1
|
Wu KL, Montalvo MJ, Menon PS, Roysam B, Varadarajan N. PostFocus: automated selective post-acquisition high-throughput focus restoration using diffusion model for label-free time-lapse microscopy. Bioinformatics 2024; 40:btae467. [PMID: 39042160 PMCID: PMC11520405 DOI: 10.1093/bioinformatics/btae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/31/2024] [Accepted: 07/23/2024] [Indexed: 07/24/2024] Open
Abstract
MOTIVATION High-throughput time-lapse imaging is a fundamental tool for efficient living cell profiling at single-cell resolution. Label-free phase-contrast video microscopy enables noninvasive, nontoxic, and long-term imaging. The tradeoff between speed and throughput, however, implies that despite the state-of-the-art autofocusing algorithms, out-of-focus cells are unavoidable due to the migratory nature of immune cells (velocities >10 μm/min). Here, we propose PostFocus to (i) identify out-of-focus images within time-lapse sequences with a classifier, and (ii) deploy a de-noising diffusion probabilistic model to yield reliable in-focus images. RESULTS De-noising diffusion probabilistic model outperformed deep discriminative models with a superior performance on the whole image and around cell boundaries. In addition, PostFocus improves the accuracy of image analysis (cell and contact detection) and the yield of usable videos. AVAILABILITY AND IMPLEMENTATION Open-source code and sample data are available at: https://github.com/kwu14victor/PostFocus.
Collapse
Affiliation(s)
- Kwan-Ling Wu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Melisa J Montalvo
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Prashant S Menon
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Badrinath Roysam
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, United States
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| |
Collapse
|
2
|
Wu KL, Martinez-Paniagua M, Reichel K, Menon PS, Deo S, Roysam B, Varadarajan N. Automated detection of apoptotic bodies and cells in label-free time-lapse high-throughput video microscopy using deep convolutional neural networks. Bioinformatics 2023; 39:btad584. [PMID: 37773981 PMCID: PMC10563152 DOI: 10.1093/bioinformatics/btad584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023] Open
Abstract
MOTIVATION Reliable label-free methods are needed for detecting and profiling apoptotic events in time-lapse cell-cell interaction assays. Prior studies relied on fluorescent markers of apoptosis, e.g. Annexin-V, that provide an inconsistent and late indication of apoptotic onset for human melanoma cells. Our motivation is to improve the detection of apoptosis by directly detecting apoptotic bodies in a label-free manner. RESULTS Our trained ResNet50 network identified nanowells containing apoptotic bodies with 92% accuracy and predicted the onset of apoptosis with an error of one frame (5 min/frame). Our apoptotic body segmentation yielded an IoU accuracy of 75%, allowing associative identification of apoptotic cells. Our method detected apoptosis events, 70% of which were not detected by Annexin-V staining. AVAILABILITY AND IMPLEMENTATION Open-source code and sample data provided at https://github.com/kwu14victor/ApoBDproject.
Collapse
Affiliation(s)
- Kwan-Ling Wu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Melisa Martinez-Paniagua
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Kate Reichel
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Prashant S Menon
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Shravani Deo
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Badrinath Roysam
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, United States
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| |
Collapse
|
3
|
Basiri M. Personalized medicine, the inevitable future of cancer immunotherapy. Per Med 2023; 20:413-416. [PMID: 37800352 DOI: 10.2217/pme-2023-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Affiliation(s)
- Mohsen Basiri
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
- Department of Stem Cells & Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, 193954644, Iran
| |
Collapse
|
4
|
Pineau J, Moreau H, Duménil AML, Pierobon P. Polarity in immune cells. Curr Top Dev Biol 2023; 154:197-222. [PMID: 37100518 DOI: 10.1016/bs.ctdb.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Immune cells are responsible for pathogen detection and elimination, as well as for signaling to other cells the presence of potential danger. In order to mount an efficient immune response, they need to move and search for a pathogen, interact with other cells, and diversify the population by asymmetric cell division. All these actions are regulated by cell polarity: cell polarity controls cell motility, which is crucial for scanning peripheral tissues to detect pathogens, and recruiting immune cells to sites of infection; immune cells, in particular lymphocytes, communicate with each other by a direct contact called immunological synapse, which entails a global polarization of the cell and plays a role in activating lymphocyte response; finally, immune cells divide asymmetrically from a precursor, generating a diversity of phenotypes and cell types among daughter cells, such as memory and effector cells. This review aims at providing an overview from both biology and physics perspectives of how cell polarity shapes the main immune cell functions.
Collapse
Affiliation(s)
- Judith Pineau
- Institut Curie, PSL Research University, INSERM U932, Paris, Cedex, France; Université Paris Cité, Paris, France
| | - Hélène Moreau
- Institut Curie, PSL Research University, INSERM U932, Paris, Cedex, France
| | | | - Paolo Pierobon
- Institut Curie, PSL Research University, INSERM U932, Paris, Cedex, France.
| |
Collapse
|
5
|
Pineau J, Pinon L, Fattaccioli J, Pierobon P. Functionalized Lipid Droplets and Microfluidics Approach to Study Immune Cell Polarity In Vitro. Methods Mol Biol 2023; 2654:345-362. [PMID: 37106193 DOI: 10.1007/978-1-0716-3135-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The study of lymphocyte polarization upon antigen encounter typically relies on the random pairing between the cells of interest and a stimulating particle (micro bead) that mimics only some of the properties of the antigen-presenting cells. Here, we show how to build and use a microfluidic chip that allows to multiplex and synchronize the encounter between a lymphocyte and an antigen-presenting object: a functionalized oil-in-water droplet. We also explain how to fabricate and functionalize lipid droplets, an antigen-presenting tool that is, at the same time, deformable, fluid, and spherical.
Collapse
Affiliation(s)
- Judith Pineau
- Institut Curie, PSL Research University, INSERM U932, Paris, France
- Université Paris Cité, Paris, France
| | - Léa Pinon
- Institut Curie, PSL Research University, INSERM U932, Paris, France
- Laboratoire P.A.S.T.E.U.R., Département de Chimie, École Normale Supérieure, PSL Research University, Sorbonne Université, CNRS, Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, Paris, France
| | - Jacques Fattaccioli
- Laboratoire P.A.S.T.E.U.R., Département de Chimie, École Normale Supérieure, PSL Research University, Sorbonne Université, CNRS, Paris, France.
- Institut Pierre-Gilles de Gennes pour la Microfluidique, Paris, France.
| | - Paolo Pierobon
- Institut Curie, PSL Research University, INSERM U932, Paris, France.
| |
Collapse
|
6
|
Tang X, Huang Q, Arai T, Liu X. Cell pairing for biological analysis in microfluidic devices. BIOMICROFLUIDICS 2022; 16:061501. [PMID: 36389274 PMCID: PMC9646252 DOI: 10.1063/5.0095828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Cell pairing at the single-cell level usually allows a few cells to contact or seal in a single chamber and provides high-resolution imaging. It is pivotal for biological research, including understanding basic cell functions, creating cancer treatment technologies, developing drugs, and more. Laboratory chips based on microfluidics have been widely used to trap, immobilize, and analyze cells due to their high efficiency, high throughput, and good biocompatibility properties. Cell pairing technology in microfluidic devices provides spatiotemporal research on cellular interactions and a highly controlled approach for cell heterogeneity studies. In the last few decades, many researchers have emphasized cell pairing research based on microfluidics. They designed various microfluidic device structures for different biological applications. Herein, we describe the current physical methods of microfluidic devices to trap cell pairs. We emphatically summarize the practical applications of cell pairing in microfluidic devices, including cell fusion, cell immunity, gap junction intercellular communication, cell co-culture, and other applications. Finally, we review the advances and existing challenges of the presented devices and then discuss the possible development directions to promote medical and biological research.
Collapse
Affiliation(s)
- Xiaoqing Tang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Huang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tatsuo Arai
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoming Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
7
|
Pinon L, Ruyssen N, Pineau J, Mesdjian O, Cuvelier D, Chipont A, Allena R, Guerin CL, Asnacios S, Asnacios A, Pierobon P, Fattaccioli J. Phenotyping polarization dynamics of immune cells using a lipid droplet-cell pairing microfluidic platform. CELL REPORTS METHODS 2022; 2:100335. [PMID: 36452873 PMCID: PMC9701611 DOI: 10.1016/j.crmeth.2022.100335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 05/12/2023]
Abstract
The immune synapse is the tight contact zone between a lymphocyte and a cell presenting its cognate antigen. This structure serves as a signaling platform and entails a polarization of intracellular components necessary to the immunological function of the cell. While the surface properties of the presenting cell are known to control the formation of the synapse, their impact on polarization has not yet been studied. Using functional lipid droplets as tunable artificial presenting cells combined with a microfluidic pairing device, we simultaneously observe synchronized synapses and dynamically quantify polarization patterns of individual B cells. By assessing how ligand concentration, surface fluidity, and substrate rigidity impact lysosome polarization, we show that its onset and kinetics depend on the local antigen concentration at the synapse and on substrate rigidity. Our experimental system enables a fine phenotyping of monoclonal cell populations based on their synaptic readout.
Collapse
Affiliation(s)
- Léa Pinon
- École Normale Supérieure, UMR 8640, Laboratoire PASTEUR, Département de Chimie, PSL Research University, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Curie, U932, Immunology and Cancer, INSERM, 75005 Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
| | - Nicolas Ruyssen
- Arts et Métiers Institute of Technology, Université Paris 13, Sorbonne Paris Cité, IBHGC, HESAM Université, 75013 Paris, France
| | - Judith Pineau
- Institut Curie, U932, Immunology and Cancer, INSERM, 75005 Paris, France
| | - Olivier Mesdjian
- École Normale Supérieure, UMR 8640, Laboratoire PASTEUR, Département de Chimie, PSL Research University, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
| | - Damien Cuvelier
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
- Institut Curie, UMR 144, PSL Research University, CNRS, Paris, France
- Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 926 Chemistry, 75005 Paris, France
| | - Anna Chipont
- Institut Curie, Cytometry Platform, 75005 Paris, France
| | - Rachele Allena
- Arts et Métiers Institute of Technology, Université Paris 13, Sorbonne Paris Cité, IBHGC, HESAM Université, 75013 Paris, France
- LJAD, UMR 7351, Université Côte d’Azur, 06100 Nice, France
| | - Coralie L. Guerin
- Institut Curie, Cytometry Platform, 75005 Paris, France
- Université Paris Cité, INSERM, Innovative Therapies in Haemostasis, 75006 Paris, France
| | - Sophie Asnacios
- Université de Paris, CNRS, Laboratoire Matière et Systèmes Complexes, UMR 7057, 75013 Paris, France
- Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 925 Physics, 75005 Paris, France
| | - Atef Asnacios
- Université de Paris, CNRS, Laboratoire Matière et Systèmes Complexes, UMR 7057, 75013 Paris, France
| | - Paolo Pierobon
- Institut Curie, U932, Immunology and Cancer, INSERM, 75005 Paris, France
| | - Jacques Fattaccioli
- École Normale Supérieure, UMR 8640, Laboratoire PASTEUR, Département de Chimie, PSL Research University, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
| |
Collapse
|
8
|
Cho JH, Tsao WC, Naghizadeh A, Liu D. Standardized protocol for the evaluation of chimeric antigen receptor (CAR)-modified cell immunological synapse quality using the glass-supported planar lipid bilayer. Methods Cell Biol 2022; 173:155-171. [PMID: 36653082 PMCID: PMC10768727 DOI: 10.1016/bs.mcb.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chimeric antigen receptor (CAR)-modified cell therapy is an effective therapy that harnesses the power of the human immune system by re-engineering immune cells that specifically kill tumor cells with tumor antigen specificity. Key to the effective elimination of tumor cells is the establishment of the immunological synapse (IS) between CAR-modified immune cells and their susceptible tumors. For functional activity, CAR-modified cells must form an effective IS to kill tumor cells specifically. The formation of the CAR-specific IS requires the coordination of many cellular processes including reorganization of the cytoskeletal structure, polarization of lytic granules, accumulation of tumor antigen, and phosphorylation of key signaling molecules within the IS. Visualization and assessment of the CAR IS quality can reveal much about the molecular mechanisms that underlie the efficacy of various CAR-modified immune cells. This chapter provides a standardized method of assessing the IS quality by quantifying the tumor antigen (defining the CAR IS formation), cytoskeleton (key component of CAR IS structure), and various molecules of interest involved in the IS formation (key molecular mechanism signatures of CAR IS function) using immunofluorescence on the glass-supported planar lipid bilayer, with a focus on tumor antigen only in this study. We provide specific insights and helpful tips for reagent and sample preparation, assay design, and machine learning (ML)-based data analysis. The protocol described in this chapter will provide a valuable tool to visualize and assess the IS quality of various CAR-modified immune cells.
Collapse
Affiliation(s)
- Jong Hyun Cho
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States; Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Wei-Chung Tsao
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States; Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Alireza Naghizadeh
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States; Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States; Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States.
| |
Collapse
|
9
|
Kosaka T, Yamaguchi S, Izuta S, Yamahira S, Shibasaki Y, Tateno H, Okamoto A. Bioorthogonal Photoreactive Surfaces for Single-Cell Analysis of Intercellular Communications. J Am Chem Soc 2022; 144:17980-17988. [PMID: 36126284 DOI: 10.1021/jacs.2c07321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methods to construct single-cell pairs of heterogeneous cells attract attention because of their potential in cell biological and medical applications for analyzing individual intercellular communications such as immune and nerve synaptic interactions. Photoactivatable substrate surfaces for cell anchoring are promising tools to achieve single-cell pairing. However, conventional surfaces that photoactivate a single type of cell anchoring moiety restrict the combination of cell pair types and their applications. We developed a photoresponsive material comprising a bioorthogonal photoreactive moiety and non-cell adhesive hydrophilic polymer. The material-coated surface allows conjugation with various cell anchoring molecules in response to light at specific timings and consequently achieves light-induced anchoring of a variety of cells at defined regions. Using the platform surface, an array of cancer cell and natural-killer (NK) cell pairs was constructed on a flat substrate surface and the dynamic morphological changes of the cancer cells were monitored by cytotoxic interaction with NK cells at a single-cell level. The photoreactive surface is a useful tool for image-based investigation of the communications between a variety of cell types.
Collapse
Affiliation(s)
- Takahiro Kosaka
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoshi Yamaguchi
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,PRESTO, Japan Science and Technology Agency (JST), 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Shin Izuta
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinya Yamahira
- Center for Medical Sciences, St. Luke's International University, 9-1 Akashi-cho, Chuo-ku, Tokyo 104-8560, Japan
| | - Yoshikazu Shibasaki
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Akimitsu Okamoto
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
10
|
Yamaguchi S, Ikeda R, Umeda Y, Kosaka T, Yamahira S, Okamoto A. Chemoenzymatic labeling to visualize intercellular contacts using lipidated sortase A. Chembiochem 2022; 23:e202200474. [PMID: 35976800 DOI: 10.1002/cbic.202200474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/09/2022]
Abstract
Methods to label intercellular contact have attracted attention because of their potential in cell biological and medical applications for the analysis of intercellular communications. In this study, a simple and versatile method for chemoenzymatic labeling of intercellularly contacting cells is demonstrated using a cell-surface anchoring reagent of a poly(ethylene glycol)(PEG)-lipid conjugate. The surfaces of each cell in the cell pairs of interest were decorated with sortase A (SrtA) and triglycine peptide that were lipidated with PEG-lipid. In the mixture of the two cell populations, the triglycine-modified cells were enzymatically labeled with a fluorescent labeling reagent when in contact with SrtA-modified cells on a substrate. The selective labeling of the contacting cells was confirmed by confocal microscopy. The method is a promising tool for selective visualization of intercellularly contacting cells in cell mixtures for cell-cell communication analysis.
Collapse
Affiliation(s)
- Satoshi Yamaguchi
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, 4-6-1 Komaba, Meguro-ku, 153-8904, Tokyo, JAPAN
| | - Ryosuke Ikeda
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, JAPAN
| | - Yuki Umeda
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, JAPAN
| | - Takahiro Kosaka
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, JAPAN
| | - Shinya Yamahira
- St Luke's International University: Sei Roka Kokusai Daigaku, Center for Medical Sciences, JAPAN
| | - Akimitsu Okamoto
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, JAPAN
| |
Collapse
|
11
|
Yamahira S, Misawa R, Kosaka T, Tan M, Izuta S, Yamashita H, Heike Y, Okamoto A, Nagamune T, Yamaguchi S. Photoactivatable Materials for Versatile Single-Cell Patterning Based on the Photocaging of Cell-Anchoring Moieties through Lipid Self-Assembly. J Am Chem Soc 2022; 144:13154-13162. [PMID: 35767880 DOI: 10.1021/jacs.2c02949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Versatile methods for patterning multiple types of cells with single-cell resolution have become an increasingly important technology for cell analysis, cell-based device construction, and tissue engineering. Here, we present a photoactivatable material based on poly(ethylene glycol) (PEG)-lipids for patterning a variety of cells, regardless of their adhesion abilities. In this study, PEG-lipids bearing dual fatty acid chains were first shown to perfectly suppress cell anchoring on their coated substrate surfaces whereas those with single-chain lipids stably anchored cells through lipid-cell membrane interactions. From this finding, a PEG-lipid with one each of both normal and photocleavable fatty acid chains was synthesized as a material that could convert the chain number from two to one by exposure to light. On the photoconvertible PEG-lipid surface, cell anchoring was activated by light exposure. High-speed atomic force microscopy measurements revealed that this photocaging of the lipid-cell membrane interaction occurs because the hydrophobic dual chains self-assemble into nanoscale structures and cooperatively inhibit the anchoring. Light-induced dissociation of the lipid assembly achieved the light-guided fine patterning of multiple cells through local photoactivation of the anchoring interactions. Using this surface, human natural killer cells and leukemia cells could be positioned to interact one-by-one. The cytotoxic capacity of single immune cells was then monitored via microscopy, showing the proof-of-principle for applications in the high-throughput analysis of the heterogeneity in individual cell-cell communications. Thus, the substrate coated with our photoactivatable material can serve as a versatile platform for the accurate and rapid patterning of multiple-element cells for intercellular communication-based diagnostics.
Collapse
Affiliation(s)
- Shinya Yamahira
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Center for Medical Sciences, St Luke's International University, 9-1 Akashi-Cho, Chuo-ku, Tokyo 104-8560, Japan
| | - Ryuji Misawa
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takahiro Kosaka
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mondong Tan
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shin Izuta
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hayato Yamashita
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 351-0198, Japan.,Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yuji Heike
- Center for Medical Sciences, St Luke's International University, 9-1 Akashi-Cho, Chuo-ku, Tokyo 104-8560, Japan.,Graduate School of Public Health and Hospital, St Luke's International University, 9-1, Akashi-Cho, Chuo-ku, Tokyo 104-8560, Japan
| | - Akimitsu Okamoto
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Teruyuki Nagamune
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoshi Yamaguchi
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 351-0198, Japan
| |
Collapse
|
12
|
Johanson TM, Keenan CR, Allan RS. Shedding Structured Light on Molecular Immunity: The Past, Present and Future of Immune Cell Super Resolution Microscopy. Front Immunol 2021; 12:754200. [PMID: 34975842 PMCID: PMC8715013 DOI: 10.3389/fimmu.2021.754200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
In the two decades since the invention of laser-based super resolution microscopy this family of technologies has revolutionised the way life is viewed and understood. Its unparalleled resolution, speed, and accessibility makes super resolution imaging particularly useful in examining the highly complex and dynamic immune system. Here we introduce the super resolution technologies and studies that have already fundamentally changed our understanding of a number of central immunological processes and highlight other immunological puzzles only addressable in super resolution.
Collapse
Affiliation(s)
- Timothy M. Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Christine R. Keenan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Rhys S. Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
13
|
Pang L, Ding J, Liu XX, Kou Z, Guo L, Xu X, Fan SK. Microfluidics-Based Single-Cell Research for Intercellular Interaction. Front Cell Dev Biol 2021; 9:680307. [PMID: 34458252 PMCID: PMC8397490 DOI: 10.3389/fcell.2021.680307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Intercellular interaction between cell-cell and cell-ECM is critical to numerous biology and medical studies, such as stem cell differentiation, immunotherapy and tissue engineering. Traditional methods employed for delving into intercellular interaction are limited by expensive equipment and sophisticated procedures. Microfluidics technique is considered as one of the powerful measures capable of precisely capturing and manipulating cells and achieving low reagent consumption and high throughput with decidedly integrated functional components. Over the past few years, microfluidics-based systems for intercellular interaction study at a single-cell level have become frequently adopted. This review focuses on microfluidic single-cell studies for intercellular interaction in a 2D or 3D environment with a variety of cell manipulating techniques and applications. The challenges to be overcome are highlighted.
Collapse
Affiliation(s)
- Long Pang
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Jing Ding
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States
| | - Xi-Xian Liu
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhixuan Kou
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Lulu Guo
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Xi Xu
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Shih-Kang Fan
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
14
|
Microfabricated Devices for Confocal Microscopy on Biological Samples. Methods Mol Biol 2021. [PMID: 34028712 DOI: 10.1007/978-1-0716-1402-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Microfabricated devices have found applications in a range of biomedical research problems in recent years, with thousands of research papers published and multiple commercial devices now available. This chapter is intended to provide an overview of the available options for devices compatible with confocal microscopy, including an overview of fabrication techniques and some examples of device use. Although there are times when off-the-shelf devices are well suited for the problem at hand, in some cases customized devices are necessary or more convenient. Protocols for researchers who wish to make their own devices are outlined below; although fabricating templates for devices requires some specialized equipment, making PDMS or hydrogel devices from templates can be done in a standard laboratory setting.
Collapse
|
15
|
Ibañez-Vega J, Vilchez C, Jimenez K, Guevara C, Burgos PI, Naves R. Cellular and molecular regulation of the programmed death-1/programmed death ligand system and its role in multiple sclerosis and other autoimmune diseases. J Autoimmun 2021; 123:102702. [PMID: 34311143 DOI: 10.1016/j.jaut.2021.102702] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 01/12/2023]
Abstract
Programmed Cell Death 1 (PD-1) receptor and its ligands (PD-Ls) are essential to maintain peripheral immune tolerance and to avoid tissue damage. Consequently, altered gene or protein expression of this system of co-inhibitory molecules has been involved in the development of cancer and autoimmunity. Substantial progress has been achieved in the study of the PD-1/PD-Ls system in terms of regulatory mechanisms and therapy. However, the role of the PD-1/PD-Ls pathway in neuroinflammation has been less explored despite being a potential target of treatment for neurodegenerative diseases. Multiple Sclerosis (MS) is the most prevalent, chronic, inflammatory, and autoimmune disease of the central nervous system that leads to demyelination and axonal damage in young adults. Recent studies have highlighted the key role of the PD-1/PD-Ls pathway in inducing a neuroprotective response and restraining T cell activation and neurodegeneration in MS. In this review, we outline the molecular and cellular mechanisms regulating gene expression, protein synthesis and traffic of PD-1/PD-Ls as well as relevant processes that control PD-1/PD-Ls engagement in the immunological synapse between antigen-presenting cells and T cells. Also, we highlight the most recent findings regarding the role of the PD-1/PD-Ls pathway in MS and its murine model, experimental autoimmune encephalomyelitis (EAE), including the contribution of PD-1 expressing follicular helper T (TFH) cells in the pathogenesis of these diseases. In addition, we compare and contrast results found in MS and EAE with evidence reported in other autoimmune diseases and their experimental models, and review PD-1/PD-Ls-targeting therapeutic approaches.
Collapse
Affiliation(s)
- Jorge Ibañez-Vega
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Constanza Vilchez
- Faculty of Natural Sciences, Mathematics and Environment, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Karin Jimenez
- Faculty of Natural Sciences, Mathematics and Environment, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Carlos Guevara
- Department of Neurology and Neurosurgery, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Paula I Burgos
- Department of Clinical Immunology and Rheumatology, School of Medicine, Pontificia Universidad Católica de Chile, Chile.
| | - Rodrigo Naves
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
16
|
Zhou Y, Shao N, Bessa de Castro R, Zhang P, Ma Y, Liu X, Huang F, Wang RF, Qin L. Evaluation of Single-Cell Cytokine Secretion and Cell-Cell Interactions with a Hierarchical Loading Microwell Chip. Cell Rep 2021; 31:107574. [PMID: 32348757 PMCID: PMC7583657 DOI: 10.1016/j.celrep.2020.107574] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/21/2020] [Accepted: 04/02/2020] [Indexed: 02/01/2023] Open
Abstract
Comprehensive evaluation of single T cell functions such as cytokine secretion and cytolysis of target cells is greatly needed in adoptive cell therapy (ACT) but has never been fully fulfilled by current approaches. Herein, we develop a hierarchical loading microwell chip (HL-Chip) that aligns multiple cells and functionalized beads in a high-throughput microwell array with single-cell/bead precision based on size differences. We demonstrate the potential of the HL-Chip in evaluating single T cell functions by three applications: high-throughput longitudinal secretory profiling of single T cells, large-scale evaluation of cytolytic activity of single T cells, and integrated T cell-tumor cell interactions. The HL-Chip is a simple and robust technology that constructs arrays of defined cell/object combinations for multiple measurements and material retrieval.
Collapse
Affiliation(s)
- Yufu Zhou
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; The Third Xiangya Hospital, Central South University, Changsha 410008, China; Center for inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Ning Shao
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ricardo Bessa de Castro
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Pengchao Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yuan Ma
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Xin Liu
- Center for inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Medicine and Norris Comprehensive Cancer Center, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Feizhou Huang
- The Third Xiangya Hospital, Central South University, Changsha 410008, China
| | - Rong-Fu Wang
- Center for inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Pediatrics, Children's Hospital of Los Angeles, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA; Department of Medicine and Norris Comprehensive Cancer Center, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
17
|
Sajman J, Razvag Y, Schidorsky S, Kinrot S, Hermon K, Yakovian O, Sherman E. Adhering interacting cells to two opposing coverslips allows super-resolution imaging of cell-cell interfaces. Commun Biol 2021; 4:439. [PMID: 33795833 PMCID: PMC8016881 DOI: 10.1038/s42003-021-01960-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/03/2021] [Indexed: 02/01/2023] Open
Abstract
Cell-cell interfaces convey mechanical and chemical information in multicellular systems. Microscopy has revealed intricate structure of such interfaces, yet typically with limited resolution due to diffraction and unfavourable orthogonal orientation of the interface to the coverslip. We present a simple and robust way to align cell-cell interfaces in parallel to the coverslip by adhering the interacting cells to two opposing coverslips. We demonstrate high-quality diffraction-limited and super-resolution imaging of interfaces (immune-synapses) between fixed and live CD8+ T-cells and either antigen presenting cells or melanoma cells. Imaging methods include bright-field, confocal, STED, dSTORM, SOFI, SRRF and large-scale tiled images. The low background, lack of aberrations and enhanced spatial stability of our method relative to existing cell-trapping techniques allow use of these methods. We expect that the simplicity and wide-compatibility of our approach will allow its wide dissemination for super-resolving the intricate structure and molecular organization in a variety of cell-cell interfaces.
Collapse
Affiliation(s)
- Julia Sajman
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Yair Razvag
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | | | - Seon Kinrot
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
- Graduate Program in Biophysics, Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Kobi Hermon
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Oren Yakovian
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
18
|
Bhingardive V, Le Saux G, Edri A, Porgador A, Schvartzman M. Nanowire Based Guidance of the Morphology and Cytotoxic Activity of Natural Killer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007347. [PMID: 33719212 DOI: 10.1002/smll.202007347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The cytotoxic activity of natural killer (NK) cells is regulated by many chemical and physical cues, whose integration mechanism is still obscure. Here, a multifunctional platform is engineered for NK cell stimulation, to study the effect of the signal integration and spatial heterogeneity on NK cell function. The platform is based on nanowires, whose mechanical compliance and site-selective tip functionalization with antigens produce the physical and chemical stimuli, respectively. The nanowires are confined to micron-sized islands, which induce a splitting of the NK cells into two subpopulations with distinct morphologies and immune responses: NK cells atop the nanowire islands display symmetrical spreading and enhanced activation, whereas cells lying in the straits between the islands develop elongated profiles and show lower activation levels. The demonstrated tunability of NK cell cytotoxicity provides an important insight into the mechanism of their immune function and introduces a novel technological route for the ex vivo shaping of cytotoxic lymphocytes in immunotherapy.
Collapse
Affiliation(s)
- Viraj Bhingardive
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, The Shraga Segal Department of Microbiology, Immunology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Guillaume Le Saux
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, The Shraga Segal Department of Microbiology, Immunology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Avishay Edri
- Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Angel Porgador
- Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Mark Schvartzman
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, The Shraga Segal Department of Microbiology, Immunology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| |
Collapse
|
19
|
Calvo V, Izquierdo M. Role of Actin Cytoskeleton Reorganization in Polarized Secretory Traffic at the Immunological Synapse. Front Cell Dev Biol 2021; 9:629097. [PMID: 33614660 PMCID: PMC7890359 DOI: 10.3389/fcell.2021.629097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/11/2021] [Indexed: 01/01/2023] Open
Abstract
T cell receptor (TCR) and B cell receptor (BCR) stimulation by antigen presented on an antigen-presenting cell (APC) induces the formation of the immune synapse (IS), the convergence of secretory vesicles from T and B lymphocytes toward the centrosome, and the polarization of the centrosome to the immune synapse. Immune synapse formation is associated with an initial increase in cortical F-actin at the synapse, followed by a decrease in F-actin density at the central region of the immune synapse, which contains the secretory domain. These reversible, actin cytoskeleton reorganization processes occur during lytic granule degranulation in cytotoxic T lymphocytes (CTL) and cytokine-containing vesicle secretion in T-helper (Th) lymphocytes. Recent evidences obtained in T and B lymphocytes forming synapses show that F-actin reorganization also occurs at the centrosomal area. F-actin reduction at the centrosomal area appears to be involved in centrosome polarization. In this review we deal with the biological significance of both cortical and centrosomal area F-actin reorganization and some of the derived biological consequences.
Collapse
Affiliation(s)
- Victor Calvo
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Manuel Izquierdo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
20
|
Felce JH, Parolini L, Sezgin E, Céspedes PF, Korobchevskaya K, Jones M, Peng Y, Dong T, Fritzsche M, Aarts D, Frater J, Dustin ML. Single-Molecule, Super-Resolution, and Functional Analysis of G Protein-Coupled Receptor Behavior Within the T Cell Immunological Synapse. Front Cell Dev Biol 2021; 8:608484. [PMID: 33537301 PMCID: PMC7848080 DOI: 10.3389/fcell.2020.608484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022] Open
Abstract
A central process in immunity is the activation of T cells through interaction of T cell receptors (TCRs) with agonistic peptide-major histocompatibility complexes (pMHC) on the surface of antigen presenting cells (APCs). TCR-pMHC binding triggers the formation of an extensive contact between the two cells termed the immunological synapse, which acts as a platform for integration of multiple signals determining cellular outcomes, including those from multiple co-stimulatory/inhibitory receptors. Contributors to this include a number of chemokine receptors, notably CXC-chemokine receptor 4 (CXCR4), and other members of the G protein-coupled receptor (GPCR) family. Although best characterized as mediators of ligand-dependent chemotaxis, some chemokine receptors are also recruited to the synapse and contribute to signaling in the absence of ligation. How these and other GPCRs integrate within the dynamic structure of the synapse is unknown, as is how their normally migratory Gαi-coupled signaling is terminated upon recruitment. Here, we report the spatiotemporal organization of several GPCRs, focusing on CXCR4, and the G protein Gαi2 within the synapse of primary human CD4+ T cells on supported lipid bilayers, using standard- and super-resolution fluorescence microscopy. We find that CXCR4 undergoes orchestrated phases of reorganization, culminating in recruitment to the TCR-enriched center. This appears to be dependent on CXCR4 ubiquitination, and does not involve stable interactions with TCR microclusters, as viewed at the nanoscale. Disruption of this process by mutation impairs CXCR4 contributions to cellular activation. Gαi2 undergoes active exclusion from the synapse, partitioning from centrally-accumulated CXCR4. Using a CRISPR-Cas9 knockout screen, we identify several diverse GPCRs with contributions to T cell activation, most significantly the sphingosine-1-phosphate receptor S1PR1, and the oxysterol receptor GPR183. These, and other GPCRs, undergo organization similar to CXCR4; including initial exclusion, centripetal transport, and lack of receptor-TCR interactions. These constitute the first observations of GPCR dynamics within the synapse, and give insights into how these receptors may contribute to T cell activation. The observation of broad GPCR contributions to T cell activation also opens the possibility that modulating GPCR expression in response to cell status or environment may directly regulate responsiveness to pMHC.
Collapse
Affiliation(s)
- James H Felce
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Lucia Parolini
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Erdinc Sezgin
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Pablo F Céspedes
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | | | - Mathew Jones
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Yanchun Peng
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tao Dong
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marco Fritzsche
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.,Rosalind Franklin Institute, Didcot, United Kingdom
| | - Dirk Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Desalvo A, Bateman F, James E, Morgan H, Elliott T. Time-resolved microwell cell-pairing array reveals multiple T cell activation profiles. LAB ON A CHIP 2020; 20:3772-3783. [PMID: 32902549 DOI: 10.1039/d0lc00628a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The differences in behaviour between individual cells in a large population are often important, yet are masked in bulk analyses where only average parameters are measured. One unresolved question in the field of immunology is the extent to which important immunological phenomena such as immunodominance to cancer antigens correlates with the average activity of a population of antigen-specific T lymphocytes, or with the activity of individual "outlier" cells. Despite progress in single cell technologies, few platforms are available that can deliver time-resolved, functional analysis at single cell resolution, for these investigations. We have developed an accessible high-throughput platform to measure single T cell signalling in real time following time-controlled stimulation by live antigen presenting cells. The cell-trap array consists of thousands of individual microwells cast in an agarose block, which is biocompatible and permeable to nutrients. Single T cells are isolated in wells via passive sedimentation and size exclusion, achieving up to 90% occupancy. The device enables simultaneous activation of thousands of single CD8+ cells. Stimulation with soluble reagents (ionomycin, anti-CD3 antibodies) or antigen presenting cells leads to changes in intracellular calcium concentrations which were measured using calcium-chelating fluorophore dyes. The platform was used to demonstrate a range of activation profiles among individual cells of a cloned, antigen specific CD8+ T cell hybridoma in response to both nonspecific stimuli and specific, physiologically relevant antigen stimulation. The presence of two different activation profiles was demonstrated, together with rare outlier behaviour among cells that are essentially clonal.
Collapse
Affiliation(s)
- Anna Desalvo
- Centre for Cancer Immunology, University of Southampton, Southampton, UK.
| | | | | | | | | |
Collapse
|
22
|
Biolato AM, Filali L, Wurzer H, Hoffmann C, Gargiulo E, Valitutti S, Thomas C. Actin remodeling and vesicular trafficking at the tumor cell side of the immunological synapse direct evasion from cytotoxic lymphocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:99-130. [PMID: 33066877 DOI: 10.1016/bs.ircmb.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andrea Michela Biolato
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Liza Filali
- Cancer Research Center of Toulouse, INSERM, Toulouse, France
| | - Hannah Wurzer
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Céline Hoffmann
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Ernesto Gargiulo
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Salvatore Valitutti
- Cancer Research Center of Toulouse, INSERM, Toulouse, France; Department of Pathology, Institut Universitaire du Cancer-Oncopole, Toulouse, France.
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg.
| |
Collapse
|
23
|
Liu D, Badeti S, Dotti G, Jiang JG, Wang H, Dermody J, Soteropoulos P, Streck D, Birge RB, Liu C. The Role of Immunological Synapse in Predicting the Efficacy of Chimeric Antigen Receptor (CAR) Immunotherapy. Cell Commun Signal 2020; 18:134. [PMID: 32843053 PMCID: PMC7446110 DOI: 10.1186/s12964-020-00617-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract Chimeric Antigen Receptor (CAR) immunotherapy utilizes genetically-engineered immune cells that express a unique cell surface receptor that combines tumor antigen specificity with immune cell activation. In recent clinical trials, the adoptive transfer of CAR-modified immune cells (including CAR-T and CAR-NK cells) into patients has been remarkably successful in treating multiple refractory blood cancers. To improve safety and efficacy, and expand potential applicability to other cancer types, CARs with different target specificities and sequence modifications are being developed and tested by many laboratories. Despite the overall progress in CAR immunotherapy, conventional tools to design and evaluate the efficacy and safety of CAR immunotherapies can be inaccurate, time-consuming, costly, and labor-intensive. Furthermore, existing tools cannot always determine how responsive individual patients will be to a particular CAR immunotherapy. Recent work in our laboratory suggests that the quality of the immunological synapse (IS) can accurately predict CAR-modified cell efficacy (and toxicity) that can correlate with clinical outcomes. Here we review current efforts to develop a Synapse Predicts Efficacy (SPE) system for easy, rapid and cost-effective evaluation of CAR-modified immune cell immunotherapy. Ultimately, we hypothesize the conceptual basis and clinical application of SPE will serve as an important parameter in evaluating CAR immunotherapy and significantly advance precision cancer immunotherapy. Video abstract
Graphical abstract Graphic abstract for manuscript CCAS-D-20-00136 by Liu, D., et al., ‘The Role of Immunological Synapse in Predicting the Efficacy of Chimeric Antigen Receptor (CAR) Immunotherapy”. The various branches of evaluating cancer immunotherapy metaphorically represented as a Rubik’s cube. The development of a novel approach to predict the effectiveness of Chimeric Antigen Receptor (CAR)-modified cells by quantifying the quality of CAR IS will introduce a new parameter to the rapidly expanding field of cancer immunotherapy. Currently, no single parameter can predict the clinical outcome or efficacy of a specific type of CAR-modified cell. IS quality will serve as a quantifiable measure to evaluate CAR products and can be used in conjunction with other conventional parameters to form a composite clinical predictor. Much like a Rubik’s cube has countless configurations, several methods and combinations of clinical metrics have arisen for evaluating the ability of a given immunotherapeutic strategy to treat cancer. The quality of IS depicting cancer immunotherapy is metaphorically expressed as a Rubik’s cube. Each face/color represents one aspect of cancer therapy. Each grid in one face indicates one factor within that aspect of cancer therapy. For example, the green color represents the tumor microenvironment, and one out of the nine grids in the green color indicates suppressor cells (suppressors in green). Changes in one factor may completely alter the entire strategy of cancer therapy. However, the quality of IS (illuminated center red grid) makes the effectiveness of CAR immunotherapy predictable.
![]()
Collapse
Affiliation(s)
- Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA. .,Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07101, USA.
| | - Saiaditya Badeti
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jie-Gen Jiang
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - He Wang
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - James Dermody
- Institute of Genomic Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07103, USA
| | - Patricia Soteropoulos
- Institute of Genomic Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07103, USA
| | - Deanna Streck
- Institute of Genomic Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07103, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, 07103, USA
| | - Chen Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University- New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA.,Department of Pathology, Yale School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06510, USA
| |
Collapse
|
24
|
Zhang D, Teng R, Lv N, Lei L, Wang Y, Williamson RA, Chen P, Gao P, O'Dwyer M, Li A, Hu J. A novel CD2 staining-based flow cytometric assay for assessment of natural killer cell cytotoxicity. J Clin Lab Anal 2020; 34:e23519. [PMID: 32808354 PMCID: PMC7755793 DOI: 10.1002/jcla.23519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Assessing cytotoxicity is fundamental to studying natural killer (NK) cell function. Various radioactive and non-radioactive cytotoxicity assays measuring target cell death have been developed. Among these methods, the most commonly used 51 Chromium-release assay (CRA) and flow cytometry-based cytotoxicity assays (FCCs) are the major representatives. Nonetheless, several drawbacks, including dye leakage and the potential effects of prior labeling on cells, curb the broad applicability of the FCCs. METHODS Here, we report a rapid FCC for quantifying target cell death after co-incubation with NK cells. In this assay, after 4 hours of NK cell-target cell co-incubation, fluorochrome-conjugated CD2 antibody was used to identify NK cells, and SYTOX Green and Annexin V-FITC were further used to detect target cell death in CD2-negative population. In parallel, both CRA and FCC assay using CFSE/ 7-AAD were performed to validate the reproducibility and replicability. RESULTS We observed that CD2 is exclusively positive on NK cells other than the most common hematological target tumor cells, such as K562, HL60, MOLM13, Raji, NCI-H929, rpmi8226, MM.1S, and KMS11. Assessment of target cell death using the CD2-based FCC shows a significantly higher percent specific lysis of the target cells compared to the standard CRA and the FCC assay using CFSE and 7-AAD. CONCLUSIONS We demonstrated that this CD2-based FCC is a fast, simple, and reliable method for evaluating NK cell cytotoxicity.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Rui Teng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Nan Lv
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lei Lei
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yanmeng Wang
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ramone A Williamson
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ping Chen
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Peigen Gao
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Michael O'Dwyer
- Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Jinsong Hu
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
25
|
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy is a promising frontier of immunoengineering and cancer immunotherapy. Methods that detect, quantify, track, and visualize the CAR, have catalyzed the rapid advancement of CAR-T cell therapy from preclinical models to clinical adoption. For instance, CAR-staining/labeling agents have enabled flow cytometry analysis, imaging applications, cell sorting, and high-dimensional clinical profiling. Molecular assays, such as quantitative polymerase chain reaction, integration site analysis, and RNA-sequencing, have characterized CAR transduction, expression, and in vivo CAR-T cell expansion kinetics. In vitro visualization methods, including confocal and total internal reflection fluorescence microscopy, have captured the molecular details underlying CAR immunological synapse formation, signaling, and cytotoxicity. In vivo tracking methods, including two-photon microscopy, bioluminescence imaging, and positron emission tomography scanning, have monitored CAR-T cell biodistribution across blood, tissue, and tumor. Here, we review the plethora of CAR detection methods, which can operate at the genomic, transcriptomic, proteomic, and organismal levels. For each method, we discuss: (1) what it measures; (2) how it works; (3) its scientific and clinical importance; (4) relevant examples of its use; (5) specific protocols for CAR detection; and (6) its strengths and weaknesses. Finally, we consider current scientific and clinical needs in order to provide future perspectives for improved CAR detection.
Collapse
Affiliation(s)
- Yifei Hu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| |
Collapse
|
26
|
Murin CD. Considerations of Antibody Geometric Constraints on NK Cell Antibody Dependent Cellular Cytotoxicity. Front Immunol 2020; 11:1635. [PMID: 32849559 PMCID: PMC7406664 DOI: 10.3389/fimmu.2020.01635] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
It has been well-established that antibody isotype, glycosylation, and epitope all play roles in the process of antibody dependent cellular cytotoxicity (ADCC). For natural killer (NK) cells, these phenotypes are linked to cellular activation through interaction with the IgG receptor FcγRIIIa, a single pass transmembrane receptor that participates in cytoplasmic signaling complexes. Therefore, it has been hypothesized that there may be underlying spatial and geometric principles that guide proper assembly of an activation complex within the NK cell immune synapse. Further, synergy of antibody phenotypic properties as well as allosteric changes upon antigen binding may also play an as-of-yet unknown role in ADCC. Understanding these facets, however, remains hampered by difficulties associated with studying immune synapse dynamics using classical approaches. In this review, I will discuss relevant NK cell biology related to ADCC, including the structural biology of Fc gamma receptors, and how the dynamics of the NK cell immune synapse are being studied using innovative microscopy techniques. I will provide examples from the literature demonstrating the effects of spatial and geometric constraints on the T cell receptor complex and how this relates to intracellular signaling and the molecular nature of lymphocyte activation complexes, including those of NK cells. Finally, I will examine how the integration of high-throughput and "omics" technologies will influence basic NK cell biology research moving forward. Overall, the goal of this review is to lay a basis for understanding the development of drugs and therapeutic antibodies aimed at augmenting appropriate NK cell ADCC activity in patients being treated for a wide range of illnesses.
Collapse
Affiliation(s)
- Charles D. Murin
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, United States
| |
Collapse
|
27
|
Tang X, Liu X, Li P, Liu F, Kojima M, Huang Q, Arai T. On-Chip Cell–Cell Interaction Monitoring at Single-Cell Level by Efficient Immobilization of Multiple Cells in Adjustable Quantities. Anal Chem 2020; 92:11607-11616. [DOI: 10.1021/acs.analchem.0c01148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xiaoqing Tang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoming Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Pengyun Li
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fengyu Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Masaru Kojima
- Department of Materials Engineering Science, Osaka University, Osaka 560-8531, Japan
| | - Qiang Huang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tatsuo Arai
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| |
Collapse
|
28
|
Godino N, Pfisterer F, Gerling T, Guernth-Marschner C, Duschl C, Kirschbaum M. Combining dielectrophoresis and computer vision for precise and fully automated single-cell handling and analysis. LAB ON A CHIP 2019; 19:4016-4020. [PMID: 31746875 DOI: 10.1039/c9lc00800d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the advent of single-cell technologies comes the necessity for efficient protocols to process single cells. We combine dielectrophoresis with open source computer vision programming to automatically control the trajectories of single cells inside a microfluidic device. Using real-time image analysis, individual cells are automatically selected, isolated and spatially arranged.
Collapse
Affiliation(s)
- Neus Godino
- Fraunhofer IZI-BB, Am Muehlenberg 13, 14476 Potsdam, Germany.
| | - Felix Pfisterer
- Fraunhofer IZI-BB, Am Muehlenberg 13, 14476 Potsdam, Germany.
| | - Tobias Gerling
- Fraunhofer IZI-BB, Am Muehlenberg 13, 14476 Potsdam, Germany.
| | | | - Claus Duschl
- Fraunhofer IZI-BB, Am Muehlenberg 13, 14476 Potsdam, Germany.
| | | |
Collapse
|
29
|
Guo X, Zhu H, Liu T, Xu X, Kong Y, Yao S, Sheng X, Yang Z. Development of 99mTc-conjugated JS001 antibody for in vivo mapping of PD-1 distribution in murine. Bioorg Med Chem Lett 2019; 29:2178-2181. [PMID: 31257084 DOI: 10.1016/j.bmcl.2019.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/31/2019] [Accepted: 06/16/2019] [Indexed: 12/31/2022]
Abstract
Here we reported the development of a novel immuno-SPECT tracer, namely 99mTc-JS001, to non-invasively image PD-1 expression in mice. The JS001 antibody was directly labeled by the most widely used SPECT radionuclide 99mTc with a radiochemical yield of 90%, and the specific activity was ≤74 GBq/mmol. After the radiolabeling, 99mTc-JS001 exhibited a similar immnuoaffinity to PD-1 in vitro. 99mTc-conjugated JS001 maintained intact in 5% HSA system for 24 h. S180 sarcoma xenograft-bearing Kunming mice and BGC823 gastric cancer orthotopic tumor model were built. Bio-distribution and/or immuno-SPECT studies with 99mTc-JS001 showed the antibody maintained in the blood, liver, kidneys and tumors at 1.5 ID%/g, 1.4 ID%/g, 2.0 ID%/g and 0.5 ID%/g, respectively. Also, there was a higher uptake in the BGC823 orthotopic tumor than that in the adjunct stomach. These results demonstrated that 99mTc-JS001 might have capacity to monitor the PD-1 expression in vivo, which might facilitate the anti-PD-1 antibodies treatment in preclinical models.
Collapse
Affiliation(s)
- Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaoxia Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Sheng Yao
- Shanghai Junshi Biosciences Co Ltd, Shanghai 201203, China
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
30
|
Le Saux G, Schvartzman M. Advanced Materials and Devices for the Regulation and Study of NK Cells. Int J Mol Sci 2019; 20:E646. [PMID: 30717370 PMCID: PMC6386824 DOI: 10.3390/ijms20030646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
Natural Killer (NK) cells are innate lymphocytes that contribute to immune protection by cytosis, cytokine secretion, and regulation of adaptive responses of T cells. NK cells distinguish between healthy and ill cells, and generate a cytotoxic response, being cumulatively regulated by environmental signals delivered through their diverse receptors. Recent advances in biomaterials and device engineering paved the way to numerous artificial microenvironments for cells, which produce synthetic signals identical or similar to those provided by the physiological environment. In this paper, we review recent advances in materials and devices for artificial signaling, which have been applied to regulate NK cells, and systematically study the role of these signals in NK cell function.
Collapse
Affiliation(s)
- Guillaume Le Saux
- Department of Materials Engineering, Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| | - Mark Schvartzman
- Department of Materials Engineering, Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
31
|
Khan M, Mao S, Li W, Lin J. Microfluidic Devices in the Fast‐Growing Domain of Single‐Cell Analysis. Chemistry 2018; 24:15398-15420. [DOI: 10.1002/chem.201800305] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Mashooq Khan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Sifeng Mao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Weiwei Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| | - Jin‐Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry, & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
32
|
Finetti F, Baldari CT. The immunological synapse as a pharmacological target. Pharmacol Res 2018; 134:118-133. [PMID: 29898412 DOI: 10.1016/j.phrs.2018.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
Abstract
The development of T cell mediated immunity relies on the assembly of a highly specialized interface between T cell and antigen presenting cell (APC), known as the immunological synapse (IS). IS assembly is triggered when the T cell receptor (TCR) binds to specific peptide antigen presented in association to the major histocompatibility complex (MHC) by the APC, and is followed by the spatiotemporal dynamic redistribution of TCR, integrins, co-stimulatory receptors and signaling molecules, allowing for the fine-tuning and integration of the signals that lead to T cell activation. The knowledge acquired to date about the mechanisms of IS assembly underscores this structure as a robust pharmacological target. The activity of molecules involved in IS assembly and function can be targeted by specific compounds to modulate the immune response in a number of disorders, including cancers and autoimmune diseases, or in transplanted patients. Here, we will review the state-of-the art of the current therapies which exploit the IS to modulate the immune response.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy.
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy
| |
Collapse
|
33
|
Huang Y, Chen Z, Jang JH, Baig MS, Bertolet G, Schroeder C, Huang S, Hu Q, Zhao Y, Lewis DE, Qin L, Zhu MX, Liu D. PD-1 blocks lytic granule polarization with concomitant impairment of integrin outside-in signaling in the natural killer cell immunological synapse. J Allergy Clin Immunol 2018; 142:1311-1321.e8. [PMID: 29679656 DOI: 10.1016/j.jaci.2018.02.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND The inhibitory receptor programmed cell death protein 1 (PD-1) is upregulated on a variety of immune cells, including natural killer (NK) cells, during chronic viral infection and tumorigenesis. Blockade of PD-1 or its ligands produces durable clinical responses with tolerable side effects in patients with a broad spectrum of cancers. However, the underlying molecular mechanisms of how PD-1 regulates NK cell function remain poorly characterized. OBJECTIVE We sought to determine the effect of PD-1 signaling on NK cells. METHODS PD-1 was overexpressed in CD16-KHYG-1 (a human NK cell line with both antibody-dependent cellular cytotoxicity through CD16 and natural cytotoxicity through NKG2D) cells and stimulated by exposing the cells to NK-sensitive target cells expressing programmed death ligand 1 (PD-L1). RESULTS PD-1 engagement by PD-L1 specifically blocked NK cell-mediated cytotoxicity without interfering with the conjugation between NK cells and target cells. Further examination showed that PD-1 signaling blocked lytic granule polarization in NK cells, which was accompanied by failure of integrin-linked kinase, a key molecule in the integrin outside-in signaling pathway, to accumulate in the immunological synapse after NK-target cell conjugation. CONCLUSION Our results suggest that NK cell cytotoxicity is inhibited by PD-1 engagement, which blocks lytic granule polarization to the NK cell immunological synapse with concomitant impairment of integrin outside-in signaling. This study provides novel mechanistic insights into how PD-1 inhibition disrupts NK cell function.
Collapse
Affiliation(s)
- Yu Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, Graduate Program in Cell and Regulatory Biology, the University of Texas Health Science Center at Houston, Houston, Tex; Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Tex
| | - Zhiying Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Tex; Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, China
| | - Joon Hee Jang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Tex; Department of Nanomedicine, Houston Methodist Research Institute, Houston, Tex
| | - Mirza S Baig
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, India
| | - Grant Bertolet
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Tex; Department of Pathology and Immunology, Baylor College of Medicine, Houston, Tex
| | - Casey Schroeder
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Tex
| | - Shengjian Huang
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Qian Hu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Tex; Key Laboratory of Gene Engineering of the Ministry of Education, Cooperative Innovation Center for High Performance Computing, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, Cooperative Innovation Center for High Performance Computing, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dorothy E Lewis
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Tex
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Tex
| | - Michael Xi Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, Graduate Program in Cell and Regulatory Biology, the University of Texas Health Science Center at Houston, Houston, Tex.
| | - Dongfang Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Tex; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY.
| |
Collapse
|
34
|
Calvo V, Izquierdo M. Imaging Polarized Secretory Traffic at the Immune Synapse in Living T Lymphocytes. Front Immunol 2018; 9:684. [PMID: 29681902 PMCID: PMC5897431 DOI: 10.3389/fimmu.2018.00684] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
Immune synapse (IS) formation by T lymphocytes constitutes a crucial event involved in antigen-specific, cellular and humoral immune responses. After IS formation by T lymphocytes and antigen-presenting cells, the convergence of secretory vesicles toward the microtubule-organizing center (MTOC) and MTOC polarization to the IS are involved in polarized secretion at the synaptic cleft. This specialized mechanism appears to specifically provide the immune system with a fine strategy to increase the efficiency of crucial secretory effector functions of T lymphocytes, while minimizing non-specific, cytokine-mediated stimulation of bystander cells, target cell killing and activation-induced cell death. The molecular bases involved in the polarized secretory traffic toward the IS in T lymphocytes have been the focus of interest, thus different models and several imaging strategies have been developed to gain insights into the mechanisms governing directional secretory traffic. In this review, we deal with the most widely used, state-of-the-art approaches to address the molecular mechanisms underlying this crucial, immune secretory response.
Collapse
Affiliation(s)
- Víctor Calvo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Manuel Izquierdo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| |
Collapse
|
35
|
Xiong W, Chen Y, Kang X, Chen Z, Zheng P, Hsu YH, Jang JH, Qin L, Liu H, Dotti G, Liu D. Immunological Synapse Predicts Effectiveness of Chimeric Antigen Receptor Cells. Mol Ther 2018; 26:963-975. [PMID: 29503199 PMCID: PMC6080133 DOI: 10.1016/j.ymthe.2018.01.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cell therapy has the potential to improve the overall survival of patients with malignancies by enhancing the effectiveness of CAR T cells. Precisely predicting the effectiveness of various CAR T cells represents one of today’s key unsolved problems in immunotherapy. Here, we predict the effectiveness of CAR-modified cells by evaluating the quality of the CAR-mediated immunological synapse (IS) by quantitation of F-actin, clustering of tumor antigen, polarization of lytic granules (LGs), and distribution of key signaling molecules within the IS. Long-term killing capability, but not secretion of conventional cytokines or standard 4-hr cytotoxicity, correlates positively with the quality of the IS in two different CAR T cells that share identical antigen specificity. Xenograft model data confirm that the quality of the IS in vitro correlates positively with performance of CAR-modified immune cells in vivo. Therefore, we propose that the quality of the IS predicts the effectiveness of CAR-modified immune cells, which provides a novel strategy to guide CAR therapy.
Collapse
MESH Headings
- Animals
- Antigens, CD19/immunology
- Antigens, Neoplasm/immunology
- Biomarkers
- Cell Line
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Disease Models, Animal
- Gene Expression
- Gene Order
- Genes, Reporter
- Genetic Vectors/genetics
- Humans
- Immunological Synapses/immunology
- Immunological Synapses/metabolism
- Immunotherapy, Adoptive/methods
- Mice
- Microscopy, Confocal
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Retroviridae/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transduction, Genetic
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Wei Xiong
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Yuhui Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Xi Kang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Zhiying Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Peilin Zheng
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Yi-Hsin Hsu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Joon Hee Jang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Hao Liu
- Biostatistics Core of the Dan L. Duncan Cancer Center, Houston, TX 77030, USA
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dongfang Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
36
|
Park H, Kim H, Doh J. Multifunctional Microwell Arrays for Single Cell Level Functional Analysis of Lymphocytes. Bioconjug Chem 2017; 29:672-679. [DOI: 10.1021/acs.bioconjchem.7b00620] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Finetti F, Cassioli C, Baldari CT. Transcellular communication at the immunological synapse: a vesicular traffic-mediated mutual exchange. F1000Res 2017; 6:1880. [PMID: 29123650 PMCID: PMC5657015 DOI: 10.12688/f1000research.11944.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2017] [Indexed: 12/22/2022] Open
Abstract
The cell’s ability to communicate with the extracellular environment, with other cells, and with itself is a crucial feature of eukaryotic organisms. In the immune system, T lymphocytes assemble a specialized structure upon contact with antigen-presenting cells bearing a peptide-major histocompatibility complex ligand, known as the immunological synapse (IS). The IS has been extensively characterized as a signaling platform essential for T-cell activation. Moreover, emerging evidence identifies the IS as a device for vesicular traffic-mediated cell-to-cell communication as well as an active release site of soluble molecules. Here, we will review recent advances in the role of vesicular trafficking in IS assembly and focused secretion of microvesicles at the synaptic area in naïve T cells and discuss the role of the IS in transcellular communication.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy
| | - Chiara Cassioli
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy
| |
Collapse
|
38
|
Activation of NK cells and disruption of PD-L1/PD-1 axis: two different ways for lenalidomide to block myeloma progression. Oncotarget 2017; 8:24031-24044. [PMID: 28199990 PMCID: PMC5410361 DOI: 10.18632/oncotarget.15234] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/16/2017] [Indexed: 12/16/2022] Open
Abstract
Natural Killer (NK) cells play a critical role against tumor cells in hematological malignancies. Their activating receptors are essential in tumor cell killing. In Multiple Myeloma (MM) patients, NK cell differentiation, activation and cytotoxic potential are strongly impaired leading to MM escape from immune surveillance in tissues and bone marrow. Mechanisms used by MM to affect NK cell functions are mediated by the release of soluble factors, the expression of activating and inhibitory NK cell ligands, and the expression of immune check-point inhibitors. Lenalidomide represents an efficient clinical approach in MM treatment to improve patients' survival. Lenalidomide does not only promotes tumor apoptosis, but also stimulates T and NK cells, thereby facilitating NK-mediated tumor recognition and killing. This occurs since Lenalidomide acts on several critical points: stimulates T cell proliferation and cytokine secretion; decreases the expression of the immune check-point inhibitor Programmed Death-1 (PD-1) on both T and NK cells in MM patients; decreases the expression of both PD-1 and PD-L1 on MM cells; promotes MM cell death and abrogates MM/stromal microenvironment cross-talk, a process known to promote the MM cell survival and proliferation. This leads to the inhibition of the negative signal induced by PD-1/PD-L1 axis on NK cells, restoring NK cell cytotoxic functions. Given the importance of an effective immune response to counteract the MM progression and the promising approaches using anti-PD-1/PD-L1 strategies, we will discuss in this review how Lenalidomide could represent an adequate approach to re-establish the recognition against MM by exhausted NK cell.
Collapse
|
39
|
Li Y, Jang JH, Wang C, He B, Zhang K, Zhang P, Vu T, Qin L. Microfluidics Cell Loading-Dock System: Ordered Cellular Array for Dynamic Lymphocyte-Communication Study. ACTA ACUST UNITED AC 2017; 1:e1700085. [PMID: 32646193 DOI: 10.1002/adbi.201700085] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/12/2017] [Indexed: 12/26/2022]
Abstract
It remains a great challenge to establish a high-throughput platform that can explore the interactions among multiple lymphocytes (>2 cells) and retrieve the interested cells for downstream analysis. This study demonstrates a microfluidics cell loading-dock system (Cell-Dock) to enclose multiple cells in 1D, 2D, and 3D chambers with high throughput and efficiency and single-cell accuracy. The loading efficiencies of 95%, 85%, and 74% for one-, three-, and five-cell systems are achieved, respectively. The Cell-Dock system provides precise and dynamic cell packing models to facilitate lymphocyte-interaction studies. The results demonstrate that individual natural killer (NK) cells may function independently rather than cooperate to lyse target cells in the defined microenvironment. Furthermore, the strong/weak NK cells are retrieved based on their on-chip cytotoxicity and mRNA sequencing is conducted to find the possible mechanisms for "serial killing," an important but unsolved issue. This study finds that the stronger NK cells overexpress multiple genes involved in cytotoxicity and adhesion molecules (including the well-known ICAM1 and seldom reported B4GALT1) might play important roles in the regulation of NK cytolysis.
Collapse
Affiliation(s)
- Ying Li
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Joon Hee Jang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Crystal Wang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Bangshun He
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA.,Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Kai Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Pengchao Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Timothy Vu
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA.,Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| |
Collapse
|
40
|
Liu D, Tian S, Zhang K, Xiong W, Lubaki NM, Chen Z, Han W. Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV. Protein Cell 2017; 8:861-877. [PMID: 28488245 PMCID: PMC5712291 DOI: 10.1007/s13238-017-0415-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/22/2017] [Indexed: 12/31/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells contribute to the body’s immune defenses. Current chimeric antigen receptor (CAR)-modified T cell immunotherapy shows strong promise for treating various cancers and infectious diseases. Although CAR-modified NK cell immunotherapy is rapidly gaining attention, its clinical applications are mainly focused on preclinical investigations using the NK92 cell line. Despite recent advances in CAR-modified T cell immunotherapy, cost and severe toxicity have hindered its widespread use. To alleviate these disadvantages of CAR-modified T cell immunotherapy, additional cytotoxic cell-mediated immunotherapies are urgently needed. The unique biology of NK cells allows them to serve as a safe, effective, alternative immunotherapeutic strategy to CAR-modified T cells in the clinic. While the fundamental mechanisms underlying the cytotoxicity and side effects of CAR-modified T and NK cell immunotherapies remain poorly understood, the formation of the immunological synapse (IS) between CAR-modified T or NK cells and their susceptible target cells is known to be essential. The role of the IS in CAR T and NK cell immunotherapies will allow scientists to harness the power of CAR-modified T and NK cells to treat cancer and infectious diseases. In this review, we highlight the potential applications of CAR-modified NK cells to treat cancer and human immunodeficiency virus (HIV), and discuss the challenges and possible future directions of CAR-modified NK cell immunotherapy, as well as the importance of understanding the molecular mechanisms of CAR-modified T cell- or NK cell-mediated cytotoxicity and side effects, with a focus on the CAR-modified NK cell IS.
Collapse
Affiliation(s)
- Dongfang Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA.
| | - Shuo Tian
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Kai Zhang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Wei Xiong
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ndongala Michel Lubaki
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Zhiying Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Weidong Han
- Institute of Basic Medicine, College of Life Sciences, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
41
|
Vu TQ, de Castro RMB, Qin L. Bridging the gap: microfluidic devices for short and long distance cell-cell communication. LAB ON A CHIP 2017; 17:1009-1023. [PMID: 28205652 PMCID: PMC5473339 DOI: 10.1039/c6lc01367h] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell-cell communication is a crucial component of many biological functions. For example, understanding how immune cells and cancer cells interact, both at the immunological synapse and through cytokine secretion, can help us understand and improve cancer immunotherapy. The study of how cells communicate and form synaptic connections is important in neuroscience, ophthalmology, and cancer research. But in order to increase our understanding of these cellular phenomena, better tools need to be developed that allow us to study cell-cell communication in a highly controlled manner. Some technical requirements for better communication studies include manipulating cells spatiotemporally, high resolution imaging, and integrating sensors. Microfluidics is a powerful platform that has the ability to address these requirements and other current limitations. In this review, we describe some new advances in microfluidic technologies that have provided researchers with novel methods to study intercellular communication. The advantages of microfluidics have allowed for new capabilities in both single cell-cell communication and population-based communication. This review highlights microfluidic communication devices categorized as "short distance", or primarily at the single cell level, and "long distance", which mostly encompasses population level studies. Future directions and translation/commercialization will also be discussed.
Collapse
Affiliation(s)
- Timothy Quang Vu
- Department of Bioengineering, Rice University, Houston, TX 77030, USA and Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Ricardo Miguel Bessa de Castro
- College of Engineering, Swansea University Singleton Park, Swansea, UK and Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA. and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
42
|
Liu Z, Han X, Qin L. Recent Progress of Microfluidics in Translational Applications. Adv Healthc Mater 2016; 5:871-88. [PMID: 27091777 PMCID: PMC4922259 DOI: 10.1002/adhm.201600009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/16/2016] [Indexed: 12/12/2022]
Abstract
Microfluidics, featuring microfabricated structures, is a technology for manipulating fluids at the micrometer scale. The small dimension and flexibility of microfluidic systems are ideal for mimicking molecular and cellular microenvironment, and show great potential in translational research and development. Here, the recent progress of microfluidics in biological and biomedical applications, including molecular analysis, cellular analysis, and chip-based material delivery and biomimetic design is presented. The potential future developments in the translational microfluidics field are also discussed.
Collapse
Affiliation(s)
- Zongbin Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Xin Han
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
43
|
Cacalano NA. Regulation of Natural Killer Cell Function by STAT3. Front Immunol 2016; 7:128. [PMID: 27148255 PMCID: PMC4827001 DOI: 10.3389/fimmu.2016.00128] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 03/21/2016] [Indexed: 01/05/2023] Open
Abstract
Natural killer (NK) cells, key members of a distinct hematopoietic lineage, innate lymphoid cells, are not only critical effectors that mediate cytotoxicity toward tumor and virally infected cells but also regulate inflammation, antigen presentation, and the adaptive immune response. It has been shown that NK cells can regulate the development and activation of many other components of the immune response, such as dendritic cells, which in turn, modulate the function of NK cells in multiple synergistic feed back loops driven by cell–cell contact, and the secretion of cytokines and chemokines that control effector function and migration of cells to sites of immune activation. The signal transducer and activator of transcription (STAT)-3 is involved in driving almost all of the pathways that control NK cytolytic activity as well as the reciprocal regulatory interactions between NK cells and other components of the immune system. In the context of tumor immunology, NK cells are a first line of defense that eliminates pre-cancerous and transformed cells early in the process of carcinogenesis, through a mechanism of “immune surveillance.” Even after tumors become established, NK cells are critical components of anticancer immunity: dysfunctional NK cells are often found in the peripheral blood of cancer patients, and the lack of NK cells in the tumor microenvironment often correlates to poor prognosis. The pathways and soluble factors activated in tumor-associated NK cells, cancer cells, and regulatory myeloid cells, which determine the outcome of cancer immunity, are all critically regulated by STAT3. Using the tumor microenvironment as a paradigm, we present here an overview of the research that has revealed fundamental mechanisms through which STAT3 regulates all aspects of NK cell biology, including NK development, activation, target cell killing, and fine tuning of the innate and adaptive immune responses.
Collapse
Affiliation(s)
- Nicholas A Cacalano
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA
| |
Collapse
|
44
|
Xia Y, Jeffrey Medeiros L, Young KH. Signaling pathway and dysregulation of PD1 and its ligands in lymphoid malignancies. Biochim Biophys Acta Rev Cancer 2015; 1865:58-71. [PMID: 26432723 DOI: 10.1016/j.bbcan.2015.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 12/12/2022]
Abstract
Tumor cells evade immune destruction, at least partially, by upregulating inhibitory signals to limit effector T cell activation. Programmed death 1 (PD-1) is one of the most critical co-inhibitory molecules limiting the T-cell antitumor response. PD-1 and its ligands, PD-L1 and PD-L2, are overexpressed by various types of tumors as well as reactive cells in the tumor microenvironment. A growing body of evidence has shown the clinical efficiency and minimal toxicity of PD-1 pathway inhibitors in patients with solid tumors, but the role of these inhibitors in lymphoid malignancies is much less well studied. In this review, we analyze the pathologic role of the PD-1 pathway in most common lymphoid malignancies and we organize the clinical data from clinical trials of PD-1 pathway inhibitors. Several anti-PD-1 regimens have shown encouraging therapeutic effects in patients with relapsed or refractory Hodgkin lymphoma, follicular lymphoma, and diffuse large B-cell lymphoma. Additional progress is needed to foster an improved understanding of the role of anti-PD-1 therapy in reconstituting antitumor immunity in patients with lymphoid malignancies. Upcoming trials will explore the clinical efficiency of combining PD-1 pathway inhibitors and various agents with diverse mechanisms of action and create more therapeutic possibilities for afflicted patients.
Collapse
Affiliation(s)
- Yi Xia
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas Graduate School of Biomedical Science, Houston, TX, USA.
| |
Collapse
|