viral-induced neuroinflammation. METHODS Acute encephalomyelitis and immune-mediated demyelination were induced by intracranial injection with the neurotropic JHM strain of mouse hepatitis virus (JHMV) into C57BL/6 miR-155 (+/+) wildtype (WT) mice or miR-155 (-/-) mice. Morbidity and mortality, viral load and immune cell accumulation in the CNS, and spinal cord demyelination were assessed at defined points post-infection. T cells harvested from infected mice were used to examine cytolytic activity, cytokine activity, and expression of certain chemokine receptors. To determine the impact of miR-155 on trafficking, T cells from infected WT or miR-155 (-/-) mice were adoptively transferred into RAG1 (-/-) mice, and T cell accumulation into the CNS was assessed using flow cytometry. Statistical significance was determined using the Mantel-Cox log-rank test or Student's T tests. RESULTS Compared to WT mice, JHMV-infected miR-155 (-/-) mice developed exacerbated disease concomitant with increased morbidity/mortality and an inability to control viral replication within the CNS. In corroboration with increased susceptibility to disease, miR-155 (-/-) mice had diminished CD8(+) T cell responses in terms of numbers, cytolytic activity, IFN-γ secretion, and homing to the CNS that corresponded with reduced expression of the chemokine receptor CXCR3. Both IFN-γ secretion and trafficking were impaired in miR-155 (-/-) , virus-specific CD4(+) T cells; however, expression of the chemokine homing receptors analyzed on CD4(+) cells was not affected. Except for very early during infection, there were not significant differences in macrophage infiltration into the CNS between WT and miR-155 (-/-) JHMV-infected mice, and the severity of demyelination was similar at 14 days p.i. between WT and miR-155 (-/-) JHMV-infected mice. CONCLUSIONS These findings support a novel role for miR-155 in host defense in a model of viral-induced encephalomyelitis. Specifically, miR-155 enhances antiviral T cell responses including cytokine secretion, cytolytic activity, and homing to the CNS in response to viral infection. Further, miR-155 can play either a host-protective or host-damaging role during neuroinflammation depending on the disease trigger.
Collapse
Affiliation(s)
- Laura L. Dickey
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Colleen L. Worne
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Jessica L. Glover
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Thomas E. Lane
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Ryan M. O’Connell
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| |
Collapse
|
45
|
p53 Is a Host Cell Regulator during Herpes Simplex Encephalitis. J Virol 2016; 90:6738-6745. [PMID: 27170756 DOI: 10.1128/jvi.00846-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED p53 is a critical host cell factor in the cellular response to a broad range of stress factors. We recently reported that p53 is required for efficient herpes simplex virus 1 (HSV-1) replication in cell culture. However, a defined role for p53 in HSV-1 replication and pathogenesis in vivo remains elusive. In this study, we examined the effects of p53 on HSV-1 infection in vivo using p53-deficient mice. Following intracranial inoculation, p53 knockout reduced viral replication in the brains of mice and led to significantly reduced rates of mortality due to herpes simplex encephalitis. These results suggest that p53 is an important host cell regulator of HSV-1 replication and pathogenesis in the central nervous system (CNS). IMPORTANCE HSV-1 causes sporadic cases of encephalitis, which, even with antiviral therapy, can result in severe neurological defects and even death. Many host cell factors involved in the regulation of CNS HSV-1 infection have been investigated using genetically modified mice. However, most of these factors are immunological regulators and act via immunological pathways in order to restrict CNS HSV-1 infection. They therefore provide limited information on intrinsic host cell regulators that may be involved in the facilitation of CNS HSV-1 infection. Here we demonstrate that a host cell protein, p53, which has generally been considered a host cell restriction factor for various viral infections, is required for efficient HSV-1 replication and pathogenesis in the CNS of mice. This is the first report showing that p53 positively regulates viral replication and pathogenesis in vivo and provides insights into its molecular mechanism, which may suggest novel clinical treatment options for herpes simplex encephalitis.
Collapse
|
46
|
Bunse CE, Tischer S, Lahrberg J, Oelke M, Figueiredo C, Blasczyk R, Eiz-Vesper B. Granulocyte colony-stimulating factor impairs CD8(+) T cell functionality by interfering with central activation elements. Clin Exp Immunol 2016; 185:107-18. [PMID: 26990855 DOI: 10.1111/cei.12794] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 12/17/2022] Open
Abstract
Besides mobilizing stem cells into the periphery, granulocyte colony-stimulating factor (G-CSF) has been shown to influence various types of innate and adaptive immune cells. For example, it impairs the effector function of cytotoxic T lymphocytes (CTLs). It is assumed that this effect is mediated indirectly by monocytes, regulatory T cells and immunomodulatory cytokines influenced by G-CSF. In this study, isolated G-CSF-treated CD8(+) T cells were stimulated antigen-dependently with peptide-major histocompatibility complex (pMHC)-coupled artificial antigen-presenting cells (aAPCs) or stimulated antigen-independently with anti-CD3/CD28 stimulator beads. By measuring the changes in interferon (IFN)-γ and granzyme B expression at the mRNA and protein level, we showed for the first time that G-CSF has a direct effect on CD8(+) CTLs, which was confirmed based on the reduced production of IFN-γ and granzyme B by the cytotoxic T cell line TALL-104 after G-CSF treatment. By investigating further elements affected by G-CSF in CTLs from stem cell donors and untreated controls, we found a decreased phosphorylation of extracellular-regulated kinase (ERK)1/2, lymphocyte-specific protein tyrosine kinase (Lck) and CD3ζ after G-CSF treatment. Additionally, miRNA-155 and activation marker expression levels were reduced. In summary, our results show that G-CSF directly influences the effector function of cytotoxic CD8(+) T cells and affects various elements of T cell activation.
Collapse
Affiliation(s)
- C E Bunse
- Institute for Transfusion Medicine.,Integrated Research and Treatment Centre Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - S Tischer
- Institute for Transfusion Medicine.,Integrated Research and Treatment Centre Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | | | - M Oelke
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - R Blasczyk
- Institute for Transfusion Medicine.,Integrated Research and Treatment Centre Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - B Eiz-Vesper
- Institute for Transfusion Medicine.,Integrated Research and Treatment Centre Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| |
Collapse
|
47
|
Zhao Y, Bhattacharjee S, Dua P, Alexandrov PN, Lukiw WJ. microRNA-Based Biomarkers and the Diagnosis of Alzheimer's Disease. Front Neurol 2015. [PMID: 26217305 PMCID: PMC4499702 DOI: 10.3389/fneur.2015.00162] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center Louisiana State University Health Science Center , New Orleans, LA , USA ; Department of Cell Biology and Anatomy, LSU Neuroscience Center Louisiana State University Health Science Center , New Orleans, LA , USA
| | | | - Prerna Dua
- Department of Health Information Management, Louisiana State University , Ruston, LA , USA
| | | | - Walter J Lukiw
- LSU Neuroscience Center Louisiana State University Health Science Center , New Orleans, LA , USA ; Department of Ophthalmology, LSU Neuroscience Center Louisiana State University Health Science Center , New Orleans, LA , USA ; Department of Neurology, LSU Neuroscience Center Louisiana State University Health Science Center , New Orleans, LA , USA
| |
Collapse
|
48
|
Zeng FR, Tang LJ, He Y, Garcia RC. An update on the role of miRNA-155 in pathogenic microbial infections. Microbes Infect 2015; 17:613-21. [PMID: 26072128 DOI: 10.1016/j.micinf.2015.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/28/2015] [Accepted: 05/25/2015] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved and naturally abundant molecules of single-stranded, non-coding RNA from ∼17 to 25 nucleotides long. MiRNAs act at post-transcriptional level either to suppress gene translation or to induce mRNA degradation, according to the degree of complementarity with their target sequences. MiR-155 is a typical representative of the miRNA family that plays a crucial role in cell differentiation and organism development. A number of studies have shown that miR-155 can not only regulate cell proliferation, apoptosis and lymphoma progression, but also plays an important part in various other physiological and pathological processes. For instance, it is involved in hematopoietic cell differentiation, cardiovascular disease, inflammation and immune responses. In recent years, the role of miR-155 in infectious diseases has attracted considerable attention. This review will highlight the participation of miR-155 in the responses to infections caused by different pathogens.
Collapse
Affiliation(s)
- Fu-Rong Zeng
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| | - Li-Jun Tang
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410078, Hunan, China.
| | - Ye He
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| | - R C Garcia
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34012 Trieste, Italy
| |
Collapse
|
49
|
Bhela S, Mulik S, Gimenez F, Reddy PBJ, Richardson RL, Varanasi SK, Jaggi U, Xu J, Lu PY, Rouse BT. Role of miR-155 in the pathogenesis of herpetic stromal keratitis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1073-84. [PMID: 25700796 PMCID: PMC4380872 DOI: 10.1016/j.ajpath.2014.12.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/12/2014] [Accepted: 12/18/2014] [Indexed: 12/21/2022]
Abstract
Ocular infection with herpes simplex virus 1 can result in a chronic immunoinflammatory stromal keratitis (SK) lesion that is a significant cause of human blindness. A key to controlling SK lesion severity is to identify cellular and molecular events responsible for tissue damage and to manipulate them therapeutically. Potential targets for therapy are miRNAs, but these are minimally explored especially in responses to infection. Here, we demonstrated that Mir155 expression was up-regulated after ocular herpes simplex virus 1 infection, with the increased Mir155 expression occurring mainly in macrophages and CD4(+) T cells and to a lesser extent in neutrophils. In vivo studies indicated that Mir155 knockout mice were more resistant to herpes SK with marked suppression of T helper cells type 1 and 17 responses both in the ocular lesions and the lymphoid organs. The reduced SK lesion severity was reflected by increased phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1 and interferon-γ receptor α-chain levels in activated CD4(+) T cells in the lymph nodes. Finally, in vivo silencing of miR-155 by the provision of antagomir-155 nanoparticles to herpes simplex virus 1-infected mice led to diminished SK lesions and corneal vascularization. In conclusion, our results indicate that miR-155 contributes to the pathogenesis of SK and represents a promising target to control SK severity.
Collapse
Affiliation(s)
- Siddheshvar Bhela
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | - Sachin Mulik
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee; Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Fernanda Gimenez
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | - Pradeep B J Reddy
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee; Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Raphael L Richardson
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | - Siva Karthik Varanasi
- Department of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee
| | - Ujjaldeep Jaggi
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | - John Xu
- Sirnaomics, Inc., Gaithersburg, Maryland
| | | | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
50
|
Abstract
During an immune response, CD8(+)T cells can differentiate into multiple types of effector and memory cells that are important components of immune surveillance. However, their dysregulation has been implicated in infection with viruses or intracellular bacteria and tumorigenesis. miRNAs have been identified as crucial regulators of gene expression, and they perform this function by repressing specific target genes at the post-transcriptional level. Most miRNAs expressed in a given cell type serve the function to impede broadly cell-type-inappropriate gene expression and potently deepen a pre-existing differentiation program. It is increasingly recognized that miRNAs directly modulate the concentration of many regulatory proteins that are required for the development of immune cells in the thymus and their responses in the periphery. This review outlines our current understanding of the function of miRNAs in CD8(+)T cell biology as it impacts expression of protein-coding genes in the context of proper development, infection, as well as oncogenesis. In addition, we conclude with a perspective on future challenges and the clinical relevance of miRNA biology.
Collapse
Affiliation(s)
- Yan Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|