1
|
Burgan J, Rahmati M, Lee M, Saiz AM. Innate immune response to bone fracture healing. Bone 2024; 190:117327. [PMID: 39522707 DOI: 10.1016/j.bone.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The field of osteoimmunology has primarily focused on fracture healing in isolated musculoskeletal injuries. The innate immune system is the initial response to fracture, with inflammatory macrophages, cytokines, and neutrophils arriving first at the fracture hematoma, followed by an anti-inflammatory phase to begin the process of new bone formation. This review aims to first discuss the current literature and knowledge gaps on the immune responses governing single fracture healing by encompassing the individual role of macrophages, neutrophils, cytokines, mesenchymal stem cells, bone cells, and other immune cells. This paper discusses the interactive effects of these cellular responses underscoring the field of osteoimmunology. The critical role of the metabolic environment in guiding the immune system properties will be highlighted along with some effective therapeutics for fracture healing in the context of osteoimmunology. However, compared to isolated fractures, which frequently heal well, long bone fractures in over 30 % of polytrauma patients exhibit impaired healing. Clinical evidence suggests there may be distinct physiologic and inflammatory pathways altered in polytrauma resulting in nonunion. Nonunion is associated with worse patient outcomes and increased societal healthcare costs. The dysregulated immunomodulatory/inflammatory response seen in polytrauma may lead to this increased nonunion rate. This paper will investigate the differences in immune response between isolated and polytrauma fractures. Finally, future directions for fracture studies are explored with consideration of the emerging roles of newly discovered immune cell functions in fracture healing, the existing challenges and conflicting results in the field, the translational potential of these studies in clinic, and the more complex nature of polytrauma fractures that can alter cell functions in different tissues.
Collapse
Affiliation(s)
- Jane Burgan
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maryam Rahmati
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Mark Lee
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA
| | - Augustine Mark Saiz
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA.
| |
Collapse
|
2
|
Hora AB, Biano LS, Nascimento ACS, Camargo ZT, Heiden GI, Albulquerque-Júnior RLC, Grespan R, Aragão JMDA, Camargo EA. Isoorientin Improves Excisional Skin Wound Healing in Mice. Pharmaceuticals (Basel) 2024; 17:1368. [PMID: 39459009 PMCID: PMC11510251 DOI: 10.3390/ph17101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Wound healing relies on a coordinated process with the participation of different mediators. Natural products are a source of active compounds with healing potential. Isoorientin is a natural flavone recognized as having several pharmacological properties, such as anti-inflammatory effects, making it a potential treatment for wounds. We investigated the effect of isoorientin on the healing of excisional skin wounds. Methods: Male Swiss mice were subjected to the induction of excisional skin wounds (6 mm diameter) and treated with a vehicle (2% dimethyl sulfoxide in propylene glycol) or 2.5% isoorientin applied topically once a day for 14 days. The wound area was measured on days 0, 3, 7, and 14. Histopathological analyses were performed on the cicatricial tissue after 14 days. The myeloperoxidase activity and the interleukin-1β, tumoral necrosis factor (TNF)-α, and interleukin-6 concentrations were determined on the third day. Results: We observed that 3 days after the topical application of isoorientin, the lesion area was significantly smaller when compared to those of the vehicle (p < 0.01) and control (p < 0.05) groups. No difference was observed after 7 and 14 days of induction. Despite this, on day 14, histological analysis of cicatricial tissue from the animals treated with isoorientin showed reduced epidermal thickness (p < 0.001) and increased collagen deposition (p < 0.001). These effects were accompanied by decreased myeloperoxidase activity and interleukin-1β concentration on the third day of induction, without alteration in TNF-α and interleukin-6. Conclusions: The treatment with isoorientin promoted better tissue repair in excisional wounds in mice, which may be linked to the modulation of the early inflammatory response.
Collapse
Affiliation(s)
- Aline B. Hora
- Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão 49060-676, Brazil
| | - Laiza S. Biano
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão 49107-230, Brazil
| | - Ana Carla S. Nascimento
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão 49107-230, Brazil
| | - Zaine T. Camargo
- Graduate Program in Chemistry, Federal University of Sergipe, São Cristóvão 49107-230, Brazil
| | - Greice I. Heiden
- Graduate Program in Dentistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | | | - Renata Grespan
- Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão 49060-676, Brazil
| | - Jessica M. D. A. Aragão
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão 49107-230, Brazil
| | - Enilton A. Camargo
- Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão 49060-676, Brazil
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão 49107-230, Brazil
| |
Collapse
|
3
|
Piazzesi A, Scanu M, Ciprandi G, Putignani L. Modulations of the skin microbiome in skin disorders: A narrative review from a wound care perspective. Int Wound J 2024; 21:e70087. [PMID: 39379177 PMCID: PMC11461044 DOI: 10.1111/iwj.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
The cutaneous microbiome represents a highly dynamic community of bacteria, fungi and viruses. Scientific evidence, particularly from the last two decades, has revealed that these organisms are far from being inconsequential microscopic hitchhikers on the human body, nor are they all opportunistic pathogens waiting for the chance to penetrate the skin barrier and cause infection. In this review, we will describe how dermatological diseases have been found to be associated with disruptions and imbalances in the skin microbiome and how this new evidence had shaped the diagnosis and clinical practice relating to these disorders. We will identify the microbial agents which have been found to directly exacerbate skin diseases, as well as those which can ameliorate many of the symptoms associated with dermatological disorders. Furthermore, we will discuss the studies which suggest that bacteriotherapy, either by topical use of probiotics or by bacteria-derived compounds, can rectify skin microbial imbalances, thereby offering a promising alternative to antibiotic treatment and reducing the risks of antibiotic resistance.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Immunology, Rheumatology and Infectious Diseases Research Unit, Unit of the MicrobiomeBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Matteo Scanu
- Immunology, Rheumatology and Infectious Diseases Research Unit, Unit of the MicrobiomeBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Guido Ciprandi
- Research Institute Division of Plastic and Maxillofacial Surgery, Department of SurgeryBambino Gesu' Children's Hospital, IRCCSRomeItaly
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics; and Immunology, Rheumatology and Infectious Diseases Research Unit, Unit of the MicrobiomeBambino Gesù Children's Hospital, IRCCSRomeItaly
| |
Collapse
|
4
|
Gupta S, Zingade A, Baviskar M, Pingale SV. A Prospective, Interventional, Comparative Study to Evaluate the Efficacy of Using Combined Platelet-Rich Plasma and Platelet-Rich Fibrin Over Standard Cleaning and Dressing in Chronic Wounds. Cureus 2024; 16:e70092. [PMID: 39449930 PMCID: PMC11500489 DOI: 10.7759/cureus.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Chronic wounds are defined as wounds that have failed to proceed through the orderly process that produces satisfactory anatomic and functional integrity or that have proceeded through the repair process without producing an adequate anatomic and functional result. The majority of wounds that have not healed in three months are considered chronic, although a duration as low as four weeks has been used to indicate chronicity. Our study aimed to compare the efficacy of autologous platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) versus standard cleaning and dressing as a regenerative medicine strategy to promote healing in chronic wounds. METHODS A prospective randomized controlled trial was undertaken to test the efficacy of autologous PRP and PRF in the healing of chronic wounds. A series of 60 cases was compiled from patients attending the outpatient department regularly for the management of chronic wounds. A total of 30 cases were randomly chosen for study with autologous PRP and PRF and 30 cases received conventional dressing. RESULTS The average healing duration in the study was significantly shorter for the PRP & PRF group. The mean healing time for this group was 4.45 weeks (31.2 ± 3.07 days) compared to 9.61 weeks (67.27 ± 9.19 days) for the conventional dressing group. CONCLUSION PRP and PRF belong to a new generation of platelet concentrates that help efficaciously for enhanced healing and functional recovery, safely and cost-effectively. They help by shortening the recovery period overall, improving the quality of life of patients, and altogether eliminating the additional morbidity of operative procedures.
Collapse
Affiliation(s)
- Sparsh Gupta
- General Surgery, Yashwantrao Chavan Memorial Hospital, Pune, IND
| | - Anand Zingade
- General Surgery, Pimpri Chinchwad Municipal Corporation's Postgraduate Institute, Yashwantrao Chavan Memorial Hospital, Pune, IND
| | - Mayur Baviskar
- General Surgery, Pimpri Chinchwad Municipal Corporation's Postgraduate Institute, Yashwantrao Chavan Memorial Hospital, Pune, IND
| | - Shrikant V Pingale
- Plastic and Reconstructive Surgery, Pimpri Chinchwad Municipal Corporation's Postgraduate Institute, Yashwantrao Chavan Memorial Hospital, Pune, IND
| |
Collapse
|
5
|
Gilaberte Y, Piquero-Casals J, Schalka S, Leone G, Brown A, Trullàs C, Jourdan E, Lim HW, Krutmann J, Passeron T. Exploring the impact of solar radiation on skin microbiome to develop improved photoprotection strategies. Photochem Photobiol 2024. [PMID: 38767119 DOI: 10.1111/php.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/29/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
The skin microbiome undergoes constant exposure to solar radiation (SR), with its effects on health well-documented. However, understanding SR's influence on host-associated skin commensals remains nascent. This review surveys existing knowledge on SR's impact on the skin microbiome and proposes innovative sun protection methods that safeguard both skin integrity and microbiome balance. A team of skin photodamage specialists conducted a comprehensive review of 122 articles sourced from PubMed and Research Gateway. Key terms included skin microbiome, photoprotection, photodamage, skin cancer, ultraviolet radiation, solar radiation, skin commensals, skin protection, and pre/probiotics. Experts offered insights into novel sun protection products designed not only to shield the skin but also to mitigate SR's effects on the skin microbiome. Existing literature on SR's influence on the skin microbiome is limited. SR exposure can alter microbiome composition, potentially leading to dysbiosis, compromised skin barrier function, and immune system activation. Current sun protection methods generally overlook microbiome considerations. Tailored sun protection products that prioritize both skin and microbiome health may offer enhanced defense against SR-induced skin conditions. By safeguarding both skin and microbiota, these specialized products could mitigate dysbiosis risks associated with SR exposure, bolstering skin defense mechanisms and reducing the likelihood of SR-mediated skin issues.
Collapse
Affiliation(s)
- Yolanda Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, IIS Aragón, Zaragoza, Spain
| | - Jaime Piquero-Casals
- Department of Dermatology, Dermik Multidisciplinary Dermatology Clinic, Barcelona, Spain
| | - Sergio Schalka
- Medcin Skin Research Center and Biochemistry Department, Chemistry Institute of São Paulo University, São Paulo, Brazil
| | - Giovanni Leone
- Photodermatology and Vitiligo Treatment Unit, Israelite Hospital, Rome, Italy
| | | | | | - Eric Jourdan
- Innovation and Development, ISDIN, Barcelona, Spain
| | - Henry W Lim
- The Henry W. Lim Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA
| | - Jean Krutmann
- IUF - Leibniz-Institut für umweltmedizinische Forschung, Düsseldorf, Germany
| | - Thierry Passeron
- Department of Dermatology, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
- Centre Méditerranéen de Médecine Moléculaire, INSERM U1065, Université Côte d'Azur, Nice, France
| |
Collapse
|
6
|
Mihai MM, Bălăceanu-Gurău B, Ion A, Holban AM, Gurău CD, Popescu MN, Beiu C, Popa LG, Popa MI, Dragomirescu CC, Preda M, Muntean AA, Macovei IS, Lazăr V. Host-Microbiome Crosstalk in Chronic Wound Healing. Int J Mol Sci 2024; 25:4629. [PMID: 38731848 PMCID: PMC11083077 DOI: 10.3390/ijms25094629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The pathogenesis of chronic wounds (CW) involves a multifaceted interplay of biochemical, immunological, hematological, and microbiological interactions. Biofilm development is a significant virulence trait which enhances microbial survival and pathogenicity and has various implications on the development and management of CW. Biofilms induce a prolonged suboptimal inflammation in the wound microenvironment, associated with delayed healing. The composition of wound fluid (WF) adds more complexity to the subject, with proven pro-inflammatory properties and an intricate crosstalk among cytokines, chemokines, microRNAs, proteases, growth factors, and ECM components. One approach to achieve information on the mechanisms of disease progression and therapeutic response is the use of multiple high-throughput 'OMIC' modalities (genomic, proteomic, lipidomic, metabolomic assays), facilitating the discovery of potential biomarkers for wound healing, which may represent a breakthrough in this field and a major help in addressing delayed wound healing. In this review article, we aim to summarize the current progress achieved in host-microbiome crosstalk in the spectrum of CW healing and highlight future innovative strategies to boost the host immune response against infections, focusing on the interaction between pathogens and their hosts (for instance, by harnessing microorganisms like probiotics), which may serve as the prospective advancement of vaccines and treatments against infections.
Collapse
Affiliation(s)
- Mara Mădălina Mihai
- Department of Oncologic Dermatology, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.M.M.); (C.B.); (L.G.P.)
- Clinic of Dermatology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
- Research Institute of the University of Bucharest, Department of Botany-Microbiology, Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania; (A.M.H.); (V.L.)
| | | | - Ana Ion
- Clinic of Dermatology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Alina Maria Holban
- Research Institute of the University of Bucharest, Department of Botany-Microbiology, Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania; (A.M.H.); (V.L.)
| | - Cristian-Dorin Gurău
- Orthopedics and Traumatology Clinic, Clinical Emergency Hospital, 014451 Bucharest, Romania;
| | - Marius Nicolae Popescu
- Department of Physical and Rehabilitation Medicine, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Clinic of Physical and Rehabilitation Medicine, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Cristina Beiu
- Department of Oncologic Dermatology, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.M.M.); (C.B.); (L.G.P.)
- Clinic of Dermatology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.M.M.); (C.B.); (L.G.P.)
- Clinic of Dermatology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Mircea Ioan Popa
- Department of Microbiology, “Cantacuzino” Institute, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.P.); (C.C.D.); (A.-A.M.)
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
| | - Cerasella Cristiana Dragomirescu
- Department of Microbiology, “Cantacuzino” Institute, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.P.); (C.C.D.); (A.-A.M.)
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
| | - Mădălina Preda
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alexandru-Andrei Muntean
- Department of Microbiology, “Cantacuzino” Institute, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.P.); (C.C.D.); (A.-A.M.)
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
| | - Ioana Sabina Macovei
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
| | - Veronica Lazăr
- Research Institute of the University of Bucharest, Department of Botany-Microbiology, Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania; (A.M.H.); (V.L.)
| |
Collapse
|
7
|
Xu W, Sinaki DG, Tang Y, Chen Y, Zhang Y, Zhang Z. Acne-induced pathological scars: pathophysiology and current treatments. BURNS & TRAUMA 2024; 12:tkad060. [PMID: 38585341 PMCID: PMC10998535 DOI: 10.1093/burnst/tkad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 04/09/2024]
Abstract
Acne is a common chronic inflammatory dermatosis that can lead to pathological scars (PSs, divided into hypertrophic scars and keloids). These kinds of abnormal scars seriously reduce the quality of life of patients. However, their mechanism is still unclear, resulting in difficult clinical prevention, unstable treatment effects and a high risk of recurrence. Available evidence supports inflammatory changes caused by infection as one of the keys to abnormal proliferation of skin fibroblasts. In acne-induced PSs, increasing knowledge of the immunopathology indicates that inflammatory cells directly secrete growth factors to activate fibroblasts and release pro-inflammatory factors to promote the formation of PSs. T helper cells contribute to PSs via the secretion of interleukin (IL)-4 and IL-13, the pro-inflammatory factors; while regulatory T cells have anti-inflammatory effects, secrete IL-10 and prostaglandin E2, and suppress fibrosis production. Several treatments are available, but there is a lack of combination regimens to target different aspects of acne-induced PSs. Overall, this review indicates that the joint involvement of inflammatory response and fibrosis plays a crucial role in acne-induced PSs, and also analyzes the interaction of current treatments for acne and PS.
Collapse
Affiliation(s)
- Wanyu Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Dorsa Gholamali Sinaki
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yuchen Tang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yunsheng Chen
- Department of Burns and Plastic Surgery, Shanghai Institute of Burns Research, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
8
|
Yang Y, Huang J, Zeng A, Long X, Yu N, Wang X. The role of the skin microbiome in wound healing. BURNS & TRAUMA 2024; 12:tkad059. [PMID: 38444635 PMCID: PMC10914219 DOI: 10.1093/burnst/tkad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/05/2023] [Accepted: 11/21/2023] [Indexed: 03/07/2024]
Abstract
The efficient management of skin wounds for rapid and scarless healing represents a major clinical unmet need. Nonhealing skin wounds and undesired scar formation impair quality of life and result in high healthcare expenditure worldwide. The skin-colonizing microbiota contributes to maintaining an intact skin barrier in homeostasis, but it also participates in the pathogenesis of many skin disorders, including aberrant wound healing, in many respects. This review focuses on the composition of the skin microbiome in cutaneous wounds of different types (i.e. acute and chronic) and with different outcomes (i.e. nonhealing and hypertrophic scarring), mainly based on next-generation sequencing analyses; furthermore, we discuss the mechanistic insights into host-microbe and microbe-microbe interactions during wound healing. Finally, we highlight potential therapeutic strategies that target the skin microbiome to improve healing outcomes.
Collapse
Affiliation(s)
- Yuyan Yang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Jiuzuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Ang Zeng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Nanze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Xiaojun Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| |
Collapse
|
9
|
Rodrigues JP, da Costa Silva JR, Ferreira BA, Veloso LI, Quirino LS, Rosa RR, Barbosa MC, Rodrigues CM, Gaspari PBF, Beletti ME, Goulart LR, Corrêa NCR. Development of collagenous scaffolds for wound healing: characterization and in vivo analysis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:12. [PMID: 38315254 PMCID: PMC10844142 DOI: 10.1007/s10856-023-06774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
The development of wound dressings from biomaterials has been the subject of research due to their unique structural and functional characteristics. Proteins from animal origin, such as collagen and chitosan, act as promising materials for applications in injuries and chronic wounds, functioning as a repairing agent. This study aims to evaluate in vitro effects of scaffolds with different formulations containing bioactive compounds such as collagen, chitosan, N-acetylcysteine (NAC) and ε-poly-lysine (ε-PL). We manufactured a scaffold made of a collagen hydrogel bioconjugated with chitosan by crosslinking and addition of NAC and ε-PL. Cell viability was verified by resazurin and live/dead assays and the ultrastructure of biomaterials was evaluated by SEM. Antimicrobial sensitivity was assessed by antibiogram. The healing potential of the biomaterial was evaluated in vivo, in a model of healing of excisional wounds in mice. On the 7th day after the injury, the wounds and surrounding skin were processed for evaluation of biochemical and histological parameters associated with the inflammatory process. The results showed great cell viability and increase in porosity after crosslinking while antimicrobial action was observed in scaffolds containing NAC and ε-PL. Chitosan scaffolds bioconjugated with NAC/ε-PL showed improvement in tissue healing, with reduced lesion size and reduced inflammation. It is concluded that scaffolds crosslinked with chitosan-NAC-ε-PL have the desirable characteristics for tissue repair at low cost and could be considered promising biomaterials in the practice of regenerative medicine.
Collapse
Affiliation(s)
- Jéssica Peixoto Rodrigues
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil.
| | - Jéssica Regina da Costa Silva
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Bruno Antônio Ferreira
- Department of Physiological Sciences, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Lucas Ian Veloso
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Ludmila Sousa Quirino
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Roberta Rezende Rosa
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Matheus Carvalho Barbosa
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Cláudia Mendonça Rodrigues
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Paula Batista Fernandes Gaspari
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Marcelo Emílio Beletti
- Department of Cell Biology, Histology and Embryology, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Natássia Caroline Resende Corrêa
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas s/n, Campus Umuarama BL-2E, SL-248, Uberlândia, Minas Gerais, 38400-902, Brazil
| |
Collapse
|
10
|
Mihai MM, Popa MI, Holban AM, Gheorghe-Barbu I, Popa LG, Chifiriuc MC, Giurcăneanu C, Bleotu C, Cucu CI, Lazăr V. Clinical and microbiological features of host-bacterial interplay in chronic venous ulcers versus other types of chronic skin ulcers. Front Microbiol 2024; 14:1326904. [PMID: 38375067 PMCID: PMC10875999 DOI: 10.3389/fmicb.2023.1326904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024] Open
Abstract
Introduction Chronic venous ulcers of the lower limbs develop in the context of advanced venous disease and have a significant impact on the patient's quality of life, being associated with depression and worrisome suicide rates, as well as with an economic burden caused by increased medical care costs and high epidemiological risks of healthcare associated infections and emergence of strains resistant to multiple classes of antibiotics and/ or antiseptics. Although numerous studies have investigated the composition of the chronic wounds microbiome, either by culture-dependent or independent methods, there are no data on the association between virulence and resistance profiles of strains isolated from venous ulcers and the clinical picture of this pathology. The elucidation of pathogenic mechanisms, at both phenotypic and molecular level, is crucial in the fight against these important human microbial agents, in order to develop novel biomarkers and discover new therapeutic targets. Methods In this study we aimed to characterize the phenotypic virulence profiles (including the ability to develop biofilms) of microorganisms isolated from chronic skin wounds and to correlate them with the clinical symptomatology. Considering the high incidence of Staphylococcus aureus infections in chronic ulcers, but also the ability of this species to develop multi-drug resistance, we performed an more in-depth study of the phenotypic and genotypic virulence profiles of methicillin-resistant Staphylococcus. Results The study revealed important differences regarding the clinical evolution and virulence profiles of microorganisms isolated from lower limb wounds, as well as between patients diagnosed with chronic venous ulcers and those with lesions of different etiology.
Collapse
Affiliation(s)
- Mara Mădălina Mihai
- Department of Oncologic Dermatology–“Elias” University Emergency Hospital, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Botany-Microbiology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Mircea Ioan Popa
- Department of Microbiology—“Cantacuzino” Institute, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Alina Maria Holban
- Department of Botany-Microbiology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Department of Botany-Microbiology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology–“Elias” University Emergency Hospital, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Botany-Microbiology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Călin Giurcăneanu
- Department of Oncologic Dermatology–“Elias” University Emergency Hospital, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Coralia Bleotu
- Department of Botany-Microbiology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Cellular and Molecular Department, “Ştefan S. Nicolau” Institute of Virology, Bucharest, Romania
| | - Corina Ioana Cucu
- Department of Oncologic Dermatology–“Elias” University Emergency Hospital, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Veronica Lazăr
- Department of Botany-Microbiology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| |
Collapse
|
11
|
Zielińska M, Pawłowska A, Orzeł A, Sulej L, Muzyka-Placzyńska K, Baran A, Filipecka-Tyczka D, Pawłowska P, Nowińska A, Bogusławska J, Scholz A. Wound Microbiota and Its Impact on Wound Healing. Int J Mol Sci 2023; 24:17318. [PMID: 38139146 PMCID: PMC10743523 DOI: 10.3390/ijms242417318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Wound healing is a complex process influenced by age, systemic conditions, and local factors. The wound microbiota's crucial role in this process is gaining recognition. This concise review outlines wound microbiota impacts on healing, emphasizing distinct phases like hemostasis, inflammation, and cell proliferation. Inflammatory responses, orchestrated by growth factors and cytokines, recruit neutrophils and monocytes to eliminate pathogens and debris. Notably, microbiota alterations relate to changes in wound healing dynamics. Commensal bacteria influence immune responses, keratinocyte growth, and blood vessel development. For instance, Staphylococcus epidermidis aids keratinocyte progression, while Staphylococcus aureus colonization impedes healing. Other bacteria like Group A Streptococcus spp. And Pseudomonas affect wound healing as well. Clinical applications of microbiota-based wound care are promising, with probiotics and specific bacteria like Acinetobacter baumannii aiding tissue repair through molecule secretion. Understanding microbiota influence on wound healing offers therapeutic avenues. Tailored approaches, including probiotics, prebiotics, and antibiotics, can manipulate the microbiota to enhance immune modulation, tissue repair, and inflammation control. Despite progress, critical questions linger. Determining the ideal microbiota composition for optimal wound healing, elucidating precise influence mechanisms, devising effective manipulation strategies, and comprehending the intricate interplay between the microbiota, host, and other factors require further exploration.
Collapse
Affiliation(s)
- Małgorzata Zielińska
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Agnieszka Pawłowska
- Students Research Group of Obstetrics and Gynecology Department at St. Sophia Hospital, 01-004 Warsaw, Poland; (A.P.)
| | - Anna Orzeł
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Luiza Sulej
- Students Research Group of Obstetrics and Gynecology Department at St. Sophia Hospital, 01-004 Warsaw, Poland; (A.P.)
| | - Katarzyna Muzyka-Placzyńska
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Arkadiusz Baran
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Dagmara Filipecka-Tyczka
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Paulina Pawłowska
- Students Scientific Association, Department of Hygiene and Epidemiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Nowińska
- Students Scientific Association, Department of Hygiene and Epidemiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland;
| | - Anna Scholz
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| |
Collapse
|
12
|
Bosveld CJ, Guth C, Limjunyawong N, Pundir P. Emerging Role of the Mast Cell-Microbiota Crosstalk in Cutaneous Homeostasis and Immunity. Cells 2023; 12:2624. [PMID: 37998359 PMCID: PMC10670560 DOI: 10.3390/cells12222624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The skin presents a multifaceted microbiome, a balanced coexistence of bacteria, fungi, and viruses. These resident microorganisms are fundamental in upholding skin health by both countering detrimental pathogens and working in tandem with the skin's immunity. Disruptions in this balance, known as dysbiosis, can lead to disorders like psoriasis and atopic dermatitis. Central to the skin's defense system are mast cells. These are strategically positioned within the skin layers, primed for rapid response to any potential foreign threats. Recent investigations have started to unravel the complex interplay between these mast cells and the diverse entities within the skin's microbiome. This relationship, especially during times of both balance and imbalance, is proving to be more integral to skin health than previously recognized. In this review, we illuminate the latest findings on the ties between mast cells and commensal skin microorganisms, shedding light on their combined effects on skin health and maladies.
Collapse
Affiliation(s)
- Cameron Jackson Bosveld
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.J.B.); (C.G.)
| | - Colin Guth
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.J.B.); (C.G.)
| | - Nathachit Limjunyawong
- Center of Research Excellence in Allergy and Immunology, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Priyanka Pundir
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (C.J.B.); (C.G.)
| |
Collapse
|
13
|
Zhang XN, Wu CY, Wu ZW, Xu LX, Jiang FT, Chen HW. Association Between the Diabetic Foot Ulcer and the Bacterial Colony of the Skin Based on 16S rRNA Gene Sequencing: An Observational Study. Clin Cosmet Investig Dermatol 2023; 16:2801-2812. [PMID: 37841062 PMCID: PMC10576508 DOI: 10.2147/ccid.s425922] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023]
Abstract
Objective Microorganisms have been the main cause of refractory and high recurrence of diabetic foot ulcer (DFU). This study attempted to observe the skin bacterial colony in healthy skin, diabetic skin and DFU skin. Methods Forty-eight diabetes patients were recruited at Panyu Central Hospital from March 2021 to March 2022 and divided into DFU group (T group, n = 22), diabetes without foot ulcer group (TW group, n = 26). Besides, a healthy control group (H group, n = 10) was recruited at the same time. The swab samples of foot skin in the same position in the three groups were collected. The microorganisms obtained from the skin were analyzed by 16S rRNA gene sequencing. The composition of the skin microorganisms was determined, and the species diversity of the skin microbiota was analyzed by α and β diversity. The species differences in the skin microbiota and the relative abundance of different operational taxonomic units (OUTs) with the most significant abundance were analyzed by linear discriminant analysis effect size (LEfSe). Results Significant changes were found in the composition of the skin microbiota in the T and TW groups relative to the H group. However, the species diversity of the skin microbiota was significantly reduced in the T and TW groups, with the lowest one in the T group. The composition of microbial diversity in the T group was significantly different from that of the TW and H groups. Among the skin bacterial colonies, the abundance of Staphylococcus, Enhydrobacter, and Corynebacterium_1 was obviously reduced, while that of Escherichia coli and Pseudomonas was significantly increased. Conclusion Changes in the abundance of Staphylococcus, Enhydrobacter, Corynebacterium_1, Escherichia coli and Pseudomonas in the skin bacterial colonies can be the main causative factors for DFU. This study indicates that altering the microbiota composition of wounds may help the treatment of DFU.
Collapse
Affiliation(s)
- Xiu-Ni Zhang
- Department of Trauma Orthopedics, Panyu Central Hospital, Guangzhou, Guangdong, 511400, People's Republic of China
| | - Cui-Yi Wu
- Department of Outpatient, Panyu Central Hospital, Guangzhou, Guangdong, 511400, People's Republic of China
| | - Zhi-Wei Wu
- Department of Trauma Orthopedics, Panyu Central Hospital, Guangzhou, Guangdong, 511400, People's Republic of China
| | - Li-Xian Xu
- Department of Endocrinology, Panyu Central Hospital, Guangzhou, Guangdong, 511400, People's Republic of China
| | - Feng-Ting Jiang
- Department of Trauma Orthopedics, Panyu Central Hospital, Guangzhou, Guangdong, 511400, People's Republic of China
| | - Han-Wei Chen
- Administrative Office, Panyu District Health Management Center, Guangzhou, Guangdong, 511400, People's Republic of China
| |
Collapse
|
14
|
Canesso MCC, Cassini-Vieira P, Moreira CF, Luong S, Rachid MA, Martins FS, Teixeira MM, Vieira AT, Mackay CR, Barcelos LS. Dietary Fiber Improves Skin Wound Healing and Scar Formation through the Metabolite-Sensing Receptor GPR43. J Invest Dermatol 2023; 143:1850-1854.e6. [PMID: 36965576 DOI: 10.1016/j.jid.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 03/27/2023]
Affiliation(s)
- Maria Cecilia Campos Canesso
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Puebla Cassini-Vieira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Camila Francisco Moreira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Suzanne Luong
- Department of Microbiology, Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Milene Alvarenga Rachid
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flaviano Santos Martins
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Angelica Thomas Vieira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Charles Reay Mackay
- Department of Microbiology, Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Luciola Silva Barcelos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
15
|
Ersanli C, Tzora A, Voidarou C(C, Skoufos S, Zeugolis DI, Skoufos I. Biodiversity of Skin Microbiota as an Important Biomarker for Wound Healing. BIOLOGY 2023; 12:1187. [PMID: 37759587 PMCID: PMC10525143 DOI: 10.3390/biology12091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Cutaneous wound healing is a natural and complex repair process that is implicated within four stages. However, microorganisms (e.g., bacteria) can easily penetrate through the skin tissue from the wound bed, which may lead to disbalance in the skin microbiota. Although commensal and pathogenic bacteria are in equilibrium in normal skin, their imbalance in the wound area can cause the delay or impairment of cutaneous wounds. Moreover, skin microbiota is in constant crosstalk with the immune system and epithelial cells, which has significance for the healing of a wound. Therefore, understanding the major bacteria species in the cutaneous wound as well as their communication with the immune system has gained prominence in a way that allows for the emergence of a new perspective for wound healing. In this review, the major bacteria isolated from skin wounds, the role of the crosstalk between the cutaneous microbiome and immune system to heal wounds, the identification techniques of these bacteria populations, and the applied therapies to manipulate the skin microbiota are investigated.
Collapse
Affiliation(s)
- Caglar Ersanli
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (I.S.)
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research, School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Chrysoula (Chrysa) Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Stylianos Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research, School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (I.S.)
| |
Collapse
|
16
|
Wang G, Lin Z, Li Y, Chen L, Reddy SK, Hu Z, Garza LA. Colonizing microbiota is associated with clinical outcomes in diabetic wound healing. Adv Drug Deliv Rev 2023; 194:114727. [PMID: 36758858 PMCID: PMC10163681 DOI: 10.1016/j.addr.2023.114727] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
With the development of society and the improvement of life quality, more than 500 million people are affected by diabetes. More than 10 % of people with diabetes will suffer from diabetic wounds, and 80 % of diabetic wounds will reoccur, so the development of new diabetic wound treatments is of great importance. The development of skin microbe research technology has gradually drawn people's attention to the complex relationship between microbes and diabetic wounds. Many studies have shown that skin microbes are associated with the outcome of diabetic wounds and can even be used as one of the indicators of wound prognosis. Skin microbes have also been found to have the potential to treat diabetic wounds. The wound colonization of different bacteria can exert opposing therapeutic effects. It is necessary to fully understand the skin microbes in diabetic wounds, which can provide valuable guidance for clinical diabetic wound treatment.
Collapse
Affiliation(s)
- Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| | - Zhen Lin
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Lu Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Sashank K Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - L A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| |
Collapse
|
17
|
The Efficiency and Safety of Platelet-Rich Plasma Dressing in the Treatment of Chronic Wounds: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Pers Med 2023; 13:jpm13030430. [PMID: 36983611 PMCID: PMC10053387 DOI: 10.3390/jpm13030430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Recently, many clinical trials have applied platelet-rich plasma (PRP) dressings to treat wounds that have stopped healing, which are also called chronic wounds. However, the clinical efficiency of PRP dressings in treating chronic wounds is still controversial. Therefore, we conducted this study to compare PRP dressings with normal saline dressings in treating chronic wounds. Relevant randomized controlled trials focusing on utilizing PRP dressings in treating chronic wounds were extracted from bibliographic databases. Finally, 330 patients with chronic wounds, reported in eight randomized controlled trials, were included in this study. In total, 169 out of 330 (51.21%) were treated with PRP dressings, and 161 out of 330 (48.79%) were treated with normal saline dressings. The pooled results showed that the complete healing rate of the PRP group was significantly higher than that of saline group at 8 weeks and 12 weeks, respectively. In addition, there were no significant differences in wound infection and adverse events. Compared with normal saline dressing, the PRP dressing could effectively enhance the prognosis of chronic wounds. Furthermore, the PRP did not increase wound infection rate or occurrence of adverse events as an available treatment for chronic wounds.
Collapse
|
18
|
Razgaleh SA, Wrench A, Jones AAD. Surface Energy and Viscoelastic Characteristics of Staphylococcus epidermidis and Cutibacterium acnes Biofilm on Commercial Skin Constructs versus agar. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.527933. [PMID: 36798165 PMCID: PMC9934662 DOI: 10.1101/2023.02.10.527933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Biofilms are recalcitrant to both study and infectious disease treatment as it requires not only the study or management of single organism behavior, but also many dynamical interactions including but not limited to bacteria-bacteria, bacteria-host, bacteria-nutrients, and bacteria-material across multiple time scales. This study performs comparative and quantitative research of two materials used in biofilm research, TSA agar and skin epidermal, to reveal how adhesion effects viscoelastic properties of biofilms at long time scales. We show that the host surface stressors, such as wettability and surface energy, impact the biofilm's mechanical integrity and viscoelastic properties. While it is known that the bacteria-material interface influences initial biofilm formation and external stress influences mature biofilm function, this study examines the influence of the bacteria-material interface on mature biofilms. These mechanical viscoelastic properties have the potential to determine metabolite and pathogenesis pathways which means that the platform researchers use to study impacts the outcome.
Collapse
Affiliation(s)
- S A Razgaleh
- Department of Civil & Environmental Engineering, Pratt School of Engineering, Duke University
| | - Andrew Wrench
- Duke University Program in Environmental Health
- Department of Biomedical Engineering
| | - A-Andrew D Jones
- Department of Civil & Environmental Engineering, Pratt School of Engineering, Duke University
- Duke University Program in Environmental Health
- Thomas Lord Department of Mechanical Engineering & Materials Science, Duke University
| |
Collapse
|
19
|
Guillen MRS, Borges EL, Amorim GL, Vieira PC, Guedes ACM, Barcelos LS. The use of occlusive dressings: influence on excisional wound healing in animal model. Acta Cir Bras 2023; 37:e371206. [PMID: 36651431 PMCID: PMC9839187 DOI: 10.1590/acb371206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/14/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To analyze the influence of occlusive dressing on the healing of excisional skin wounds in mice. METHODS Pre-clinical, comparative, and translational study. Mice were divided into three experimental groups: wounds occluded with hydrocolloid (HD) dressings, transparent polyurethane film (TF) dressings, and without occlusion (WO), monitored at three, six and 14 days, with eight animals each. Closure rate, infiltration of neutrophils and macrophages, measurement of tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF) and, histologically, angiogenesis were evaluated. RESULTS Wound closure was accelerated in the occlusive groups. There was a decrease in TNF-α levels in the HD group when compared to the WO and TF groups. Neutrophils accumulation decreased in the HD group. Increased dosages of macrophages were evidenced in the HD group, compared to the WO and TF groups. Levels of VEGF were increased in the TF and HD groups. CONCLUSIONS It is suggested that the occlusion of wounds modulates the inflammatory response.
Collapse
Affiliation(s)
- Mariana Raquel Soares Guillen
- MSc. Universidade Federal de Minas Gerais – School of Nursing – Department of Basic Nursing – Belo Horizonte (MG), Brazil.,Corresponding author:
- (55 31) 32489853
| | - Eline Lima Borges
- PhD. Universidade Federal de Minas Gerais – School of Nursing – Department of Basic Nursing – Belo Horizonte (MG), Brazil
| | - Gilmara Lopes Amorim
- MSc. Universidade Federal de Minas Gerais – School of Nursing – Department of Basic Nursing – Belo Horizonte (MG), Brazil
| | - Puebla Cassini Vieira
- PhD. Universidade Federal Rural de Pernambuco – Department of Animal Morphology and Physiology – Pernambuco (PE), Brazil
| | - Antônio Carlos Martins Guedes
- PhD. Universidade Federal de Minas Gerais – School of Medicine – Medical Clinic Department – Belo Horizonte (MG), Brazil
| | - Luciola Silva Barcelos
- PhD. Universidade Federal de Minas Gerais – Institute of Biological Sciences – Department of Physiology and Biophysics – Belo Horizonte (MG), Brazil
| |
Collapse
|
20
|
Kim S, Park HJ, Lee SI. The Microbiome in Systemic Sclerosis: Pathophysiology and Therapeutic Potential. Int J Mol Sci 2022; 23:ijms232416154. [PMID: 36555792 PMCID: PMC9853331 DOI: 10.3390/ijms232416154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune disease with unknown etiology characterized by multi-organ fibrosis. Despite substantial investigation on SSc-related cellular and molecular mechanisms, effective therapies are still lacking. The skin, lungs, and gut are the most affected organs in SSc, which act as physical barriers and constantly communicate with colonized microbiota. Recent reports have documented a unique microbiome signature, which may be the pathogenic trigger or driver of SSc. Since gut microbiota influences the efficacy and toxicity of oral drugs, evaluating drug-microbiota interactions has become an area of interest in disease treatment. The existing evidence highlights the potential of the microbial challenge as a novel therapeutic option in SSc. In this review, we have summarized the current knowledge about molecular mechanisms of SSc and highlighted the underlying role of the microbiome in SSc pathogenesis. We have also discussed the latest therapeutic interventions using microbiomes in SSc, including drug-microbiota interactions and animal disease models. This review aims to elucidate the pathophysiological connection and therapeutic potential of the microbiome in SSc. Insights into the microbiome will significantly improve our understanding of etiopathogenesis and developing therapeutics for SSc.
Collapse
|
21
|
Lecron JC, Charreau S, Jégou JF, Salhi N, Petit-Paris I, Guignouard E, Burucoa C, Favot-Laforge L, Bodet C, Barra A, Huguier V, Mcheik J, Dumoutier L, Garnier J, Bernard FX, Ryffel B, Morel F. IL-17 and IL-22 are pivotal cytokines to delay wound healing of S. aureus and P. aeruginosa infected skin. Front Immunol 2022; 13:984016. [PMID: 36275755 PMCID: PMC9585169 DOI: 10.3389/fimmu.2022.984016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionAlthough the presence of pathogens in skin wounds is known to delay the wound healing process, the mechanisms underlying this delay remain poorly understood. In the present study, we have investigated the regulatory role of proinflammatory cytokines on the healing kinetics of infected wounds.MethodsWe have developed a mouse model of cutaneous wound healing, with or without wound inoculation with Staphylococcus aureus and Pseudomonas aeruginosa, two major pathogens involved in cutaneous wound bacterial infections.ResultsAseptic excision in C57BL/6 mouse skin induced early expression of IL-1β, TNFα and Oncostatin M (OSM), without detectable expression of IL-22 and IL-17A/F. S. aureus and P. aeruginosa wound inoculation not only increased the expression of IL-1β and OSM, but also induced a strong cutaneous expression of IL-22, IL-17A and IL-17F, along with an increased number of infiltrating IL-17A and/or IL-22-producing γδ T cells. The same cytokine expression pattern was observed in infected human skin wounds. When compared to uninfected wounds, mouse skin infection delayed the wound healing process. Injection of IL-1α, TNFα, OSM, IL-22 and IL-17 together in the wound edges induced delayed wound healing similar to that induced by the bacterial infection. Wound healing experiments in infected Rag2KO mice (deficient in lymphocytes) showed a wound healing kinetic similar to uninfected Rag2KO mice or WT mice. Rag2KO infected-skin lesions expressed lower levels of IL-17 and IL-22 than WT, suggesting that the expression of these cytokines is mainly dependent on γδ T cells in this model. Wound healing was not delayed in infected IL-17R/IL-22KO, comparable to uninfected control mice. Injection of recombinant IL-22 and IL-17 in infected wound edges of Rag2KO mice re-establish the delayed kinetic of wound healing, as in infected WT mice.ConclusionThese results demonstrate the synergistic and specific effects of IL-22 and IL-17 induced by bacterial infection delay the wound healing process, regardless of the presence of bacteria per se. Therefore, these cytokines play an unexpected role in delayed skin wound healing.
Collapse
Affiliation(s)
- Jean-Claude Lecron
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Laboratoire Immunologie et Inflammation, Centre Hospitalier et Universitaire (CHU) de Poitiers, Poitiers, France
- *Correspondence: Jean-Claude Lecron,
| | - Sandrine Charreau
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Qima-Bioalternatives (Qima Life Sciences), Gençay, France
| | - Jean-François Jégou
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Nadjet Salhi
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Isabelle Petit-Paris
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Emmanuel Guignouard
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Christophe Burucoa
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Laboratoire de Bactériologie, Centre Hospitalier et Universitaire (CHU) de Poitiers, Poitiers, France
| | - Laure Favot-Laforge
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Anne Barra
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Laboratoire Immunologie et Inflammation, Centre Hospitalier et Universitaire (CHU) de Poitiers, Poitiers, France
| | - Vincent Huguier
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Service de Chirurgie Plastique, Centre Hospitalier et Universitaire (CHU) de Poitiers, Poitiers, France
| | - Jiad Mcheik
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Service de Chirurgie Pédiatrique, Centre Hospitalier et Universitaire CHU) de Poitiers, Poitiers, France
| | - Laure Dumoutier
- De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Julien Garnier
- Qima-Bioalternatives (Qima Life Sciences), Gençay, France
| | - François-Xavier Bernard
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Qima-Bioalternatives (Qima Life Sciences), Gençay, France
| | - Bernhard Ryffel
- Laboratoire d'Immunologie et Neurogénétique Expérimentales et Moléculaire (INEM) - Unité Mixte de Recherche (UMR) 7355, Centre National de la Recherche Scientifique (CNRS) et Université d’Orléans, Orléans, France
| | - Franck Morel
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| |
Collapse
|
22
|
Hawash MBF, El-Deeb MA, Gaber R, Morsy KS. The buried gems of disease tolerance in animals: Evolutionary and interspecies comparative approaches: Interspecies comparative approaches are valuable tools for exploring potential new mechanisms of disease tolerance in animals: Interspecies comparative approaches are valuable tools for exploring potential new mechanisms of disease tolerance in animals. Bioessays 2022; 44:e2200080. [PMID: 36050881 DOI: 10.1002/bies.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/07/2022]
Abstract
Host defense mechanisms are categorized into different strategies, namely, avoidance, resistance and tolerance. Resistance encompasses mechanisms that directly kill the pathogen while tolerance is mainly concerned with alleviating the harsh consequences of the infection regardless of the pathogen burden. Resistance is well-known strategy in immunology while tolerance is relatively new. Studies addressed tolerance mainly using mouse models revealing a wide range of interesting tolerance mechanisms. Herein, we aim to emphasize on the interspecies comparative approaches to explore potential new mechanisms of disease tolerance. We will discuss mechanisms of tolerance with focus on those that were revealed using comparative study designs of mammals followed by summarizing the reasons for adopting comparative approaches on disease tolerance studies. Disease tolerance is a relatively new concept in immunology, we believe combining comparative studies with model organism study designs will enhance our understanding to tolerance and unveil new mechanisms of tolerance.
Collapse
Affiliation(s)
- Mohamed B F Hawash
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.,Biochemistry and Molecular Biomedicine Department, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Mohamed A El-Deeb
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Rahma Gaber
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Kareem S Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
23
|
Borges EL, Amorim GL, de Miranda MB, Martins FDS, Guedes ACM, Sampaio KH, Spira JAO, Barcelos LDS. Biofilm model on mice skin wounds. Acta Cir Bras 2022; 37:e370306. [PMID: 35674583 PMCID: PMC9161625 DOI: 10.1590/acb370306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 02/19/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To evaluate a biofilm model of Pseudomonas aeruginosa in excisional cutaneous wound in mice. METHODS Preclinical, translational study conducted with 64 C57BL/6 mice randomly assigned to control and intervention groups. Evaluation was on days D0, D3, D5, D7 and D10 of wound making. The profile of biofilm formation and induction was evaluated using wound closure kinetics, quantitative culture, and evaluation of wounds using transmission electron microscopy (TEM). Clinical evaluation was performed by liver tissue culture, weight variation, and quantification of leukocytes in peripheral blood. Analyses were performed with GraphPad Prism software. RESULTS Bacterial load for induction of infection with P. aeruginosa and survival of animals was 104 UFC·mL-1. In D5 (p < 0.0001) and D7 (p < 0.01), animals in the intervention group showed a delay in the healing process and had their wounds covered by necrotic tissue until D10. Statistical differences were observed in wound cultures and weight at D5 and D7 (p < 0.01). Liver cultures and leukocyte quantification showed no statistical differences. No bacteria in planktonic or biofilm form were identified by TEM. CONCLUSIONS The findings raise questions about the understanding of the ease of formation and high occurrence of biofilm in chronic wounds.
Collapse
Affiliation(s)
- Eline Lima Borges
- PhD. Universidade Federal de Minas Gerais – School of Nursing – Department of Basic Nursing – Belo Horizonte (MG), Brazil
| | - Gilmara Lopes Amorim
- MSc. Universidade Federal de Minas Gerais – School of Nursing – Postgraduate Program – Belo Horizonte (MG), Brazil
| | - Marina Barcelos de Miranda
- MSc. Universidade Federal de Minas Gerais – Institute of Biological Sciences – Department of Physiology and Biophysics – Belo Horizonte (MG), Brazil
| | - Flaviano dos Santos Martins
- PhD. Universidade Federal de Minas Gerais – Institute of Biological Sciences – Department of Microbiology – Belo Horizonte (MG), Brazil
| | - Antônio Carlos Martins Guedes
- PhD. Universidade Federal de Minas Gerais – School of Medicine – Medical Clinic Department – Belo Horizonte (MG), Brazil
| | - Kinulpe Honorato Sampaio
- PhD. Universidade Federal dos Vales Jequitinhonha e Mucuri – Diamantina Department of Medicine – Diamantina (MG), Brazil
| | - Josimare Aparecida Otoni Spira
- MSc. Universidade Federal de Minas Gerais – School of Nursing – Department of Basic Nursing – Belo Horizonte (MG), Brazil
| | - Lucíola da Silva Barcelos
- PhD. Universidade Federal de Minas Gerais – Institute of Biological Sciences – Department of Physiology and Biophysics – Belo Horizonte (MG), Brazil
| |
Collapse
|
24
|
Li M, Yuan J, Hou Q, Zhao Y, Zhong L, Dai X, Chen H, Fu X. Characterization of the Skin Bacteriome and Histology Changes in Diabetic Pigs. INT J LOW EXTR WOUND 2022:15347346221100887. [PMID: 35548944 DOI: 10.1177/15347346221100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chronic wound is one of the most common complications that are associated with diabetes. The cutaneous microbiome is known to play essential roles in the regulation of barrier function and protecting against potential assault. Thus, it is necessary to gain a better understanding of the relationship between microbial community and skin structures in unwounded diabetic skin to explore possible preventive strategies. To achieve the same, a pig diabetic model was built in the present study. Further,16S rDNA sequencing was used to characterize the skin bacteriome. It was observed that the pigs showed skin bacteriome similar to humans in the non-diabetes group, while it varied in the case of diabetes. Further, the β-diversity analysis showed that the bacterial community was significantly different under the diabetes group. More species differences were identified between the two groups at genus level. The predictive function analysis also showed the involvement of significantly different pathways of microbial gene function in diabetes. In agreement with this, skin histology analysis also showed signs of reduced epidermal thickness and rete ridges in diabetic skin. Less proliferation of keratinocytes and impaired TJ barrier was also detected. This evidence suggested that pigs might serve as the best surrogate for cutaneous microbiome studies. Altogether, the present study reported that the skin bacteriome and histology changed significantly in unwounded diabetic skin, which provided a theoretical basis for the regulation of disordered skin bacteriome. The findings of the study would assist in the improvement of the skin environment and prevention of skin infection and chronic wounds.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
- Central Laboratory, Trauma Treatment Center, Central Laboratory, 104607Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Jifang Yuan
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
- Central Laboratory, Trauma Treatment Center, Central Laboratory, 104607Chinese PLA General Hospital, Hainan Hospital, Sanya, China
- Laboratory Animal Center, Medical Innovation Research Division of 104607Chinese PLA General Hospital, Beijing, P. R. China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Central Laboratory, 104607Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Xin Dai
- Laboratory Animal Center, Medical Innovation Research Division of 104607Chinese PLA General Hospital, Beijing, P. R. China
| | - Hua Chen
- Laboratory Animal Center, Medical Innovation Research Division of 104607Chinese PLA General Hospital, Beijing, P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| |
Collapse
|
25
|
Sousa GF, Afewerki S, Dittz D, Santos FEP, Gontijo DO, Scalzo SRA, Santos ALC, Guimaraes LC, Pereira EM, Barcelos LS, Do Monte SJH, Guimaraes PPG, Marciano FR, Lobo AO. Catalyst-Free Click Chemistry for Engineering Chondroitin Sulfate-Multiarmed PEG Hydrogels for Skin Tissue Engineering. J Funct Biomater 2022; 13:jfb13020045. [PMID: 35466227 PMCID: PMC9036249 DOI: 10.3390/jfb13020045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
The quest for an ideal biomaterial perfectly matching the microenvironment of the surrounding tissues and cells is an endless challenge within biomedical research, in addition to integrating this with a facile and sustainable technology for its preparation. Engineering hydrogels through click chemistry would promote the sustainable invention of tailor-made hydrogels. Herein, we disclose a versatile and facile catalyst-free click chemistry for the generation of an innovative hydrogel by combining chondroitin sulfate (CS) and polyethylene glycol (PEG). Various multi-armed PEG-Norbornene (A-PEG-N) with different molecular sizes were investigated to generate crosslinked copolymers with tunable rheological and mechanical properties. The crosslinked and mechanically stable porous hydrogels could be generated by simply mixing the two clickable Tetrazine-CS (TCS) and A-PEG-N components, generating a self-standing hydrogel within minutes. The leading candidate (TCS-8A-PEG-N (40 kD)), based on the mechanical and biocompatibility results, was further employed as a scaffold to improve wound closure and blood flow in vivo. The hydrogel demonstrated not only enhanced blood perfusion and an increased number of blood vessels, but also desirable fibrous matrix orientation and normal collagen deposition. Taken together, these results demonstrate the potential of the hydrogel to improve wound repair and hold promise for in situ skin tissue engineering applications.
Collapse
Affiliation(s)
- Gustavo F. Sousa
- LIMAV—Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Materials Science & Engineering Graduate Program, UFPI—Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| | - Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Health Sciences and Technology, Harvard University—Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Correspondence: (S.A.); (A.O.L.)
| | - Dalton Dittz
- Biochemistry and Pharmacology Department, UFPI—Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| | - Francisco E. P. Santos
- Physics Department, UFPI—Federal University of Piauí, Teresina 64049-550, PI, Brazil; (F.E.P.S.); (F.R.M.)
| | - Daniele O. Gontijo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.O.G.); (S.R.A.S.); (A.L.C.S.); (L.C.G.); (L.S.B.); (P.P.G.G.)
| | - Sérgio R. A. Scalzo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.O.G.); (S.R.A.S.); (A.L.C.S.); (L.C.G.); (L.S.B.); (P.P.G.G.)
| | - Ana L. C. Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.O.G.); (S.R.A.S.); (A.L.C.S.); (L.C.G.); (L.S.B.); (P.P.G.G.)
| | - Lays C. Guimaraes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.O.G.); (S.R.A.S.); (A.L.C.S.); (L.C.G.); (L.S.B.); (P.P.G.G.)
| | - Ester M. Pereira
- Laboratory of Immunogenetics and Molecular Biology, UFPI—Federal University of Piauí, Teresina 64049-550, PI, Brazil; (E.M.P.); (S.J.H.D.M.)
| | - Luciola S. Barcelos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.O.G.); (S.R.A.S.); (A.L.C.S.); (L.C.G.); (L.S.B.); (P.P.G.G.)
| | - Semiramis J. H. Do Monte
- Laboratory of Immunogenetics and Molecular Biology, UFPI—Federal University of Piauí, Teresina 64049-550, PI, Brazil; (E.M.P.); (S.J.H.D.M.)
| | - Pedro P. G. Guimaraes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (D.O.G.); (S.R.A.S.); (A.L.C.S.); (L.C.G.); (L.S.B.); (P.P.G.G.)
| | - Fernanda R. Marciano
- Physics Department, UFPI—Federal University of Piauí, Teresina 64049-550, PI, Brazil; (F.E.P.S.); (F.R.M.)
| | - Anderson O. Lobo
- LIMAV—Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Materials Science & Engineering Graduate Program, UFPI—Federal University of Piauí, Teresina 64049-550, PI, Brazil;
- Correspondence: (S.A.); (A.O.L.)
| |
Collapse
|
26
|
The Chronic Wound Phageome: Phage Diversity and Associations with Wounds and Healing Outcomes. Microbiol Spectr 2022; 10:e0277721. [PMID: 35435739 PMCID: PMC9248897 DOI: 10.1128/spectrum.02777-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Two leading impediments to chronic wound healing are polymicrobial infection and biofilm formation. Recent studies have characterized the bacterial fraction of these microbiomes and have begun to elucidate compositional correlations to healing outcomes. However, the factors that drive compositional shifts are still being uncovered. The virome may play an important role in shaping bacterial community structure and function. Previous work on the skin virome determined that it was dominated by bacteriophages, viruses that infect bacteria. To characterize the virome, we enrolled 20 chronic wound patients presenting at an outpatient wound care clinic in a microbiome survey, collecting swab samples from healthy skin and chronic wounds (diabetic, venous, arterial, or pressure) before and after a single, sharp debridement procedure. We investigated the virome using a virus-like particle enrichment procedure, shotgun metagenomic sequencing, and a k-mer-based, reference-dependent taxonomic classification method. Taxonomic composition, diversity, and associations with covariates are presented. We find that the wound virome is highly diverse, with many phages targeting known pathogens, and may influence bacterial community composition and functionality in ways that impact healing outcomes. IMPORTANCE Chronic wounds are an increasing medical burden. These wounds are known to be rich in microbial content, including both bacteria and bacterial viruses (phages). The viruses may play an important role in shaping bacterial community structure and function. We analyzed the virome and bacterial composition of 20 patients with chronic wounds. The viruses found in wounds are highly diverse compared to normal skin, unlike the bacterial composition, where diversity is decreased. These data represent an initial look at this relatively understudied component of the chronic wound microbiome and may help inform future phage-based interventions.
Collapse
|
27
|
Moysidis M, Stavrou G, Cheva A, Abba Deka I, Tsetis JK, Birba V, Kapoukranidou D, Ioannidis A, Tsaousi G, Kotzampassi K. The 3-D configuration of excisional skin wound healing after topical probiotic application. Injury 2022; 53:1385-1393. [PMID: 35148901 DOI: 10.1016/j.injury.2022.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/02/2023]
Abstract
Nowadays, there is an increasing knowledge that probiotic bacteria, topically applied, affects skin pathology. The objective of this study is to evaluate the effect on wound healing of locally applied probiotics by calculating the 3-D configuration of a standardized excisional wound. Fifty-two male Wistar rats were randomly allocated into groups: control, PRO1 [L. plantarum] and PRO2 [L. rhamnosus, B. longum]. Six excisional full-thickness wounds were created on each dorsum by an 8-mm circular biopsy punch; probiotics or saline were applied on days 0, 2, 4, 8, 16, photos of the wounds taken and specimens excised for histology [4 rats/group/time-point]. Both probiotic-groups exhibited accelerated healing significantly faster than the control, throughout, PRO2 exhibiting finally the best results [day 16]. However, only on day 2, did PRO1 exhibit the best results [wounded area, borders distance and epitheliazation line]. The results clearly demonstrate that the topical application of probiotics significantly improves the healing process, each strain working differently and more effectively in different healing phases. Thus, a combined formula containing different probiotics to modulate various healing phases is desirable. To this end our research continous.
Collapse
Affiliation(s)
- Moysis Moysidis
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - George Stavrou
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Aggeliki Cheva
- Department of Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Abba Deka
- Department of Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Vasiliki Birba
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Dorothea Kapoukranidou
- Department of Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aris Ioannidis
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Georgia Tsaousi
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece.
| |
Collapse
|
28
|
Kang K, Zhou Q, McGinn L, Nguyen T, Luo Y, Djalilian A, Rosenblatt M. High fat diet induced gut dysbiosis alters corneal epithelial injury response in mice. Ocul Surf 2022; 23:49-59. [PMID: 34808360 PMCID: PMC8792274 DOI: 10.1016/j.jtos.2021.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Commensal microbiome secretes various metabolites that can exert important effects on the host immunity and inflammation and can alter cellular functions. However, little is known regarding the effect of microbiome on corneal immunity and genetic expression. The purpose of this study is to describe the effect of diet-induced gut dysbiosis on corneal immunity and corneal gene expression after wounding. METHODS This study is approved by the Animal Care and Use of the University of Illinois. Six-week-old female C57BL6 mice were fed on a normal chow diet (ND), isocaloric low-fat control diet (LFD), or a 21% milk high-fat diet (HFD) for six weeks. 2 mm corneal epithelial debridement was performed (n = 10). Fecal samples from mice were used for microbial diversity analysis (n > 3). Immunofluorescence staining of corneal wholemount tissue post-debridement was used to visualize immune cell distribution. RNA Seq was performed on tissue samples from corneas following debridement. RESULTS Mice fed differing diets had significant alterations in gut microbial diversities. After corneal debridement, HFD mice experienced delayed wound healing in comparison to LFD mice and ND mice groups. However, fecal transplantation led to normalization of wound closure rates. Increased γδTCR staining was observed in the LFD group, and decreased LY6G was observed in HFD group (p < 0.05). Gene Ontology terms of differentially expressed genes included response to external stimulus, cell proliferation, migration, adhesion, defense response and leukocyte migration. Top over-represented pathways included ECM-receptor interaction, Cytokine-cytokine receptor interaction, Focal adhesion and Leukocyte trans-endothelial migration. CONCLUSIONS Gut microbial dysbiosis alters corneal immune cell distribution, corneal response to injury, and genes related to epithelial function and corneal immunity.
Collapse
Affiliation(s)
- Kai Kang
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Qiang Zhou
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Lander McGinn
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Tara Nguyen
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuncin Luo
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali Djalilian
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark Rosenblatt
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
29
|
Zhao M, Zhou M, Gao P, Zheng X, Yu W, Wang Z, Li J, Zhang J. AgNPs/nGOx/Apra Nanocomposites for Synergistic Antimicrobial Therapy and Scarless Skin Recovery. J Mater Chem B 2022; 10:1393-1402. [DOI: 10.1039/d1tb01991k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The misuse of antimicrobials has caused a remarkable increase of antibiotic-resistant bacteria. Developing novel antimicrobial agents with high activity and low rates of resistance development is in great demand yet...
Collapse
|
30
|
Franco-Valencia K, Nóbrega I, Cantaruti T, Barra A, Klein A, Azevedo-Jr G, Costa R, Carvalho C. Subcutaneous injection of an immunologically tolerated protein up to 5 days before skin injuries improves wound healing. Braz J Med Biol Res 2022; 55:e11735. [PMID: 35170683 PMCID: PMC8851940 DOI: 10.1590/1414-431x2021e11735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022] Open
Abstract
Oral tolerance blocks the development of specific immune responses to proteins ingested by the oral route. One of the first registries of oral tolerance showed that guinea pigs fed corn became refractory to hypersensitivity to corn proteins. Mice fed with chow containing corn are tolerant to zein, and parenteral injection of zein plus adjuvant blocks immunization to unrelated proteins injected concomitantly and reduces unspecific inflammation. Extensive and prolonged inflammatory infiltrate in the wound bed is one of the causes of pathological wound healing. Previous research shows that intraperitoneal injection of zein concomitant with skin injuries reduces the inflammatory infiltrate in the wound bed and improves wound healing. Herein, we tested if one subcutaneous injection of zein before skin injury improves wound healing. We also investigated how long the effects triggered by zein could improve skin wound healing. Mice fed zein received two excisional wounds on the interscapular skin under anesthesia. Zein plus Al(OH)3 was injected at the tail base at 10 min, or 3, 5, or 7 days before skin injuries. Wound healing was analyzed at days 7 and 40 after injury. Our results showed that a zein injection up to 5 days before skin injury reduced the inflammatory infiltrate, increased the number of T-cells in the wound bed, and improved the pattern of collagen deposition in the neodermis. These findings could promote the development of new strategies for the treatment and prevention of pathological healing using proteins normally found in the common diet.
Collapse
Affiliation(s)
| | | | | | - A. Barra
- Universidade Federal de Minas Gerais, Brasil
| | - A. Klein
- Universidade Federal de Minas Gerais, Brasil
| | | | - R.A. Costa
- Universidade Federal de São João del Rei, Brasil
| | | |
Collapse
|
31
|
Ferreira BA, De Moura FBR, Tomiosso TC, Corrêa NCR, Goulart LR, Barcelos LS, Clissa PB, Araújo FDA. Jararhagin-C, a disintegrin-like protein, improves wound healing in mice through stimulation of M2-like macrophage, angiogenesis and collagen deposition. Int Immunopharmacol 2021; 101:108224. [PMID: 34655846 DOI: 10.1016/j.intimp.2021.108224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Jararhagin-C (Jar-C) is a disintegrin-like protein, isolated from the venom of B. jararaca, with affinity for α2β1 integrin and the ability to incite processes such as angiogenesis and collagen deposition in vivo. Thus, we raised the hypothesis that this protein could be used as a therapeutic strategy for stimulating the healing of excisional wounds in mice. Four wounds were made on the back of Swiss mice, treated with daily intradermal injections of PBS (control group) or Jar-C (200 ng). Ten animals from each experimental group were euthanized and the tissue from the wounds and skin around them were collected for further biochemical, histological and molecular analysis. Wounds treated with Jar-C showed a faster closure rate, accompanied by a reduction in neutrophil infiltrate (MPO), pro-inflammatory cytokine levels (TNF, CXCL1 and CCL2) and an accumulation of macrophages in the analyzed tissues. It was also observed a greater expression of genes associated with the phenotype of alternatively activated macrophages (M2). Concomitantly, the administration of Jar-C holds an angiogenic potential, increasing the density of blood vessels and the synthesis of pro-angiogenic cytokines (VEGF and FGF). We also observed an increase in collagen deposition, accompanied by higher levels of the pro-fibrogenic cytokine TGF-β1. Our data suggests Jar-C stimulates wound healing through stimulation of M2-like macrophage, angiogenesis and collagen deposition. Jar-C may be explored as a therapeutic strategy for wound healing, including the treatment of chronic wounds, where processes such as inflammation, angiogenesis and the deposition / remodeling of the matrix constituents are unregulated.
Collapse
Affiliation(s)
- Bruno Antonio Ferreira
- Institute of Biotechnology, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil; Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Francyelle Borges Rosa De Moura
- Department of Cell Biology, Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Tatiana Carla Tomiosso
- Department of Cell Biology, Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil
| | | | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil; Department of Medical Microbiology and Immunology, University of California-Davis, Davis, USA
| | - Lucíola Silva Barcelos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Fernanda de Assis Araújo
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil.
| |
Collapse
|
32
|
Padilla S, Nurden AT, Prado R, Nurden P, Anitua E. Healing through the lens of immunothrombosis: Biology-inspired, evolution-tailored, and human-engineered biomimetic therapies. Biomaterials 2021; 279:121205. [PMID: 34710794 DOI: 10.1016/j.biomaterials.2021.121205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Evolution, from invertebrates to mammals, has yielded and shaped immunoclotting as a defense and repair response against trauma and infection. This mosaic of immediate and local wound-sealing and pathogen-killing mechanisms results in survival, restoration of homeostasis, and tissue repair. In mammals, immunoclotting has been complemented with the neuroendocrine system, platelets, and contact system among other embellishments, adding layers of complexity through interconnecting blood-born proteolytic cascades, blood cells, and the neuroendocrine system. In doing so, immunothrombosis endows humans with survival advantages, but entails vulnerabilities in the current unprecedented and increasingly challenging environment. Immunothrombosis and tissue repair appear to go hand in hand with common mechanisms mediating both processes, a fact that is underlined by recent advances that are deciphering the mechanisms of the repair process and of the biochemical pathways that underpins coagulation, hemostasis and thrombosis. This review is intended to frame both the universal aspects of tissue repair and the therapeutic use of autologous fibrin matrix as a biology-as-a-drug approach in the context of the evolutionary changes in coagulation and hemostasis. In addition, we will try to shed some light on the molecular mechanisms underlying the use of the autologous fibrin matrix as a biology-inspired, evolution-tailored, and human-engineered biomimetic therapy.
Collapse
Affiliation(s)
- Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| | - Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Roberto Prado
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| |
Collapse
|
33
|
Lopes ME, dos Santos LM, Sacks D, Vieira LQ, Carneiro MB. Resistance Against Leishmania major Infection Depends on Microbiota-Guided Macrophage Activation. Front Immunol 2021; 12:730437. [PMID: 34745100 PMCID: PMC8564857 DOI: 10.3389/fimmu.2021.730437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022] Open
Abstract
Innate immune cells present a dual role during leishmaniasis: they constitute the first line of host defense but are also the main host cells for the parasite. Response against the infection that results in the control of parasite growth and lesion healing depends on activation of macrophages into a classical activated phenotype. We report an essential role for the microbiota in driving macrophage and monocyte-derived macrophage activation towards a resistance phenotype against Leishmania major infection in mice. Both germ-free and dysbiotic mice showed a higher number of myeloid innate cells in lesions and increased number of infected cells, mainly dermal resident and inflammatory macrophages. Despite developing a Th1 immune response characterized by the same levels of IFN-γ production as the conventional mice, germ-free mice presented reduced numbers of iNOS+ macrophages at the peak of infection. Absence or disturbance of host microbiota impaired the capacity of bone marrow-derived macrophage to be activated for Leishmania killing in vitro, even when stimulated by Th1 cytokines. These cells presented reduced expression of inos mRNA, and diminished production of microbicidal molecules, such as ROS, while presenting a permissive activation status, characterized by increased expression of arginase I and il-10 mRNA and higher arginase activity. Colonization of germ-free mice with complete microbiota from conventional mice rescued their ability to control the infection. This study demonstrates the essential role of host microbiota on innate immune response against L. major infection, driving host macrophages to a resistance phenotype.
Collapse
Affiliation(s)
- Mateus Eustáquio Lopes
- Laboratório de Gnotobiologia e Imunologia, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Liliane Martins dos Santos
- Laboratório de Gnotobiologia e Imunologia, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - David Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Leda Quercia Vieira
- Laboratório de Gnotobiologia e Imunologia, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Matheus B. Carneiro
- Laboratório de Gnotobiologia e Imunologia, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
34
|
Carneiro MB, Peters NC. The Paradox of a Phagosomal Lifestyle: How Innate Host Cell- Leishmania amazonensis Interactions Lead to a Progressive Chronic Disease. Front Immunol 2021; 12:728848. [PMID: 34557194 PMCID: PMC8452962 DOI: 10.3389/fimmu.2021.728848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Intracellular phagosomal pathogens represent a formidable challenge for innate immune cells, as, paradoxically, these phagocytic cells can act as both host cells that support pathogen replication and, when properly activated, are the critical cells that mediate pathogen elimination. Infection by parasites of the Leishmania genus provides an excellent model organism to investigate this complex host-pathogen interaction. In this review we focus on the dynamics of Leishmania amazonensis infection and the host innate immune response, including the impact of the adaptive immune response on phagocytic host cell recruitment and activation. L. amazonensis infection represents an important public health problem in South America where, distinct from other Leishmania parasites, it has been associated with all three clinical forms of leishmaniasis in humans: cutaneous, muco-cutaneous and visceral. Experimental observations demonstrate that most experimental mouse strains are susceptible to L. amazonensis infection, including the C57BL/6 mouse, which is resistant to other species such as Leishmania major, Leishmania braziliensis and Leishmania infantum. In general, the CD4+ T helper (Th)1/Th2 paradigm does not sufficiently explain the progressive chronic disease established by L. amazonensis, as strong cell-mediated Th1 immunity, or a lack of Th2 immunity, does not provide protection as would be predicted. Recent findings in which the balance between Th1/Th2 immunity was found to influence permissive host cell availability via recruitment of inflammatory monocytes has also added to the complexity of the Th1/Th2 paradigm. In this review we discuss the roles played by innate cells starting from parasite recognition through to priming of the adaptive immune response. We highlight the relative importance of neutrophils, monocytes, dendritic cells and resident macrophages for the establishment and progressive nature of disease following L. amazonensis infection.
Collapse
Affiliation(s)
- Matheus B Carneiro
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
35
|
Sanjar F, Weaver AJ, Peacock TJ, Nguyen JQ, Brandenburg KS, Leung KP. Identification of Metagenomics Structure and Function Associated With Temporal Changes in Rat (Rattus norvegicus) Skin Microbiome During Health and Cutaneous Burn. J Burn Care Res 2021; 41:347-358. [PMID: 31665423 DOI: 10.1093/jbcr/irz165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cutaneous skin microbiome is host to a vast ensemble of resident microbes that provide essential capabilities including protection of skin barrier integrity and modulation of the host immune response. Cutaneous burn-injury promotes alteration of cutaneous and systemic immune response that can affect both commensal and pathogenic microbes. A cross-sectional study of a limited number of burn patients revealed a difference in the bacteriome of burned versus control participants. Temporal changes of the skin microbiome during health and cutaneous burn-injury remains largely unknown. Furthermore, how this microbial shift relates to community function in the collective metagenome remain elusive. Due to cost considerations and reduced healing time, rodents are frequently used in burn research, despite inherent physiological differences between rodents and human skin. Using a rat burn model, a longitudinal study was conducted to characterize the rat skin bacterial residents and associated community functions in states of health (n = 30) (sham-burned) and when compromised by burn-injury (n = 24). To address the knowledge gap, traumatic thermal injury and disruption of cutaneous surface is associated with genus-level changes in the microbiota, reduced bacterial richness, and altered representation of bacterial genes and associated predicted functions across different skin microbial communities. These findings demonstrate that, upon burn-injury, there is a shift in diversity of the skin's organismal assemblages, yielding a core microbiome that is distinct at the genome and functional level. Moreover, deviations from the core community correlate with temporal changes post-injury and community transition from the state of cutaneous health to disease (burn-injury).
Collapse
Affiliation(s)
- Fatemeh Sanjar
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA Fort, Sam Houston, Texas
| | - Alan J Weaver
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA Fort, Sam Houston, Texas
| | | | - Jesse Q Nguyen
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA Fort, Sam Houston, Texas
| | - Kenneth S Brandenburg
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA Fort, Sam Houston, Texas
| | - Kai P Leung
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA Fort, Sam Houston, Texas
| |
Collapse
|
36
|
Skin Wound Healing Rate in Fish Depends on Species and Microbiota. Int J Mol Sci 2021; 22:ijms22157804. [PMID: 34360572 PMCID: PMC8346108 DOI: 10.3390/ijms22157804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
The skin is a barrier between the body and the environment that protects the integrity of the body and houses a vast microbiota. By interacting with the host immune system, the microbiota improves wound healing in mammals. However, in fish, the evidence of the role of microbiota and the type of species on wound healing is scarce. We aimed to examine the wound healing rate in various fish species and evaluate the effect of antibiotics on the wound healing process. The wound healing rate was much faster in two of the seven fish species selected based on habitat and skin types. We also demonstrated that the composition of the microbiome plays a role in the wound healing rate. After antibiotic treatment, the wound healing rate improved in one species. Through 16S rRNA sequencing, we identified microbiome correlates of varying responses on wound healing after antibiotic treatment. These findings indicate that not only the species difference but also the microbiota play a significant role in wound healing in fish.
Collapse
|
37
|
The Insights of Microbes' Roles in Wound Healing: A Comprehensive Review. Pharmaceutics 2021; 13:pharmaceutics13070981. [PMID: 34209654 PMCID: PMC8308956 DOI: 10.3390/pharmaceutics13070981] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
A diverse range of normal flora populates the human skin and numbers are relatively different between individuals and parts of the skin. Humans and normal flora have formed a symbiotic relationship over a period of time. With numerous disease processes, the interaction between the host and normal flora can be interrupted. Unlike normal wound healing, which is complex and crucial to sustaining the skin’s physical barrier, chronic wounds, especially in diabetes, are wounds that fail to heal in a timely manner. The conditions become favorable for microbes to colonize and establish infections within the skin. These include secretions of various kinds of molecules, substances or even trigger the immune system to attack other cells required for wound healing. Additionally, the healing process can be slowed down by prolonging the inflammatory phase and delaying the wound repair process, which causes further destruction to the tissue. Antibiotics and wound dressings become the targeted therapy to treat chronic wounds. Though healing rates are improved, prolonged usage of these treatments could become ineffective or microbes may become resistant to the treatments. Considering all these factors, more studies are needed to comprehensively elucidate the role of human skin normal flora at the cellular and molecular level in a chronic injury. This article will review wound healing physiology and discuss the role of normal flora in the skin and chronic wounds.
Collapse
|
38
|
Amorim GL, Guillen MRS, Vieira PC, Borges EL, Barcelos LDS. CONTRIBUIÇÕES DO ENFERMEIRO NA PESQUISA BÁSICA: MODELO DE FIXAÇÃO DE CURATIVO EM FERIDAS CUTÂNEAS EXCISIONAIS DE CAMUNDONGOS. ESTIMA 2021. [DOI: 10.30886/estima.v19.1038_pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objetivo:validar método de fixação de curativos em feridas cutâneas excisionais de camundongos. Método: estudo pré-clínico. Amostra composta por animais da linhagem C57BL/6, que tiveram duas feridas excisionais confeccionadas na região dorsal. Foram avaliados diferentes métodos e produtos, amplamente aceitos na prática clínica, para fixação de curativos no modelo animal. Os desfechos avaliados foram tempo de permanência do curativo e ocorrência de eventos adversos. Resultados: atadura de crepom, fita microporosa e bandagem autoaderente apresentaram menor tempo de permanência quando comparadas ao filme de poliuretano. Esse, por sua vez, variou o tempo quando comparadas diferentes marcas (E, F, G e H) e número de voltas ao redor do corpo do animal. Com 1 volta, o tempo variou de < 24 a 36 horas. Com 2 voltas, as marcas E e G permaneceram 48 e 96 horas, respectivamente, e F e H tempo < 24 horas. Filme da marca G, cortado no tamanho 3 cm x 15 cm, dando 2 voltas no corpo do camundongo, manteve o curativo por 96 horas. A pele permaneceu íntegra, sem evento adverso. Conclusão: foi criado modelo de fixação de curativos para feridas em camundongos com produto disponível no Brasil e compatível com a estrutura copórea do animal.
Collapse
|
39
|
Amorim GL, Guillen MRS, Vieira PC, Borges EL, Barcelos LDS. CONTRIBUTIONS OF NURSES IN BASIC RESEARCH: DRESSING FIXATION MODEL FOR EXCISIONAL CUTANEOUS WOUNDS OF MICE. ESTIMA 2021. [DOI: 10.30886/estima.v19.1038_in] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective: validate method of fixation of dressings on excisional cutaneous wounds of mice. Method: preclinical study. Sample made up of animals of the C57BL/6 strain, which had two excision wounds made in the dorsal region. Different methods and products, widely accepted in clinical practice, for fixing dressings in the animal model were evaluated. The evaluated outcomes were the length of stay of the dressing and the occurrence of adverse events. Results: crepe bandage, microporous tape and self adhesive bandage had a shorter residence time when compared to polyurethane film. This, in turn, varied the time when comparing different marks (E, F, G and H) and number of turns around the animal’s body. With 1 lap, the time varied from <24 to 36 hours. With 2 laps, the marks E and G remained 48 and 96 hours, respectively, and F and H time <24 hours. G-brand film, cut to size 3 cm x 15 cm, giving the mouse body 2 turns, kept the dressing for 96 hours. The skin remained intact, with no adverse event. Conclusion: a dressing fixation model for wounds in mice was created with a product available in Brazil and compatible with the animal’s body structure.
Collapse
|
40
|
Hollingsworth BA, Cassatt DR, DiCarlo AL, Rios CI, Satyamitra MM, Winters TA, Taliaferro LP. Acute Radiation Syndrome and the Microbiome: Impact and Review. Front Pharmacol 2021; 12:643283. [PMID: 34084131 PMCID: PMC8167050 DOI: 10.3389/fphar.2021.643283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Study of the human microbiota has been a centuries-long endeavor, but since the inception of the National Institutes of Health (NIH) Human Microbiome Project in 2007, research has greatly expanded, including the space involving radiation injury. As acute radiation syndrome (ARS) is multisystemic, the microbiome niches across all areas of the body may be affected. This review highlights advances in radiation research examining the effect of irradiation on the microbiome and its potential use as a target for medical countermeasures or biodosimetry approaches, or as a medical countermeasure itself. The authors also address animal model considerations for designing studies, and the potential to use the microbiome as a biomarker to assess radiation exposure and predict outcome. Recent research has shown that the microbiome holds enormous potential for mitigation of radiation injury, in the context of both radiotherapy and radiological/nuclear public health emergencies. Gaps still exist, but the field is moving forward with much promise.
Collapse
Affiliation(s)
- Brynn A Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| |
Collapse
|
41
|
The Ambivalent Role of Skin Microbiota and Adrenaline in Wound Healing and the Interplay between Them. Int J Mol Sci 2021; 22:ijms22094996. [PMID: 34066786 PMCID: PMC8125934 DOI: 10.3390/ijms22094996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
After skin injury, wound healing sets into motion a dynamic process to repair and replace devitalized tissues. The healing process can be divided into four overlapping phases: hemostasis, inflammation, proliferation, and maturation. Skin microbiota has been reported to participate in orchestrating the wound healing both in negative and positive ways. Many studies reported that skin microbiota can impose negative and positive effects on the wound. Recent findings have shown that many bacterial species on human skin are able to convert aromatic amino acids into so-called trace amines (TAs) and convert corresponding precursors into dopamine and serotonin, which are all released into the environment. As a stress reaction, wounded epithelial cells release the hormone adrenaline (epinephrine), which activates the β2-adrenergic receptor (β2-AR), impairing the migration ability of keratinocytes and thus re-epithelization. This is where TAs come into play, as they act as antagonists of β2-AR and thus attenuate the effects of adrenaline. The result is that not only TAs but also TA-producing skin bacteria accelerate wound healing. Adrenergic receptors (ARs) play a key role in many physiological and disease-related processes and are expressed in numerous cell types. In this review, we describe the role of ARs in relation to wound healing in keratinocytes, immune cells, fibroblasts, and blood vessels and the possible role of the skin microbiota in wound healing.
Collapse
|
42
|
Versey Z, da Cruz Nizer WS, Russell E, Zigic S, DeZeeuw KG, Marek JE, Overhage J, Cassol E. Biofilm-Innate Immune Interface: Contribution to Chronic Wound Formation. Front Immunol 2021; 12:648554. [PMID: 33897696 PMCID: PMC8062706 DOI: 10.3389/fimmu.2021.648554] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/17/2021] [Indexed: 12/19/2022] Open
Abstract
Delayed wound healing can cause significant issues for immobile and ageing individuals as well as those living with co-morbid conditions such as diabetes, cardiovascular disease, and cancer. These delays increase a patient’s risk for infection and, in severe cases, can result in the formation of chronic, non-healing ulcers (e.g., diabetic foot ulcers, surgical site infections, pressure ulcers and venous leg ulcers). Chronic wounds are very difficult and expensive to treat and there is an urgent need to develop more effective therapeutics that restore healing processes. Sustained innate immune activation and inflammation are common features observed across most chronic wound types. However, the factors driving this activation remain incompletely understood. Emerging evidence suggests that the composition and structure of the wound microbiome may play a central role in driving this dysregulated activation but the cellular and molecular mechanisms underlying these processes require further investigation. In this review, we will discuss the current literature on: 1) how bacterial populations and biofilms contribute to chronic wound formation, 2) the role of bacteria and biofilms in driving dysfunctional innate immune responses in chronic wounds, and 3) therapeutics currently available (or underdevelopment) that target bacteria-innate immune interactions to improve healing. We will also discuss potential issues in studying the complexity of immune-biofilm interactions in chronic wounds and explore future areas of investigation for the field.
Collapse
Affiliation(s)
- Zoya Versey
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | | | - Emily Russell
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Sandra Zigic
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Katrina G DeZeeuw
- Department of Complex Continuing Care, Saint Vincent Hospital, Ottawa, ON, Canada
| | - Jonah E Marek
- Department of Complex Continuing Care, Saint Vincent Hospital, Ottawa, ON, Canada
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
43
|
Li Y, Zhang J, Shi J, Liu K, Wang X, Jia Y, He T, Shen K, Wang Y, Liu J, Zhang W, Wang H, Zheng Z, Hu D. Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis. Stem Cell Res Ther 2021; 12:221. [PMID: 33789737 PMCID: PMC8010995 DOI: 10.1186/s13287-021-02290-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypertrophic scar (HS) is a fibro-proliferative disorder of dermis after burn or trauma and usually leads to esthetic disfiguration and functionary impairment for patients. Emerging evidences demonstrated ADSC-Exo could alleviate the visceral fibrosis, but little attention had been paid to its role in skin fibrosis. In the study, we would explore the effect of ADSC-Exo on HS and investigated the exact mechanism underlying the properties. METHODS ADSC-Exo were isolated, identified, and internalized by HS-derived fibroblasts (HSFs). The effect of ADSC-Exo on the proliferation and migration of HSFs were detected by flow cytometry and Ki67 immunofluorescence staining, or scratch and trans-wells assays, respectively. RT-PCR, immunoblotting, immunofluorescence, and immunohistochemistry staining were used to evaluate the expression of IL-17RA, Col1, Col3, α-SMA, SIP1, and p-Smad2/p-Smad3 in HSFs stimulated with ADSC-Exo, miR-192-5p mimics, or inhibitors, IL-17RA siRNA and their negative controls. Digital morphology, H&E, Masson's trichrome staining, and immunohistochemistry staining were performed to measure the effect of ADSC-Exo and Lv-IL-17RA shRNA on excisional wound of BALB/c mice. RESULTS The verified ADSC-Exo effectively inhibited the proliferation and migration of HSFs, decreased the expression of Col1, Col3, α-SMA, IL-17RA, and p-Smad2/p-Smad3 and increased the levels of SIP1 in HSFs. Besides, the mice in ADSC-Exo-treated group demonstrated faster wound healing and less collagen deposition. Furthermore, miR-192-5p was highly expressed in ADSC-Exo and ADSC-Exosomal miR-192-5p ameliorated hypertrophic scar fibrosis. Meanwhile, miR-192-5p targeted the expression of IL-17RA to decrease the pro-fibrotic proteins levels. Moreover, IL-17RA was overexpressed in HS and HSFs, and knockdown IL-17RA alleviated the expression of Col1, Col3, α-SMA, and p-Smad2/p-Smad3 and increased the expression of SIP1 in HSFs. Most importantly, IL-17RA silence also facilitated wound healing, attenuated collagen production, and modulated Smad pathway in HSFs. CONCLUSIONS This study illustrated ADSC-Exo attenuated the deposition of collagen, the trans-differentiation of fibroblasts-to-myofibroblasts, and the formation of hypertrophic scar by in vitro and in vivo experiments. ADSC-Exosomal miR-192-5p targeted IL-17RA to regulate Smad pathway in hypertrophic scar fibrosis. ADSC-Exo could be a promising therapeutic strategy for clinical treatment of hypertrophic scar and the anti-fibrotic properties could be achieved by miR-192-5p/IL-17RA/Smad axis.
Collapse
Affiliation(s)
- Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Kaituo Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Xujie Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Jiaqi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China
| | - Wei Zhang
- Department of Plastics and Aesthetic Surgery, The First Affiliated Hospital of Xi'an Medical University, No.48 West Fenghao Road, Xi'an, 710077, Shaanxi, China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China.
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
44
|
Hathaway-Schrader JD, Novince CM. Maintaining homeostatic control of periodontal bone tissue. Periodontol 2000 2021; 86:157-187. [PMID: 33690918 DOI: 10.1111/prd.12368] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alveolar bone is a unique osseous tissue due to the proximity of dental plaque biofilms. Periodontal health and homeostasis are mediated by a balanced host immune response to these polymicrobial biofilms. Dysbiotic shifts within dental plaque biofilms can drive a proinflammatory immune response state in the periodontal epithelial and gingival connective tissues, which leads to paracrine signaling to subjacent bone cells. Sustained chronic periodontal inflammation disrupts "coupled" osteoclast-osteoblast actions, which ultimately result in alveolar bone destruction. This chapter will provide an overview of alveolar bone physiology and will highlight why the oral microbiota is a critical regulator of alveolar bone remodeling. The ecology of dental plaque biofilms will be discussed in the context that periodontitis is a polymicrobial disruption of host homeostasis. The pathogenesis of periodontal bone loss will be explained from both a historical and current perspective, providing the opportunity to revisit the role of fibrosis in alveolar bone destruction. Periodontal immune cell interactions with bone cells will be reviewed based on our current understanding of osteoimmunological mechanisms influencing alveolar bone remodeling. Lastly, probiotic and prebiotic interventions in the oral microbiota will be evaluated as potential noninvasive therapies to support alveolar bone homeostasis and prevent periodontal bone loss.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
45
|
Bar J, Sarig O, Lotan-Pompan M, Dassa B, Miodovnik M, Weinberger A, Sprecher E, Segal E, Samuelov L. Evidence for cutaneous dysbiosis in dystrophic epidermolysis bullosa. Clin Exp Dermatol 2021; 46:1223-1229. [PMID: 33682945 DOI: 10.1111/ced.14592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/10/2021] [Accepted: 02/01/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND The human microbiome project addresses the relationship between bacterial flora and the human host, in both healthy and diseased conditions. The skin is an ecosystem with multiple niches, each featuring unique physiological conditions and thus hosting different bacterial populations. The skin microbiome has been implicated in the pathogenesis of many dermatoses. Given the role of dysbiosis in the pathogenesis of inflammation, which is prominent in dystrophic epidermolysis bullosa (DEB), we undertook a study on the skin microbiome. AIM To characterize the skin microbiome in a series of patients with DEB. METHODS This was a case-control study of eight patients with DEB and nine control cases enrolled between June 2017 and November 2018. The skin of patients with DEB was sampled at three different sites: untreated wound, perilesional skin and normal-appearing (uninvolved) skin. Normal skin on the forearm was sampled from age-matched healthy controls (HCs). We used a dedicated DNA extraction protocol to isolate microbial DNA, which was then analysed using next-generation microbial 16S rRNA sequencing. Data were analysed using a series of advanced bioinformatics tools. RESULTS The wounds, perilesional and uninvolved skin of patients with DEB demonstrated reduced bacterial diversity compared with HCs, with the flora in DEB wounds being the least diverse. We found an increased prevalence of staphylococci species in the lesional and perilesional skin of patients with DEB, compared with their uninvolved, intact skin. Similarly, the uninvolved skin of patients with DEB displayed increased staphylococcal content and significantly different microbiome diversities (other than staphylococci) compared with HC skin. CONCLUSIONS These findings suggest the existence of a unique DEB-associated skin microbiome signature, which could be targeted by specific pathogen-directed therapies. Moreover, altering the skin microbiome with increasing colonization of bacteria associated with nonchronic wounds may potentially facilitate wound healing in patients with DEB.
Collapse
Affiliation(s)
- J Bar
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - O Sarig
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - M Lotan-Pompan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - B Dassa
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - M Miodovnik
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - A Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - E Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - L Samuelov
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
46
|
Le Poole IC. Myron Gordon Award paper: Microbes, T-cell diversity and pigmentation. Pigment Cell Melanoma Res 2021; 34:244-255. [PMID: 33438345 DOI: 10.1111/pcmr.12957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/12/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022]
Abstract
Melanocytes are static, minimally proliferative cells. This leaves them vulnerable in vitiligo. Yet upon malignant transformation, they form vicious tumors. This profound switch in physiology is accompanied by genetic change and is driven by environmental factors. If UV exposure in younger years supports malignant transformation and melanoma formation, it can likewise impart mutations on melanocytes that reduce their viability, to initiate vitiligo. A wide variety of microbes can influence these diametrically opposed outcomes before either disease takes hold. These microbes are vehicles of change that we are only beginning to study. Once a genetic modification occurs, there is a wide variety of immune cells ready to respond. Though it does not act alone, the T cell is among the most decisive responders in this process. The same biochemical process that offered the skin protection by producing melanin can become an Achilles heel for the cell when the T cells target melanosomal enzymes or, on occasion, neoantigens. T cells are precise, determined, and consequential when they strike. Here, we probe the relationship between the microbiome and its metabolites, epithelial integrity, and the activation of T cells that target benign and malignant melanocytes in vitiligo and melanoma.
Collapse
Affiliation(s)
- I Caroline Le Poole
- Department of Dermatology, Microbiology and Immunology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL, USA
| |
Collapse
|
47
|
Loomis KH, Wu SK, Ernlund A, Zudock K, Reno A, Blount K, Karig DK. A mixed community of skin microbiome representatives influences cutaneous processes more than individual members. MICROBIOME 2021; 9:22. [PMID: 33482907 PMCID: PMC7825201 DOI: 10.1186/s40168-020-00963-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/06/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Skin, the largest organ of the human body by weight, hosts a diversity of microorganisms that can influence health. The microbial residents of the skin are now appreciated for their roles in host immune interactions, wound healing, colonization resistance, and various skin disorders. Still, much remains to be discovered in terms of the host pathways influenced by skin microorganisms, as well as the higher-level skin properties impacted through these microbe-host interactions. Towards this direction, recent efforts using mouse models point to pronounced changes in the transcriptional profiles of the skin in response to the presence of a microbial community. However, there is a need to quantify the roles of microorganisms at both the individual and community-level in healthy human skin. In this study, we utilize human skin equivalents to study the effects of individual taxa and a microbial community in a precisely controlled context. Through transcriptomics analysis, we identify key genes and pathways influenced by skin microbes, and we also characterize higher-level impacts on skin processes and properties through histological analyses. RESULTS The presence of a microbiome on a 3D skin tissue model led to significantly altered patterns of gene expression, influencing genes involved in the regulation of apoptosis, proliferation, and the extracellular matrix (among others). Moreover, microbiome treatment influenced the thickness of the epidermal layer, reduced the number of actively proliferating cells, and increased filaggrin expression. Many of these findings were evident upon treatment with the mixed community, but either not detected or less pronounced in treatments by single microorganisms, underscoring the impact that a diverse skin microbiome has on the host. CONCLUSIONS This work contributes to the understanding of how microbiome constituents individually and collectively influence human skin processes and properties. The results show that, while it is important to understand the effect of individual microbes on the host, a full community of microbes has unique and pronounced effects on the skin. Thus, in its impacts on the host, the skin microbiome is more than the sum of its parts. Video abstract.
Collapse
Affiliation(s)
- Kristin H. Loomis
- Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Susan K. Wu
- Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Amanda Ernlund
- Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Kristina Zudock
- Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Allison Reno
- Department of Bioengineering, Clemson University, Clemson, SC USA
| | - Kianna Blount
- Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - David K. Karig
- Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
- Department of Bioengineering, Clemson University, Clemson, SC USA
| |
Collapse
|
48
|
Moreira CF, Cassini-Vieira P, Canesso MCC, Felipetto M, Ranfley H, Teixeira MM, Nicoli JR, Martins FS, Barcelos LS. Lactobacillus rhamnosus CGMCC 1.3724 (LPR) Improves Skin Wound Healing and Reduces Scar Formation in Mice. Probiotics Antimicrob Proteins 2021; 13:709-719. [PMID: 33433898 DOI: 10.1007/s12602-020-09713-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2020] [Indexed: 01/16/2023]
Abstract
Skin wounds are an important clinical problem which affects millions of people worldwide. The search for new therapeutic approaches to improve wound healing is needed. The present study aimed to evaluate the effects of the oral treatment with the skin-related probiotics Lactobacillus johnsonii LA1 (LJ), L. paracasei ST11 (LP), and L. rhamnosus LPR (LR) in a model of excisional skin wounds in Swiss mice. The animals received daily oral gavage of PBS or 1 × 107 colony-forming units of LJ, LP, or LR, singly, beginning just after the creation of wounds until euthanasia. Blood flow was evaluated by laser Doppler perfusion imaging. Myeloperoxidase and N-acetyl-β-D-glucosaminidase activities were used to assess the accumulation of neutrophils and macrophages, respectively. The wound tissue was also collected for histological analyses (H&E, Toluidine blue, and Picrosirius red staining). The macroscopic wound closure rate was faster only in mice treated with LR, but not with LJ and LP, when compared to mice treated with PBS. Histological evaluations showed that treatment with LR stimulated wound epithelization when compared to PBS. Further analyses showed that wounds from LR-treated mice presented a significant decrease in macrophage (p < 0.001) and mast cell (p < 0.001) infiltration, along with improved angiogenesis (p < 0.001) and blood flow (p < 0.01). Of note, collagen deposition and scarring were reduced in LR-treated mice when compared to PBS-treated mice. In conclusion, our results show that the oral treatment with Lactobacillus rhamnosus accelerates skin wound closure and reduces scar, besides to reducing inflammation and fibrogenesis and improving angiogenesis in the wounded skin.
Collapse
Affiliation(s)
- Camila Francisco Moreira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627 - Pampulha, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Puebla Cassini-Vieira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627 - Pampulha, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Maria Cecília Campos Canesso
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627 - Pampulha, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Mariane Felipetto
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627 - Pampulha, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Hedden Ranfley
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627 - Pampulha, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Jacques Robert Nicoli
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Flaviano Santos Martins
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Lucíola Silva Barcelos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627 - Pampulha, Minas Gerais, 31270-901, Belo Horizonte, Brazil.
| |
Collapse
|
49
|
Piipponen M, Li D, Landén NX. The Immune Functions of Keratinocytes in Skin Wound Healing. Int J Mol Sci 2020; 21:E8790. [PMID: 33233704 PMCID: PMC7699912 DOI: 10.3390/ijms21228790] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
As the most dominant cell type in the skin, keratinocytes play critical roles in wound repair not only as structural cells but also exerting important immune functions. This review focuses on the communications between keratinocytes and immune cells in wound healing, which are mediated by various cytokines, chemokines, and extracellular vesicles. Keratinocytes can also directly interact with T cells via antigen presentation. Moreover, keratinocytes produce antimicrobial peptides that can directly kill the invading pathogens and contribute to wound repair in many aspects. We also reviewed the epigenetic mechanisms known to regulate keratinocyte immune functions, including histone modifications, non-protein-coding RNAs (e.g., microRNAs, and long noncoding RNAs), and chromatin dynamics. Lastly, we summarized the current evidence on the dysregulated immune functions of keratinocytes in chronic nonhealing wounds. Based on their crucial immune functions in skin wound healing, we propose that keratinocytes significantly contribute to the pathogenesis of chronic wound inflammation. We hope this review will trigger an interest in investigating the immune roles of keratinocytes in chronic wound pathology, which may open up new avenues for developing innovative wound treatments.
Collapse
Affiliation(s)
| | | | - Ning Xu Landén
- Center for Molecular Medicine, Ming Wai Lau Centre for Reparative Medicine, Department of Medicine Solna, Dermatology and Venereology Division, Karolinska Institute, 17176 Stockholm, Sweden; (M.P.); (D.L.)
| |
Collapse
|
50
|
The Cutaneous Wound Innate Immunological Microenvironment. Int J Mol Sci 2020; 21:ijms21228748. [PMID: 33228152 PMCID: PMC7699544 DOI: 10.3390/ijms21228748] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
The skin represents the first line of defense and innate immune protection against pathogens. Skin normally provides a physical barrier to prevent infection by pathogens; however, wounds, microinjuries, and minor barrier impediments can present open avenues for invasion through the skin. Accordingly, wound repair and protection from invading pathogens are essential processes in successful skin barrier regeneration. To repair and protect wounds, skin promotes the development of a specific and complex immunological microenvironment within and surrounding the disrupted tissue. This immune microenvironment includes both innate and adaptive processes, including immune cell recruitment to the wound and secretion of extracellular factors that can act directly to promote wound closure and wound antimicrobial defense. Recent work has shown that this immune microenvironment also varies according to the specific context of the wound: the microbiome, neuroimmune signaling, environmental effects, and age play roles in altering the innate immune response to wounding. This review will focus on the role of these factors in shaping the cutaneous microenvironment and how this ultimately impacts the immune response to wounding.
Collapse
|