1
|
Hayashi H, Ishii M, Hasegawa Y, Taniguchi M. Critical pathomechanisms of NSAID-exacerbated respiratory disease (N-ERD) clarified by treatment with omalizumab, an anti-IgE antibody. Allergol Int 2024:S1323-8930(24)00108-4. [PMID: 39419650 DOI: 10.1016/j.alit.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Characteristic symptoms of NSAID-exacerbated respiratory disease (N-ERD) include asthma, chronic eosinophilic rhinosinusitis with nasal polyposis, cysteinyl LT (CysLT) overproduction and NSAIDs hypersensitivity. Some N-ERD patients present with episodic treatment-resistant extra-respiratory symptoms (CysLT-associated coronary artery vasospasm, gastroenteritis, or skin rash). Even when using standard treatments for respiratory and extra-respiratory symptoms, including systemic corticosteroids and aspirin desensitization, it is difficult to control the clinical symptoms and severe type 2 inflammation involved with mast cells, eosinophils, ILC2s, and platelet activation. Few treatment options are applicable in a clinical setting. Therefore, identifying effective treatments is essential for managing N-ERD patients who suffer from these conditions. Our previous observational study demonstrated 12-month omalizumab treatment of N-ERD was clinically effective against respiratory symptoms. Despite the remaining eosinophilia, omalizumab significantly reduced urinary LTE4 and PGD2 metabolites to near normal levels at steady state. Based on the preliminary study, we demonstrated that omalizumab induced tolerance to aspirin in N-ERD patients 3 months after therapy initiation and suppressed activation of mast cells during 24 h of initiation in a randomized manner. Moreover, omalizumab had significant efficacy against extra-respiratory symptoms at baseline (lacking aspirin exposure) as well as throughout aspirin challenge. This review addresses the latest discoveries related to N-ERD pathogenesis and the significant effectiveness of omalizumab on N-ERD as a mast cell stabilizer. Our findings regarding omalizumab-associated mast cell inhibitory effects are indirect evidence that mast cell dysregulation and, possibly, IgE are pivotal components of N-ERD.
Collapse
Affiliation(s)
- Hiroaki Hayashi
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan; Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Makoto Ishii
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan; National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Masami Taniguchi
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| |
Collapse
|
2
|
Nordström A, Jangard M, Ryott M, Tang X, Svedberg M, Kumlin M. Mucosal LTE 4, PGD 2 and 15(S)-HETE as potential prognostic markers for polyp recurrence in chronic rhinosinusitis. Prostaglandins Other Lipid Mediat 2024; 174:106886. [PMID: 39179198 DOI: 10.1016/j.prostaglandins.2024.106886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Altered biosynthesis of eicosanoids is linked to type 2 inflammation in chronic rhinosinusitis with nasal polyps (CRSwNP), but their role in recalcitrant NPs is unclear. OBJECTIVES We sought to identify endotypes that are linked to recalcitrant CRSwNP, based on eicosanoids, their biosynthetic enzymes, and receptors as well as cytokines and the presence of eosinophils and mast cells in recurrent NPs. METHODS Mucosal tissue collected at the time of sinus surgery from 54 patients with CRSwNP and 12 non-CRS controls were analysed for leukotriene (LT) E4, prostaglandin (PG) D2, 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) and 17 cytokines with ELISAs and Bio-Plex immunoassays. Patient subgroups were identified by cluster analysis and the probability of NP recurrence were tested with logistic regression analyses. Gene expressions were analysed with qPCR. Tryptase and eosinophil-derived neurotoxin (EDN) were measured with ELISAs as indications of the presence of mast cells and eosinophils, respectively. RESULTS Clustering of patients showed that an inflammatory signature characterised by elevated LTE4, PGD2, 15(S)-HETE and IL-13 was associated with NP recurrence. Previous NP surgery as well as aspirin-exacerbated respiratory disease were significantly more common among these patients. Expression of cyclooxygenase 1 was the only gene associated with NP recurrence. Levels of EDN, but not tryptase, were significantly higher in patients with recurrent NPs. CONCLUSION Distinguishing endotypes that include LTE4, PGD2, 15HETE and conventional biomarkers of type 2 inflammation could help predict recurrent nasal polyposis and thus identify cases of recalcitrant CRSwNP.
Collapse
Affiliation(s)
- Axel Nordström
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden
| | - Mattias Jangard
- Department of Otorhinolaryngology, Sophiahemmet Hospital, Stockholm, Sweden
| | - Michael Ryott
- Department of Otorhinolaryngology, Sophiahemmet Hospital, Stockholm, Sweden
| | - Xiao Tang
- Division of Physiological Chemistry II, Biomedicum 9A, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Marie Svedberg
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden
| | - Maria Kumlin
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden; Division of Physiological Chemistry II, Biomedicum 9A, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Bobolea I, Hagemann J, Sanak M, Klimek L, Mullol J. Current Goals of NSAID-ERD Management: Patient-Centered Approaches Involving NSAID Desensitization With and Without Biologics. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024:S2213-2198(24)00938-3. [PMID: 39306329 DOI: 10.1016/j.jaip.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
The classic approach of nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (NSAID-ERD) includes pharmaceutical and surgical treatments, as well as avoidance of cyclooxygenase 1-inhibitor NSAIDs. The introduction of biologics in the treatment of severe asthma and chronic rhinosinusitis with nasal polyps represents an alternative therapeutic approach to the classical aspirin therapy after desensitization (ATAD) in some regions, and with convincing results. However, their use is limited due to approval and/or high-cost restrictions. NSAID-ERD is a mainly type 2 and highly eosinophilic disease, and mAbs targeting IgE or IL-5, IL-4, and IL-13 have been shown to be effective for both severe asthma and severe chronic rhinosinusitis with nasal polyps. So far, dupilumab demonstrated greater efficacy in patients with NSAID-ERD than in aspirin-tolerant patients with regard to several clinical outcomes. Patients with NSAID-ERD respond very rapidly to omalizumab also, with reduction in the release of prostaglandin D2 and cysteinyl leukotrienes. Patients favored biologic treatment over ATAD in multiple retrospective analyses, which must be acknowledged when choosing one or the other option. Although this review will summarize ATAD in general, it will more prominently focus on when ATAD should be considered, even when type 2 biologics are available. In addition, there are conflicting studies as to whether patients on a type 2 biologic become desensitized to NSAIDs, because omalizumab proved to restore tolerance to aspirin in only two-third of patients. This goal of NSAID tolerance should be considered as part of disease control future approaches, representing one of many aspects in a patient-centered care approach.
Collapse
Affiliation(s)
- Irina Bobolea
- Severe Asthma Unit, Allergy Department, Hospital Clinic Barcelona, FRCB-IDIBAPS, Barcelona, Catalonia, Spain; CIBER of Respiratory Diseases (CIBERES), Madrid, Spain.
| | - Jan Hagemann
- Center for Rhinology and Allergology, Wiesbaden, Germany; Department of Otolaryngoloy, Head and Neck Surgery, Universitätsmedizin Mainz, Mainz, Germany.
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Joaquim Mullol
- CIBER of Respiratory Diseases (CIBERES), Madrid, Spain; Rhinology Unit & Smell Clinic Unit, ENT Department, Hospital Clinic Barcelona, FRCB-IDIBAPS, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
Förster-Ruhrmann U, Olze H. [Importance of aspirin challenges in patients with NSAID-exacerbated respiratory disease]. HNO 2024; 72:494-498. [PMID: 38597968 DOI: 10.1007/s00106-024-01460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drug-exacerbated respiratory disease (N-ERD) is often characterized by a severe course of chronic rhinosinusitis with nasal polyps (CRSwNP), comorbid asthma, and NSAID hypersensitivity. The gold standard for N-ERD diagnosis is challenge with acetylsalicylic acid (ASA). In expert recommendations, the diagnosis of N-ERD is established based on a plausible positive history of NSAID hypersensitivity and CRSwNP with asthma. OBJECTIVE The following review describes the performance of ASA challenges and their sensitivity and specificity. It also examines the extent to which a positive history of NSAID hypersensitivity correlates with ASA challenge results in clinical trials and when ASA challenges should be performed. RESULTS AND CONCLUSION ASA challenges have high sensitivity and specificity. In clinical ASA challenge studies, there is a high concordance between a positive history of NSAID hypersensitivity obtained by rhinologists and the measured data of ASA challenge in patients with CRSwNP and comorbid asthma. Therefore, ASA challenge is primarily indicated in patients with an unclear history of NSAID hypersensitivity.
Collapse
Affiliation(s)
- Ulrike Förster-Ruhrmann
- HNO-Klinik, Charité - Universitätsmedizin Berlin (CCM/CVK), Charitéplatz 1, 10117, Berlin, Deutschland.
| | - Heidi Olze
- HNO-Klinik, Charité - Universitätsmedizin Berlin (CCM/CVK), Charitéplatz 1, 10117, Berlin, Deutschland
| |
Collapse
|
5
|
Alhallak K, Nagai J, Zaleski K, Marshall S, Salloum T, Derakhshan T, Hayashi H, Feng C, Kratchmarov R, Lai J, Kuchibhotla V, Nishida A, Balestrieri B, Laidlaw T, Dwyer DF, Boyce JA. Mast cells control lung type 2 inflammation via prostaglandin E 2-driven soluble ST2. Immunity 2024; 57:1274-1288.e6. [PMID: 38821053 PMCID: PMC11168874 DOI: 10.1016/j.immuni.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/26/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Severe asthma and sinus disease are consequences of type 2 inflammation (T2I), mediated by interleukin (IL)-33 signaling through its membrane-bound receptor, ST2. Soluble (s)ST2 reduces available IL-33 and limits T2I, but little is known about its regulation. We demonstrate that prostaglandin E2 (PGE2) drives production of sST2 to limit features of lung T2I. PGE2-deficient mice display diminished sST2. In humans with severe respiratory T2I, urinary PGE2 metabolites correlate with serum sST2. In mice, PGE2 enhanced sST2 secretion by mast cells (MCs). Mice lacking MCs, ST2 expression by MCs, or E prostanoid (EP)2 receptors by MCs showed reduced sST2 lung concentrations and strong T2I. Recombinant sST2 reduced T2I in mice lacking PGE2 or ST2 expression by MCs back to control levels. PGE2 deficiency also reversed the hyperinflammatory phenotype in mice lacking ST2 expression by MCs. PGE2 thus suppresses T2I through MC-derived sST2, explaining the severe T2I observed in low PGE2 states.
Collapse
Affiliation(s)
- Kinan Alhallak
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jun Nagai
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kendall Zaleski
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sofia Marshall
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tamara Salloum
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tahereh Derakhshan
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Hiroaki Hayashi
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Chunli Feng
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Radomir Kratchmarov
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Juying Lai
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Virinchi Kuchibhotla
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Airi Nishida
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Barbara Balestrieri
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tanya Laidlaw
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel F Dwyer
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Joshua A Boyce
- Departments of Medicine and Pediatrics, Harvard Medical School, Boston, MA, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Ranjitkar S, Krajewski D, Garcia C, Tedeschi C, Polukort SH, Rovatti J, Mire M, Blesso CN, Jellison E, Schneider SS, Ryan JJ, Mathias CB. IL-10 Differentially Promotes Mast Cell Responsiveness to IL-33, Resulting in Enhancement of Type 2 Inflammation and Suppression of Neutrophilia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1407-1419. [PMID: 38497670 PMCID: PMC11018500 DOI: 10.4049/jimmunol.2300884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
Mast cells (MCs) play critical roles in the establishment of allergic diseases. We recently demonstrated an unexpected, proinflammatory role for IL-10 in regulating MC responses. IL-10 enhanced MC activation and promoted IgE-dependent responses during food allergy. However, whether these effects extend to IgE-independent stimuli is not clear. In this article, we demonstrate that IL-10 plays a critical role in driving IL-33-mediated MC responses. IL-10 stimulation enhanced MC expansion and degranulation, ST2 expression, IL-13 production, and phospho-relA upregulation in IL-33-treated cells while suppressing TNF-α. These effects were partly dependent on endogenous IL-10 and further amplified in MCs coactivated with both IL-33 and IgE/Ag. IL-10's divergent effects also extended in vivo. In a MC-dependent model of IL-33-induced neutrophilia, IL-10 treatment enhanced MC responsiveness, leading to suppression of neutrophils and decreased TNF-α. In contrast, during IL-33-induced type 2 inflammation, IL-10 priming exacerbated MC activity, resulting in MC recruitment to various tissues, enhanced ST2 expression, induction of hypothermia, recruitment of eosinophils, and increased MCPT-1 and IL-13 levels. Our data elucidate an important role for IL-10 as an augmenter of IL-33-mediated MC responses, with implications during both allergic diseases and other MC-dependent disorders. IL-10 induction is routinely used as a prognostic marker of disease improvement. Our data suggest instead that IL-10 can enhance ST2 responsiveness in IL-33-activated MCs, with the potential to both aggravate or suppress disease severity depending on the inflammatory context.
Collapse
Affiliation(s)
- Saurav Ranjitkar
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Dylan Krajewski
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Caitlin Tedeschi
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Stephanie H. Polukort
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Jeffrey Rovatti
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Mohamed Mire
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | | | - Evan Jellison
- Department of Immunology, University of Connecticut, Farmington, CT 06030
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199
| | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Clinton B. Mathias
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
7
|
Nagata K, Ando D, Ashikari T, Ito K, Miura R, Fujigaki I, Goto Y, Ando M, Ito N, Kawazoe H, Iizuka Y, Inoue M, Yashiro T, Hachisu M, Kasakura K, Nishiyama C. Butyrate, Valerate, and Niacin Ameliorate Anaphylaxis by Suppressing IgE-Dependent Mast Cell Activation: Roles of GPR109A, PGE2, and Epigenetic Regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:771-784. [PMID: 38197634 DOI: 10.4049/jimmunol.2300188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
Short-chain fatty acids (SCFAs) are produced by the intestinal microbiota during the fermentation of dietary fibers as secondary metabolites. Several recent studies reported that SCFAs modulate the development and function of immune-related cells. However, the molecular mechanisms by which SCFAs regulate mast cells (MCs) remain unclear. In the current study, we analyzed the function and gene expression of mouse MCs in the presence of SCFAs in vitro and in vivo. We found that the oral administration of valerate or butyrate ameliorated passive systemic anaphylaxis and passive cutaneous anaphylaxis in mice. The majority of SCFAs, particularly propionate, butyrate, valerate, and isovalerate, suppressed the IgE-mediated degranulation of bone marrow-derived MCs, which were eliminated by the Gi protein inhibitor pertussis toxin and by the knockdown of Gpr109a. A treatment with the HDAC inhibitor trichostatin A also suppressed IgE-mediated MC activation and reduced the surface expression level of FcεRI on MCs. Acetylsalicylic acid and indomethacin attenuated the suppressive effects of SCFAs on degranulation. The degranulation degree was significantly reduced by PGE2 but not by PGD2. Furthermore, SCFAs enhanced PGE2 release from stimulated MCs. The SCFA-mediated amelioration of anaphylaxis was exacerbated by COX inhibitors and an EP3 antagonist, but not by an EP4 antagonist. The administration of niacin, a ligand of GPR109A, alleviated the symptoms of passive cutaneous anaphylaxis, which was inhibited by cyclooxygenase inhibitors and the EP3 antagonist. We conclude that SCFAs suppress IgE-mediated activation of MCs in vivo and in vitro involving GPR109A, PGE2, and epigenetic regulation.
Collapse
Affiliation(s)
- Kazuki Nagata
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Daisuke Ando
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Tsubasa Ashikari
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Kandai Ito
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Ryosuke Miura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Izumi Fujigaki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Yuki Goto
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Miki Ando
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Naoto Ito
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Hibiki Kawazoe
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Yuki Iizuka
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Mariko Inoue
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Masakazu Hachisu
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Kazumi Kasakura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| |
Collapse
|
8
|
Foer D, Amin T, Nagai J, Tani Y, Feng C, Liu T, Newcomb DC, Lai J, Hayashi H, Snyder WE, McGill A, Lin A, Laidlaw T, Niswender KD, Boyce JA, Cahill KN. Glucagon-like Peptide-1 Receptor Pathway Attenuates Platelet Activation in Aspirin-Exacerbated Respiratory Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1806-1813. [PMID: 37870292 PMCID: PMC10842986 DOI: 10.4049/jimmunol.2300102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
Platelets are key contributors to allergic asthma and aspirin-exacerbated respiratory disease (AERD), an asthma phenotype involving platelet activation and IL-33-dependent mast cell activation. Human platelets express the glucagon-like peptide-1 receptor (GLP-1R). GLP-1R agonists decrease lung IL-33 release and airway hyperresponsiveness in mouse asthma models. We hypothesized that GLP-1R agonists reduce platelet activation and downstream platelet-mediated airway inflammation in AERD. GLP-1R expression on murine platelets was assessed using flow cytometry. We tested the effect of the GLP-1R agonist liraglutide on lysine-aspirin (Lys-ASA)-induced changes in airway resistance, and platelet-derived mediator release in a murine AERD model. We conducted a prospective cohort study comparing the effect of pretreatment with liraglutide or vehicle on thromboxane receptor agonist-induced in vitro activation of platelets from patients with AERD and nonasthmatic controls. GLP-1R expression was higher on murine platelets than on leukocytes. A single dose of liraglutide inhibited Lys-ASA-induced increases in airway resistance and decreased markers of platelet activation and recruitment to the lung in AERD-like mice. Liraglutide attenuated thromboxane receptor agonist-induced activation as measured by CXCL7 release in plasma from patients with AERD and CD62P expression in platelets from both patients with AERD (n = 31) and nonasthmatic, healthy controls (n = 11). Liraglutide, a Food and Drug Administration-approved GLP-1R agonist for treatment of type 2 diabetes and obesity, attenuates in vivo platelet activation in an AERD murine model and in vitro activation in human platelets in patients with and without AERD. These data advance the GLP-1R axis as a new target for platelet-mediated inflammation warranting further study in asthma.
Collapse
Affiliation(s)
- Dinah Foer
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Taneem Amin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jun Nagai
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Yumi Tani
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Chunli Feng
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Tao Liu
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Dawn C. Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Juying Lai
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Hiroaki Hayashi
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - William E. Snyder
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alanna McGill
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Anabel Lin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tanya Laidlaw
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Kevin D. Niswender
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Joshua A. Boyce
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Katherine N. Cahill
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
9
|
Badrani JH, Cavagnero K, Eastman JJ, Kim AS, Strohm A, Yan C, Deconde A, Zuraw BL, White AA, Christiansen SC, Doherty TA. Lower serum 15-HETE level predicts nasal ILC2 accumulation during COX-1 inhibition in AERD. J Allergy Clin Immunol 2023; 152:1330-1335.e1. [PMID: 37543185 PMCID: PMC10938261 DOI: 10.1016/j.jaci.2023.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/05/2023] [Accepted: 06/29/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease (AERD) is associated with high levels of cysteinyl leukotrienes, prostaglandin D2, and low levels of prostaglandin E2. Further, 15-hydroxyeicosatetraenoic acid (15-HETE) levels may have predictive value in therapeutic outcomes of aspirin desensitization. Accumulation of nasal group 2 innate lymphoid cells (ILC2s) has been demonstrated during COX-1 inhibition in AERD, although the relationships between tissue ILC2 accumulation, reaction symptom severity, and novel lipid biomarkers are unknown. OBJECTIVE We sought to determine whether novel lipid mediators are predictive of nasal ILC2 accumulation and symptom scores during COX-1 inhibitor challenge in patients with AERD. METHODS Blood and nasal scraping samples from patients with AERD were collected at baseline and COX-1 inhibitor reaction and then processed for flow cytometry for nasal ILC2s and serum for lipidomic analysis. RESULTS Eight patients with AERD who were undergoing aspirin desensitization were recruited. Of the 161 eicosanoids tested, 42 serum mediators were detected. Baseline levels of 15-HETE were negatively correlated with the change in numbers of airway ILC2s (r = -0.6667; P = .0428). Docosahexaenoic acid epoxygenase metabolite 19,20-dihydroxy-4Z,7Z,10Z,13Z,16Z-docosapentaenoic acid (19,20-diHDPA) was positively correlated with both changes in airway ILC2s (r = 0.7143; P = .0305) and clinical symptom scores (r = 0.5000; P = .0081). CONCLUSION Low levels of baseline 15-HETE predicted a greater accumulation of airway ILC2s in patients with AERD who were receiving COX-1 inhibition. Further, increases in the cytochrome P pathway metabolite 19,20-dihydroxy-4Z,7Z,10Z,13Z,16Z-docosapentaenoic acid (19,20-diHDPA) were associated with increased symptoms and nasal ILC2 accumulation. Future studies to assess how these mediators might control ILC2s may improve the understanding of AERD pathogenesis.
Collapse
Affiliation(s)
- Jana H Badrani
- Section of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, Calif; Veterans Affairs San Diego Healthcare System, La Jolla, Calif
| | - Kellen Cavagnero
- Section of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Jacqueline J Eastman
- Section of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Alex S Kim
- Section of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Allyssa Strohm
- Section of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, Calif; Veterans Affairs San Diego Healthcare System, La Jolla, Calif
| | - Carol Yan
- Department of Otolaryngology, University of California, San Diego, Calif
| | - Adam Deconde
- Department of Otolaryngology, University of California, San Diego, Calif
| | - Bruce L Zuraw
- Section of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, Calif; Veterans Affairs San Diego Healthcare System, La Jolla, Calif
| | - Andrew A White
- Divison of Allergy, Asthma and Immunology, Scripps Clinic, La Jolla, Calif
| | - Sandra C Christiansen
- Section of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Taylor A Doherty
- Section of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, Calif; Veterans Affairs San Diego Healthcare System, La Jolla, Calif.
| |
Collapse
|
10
|
Mullur J, Buchheit KM. Aspirin-exacerbated respiratory disease: Updates in the era of biologics. Ann Allergy Asthma Immunol 2023; 131:317-324. [PMID: 37225000 PMCID: PMC10524829 DOI: 10.1016/j.anai.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVE Aspirin-exacerbated respiratory disease (AERD) is a chronic respiratory condition characterized by severe chronic rhinosinusitis with nasal polyps (CRSwNP), eosinophilic asthma, and respiratory reactions to cyclooxygenase inhibitors. The management of AERD has evolved recently with the availability of respiratory biologics for treatment of severe asthma and CRSwNP. The objective of this review is to provide an update on the management of AERD in the era of respiratory biologic therapy. DATA SOURCES A literature review of pathogenesis and treatment of AERD, with a specific focus on biologic therapies in AERD, was performed through publications gathered from PubMed. STUDY SELECTIONS Original research, randomized controlled trials, retrospective studies, meta-analyses, and case series of high relevance are selected and reviewed. RESULTS Aspirin therapy after desensitization (ATAD) and respiratory biologic therapies targeting interleukin (IL)-4Rα, IL-5, IL-5Rα, and immunoglobulin E, all have some efficacy in the treatment of CRSwNP and asthma in patients with AERD. There are currently no head-to-head studies comparing ATAD vs respiratory biologic therapy, or specific respiratory biologics, for asthma and CRSwNP in patients with AERD. CONCLUSION Advances in our understanding of the fundamental drivers of the chronic respiratory inflammation in asthma and CRSwNP have led to the identification of several potential therapeutic targets for these diseases that can be used in patients with AERD. Further study of the use of ATAD and biologic therapy, independently and together, will help to inform future treatment algorithms for patients with AERD.
Collapse
Affiliation(s)
- Jyostna Mullur
- Department of Medicine, Duke University, Durham, North Carolina
| | - Kathleen M Buchheit
- Department of Medicine, Harvard Medical School, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
11
|
Robinson PZ, Frank DN, Ramakrishnan VR. Inflammation resolution and specialized pro-resolving lipid mediators in chronic rhinosinusitis. Expert Rev Clin Immunol 2023; 19:969-979. [PMID: 37392068 PMCID: PMC10426389 DOI: 10.1080/1744666x.2023.2232554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/29/2023] [Indexed: 07/02/2023]
Abstract
INTRODUCTION In chronic rhinosinusitis (CRS), a complex pathophysiology results from varied pro-inflammatory stimuli but is consistently characterized by classic cellular, molecular, and microbial alterations. Normally, endogenous specialized pro-resolving mediators (SPM) actively promote resolution of inflammation through numerous pathways, including those involved in host antimicrobial defense. However, these pathways appear to be disrupted in CRS. AREAS COVERED This paper describes features of CRS in the context of chronic tissue inflammation, and potential mechanisms by which specialized pro-resolving mediators promote active resolution of tissue inflammation. EXPERT OPINION Temporal phases of resolution must be tightly regulated to successfully resolve inflammation in CRS while preserving tissue functions such as barrier maintenance and special sensory function. Dysregulation of SPM enzymatic pathways has been recently shown in CRS and is associated with disease phenotypes and microbial colonization patterns. Current research in animal models and in vitro human cell culture, as well as human dietary studies, demonstrate relevant changes in cell signaling with lipid mediator bioavailability. Further clinical research may provide insight into the therapeutic value of this approach in CRS.
Collapse
Affiliation(s)
| | - Daniel N. Frank
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO
| | - Vijay R. Ramakrishnan
- Department of Otolaryngology – Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
12
|
Widmayer P, Pregitzer P, Breer H. Short-term high fat feeding induces inflammatory responses of tuft cells and mucosal barrier cells in the murine stomach. Histol Histopathol 2023; 38:273-286. [PMID: 35904321 DOI: 10.14670/hh-18-503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Feeding mice with a high fat diet (HFD) induces inflammation and results in changes of gene expression and cellular composition in various tissues throughout the body, including the gastrointestinal tract. In the stomach, tuft cells expressing the receptor GPR120 are capable of sensing saturated long chain fatty acids (LCFAs) and thus may be involved in initiating mechanisms of mucosal inflammation. In this study, we assessed which cell types may additionally be affected by high fat feeding and which candidate molecular mediators might contribute to mucosa-protective immune responses. A high fat dietary intervention for 3 weeks caused an expansion of tuft cells that was accompanied by a higher frequency of mucosal mast cells and surface mucous cells which are a known source of the insult-associated cytokine interleukin 33 (IL-33). Our data demonstrate that both brush and mucosal mast cells comprise the enzyme ALOX5 and its activating protein FLAP and thus have the capacity for synthesizing leukotriene (LT). In HFD mice, several tuft cells showed a perinuclear colocalization of ALOX5 with FLAP which is indicative of an active LT synthesis. Monitoring changes in the expression of genes encoding elements of LT synthesis and signaling revealed that transcript levels of the leukotriene C4 synthase, LTC4S, catalyzing the first step in the biosynthesis of cysteinyl (cys) LTs, and the cysLT receptors, cysLTR2 and cysLTR3, were upregulated in mice on HFD. These mice also showed an increased expression level of IL-33 receptors, the membrane-bound ST2L and soluble isoform sST2, as well as the mast cell-specific protease MCPT1. Based on these findings it is conceivable that upon sensing saturated LCFAs tuft cells may elicit inflammatory responses which result in the production of cysLTs and activation of surface mucous cells as well as mucosal mast cells regulating gastric mucosal function and integrity.
Collapse
Affiliation(s)
- Patricia Widmayer
- Institute of Biology, Department of Physiology (190v), University of Hohenheim, Stuttgart, Germany.
| | - Pablo Pregitzer
- Institute of Biology, Department of Physiology (190v), University of Hohenheim, Stuttgart, Germany
| | - Heinz Breer
- Institute of Biology, Department of Physiology (190v), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
13
|
Chen CC, Buchheit KM. Endotyping Chronic Rhinosinusitis with Nasal Polyps: Understanding Inflammation Beyond Phenotypes. Am J Rhinol Allergy 2023; 37:132-139. [PMID: 36848270 DOI: 10.1177/19458924221149003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogenous group of inflammatory conditions impacting the nose and paranasal sinuses. Our understanding of the underlying pathobiology of CRSwNP has substantially improved due to ongoing translational research efforts. Advances in treatment options, including targeted respiratory biologic therapy for CRSwNP, allow for more personalized approaches for CRSwNP patient care. Patients with CRSwNP are typically classified to one or more endotype based on the presence of type 1, type 2, and type 3 inflammation. This review will discuss recent advances in our understanding of CRSwNP and how this may impact current and future treatment approaches for patients with CRSwNP.
Collapse
Affiliation(s)
- Chongjia C Chen
- Department of Medicine, Harvard Medical School, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kathleen M Buchheit
- Department of Medicine, Harvard Medical School, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
14
|
Douglas JE, Bosso JV. What's New in the Diagnosis and Treatment of Aspirin-Exacerbated Respiratory Disease: A Brief Review. Am J Rhinol Allergy 2023. [DOI: 10.1177/19458924221145254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Background Aspirin-exacerbated respiratory disease (AERD) is a chronic condition characterized by the presence of asthma, chronic rhinosinusitis with nasal polyposis, and sensitivity to aspirin and other non-steroidal anti-inflammatory drugs. Diagnosis is based on careful clinical history and physical examination, characteristic laboratory and radiographic findings, and, in unclear cases, aspirin challenge. Established treatment is founded on comprehensive endoscopic sinus surgery followed by topical steroids and aspirin desensitization. T2 biologics are now available for refractory cases. Objective To summarize the historic literature on AERD, its diagnosis and treatment options, as well as to review the most current publications on the topic and explore areas for future research. Methods A literature review utilizing the PubMed database was performed. Results Seminal journal articles regarding the diagnosis and treatment of AERD were reviewed with close attention to evidence-based protocols and knowledge gaps in the field as areas for future research. Conclusion AERD is a complex disease which requires careful diagnostic work-up and coordinated care between the allergist and rhinologist to facilitate optimal treatment outcomes.
Collapse
Affiliation(s)
- Jennifer E. Douglas
- Department of Otorhinolaryngology – Head & Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - John V. Bosso
- Department of Otorhinolaryngology – Head & Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Laidlaw TM, Boyce JA. Updates on immune mechanisms in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2023; 151:301-309. [PMID: 36184313 PMCID: PMC9905222 DOI: 10.1016/j.jaci.2022.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Aspirin-exacerbated respiratory disease has fascinated and frustrated specialists in allergy/immunology, pulmonology, and otorhinolaryngology for decades. It generally develops in previously healthy young adults and is unremitting and challenging to treat. The classical triad of asthma, nasal polyposis, and pathognomonic respiratory reactions to aspirin and other cyclooxygenase-1 inhibitors is accompanied by high levels of mast cell activation, cysteinyl leukotriene production, platelet activation, and severe type 2 respiratory inflammation. The "unbraking" of mast cell activation and further cysteinyl leukotriene generation induced by cyclooxygenase-1 inhibition reflect an idiosyncratic dependency on cyclooxygenase-1-derived products, likely prostaglandin E2, to maintain a tenuous homeostasis. Although cysteinyl leukotrienes are clear disease effectors, little else was known about their cellular sources and targets, and the contributions from other mediators and type 2 respiratory inflammation effector cells to disease pathophysiology were unknown until recently. The applications of targeted biological therapies, single-cell genomics, and transgenic animal approaches have substantially advanced our understanding of aspirin-exacerbated respiratory disease pathogenesis and treatment and have also revealed disease heterogeneity. This review covers novel insights into the immunopathogenesis of aspirin-exacerbated respiratory disease from each of these lines of research, including the roles of lipid mediators, effector cell populations, and inflammatory cytokines, discusses unanswered questions regarding cause and pathogenesis, and considers potential future therapeutic options.
Collapse
Affiliation(s)
- Tanya M Laidlaw
- Department of Medicine, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Jeff and Penny Vinik Center for Translational Immunology Research, Boston, Mass.
| | - Joshua A Boyce
- Department of Medicine, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Jeff and Penny Vinik Center for Translational Immunology Research, Boston, Mass
| |
Collapse
|
16
|
MicroRNA-21-5p promotes mucosal type 2 inflammation via regulating GLP1R/IL-33 signaling in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2022; 150:1460-1475. [PMID: 35835254 DOI: 10.1016/j.jaci.2022.05.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND It has been known that chronic rhinosinusitis with nasal polyps (CRSwNP) is a type 2 inflammation-dominated disease; however, the reasons causing such type of mucosal inflammation in CRSwNP are not well elucidated. OBJECTIVE We sought to investigate the role of microRNA-21-5p (miR-21-5p) in regulating mucosal type 2 inflammation in CRSwNP. METHODS miR-21-5p expression was detected in nasal mucosa of patients with CRSwNP. Correlations between miR-21-5p and indicators of type 2 inflammation were further analyzed. miR-21 knockout mice were used to explore the role of miR-21-5p in a murine model of eosinophilic (E) CRSwNP. Target gene of miR-21-5p related to type 2 inflammation in CRSwNP was identified. RESULTS The upregulated miR-21-5p in the nasal mucosa of patients with CRSwNP, compared with control subjects, was expressed higher in patients with ECRSwNP than in patients with nonECRSwNP. miR-21-5p expression was positively correlated with mucosal eosinophil infiltrations and the expression of type 2 inflammatory cytokines. In the CRSwNP mice, miR-21 knockout significantly attenuated type 2 inflammation, as indicated by eosinophil infiltrations and expression of cytokines/chemokines in nasal mucosa and lavage fluid; moreover, genes associated with type 2 inflammation were extensively downregulated at the transcriptome level in miR-21 knockout mice. Glucagon-like peptide-1 receptor, which was negatively correlated with miR-21-5p expression in human nasal mucosa, was identified as the target of miR-21-5p. Overexpression of miR-21-5p induced IL-33 expression, whereas glucagon-like peptide-1 receptor agonist decreased IL-33 production in airway epithelial cells. CONCLUSIONS miR-21-5p aggravates type 2 inflammation in the nasal mucosa of patients with CRSwNP via targeting glucagon-like peptide-1 receptor/IL-33 signaling, which may be a potential therapeutic target for CRSwNP.
Collapse
|
17
|
Taniguchi M, Heffler E, Olze H, White A, Côrte-Real J, Olsson P, Lazarewicz S. The Role of Omalizumab in NSAID-Exacerbated Respiratory Disease: A Narrative Review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2570-2578. [PMID: 35764285 DOI: 10.1016/j.jaip.2022.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Nonsteroidal anti-inflammatory drug-exacerbated respiratory disease (N-ERD) is a condition characterized by the triad of chronic rhinosinusitis with nasal polyps, bronchial asthma, and hypersensitivity to nonsteroidal anti-inflammatory drugs. This article explores the current knowledge on the various pathological mechanism(s) of N-ERD-such as arachidonic acid metabolism, cysteinyl leukotrienes, prostaglandins, platelets, IgE, mast cells, eosinophils, basophils, and innate immune system-and the role of omalizumab in its management. The authors dive deep into the role of IgE in N-ERD and its potential as a therapeutic target. IgE plays a significant role in mediating allergic reactions, is intricately linked with mast cells, interacts with multiple immunopathological pathways involved in N-ERD, and tends to be elevated in patients with N-ERD. Multiple real-world studies, observational studies, and case series, as well as 2 phase III trials, have demonstrated the effectiveness of omalizumab in the management of N-ERD. For a disease with such a well-documented history, the pathophysiology of N-ERD and the most effective ways to manage it remain a mystery. With this background, the authors ask-is IgE a missing piece of the N-ERD puzzle, thus explaining the efficacy of omalizumab in the treatment of the disease?
Collapse
Affiliation(s)
- Masami Taniguchi
- Center for Immunology and Allergology, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan; Center for Clinical Research, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan.
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy, Humanitas Research Hospital IRCCS, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Heidi Olze
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Charité Universitätsmedizin, Berlin, Germany
| | | | | | | | | |
Collapse
|
18
|
Current Limitations and Recent Advances in the Management of Asthma. Dis Mon 2022:101483. [DOI: 10.1016/j.disamonth.2022.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Nordström A, Jangard M, Svedberg M, Ryott M, Kumlin M. Levels of eicosanoids in nasal secretions associated with nasal polyp severity in chronic rhinosinusitis. Prostaglandins Leukot Essent Fatty Acids 2022; 184:102474. [PMID: 35917595 DOI: 10.1016/j.plefa.2022.102474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 12/29/2022]
Abstract
Severe nasal polyposis and mucosal inflammation, in patients with chronic rhinosinusitis (CRS) may include a dysregulated eicosanoid profile, but a clinical role for eicosanoids in CRS with nasal polyps (NP; CRSwNP) remains to be elucidated. This study focused on assessing levels and clinical implications of inflammatory mediators in nasal secretions and urine from patients with different NP severity or Aspirin Exacerbated Respiratory Disease (AERD). Levels of leukotrienes E4 and B4, prostaglandins D2 and E2 as well as 15(S)-hydroxyeicosatetraenoic acid were measured with enzyme immunoassays and cytokines with magnetic bead immunoassays. Patients with CRSwNP were subdivided based on NP score; CRSwNP-low (NP score ≤ 4, n = 11) or CRSwNP-high (NP score ≥ 5, n = 32) and compared to CRS without polyps (CRSsNP, n = 12), CRSwNP-AERD (n = 11) and individuals without CRS (n = 25). Smell test score, fractional exhaled nitric oxide (FeNO), blood eosinophils and Sinonasal outcome test-22 were assessed as clinical markers. Leukotriene E4, prostaglandin D2 and 15(S)-hydroxyeicosatetraenoic acid in nasal secretions correlated with NP score. Nasal leukotriene E4 also correlated with FeNO and smell test score, with highest levels found in CRSwNP-AERD. Levels of prostaglandin D2 in nasal secretion as well as urinary levels of the prostaglandin D2 metabolite 11β-prostaglandin F2α differed between CRSNP-high and CRSwNP-low. Urinary 11β-prostaglandin F2α was associated with asthma comorbidity whereas a similar association with prostaglandin D2 in nasal secretions was not observed. In conclusion, subdividing patients based on NP severity in combination with analysis of eicosanoids in non-invasively collected nasal secretions, may have clinical implications when assessing CRS disease severity.
Collapse
Affiliation(s)
- Axel Nordström
- Department of Health Promotion Science, Sophiahemmet University, Stockholm, Sweden.
| | - Mattias Jangard
- Department of Otorhinolaryngology, Sophiahemmet Hospital, Stockholm, Sweden
| | - Marie Svedberg
- Department of Health Promotion Science, Sophiahemmet University, Stockholm, Sweden
| | - Michael Ryott
- Department of Otorhinolaryngology, Sophiahemmet Hospital, Stockholm, Sweden
| | - Maria Kumlin
- Department of Health Promotion Science, Sophiahemmet University, Stockholm, Sweden
| |
Collapse
|
20
|
Lee JU, Soo Chang H, Kyung Kim M, Park SL, Kim JH, Park JS, Park CS. Genome-wide DNA methylation profile of peripheral blood lymphocytes from subjects with nonsteroidal anti-inflammatory drug-induced respiratory diseases. Pharmacogenet Genomics 2022; 32:226-234. [PMID: 35696287 DOI: 10.1097/fpc.0000000000000475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Significant changes in CpG methylation have been identified in nasal polyps, which are the main targets of nonsteroidal anti-inflammatory drug-exacerbated respiratory disease (NERD); however, these polyps are composed of various cellular components. In the present study, whole-genome CpG methylation in peripheral blood lymphocytes (PBLs) was analyzed to define the epigenetic changes in lymphocytes, which are the primary immune cells involved in NERD. MATERIALS AND METHODS Genomic DNA from peripheral blood mononuclear cells from 27 NERD and 24 aspirin-tolerant asthma (ATA) was subjected to bisulfate conversion and a methylation array. Quantitative CpG methylation, the β-values as a quantitative measure of DNA methylation, in lymphocytes were calculated after adjustments for cellular composition. RESULTS Fifty-six hypermethylated and three hypomethylated differentially methylated CpGs (DMCs) in PBLs in the NERD compared with ATA. The top 10 CpG loci predicted the methylation risk score, with a positive predictive value of 91.3%, a negative predictive value of 81.5% and an accuracy of 84.3%. As demonstrated in the nasal polyps, 30 DMCs were predicted to bind to the following 10 transcription factors, ranked in descending order: AP-2alphaA, TFII-1, STAT4, FOXP3, GR, c-Est-1, E2F-1, XBP1, ENKTF-1 and NF-1. Gene ontology analysis identified 13 categories such as regulation of T-helper 17 cell differentiation, including SMAD7 and NFKBIZ. PBLs in NERD contained no DMCs in genes associated with the prostaglandin and leukotriene pathways, which were found in ATA. CONCLUSION PBLs in NERD form a unique pattern of DNA CpG methylation, and the combined analysis may provide predictive values for NERD.
Collapse
Affiliation(s)
- Jong-Uk Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital
| | - Hun Soo Chang
- Department of Anatomy and BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan
| | - Min Kyung Kim
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchuhyang University
| | - Seung-Lee Park
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchuhyang University
| | - Jung Hyun Kim
- Department of Internal Medicine, Korean Armed Forces Capital Hospital, Seongnam
| | - Jong-Sook Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital
| | - Choon-Sik Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital
- PulmoBioPark Co., Ltd., Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|
21
|
Ualiyeva S, Lemire E, Aviles EC, Wong C, Boyd AA, Lai J, Liu T, Matsumoto I, Barrett NA, Boyce JA, Haber AL, Bankova LG. Tuft cell-produced cysteinyl leukotrienes and IL-25 synergistically initiate lung type 2 inflammation. Sci Immunol 2021; 6:eabj0474. [PMID: 34932383 DOI: 10.1126/sciimmunol.abj0474] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Saltanat Ualiyeva
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Evan Lemire
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Evelyn C Aviles
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Caitlin Wong
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Amelia A Boyd
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Juying Lai
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Tao Liu
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Nora A Barrett
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Joshua A Boyce
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Adam L Haber
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Lora G Bankova
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
The Role of IgE in Upper and Lower Airway Disease: More Than Just Allergy! Clin Rev Allergy Immunol 2021; 62:200-215. [PMID: 34536215 PMCID: PMC8818003 DOI: 10.1007/s12016-021-08901-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 12/25/2022]
Abstract
Immunoglobulin E (IgE) is a well-known key factor in allergic airway disease; however, its central role in non-allergic airway inflammation is often underestimated. In some airway diseases, IgE is produced as a result of allergic sensitization. However, in others, IgE production occurs despite the lack of a specific allergen. Although multiple pathways contribute to the production of IgE in airway disease, it is its activity in mediating the inflammatory response that is associated with disease. Therefore, an understanding of IgE as the unifying component of upper and lower airway diseases has important implications for both diagnosis and treatment. Understanding the role of IgE in each upper and lower airway disease highlights its potential utility as a diagnostic marker and therapeutic target. Further classification of these diseases by whether they are IgE mediated or non–IgE mediated, rather than by the existence of an underlying allergic component, accounts for both systemic and localized IgE activity. Improvements in diagnostic methodologies and standardization of clinical practices with this classification in mind can help identify patients with IgE-mediated diseases. In doing so, this group of patients can receive optimal care through targeted anti-IgE therapeutics, which have already demonstrated efficacy across numerous IgE-mediated upper and lower airway diseases.
Collapse
|
23
|
Jeican II, Gheban D, Barbu-Tudoran L, Inișca P, Albu C, Ilieș M, Albu S, Vică ML, Matei HV, Tripon S, Lazăr M, Aluaș M, Siserman CV, Muntean M, Trombitas V, Iuga CA, Opincariu I, Junie LM. Respiratory Nasal Mucosa in Chronic Rhinosinusitis with Nasal Polyps versus COVID-19: Histopathology, Electron Microscopy Analysis and Assessing of Tissue Interleukin-33. J Clin Med 2021; 10:4110. [PMID: 34575221 PMCID: PMC8468618 DOI: 10.3390/jcm10184110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022] Open
Abstract
(1) Background: Chronic rhinosinusitis with nasal polyps (CRSwNP) is one of the most studied rhinological disorders. Modifications of the respiratory nasal mucosa in COVID-19 patients are so far unknown. This paper presents a comparative morphological characterization of the respiratory nasal mucosa in CRSwNP versus COVID-19 and tissue interleukin (IL)-33 concentration. (2) Methods: We analyzed CRSwNP and COVID-19 samples through histopathology, scanning and transmission electron microscopy and performed proteomic determination of IL-33. (3) Results: Histopathologically, stromal edema (p < 0.0001) and basal membrane thickening (p = 0.0768) were found more frequently in CRSwNP than in COVID-19. Inflammatory infiltrate was mainly eosinophil-dominant in CRSwNP and lymphocyte-dominant in COVID-19 (p = 0.3666). A viral cytopathic effect was identified in COVID-19. Scanning electron microscopy detected biofilms only in CRSwNP, while most COVID-19 samples showed microbial aggregates (p = 0.0148) and immune cells (p = 0.1452). Transmission electron microscopy of CRSwNP samples identified biofilms, mucous cell hyperplasia (p = 0.0011), eosinophils, fibrocytes, mastocytes, and collagen fibers. Extracellular suggestive structures for SARS-CoV-2 and multiple Golgi apparatus in epithelial cells were detected in COVID-19 samples. The tissue IL-33 concentration in CRSwNP (210.0 pg/7 μg total protein) was higher than in COVID-19 (52.77 pg/7 μg total protein) (p < 0.0001), also suggesting a different inflammatory pattern. (4) Conclusions: The inflammatory pattern is different in each of these disorders. Results suggested the presence of nasal dysbiosis in both conditions, which could be a determining factor in CRSwNP and a secondary factor in COVID-19.
Collapse
Affiliation(s)
- Ionuț Isaia Jeican
- Department of Head and Neck Surgery and Otorhinolaryngology, University Clinical Hospital of Railway Company, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (I.I.J.); (V.T.)
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Dan Gheban
- Department of Pathology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
| | - Lucian Barbu-Tudoran
- Electron Microscopy Laboratory, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania; (L.B.-T.); (S.T.)
- Electron Microscopy Integrated Laboratory, National Institute for R&D of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Patricia Inișca
- Department of Pathology, County Emergency Hospital, 330084 Deva, Romania;
| | - Camelia Albu
- Department of Pathology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Imogen Medical Research Institute, County Clinical Emergency Hospital, 400014 Cluj-Napoca, Romania
| | - Maria Ilieș
- Department of Proteomics and Metabolomics, MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.I.); (C.A.I.)
| | - Silviu Albu
- Department of Head and Neck Surgery and Otorhinolaryngology, University Clinical Hospital of Railway Company, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (I.I.J.); (V.T.)
| | - Mihaela Laura Vică
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (H.V.M.)
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania;
| | - Horea Vladi Matei
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (H.V.M.)
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania;
| | - Septimiu Tripon
- Electron Microscopy Laboratory, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania; (L.B.-T.); (S.T.)
- Electron Microscopy Integrated Laboratory, National Institute for R&D of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Mihaela Lazăr
- Cantacuzino National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania;
| | - Maria Aluaș
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Costel Vasile Siserman
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania;
- Department of Legal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania
| | - Monica Muntean
- Department of Infectious Disease, Clinical Hospital of Infectious Disease, Iuliu Hatieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania;
| | - Veronica Trombitas
- Department of Head and Neck Surgery and Otorhinolaryngology, University Clinical Hospital of Railway Company, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (I.I.J.); (V.T.)
| | - Cristina Adela Iuga
- Department of Proteomics and Metabolomics, MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.I.); (C.A.I.)
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Iulian Opincariu
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Lia Monica Junie
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
24
|
Eicosanoid receptors as therapeutic targets for asthma. Clin Sci (Lond) 2021; 135:1945-1980. [PMID: 34401905 DOI: 10.1042/cs20190657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Eicosanoids comprise a group of oxidation products of arachidonic and 5,8,11,14,17-eicosapentaenoic acids formed by oxygenases and downstream enzymes. The two major pathways for eicosanoid formation are initiated by the actions of 5-lipoxygenase (5-LO), leading to leukotrienes (LTs) and 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), and cyclooxygenase (COX), leading to prostaglandins (PGs) and thromboxane (TX). A third group (specialized pro-resolving mediators; SPMs), including lipoxin A4 (LXA4) and resolvins (Rvs), are formed by the combined actions of different oxygenases. The actions of the above eicosanoids are mediated by approximately 20 G protein-coupled receptors, resulting in a variety of both detrimental and beneficial effects on airway smooth muscle and inflammatory cells that are strongly implicated in asthma pathophysiology. Drugs targeting proinflammatory eicosanoid receptors, including CysLT1, the receptor for LTD4 (montelukast) and TP, the receptor for TXA2 (seratrodast) are currently in use, whereas antagonists of a number of other receptors, including DP2 (PGD2), BLT1 (LTB4), and OXE (5-oxo-ETE) are under investigation. Agonists targeting anti-inflammatory/pro-resolving eicosanoid receptors such as EP2/4 (PGE2), IP (PGI2), ALX/FPR2 (LXA4), and Chemerin1 (RvE1/2) are also being examined. This review summarizes the contributions of eicosanoid receptors to the pathophysiology of asthma and the potential therapeutic benefits of drugs that target these receptors. Because of the multifactorial nature of asthma and the diverse pathways affected by eicosanoid receptors, it will be important to identify subgroups of asthmatics that are likely to respond to any given therapy.
Collapse
|
25
|
Butterfield JH, Singh RJ. Divergent PGD 2 and leukotriene C 4 metabolite excretion following aspirin therapy: Ten patients with systemic mastocytosis. Prostaglandins Other Lipid Mediat 2021; 155:106563. [PMID: 34029712 DOI: 10.1016/j.prostaglandins.2021.106563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022]
Abstract
Aspirin-exacerbated respiratory disease and some cases of chronic idiopathic urticaria are disorders in which increased baseline urinary excretion of leukotriene(LT)E4 further increases following aspirin administration. Increased urinary excretion of the metabolites of prostaglandin D2, 11β-prostaglandin(PG)F2α and (2,3-dinor)-11β-PGF2α, have been documented in systemic mastocytosis (SM) and in mast cell activation syndrome (MCAS). Symptoms due to increased baseline and/or episodic release of PGD2 can be prevented with aspirin, an inhibitor of cyclooxygenase (COX)1 and COX2. Here by retrospective chart review we discovered 8 of 10 patients with SM in whom normalization of an elevated urinary (2,3-dinor)-11β-PGF2α occurred with aspirin therapy also had a parallel increased excretion of LTE4 by an average of nearly 13-fold. How widespread this phenomenon occurs in SM is unknown; however, this occurrence needs to be considered when interpreting changes in these urinary mast cell mediator metabolites during aspirin therapy.
Collapse
Affiliation(s)
| | - Ravinder J Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
26
|
Innate immune cell dysregulation drives inflammation and disease in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2021; 148:309-318. [PMID: 34364539 DOI: 10.1016/j.jaci.2021.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 01/06/2023]
Abstract
Aspirin-exacerbated respiratory disease (AERD) is a complex inflammatory disorder that is not generally viewed as a disease involving the adaptive immune system but instead one largely driven by the innate immune system. This article focuses on the cellular dysregulation involving 4 central cell types: eosinophils, basophils, mast cells, and innate lymphoid type 2 cells. AERD can be envisioned as involving a self-perpetuating vicious circle in which mediators produced by a differentiated activated epithelial layer, such as IL-25, IL-33, and thymic stromal lymphopoietin, engage and activate each of these innate immune cells. The activation of these innate immune cells with their production of additional cytokine/chemokine and lipid mediators leads to further recruitment and activation of these innate immune cells. More importantly, numerous mediators produced by these innate immune cells provoke the epithelium to induce further inflammation. This self-perpetuating cycle of inflammation partially explains both current interventions suggested to ameliorate AERD (eg, aspirin desensitization, leukotriene modifiers, anti-IL-5/IL-5 receptor, anti-IL-4 receptor, and anti-IgE) and invites exploration of novel targets as specific therapies for this condition (prostaglandin D2 antagonists or cytokine antagonists [IL-25, IL-33, thymic stromal lymphopoietin]). Several of these interventions currently show promise in small retrospective analyses but now require definite clinical trials.
Collapse
|
27
|
C Morse J, Miller C, Senior B. Management of Chronic Rhinosinusitis with Nasal Polyposis in the Era of Biologics. J Asthma Allergy 2021; 14:873-882. [PMID: 34285514 PMCID: PMC8285230 DOI: 10.2147/jaa.s258438] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Purpose of Review Chronic rhinosinusitis with nasal polyposis (CRSwNP) is a phenotypic designation of the broader condition of chronic rhinosinusitis. The advent of targeted biologics has shown promise in targeting different aspects of the inflammatory pathway, yet there remains a lack of consensus on the correct timing and use of these medications. This review seeks to provide a concise update of the available literature on the pathophysiology of CRSwNP, the evolution and cost utility of biologics as it pertains to management of patients with CRSwNP, and evidence for each available biologic and its use in CRSwNP. Recent Findings There are two biologics with FDA approval for use in CRSwNP: dupilumab and omalizumab. Recent clinical trials of other biologic therapies targeting type 2 inflammatory pathways have also demonstrated efficacy both in symptom scores and nasal polyp reduction. However, studies have questioned the cost utility of these medications compared to other interventions. Furthermore, timing of use with respect to other interventions including surgery remains challenging.
Collapse
Affiliation(s)
- Justin C Morse
- University of North Carolina Department of Otolaryngology-Head and Neck Surgery, University of North Carolina Medical Center, Chapel Hill, NC, 27599, USA
| | - Craig Miller
- University of North Carolina Department of Otolaryngology-Head and Neck Surgery, University of North Carolina Medical Center, Chapel Hill, NC, 27599, USA
| | - Brent Senior
- University of North Carolina Department of Otolaryngology-Head and Neck Surgery, University of North Carolina Medical Center, Chapel Hill, NC, 27599, USA
| |
Collapse
|
28
|
Sehanobish E, Asad M, Barbi M, Porcelli SA, Jerschow E. Aspirin Actions in Treatment of NSAID-Exacerbated Respiratory Disease. Front Immunol 2021; 12:695815. [PMID: 34305932 PMCID: PMC8297972 DOI: 10.3389/fimmu.2021.695815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022] Open
Abstract
Non-steroidal Anti-inflammatory drugs (NSAID)-exacerbated respiratory disease (N-ERD) is characterized by nasal polyposis, chronic rhinosinusitis, adult-onset asthma and hypersensitive reactions to cyclooxygenase-1 (COX-1) inhibitors. Among the available treatments for this disease, a combination of endoscopic sinus surgery followed by aspirin desensitization and aspirin maintenance therapy has been an effective approach. Studies have shown that long-term aspirin maintenance therapy can reduce the rate of nasal polyp recurrence in patients with N-ERD. However, the exact mechanism by which aspirin can both trigger and suppress airway disease in N-ERD remains poorly understood. In this review, we summarize current knowledge of aspirin effects in N-ERD, cardiovascular disease, and cancer, and consider potential mechanistic pathways accounting for the effects of aspirin in N-ERD.
Collapse
Affiliation(s)
- Esha Sehanobish
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mohammad Asad
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mali Barbi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Steven A. Porcelli
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Elina Jerschow
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
29
|
Hamilton D, Lehman H. Asthma Phenotypes as a Guide for Current and Future Biologic Therapies. Clin Rev Allergy Immunol 2021; 59:160-174. [PMID: 31359247 DOI: 10.1007/s12016-019-08760-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asthma has been increasingly recognized as being a heterogeneous disease with multiple distinct mechanisms and pathophysiologies. Evidence continues to build regarding the existence of different cell types, environmental exposures, pathogens, and other factors that produce a similar set of symptoms known collectively as asthma. This has led to a movement from a "one size fits all" symptom-based methodology to a more patient-centered, individualized approach to asthma treatment targeting the underlying disease process. A significant contributor to this shift to more personalized asthma therapy has been the increasing availability of numerous biologic therapies in recent years, providing the opportunity for more targeted treatments. When targeted biologics began to be developed for treatment of asthma, the hope was that distinct biomarkers would become available, allowing the clinician to determine which biologic therapy was best suited for which patients. Presence of certain biomarkers, like eosinophilia or antigen-specific IgE, is important features of specific asthma phenotypes. Currently available biomarkers can help with decision making about biologics, but are generally too broad and non-specific to clearly identify an asthma phenotype or the single biologic best suited to an asthmatic. Identification of further biomarkers is the subject of intense research. Yet, identifying a patient's asthma phenotype can help in predicting disease course, response to treatment, and biologic therapies to consider. In this review, major asthma phenotypes are reviewed, and the evidence for the utility of various biologics, both those currently on the market and those in the development process, in each of these phenotypes is explored.
Collapse
Affiliation(s)
- Daniel Hamilton
- SUNY Upstate Medical University College of Medicine, Syracuse, NY, USA
| | - Heather Lehman
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 1001 Main Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
30
|
De Filippo M, Votto M, Licari A, Pagella F, Benazzo M, Ciprandi G, Marseglia GL. Novel therapeutic approaches targeting endotypes of severe airway disease. Expert Rev Respir Med 2021; 15:1303-1316. [PMID: 34056983 DOI: 10.1080/17476348.2021.1937132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Severe asthma and chronic rhinosinusitis (CRS), with nasal polyps (CRSwNP) and without nasal polyps (CRSsNP), are heterogeneous diseases characterized by different mechanistic pathways (endotypes) and variable clinical presentations (phenotypes).Areas covered: This review provides the clinician with an overview of the prevalence and clinical impact of severe chronic upper and lower airways disease and suggests a novel therapeutic approach with biological agents with possible biomarkers. To select relevant literature for inclusion in this review, we conducted a literature search using the PubMed database, using terms 'severe airways disease' AND 'endotype' AND 'treatment.' The literature review was performed for publication years 2010-2020, restricting the articles to humans and English language publications.Expert opinion: The coronavirus disease (COVID-19) pandemic has brought forth many challenges for patients with severe airway disease and healthcare practitioners involved in care. These patients could have an increased risk of developing severe SARS-CoV-2 disease, although treatment with biologics is not associated with a worse prognosis. Eosinopenia on hospital admission plays a key role as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Maria De Filippo
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Martina Votto
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Amelia Licari
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Fabio Pagella
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marco Benazzo
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Gian Luigi Marseglia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the complex cellular interactions of aspirin-exacerbated respiratory disease (AERD) and how these interactions promote pathogenic mechanisms of AERD. RECENT FINDINGS In addition to characteristic changes in eicosanoid levels, recent studies have identified increases in alarmin cytokines (IL-33, thymic stromal lymphopoietin) as well as activated innate lymphoid and plasma cell populations in samples from AERD patients. SUMMARY Patients with AERD typically demonstrate high levels of proinflammatory eicosanoids including cysteinyl leukotrienes (CysLTs) and prostaglandin D2 (PGD2) and hyporesponsiveness to prostaglandin E2 (PGE2). CysLTs are released by mast cells, eosinophils, and adherent platelets and promote epithelial release of IL-33, which activates mast cells and group 2 innate lymphoid cells (ILC2s) in concert with CysLTs. TSLP induces PGD2 release from mast cells which activates and recruits eosinophils, basophils, Th2 cells, and ILC2s via CRTH2. In turn, ILC2s and other cell types produce Th2 cytokines IL-4, IL-5, and IL-13 that, along with CysLTs and PGD2, promote bronchoconstriction, eosinophilic tissue inflammation, and mucus production.
Collapse
Affiliation(s)
- Jana H. Badrani
- Department of Medicine, University of California-San Diego, La Jolla, CA
| | - Taylor A. Doherty
- Department of Medicine, University of California-San Diego, La Jolla, CA
- Veterans Affairs San Diego Health Care System, La Jolla, CA
| |
Collapse
|
32
|
Cavagnero KJ, Doherty TA. Lipid-mediated innate lymphoid cell recruitment and activation in aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol 2021; 126:135-142. [PMID: 32950684 PMCID: PMC7855910 DOI: 10.1016/j.anai.2020.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To synthesize investigations into the role of lipid-mediated recruitment and activation of group 2 innate lymphoid cells (ILC2s) in aspirin-exacerbated respiratory disease (AERD). DATA SOURCES A comprehensive literature review of reports pertaining to cellular mechanisms, cytokine, and lipid mediators in AERD, as well as ILC2 activation and recruitment, was performed using PubMed and Google Scholar. STUDY SELECTIONS Selections of studies were based on reports of lipid mediators in AERD, cytokine mediators in AERD, type 2 effector cells in AERD, platelets in AERD, AERD treatment, ILC2s in allergic airway disease, and ILC2 activation, inhibition, and trafficking. RESULTS The precise mechanisms of AERD pathogenesis are not well understood. Greater levels of proinflammatory lipid mediators and type 2 cytokines are found in tissues derived from patients with AERD relative to controls. After pathognomonic cyclooxygenase-1 inhibitor reactions, proinflammatory mediator concentrations (prostaglandin D2 and cysteinyl leukotrienes) are rapidly increased, as are ILC2 levels in the nasal mucosa. The ILC2s, which potently generate type 2 cytokines in response to lipid mediator stimulation, may play a key role in AERD pathogenesis. CONCLUSION Although the literature suggests that lipid-mediated ILC2 activation may occur in AERD, there is a dearth of definitive evidence. Future investigations leveraging novel next-generation single-cell sequencing approaches along with recently developed AERD murine models will better define lipid mediator-induced ILC2 trafficking in patients with AERD.
Collapse
Affiliation(s)
- Kellen J Cavagnero
- Department of Medicine, University of California, San Diego, La Jolla, California; Department of Dermatology, University of California, San Diego, La Jolla, California
| | - Taylor A Doherty
- Department of Medicine, University of California, San Diego, La Jolla, California; Veterans Affairs San Diego Health Care System, La Jolla, California.
| |
Collapse
|
33
|
Derakhshan T, Samuchiwal SK, Hallen N, Bankova LG, Boyce JA, Barrett NA, Austen KF, Dwyer DF. Lineage-specific regulation of inducible and constitutive mast cells in allergic airway inflammation. J Exp Med 2021; 218:e20200321. [PMID: 32946563 PMCID: PMC7953627 DOI: 10.1084/jem.20200321] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/30/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Murine mast cells (MCs) contain two lineages: inducible bone marrow-derived mucosal MCs (MMCs) and constitutive embryonic-derived connective tissue MCs (CTMCs). Here, we use RNA sequencing, flow cytometry, and genetic deletion in two allergic lung inflammation models to define these two lineages. We found that inducible MCs, marked by β7 integrin expression, are highly distinct from airway CTMCs at rest and during inflammation and unaffected by targeted CTMC deletion. β7High MCs expand and mature during lung inflammation as part of a TGF-β-inducible transcriptional program that includes the MMC-associated proteases Mcpt1 and Mcpt2, the basophil-associated protease Mcpt8, granule components, and the epithelial-binding αE integrin. In vitro studies using bone marrow-derived MCs (BMMCs) identified a requirement for SCF in this this TGF-β-mediated development and found that epithelial cells directly elicit TGF-β-dependent BMMC up-regulation of mMCP-1 and αE integrin. Thus, our findings characterize the expansion of a distinct inducible MC subset in C57BL/6 mice and highlight the potential for epithelium to direct MMC development.
Collapse
Affiliation(s)
- Tahereh Derakhshan
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Sachin K. Samuchiwal
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Nils Hallen
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA
| | - Lora G. Bankova
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Joshua A. Boyce
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Nora A. Barrett
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - K. Frank Austen
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Daniel F. Dwyer
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
34
|
Leukotriene D 4 paradoxically limits LTC 4-driven platelet activation and lung immunopathology. J Allergy Clin Immunol 2020; 148:195-208.e5. [PMID: 33285161 DOI: 10.1016/j.jaci.2020.10.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The 3 cysteinyl leukotrienes (cysLTs), leukotriene (LT) C4 (LTC4), LTD4, and LTE4, have different biologic half-lives, cellular targets, and receptor specificities. CysLT2R binds LTC4 and LTD4in vitro with similar affinities, but it displays a marked selectivity for LTC4in vivo. LTC4, but not LTD4, strongly potentiates allergen-induced pulmonary eosinophilia in mice through a CysLT2R-mediated, platelet- and IL-33-dependent pathway. OBJECTIVE We sought to determine whether LTD4 functionally antagonizes LTC4 signaling at CysLT2R. METHODS We used 2 different in vivo models of CysLT2R-dependent immunopathology, as well as ex vivo activation of mouse and human platelets. RESULTS LTC4-induced CD62P expression; HMGB1 release; and secretions of thromboxane A2, CXCL7, and IL-33 by mouse platelets were all were blocked by a selective CysLT2R antagonist and inhibited by LTD4. These effects did not depend on CysLT1R. Inhaled LTD4 blocked LTC4-mediated potentiation of ovalbumin-induced eosinophilic inflammation; recruitment of platelet-adherent eosinophils; and increases in IL-33, IL-4, IL-5, and IL-13 levels in lung tissue. In contrast, the effect of administration of LTE4, the preferred ligand for CysLT3R, was additive with LTC4. The administration of LTD4 to Ptges-/- mice, which display enhanced LTC4 synthesis similar to that in aspirin-exacerbated respiratory disease, completely blocked the physiologic response to subsequent lysine-aspirin inhalation challenges, as well as increases in levels of IL-33, type 2 cytokines, and biochemical markers of mast cell and platelet activation. CONCLUSION The conversion of LTC4 to LTD4 may limit the duration and extent of potentially deleterious signaling through CysLT2R, and it may contribute to the therapeutic properties of desensitization to aspirin in aspirin-exacerbated respiratory disease.
Collapse
|
35
|
Laidlaw TM, Mullol J, Woessner KM, Amin N, Mannent LP. Chronic Rhinosinusitis with Nasal Polyps and Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 9:1133-1141. [PMID: 33065369 DOI: 10.1016/j.jaip.2020.09.063] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/14/2023]
Abstract
Patients with chronic rhinosinusitis with nasal polyps (CRSwNP) characterized by a type 2 immune signature often have severe and recurrent disease. Lower airway conditions such as asthma are common comorbidities and share similar pathophysiology. CRSwNP with asthma is characterized by tissue eosinophilia and high local IgE levels. Clinically, CRSwNP with comorbid asthma is associated with more severe sinonasal symptoms and worse quality of life, and it is more difficult to treat both medically and surgically. Asthma in the presence of nasal polyposis is also more difficult to control, being more exacerbation prone, with increased airway obstruction and more extensive eosinophilic inflammation. Aspirin/nonsteroidal anti-inflammatory drug-exacerbated respiratory disease (AERD) is a recognized phenotype of CRSwNP with comorbid asthma. Patients with CRSwNP with comorbid AERD are among those with the most severe and difficult-to-treat disease, and tend to have severe NP. The shared pathophysiology of the upper and lower airways has important implications for both the diagnosis and management of respiratory comorbidities. However, in clinical practice, the nose and lungs are often treated as separate entities. The underlying systemic inflammatory link between CRSwNP and asthma provides a compelling rationale for systemic treatment with novel biologics targeting shared underlying type 2 inflammatory pathways.
Collapse
Affiliation(s)
- Tanya M Laidlaw
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass.
| | - Joaquim Mullol
- Hospital Clínic, IDIBAPS, Universitat de Barcelona, CIBERES, Barcelona, Catalonia, Spain
| | - Katharine M Woessner
- Division of Allergy, Asthma and Immunology, Scripps Medical Clinic Group, San Diego, Calif
| | - Nikhil Amin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY
| | | |
Collapse
|
36
|
Kuruvilla ME, Vanijcharoenkarn K, Levy JM. The Role of Mast Cells in Aspirin-Exacerbated Respiratory Disease (AERD) Pathogenesis: Implications for Future Therapeutics. J Asthma Allergy 2020; 13:463-470. [PMID: 33116654 PMCID: PMC7569245 DOI: 10.2147/jaa.s237463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
Mast cells (MC) have recently been demonstrated to play an integral role in the pathogenesis of aspirin-exacerbated respiratory disease (AERD). When activated, MCs release pre-formed granules of many pro-inflammatory mediators, including histamine, serotonin, and various chemokines and cytokines including tumor necrosis factor (TNF)-α, interferon ɣ (IFN ɣ), macrophage inhibitory factor, transforming growth factor, interleukin (IL) 1, 3–6, 9, 10, 13 and 16. These mediators promote inflammation in AERD by recruiting or activating a network of cells involved in acute and chronic inflammatory pathways, such as endothelial, epithelial, stromal, and other immune cells. Several studies have implicated multifactorial pathways for MC activation in AERD beyond classical IgE mediated mechanisms. The elucidation of these complex networks therefore represents important targets for innovative patient therapeutics. This review summarizes classic and alternative pathways of MC activation in AERD with a special focus in relation to new and emerging treatment strategies.
Collapse
Affiliation(s)
- Merin E Kuruvilla
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kristine Vanijcharoenkarn
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Joshua M Levy
- Department of Otolaryngology - Head & Neck Surgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
37
|
Alessandrini F, Musiol S, Schneider E, Blanco-Pérez F, Albrecht M. Mimicking Antigen-Driven Asthma in Rodent Models-How Close Can We Get? Front Immunol 2020; 11:575936. [PMID: 33101301 PMCID: PMC7555606 DOI: 10.3389/fimmu.2020.575936] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022] Open
Abstract
Asthma is a heterogeneous disease with increasing prevalence worldwide characterized by chronic airway inflammation, increased mucus secretion and bronchial hyperresponsiveness. The phenotypic heterogeneity among asthmatic patients is accompanied by different endotypes, mainly Type 2 or non-Type 2. To investigate the pathomechanism of this complex disease many animal models have been developed, each trying to mimic specific aspects of the human disease. Rodents have classically been employed in animal models of asthma. The present review provides an overview of currently used Type 2 vs. non-Type 2 rodent asthma models, both acute and chronic. It further assesses the methods used to simulate disease development and exacerbations as well as to quantify allergic airway inflammation, including lung physiologic, cellular and molecular immunologic responses. Furthermore, the employment of genetically modified animals, which provide an in-depth understanding of the role of a variety of molecules, signaling pathways and receptors implicated in the development of this disease as well as humanized models of allergic inflammation, which have been recently developed to overcome differences between the rodent and human immune systems, are discussed. Nevertheless, differences between mice and humans should be carefully considered and limits of extrapolation should be wisely taken into account when translating experimental results into clinical use.
Collapse
Affiliation(s)
- Francesca Alessandrini
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stephanie Musiol
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Evelyn Schneider
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Frank Blanco-Pérez
- Molecular Allergology/Vice President's Research Group, Paul-Ehrlich-Institut, Langen, Germany
| | - Melanie Albrecht
- Molecular Allergology/Vice President's Research Group, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
38
|
Drake LY, Prakash YS. Contributions of IL-33 in Non-hematopoietic Lung Cells to Obstructive Lung Disease. Front Immunol 2020; 11:1798. [PMID: 32903501 PMCID: PMC7438562 DOI: 10.3389/fimmu.2020.01798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-33 plays important roles in pulmonary immune responses and lung diseases including asthma and chronic obstructive pulmonary disease (COPD). There is substantial interest in identifying and characterizing cellular sources vs. targets of IL-33, and downstream signaling pathways involved in disease pathophysiology. While epithelial and immune cells have largely been the focus, in this review, we summarize current knowledge of expression, induction, and function of IL-33 and its receptor ST2 in non-hematopoietic lung cells in the context of health and disease. Under basal conditions, epithelial cells and endothelial cells are thought to be the primary resident cell types that express high levels of IL-33 and serve as ligand sources compared to mesenchymal cells (smooth muscle cells and fibroblasts). Under inflammatory conditions, IL-33 expression is increased in most non-hematopoietic lung cells, including epithelial, endothelial, and mesenchymal cells. In comparison to its ligand, the receptor ST2 shows low expression levels at baseline but similar to IL-33, ST2 expression is upregulated by inflammation in these non-hematopoietic lung cells which may then participate in chronic inflammation both as sources and autocrine/paracrine targets of IL-33. Downstream effects of IL-33 may occur via direct receptor activation or indirect interactions with the immune system, overall contributing to lung inflammation, airway hyper-responsiveness and remodeling (proliferation and fibrosis). Accordingly from a therapeutic perspective, targeting IL-33 and/or its receptor in non-hematopoietic lung cells becomes relevant.
Collapse
Affiliation(s)
- Li Y Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
39
|
Stevens WW, Kato A. Group 2 innate lymphoid cells in nasal polyposis. Ann Allergy Asthma Immunol 2020; 126:110-117. [PMID: 32781240 DOI: 10.1016/j.anai.2020.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by a chronic type 2 inflammatory response in the paranasal sinuses. Group 2 innate lymphoid cells (ILC2s) are potent innate immune cells that contribute to type 2 inflammation by producing cytokines such as interleukin (IL)-4, IL-5, and IL-13. There is increasing evidence suggesting that ILC2s play an important role in the CRSwNP pathogenesis. DATA SOURCES We reviewed published literature obtained through PubMed inquiries. STUDY SELECTIONS Studies relevant to the presence, function, and activation of ILC2s in CRSwNP were included. RESULTS Nasal polyps (NPs) are one of the first tissues in which human ILC2s were discovered, and many groups have since reported that these cells are highly elevated in NPs. ILC2s in NPs are also highly activated and produce type 2 cytokines in vivo. Mediators known to activate ILC2s, including receptor activator of nuclear factor kappa-Β ligand, thymic stromal lymphopoietin, various lipid mediators (including prostaglandin D2 and cysteinyl leukotrienes), IL-4, and IL-13 have also been shown to be elevated in NPs compared with healthy sinonasal tissue. Other well-known ILC2 activators, IL-25 and IL-33, are sometimes elevated in NPs in some countries. Furthermore, activation of ILC2s by means of 4 distinct transcriptional pathways (nuclear factor kappa-light-chain-enhancer of activated B cells, nuclear factor of activated T cells, signal transducer and activator of transcription 5, and signal transducer and activator of transcription 6) is needed for the most robust generation of type 2 cytokines. CONCLUSION ILC2-mediated type 2 inflammation plays a crucial role in the pathogenesis of CRSwNP. Targeting the upstream mediators responsible for activating ILC2s and the downstream products that these cells release may play an important role in modifying the inflammatory response and improving clinical outcomes in CRSwNP.
Collapse
Affiliation(s)
- Whitney W Stevens
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
40
|
Aspirin sensitivity: Lessons in the regulation (and dysregulation) of mast cell function. J Allergy Clin Immunol 2020; 144:875-881. [PMID: 31587797 DOI: 10.1016/j.jaci.2019.08.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 10/25/2022]
Abstract
The idiosyncratic activation of mast cells (MCs) in response to administration of nonselective COX inhibitors is a cardinal feature of aspirin-exacerbated respiratory disease (AERD). Older studies using MC-stabilizing drugs support a critical role for MCs and their products in driving the severe eosinophilic inflammation and respiratory dysfunction that is typical of AERD. Because patients with AERD react to all nonselective COX inhibitors regardless of their chemical structure, the mechanism of MC activation is not caused by classical, antigen-induced cross-linking of IgE receptors. Recent studies in both human subjects and animal models have revealed a complex and multifactorial process culminating in dysregulation of MC function and an aberrant dependency on COX-1-derived prostaglandin E2 to maintain a tenuous homeostasis. This article reviews the factors most likely to contribute to MC dysregulation in patients with AERD and the potential diagnostic and therapeutic implications.
Collapse
|
41
|
HIV gp120 Induces the Release of Proinflammatory, Angiogenic, and Lymphangiogenic Factors from Human Lung Mast Cells. Vaccines (Basel) 2020; 8:vaccines8020208. [PMID: 32375243 PMCID: PMC7349869 DOI: 10.3390/vaccines8020208] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Human lung mast cells (HLMCs) express the high-affinity receptor FcεRI for IgE and are involved in chronic pulmonary diseases occurring at high frequency among HIV-infected individuals. Immunoglobulin superantigens bind to the variable regions of either the heavy or light chain of immunoglobulins (Igs). Glycoprotein 120 (gp120) of HIV-1 is a typical immunoglobulin superantigen interacting with the heavy chain, variable 3 (VH3) region of human Igs. The present study investigated whether immunoglobulin superantigen gp120 caused the release of different classes of proinflammatory and immunoregulatory mediators from HLMCs. The results show that gp120 from different clades induced the rapid (30 min) release of preformed mediators (histamine and tryptase) from HLMCs. gp120 also caused the de novo synthesis of cysteinyl leukotriene C4 (LTC4) and prostaglandin D2 (PGD2) from HLMCs. Incubation (6 h) of HLMC with gp120 induced the release of angiogenic (VEGF-A) and lymphangiogenic (VEGF-C) factors from HLMCs. The activating property of gp120 was mediated through the interaction with IgE VH3+ bound to FcεRI. Our data indicate that HIV gp120 is a viral superantigen, which induces the release of different proinflammatory, angiogenic, and lymphangiogenic factors from HLMCs. These observations could contribute to understanding, at least in part, the pathophysiology of chronic pulmonary diseases in HIV-infected individuals.
Collapse
|
42
|
Laidlaw TM, Buchheit KM. Biologics in chronic rhinosinusitis with nasal polyposis. Ann Allergy Asthma Immunol 2020; 124:326-332. [PMID: 31830587 PMCID: PMC7113089 DOI: 10.1016/j.anai.2019.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common and heterogeneous inflammatory condition, for which the drivers of the underlying inflammation are not yet fully understood. The use of biologic therapies to target specifically relevant effector cells or cytokines in CRSwNP is a growing field of interest. The objectives of this review are to provide an update on the existing studies of biologics in CRSwNP and to identify potential future areas for further research. DATA SOURCES An initial literature review of biologic therapies in CRS was performed through publications gathered from a PubMed search for title/abstract containing "biologic" and "chronic rhinosinusitis." Further manuscripts describing scientific premise for each biologic were then reviewed. STUDY SELECTIONS A detailed review of all studies describing biologic therapies targeting inflammation in CRSwNP was performed. RESULTS Biologic therapies targeting interleukin (IL)-4Rα, IL-5, IL-5Rα, IL-33, immunoglobulin (Ig)E, and thymic stromal lymphopoietin (TSLP) have all been developed and have been investigated for treatment in CRSwNP, or current research suggests that they may have utility in this area. Only dupilumab, which inhibits IL-4Rα, has gained Food and Drug Administration approval for the treatment of adults with inadequately controlled CRSwNP. CONCLUSION Recent advances in our understanding of the fundamental drivers of the chronic respiratory inflammation in CRSwNP has led to the identification of several potential therapeutic targets for this disease. Future clinical success will rely on the availability of biomarker-based endotyping and responder analyses so that clinicians can precisely match each patient to the appropriate biologic, thereby optimizing the proper treatment strategy.
Collapse
Affiliation(s)
- Tanya M Laidlaw
- Department of Medicine, Harvard Medical School, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, and the Jeff and Penny Vinik Center, Boston, Massachusetts.
| | - Kathleen M Buchheit
- Department of Medicine, Harvard Medical School, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, and the Jeff and Penny Vinik Center, Boston, Massachusetts
| |
Collapse
|
43
|
Abstract
Mast cells are innate immune cells that intersect with the adaptive immunity and play a crucial role in the initiation of allergic reactions and the host defense against certain parasites and venoms. When activated in an allergen- and immunoglobulin E (IgE)-dependent manner, these cells secrete a large variety of allergenic mediators that are pre-stored in secretory granules or
de novo–synthesized. Traditionally, studies have predominantly focused on understanding this mechanism of mast cell activation and regulation. Along this line of study, recent studies have shed light on what structural features are required for allergens and how IgE, particularly anaphylactic IgE, is produced. However, the last few years have seen a flurry of new studies on IgE-independent mast cell activation, particularly via Mrgprb2 (mouse) and MRGPRX2 (human). These studies have greatly advanced our understanding of how mast cells exert non-histaminergic itch, pain, and drug-induced pseudoallergy by interacting with sensory neurons. Recent studies have also characterized mast cell activation and regulation by interleukin-33 (IL-33) and other cytokines and by non-coding RNAs. These newly identified mechanisms for mast cell activation and regulation will further stimulate the allergy/immunology community to develop novel therapeutic strategies for treatment of allergic and non-allergic diseases.
Collapse
Affiliation(s)
- Hwan Soo Kim
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA.,Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yu Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
| | - Kazumi Kasakura
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA.,Department of Dermatlogy, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
| |
Collapse
|
44
|
Buchheit KM, Dwyer DF, Ordovas-Montanes J, Katz HR, Lewis E, Vukovic M, Lai J, Bankova LG, Bhattacharyya N, Shalek AK, Barrett NA, Boyce JA, Laidlaw TM. IL-5Rα marks nasal polyp IgG4- and IgE-expressing cells in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2020; 145:1574-1584. [PMID: 32199912 DOI: 10.1016/j.jaci.2020.02.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/09/2020] [Accepted: 02/25/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND The cause of severe nasal polyposis in aspirin-exacerbated respiratory disease (AERD) is unknown. Elevated antibody levels have been associated with disease severity in nasal polyps, but upstream drivers of local antibody production in nasal polyps are undetermined. OBJECTIVE We sought to identify upstream drivers and phenotypic properties of local antibody-expressing cells in nasal polyps from subjects with AERD. METHODS Sinus tissue was obtained from subjects with AERD, chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP), CRS without nasal polyps, and controls without CRS. Tissue antibody levels were quantified via ELISA and immunohistochemistry and were correlated with disease severity. Antibody-expressing cells were profiled with single-cell RNA sequencing, flow cytometry, and immunofluorescence, with IL-5Rα function determined through IL-5 stimulation and subsequent RNA sequencing and quantitative PCR. RESULTS Tissue IgE and IgG4 levels were elevated in AERD compared with in controls (P < .01 for IgE and P < .001 for IgG4 vs CRSwNP). Subjects with AERD whose nasal polyps recurred rapidly had higher IgE levels than did subjects with AERD, with slower regrowth (P = .005). Single-cell RNA sequencing revealed increased IL5RA, IGHG4, and IGHE in antibody-expressing cells from patients with AERD compared with antibody-expressing cells from patients with CRSwNP. There were more IL-5Rα+ plasma cells in the polyp tissue from those with AERD than in polyp tissue from those with CRSwNP (P = .026). IL-5 stimulation of plasma cells in vitro induced changes in a distinct set of transcripts. CONCLUSIONS Our study identifies an increase in antibody-expressing cells in AERD defined by transcript enrichment of IL5RA and IGHG4 or IGHE, with confirmed surface expression of IL-5Rα and functional IL-5 signaling. Tissue IgE and IgG4 levels are elevated in AERD, and higher IgE levels are associated with faster nasal polyp regrowth. Our findings suggest a role for IL-5Rα+ antibody-expressing cells in facilitating local antibody production and severe nasal polyps in AERD.
Collapse
Affiliation(s)
- Kathleen M Buchheit
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Daniel F Dwyer
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Jose Ordovas-Montanes
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Mass; Division of Gastroenterology, Boston Children's Hospital, Boston, Mass
| | - Howard R Katz
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Erin Lewis
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Marko Vukovic
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Mass
| | - Juying Lai
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Lora G Bankova
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Neil Bhattacharyya
- Department of Surgery, Harvard Medical School, Boston, Mass; Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Mass
| | - Alex K Shalek
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Mass; Harvard-Massachusetts Institute of Technology Division of Health Sciences & Technology, Cambridge, Mass
| | - Nora A Barrett
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Tanya M Laidlaw
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass.
| |
Collapse
|
45
|
Laidlaw TM, Levy JM. NSAID-ERD Syndrome: the New Hope from Prevention, Early Diagnosis, and New Therapeutic Targets. Curr Allergy Asthma Rep 2020; 20:10. [PMID: 32172365 DOI: 10.1007/s11882-020-00905-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the latest information on the appropriate identification, evaluation, and treatment of patients with nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (NSAID-ERD), also known as aspirin-exacerbated respiratory disease (AERD). Within the framework of our understanding of the underlying pathophysiology of NSAID-ERD, we also provide an update regarding new surgical techniques and newly available or upcoming medical therapies that may benefit these patients. RECENT FINDINGS There have been considerable developments regarding recommendations for both the extent and timing of sinus surgery for NSAID-ERD. The last few years have also given us several new biologic medications that warrant consideration in the treatment of patients with recalcitrant NSAID-ERD. Further clinical trials are underway to investigate additional medications that may decrease the type 2 inflammation that dominates this disease. Despite the severe lower respiratory inflammation and recurrent nature of the nasal polyps in patients with NSAID-ERD, significant recent advances now afford much-improved quality of life for these patients. Careful collaboration between Allergy/Immunology and Rhinology specialists is imperative to ensure proper treatment of patients with NSAID-ERD.
Collapse
Affiliation(s)
- Tanya M Laidlaw
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| | - Joshua M Levy
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
46
|
|
47
|
Bankova LG, Barrett NA. Epithelial cell function and remodeling in nasal polyposis. Ann Allergy Asthma Immunol 2020; 124:333-341. [PMID: 32007569 DOI: 10.1016/j.anai.2020.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To review the latest discoveries on airway epithelial cell diversity and remodeling in type 2 inflammation, including nasal polyposis. DATA SOURCES Reviews and primary research manuscripts were identified from PubMed, Google, and Bioarchives, using the search words airway epithelium, nasal polyposis, or chronic rhinosinusitis with nasal polyposis AND basal cell, ciliated cell, secretory cell, goblet cell, neuroendocrine cell, pulmonary neuroendocrine cell, ionocyte, brush cell, solitary chemosensory cell, microvillus cell, or tuft cell. STUDY SELECTIONS Studies were selected based on novelty and likely relevance to airway epithelial innate immune functions or the pathobiology of type 2 inflammation. RESULTS Airway epithelial cells are more diverse than previously appreciated, with specialized subsets, including ionocytes, solitary chemosensory cells, and neuroendocrine cells that contribute to important innate immune functions. In chronic rhinosinusitis with nasal polyposis, the composition of the epithelium is significantly altered. Loss of ciliated cells and submucosal glands and an increase in basal airway epithelial progenitors leads to loss of innate immune functions and an expansion of proinflammatory potential. Type 2 cytokines play a major role in driving this process. CONCLUSION Airway epithelial remodeling in chronic rhinosinusitis is extensive, leading to loss of innate immune function and enhanced proinflammatory potential. The mechanisms driving airway remodeling and its sequelae deserve further attention before restitution of epithelial differentiation can be considered a reasonable therapeutic target.
Collapse
Affiliation(s)
- Lora G Bankova
- Division of Allergy and Clinical Immunology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Nora A Barrett
- Division of Allergy and Clinical Immunology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
48
|
Heterogeneity of NSAID-Exacerbated Respiratory Disease: has the time come for subphenotyping? Curr Opin Pulm Med 2020; 25:64-70. [PMID: 30489335 DOI: 10.1097/mcp.0000000000000530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW NSAID-Exacerbated Disease (N-ERD) is a chronic eosinophilic inflammatory disorder of the respiratory tract occurring in patients with asthma and/or rhinosinusitis with nasal polyps, whose symptoms are exacerbated by NSAIDs. The purpose of this review is to provide an update on clinical characteristics, pathophysiology, and management of N-ERD, and to emphasize heterogeneity of this syndrome. RECENT FINDINGS Growing evidence indicates that N-ERD, which has been considered a separate asthma phenotype, is heterogenous, and can be divided in several subphenotypes varying in clinical characteristics. Pathophysiology of N-ERD is complex and extends beyond abnormalities in the arachidonic acid metabolism. Heterogeneity of pathophysiological mechanisms underlying development of airway inflammation seems to be associated with variability in response to both anti-inflammatory and disease-specific treatments (e.g., with aspirin after desensitization). SUMMARY Progress in understanding of the pathophysiology of N-ERD leads to discovery and validation of new biomarkers facilitating diagnosis and predicting the response to treatment of the chronic inflammation underlying upper (CRSwNP) and lower airway (asthma) symptoms. Better characterization of the immunophysiopathological heterogeneity of N-ERD (identification of endotypes) may allow more personalized, endotype-driven approach to treatment in the future.
Collapse
|
49
|
Weiler CR, Austen KF, Akin C, Barkoff MS, Bernstein JA, Bonadonna P, Butterfield JH, Carter M, Fox CC, Maitland A, Pongdee T, Mustafa SS, Ravi A, Tobin MC, Vliagoftis H, Schwartz LB. AAAAI Mast Cell Disorders Committee Work Group Report: Mast cell activation syndrome (MCAS) diagnosis and management. J Allergy Clin Immunol 2019; 144:883-896. [DOI: 10.1016/j.jaci.2019.08.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
|
50
|
Kuruvilla ME, Lee FEH, Lee GB. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol 2019; 56:219-233. [PMID: 30206782 DOI: 10.1007/s12016-018-8712-1] [Citation(s) in RCA: 636] [Impact Index Per Article: 127.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The model of asthma as a single entity has now been replaced by a much more complex biological network of distinct and interrelating inflammatory pathways. The term asthma is now considered an umbrella diagnosis for several diseases with distinct mechanistic pathways (endotypes) and variable clinical presentations (phenotypes). The precise definition of these endotypes is central to asthma management due to inherent therapeutic and prognostic implications. This review presents the molecular mechanisms behind the heterogeneity of airway inflammation in asthmatic patients. Asthma endotypes may be broadly regarded as type 2 (T2) high or T2-low. Several biologic agents have been approved for T2-high asthma, with numerous other therapeutics that are incipient and similarly targeted at specific molecular mechanisms. Collectively, these advances have shifted existing paradigms in the approach to asthma to tailor novel therapies.
Collapse
Affiliation(s)
- Merin E Kuruvilla
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, 615 Michael St, NE Suite 205, Atlanta, 30322, GA, USA.,Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University, 2015 Uppergate Dr. NE, Suite 326, Atlanta, GA, 30322, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, 615 Michael St, NE Suite 205, Atlanta, 30322, GA, USA.,Lowance Center for Human Immunology, Emory University, 615 Michael Street, Atlanta, 30322, GA, USA
| | - Gerald B Lee
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, 615 Michael St, NE Suite 205, Atlanta, 30322, GA, USA. .,Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University, 2015 Uppergate Dr. NE, Suite 326, Atlanta, GA, 30322, USA.
| |
Collapse
|