1
|
Li LR, Chen L, Sun ZJ. Igniting hope: Harnessing NLRP3 inflammasome-GSDMD-mediated pyroptosis for cancer immunotherapy. Life Sci 2024; 354:122951. [PMID: 39127315 DOI: 10.1016/j.lfs.2024.122951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In the contemporary landscape of oncology, immunotherapy, represented by immune checkpoint blockade (ICB) therapy, stands out as a beacon of innovation in cancer treatment. Despite its promise, the therapy's progression is hindered by suboptimal clinical response rates. Addressing this challenge, the modulation of the NLRP3 inflammasome-GSDMD-mediated pyroptosis pathway holds promise as a means to augment the efficacy of immunotherapy. In the pathway, the NLRP3 inflammasome serves as a pivotal molecular sensor that responds to inflammatory stimuli within the organism. Its activation leads to the release of cytokines interleukin 1β and interleukin 18 through the cleavage of GSDMD, thereby forming membrane pores and potentially resulting in pyroptosis. This cascade of processes exerts a profound impact on tumor development and progression, with its function and expression exhibiting variability across different tumor types and developmental stages. Consequently, understanding the specific roles of the NLRP3 inflammasome and GSDMD-mediated pyroptosis in diverse tumors is imperative for comprehending tumorigenesis and crafting precise therapeutic strategies. This review aims to elucidate the structure and activation mechanisms of the NLRP3 inflammasome, as well as the induction mechanisms of GSDMD-mediated pyroptosis. Additionally, we provide a comprehensive overview of the involvement of this pathway in various cancer types and its applications in tumor immunotherapy, nanotherapy, and other fields. Emphasis is placed on the feasibility of leveraging this approach to enhance ICB therapy within the field of immunotherapy. Furthermore, we discuss the potential applications of this pathway in other immunotherapy methods, such as chimeric antigen receptor T-cell (CAR-T) therapy and tumor vaccines.
Collapse
Affiliation(s)
- Ling-Rui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Song Y, Liu P, Qi X, Shi XL, Wang YS, Guo D, Luo H, Du ZJ, Wang MY. Helicobacter pylori infection delays neutrophil apoptosis and exacerbates inflammatory response. Future Microbiol 2024; 19:1145-1156. [PMID: 39056165 DOI: 10.1080/17460913.2024.2360798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/24/2024] [Indexed: 07/28/2024] Open
Abstract
Aim: Understanding molecular mechanisms of Helicobacter pylori (H. pylori)-induced inflammation is important for developing new therapeutic strategies for gastrointestinal diseases.Materials & methods: We designed an H. pylori-neutrophil infection model and explored the effects of H. pylori infection on neutrophils.Results: H. pylori infected neutrophils showed a low level of apoptosis. H. pylori stimulation activated the NACHT/LRR/PYD domain-containing protein 3 (NLRP3)-gasdermin-D (GSDMD) pathway for interleukin (IL)-1β secretion. However, IL-1β secretion was not completely dependent on GSDMD, as inhibition of autophagy significantly reduced IL-1β release, and autophagy-related molecules were significantly upregulated in H. pylori-infected neutrophils.Conclusion: Therefore, H. pylori infection inhibits neutrophils apoptosis and induces IL-1β secretion through autophagy. These findings may be utilized to formulate therapeutic strategies against H. pylori mediated chronic gastritis.
Collapse
Affiliation(s)
- Yu Song
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
| | - Peng Liu
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
| | - Xi Qi
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
- School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, 116044, PR China
| | - Xiao-Lin Shi
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
- School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, 116044, PR China
| | - Yu-Shan Wang
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
- School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, 116044, PR China
| | - Dong Guo
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
| | - Hong Luo
- School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, 116044, PR China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Ming-Yi Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
| |
Collapse
|
3
|
Wang S, He H, Qu L, Shen Q, Dai Y. Dual roles of inflammatory programmed cell death in cancer: insights into pyroptosis and necroptosis. Front Pharmacol 2024; 15:1446486. [PMID: 39257400 PMCID: PMC11384570 DOI: 10.3389/fphar.2024.1446486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Programmed cell death (PCD) is essential for cellular homeostasis and defense against infections, with inflammatory forms like pyroptosis and necroptosis playing significant roles in cancer. Pyroptosis, mediated by caspases and gasdermin proteins, leads to cell lysis and inflammatory cytokine release. It has been implicated in various diseases, including cancer, where it can either suppress tumor growth or promote tumor progression through chronic inflammation. Necroptosis, involving RIPK1, RIPK3, and MLKL, serves as a backup mechanism when apoptosis is inhibited. In cancer, necroptosis can enhance immune responses or contribute to tumor progression. Both pathways have dual roles in cancer, acting as tumor suppressors or promoting a pro-tumorigenic environment depending on the context. This review explores the molecular mechanisms of pyroptosis and necroptosis, their roles in different cancers, and their potential as therapeutic targets. Understanding the context-dependent effects of these pathways is crucial for developing effective cancer therapies.
Collapse
Affiliation(s)
- Shuai Wang
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| | - Huanhuan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lailiang Qu
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| | - Qianhe Shen
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| | - Yihang Dai
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| |
Collapse
|
4
|
Kumar S, Dhiman M. Helicobacter pylori secretary Proteins-Induced oxidative stress and its role in NLRP3 inflammasome activation. Cell Immunol 2024; 399-400:104811. [PMID: 38518686 DOI: 10.1016/j.cellimm.2024.104811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 03/24/2024]
Abstract
Helicobacter pylori-associated stomach infection is a leading cause of gastric ulcer and related cancer. H. pylori modulates the functions of infiltrated immune cells to survive the killing by reactive oxygen and nitrogen species (ROS and RNS) produced by these cells. Uncontrolled immune responses further produce excess ROS and RNS which lead to mucosal damage. The persistent oxidative stress is a major cause of gastric cancer. H. pylori regulates nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs), nitric oxide synthase 2 (NOS2), and polyamines to control ROS and RNS release through lesser-known mechanisms. ROS and RNS produced by these pathways differentiate macrophages and T cells from protective to inflammatory phenotype. Pathogens-associated molecular patterns (PAMPs) induced ROS activates nuclear oligomerization domain (NOD), leucine rich repeats (LRR) and pyrin domain-containing protein 3 (NLRP3) inflammasome for the release of pro-inflammatory cytokines. This study evaluates the role of H. pylori secreted concentrated proteins (HPSCP) related oxidative stress role in NLRP3 inflammasome activation and macrophage differentiation. To perceive the role of ROS/RNS, THP-1 and AGS cells were treated with 10 μM diphenyleneiodonium (DPI), 50 μM salicyl hydroxamic acid (SHX), 5 μM Carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP), which are specific inhibitors of NADPH oxidase (NOX), Myeloperoxidase (MPO), and mitochondrial oxidative phosphorylation respectively. Cells were also treated with 10 μM of NOS2 inhibitor l-NMMA and 10 μM of N-acetyl cysteine (NAC), a free radical scavenger·H2O2 (100 μM) treated and untreated cells were used as positive controls and negative control respectively. The expression of gp91phox (NOX2), NOS2, NLRP3, CD86 and CD163 was analyzed through fluorescent microscopy. THP-1 macrophages growth was unaffected whereas the gastric epithelial AGS cells proliferated in response to higher concentration of HPSCP. ROS and myeloperoxidase (MPO) level increased in THP-1 cells and nitric oxide (NO) and lipid peroxidation significantly decreased in AGS cells. gp91phox expression was unchanged, whereas NOS2 and NLRP3 downregulated in response to HPSCP, but increased after inhibition of NO, ROS and MPO in THP-1 cells. HPSCP upregulated the expression of M1 and M2 macrophage markers, CD86 and CD163 respectively, which was decreased after the inhibition of ROS. This study concludes that there are multiple pathways which are generating ROS during H. pylori infection which further regulates other cellular processes. NO is closely associated with MPO and inhibition of NLRP3 inflammasome. The low levels of NO and MPO regulates gastrointestinal tract homeostasis and overcomes the inflammatory response of NLRP3. The ROS also plays crucial role in macrophage polarization hence alter the immune responses duing H. pylori pathogenesis.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, 151 401 Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, 151 401 Punjab, India.
| |
Collapse
|
5
|
Gu Y, Xu Y, Wang P, Zhao Y, Wan C. Research progress on molecular mechanism of pyroptosis caused by Helicobacter pylori in gastric cancer. Ann Med Surg (Lond) 2024; 86:2016-2022. [PMID: 38576917 PMCID: PMC10990316 DOI: 10.1097/ms9.0000000000001802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 04/06/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignancy worldwide. Helicobacter pylori (H. pylori), a Gram-negative spiral bacterium, has the ability to colonize and persist in the human gastric mucosa. Persistent H. pylori infection has been identified as a major risk factor for ~80% of GC cases. The interplay between H. pylori pathogenicity, genetic background, and environmental factors collectively contribute to GC transformation. Eradicating H. pylori infection is beneficial in reducing the recurrence of gastric cancer and residual cancer. However, the underlying molecular mechanisms involved in GC remain incompletely understood. Additionally, H. pylori reshapes the immune microenvironment within the stomach which may compromise immunotherapy efficacy in infected individuals. Clinical eradication of H. pylori infection still faces numerous challenges. In this review, the authors summarize recent research progress on elucidating the molecular mechanisms underlying H. pylori infection in GC development. Notably, CagA protein-a carcinogenic virulence factor predominantly expressed by Asian strains of H. pylori-induces inflammation and excessive ROS production within gastric mucosa cells. Dysregulation of multiple pyroptosis signalling pathways can lead to malignant transformation of these cells. MiRNA-1290 plays a crucial role in GC initiation and progression while serving as an indicator for disease progression dynamics. Pyroptosis exhibits dual roles both promoting carcinogenesis and inhibiting tumour growth; thus it holds potential clinical applications for drug-resistant GC treatment strategies. Furthermore, pyroptosis may play a regulatory role within the immune system during gastric cancer development. Lastly, the authors provide an overview on current concepts regarding pyroptosis as well as insights into miRNA-1290's pathogenicity and clinical value within immune mechanisms associated with GC, aiming to serve as reference material for researchers.
Collapse
Affiliation(s)
- Yulan Gu
- Department of Oncology, Affiliated Changshu Hospital of Nantong University
| | - Yeqiong Xu
- General Medical research center of Changshu Medicine Examination Institute, Changshu
| | - Ping Wang
- School of Preclinical Medicine, Wannan Medical College, Wuhu
| | - Yu Zhao
- Department of Clinical Medicine, Qixiu Campus Medical College of Nantong University, Nantong, China
| | - Chuandan Wan
- General Medical research center of Changshu Medicine Examination Institute, Changshu
| |
Collapse
|
6
|
Ou L, Liu HR, Shi XY, Peng C, Zou YJ, Jia JW, Li H, Zhu ZX, Wang YH, Su BM, Lai YQ, Chen MY, Zhu WX, Feng Z, Zhang GM, Yao MC. Terminalia chebula Retz. aqueous extract inhibits the Helicobacter pylori-induced inflammatory response by regulating the inflammasome signaling and ER-stress pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117428. [PMID: 37981121 DOI: 10.1016/j.jep.2023.117428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia chebula Retz., known as the King of Traditional Tibetan Medicine, is widely used for treating various ailments, particularly stomach disorders. It exhibited inhibitory activity against helicobacter pylori. AIM OF THE STUDY The exact mechanism by which T. chebula combats H. pylori infection remains unclear. Therefore, this study aimed to investigate its mechanism of action and the key pathways and targets involved. MATERIAL AND METHODS Minimum inhibitory concentration (MIC) assay, scanning electron microscope, and inhibiting kinetics curves were conducted. The mRNA expressions were measured by RNA-seq analysis and RT-QPCR. ELISA and Western blot were used to detect the changes in proteins. The main compounds were analyzed by High-performance Liquid Chromatography. The interaction between the compound and target was predicted by Molecular Docking. RESULTS The study revealed that T. chebula disrupted the structure of H. pylori bacteria and inhibited Cag A protein expression. Additionally, T. chebula can reduce the expression of flaA, flaB, babA, alpA, alpB, ureE, and ureF genes. Furthermore, T. chebula demonstrated its effectiveness in inhibiting the H. pylori-induced inflammatory response by regulating the inflammasome signaling and ER-stress pathway. Moreover, the study discovered that chebulagic acid has anti-HP activity and inhibits the expression of Cag A protein. CONCLUSIONS T. chebula acts as a natural remedy for combating H. pylori infection. Its ability to disrupt the bacterial structure, inhibit key proteins, regulate inflammatory pathways, and the presence of chebulagic acid contribute to its anti-H. pylori activity.
Collapse
Affiliation(s)
- Ling Ou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Heng-Rui Liu
- Regenerative Medicine Research Center, Future Homo Sapiens Institute of Regenerative Medicine Co., Ltd, Guangzhou, China.
| | - Xiao-Yan Shi
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, Shandong, China.
| | - Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Yuan-Jing Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Jun-Wei Jia
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, Shandong, China.
| | - Hui Li
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, Shandong, China.
| | - Zhi-Xiang Zhu
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, Shandong, China.
| | - Yan-Hua Wang
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, Shandong, China.
| | - Bing-Mei Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Yu-Qian Lai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Mei-Yun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Wei-Xing Zhu
- Qingyuan Hospital' of Traditional Chinese Medicine, Qingyuan, 511500, Guangdong, China.
| | - Zhong Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Gui-Min Zhang
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Mei-Cun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
7
|
Lou S, Wu M, Cui S. Targeting NLRP3 Inflammasome: Structure, Function, and Inhibitors. Curr Med Chem 2024; 31:2021-2051. [PMID: 38310392 DOI: 10.2174/0109298673289984231127062528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 02/05/2024]
Abstract
Inflammasomes are multimeric protein complexes that can detect various physiological stimuli and danger signals. As a result, they perform a crucial function in the innate immune response. The NLRP3 inflammasome, as a vital constituent of the inflammasome family, is significant in defending against pathogen invasion and preserving cellhomeostasis. NLRP3 inflammasome dysregulation is connected to various pathological conditions, including inflammatory diseases, cancer, and cardiovascular and neurodegenerative diseases. This profile makes NLRP3 an applicable target for treating related diseases, and therefore, there are rising NLRP3 inhibitors disclosed for therapy. Herein, we summarized the updated advances in the structure, function, and inhibitors of NLRP3 inflammasome. Moreover, we aimed to provide an overview of the existing products and future directions for drug research and development.
Collapse
Affiliation(s)
- Shengying Lou
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Miaolian Wu
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| |
Collapse
|
8
|
Chai Q, Lei Z, Liu CH. Pyroptosis modulation by bacterial effector proteins. Semin Immunol 2023; 69:101804. [PMID: 37406548 DOI: 10.1016/j.smim.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Pyroptosis is a proinflammatory form of programmed cell death featured with membrane pore formation that causes cellular swelling and allows the release of intracellular inflammatory mediators. This cell death process is elicited by the activation of the pore-forming proteins named gasdermins, and is intricately orchestrated by diverse regulatory factors in mammalian hosts to exert a prompt immune response against infections. However, growing evidence suggests that bacterial pathogens have evolved to regulate host pyroptosis for evading immune clearance and establishing progressive infection. In this review, we highlight current understandings of the functional role and regulatory network of pyroptosis in host antibacterial immunity. Thereafter, we further discuss the latest advances elucidating the mechanisms by which bacterial pathogens modulate pyroptosis through adopting their effector proteins to drive infections. A better understanding of regulatory mechanisms underlying pyroptosis at the interface of host-bacterial interactions will shed new light on the pathogenesis of infectious diseases and contribute to the development of promising therapeutic strategies against bacterial pathogens.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
9
|
Tran LS, Ying L, D'Costa K, Wray-McCann G, Kerr G, Le L, Allison CC, Ferrand J, Chaudhry H, Emery J, De Paoli A, Colon N, Creed S, Kaparakis-Liaskos M, Como J, Dowling JK, Johanesen PA, Kufer TA, Pedersen JS, Mansell A, Philpott DJ, Elgass KD, Abud HE, Nachbur U, Croker BA, Masters SL, Ferrero RL. NOD1 mediates interleukin-18 processing in epithelial cells responding to Helicobacter pylori infection in mice. Nat Commun 2023; 14:3804. [PMID: 37365163 DOI: 10.1038/s41467-023-39487-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
The interleukin-1 family members, IL-1β and IL-18, are processed into their biologically active forms by multi-protein complexes, known as inflammasomes. Although the inflammasome pathways that mediate IL-1β processing in myeloid cells have been defined, those involved in IL-18 processing, particularly in non-myeloid cells, are still not well understood. Here we report that the host defence molecule NOD1 regulates IL-18 processing in mouse epithelial cells in response to the mucosal pathogen, Helicobacter pylori. Specifically, NOD1 in epithelial cells mediates IL-18 processing and maturation via interactions with caspase-1, instead of the canonical inflammasome pathway involving RIPK2, NF-κB, NLRP3 and ASC. NOD1 activation and IL-18 then help maintain epithelial homoeostasis to mediate protection against pre-neoplastic changes induced by gastric H. pylori infection in vivo. Our findings thus demonstrate a function for NOD1 in epithelial cell production of bioactive IL-18 and protection against H. pylori-induced pathology.
Collapse
Affiliation(s)
- L S Tran
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| | - L Ying
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| | - K D'Costa
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - G Wray-McCann
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - G Kerr
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - L Le
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - C C Allison
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - J Ferrand
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - H Chaudhry
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - J Emery
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| | - A De Paoli
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - N Colon
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - S Creed
- Monash Micro Imaging, Monash University, Melbourne, VIC, Australia
| | - M Kaparakis-Liaskos
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - J Como
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - J K Dowling
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - P A Johanesen
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - T A Kufer
- Department of Immunology, University of Hohenheim, Institute of Nutritional Medicine, Stuttgart, Germany
| | | | - A Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| | - D J Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - K D Elgass
- Monash Micro Imaging, Monash University, Melbourne, VIC, Australia
| | - H E Abud
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - U Nachbur
- Cell Signalling and Cell Death Division, WEHI, Melbourne, VIC, Australia
| | - B A Croker
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Inflammation Division, WEHI, Melbourne, VIC, Australia
| | - S L Masters
- Inflammation Division, WEHI, Melbourne, VIC, Australia
| | - R L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
- Inflammation Division, WEHI, Melbourne, VIC, Australia.
| |
Collapse
|
10
|
Dawson RE, Deswaerte V, West AC, Sun E, Wray‐McCann G, Livis T, Kumar B, Rodriguez E, Gabay C, Ferrero RL, Jenkins BJ. The cytosolic DNA sensor AIM2 promotes Helicobacter-induced gastric pathology via the inflammasome. Immunol Cell Biol 2023; 101:444-457. [PMID: 36967659 PMCID: PMC10952813 DOI: 10.1111/imcb.12641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/14/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Helicobacter pylori (H. pylori) infection can trigger chronic gastric inflammation perpetuated by overactivation of the innate immune system, leading to a cascade of precancerous lesions culminating in gastric cancer. However, key regulators of innate immunity that promote H. pylori-induced gastric pathology remain ill-defined. The innate immune cytosolic DNA sensor absent in melanoma 2 (AIM2) contributes to the pathogenesis of numerous autoimmune and chronic inflammatory diseases, as well as cancers including gastric cancer. We therefore investigated whether AIM2 contributed to the pathogenesis of Helicobacter-induced gastric disease. Here, we reveal that AIM2 messenger RNA and protein expression levels are elevated in H. pylori-positive versus H. pylori-negative human gastric biopsies. Similarly, chronic Helicobacter felis infection in wild-type mice augmented Aim2 gene expression levels compared with uninfected controls. Notably, gastric inflammation and hyperplasia were less severe in H. felis-infected Aim2-/- versus wild-type mice, evidenced by reductions in gastric immune cell infiltrates, mucosal thickness and proinflammatory cytokine and chemokine release. In addition, H. felis-driven proliferation and apoptosis in both gastric epithelial and immune cells were largely attenuated in Aim2-/- stomachs. These observations in Aim2-/- mouse stomachs correlated with decreased levels of inflammasome activity (caspase-1 cleavage) and the mature inflammasome effector cytokine, interleukin-1β. Taken together, this work uncovers a pathogenic role for the AIM2 inflammasome in Helicobacter-induced gastric disease, and furthers our understanding of the host immune response to a common pathogen and the complex and varying roles of AIM2 at different stages of cancerous and precancerous gastric disease.
Collapse
Affiliation(s)
- Ruby E Dawson
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Virginie Deswaerte
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Alison C West
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Ekimei Sun
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Georgie Wray‐McCann
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Thaleia Livis
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Beena Kumar
- Department of Anatomical PathologyMonash HealthClaytonVICAustralia
| | - Emiliana Rodriguez
- Pathology and Immunology DepartmentCMU/University of GenevaGenevaSwitzerland
| | - Cem Gabay
- Pathology and Immunology DepartmentCMU/University of GenevaGenevaSwitzerland
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
- Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| |
Collapse
|
11
|
Wen J, Xuan B, Liu Y, Wang L, He L, Meng X, Zhou T, Wang Y. NLRP3 inflammasome-induced pyroptosis in digestive system tumors. Front Immunol 2023; 14:1074606. [PMID: 37081882 PMCID: PMC10110858 DOI: 10.3389/fimmu.2023.1074606] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Programmed cell death (PCD) refers to cell death in a manner that depends on specific genes encoding signals or activities. PCD includes apoptosis, pyroptosis, autophagy and necrosis (programmed necrosis). Among these mechanisms, pyroptosis is mediated by the gasdermin family and is accompanied by inflammatory and immune responses. When pathogens or other danger signals are detected, cytokine action and inflammasomes (cytoplasmic multiprotein complexes) lead to pyroptosis. The relationship between pyroptosis and cancer is complex and the effect of pyroptosis on cancer varies in different tissue and genetic backgrounds. On the one hand, pyroptosis can inhibit tumorigenesis and progression; on the other hand, pyroptosis, as a pro-inflammatory death, can promote tumor growth by creating a microenvironment suitable for tumor cell growth. Indeed, the NLRP3 inflammasome is known to mediate pyroptosis in digestive system tumors, such as gastric cancer, pancreatic ductal adenocarcinoma, gallbladder cancer, oral squamous cell carcinoma, esophageal squamous cell carcinoma, in which a pyroptosis-induced cellular inflammatory response inhibits tumor development. The same process occurs in hepatocellular carcinoma and some colorectal cancers. The current review summarizes mechanisms and pathways of pyroptosis, outlining the involvement of NLRP3 inflammasome-mediated pyroptosis in digestive system tumors.
Collapse
Affiliation(s)
- Jiexia Wen
- Department of Central Laboratory, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Bin Xuan
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Yang Liu
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Liwei Wang
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Li He
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Xiangcai Meng
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Tao Zhou
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Yimin Wang
- Department of Central Laboratory, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| |
Collapse
|
12
|
IL-1β, an important cytokine affecting Helicobacter pylori-mediated gastric carcinogenesis. Microb Pathog 2023; 174:105933. [PMID: 36494022 DOI: 10.1016/j.micpath.2022.105933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Infection with Helicobacter pylori (H. pylori) is prevalent around the world and responsible for gastric cancer (GC). The development of GC from gastritis is closely associated with the bacterial virulence and the body's immune response ability. In this process, interleukin-1β (IL-1β) plays an important role. Under H. pylori infection, IL-1β is highly expressed that result in gastric acid inhibition, GC-related gene methylations and disfunctions, angiogenesis. Nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome mediates IL-1β maturation in cells such as macrophages, neutrophils and dendritic cells. But how does IL-1β get released across the cell membrane still unclear. In this review, we focus on the secretion mechanism of IL-1β across the membrane, and to explore the role of IL-1β in the progression of GC.
Collapse
|
13
|
Sun CC, Li L, Tao HQ, Jiang ZC, Wang L, Wang HJ. The role of NLRP3 inflammasome in digestive system malignancy. Front Cell Dev Biol 2022; 10:1051612. [PMID: 36619871 PMCID: PMC9816811 DOI: 10.3389/fcell.2022.1051612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Digestive system malignancies, the most common types of cancer and a major cause of death in the worldwide, are generally characterized by high morbidity, insidious symptoms and poor prognosis. NLRP3 inflammasome, the most studied inflammasome member, is considered to be crucial in tumorigenesis. In this paper, we reviewed its pro-tumorigenic and anti-tumorigenic properties in different types of digestive system malignancy depending on the types of cells, tissues and organs involved, which would provide promising avenue for exploring new anti-cancer therapies.
Collapse
Affiliation(s)
- Cen-Cen Sun
- Basic Medical Experimental Teaching Center, Zhejiang University, Hangzhou, China
| | - Li Li
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hou-Quan Tao
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhi-Chen Jiang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liang Wang
- Center for Plastic and Reconstructive Surgery, Department of Hand and Reconstruction Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hui-Ju Wang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Cancer Center, General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
14
|
Wang L, Li WQ, Liu F, Li YJ, Du J. Decreased xCT activity in patients associated with Helicobacter pylori infection. Front Pharmacol 2022; 13:1021655. [PMID: 36545313 PMCID: PMC9760671 DOI: 10.3389/fphar.2022.1021655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/21/2022] [Indexed: 12/09/2022] Open
Abstract
Objective: In animals, Helicobacter pylori (Hp)-induced gastric injury is accompanied by a decrease in the activity of the cysteine/glutamate transporter (xCT), which regulates extracellular glutamate levels. However, the impact of xCT activity in patients with Hp infection remains unclear. This study aims to investigate variations of xCT activity in the gastric mucosa of patients with Hp infection and to provide a clinical basis for identifying targets related to Hp infection. Methods: Our study included a total of 67 patients with gastritis, which consisted of 44 Hp-negative and 23 Hp-positive peptic ulcer cases. The inclusion criteria used to select patients were as follows: gastric histology was determined with a gastroscope, antral biopsies were taken for urease tests, and pathology and culture were performed for analysis of Hp-colonization. The clinical characteristics of the patients were obtained, the expressions of microRNAs and xCT protein were detected using immune histochemical analysis, and the concentration of glutamate in their gastric secretion was determined. Results: The findings revealed that xCT expression was significantly lower in Hp-positive patients as compared to Hp-negative individuals, which was accompanied by a decrease in glutamate concentration in gastric juice. We also discovered a high expression of microRNAs that have been shown to negatively regulate xCT expression, in Hp-positive patients. Conclusion: Reduced xCT activity in patients may play an important role in gastric ulcers caused by Hp infection. Our findings suggest that the microRNA/xCT pathway could be a potential treatment target for Hp-infection-related ulcers.
Collapse
Affiliation(s)
- Ling Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Qun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fen Liu
- Department of Digestion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuan-Jian Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Jie Du,
| |
Collapse
|
15
|
Illig D, Kotlarz D. Dysregulated inflammasome activity in intestinal inflammation - Insights from patients with very early onset IBD. Front Immunol 2022; 13:1027289. [PMID: 36524121 PMCID: PMC9744759 DOI: 10.3389/fimmu.2022.1027289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disorder triggered by imbalances of the microbiome and immune dysregulations in genetically susceptible individuals. Several mouse and human studies have demonstrated that multimeric inflammasomes are critical regulators of host defense and gut homeostasis by modulating immune responses to pathogen- or damage-associated molecular patterns. In the context of IBD, excessive production of pro-inflammatory Interleukin-1β has been detected in patient-derived intestinal tissues and correlated with the disease severity or failure to respond to anti-tumor necrosis factor therapy. Correspondingly, genome-wide association studies have suggested that single nucleotide polymorphisms in inflammasome components might be associated with risk of IBD development. The relevance of inflammasomes in controlling human intestinal homeostasis has been further exemplified by the discovery of very early onset IBD (VEO-IBD) patients with monogenic defects affecting different molecules in the complex regulatory network of inflammasome activity. This review provides an overview of known causative monogenic entities of VEO-IBD associated with altered inflammasome activity. A better understanding of the molecular mechanisms controlling inflammasomes in monogenic VEO-IBD may open novel therapeutic avenues for rare and common inflammatory diseases.
Collapse
Affiliation(s)
- David Illig
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany,Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,*Correspondence: Daniel Kotlarz,
| |
Collapse
|
16
|
Qiang R, Li Y, Dai X, Lv W. NLRP3 inflammasome in digestive diseases: From mechanism to therapy. Front Immunol 2022; 13:978190. [PMID: 36389791 PMCID: PMC9644028 DOI: 10.3389/fimmu.2022.978190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/12/2022] [Indexed: 09/05/2023] Open
Abstract
Digestive system diseases remain a formidable challenge to human health. NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex and is involved in a wide range of digestive diseases as intracellular innate immune sensors. It has emerged as a research hotspot in recent years. In this context, we provide a comprehensive review of NLRP3 inflammasome priming and activation in the pathogenesis of digestive diseases, including clinical and preclinical studies. Moreover, the scientific evidence of small-molecule chemical drugs, biologics, and phytochemicals, which acts on different steps of the NLRP3 inflammasome, is reviewed. Above all, deep interrogation of the NLRP3 inflammasome is a better insight of the pathomechanism of digestive diseases. We believe that the NLRP3 inflammasome will hold promise as a novel valuable target and research direction for treating digestive disorders.
Collapse
Affiliation(s)
- Rui Qiang
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | - Yanbo Li
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | | | - Wenliang Lv
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| |
Collapse
|
17
|
Occurrences and phenotypes of RIPK3-positive gastric cells in Helicobacter pylori infected gastritis and atrophic lesions. Dig Liver Dis 2022; 54:1342-1349. [PMID: 35514018 DOI: 10.1016/j.dld.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/20/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Research evidences suggest that diverse forms of programmed cell death (PCD) are involved in the helicobacter pylori (H. pylori)-induced gastric inflammation and disorders. AIMS To characterize occurrences and phenotypes of necroptosis in gastric cells in H. pylori infected gastritis and atrophic specimens. METHODS Occurrences and phenotypes of necroptosis in gastric cells were immunohistochemically characterized with receptor-interacting protein kinase 3 (RIPK3) antibody in both human H. pylori infected gastric gastritis, atrophic specimens, and transgenic mice. RESULTS Increased populations of RIPK3-positive cells were observed in both gastric glands and lamina propria in H. pylori infected human oxyntic gastritis and atrophic specimens. Phenotypic analysis revealed that many RIPK3-positive cells were H + K+ ATPase-positive parietal cells in the gastric glands and were predominantly CD3-positive T lymphocytes, CD68-positive macrophages, and SMA-alpha-positive stromal cells in the lamina propria. Furthermore, we found an increased expression of RIPK3-positive gastric glandular cells along with the histological process of hyperplasia-atrophy-dysplasia progression in hypergastrinemic INS-GAS mice. CONCLUSIONS An increased population of RIPK3-positive cells was observed in several types of gastric cells, future studies that define the effects and mechanisms of PCD implicated in the development of H. pylori induced gastric disorders are needed.
Collapse
|
18
|
The Anti-Inflammatory Effect of Callicarpa nudiflora Extract on H. Pylori-Infected GES-1 Cells through the Inhibition of ROS/NLRP3/Caspase-1/IL-1β Signaling Axis. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:5469236. [PMID: 35873363 PMCID: PMC9307406 DOI: 10.1155/2022/5469236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/21/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022]
Abstract
Helicobacter pylori (H. pylori) is the main pathogenic factor of gastric cancer, chronic gastritis, and other gastric diseases. It has been found that Callicarpa nudiflora (CN) as an air-dried leaf extract has a broad-spectrum antibacterial effect. This study aims to examine the effect of CN on H. pylori-infected GES-1 cells in vitro and elucidate its underlying mechanism by extracting active ingredients from air-dried leaves. GES-1 cells were cocultured with HPSS1 at MOI = 100 : 1 and treated with different concentrations of CN (100 and 200 μg/ml). Results showed that CN can significantly reduce cellular LDH leakage and attenuate H. pylori-induced cell apoptosis and ROS production in GSE-1 cells, so as to protect gastric epithelial cells from damage by H. pylori. CN can also inhibit the secretion of inflammatory factors, such as TNF-α, IL-1β, IL-6, and IL-8. After CN treatment, the expression levels of active caspase-1, PYCARD, and NLRP3 were remarkably decreased in the treatment groups compared with the model group. To sum up, CN is highly protective against H. pylori-induced cell damage and apoptosis; CN can depress NLRP3 inflammasome activation and ROS production via the ROS/NLRP3/caspase-1/IL-1β signaling axis to suppress H. pylori-triggered inflammatory response and pyroptosis.
Collapse
|
19
|
Dual Role of Chitin as the Double Edged Sword in Controlling the NLRP3 Inflammasome Driven Gastrointestinal and Gynaecological Tumours. Mar Drugs 2022; 20:md20070452. [PMID: 35877745 PMCID: PMC9323176 DOI: 10.3390/md20070452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 01/04/2023] Open
Abstract
The role of NLRP3 in the tumour microenvironment is elusive. In some cancers, the activation of NLRP3 causes a worse prognosis and in some cancers, NLRP3 increases chances of survivability. However, in many cases where NLRP3 has a protumorigenic role, inhibition of NLRP3 would be a crucial step in therapy. Consequently, activation of NLRP3 would be of essence when inflammation is required. Although many ways of inhibiting and activating NLRP3 in cancers have been discussed before, not a lot of focus has been given to chitin and chitosan in this context. The availability of these marine compounds and their versatility in dealing with inflammation needs to be investigated further in relation with cancers, along with other natural extracts. In this review, the effects of NLRP3 on gastrointestinal and gynaecological cancers and the impact of different natural extracts on NLRP3s with special emphasis on chitin and chitosan is discussed. A research gap in using chitin derivatives as anti/pro-inflammatory agents in cancer treatment has been highlighted.
Collapse
|
20
|
Oster P, Vaillant L, McMillan B, Velin D. The Efficacy of Cancer Immunotherapies Is Compromised by Helicobacter pylori Infection. Front Immunol 2022; 13:899161. [PMID: 35677057 PMCID: PMC9168074 DOI: 10.3389/fimmu.2022.899161] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infects the gastric mucosa of a large number of humans. Although asymptomatic in the vast majority of cases, H pylori infection can lead to the development of peptic ulcers gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Using a variety of mechanisms, H pylori locally suppresses the function of the host immune system to establish chronic infection. Systemic immunomodulation has been observed in both clinical and pre-clinical studies, which have demonstrated that H pylori infection is associated with reduced incidence of inflammatory diseases, such as asthma and Crohn’s disease. The introduction of immunotherapies in the arsenal of anti-cancer drugs has revealed a new facet of H pylori-induced immune suppression. In this review, we will describe the intimate interactions between H pylori and its host, and formulate hypothtyeses describing the detrimental impact of H pylori infection on the efficacy of cancer immunotherapies.
Collapse
|
21
|
Sijmons D, Guy AJ, Walduck AK, Ramsland PA. Helicobacter pylori and the Role of Lipopolysaccharide Variation in Innate Immune Evasion. Front Immunol 2022; 13:868225. [PMID: 35634347 PMCID: PMC9136243 DOI: 10.3389/fimmu.2022.868225] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
Helicobacter pylori is an important human pathogen that infects half the human population and can lead to significant clinical outcomes such as acute and chronic gastritis, duodenal ulcer, and gastric adenocarcinoma. To establish infection, H. pylori employs several mechanisms to overcome the innate and adaptive immune systems. H. pylori can modulate interleukin (IL) secretion and innate immune cell function by the action of several virulence factors such as VacA, CagA and the type IV secretion system. Additionally, H. pylori can modulate local dendritic cells (DC) negatively impacting the function of these cells, reducing the secretion of immune signaling molecules, and influencing the differentiation of CD4+ T helper cells causing a bias to Th1 type cells. Furthermore, the lipopolysaccharide (LPS) of H. pylori displays a high degree of phase variation and contains human blood group carbohydrate determinants such as the Lewis system antigens, which are proposed to be involved in molecular mimicry of the host. Lastly, the H. pylori group of outer membrane proteins such as BabA play an important role in attachment and interaction with host Lewis and other carbohydrate antigens. This review examines the various mechanisms that H. pylori utilises to evade the innate immune system as well as discussing how the structure of the H. pylori LPS plays a role in immune evasion.
Collapse
Affiliation(s)
- Daniel Sijmons
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Andrew J. Guy
- School of Science, RMIT University, Melbourne, VIC, Australia
- ZiP Diagnostics, Collingwood, VIC, Australia
| | - Anna K. Walduck
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Paul A. Ramsland
- School of Science, RMIT University, Melbourne, VIC, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
- *Correspondence: Paul A. Ramsland,
| |
Collapse
|
22
|
Churchill MJ, Mitchell PS, Rauch I. Epithelial Pyroptosis in Host Defense. J Mol Biol 2022; 434:167278. [PMID: 34627788 PMCID: PMC10010195 DOI: 10.1016/j.jmb.2021.167278] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 12/28/2022]
Abstract
Pyroptosis is a lytic form of cell death that is executed by a family of pore-forming proteins called gasdermins (GSDMs). GSDMs are activated upon proteolysis by host proteases including the proinflammatory caspases downstream of inflammasome activation. In myeloid cells, GSDM pore formation serves two primary functions in host defense: the selective release of processed cytokines to initiate inflammatory responses, and cell death, which eliminates a replicative niche of the pathogen. Barrier epithelia also undergo pyroptosis. However, unique mechanisms are required for the removal of pyroptotic epithelial cells to maintain epithelial barrier integrity. In the following review, we discuss the role of epithelial inflammasomes and pyroptosis in host defense against pathogens. We use the well-established role of inflammasomes in intestinal epithelia to highlight principles of epithelial pyroptosis in host defense of barrier tissues, and discuss how these principles might be shared or distinctive across other epithelial sites.
Collapse
Affiliation(s)
- Madeline J Churchill
- Department of Molecular Microbiology & Immunology, Oregon Health and Science University, Portland, OR, USA
| | | | - Isabella Rauch
- Department of Molecular Microbiology & Immunology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
23
|
Zhang X, Li C, Chen D, He X, Zhao Y, Bao L, Wang Q, Zhou J, Xie Y. H. pylori CagA activates the NLRP3 inflammasome to promote gastric cancer cell migration and invasion. Inflamm Res 2021; 71:141-155. [PMID: 34854954 DOI: 10.1007/s00011-021-01522-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The CagA (cytotoxin-related gene A, CagA) protein is an important factor for the pathogenicity of Helicobacter pylori (H. pylori). Although H. pylori has previously been shown to activate the NLRP3 inflammasome, it remains unclear what role CagA plays in this process. In the current study, we aimed to investigate the effect of CagA on NLRP3 activation and how it is linked to gastric cancer cell migration and invasion. METHODS CagA positive H. pylori strain (Hp/CagA+) and CagA gene knockout mutant (Hp/ΔCagA) infected and the pcDNA3.1/CagA plasmid transfected gastric epithelial cell lines, respectively. The morphological alterations of cells under a microscope; the NLRP3 inflammasome-related markers: NLRP3, caspase-1, and ASC protein levels were detected by Western blot, IL-1β and IL-18 levels were determined by ELISA; cell migration and invasion were determined by transwell assay; and the pyroptosis levels and intracellular ROS were determined by flow cytometry analysis. Then, pretreated with 5 mM NAC for 2 h and subsequently transfected with the pcDNA3.1/CagA plasmid for 48 h, the effects of NAC pretreatment on CagA-induced NLRP3 inflammasome-related markers expression and cell pyroptosis were examined, finally assessed the effect of CagA on migration and invasion in NLRP3-silenced cells. RESULTS We found that Hp/CagA+ strain infection and pcDNA3.1/CagA vector transfection result in NLRP3 inflammasome activation, generation of intracellular ROS, and increased invasion and migration of gastric cancer cells. Moreover, we found that ROS inhibition via NAC effectively blocks NLRP3 activation and pyroptosis. Silencing of NLRP3 reduces the effects of CagA on gastric cancer cell migration and invasion. CONCLUSION Our study shows that CagA can promote the invasion and migration of gastric cancer cells by activating NLRP3 inflammasome pathway. These findings provide novel insights into the mechanism of gastric cancer induction by H. pylori.
Collapse
Affiliation(s)
- XiaoYi Zhang
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China.,Guiyang Maternity and Child Health Care Hospital, Guiyang, Guizhou Province, China
| | - Chao Li
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China.,Guiyang Maternity and Child Health Care Hospital, Guiyang, Guizhou Province, China
| | - Dingyu Chen
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology (Guizhou Medical University), No. 9, Beijing Road, Guiyang, 550004, China
| | - XiaoFeng He
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology (Guizhou Medical University), No. 9, Beijing Road, Guiyang, 550004, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology (Guizhou Medical University), No. 9, Beijing Road, Guiyang, 550004, China
| | - LiYa Bao
- Affiliated Hospital, Guiyang Medical University, No. 9, Beijing Road, Guiyang, 550004, China
| | - Qingrong Wang
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology (Guizhou Medical University), No. 9, Beijing Road, Guiyang, 550004, China
| | - JianJiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China. .,Key Laboratory of Medical Molecular Biology (Guizhou Medical University), No. 9, Beijing Road, Guiyang, 550004, China. .,Affiliated Hospital, Guiyang Medical University, No. 9, Beijing Road, Guiyang, 550004, China.
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China. .,Key Laboratory of Medical Molecular Biology (Guizhou Medical University), No. 9, Beijing Road, Guiyang, 550004, China.
| |
Collapse
|
24
|
Gonzalez I, Araya P, Schneider I, Lindner C, Rojas A. Pattern recognition receptors and their roles in the host response to Helicobacter pylori infection. Future Microbiol 2021; 16:1229-1238. [PMID: 34615380 DOI: 10.2217/fmb-2021-0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is highly prevalent, affecting 4.4 billion people globally. This pathogen is a risk factor in the pathogenesis of more than 75% of worldwide cases of gastric cancer. Pattern recognition receptors are essential in the innate immune response to H. pylori infection. They recognize conserved pathogen structures and myriad alarmins released by host cells in response to microbial components, cytokines or cellular stress, thus triggering a robust proinflammatory response, which is crucial in H. pylori-induced gastric carcinogenesis. In this review, we intend to highlight the main pattern recognition receptors involved in the recognition and host response to H. pylori, as well as the main structures recognized and the subsequent inflammatory response.
Collapse
Affiliation(s)
- Ileana Gonzalez
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| | - Paulina Araya
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| | - Ivan Schneider
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| | - Cristian Lindner
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| | - Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| |
Collapse
|
25
|
From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput Struct Biotechnol J 2021; 19:4641-4657. [PMID: 34504660 PMCID: PMC8405902 DOI: 10.1016/j.csbj.2021.07.038] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Pyroptosis, apoptosis and necroptosis are the most genetically well-defined programmed cell death (PCD) pathways, and they are intricately involved in both homeostasis and disease. Although the identification of key initiators, effectors and executioners in each of these three PCD pathways has historically delineated them as distinct, growing evidence has highlighted extensive crosstalk among them. These observations have led to the establishment of the concept of PANoptosis, defined as an inflammatory PCD pathway regulated by the PANoptosome complex with key features of pyroptosis, apoptosis and/or necroptosis that cannot be accounted for by any of these PCD pathways alone. In this review, we provide a brief overview of the research history of pyroptosis, apoptosis and necroptosis. We then examine the intricate crosstalk among these PCD pathways to discuss the current evidence for PANoptosis. We also detail the molecular evidence for the assembly of the PANoptosome complex, a molecular scaffold for contemporaneous engagement of key molecules from pyroptosis, apoptosis, and/or necroptosis. PANoptosis is now known to be critically involved in many diseases, including infection, sterile inflammation and cancer, and future discovery of novel PANoptotic components will continue to broaden our understanding of the fundamental processes of cell death and inform the development of new therapeutics.
Collapse
|
26
|
Choi HR, Lim H, Lee JH, Park H, Kim HP. Interruption of Helicobacter pylori-Induced NLRP3 Inflammasome Activation by Chalcone Derivatives. Biomol Ther (Seoul) 2021; 29:410-418. [PMID: 33653970 PMCID: PMC8255143 DOI: 10.4062/biomolther.2020.192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori causes chronic gastritis through cag pathogenicity island (cagPAI), vacuolating cytotoxin A (VacA), lipopolysaccharides (LPS), and flagellin as pathogen-related molecular patterns (PAMPs), which, in combination with the pattern recognition receptors (PRRs) of host cells promotes the expression and secretion of inflammation-causing cytokines and activates innate immune responses such as inflammasomes. To identify useful compounds against H. pylori-associated gastric disorders, the effect of chalcone derivatives to activate the nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome was examined in an H. pylori-infected human monocytic THP-1 cell line in this study. Among the five synthetic structurally-related chalcone derivatives examined, 2'-hydroxy-4',6'-dimethoxychalcone (8) and 2'-hydroxy-3,4,5- trimethoxychalcone (12) strongly blocked the NLRP3 inflammasome in H. pylori-infected THP-1 cells. At 10 μM, these compounds inhibited the production of active IL-1β, IL-18, and caspase-1, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization, but did not affect the expression levels of NLRP3, ASC, and pro-caspase-1. The interruption of NLRP3 inflammasome activation by these compounds was found to be mediated via the inhibition of the interleukin-1 receptor-associated kinase 4 (IRAK4)/IκBα/NF-κB signaling pathway. These compounds also inhibited caspase-4 production associated with non-canonical NLRP3 inflammasome activation. These results show for the first time that certain chalcones could interrupt the activation of the NLRP3 inflammasome in H. pylori-infected THP-1 cells. Therefore, these chalcones may be helpful in alleviating H. pylori-related inflammatory disorders including chronic gastritis.
Collapse
Affiliation(s)
- Hye Ri Choi
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun Lim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ju Hee Lee
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Haeil Park
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
27
|
Targeting the NLRP3 Inflammasome as a New Therapeutic Option for Overcoming Cancer. Cancers (Basel) 2021; 13:cancers13102297. [PMID: 34064909 PMCID: PMC8151587 DOI: 10.3390/cancers13102297] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes are multiprotein complexes that regulate the maturation and secretion of the proinflammatory cytokines interleukin-1beta (IL-1β and interleukin-18 (IL-18) in response to various intracellular stimuli. As a member of the inflammasomes family, NLRP3 is the most studied and best characterized inflammasome and has been shown to be involved in several pathologies. Recent findings have made it increasingly apparent that the NLRP3 inflammasome may also play a central role in tumorigenesis, and it has attracted attention as a potential anticancer therapy target. In this review, we discuss the role of NLRP3 in the development and progression of cancer, offering a detailed summary of NLRP3 inflammasome activation (and inhibition) in the pathogenesis of various forms of cancer. Moreover, we focus on the therapeutic potential of targeting NLRP3 for cancer therapy, emphasizing how understanding NLRP3 inflammasome-dependent cancer mechanisms might guide the development of new drugs that target the inflammatory response of tumor-associated cells.
Collapse
|
28
|
Doulberis M, Papaefthymiou A, Srivastava DS, Exadaktylos AK, Katsinelos P, Kountouras J, Polyzos SA. Update on the association between non-alcoholic fatty liver disease and Helicobacter pylori infection. Int J Clin Pract 2021; 75:e13737. [PMID: 32991019 DOI: 10.1111/ijcp.13737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Michael Doulberis
- Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Macedonia, Greece
- First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
- Emergency Department, University Hospital Inselspital, Bern, Switzerland
| | - Apostolis Papaefthymiou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Macedonia, Greece
- First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
- Department of Gastroenterology, University Hospital of Larisa, Larisa, Greece
| | - David S Srivastava
- Emergency Department, University Hospital Inselspital, Bern, Switzerland
| | | | - Panagiotis Katsinelos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Macedonia, Greece
| | - Jannis Kountouras
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Macedonia, Greece
| | - Stergios A Polyzos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Macedonia, Greece
- First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| |
Collapse
|
29
|
Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 2021; 6:128. [PMID: 33776057 PMCID: PMC8005494 DOI: 10.1038/s41392-021-00507-5] [Citation(s) in RCA: 975] [Impact Index Per Article: 325.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, pyroptosis has received more and more attention because of its association with innate immunity and disease. The research scope of pyroptosis has expanded with the discovery of the gasdermin family. A great deal of evidence shows that pyroptosis can affect the development of tumors. The relationship between pyroptosis and tumors is diverse in different tissues and genetic backgrounds. In this review, we provide basic knowledge of pyroptosis, explain the relationship between pyroptosis and tumors, and focus on the significance of pyroptosis in tumor treatment. In addition, we further summarize the possibility of pyroptosis as a potential tumor treatment strategy and describe the side effects of radiotherapy and chemotherapy caused by pyroptosis. In brief, pyroptosis is a double-edged sword for tumors. The rational use of this dual effect will help us further explore the formation and development of tumors, and provide ideas for patients to develop new drugs based on pyroptosis.
Collapse
Affiliation(s)
- Pian Yu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Ling Tang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| |
Collapse
|
30
|
Evaluating Host Responses to Helicobacter pylori Using ELISA and Western Blot. Methods Mol Biol 2021; 2283:175-190. [PMID: 33765318 DOI: 10.1007/978-1-0716-1302-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Western blot and enzyme-linked immunosorbent assay (ELISA) are antibody-mediated techniques which are widely used for the detection and characterization of alterations in host protein expression following H. pylori infection . Both techniques are highly specific and sensitive for protein detection, with Western blot detection sensitivity as low as picogram amounts of the protein of interest, while the typical ELISA detection range is 0.01-0.1 ng. Here we provide an experimental example to demonstrate the application of these techniques for the determination of macrophage inflammatory responses following H. pylori infection .
Collapse
|
31
|
Ju X, Yang Z, Zhang H, Wang Q. Role of pyroptosis in cancer cells and clinical applications. Biochimie 2021; 185:78-86. [PMID: 33746064 DOI: 10.1016/j.biochi.2021.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Chemotherapy drugs usually inhibit tumor cell growth through the apoptosis pathway. However, tumor cells become resistant to chemotherapy drugs by evading apoptosis. It is necessary to find new ways to inhibit tumor growth through other types of death. Pyroptosis is a recently identified inflammatory cell death that plays an important role in a variety of diseases, including cancer. In this review, we will systematically review recent progress in the pyroptosis signaling pathway, the role of inflammasomes in cancer in the context of pyroptosis, the role of gasdermin proteins in cancer and the role of pyroptosis in tumor immunity. We will also discuss the application of the pyroptosis pathway in clinical studies. Finally, we hope to provide new strategies for pyroptosis in the clinic.
Collapse
Affiliation(s)
- Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Zhilong Yang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China.
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China.
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
32
|
Algood HMS. T Cell Cytokines Impact Epithelial Cell Responses during Helicobacter pylori Infection. THE JOURNAL OF IMMUNOLOGY 2020; 204:1421-1428. [PMID: 32152211 DOI: 10.4049/jimmunol.1901307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/08/2019] [Indexed: 12/24/2022]
Abstract
The goal of this Brief Review is to highlight literature that demonstrates how cytokines made by T lymphocytes impact the gastric epithelium, especially during Helicobacter pylori infection. These cytokines effect many of the diverse functions of the epithelium and the epithelium's interactions with H. pylori The focal point of this Brief Review will be on how T cell cytokines impact antimicrobial function and barrier function and how T cell cytokines influence the development and progression of cancer. Furthermore, the modulation of epithelial-derived chemokines by H. pylori infection will be discussed.
Collapse
Affiliation(s)
- Holly M Scott Algood
- Veterans Affairs Tennessee Valley Healthcare Services, Nashville, TN 37212; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212; and Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37212
| |
Collapse
|
33
|
Chen Y, Huang J, Xu C. Lipopolysaccharide-induced DC-SIGN/TLR4 crosstalk activates NLRP3 inflammasomes via MyD88-independent signaling in gastric epithelial cells. Exp Cell Res 2020; 396:112292. [PMID: 32961144 DOI: 10.1016/j.yexcr.2020.112292] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/03/2020] [Accepted: 09/15/2020] [Indexed: 12/28/2022]
Abstract
Abnormal pattern recognition receptor (PRR) signaling plays an important role in gastric mucosal damage caused by stomach microbiota; however, the underlying molecular mechanisms remain obscure. Here, we show that DC-SIGN, a surface phenotype marker of dendritic cells, is overexpressed in gastric epithelial cells facing LPS stimulation. NLRP3 expression in gastric epithelial cells are significantly increased and related to the degree of LPS stimulation. Furthermore, DC-SIGN could interact with TLR4, promote NLRP3 and related genes expression via MyD88-independent signaling pathway and regulate the secretion of IL-1β and IL-18 in gastric epithelial cells. The results of flow cytometry analysis show that DC-SIGN primarily mediates Th1 differentiation when co-cultured with gastric epithelial cells. These results reveal that LPS-induced DC-SIGN expression modulates NLRP3 inflammasomes formation via MyD88-independent TLR4 signaling in gastric epithelial cell, and induces a Th1-predominant host immune response,these findings may indicate a new function of DC-SIGN in non-immune cells, and elucidate the diversity role of gastric epithelial cells in mechanism of immune damage caused by microbial flora.
Collapse
Affiliation(s)
- Yufan Chen
- Department of Pediatric Neurosurgery, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Jiebin Huang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Rd. II, Shanghai, 200025, China
| | - Chundi Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Rd. II, Shanghai, 200025, China.
| |
Collapse
|
34
|
Sonnessa M, Cioffi A, Brunetti O, Silvestris N, Zito FA, Saponaro C, Mangia A. NLRP3 Inflammasome From Bench to Bedside: New Perspectives for Triple Negative Breast Cancer. Front Oncol 2020; 10:1587. [PMID: 33014808 PMCID: PMC7498644 DOI: 10.3389/fonc.2020.01587] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment (TME) is crucial in cancer onset, progression and response to treatment. It is characterized by an intricate interaction of immune cells and cytokines involved in tumor development. Among these, inflammasomes are oligomeric molecular platforms and play a key role in inflammatory response and immunity. Inflammasome activation is initiated upon triggering of pattern recognition receptors (Toll-like receptors, NOD-like receptors, and Absent in melanoma like receptors), on the surface of immune cells with the recruitment of caspase-1 by an adaptor apoptosis-associated speck-like protein. This structure leads to the activation of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and participates in different biological processes exerting its effects. To date, the Nod-Like Receptor Protein 3 (NLRP3) inflammasome has been well studied and its involvement has been established in different cancer diseases. In this review, we discuss the structure, biology and mechanisms of inflammasomes with a special focus on the specific role of NLRP3 in breast cancer (BC) and in the sub-group of triple negative BC. The NLRP3 inflammasome and its down-stream pathways could be considered novel potential tumor biomarkers and could open new frontiers in BC treatment.
Collapse
Affiliation(s)
- Margherita Sonnessa
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Antonella Cioffi
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco A. Zito
- Pathology Department, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Concetta Saponaro
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Anita Mangia
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| |
Collapse
|
35
|
Poli G, Fabi C, Bellet MM, Costantini C, Nunziangeli L, Romani L, Brancorsini S. Epigenetic Mechanisms of Inflammasome Regulation. Int J Mol Sci 2020; 21:E5758. [PMID: 32796686 PMCID: PMC7460952 DOI: 10.3390/ijms21165758] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023] Open
Abstract
The innate immune system represents the host's first-line defense against pathogens, dead cells or environmental factors. One of the most important inflammatory pathways is represented by the activation of the NOD-like receptor (NLR) protein family. Some NLRs induce the assembly of large caspase-1-activating complexes called inflammasomes. Different types of inflammasomes have been identified that can respond to distinct bacterial, viral or fungal infections; sterile cell damage or other stressors, such as metabolic imbalances. Epigenetic regulation has been recently suggested to provide a complementary mechanism to control inflammasome activity. This regulation can be exerted through at least three main mechanisms, including CpG DNA methylation, histones post-translational modifications and noncoding RNA expression. The repression or promotion of expression of different inflammasomes (NLRP1, NLRP2, NLRP3, NLRP4, NLRP6, NLRP7, NLRP12 and AIM2) through epigenetic mechanisms determines the development of pathologies with variable severity. For example, our team recently explored the role of microRNAs (miRNAs) targeting and modulating the components of the inflammasome as potential biomarkers in bladder cancer and during therapy. This suggests that the epigenetic control of inflammasome-related genes could represent a potential target for further investigations of molecular mechanisms regulating inflammatory pathways.
Collapse
Affiliation(s)
- Giulia Poli
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy; (M.M.B.); (C.C.); (L.R.); (S.B.)
| | - Consuelo Fabi
- Department of Surgical and Biomedical Sciences, Urology and Andrology Clinic, University of Perugia, 05100 Terni, Italy;
| | - Marina Maria Bellet
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy; (M.M.B.); (C.C.); (L.R.); (S.B.)
| | - Claudio Costantini
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy; (M.M.B.); (C.C.); (L.R.); (S.B.)
| | - Luisa Nunziangeli
- Polo d’Innovazione di Genomica, Genetica e Biologia, 05100 Terni, Italy;
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy; (M.M.B.); (C.C.); (L.R.); (S.B.)
| | - Stefano Brancorsini
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy; (M.M.B.); (C.C.); (L.R.); (S.B.)
| |
Collapse
|
36
|
Chung C, Seo W, Silwal P, Jo EK. Crosstalks between inflammasome and autophagy in cancer. J Hematol Oncol 2020; 13:100. [PMID: 32703253 PMCID: PMC7376907 DOI: 10.1186/s13045-020-00936-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Both inflammasomes and autophagy have important roles in the intracellular homeostasis, inflammation, and pathology; the dysregulation of these processes is often associated with the pathogenesis of numerous cancers. In addition, they can crosstalk with each other in multifaceted ways to influence various physiological and pathological responses, including cancer. Multiple molecular mechanisms connect the autophagy pathway to inflammasome activation and, through this, may influence the outcome of pro-tumor or anti-tumor responses depending on the cancer types, microenvironment, and the disease stage. In this review, we highlight the rapidly growing literature on the various mechanisms by which autophagy interacts with the inflammasome pathway, to encourage additional applications in the context of tumors. In addition, we provide insight into the mechanisms by which pathogen modulates the autophagy-inflammasome pathway to favor the infection-induced carcinogenesis. We also explore the challenges and opportunities of using multiple small molecules/agents to target the autophagy/inflammasome axis and their effects upon cancer treatment. Finally, we discuss the emerging clinical efforts assessing the potential usefulness of targeting approaches for either autophagy or inflammasome as anti-cancer strategies, although it remains underexplored in terms of their crosstalks.
Collapse
Affiliation(s)
- Chaeuk Chung
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Wonhyoung Seo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea. .,Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea. .,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea.
| |
Collapse
|
37
|
Jang AR, Kang MJ, Shin JI, Kwon SW, Park JY, Ahn JH, Lee TS, Kim DY, Choi BG, Seo MW, Yang SJ, Shin MK, Park JH. Unveiling the Crucial Role of Type IV Secretion System and Motility of Helicobacter pylori in IL-1β Production via NLRP3 Inflammasome Activation in Neutrophils. Front Immunol 2020; 11:1121. [PMID: 32582201 PMCID: PMC7295951 DOI: 10.3389/fimmu.2020.01121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/07/2020] [Indexed: 12/23/2022] Open
Abstract
Helicobacter pylori is a gram-negative, microaerophilic, and spiral-shaped bacterium and causes gastrointestinal diseases in human. IL-1β is a representative cytokine produced in innate immune cells and is considered to be a key factor in the development of gastrointestinal malignancies. However, the mechanism of IL-1β production by neutrophils during H. pylori infection is still unknown. We designed this study to identify host and bacterial factors involved in regulation of H. pylori-induced IL-1β production in neutrophils. We found that H. pylori-induced IL-1β production is abolished in NLRP3-, ASC-, and caspase-1/11-deficient neutrophils, suggesting essential role for NLRP3 inflammasome in IL-1β response against H. pylori. Host TLR2, but not TLR4 and Nod2, was also required for transcription of NLRP3 and IL-1β as well as secretion of IL-1β. H. pylori lacking cagL, a key component of the type IV secretion system (T4SS), induced less IL-1β production in neutrophils than did its isogenic WT strain, whereas vacA and ureA were dispensable. Moreover, T4SS was involved in caspase-1 activation and IL-1β maturation in H. pylori-infected neutrophils. We also found that FlaA is essential for H. pylori-mediated IL-1β production in neutrophils, but not dendritic cells. TLR5 and NLRC4 were not required for H. pylori-induced IL-1β production in neutrophils. Instead, bacterial motility is essential for the production of IL-1β in response to H. pylori. In conclusion, our study shows that host TLR2 and NLRP3 inflammasome and bacterial T4SS and motility are essential factors for IL-1β production by neutrophils in response to H. pylori.
Collapse
Affiliation(s)
- Ah-Ra Jang
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Min-Jung Kang
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Jeong-Ih Shin
- Department of Microbiology, School of Medicine, Gyeongsang National University, Jinju-si, South Korea
| | - Soon-Wook Kwon
- Department of Microbiology, School of Medicine, Gyeongsang National University, Jinju-si, South Korea
| | - Ji-Yeon Park
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Jae-Hun Ahn
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Tae-Sung Lee
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Dong-Yeon Kim
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Bo-Gwon Choi
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Myoung-Won Seo
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| | - Soo-Jin Yang
- School of Bioresources and Bioscience, Chung-Ang University, Anseong, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, School of Medicine, Gyeongsang National University, Jinju-si, South Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
38
|
Zhang Z, Xue H, Dong Y, Hu J, Jiang T, Shi L, Du J. Inhibition of GKN2 Attenuates Acute Gastric Lesions Through the NLRP3 Inflammasome. Adv Wound Care (New Rochelle) 2020; 9:219-232. [PMID: 32226647 DOI: 10.1089/wound.2019.0957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/22/2019] [Indexed: 12/25/2022] Open
Abstract
Objective: Acute gastric lesions are commonly seen in critically ill patients in the intensive care unit and can result in significant upper gastrointestinal bleeding. However, the signaling mechanisms that regulate this severe disease are still unclear. In this study, we explored the involvement of gastrokine 2 (GKN2) in the development of acute gastric lesions in mice. Approach: We measured the degree of injury using the water immersion restraint stress mouse model. Inflammatory cells and factors were analyzed after gastric lesion induction. The luciferase reporter assay was used to detect the transcription activity of nuclear receptor subfamily 3 group C member 1 (NR3C1) in regulation of GKN2. We also detected the downstream pathway of GKN2 in gastric lesions. Results: The results showed that GKN2 could aggravate stress-induced gastric lesions and gastric mucosal cell death. Moreover, the gastric lesion promoted by GKN2 was gastric acid independent. GKN2 could recruit neutrophils and promote the release of inflammatory factors to contribute to inflammation. NR3C1, activated by cortisol under stress, could act as a transcription factor to upregulate the expression of GKN2. Innovation: This study elucidates the process of gastric lesion at a molecular level and explores the possible contender biomarkers for diagnosis and drug targets in wound healing of gastric lesions. Conclusion: In conclusion, GKN2, which was upregulated by cortisol, aggravated the gastric lesion through activation of the inflammasome and inflammatory reaction.
Collapse
Affiliation(s)
- Ziqiang Zhang
- Department of General Surgery, Huashan Hospital North, Fudan University, Shanghai, P.R. China
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Hongyuan Xue
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Yuanqiang Dong
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Jian Hu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Tao Jiang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Liubin Shi
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Jianjun Du
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
39
|
Sanchez‐Garrido J, Slater SL, Clements A, Shenoy AR, Frankel G. Vying for the control of inflammasomes: The cytosolic frontier of enteric bacterial pathogen-host interactions. Cell Microbiol 2020; 22:e13184. [PMID: 32185892 PMCID: PMC7154749 DOI: 10.1111/cmi.13184] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
Enteric pathogen-host interactions occur at multiple interfaces, including the intestinal epithelium and deeper organs of the immune system. Microbial ligands and activities are detected by host sensors that elicit a range of immune responses. Membrane-bound toll-like receptors and cytosolic inflammasome pathways are key signal transducers that trigger the production of pro-inflammatory molecules, such as cytokines and chemokines, and regulate cell death in response to infection. In recent years, the inflammasomes have emerged as a key frontier in the tussle between bacterial pathogens and the host. Inflammasomes are complexes that activate caspase-1 and are regulated by related caspases, such as caspase-11, -4, -5 and -8. Importantly, enteric bacterial pathogens can actively engage or evade inflammasome signalling systems. Extracellular, vacuolar and cytosolic bacteria have developed divergent strategies to subvert inflammasomes. While some pathogens take advantage of inflammasome activation (e.g. Listeria monocytogenes, Helicobacter pylori), others (e.g. E. coli, Salmonella, Shigella, Yersinia sp.) deploy a range of virulence factors, mainly type 3 secretion system effectors, that subvert or inhibit inflammasomes. In this review we focus on inflammasome pathways and their immune functions, and discuss how enteric bacterial pathogens interact with them. These studies have not only shed light on inflammasome-mediated immunity, but also the exciting area of mammalian cytosolic immune surveillance.
Collapse
Affiliation(s)
| | | | | | - Avinash R. Shenoy
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology & InfectionImperial College LondonLondonUK
| | - Gad Frankel
- Department of Life SciencesImperial College LondonLondonUK
| |
Collapse
|
40
|
Pachathundikandi SK, Blaser N, Bruns H, Backert S. Helicobacter pylori Avoids the Critical Activation of NLRP3 Inflammasome-Mediated Production of Oncogenic Mature IL-1β in Human Immune Cells. Cancers (Basel) 2020; 12:E803. [PMID: 32230726 PMCID: PMC7226495 DOI: 10.3390/cancers12040803] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/03/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori persistently colonizes the human stomach, and is associated with inflammation-induced gastric cancer. Bacterial crosstalk with the host immune system produces various inflammatory mediators and subsequent reactions in the host, but not bacterial clearance. Interleukin-1β (IL-1β) is implicated in gastric cancer development and certain gene polymorphisms play a role in this scenario. Mature IL-1β production depends on inflammasome activation, and the NLRP3 inflammasome is a major driver in H. pylori-infected mice, while recent studies demonstrated the down-regulation of NLRP3 expression in human immune cells, indicating a differential NLRP3 regulation in human vs. mice. In addition to the formation of mature IL-1β or IL-18, inflammasome activation induces pyroptotic death in cells. We demonstrate that H. pylori infection indeed upregulated the expression of pro-IL-1β in human immune cells, but secreted only very low amounts of mature IL-1β. However, application of exogenous control activators such as Nigericin or ATP to infected cells readily induced NLRP3 inflammasome formation and secretion of high amounts of mature IL-1β. This suggests that chronic H. pylori infection in humans manipulates inflammasome activation and pyroptosis for bacterial persistence. This inflammasome deregulation during H. pylori infection, however, is prone to external stimulation by microbial, environmental or host molecules of inflammasome activators for the production of high amounts of mature IL-1β and signaling-mediated gastric tumorigenesis in humans.
Collapse
Affiliation(s)
- Suneesh Kumar Pachathundikandi
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| | - Nicole Blaser
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander University, D-91058 Erlangen, Germany;
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| |
Collapse
|
41
|
Gouravani M, Khalili N, Razi S, Keshavarz-Fathi M, Khalili N, Rezaei N. The NLRP3 inflammasome: a therapeutic target for inflammation-associated cancers. Expert Rev Clin Immunol 2020; 16:175-187. [PMID: 31928260 DOI: 10.1080/1744666x.2020.1713755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Inflammasomes are large multimeric intracellular complexes that are capable of maturation and secretion of pro-inflammatory cytokines, IL-1β and IL-18, in response to danger signal molecules. As a member of the inflammasome family, the NLRP3 inflammasome has recently been under intense investigation revealing its possible role in several human diseases especially cancers.Areas covered: In this review, we will discuss the biology and mechanism of NLRP3 inflammasome activation, its role in specific types of tumors and the novel therapeutic modalities targeting this complex.Expert opinion: The NLRP3 inflammasome and its components including the adapter apoptosis-associated speck-like (ASC) protein and caspase-1 impose different and sometimes contrasting effects in tumorigenesis depending on various contexts. Considering the novel role of this complex in the initiation and progression of neoplasia, the NLRP3 inflammasome and its pathways provide desirable therapeutic targets for prevention, treatment, and prognosis of certain types of cancer. To date, several agents have been introduced for this purpose, some of which have shown promising results in the clinic.
Collapse
Affiliation(s)
- Mahdi Gouravani
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Khalili
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Khalili
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| |
Collapse
|
42
|
Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell Mol Immunol 2019; 17:50-63. [PMID: 31804619 PMCID: PMC6952403 DOI: 10.1038/s41423-019-0339-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic infection with Helicobacter pylori cagA-positive strains is the strongest risk factor for gastric cancer. The cagA gene product, CagA, is delivered into gastric epithelial cells via the bacterial type IV secretion system. Delivered CagA then undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs in its C-terminal region and acts as an oncogenic scaffold protein that physically interacts with multiple host signaling proteins in both tyrosine phosphorylation-dependent and -independent manners. Analysis of CagA using in vitro cultured gastric epithelial cells has indicated that the nonphysiological scaffolding actions of CagA cell-autonomously promote the malignant transformation of the cells by endowing the cells with multiple phenotypic cancer hallmarks: sustained proliferation, evasion of growth suppressors, invasiveness, resistance to cell death, and genomic instability. Transgenic expression of CagA in mice leads to in vivo oncogenic action of CagA without any overt inflammation. The in vivo oncogenic activity of CagA is further potentiated in the presence of chronic inflammation. Since Helicobacter pylori infection triggers a proinflammatory response in host cells, a feedforward stimulation loop that augments the oncogenic actions of CagA and inflammation is created in CagA-injected gastric mucosa. Given that Helicobacter pylori is no longer colonized in established gastric cancer lesions, the multistep nature of gastric cancer development should include a “hit-and-run” process of CagA action. Thus, acquisition of genetic and epigenetic alterations that compensate for CagA-directed cancer hallmarks may be required for completion of the “hit-and-run” process of gastric carcinogenesis.
Collapse
|
43
|
Li H, Xu CX, Gong RJ, Chi JS, Liu P, Liu XM. How does Helicobacter pylori cause gastric cancer through connexins: An opinion review. World J Gastroenterol 2019; 25:5220-5232. [PMID: 31558869 PMCID: PMC6761244 DOI: 10.3748/wjg.v25.i35.5220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium with a number of virulence factors, such as cytotoxin-associated gene A, vacuolating cytotoxin A, its pathogenicity island, and lipopolysaccharide, which cause gastrointestinal diseases. Connexins function in gap junctional homeostasis, and their downregulation is closely related to gastric carcinogenesis. Investigations into H. pylori infection and the fine-tuning of connexins in cells or tissues have been reported in previous studies. Therefore, in this review, the potential mechanisms of H. pylori-induced gastric cancer through connexins are summarized in detail.
Collapse
Affiliation(s)
- Huan Li
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Can-Xia Xu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Ren-Jie Gong
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Jing-Shu Chi
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Peng Liu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Xiao-Ming Liu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
44
|
Semper RP, Vieth M, Gerhard M, Mejías-Luque R. Helicobacter pylori Exploits the NLRC4 Inflammasome to Dampen Host Defenses. THE JOURNAL OF IMMUNOLOGY 2019; 203:2183-2193. [PMID: 31511355 DOI: 10.4049/jimmunol.1900351] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori colonizes the stomach of around 50% of humans. This chronic infection can lead to gastric pathologic conditions such as gastric ulcers and gastric adenocarcinomas. The strong inflammatory response elicited by H. pylori is characterized by the induction of the expression of several cytokines. Among those, IL-18 is found highly upregulated in infected individuals, and its expression correlates with the severity of gastric inflammation. IL-18 is produced as inactive proform and has to be cleaved by the multiprotein complex inflammasome to be active. In immune cells, the NLRC4 inflammasome, which is activated by flagellin or bacterial secretion systems, was shown to be dispensable for H. pylori-induced inflammasome activation. However, apart from immune cells, gastric epithelial cells can also produce IL-18. In this study, we analyzed the role of the NLRC4 inflammasome during H. pylori infection. Our results indicate that NLRC4 and a functional type IV secretion system are crucial for the production of IL-18 from human and murine gastric epithelial cells. In vivo, Nlrc4-/- mice failed to produce gastric IL-18 upon H. pylori infection. Compared with wild type mice, Nlrc4-/- mice controlled H. pylori better without showing strong inflammation. Moreover, H. pylori-induced IL-18 inhibits β-defensin 1 expression in a NF-κB-dependent manner, resulting in higher bacterial colonization. At the same time, inflammasome activation enhances neutrophil infiltration, resulting in inflammation. Thus, NLRC4 inflammasome activation and subsequent IL-18 production favors bacterial persistence by inhibiting antimicrobial peptide production and, at the same time, contributes to gastric inflammation.
Collapse
Affiliation(s)
- Raphaela P Semper
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Fakultät für Medizin, Technische Universität München, 81675 Munich, Germany; and
| | - Michael Vieth
- Institut für Pathologie, Klinikum Bayreuth, 95445 Bayreuth, Germany
| | - Markus Gerhard
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Fakultät für Medizin, Technische Universität München, 81675 Munich, Germany; and
| | - Raquel Mejías-Luque
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Fakultät für Medizin, Technische Universität München, 81675 Munich, Germany; and
| |
Collapse
|
45
|
Li H, Xu CX, Gong RJ, Chi JS, Liu P, Liu XM. How does Helicobacter pyloricause gastric cancer through connexins: An opinion review. World J Gastroenterol 2019. [DOI: 10.3748/wjg.v25.i355220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
46
|
Patrick KL, Bell SL, Weindel CG, Watson RO. Exploring the "Multiple-Hit Hypothesis" of Neurodegenerative Disease: Bacterial Infection Comes Up to Bat. Front Cell Infect Microbiol 2019; 9:138. [PMID: 31192157 PMCID: PMC6546885 DOI: 10.3389/fcimb.2019.00138] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/16/2019] [Indexed: 12/23/2022] Open
Abstract
Despite major strides in personalized genomics, it remains poorly understood why neurodegenerative diseases occur in only a fraction of individuals with a genetic predisposition and conversely, why individuals with no genetic risk of a disorder develop one. Chronic diseases like Alzheimer's, Parkinson's, and Multiple sclerosis are speculated to result from a combination of genetic and environmental factors, a concept commonly referred to as the “multiple hit hypothesis.” A number of bacterial infections have been linked to increased risk of neurodegeneration, and in some cases, clearance of bacterial pathogens has been correlated with amelioration of central nervous system (CNS) deficits. Additionally, mutations in several genes known to contribute to CNS disorders like Parkinson's Disease have repeatedly been implicated in susceptibility to intracellular bacterial infection. Recent data has begun to demonstrate roles for these genes (PARK2, PINK1, and LRRK2) in modulating innate immune outcomes, suggesting that immune dysregulation may play an even more important role in neurodegeneration than previously appreciated. This review will broadly explore the connections between bacterial infection, immune dysregulation, and CNS disorders. Understanding this interplay and how bacterial pathogenesis contributes to the “multiple-hit hypothesis” of neurodegeneration will be crucial to develop therapeutics to effectively treat both neurodegeneration and infection.
Collapse
Affiliation(s)
- Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, United States
| | - Samantha L Bell
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, United States
| | - Chi G Weindel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, United States
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, United States
| |
Collapse
|
47
|
Arnold IC, Zhang X, Urban S, Artola-Borán M, Manz MG, Ottemann KM, Müller A. NLRP3 Controls the Development of Gastrointestinal CD11b + Dendritic Cells in the Steady State and during Chronic Bacterial Infection. Cell Rep 2019; 21:3860-3872. [PMID: 29281833 DOI: 10.1016/j.celrep.2017.12.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/24/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022] Open
Abstract
The gastric lamina propria is largely uncharted immunological territory. Here we describe the evolution and composition of the gastric, small intestinal, and colonic lamina propria mononuclear phagocyte system during the steady state and infection with the gastric pathogen Helicobacter pylori. We show that monocytes, CX3CR1hi macrophages, and CD11b+ dendritic cells are recruited to the infected stomach in a CCR2-dependent manner. All three populations, but not BATF3-dependent CD103+ DCs, sample red fluorescent protein (RFP)+Helicobacter pylori (H. pylori). Mice reconstituted with human hematopoietic stem cells recapitulate several features of the myeloid cell-H. pylori interaction. The differentiation in and/or recruitment to gastrointestinal, lung, and lymphoid tissues of CD11b+ DCs requires NLRP3, but not apoptosis-associated speck-like protein containing a carboxy-terminal CARD (ASC) or caspase-1, during steady-state and chronic infection. NLRP3-/- mice fail to generate Treg responses to H. pylori and control the infection more effectively than wild-type mice. The results demonstrate a non-canonical inflammasome-independent function of NLRP3 in DC development and immune regulation.
Collapse
Affiliation(s)
- Isabelle C Arnold
- Institute of Molecular Cancer Research , University of Zürich, 8057 Zürich, Switzerland.
| | - Xiaozhou Zhang
- Institute of Molecular Cancer Research , University of Zürich, 8057 Zürich, Switzerland
| | - Sabine Urban
- Institute of Molecular Cancer Research , University of Zürich, 8057 Zürich, Switzerland
| | - Mariela Artola-Borán
- Institute of Molecular Cancer Research , University of Zürich, 8057 Zürich, Switzerland
| | - Markus G Manz
- Department of Hematology, University of Zürich, 8057 Zürich, Switzerland
| | - Karen M Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Anne Müller
- Institute of Molecular Cancer Research , University of Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
48
|
Chung IC, OuYang CN, Yuan SN, Lin HC, Huang KY, Wu PS, Liu CY, Tsai KJ, Loi LK, Chen YJ, Chung AK, Ojcius DM, Chang YS, Chen LC. Pretreatment with a Heat-Killed Probiotic Modulates the NLRP3 Inflammasome and Attenuates Colitis-Associated Colorectal Cancer in Mice. Nutrients 2019; 11:nu11030516. [PMID: 30823406 PMCID: PMC6471765 DOI: 10.3390/nu11030516] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/19/2019] [Accepted: 02/24/2019] [Indexed: 01/22/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. Inflammation contributes to cancer development and inflammatory bowel disease is an important risk factor for CRC. The aim of this study is to assess whether a widely used probiotic Enterococcus faecalis can modulate the NLRP3 inflammasome and protect against colitis and colitis-associated CRC. We studied the effect of heat-killed cells of E. faecalis on NLRP3 inflammasome activation in THP-1-derived macrophages. Pretreatment of E. faecalis or NLRP3 siRNA can inhibit NLRP3 inflammasome activation in macrophages in response to fecal content or commensal microbes, P. mirabilis or E. coli, according to the reduction of caspase-1 activation and IL-1β maturation. Mechanistically, E. faecalis attenuates the phagocytosis that is required for the full activation of the NLRP3 inflammasome. In in vivo mouse experiments, E. faecalis can ameliorate the severity of intestinal inflammation and thereby protect mice from dextran sodium sulfate (DSS)-induced colitis and the formation of CRC in wild type mice. On the other hand, E. faecalis cannot prevent DSS-induced colitis in NLRP3 knockout mice. Our findings indicate that application of the inactivated probiotic, E. faecalis, may be a useful and safe strategy for attenuation of NLRP3-mediated colitis and inflammation-associated colon carcinogenesis.
Collapse
Affiliation(s)
- I-Che Chung
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan.
| | - Chun-Nan OuYang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan.
| | - Sheng-Ning Yuan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan.
| | - Hsin-Chung Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan.
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, Taipei 114, Taiwan.
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan.
| | - Pao-Shu Wu
- Department of Pathology, Mackay Memorial Hospital, New Taipei City 251, Taiwan.
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| | - Chia-Yuan Liu
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, New Taipei City 251, Taiwan.
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 251, Taiwan.
| | - Kuen-Jou Tsai
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei 104, Taiwan.
| | - Lai-Keng Loi
- Department of Dentistry, School of Dentistry, National Yang-Minutesg University, Taipei 112, Taiwan.
| | - Yu-Jen Chen
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 251, Taiwan.
- Department of Radiation Oncology, Mackay Memorial Hospital, New Taipei City 251, Taiwan.
| | - An-Ko Chung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA 94103, USA.
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan 333, Taiwan.
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou 333, Taiwan.
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou 333, Taiwan.
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| |
Collapse
|
49
|
Wu J, Gu Y, Xiao Y, Xia C, Li H, Kang Y, Sun J, Shao Z, Lin Z, Zhao X. Characterization of DNA Methylation Associated Gene Regulatory Networks During Stomach Cancer Progression. Front Genet 2019; 9:711. [PMID: 30778372 PMCID: PMC6369581 DOI: 10.3389/fgene.2018.00711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/18/2018] [Indexed: 01/11/2023] Open
Abstract
DNA methylation plays a critical role in tumorigenesis through regulating oncogene activation and tumor suppressor gene silencing. Although extensively analyzed, the implication of DNA methylation in gene regulatory network is less characterized. To address this issue, in this study we performed an integrative analysis on the alteration of DNA methylation patterns and the dynamics of gene regulatory network topology across distinct stages of stomach cancer. We found the global DNA methylation patterns in different stages are generally conserved, whereas some significantly differentially methylated genes were exclusively observed in the early stage of stomach cancer. Integrative analysis of DNA methylation and network topology alteration yielded several genes which have been reported to be involved in the progression of stomach cancer, such as IGF2, ERBB2, GSTP1, MYH11, TMEM59, and SST. Finally, we demonstrated that inhibition of SST promotes cell proliferation, suggesting that DNA methylation-associated SST suppression possibly contributes to the gastric cancer progression. Taken together, our study suggests the DNA methylation-associated regulatory network analysis could be used for identifying cancer-related genes. This strategy can facilitate the understanding of gene regulatory network in cancer biology and provide a new insight into the study of DNA methylation at system level.
Collapse
Affiliation(s)
- Jun Wu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yunzhao Gu
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yawen Xiao
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Xia
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Li
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yani Kang
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jielin Sun
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhifeng Shao
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zongli Lin
- Charles L. Brown Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, United States
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
50
|
Resolution of Gastric Cancer-Promoting Inflammation: A Novel Strategy for Anti-cancer Therapy. Curr Top Microbiol Immunol 2019; 421:319-359. [PMID: 31123895 DOI: 10.1007/978-3-030-15138-6_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The connection between inflammation and cancer was initially recognized by Rudolf Virchow in the nineteenth century. During the last decades, a large body of evidence has provided support to his hypothesis, and now inflammation is recognized as one of the hallmarks of cancer, both in etiopathogenesis and ongoing tumor growth. Infection with the pathogen Helicobacter pylori is the primary causal factor in 90% of gastric cancer (GC) cases. As we increase our understanding of how chronic inflammation develops in the stomach and contributes to carcinogenesis, there is increasing interest in targeting cancer-promoting inflammation as a strategy to treat GC. Moreover, once cancer develops and anti-cancer immune responses are suppressed, there is evidence of a substantial shift in the microenvironment and new targets for immune therapy emerge. In this chapter, we provide insight into inflammation-related factors, including T lymphocytes, macrophages, pro-inflammatory chemokines, and cytokines, which promote H. pylori-associated GC initiation and growth. While intervening with chronic inflammation is not a new practice in rheumatology or gastroenterology, this approach has not been fully explored for its potential to prevent carcinogenesis or to contribute to the treatment of GC. This review highlights current and possible strategies for therapeutic intervention including (i) targeting pro-inflammatory mediators, (ii) targeting growth factors and pathways involved in angiogenesis in the gastric tumor microenvironment, and (iii) enhancing anti-tumor immunity. In addition, we highlight a significant number of clinical trials and discuss the importance of individual tumor characterization toward offering personalized immune-related therapy.
Collapse
|