1
|
Zareein A, Mahmoudi M, Jadhav SS, Wilmore J, Wu Y. Biomaterial engineering strategies for B cell immunity modulations. Biomater Sci 2024; 12:1981-2006. [PMID: 38456305 PMCID: PMC11019864 DOI: 10.1039/d3bm01841e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
B cell immunity has a penetrating effect on human health and diseases. Therapeutics aiming to modulate B cell immunity have achieved remarkable success in combating infections, autoimmunity, and malignancies. However, current treatments still face significant limitations in generating effective long-lasting therapeutic B cell responses for many conditions. As the understanding of B cell biology has deepened in recent years, clearer regulation networks for B cell differentiation and antibody production have emerged, presenting opportunities to overcome current difficulties and realize the full therapeutic potential of B cell immunity. Biomaterial platforms have been developed to leverage these emerging concepts to augment therapeutic humoral immunity by facilitating immunogenic reagent trafficking, regulating T cell responses, and modulating the immune microenvironment. Moreover, biomaterial engineering tools have also advanced our understanding of B cell biology, further expediting the development of novel therapeutics. In this review, we will introduce the general concept of B cell immunobiology and highlight key biomaterial engineering strategies in the areas including B cell targeted antigen delivery, sustained B cell antigen delivery, antigen engineering, T cell help optimization, and B cell suppression. We will also discuss our perspective on future biomaterial engineering opportunities to leverage humoral immunity for therapeutics.
Collapse
Affiliation(s)
- Ali Zareein
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Mina Mahmoudi
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Shruti Sunil Jadhav
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
| | - Joel Wilmore
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yaoying Wu
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
2
|
Muir R, Metcalf T, Fourati S, Bartsch Y, Kyosiimire-Lugemwa J, Canderan G, Alter G, Muyanja E, Okech B, Namatovu T, Namara I, Namuniina A, Ssetaala A, Mpendo J, Nanvubya A, Kitandwe PK, Bagaya BS, Kiwanuka N, Nassuna J, Biribawa VM, Elliott AM, de Dood CJ, Senyonga W, Balungi P, Kaleebu P, Mayanja Y, Odongo M, Connors J, Fast P, Price MA, Corstjens PLAM, van Dam GJ, Kamali A, Sekaly RP, Haddad EK. Schistosoma mansoni infection alters the host pre-vaccination environment resulting in blunted Hepatitis B vaccination immune responses. PLoS Negl Trop Dis 2023; 17:e0011089. [PMID: 37406029 PMCID: PMC10351710 DOI: 10.1371/journal.pntd.0011089] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/17/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Schistosomiasis is a disease caused by parasitic flatworms of the Schistosoma spp., and is increasingly recognized to alter the immune system, and the potential to respond to vaccines. The impact of endemic infections on protective immunity is critical to inform vaccination strategies globally. We assessed the influence of Schistosoma mansoni worm burden on multiple host vaccine-related immune parameters in a Ugandan fishing cohort (n = 75) given three doses of a Hepatitis B (HepB) vaccine at baseline and multiple timepoints post-vaccination. We observed distinct differences in immune responses in instances of higher worm burden, compared to low worm burden or non-infected. Concentrations of pre-vaccination serum schistosome-specific circulating anodic antigen (CAA), linked to worm burden, showed a significant bimodal distribution associated with HepB titers, which was lower in individuals with higher CAA values at month 7 post-vaccination (M7). Comparative chemokine/cytokine responses revealed significant upregulation of CCL19, CXCL9 and CCL17 known to be involved in T cell activation and recruitment, in higher CAA individuals, and CCL17 correlated negatively with HepB titers at month 12 post-vaccination. We show that HepB-specific CD4+ T cell memory responses correlated positively with HepB titers at M7. We further established that those participants with high CAA had significantly lower frequencies of circulating T follicular helper (cTfh) subpopulations pre- and post-vaccination, but higher regulatory T cells (Tregs) post-vaccination, suggesting changes in the immune microenvironment in high CAA could favor Treg recruitment and activation. Additionally, we found that changes in the levels of innate-related cytokines/chemokines CXCL10, IL-1β, and CCL26, involved in driving T helper responses, were associated with increasing CAA concentration. This study provides further insight on pre-vaccination host responses to Schistosoma worm burden which will support our understanding of vaccine responses altered by pathogenic host immune mechanisms and memory function and explain abrogated vaccine responses in communities with endemic infections.
Collapse
Affiliation(s)
- Roshell Muir
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Talibah Metcalf
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Slim Fourati
- PATRU, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Yannic Bartsch
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Glenda Canderan
- Department of Medicine, Allergy and Immunology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Enoch Muyanja
- PATRU, School of Medicine, Emory University, Atlanta, Georgia, United States of America
- UVRI-IAVI HIV Vaccine Program, Entebbe, Uganda
| | | | | | | | | | | | | | | | | | - Bernard S. Bagaya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Noah Kiwanuka
- Department of Epidemiology and Biostatistics, School of Public Health, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Jacent Nassuna
- Department of Epidemiology and Biostatistics, School of Public Health, Makerere University, College of Health Sciences, Kampala, Uganda
| | | | - Alison M. Elliott
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Claudia J. de Dood
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | | - Yunia Mayanja
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Matthew Odongo
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Jennifer Connors
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Pat Fast
- International AIDS Vaccine Initiative, New York, New York, United States of America
- Pediatric Infectious Diseases, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Matt A. Price
- International AIDS Vaccine Initiative, New York, New York, United States of America
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, California, United States of America
| | - Paul L. A. M. Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Govert J. van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anatoli Kamali
- UVRI-IAVI HIV Vaccine Program, Entebbe, Uganda
- International AIDS Vaccine Initiative, New York, New York, United States of America
- IAVI, New York, New York, United States of America, and Nairobi, Kenya
| | - Rafick Pierre Sekaly
- PATRU, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Elias K. Haddad
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Muir R, Metcalf T, Fourati S, Bartsch Y, Lugemwa JK, Canderan G, Alter G, Muyanja E, Okech B, Namatovu T, Namara I, Namuniina A, Ssetaala A, Mpendo J, Nanvubya A, Kitandwe PK, Bagaya BS, Kiwanuka N, Nassuna J, Biribawa VM, Elliott AM, de Dood CJ, Senyonga W, Balungi P, Kaleebu P, Mayanja Y, Odongo M, Fast P, Price MA, Corstjens PLAM, van Dam GJ, Kamali A, Sekaly RP, Haddad EK. Schistosoma mansoni infection alters the host pre-vaccination environment resulting in blunted Hepatitis B vaccination immune responses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.24.23284435. [PMID: 36865336 PMCID: PMC9980246 DOI: 10.1101/2023.02.24.23284435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
The impact of endemic infections on protective immunity is critical to inform vaccination strategies. In this study, we assessed the influence of Schistosoma mansoni infection on host responses in a Ugandan fishing cohort given a Hepatitis B (HepB) vaccine. Concentrations of schistosome-specific circulating anodic antigen (CAA) pre-vaccination showed a significant bimodal distribution associated with HepB titers, which were lower in individuals with high CAA. We established that participants with high CAA had significantly lower frequencies of circulating T follicular helper (cTfh) subpopulations pre- and post-vaccination and higher regulatory T cells (Tregs) post-vaccination. Polarization towards higher frequencies of Tregs: cTfh cells can be mediated by changes in the cytokine environment favoring Treg differentiation. In fact, we observed higher levels of CCL17 and soluble IL-2R pre-vaccination (important for Treg recruitment and development), in individuals with high CAA that negatively associated with HepB titers. Additionally, alterations in pre-vaccination monocyte function correlated with HepB titers, and changes in innate-related cytokines/chemokine production were associated with increasing CAA concentration. We report, that by influencing the immune landscape, schistosomiasis has the potential to modulate immune responses to HepB vaccination. These findings highlight multiple Schistosoma -related immune associations that could explain abrogated vaccine responses in communities with endemic infections. Author Summary Schistosomiasis drives host immune responses for optimal pathogen survival, potentially altering host responses to vaccine-related antigen. Chronic schistosomiasis and co-infection with hepatotropic viruses are common in countries where schistosomiasis is endemic. We explored the impact of Schistosoma mansoni ( S. mansoni ) infection on Hepatitis B (HepB) vaccination of individuals from a fishing community in Uganda. We demonstrate that high schistosome-specific antigen (circulating anodic antigen, CAA) concentration pre-vaccination, is associated with lower HepB antibody titers post-vaccination. We show higher pre-vaccination levels of cellular and soluble factors in instances of high CAA that are negatively associated with HepB antibody titers post-vaccination, which coincided with lower frequencies of circulating T follicular helper cell populations (cTfh), proliferating antibody secreting cells (ASCs), and higher frequencies of regulatory T cells (Tregs). We also show that monocyte function is important in HepB vaccine responses, and that high CAA is associated with alterations in the early innate cytokine/chemokine microenvironment. Our findings suggest that in individuals with high CAA and likely high worm burden, schistosomiasis creates and sustains an environment that is polarized against optimal host immune responses to the vaccine, which puts many endemic communities at risk for infection against HepB and other diseases that are preventable by vaccines.
Collapse
|
4
|
Watanabe M, Jergovic M, Davidson L, LaFleur BJ, Castaneda Y, Martinez C, Smithey MJ, Stowe RP, Haddad EK, Nikolich‐Žugich J. Inflammatory and immune markers in HIV-infected older adults on long-term antiretroviral therapy: Persistent elevation of sCD14 and of proinflammatory effector memory T cells. Aging Cell 2022; 21:e13681. [PMID: 35975357 PMCID: PMC9470897 DOI: 10.1111/acel.13681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/24/2022] [Accepted: 07/10/2022] [Indexed: 01/25/2023] Open
Abstract
HIV-positive patients whose viral loads are successfully controlled by active antiretroviral therapy (ART) show no clinical signs of AIDS. However, their lifespan is shorter compared with individuals with no HIV infection and they prematurely exhibit a multitude of chronic diseases typically associated with advanced age. It was hypothesized that immune system aging may correlate with, and provide useful biomarkers for, this premature loss of healthspan in HIV-positive subjects. Here, we tested whether the immune correlates of aging, including cell numbers and phenotypes, inflammatory status, and control of human cytomegalovirus (hCMV) in HIV-positive subjects on long-term successful ART (HIV+) may reveal increased "immunological age" compared with HIV-negative, age-matched cohort (HIV-) in participants between 50 and 69 years of age. Specifically, we expected that younger HIV+ subjects may immunologically resemble older individuals without HIV. We found no evidence to support this hypothesis. While T cells from HIV+ participants displayed differential expression in several differentiation and/or inhibitory/exhaustion markers in different T cell subpopulations, aging by a decade did not pronounce these changes. Similarly, while the HIV+ participants exhibited higher T cell responses and elevated inflammatory marker levels in plasma, indicative of chronic inflammation, this trait was not age-sensitive. We did find differences in immune control of hCMV, and, more importantly, a sustained elevation of sCD14 and of proinflammatory CD4 and CD8 T cell responses across age groups, pointing towards uncontrolled inflammation as a factor in reduced healthspan in successfully treated older HIV+ patients.
Collapse
Affiliation(s)
- Makiko Watanabe
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Mladen Jergovic
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Lisa Davidson
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Bonnie J. LaFleur
- BIO5 InstituteUniversity of ArizonaTucsonArizonaUSA,R. Ken Coit College of PharmacyUniveristy of ArizonaTucsonArizonaUSA
| | - Yvonne Castaneda
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Carmine Martinez
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Megan J. Smithey
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | | | - Elias K. Haddad
- Division of Infectious Diseases and HIV Medicine, Department of MedicineDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Janko Nikolich‐Žugich
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,BIO5 InstituteUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
5
|
Noto A, Suffiotti M, Joo V, Mancarella A, Procopio FA, Cavet G, Leung Y, Corpataux JM, Cavassini M, Riva A, Stamatatos L, Gottardo R, McDermott AB, Koup RA, Fenwick C, Perreau M, Pantaleo G. The deficiency in Th2-like Tfh cells affects the maturation and quality of HIV-specific B cell response in viremic infection. Front Immunol 2022; 13:960120. [PMID: 36091040 PMCID: PMC9450063 DOI: 10.3389/fimmu.2022.960120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Optimal T follicular helper (Tfh) cells function is important to promote the development of germinal centers and maturation of high affinity antigen-specific B cells. We have found that the expression of CXCR3 defines distinct Tfh subsets: CXCR3+ Th1-like Tfh cells mainly producing single IFN-γ and dual IL-21/IFN-γ and CXCR3- Th2-like Tfh cells mainly producing single IL-4 and dual IL-21/IL-4 cytokines. CXCR3- Th2-like Tfhs are significantly reduced during ongoing HIV replication. While the percentage of Th2-like Tfh cells correlates with that of total and cycling HIV-specific B cells, the percentage of CXCR3+ Th1-like Tfhs correlates with HIV-specific B cells expressing T-bet and CXCR3. Of note, only IL-4 and IL-21 cytokines boosted efficient maturation of HIV-specific B cells while IFN-γ induced expression of T-bet and CXCR3 in B cells. Interestingly, total and HIV-specific CXCR3+ B cells showed lower rate of somatic hypermutation, as compared to CXCR3- B cells. Therefore, the imbalance in Th2/Th1-like Tfhs affects B cell responses in viremic HIV infection.
Collapse
Affiliation(s)
- Alessandra Noto
- Service Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Madeleine Suffiotti
- Service Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Victor Joo
- Service Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Antonio Mancarella
- Service Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Francesco A. Procopio
- Service Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Guy Cavet
- Atreca, Redwood City, CA, United States
| | | | - Jean-Marc Corpataux
- Service of Vascular Surgery, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Matthias Cavassini
- Service of Infectious Diseases, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Agostino Riva
- Division of Infectious Diseases, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Leonidas Stamatatos
- Department of Global Health, Seattle University of Washington, Seattle, WA, United States
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Craig Fenwick
- Service Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Matthieu Perreau
- Service Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland,Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland,*Correspondence: Giuseppe Pantaleo,
| |
Collapse
|
6
|
Molinos-Albert LM, Lorin V, Monceaux V, Orr S, Essat A, Dufloo J, Schwartz O, Rouzioux C, Meyer L, Hocqueloux L, Sáez-Cirión A, Mouquet H, Prazuck T, Dieuleveult BD, Bani-Sadr F, Hentzien M, Berger JL, Kmiec I, Pichancourt G, Nasri S, Hittinger G, Lambry V, Beauey AC, Pialoux G, Palacios C, Siguier M, Adda A, Foucoin J, Weiss L, Karmochkine M, Meghadecha M, Ptak M, Salmon-Ceron D, Blanche P, Piétri MP, Molina JM, Taulera O, Lascoux-Combe C, Ponscarme D, Bertaut JD, Makhloufi D, Godinot M, Artizzu V, Yazdanpanah Y, Matheron S, Godard C, Julia Z, Bernard L, Bastides F, Bourgault O, Jacomet C, Goncalves E, Meybeck A, Huleux T, Cornavin P, Debab Y, Théron D, Miailhes P, Cotte L, Pailhes S, Ogoudjobi S, Viard JP, Dulucq MJ, Bodard L, Churaqui F, Guimard T, Laine L. Transient viral exposure drives functionally-coordinated humoral immune responses in HIV-1 post-treatment controllers. Nat Commun 2022; 13:1944. [PMID: 35410989 PMCID: PMC9001681 DOI: 10.1038/s41467-022-29511-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
AbstractHIV-1 post-treatment controllers are rare individuals controlling HIV-1 infection for years after antiretroviral therapy interruption. Identification of immune correlates of control in post-treatment controllers could aid in designing effective HIV-1 vaccine and remission strategies. Here, we perform comprehensive immunoprofiling of the humoral response to HIV-1 in long-term post-treatment controllers. Global multivariate analyses combining clinico-virological and humoral immune data reveal distinct profiles in post-treatment controllers experiencing transient viremic episodes off therapy compared to those stably aviremic. Virally-exposed post-treatment controllers display stronger HIV-1 humoral responses, and develop more frequently Env-specific memory B cells and cross-neutralizing antibodies. Both are linked to short viremic exposures, which are also accompanied by an increase in blood atypical memory B cells and activated subsets of circulating follicular helper T cells. Still, most humoral immune variables only correlate with Th2-like circulating follicular helper T cells. Thus, post-treatment controllers form a heterogeneous group with two distinct viral behaviours and associated immune signatures. Post-treatment controllers stably aviremic present “silent” humoral profiles, while those virally-exposed develop functionally robust HIV-specific B-cell and antibody responses, which may participate in controlling infection.
Collapse
|
7
|
Lu X, Zhang X, Cheung AKL, Moog C, Xia H, Li Z, Wang R, Ji Y, Xia W, Liu Z, Yuan L, Wang X, Wu H, Zhang T, Su B. Abnormal Shift in B Memory Cell Profile Is Associated With the Expansion of Circulating T Follicular Helper Cells via ICOS Signaling During Acute HIV-1 Infection. Front Immunol 2022; 13:837921. [PMID: 35222430 PMCID: PMC8867039 DOI: 10.3389/fimmu.2022.837921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Interactions between T follicular helper (Tfh) cells and germinal center B cells are essential for the differentiation of B cells and specific antibody responses against HIV-1 infection. However, the extent to which HIV-1 infection affects the dynamic interplay between these two cell populations in the bloodstream remains unclear. In this study, the dynamics of circulating Tfh (cTfh) and B cells and their relationship in individuals with acute and chronic HIV-1 infection were investigated. Twenty-five study subjects were enrolled from the Beijing PRIMO clinical cohort, a prospective cohort of HIV-1-negative men who have sex with men (MSM) for the identification of cases of acute HIV-1 infection (AHI) at Beijing Youan Hospital, Capital Medical University. Individuals with AHI were selected at random. Matched samples were also collected and analyzed from the same patients with chronic HIV-1 infection. None of the study subjects received antiretroviral therapy during acute or chronic infection. Multicolor flow cytometry was used for the immunophenotypic and functional characterization of cTfh cell and B cell subsets. AHI resulted in increased proportions in bulk cTfh, ICOS+cTfh or IL-21+ICOS+cTfh cells. In both acute and chronic infections, activated memory (AM), tissue-like memory (TLM), and plasmablast (PB) B cell levels were increased whilst resting memory (RM) and naïve mature (NM) B cell levels were decreased. Classical memory (CM) B cells were unaffected during infection. Association analyses showed that the levels of ICOS+cTfh and IL-21+ICOS+cTfh cells were negatively correlated with those of AM, CM, RM cells, and positively correlated with those of NM cells in AHI but not chronic HIV-1 infection stage (CHI). Moreover, the frequency of IL-21+ICOS+cTfh cells was also positively correlated with plasma HIV-1 viral load, and had an opposite association trend with CD4+T cell count in AHI. Our data suggests that HIV-1 infection drives the expansion of cTfh cells, which in turn leads to perturbations of B cell differentiation through ICOS signaling during acute infection stage. These findings provide insight on the role of ICOS in the regulation of cTfh/B cell interaction during AHI and may potentially guide the design of effective strategies for restoring anti-HIV-1 immunity in the infected patients.
Collapse
Affiliation(s)
- Xiaofan Lu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Allen Ka Loon Cheung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Christiane Moog
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Huan Xia
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Rui Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yunxia Ji
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Xia
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhiying Liu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lin Yuan
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiuwen Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Louis K, Macedo C, Lefaucheur C, Metes D. Adaptive immune cell responses as therapeutic targets in antibody-mediated organ rejection. Trends Mol Med 2022; 28:237-250. [PMID: 35093288 PMCID: PMC8882148 DOI: 10.1016/j.molmed.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 01/17/2023]
Abstract
Humoral alloimmunity of organ transplant recipient to donor can lead to antibody-mediated rejection (ABMR), causing thousands of organ transplants to fail each year worldwide. However, the mechanisms of adaptive immune cell responses at the basis of humoral alloimmunity have not been entirely understood. In this review, we discuss how recent investigations have uncovered the key contributions of T follicular helper (TFH) and B cells and their coordinated actions in driving donor-specific antibody generation and immune progression towards ABMR. We show how recognition of the role of TFH-B cell interactions may allow the elaboration of improved clinical strategies for immune monitoring and the identification of novel therapeutic targets to tackle ABMR that will ultimately improve organ transplant survival.
Collapse
Affiliation(s)
- Kevin Louis
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale UMR 976, Université de Paris, Paris, France
| | - Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Carmen Lefaucheur
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale UMR 970, Université de Paris, Paris, France
| | - Diana Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Izmirly AM, Pelletier AN, Connors J, Taramangalam B, Alturki SO, Gordon EA, Alturki SO, Mell JC, Swaminathan G, Karthik V, Kutzler MA, Kallas EG, Sekaly RP, Haddad EK. Pre-vaccination frequency of circulatory Tfh is associated with robust immune response to TV003 dengue vaccine. PLoS Pathog 2022; 18:e1009903. [PMID: 35061851 PMCID: PMC8809550 DOI: 10.1371/journal.ppat.1009903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/02/2022] [Accepted: 01/06/2022] [Indexed: 11/19/2022] Open
Abstract
It has been estimated that more than 390 million people are infected with Dengue virus every year; around 96 millions of these infections result in clinical pathologies. To date, there is only one licensed viral vector-based Dengue virus vaccine CYD-TDV approved for use in dengue endemic areas. While initially approved for administration independent of serostatus, the current guidance only recommends the use of this vaccine for seropositive individuals. Therefore, there is a critical need for investigating the influence of Dengue virus serostatus and immunological mechanisms that influence vaccine outcome. Here, we provide comprehensive evaluation of sero-status and host immune factors that correlate with robust immune responses to a Dengue virus vector based tetravalent vaccine (TV003) in a Phase II clinical cohort of human participants. We observed that sero-positive individuals demonstrate a much stronger immune response to the TV003 vaccine. Our multi-layered immune profiling revealed that sero-positive subjects have increased baseline/pre-vaccination frequencies of circulating T follicular helper (cTfh) cells and the Tfh related chemokine CXCL13/BLC. Importantly, this baseline/pre-vaccination cTfh profile correlated with the vaccinees' ability to launch neutralizing antibody response against all four sero-types of Dengue virus, an important endpoint for Dengue vaccine clinical trials. Overall, we provide novel insights into the favorable cTfh related immune status that persists in Dengue virus sero-positive individuals that correlate with their ability to mount robust vaccine specific immune responses. Such detailed interrogation of cTfh cell biology in the context of clinical vaccinology will help uncover mechanisms and targets for favorable immuno-modulatory agents.
Collapse
Affiliation(s)
- Abdullah M. Izmirly
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | | | - Jennifer Connors
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Bhavani Taramangalam
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sawsan O. Alturki
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Emma A. Gordon
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sana O. Alturki
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua C. Mell
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Gokul Swaminathan
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Vaccine Innovation, Boehringer Ingelheim, Lyon, France
| | - Vivin Karthik
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michele A. Kutzler
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Esper G. Kallas
- Department of Infectious and Parasitic Diseases, University of São Paulo, Sao Paulo, Brazil
| | - Rafick-Pierre Sekaly
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Elias K. Haddad
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
10
|
Loucif H, Dagenais-Lussier X, Avizonis D, Choinière L, Beji C, Cassin L, Routy JP, Fritz JH, Olagnier D, van Grevenynghe J. Autophagy-dependent glutaminolysis drives superior IL21 production in HIV-1-specific CD4 T cells. Autophagy 2021; 18:1256-1273. [PMID: 34612140 DOI: 10.1080/15548627.2021.1972403] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The maintenance of a strong IL21 production in memory CD4 T cells, especially in HIV-1-specific cells, represents a major correlate of natural immune protection against the virus. However, the molecular mechanisms underlying IL21 production during HIV-1 infection, which is only elevated among the naturally protected elite controllers (EC), are still unknown. We recently found out that lipophagy is a critical immune mediator that control an antiviral metabolic state following CD8A T cell receptor engagement, playing an important role in the natural control of HIV-1 infection. This led us to investigate whether the beneficial role of a strong macroautophagy/autophagy, could also be used to ensure effective IL21 production as well. Herein, we confirm that after both polyclonal and HIV-1-specific activation, memory CD4 T cells (Mem) from EC display enhanced activity of the autophagy-mediated proteolysis compared to ART. Our results indicate that the enhanced autophagy activity in EC was controlled by the energy-sensing PRKAA1 (protein kinase AMP-activated catalytic subunit alpha 1). We further confirmed the critical role of the autophagy-mediated proteolysis in the strong IL21 production in EC by using BECN1 gene silencing as well as protease, PRKAA1, and lysosomal inhibitors. Finally, we established that high autophagy-mediated proteolysis in EC fuels their cellular rates of mitochondrial respiration due to glutaminolysis. Our data confirm the critical role of autophagy in dictating the metabolic input, which is required not only to ensure protective cytotoxic CD8A T cell responses, but also to provide strong IL21 production among antiviral CD4 T cells.Abbreviations: AKG: alpha-ketoglutarate; ART: patients under antiretroviral therapy; ATG7: autophagy related 7; BaF: bafilomycin A1; BECN1: beclin 1; Chloro.: chloroquine; EC: elite controllers; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; FOXO3: forkhead box O3; GLS: glutaminase; GLUD1: glutamate dehydrogenase 1; HIVneg: HIV-1-uninfected control donors; IFNG/IFN-γ: interferon gamma; IL21: interleukin 21; MTOR: mechanistic target of rapamycin kinase; PBMC: peripheral blood mononuclear cells; PRKAA1: protein kinase AMP-activated catalytic subunit alpha 1; SQSTM1: sequestosome 1; TCA: tricarboxylic acid cycle; ULK1: unc-51 like autophagy activating kinase.
Collapse
Affiliation(s)
- Hamza Loucif
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Xavier Dagenais-Lussier
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Daina Avizonis
- Metabolomics Innovation Resource, Rosalind and Morris Goodman Cancer Center, McGill University, Montreal, QC, Canada
| | - Luc Choinière
- Metabolomics Innovation Resource, Rosalind and Morris Goodman Cancer Center, McGill University, Montreal, QC, Canada
| | - Cherifa Beji
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Léna Cassin
- Department of Biomedicine, Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - David Olagnier
- Department of Biomedicine, Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Julien van Grevenynghe
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| |
Collapse
|
11
|
Asao H. Interleukin-21 in Viral Infections. Int J Mol Sci 2021; 22:ijms22179521. [PMID: 34502427 PMCID: PMC8430989 DOI: 10.3390/ijms22179521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-21 is a cytokine that affects the differentiation and function of lymphoid and myeloid cells and regulates both innate and adaptive immune responses. In addition to regulating the immune response to tumor and viral infections, IL-21 also has a profound effect on the development of autoimmune and inflammatory diseases. IL-21 is produced mainly from CD4+ T cells-in particular, follicular helper T (Tfh) cells-which have a great influence on the regulation of antibody production. It is also an important cytokine for the activation of CD8+ T cells, and its role in recovering the function of CD8+ T cells exhausted by chronic microbial infections and cancer has been clarified. Thus, IL-21 plays an extremely important role in viral infections, especially chronic viral infections. In this review, I will introduce the findings to date on how IL-21 is involved in some typical viral infections and the potential of treating viral diseases with IL-21.
Collapse
Affiliation(s)
- Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata City 990-9585, Japan
| |
Collapse
|
12
|
Chakhtoura M, Fang M, Cubas R, O’Connor MH, Nichols CN, Richardson B, Talla A, Moir S, Cameron MJ, Tardif V, Haddad EK. Germinal Center T follicular helper (GC-Tfh) cell impairment in chronic HIV infection involves c-Maf signaling. PLoS Pathog 2021; 17:e1009732. [PMID: 34280251 PMCID: PMC8289045 DOI: 10.1371/journal.ppat.1009732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
We have recently demonstrated that the function of T follicular helper (Tfh) cells from lymph nodes (LN) of HIV-infected individuals is impaired. We found that these cells were unable to provide proper help to germinal center (GC)-B cells, as observed by altered and inefficient anti-HIV antibody response and premature death of memory B cells. The underlying molecular mechanisms of this dysfunction remain poorly defined. Herein, we have used a unique transcriptional approach to identify these molecular defects. We consequently determined the transcriptional profiles of LN GC-Tfh cells following their interactions with LN GC-B cells from HIV-infected and HIV-uninfected individuals, rather than analyzing resting ex-vivo GC-Tfh cells. We observed that proliferating GC-Tfh cells from HIV-infected subjects were transcriptionally different than their HIV-uninfected counterparts, and displayed a significant downregulation of immune- and GC-Tfh-associated pathways and genes. Our results strongly demonstrated that MAF (coding for the transcription factor c-Maf) and its upstream signaling pathway mediators (IL6R and STAT3) were significantly downregulated in HIV-infected subjects, which could contribute to the impaired GC-Tfh and GC-B cell functions reported during infection. We further showed that c-Maf function was associated with the adenosine pathway and that the signaling upstream c-Maf could be partially restored by adenosine deaminase -1 (ADA-1) supplementation. Overall, we identified a novel mechanism that contributes to GC-Tfh cell impairment during HIV infection. Understanding how GC-Tfh cell function is altered in HIV is crucial and could provide critical information about the mechanisms leading to the development and maintenance of effective anti-HIV antibodies. Human immunodeficiency virus (HIV) remains a worldwide burden despite available treatments. The virus induces dysregulations in major immune cells and organs including lymph nodes. Germinal center T follicular helper (GC-Tfh) cells are immune cells which induce specific anti-HIV antibodies by helping GC-B cells. In chronic HIV, the interaction between these two cell types is defective, leading to modified and inefficient anti-HIV antibody responses. In this study, we examined the underlying mechanisms of this dysfunction. We observed that proliferating GC-Tfh cells from HIV-infected individuals, displayed distinctive gene expression than those from -uninfected subjects, following GC-B cell interaction. Furthermore, GC-Tfh cells from HIV patients showed a reduction in important immune-related pathway and gene expression. A number of essential GC-Tfh cell genes, such as MAF and its associated genes (IL6R and STAT3), were particularly attenuated in HIV, contributing to the impaired cells function. Moreover, we found an association between MAF function and the key enzyme adenosine deaminase-1 (ADA-1), where supplementation with ADA-1 partially restored the dysfunctional signaling in GC-Tfh cells during chronic infection. Understanding how GC-Tfh cells are altered in HIV is critical to elucidate the mechanisms leading to effective anti-HIV antibodies.
Collapse
Affiliation(s)
- Marita Chakhtoura
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mike Fang
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Rafael Cubas
- Iovance Biotherapeutics, San Carlos, California, United States of America
| | - Margaret H. O’Connor
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Carmen N. Nichols
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Brian Richardson
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Aarthi Talla
- Allen Institute for Immunology, Seattle, Washington, United States of America
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark J. Cameron
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Virginie Tardif
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Sorbonne University, INSERM, Center of Reasearch in Myology (Association Institut de Myologie) UMRS 974, AP-HP, Department of Internal Medicine and Clinical Immunology, DHU I2B, Pitié-Salpêtrière Hospital, Paris, France
- * E-mail: (VT); (EKH)
| | - Elias K. Haddad
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (VT); (EKH)
| |
Collapse
|
13
|
Duerr R, Crosse KM, Valero-Jimenez AM, Dittmann M. SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms 2021; 9:1389. [PMID: 34198973 PMCID: PMC8307803 DOI: 10.3390/microorganisms9071389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 and HIV are zoonotic viruses that rapidly reached pandemic scale, causing global losses and fear. The COVID-19 and AIDS pandemics ignited massive efforts worldwide to develop antiviral strategies and characterize viral architectures, biological and immunological properties, and clinical outcomes. Although both viruses have a comparable appearance as enveloped viruses with positive-stranded RNA and envelope spikes mediating cellular entry, the entry process, downstream biological and immunological pathways, clinical outcomes, and disease courses are strikingly different. This review provides a systemic comparison of both viruses' structural and functional characteristics, delineating their distinct strategies for efficient spread.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (K.M.C.); (A.M.V.-J.); (M.D.)
| | | | | | | |
Collapse
|
14
|
A follicular regulatory Innate Lymphoid Cell population impairs interactions between germinal center Tfh and B cells. Commun Biol 2021; 4:563. [PMID: 33980982 PMCID: PMC8115650 DOI: 10.1038/s42003-021-02079-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Innate Lymphoid Cells (ILCs) are immune cells typically found on mucosal surfaces and in secondary lymphoid organs where they regulate the immune response to pathogens. Despite their key role in the immune response, there are still fundamental gaps in our understanding of ILCs. Here we report a human ILC population present in the follicles of tonsils and lymph nodes termed follicular regulatory ILCs (ILCFR) that to our knowledge has not been previously identified. ILCFR have a distinct phenotype and transcriptional program when compared to other defined ILCs. Surprisingly, ILCFR inhibit the ability of follicular helper T (Tfh) cells to provide B cell help. The localization of ILCFR to the germinal centers suggests these cells may interfere with germinal center B cell (GC-B) and germinal center Tfh cell (GC-Tfh) interactions through the production of transforming growth factor beta (TGF-β. Intriguingly, under conditions of impaired GC-Tfh-GC-B cell interactions, such as human immunodeficiency virus (HIV) infection, the frequency of these cells is increased. Overall, we predict a role for ILCFR in regulating GC-Tfh-GC-B cell interactions and propose they expand in chronic inflammatory conditions. Margaret O’Connor et al. report a new Innate Lymphoid Cell population in human tonsils and lymph nodes that inhibit the functional interaction of follicular helper T cells and germinal center B cells. They show that this cell population is expanded under chronic HIV infection and results in decreased antibody production, suggesting a potential role for these cells in diseases with dysregulated immune responses.
Collapse
|
15
|
Production of HIV-1 Env-specific antibodies mediating innate immune functions depends on cognate IL-21- secreting CD4+ T cells. J Virol 2021; 95:JVI.02097-20. [PMID: 33504598 PMCID: PMC8103692 DOI: 10.1128/jvi.02097-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antibodies with a functional Fc region were previously associated with protection from HIV-1 acquisition and spontaneous suppression of viral replication. Unlike broadly neutralizing antibodies, they are not restricted to neutralizing epitopes and do not require unconventional structural traits to exert their antiviral activity. They, therefore, develop earlier after infection and can be detected in the majority of cases. The conditions under which these antibodies are generated, however, remain largely unknown. Here we demonstrate that the generation of HIV-1 Env-specific antibodies facilitating Fc-dependent innate immune responses, including neutrophil phagocytosis (ADNP), complement deposition (ADCD), and NK cell activation, likely depends on help provided by CD4+ T and peripheral T follicular helper (pTfh) cells secreting IL-21. Other proteins, including CD40L, IFNγ, and IL-4/13, involved in crosstalk between B and T cells were linked to the production of antibodies with functional Fc region but only when co-expressed with IL-21. As a potential source of these antibodies, we identified a subset of Env-specific memory B cells known to be expanded in chronic HIV-1 infection. The frequency and level of Blimp-1 expression in Env-specific tissue-like memory B cells (TLM) correlated with the functional CD4+ T cell subsets associated with robust antibody-dependent innate responses. Thus, our data suggest a mechanism responsible for the generation of antibodies with functional Fc region in chronically HIV-1 infected individuals that is based on CD4+ T cell-induced activation of memory B cells.Importance To develop a vaccine or immunotherapy that would cure the HIV-1 infection it is important to identify helper T cells able to mount an efficient antibody response. Here, we demonstrate that the generation of HIV-1 Env-specific antibodies facilitating antibody-dependent innate immune responses likely depends on Env-specific IL-21-secreting CD4+ T and peripheral T follicular helper cells.
Collapse
|
16
|
Loucif H, Dagenais-Lussier X, Beji C, Cassin L, Jrade H, Tellitchenko R, Routy JP, Olagnier D, van Grevenynghe J. Lipophagy confers a key metabolic advantage that ensures protective CD8A T-cell responses against HIV-1. Autophagy 2021; 17:3408-3423. [PMID: 33459125 DOI: 10.1080/15548627.2021.1874134] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although macroautophagy/autophagy has been proposed as a critical defense mechanism against HIV-1 by targeting viral components for degradation, its contribution as a catabolic process in providing optimal anti-HIV-1 immunity has never been addressed. The failure to restore proper antiviral CD8A/CD8 T-cell immunity, especially against HIV-1, is still the major limitation of current antiretroviral therapies. Consequently, it is of clinical imperative to provide new strategies to enhance the function of HIV-1-specific CD8A T-cells in patients under antiretroviral treatments (ART). Here, we investigated whether targeting autophagy activity could be an optional solution to make this possible. Our data show that, after both polyclonal and HIV-1-specific activation, CD8A T-cells from ART displayed reduced autophagy-dependent degradation of lysosomal contents when compared to naturally HIV-1 protected elite controllers (EC). We further confirmed in EC, by using specific BECN1 gene silencing and lysosomal inhibitors, the critical role of active autophagy in superior CD8A T-cell protection against HIV-1. More importantly, we found that an IL21 treatment was effective in rescuing the antiviral CD8A T-cell immunity from ART in an autophagy-dependent manner. Finally, we established that IL21-dependent rescue occurred due to the enhanced degradation of endogenous lipids via autophagy, referred to as lipophagy, which fueled the cellular rates of mitochondrial beta-oxidation. In summary, our data show that autophagy/lipophagy can be considered as a therapeutic tool to elicit functional antiviral CD8 T-cell responses. Our results also provide additional insights toward the development of improved T-cell-based prevention and cure strategies against HIV-1.Abbreviations: ART: patients under antiretroviral therapy; BaF: bafilomycin A1; BECN1: beclin 1; CEF: cytomegalo-, Epstein-Barr- and flu-virus peptide pool; Chloro.: chloroquine; EC: elite controllers; FAO: fatty acid beta-oxidation; HIVneg: HIV-1-uninfected control donors; IFNG/IFN-γ: interferon gamma; IL21: interleukin 21; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PBMC: peripheral blood mononuclear cells; SQSTM1: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Hamza Loucif
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie
| | - Xavier Dagenais-Lussier
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie
| | - Cherifa Beji
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie
| | - Léna Cassin
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie
| | - Hani Jrade
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Roman Tellitchenko
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen Site, Montreal, QC, Canada
| | - David Olagnier
- Department of Biomedicine, Research Center for Innate Immunology, Aarhus University, Aarhus C, Denmark
| | - Julien van Grevenynghe
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie
| |
Collapse
|
17
|
Brenna E, Davydov AN, Ladell K, McLaren JE, Bonaiuti P, Metsger M, Ramsden JD, Gilbert SC, Lambe T, Price DA, Campion SL, Chudakov DM, Borrow P, McMichael AJ. CD4 + T Follicular Helper Cells in Human Tonsils and Blood Are Clonally Convergent but Divergent from Non-Tfh CD4 + Cells. Cell Rep 2021; 30:137-152.e5. [PMID: 31914381 PMCID: PMC7029615 DOI: 10.1016/j.celrep.2019.12.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
T follicular helper (Tfh) cells are fundamental for B cell selection and antibody maturation in germinal centers. Circulating Tfh (cTfh) cells constitute a minor proportion of the CD4+ T cells in peripheral blood, but their clonotypic relationship to Tfh populations resident in lymph nodes and the extent to which they differ from non-Tfh CD4+ cells have been unclear. Using donor-matched blood and tonsil samples, we investigate T cell receptor (TCR) sharing between tonsillar Tfh cells and peripheral Tfh and non-Tfh cell populations. TCR transcript sequencing reveals considerable clonal overlap between peripheral and tonsillar Tfh cell subsets as well as a clear distinction between Tfh and non-Tfh cells. Furthermore, influenza-specific cTfh cell clones derived from blood can be found in the repertoire of tonsillar Tfh cells. Therefore, human blood samples can be used to gain insight into the specificity of Tfh responses occurring in lymphoid tissues, provided that cTfh subsets are studied.
Collapse
Affiliation(s)
- Elena Brenna
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| | - Alexey N Davydov
- Central European Institute of Technology, Brno 601 77, Czech Republic
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Paolo Bonaiuti
- Istituto Firc di Oncologia Molecolare, Milano 20139, Italy
| | - Maria Metsger
- Central European Institute of Technology, Brno 601 77, Czech Republic
| | | | - Sarah C Gilbert
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Suzanne L Campion
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Dmitriy M Chudakov
- Central European Institute of Technology, Brno 601 77, Czech Republic; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow 117997, Russia
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| |
Collapse
|
18
|
Distinct Immunoglobulin Fc Glycosylation Patterns Are Associated with Disease Nonprogression and Broadly Neutralizing Antibody Responses in Children with HIV Infection. mSphere 2020; 5:5/6/e00880-20. [PMID: 33361123 PMCID: PMC7763548 DOI: 10.1128/msphere.00880-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To protect future generations against HIV, a vaccine will need to induce immunity by the time of sexual debut and hence requires immunization during childhood. Current strategies for a prophylactic HIV vaccine include the induction of a broadly neutralizing antibody response and the recruitment of potent effector functions of immune cells via the constant antibody Fc region. A prophylactic HIV vaccine would ideally induce protective immunity prior to sexual debut. Children develop broadly neutralizing antibody (bnAb) responses faster and at higher frequencies than adults, but little is known about the underlying mechanisms or the potential role of Fc-mediated effector functions in disease progression. We therefore performed systems immunology, with immunoglobulin profiling, on HIV-infected children with progressive and nonprogressive disease. Pediatric nonprogressors (PNPs) showed distinct immunoglobulin profiles with an increased ability to elicit potent Fc-mediated natural killer (NK)-cell effector functions. In contrast to previous reports in adults, both groups of children showed high levels of gp120-specific IgG Fc glycan sialylation compared to bulk IgG. Importantly, higher levels of Fc glycan sialylation were associated with increased bnAb breadth, providing the first evidence that Fc sialylation may drive affinity maturation of HIV-specific antibodies in children, a mechanism that could be exploited for vaccination strategies. IMPORTANCE To protect future generations against HIV, a vaccine will need to induce immunity by the time of sexual debut and hence requires immunization during childhood. Current strategies for a prophylactic HIV vaccine include the induction of a broadly neutralizing antibody response and the recruitment of potent effector functions of immune cells via the constant antibody Fc region. In this study, we show that nonprogressing HIV-infected children mounted antibody responses against HIV that were able to mediate potent Fc effector functions, which may contribute to the control of HIV replication. Children who had specific glycan structures on the Fc portion of antibodies against HIV were able to neutralize a broader range of HIV variants, providing evidence of a potential role of Fc glycovariation in the development of bnAbs against HIV. These findings complement our knowledge of the distinct immune landscape in early life that could be exploited in the development of vaccine strategies.
Collapse
|
19
|
Tfh Cells in Health and Immunity: Potential Targets for Systems Biology Approaches to Vaccination. Int J Mol Sci 2020; 21:ijms21228524. [PMID: 33198297 PMCID: PMC7696930 DOI: 10.3390/ijms21228524] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
T follicular helper (Tfh) cells are a specialised subset of CD4+ T cells that play a significant role in the adaptive immune response, providing critical help to B cells within the germinal centres (GC) of secondary lymphoid organs. The B cell receptors of GC B cells undergo multiple rounds of somatic hypermutation and affinity maturation within the GC response, a process dependent on cognate interactions with Tfh cells. B cells that receive sufficient help from Tfh cells form antibody-producing long-lived plasma and memory B cells that provide the basis of decades of effective and efficient protection and are considered the gold standard in correlates of protection post-vaccination. However, the T cell response to vaccination has been understudied, and over the last 10 years, exponential improvements in the technological underpinnings of sampling techniques, experimental and analytical tools have allowed multidisciplinary characterisation of the role of T cells and the immune system as a whole. Of particular interest to the field of vaccinology are GCs and Tfh cells, representing a unique target for improving immunisation strategies. Here, we discuss recent insights into the unique journey of Tfh cells from thymus to lymph node during differentiation and their role in the production of high-quality antibody responses as well as their journey back to the periphery as a population of memory cells. Further, we explore their function in health and disease and the power of next-generation sequencing techniques to uncover their potential as modulators of vaccine-induced immunity.
Collapse
|
20
|
Abstract
Purpose of review As an eminently vaccine-preventable disease, encephalitis caused by Japanese encephalitis virus (JEV) has attracted an unusually high degree of attention from those seeking to develop viral vaccines. Since the 1950s, all types of JEV vaccines including inactivated, recombinant and live attenuated ones have been licensed. As an example of an extremely successful endeavour, the time is ripe for reviewing the development of JEV vaccines and probing the reasons behind their uniform success. Recent findings Vaccines against JEV have come a long way since the first licensing in the mid-1950s of the mouse brain-grown-inactivated virus preparations, to the present day live-attenuated virus vaccines. A survey of the various inactivated and live vaccines developed against JEV provides a striking insight into the impressive safety and efficacy of all the vaccines available to prevent encephalitis from JEV. This review juxtaposes studies to understand naturally acquired immunity against JEV that have mostly been published post-2000, compares these with those elicited by vaccines and highlights the paucity of data on cell-mediated immune responses elicited by JEV vaccines. Summary This article not only seeks to make available the immense salient literature on this endeavour in one collection, but also queries the basis for the remarkable success of JEV vaccines, not least of which may be the ease of protecting against encephalitis caused by JEV. To conclude, the true test of the ingenuity of those dedicated to the pursuit of viral vaccines would be success against viral diseases such as HIV-AIDS and dengue that pose a far greater challenge to scientists.
Collapse
Affiliation(s)
- Vijaya Satchidanandam
- Room SA07, Biology Building, Department of Microbiology and Cell Biology, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore, Karnataka 560012 India
| |
Collapse
|
21
|
Cotugno N, Santilli V, Pascucci GR, Manno EC, De Armas L, Pallikkuth S, Deodati A, Amodio D, Zangari P, Zicari S, Ruggiero A, Fortin M, Bromley C, Pahwa R, Rossi P, Pahwa S, Palma P. Artificial Intelligence Applied to in vitro Gene Expression Testing (IVIGET) to Predict Trivalent Inactivated Influenza Vaccine Immunogenicity in HIV Infected Children. Front Immunol 2020; 11:559590. [PMID: 33123133 PMCID: PMC7569088 DOI: 10.3389/fimmu.2020.559590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023] Open
Abstract
The number of patients affected by chronic diseases with special vaccination needs is burgeoning. In this scenario, predictive markers of immunogenicity, as well as signatures of immune responses are typically missing even though it would especially improve the identification of personalized immunization practices in these populations. We aimed to develop a predictive score of immunogenicity to Influenza Trivalent Inactivated Vaccination (TIV) by applying deep machine learning algorithms using transcriptional data from sort-purified lymphocyte subsets after in vitro stimulation. Peripheral blood mononuclear cells (PBMCs) collected before TIV from 23 vertically HIV infected children under ART and virally controlled were stimulated in vitro with p09/H1N1 peptides (stim) or left unstimulated (med). A multiplexed-qPCR for 96 genes was made on fixed numbers of 3 B cell subsets, 3 T cell subsets and total PBMCs. The ability to respond to TIV was assessed through hemagglutination Inhibition Assay (HIV) and ELIspot and patients were classified as Responders (R) and Non Responders (NR). A predictive modeling framework was applied to the data set in order to define genes and conditions with the higher predicted probability able to inform the final score. Twelve NR and 11 R were analyzed for gene expression differences in all subsets and 3 conditions [med, stim or Δ (stim-med)]. Differentially expressed genes between R and NR were selected and tested with the Adaptive Boosting Model to build a prediction score. The score obtained from subsets revealed the best prediction score from 46 genes from 5 different subsets and conditions. Calculating a combined score based on these 5 categories, we achieved a model accuracy of 95.6% and only one misclassified patient. These data show how a predictive bioinformatic model applied to transcriptional analysis deriving from in-vitro stimulated lymphocytes subsets may predict poor or protective vaccination immune response in vulnerable populations, such as HIV-infected individuals. Future studies on larger cohorts are needed to validate such strategy in the context of vaccination trials.
Collapse
Affiliation(s)
- Nicola Cotugno
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Veronica Santilli
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy
| | - Giuseppe Rubens Pascucci
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy
| | - Emma Concetta Manno
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy
| | - Lesley De Armas
- Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Suresh Pallikkuth
- Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Annalisa Deodati
- Academic Department of Pediatrics (DPUO), Research Unit of Growth Disorders, Bambino Gesù Children's Hospital, Rome, Italy
| | - Donato Amodio
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Zangari
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy
| | - Sonia Zicari
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy
| | - Alessandra Ruggiero
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy
| | | | | | - Rajendra Pahwa
- Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Paolo Rossi
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Savita Pahwa
- Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Paolo Palma
- Academic Department of Pediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children's Hospital, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
22
|
Xia Y, Mi F, Du G, Qin S. Analysis of protective immune responses to seasonal influenza vaccination in HIV-infected individuals. Hum Vaccin Immunother 2020; 17:124-132. [PMID: 32412824 DOI: 10.1080/21645515.2020.1754701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Owing to their increased susceptibility to influenza infection, HIV+ individuals are recommended to receive annual influenza vaccination. However, influenza vaccination induced production of anti-influenza neutralization antibodies (Nab) is successful only in some viral-suppressed antiretroviral therapy (ART) treated HIV+ subjects. Additionally, the mechanism of antibody response induced by influenza vaccine in antiretroviral-treated HIV+ subjects is unclear. In this study, we conducted a cohort study which contains 40 HIV+ ART-treated individuals to whom one dose of seasonal influenza vaccine was administered. Blood samples were collected on day 0, 7, 14, and 28 post-vaccination, and serologic responses were characterized by ELISA and micro-neutralization to measure the total antibodies and Nab against influenza vaccines. Transcriptional profiling of peripheral blood mononuclear cells (PBMCs) and immunological assays was measured. Increased levels of proliferation of CD4+T cells and B cells with their corresponding subtypes were observed in HIV-infected subjects at day 7 (D7) following vaccination compared to pre-vaccination. Moreover, proliferation of CD4+T cells and B cells (D7) was correlated with influenza-specific H1N1 Nab at day 28 (D28). Our study could also demonstrate that apoptosis of CD4+T cells and B cells (D7) were inversely correlated with influenza-specific H1N1 Nab. Based on the Nab response after vaccination to each influenza subtypes (D28), HIV+ subjects were stratified as influenza vaccine responders and influenza vaccine non-responders ("responders" ≥ 4-fold increase from day 0; "non-responders" < 4-fold increase from day 0). A selected list of biological pathways (H1N1and H3N2: olfactory transduction, B: phagosome) enriched with transcripts were significantly altered in (ART) treated HIV+ subjects among Nab production responders. This study demonstrated a more detailed mechanism of immune regulation on influenza induced antibody response and revealed some knowledge regarding bioinformatics of vaccine responders and non-responder in influenza induced antibody production in ART-treated HIV patients.
Collapse
Affiliation(s)
- Ying Xia
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Fuli Mi
- Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University , Shandong, China
| | - Guoqiang Du
- Pediatric Surgery, Shandong Provincial Hospital, Shandong, China
| | - Shenghui Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| |
Collapse
|
23
|
Niessl J, Baxter AE, Morou A, Brunet-Ratnasingham E, Sannier G, Gendron-Lepage G, Richard J, Delgado GG, Brassard N, Turcotte I, Fromentin R, Bernard NF, Chomont N, Routy JP, Dubé M, Finzi A, Kaufmann DE. Persistent expansion and Th1-like skewing of HIV-specific circulating T follicular helper cells during antiretroviral therapy. EBioMedicine 2020; 54:102727. [PMID: 32268275 PMCID: PMC7136607 DOI: 10.1016/j.ebiom.2020.102727] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/17/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Untreated HIV infection leads to alterations in HIV-specific CD4+ T cells including increased expression of co-inhibitory receptors (IRs) and skewing toward a T follicular helper cell (Tfh) signature. However, which changes are maintained after suppression of viral replication with antiretroviral therapy (ART) is poorly known. Methods We analyzed blood CD4+ T cells specific to HIV and comparative viral antigens in ART-treated people using a cytokine-independent activation-induced marker assay alone or in combination with functional readouts. Findings In intra-individual comparisons, HIV-specific CD4+ T cells were characterized by a larger fraction of circulating Tfh (cTfh) cells than CMV- and HBV-specific cells and preferentially expressed multiple IRs and showed elevated production of the Tfh cytokines CXCL13 and IL-21. In addition, HIV-specific cTfh exhibited a predominant Th1-like phenotype and function when compared to cTfh of other specificities, contrasting with a reduction in Th1-functions in HIV-specific non-cTfh. Using longitudinal samples, we demonstrate that this distinct HIV-specific cTfh profile was induced during chronic untreated HIV infection, persisted on ART and correlated with the translation-competent HIV reservoir but not with the total HIV DNA reservoir. Interpretation Expansion and altered features of HIV-specific cTfh cells are maintained during ART and may be driven by persistent HIV antigen expression. Funding This work was supported by the National Institutes of Health (NIH), the Canadian Institutes of Health Research (CIHR) and the FRQS AIDS and Infectious Diseases Network.
Collapse
Affiliation(s)
- Julia Niessl
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada; Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA, United States
| | - Amy E Baxter
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada; Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA, United States
| | - Antigoni Morou
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Elsa Brunet-Ratnasingham
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Gérémy Sannier
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Gabrielle Gendron-Lepage
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Jonathan Richard
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Gloria-Gabrielle Delgado
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Nathalie Brassard
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Isabelle Turcotte
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Rémi Fromentin
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Nicole F Bernard
- Chronic Viral Illnesses Service and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| | - Nicolas Chomont
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illnesses Service and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada; Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mathieu Dubé
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Andrés Finzi
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada
| | - Daniel E Kaufmann
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montreal, QC, Canada; Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA, United States.
| |
Collapse
|
24
|
Sannier G, Dubé M, Kaufmann DE. Single-Cell Technologies Applied to HIV-1 Research: Reaching Maturity. Front Microbiol 2020; 11:297. [PMID: 32194526 PMCID: PMC7064469 DOI: 10.3389/fmicb.2020.00297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
The need for definitive answers probably explains our natural tendency to seek simplicity. The reductionist “bulk” approach, in which a mean behavior is attributed to a heterogeneous cell population, fulfills this need by considerably helping the conceptualization of complex biological processes. However, the limits of this methodology are becoming increasingly clear as models seek to explain biological events occurring in vivo, where heterogeneity is the rule. Research in the HIV-1 field is no exception: the challenges encountered in the development of preventive and curative anti-HIV-1 strategies may well originate in part from inadequate assumptions built on bulk technologies, highlighting the need for new perspectives. The emergence of diverse single-cell technologies set the stage for potential breakthrough discoveries, as heterogeneous processes can now be investigated with an unprecedented depth in topics as diverse as HIV-1 tropism, dynamics of the replication cycle, latency, viral reservoirs and immune control. In this review, we summarize recent advances in the HIV-1 field made possible by single-cell technologies, and contextualize their importance.
Collapse
Affiliation(s)
- Gérémy Sannier
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Mathieu Dubé
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Daniel E Kaufmann
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Consortium for HIV/AIDS Vaccine Development (Scripps CHAVD), La Jolla, CA, United States
| |
Collapse
|
25
|
Paghera S, Quiros-Roldan E, Sottini A, Properzi M, Castelli F, Imberti L. Lymphocyte homeostasis is maintained in perinatally HIV-infected patients after three decades of life. IMMUNITY & AGEING 2019; 16:26. [PMID: 31636688 PMCID: PMC6791008 DOI: 10.1186/s12979-019-0166-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022]
Abstract
Background While immunosenescence, defined as reduced production of new lymphocytes, restriction of T-cell receptor repertoire and telomeres shortening, has been extensively evaluated in HIV-infected children and adults, no data about these parameters are available in perinatally-infected patients with very long-lasting HIV infection. Methods We compared thymic and bone marrow output, telomere length (measured by Real-Time PCR) and T-cell receptor repertoire (determined by spectratyping) of 21 perinatally HIV-infected subjects (with a median of 27 years of infection) with those of 19 age-matched non-perinatally HIV-infected patients and 40 healthy controls. All patients received a combined antiretroviral therapy. Results While thymic and bone marrow output were not different among the analyzed groups, telomere length in peripheral blood cells and T-cell receptor diversity were significantly lower in HIV-perinatally and non-perinatally infected individuals compared to healthy controls. Conclusions In HIV-infected subjects, a normal thymic output together with a reduced telomere length and a restricted T-cell receptor repertoire could be explained by the shift of newly produced cells into memory subsets. This phenomenon may allow to control viral infection and maintain peripheral homeostasis.
Collapse
Affiliation(s)
- S Paghera
- 1Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili, Brescia, Italy
| | - E Quiros-Roldan
- 2Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili, Brescia, Italy
| | - A Sottini
- 1Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili, Brescia, Italy
| | - M Properzi
- 2Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili, Brescia, Italy
| | - F Castelli
- 2Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili, Brescia, Italy
| | - L Imberti
- 1Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili, Brescia, Italy
| |
Collapse
|
26
|
Nelson AN, Goswami R, Dennis M, Tu J, Mangan RJ, Saha PT, Cain DW, Curtis AD, Shen X, Shaw GM, Bar K, Hudgens M, Pollara J, De Paris K, Van Rompay KKA, Permar SR. Simian-Human Immunodeficiency Virus SHIV.CH505-Infected Infant and Adult Rhesus Macaques Exhibit Similar Env-Specific Antibody Kinetics, despite Distinct T-Follicular Helper and Germinal Center B Cell Landscapes. J Virol 2019; 93:e00168-19. [PMID: 31092583 PMCID: PMC6639294 DOI: 10.1128/jvi.00168-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022] Open
Abstract
Global elimination of pediatric human immunodeficiency virus (HIV) infections will require the development of novel immune-based approaches, and understanding infant immunity to HIV is critical to guide the rational design of these intervention strategies. Despite their immunological immaturity, chronically HIV-infected children develop broadly neutralizing antibodies (bnAbs) more frequently and earlier than adults do. However, the ontogeny of humoral responses during acute HIV infection is poorly defined in infants and challenging to study in human cohorts due to the presence of maternal antibodies. To further our understanding of age-related differences in the development of HIV-specific immunity during acute infection, we evaluated the generation of virus-specific humoral immune responses in infant (n = 6) and adult (n = 12) rhesus macaques (RMs) infected with a transmitted/founder (T/F) simian-human immunodeficiency virus (SHIV) (SHIV.C.CH505 [CH505]). The plasma HIV envelope-specific IgG antibody kinetics were similar in SHIV-infected infant and adult RMs, with no significant differences in the magnitude or breadth of these responses. Interestingly, autologous tier 2 virus neutralization responses also developed with similar frequencies and kinetics in infant and adult RMs, despite infants exhibiting significantly higher follicular T helper cell (Tfh) and germinal center B cell frequencies than adults. Finally, we show that plasma viral load was the strongest predictor of the development of autologous virus neutralization in both age groups. Our results indicate that the humoral immune response to SHIV infection develops with similar kinetics among infant and adult RMs, suggesting that the early-life immune system is equipped to respond to HIV-1 and promote the production of neutralizing HIV antibodies.IMPORTANCE There is a lack of understanding of how the maturation of the infant immune system influences immunity to HIV infection or how these responses differ from those of adults. Improving our knowledge of infant HIV immunity will help guide antiviral intervention strategies that take advantage of the unique infant immune environment to successfully elicit protective immune responses. We utilized a rhesus macaque model of SHIV infection as a tool to distinguish the differences in HIV humoral immunity in infants versus adults. Here, we demonstrate that the kinetics and quality of the infant humoral immune response to HIV are highly comparable to those of adults during the early phase of infection, despite distinct differences in their Tfh responses, indicating that slightly different mechanisms may drive infant and adult humoral immunity.
Collapse
Affiliation(s)
- Ashley N Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Ria Goswami
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Maria Dennis
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Joshua Tu
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Riley J Mangan
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Pooja T Saha
- Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Derek W Cain
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Alan D Curtis
- Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xiaoying Shen
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katharine Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Hudgens
- Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin Pollara
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Kristina De Paris
- Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
27
|
Amoah S, Mishina M, Praphasiri P, Cao W, Kim JH, Liepkalns JS, Guo Z, Carney PJ, Chang JC, Fernandez S, Garg S, Beacham L, Holtz TH, Curlin ME, Dawood F, Olsen SJ, Gangappa S, Stevens J, Sambhara S. Standard-Dose Intradermal Influenza Vaccine Elicits Cellular Immune Responses Similar to Those of Intramuscular Vaccine in Men With and Those Without HIV Infection. J Infect Dis 2019; 220:743-751. [PMID: 31045222 PMCID: PMC11298778 DOI: 10.1093/infdis/jiz205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV)-infected persons are at a higher risk of severe influenza. Although we have shown that a standard-dose intradermal influenza vaccine versus a standard-dose intramuscular influenza vaccine does not result in differences in hemagglutination-inhibition titers in this population, a comprehensive examination of cell-mediated immune responses remains lacking. METHODS Serological, antigen-specific B-cell, and interleukin 2-, interferon γ-, and tumor necrosis factor α-secreting T-cell responses were assessed in 79 HIV-infected men and 79 HIV-uninfected men. RESULTS The route of vaccination did not affect the immunoglobulin A and immunoglobulin G (IgG) plasmablast or memory B-cell response, although these were severely impaired in the group with a CD4+ T-cell count of <200 cells/μL. The frequencies of IgG memory B cells measured on day 28 after vaccination were highest in the HIV-uninfected group, followed by the group with a CD4+ T-cell count of ≥200 cells/μL and the group with a CD4+ T-cell count of <200 cells/μL. The route of vaccination did not affect the CD4+ or CD8+ T-cell responses measured at various times after vaccination. CONCLUSIONS The route of vaccination had no effect on antibody responses, antibody avidity, T-cell responses, or B-cell responses in HIV-infected or HIV-uninfected subjects. With the serological and cellular immune responses to influenza vaccination being impaired in HIV-infected individuals with a CD4+ T-cell count of <200 cells/μL, passive immunization strategies need to be explored to protect this population. CLINICAL TRIALS REGISTRATION NCT01538940.
Collapse
Affiliation(s)
- Samuel Amoah
- Battelle Memorial Institute, Atlanta, Georgia
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Margarita Mishina
- Battelle Memorial Institute, Atlanta, Georgia
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | | | - Weiping Cao
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Jin Hyang Kim
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Justine S Liepkalns
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Zhu Guo
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Paul J Carney
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Jessie C Chang
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Shikha Garg
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Lauren Beacham
- Battelle Memorial Institute, Atlanta, Georgia
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Timothy H Holtz
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
- HIV/STD Research Program, Thailand Ministry of Public Health-CDC Collaboration, Nonthaburi, Bangkok, Thailand
| | - Marcel E Curlin
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Fatimah Dawood
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Sonja J Olsen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Shivaprakash Gangappa
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| |
Collapse
|
28
|
Banga R, Rebecchini C, Procopio FA, Noto A, Munoz O, Ioannidou K, Fenwick C, Ohmiti K, Cavassini M, Corpataux JM, de Leval L, Pantaleo G, Perreau M. Lymph node migratory dendritic cells modulate HIV-1 transcription through PD-1 engagement. PLoS Pathog 2019; 15:e1007918. [PMID: 31329640 PMCID: PMC6675123 DOI: 10.1371/journal.ppat.1007918] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/01/2019] [Accepted: 06/14/2019] [Indexed: 12/29/2022] Open
Abstract
T-follicular helper (Tfh) cells, co-expressing PD-1 and TIGIT, serve as a major cell reservoir for HIV-1 and are responsible for active and persistent HIV-1 transcription after prolonged antiretroviral therapy (ART). However, the precise mechanisms regulating HIV-1 transcription in lymph nodes (LNs) remain unclear. In the present study, we investigated the potential role of immune checkpoint (IC)/IC-Ligand (IC-L) interactions on HIV-1 transcription in LN-microenvironment. We show that PD-L1 (PD-1-ligand) and CD155 (TIGIT-ligand) are predominantly co-expressed on LN migratory (CD1chighCCR7+CD127+) dendritic cells (DCs), that locate predominantly in extra-follicular areas in ART treated individuals. We demonstrate that TCR-mediated HIV production is suppressed in vitro in the presence of recombinant PD-L1 or CD155 and, more importantly, when LN migratory DCs are co-cultured with PD-1+/Tfh cells. These results indicate that LN migratory DCs expressing IC-Ls may more efficiently restrict HIV-1 transcription in the extra-follicular areas and explain the persistence of HIV transcription in PD-1+/Tfh cells after prolonged ART within germinal centers. Increasing number of evidences indicate that B-cell follicles might be anatomical sanctuaries for active transcription in both HIV/SIV viremic controllers and in ART treated aviremic HIV-infected individuals. While multiple mechanisms may be involved in the regulation of HIV transcription, recent studies suggested that immune checkpoint molecule (IC) signaling may contribute to maintain HIV-1 latency in infected CD4 T cells. These observations prompted us to investigate the involvement of IC/IC-L interactions in the regulation of HIV-1 transcription in lymph node (LN) tissues. In the present study, we show that T follicular helper (Tfh) cells predominantly co-expressed PD-1 and TIGIT, which were functionally active. An in-depth mass cytometry analysis revealed that PD-L1, PD-L2 (PD-1 ligands) and CD155 (TIGIT-ligand) were predominantly co-expressed on a specific LN dendritic cell (DC) subpopulation expressing markers of migratory DCs. We subsequently demonstrated that LN migratory DCs, locating predominantly in LN extra-follicular areas, could modulate HIV-1 transcription by a mechanism involving PD-L1/PD-1 interactions. Interestingly, the frequency of LN migratory DCs inversely correlated with HIV-1 transcription from LN memory CD4 T cells, suggesting that IC-L expressing migratory DCs might contribute to control HIV-1 transcription and maintain HIV-1 latency in extra-follicular areas. These findings represent a step forward in our understanding of potential mechanisms contributing to the regulation of HIV persistence in lymphoid tissues.
Collapse
Affiliation(s)
- Riddhima Banga
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Caterina Rebecchini
- Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Francesco Andrea Procopio
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alessandra Noto
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Olivia Munoz
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Kalliopi Ioannidou
- Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Craig Fenwick
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Khalid Ohmiti
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Matthias Cavassini
- Service of Infectious Diseases, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Jean-Marc Corpataux
- Service of Vascular Surgery, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Laurence de Leval
- Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
29
|
Lacey CJ. HPV vaccination in HIV infection. ACTA ACUST UNITED AC 2019; 8:100174. [PMID: 31252073 PMCID: PMC6603434 DOI: 10.1016/j.pvr.2019.100174] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023]
Abstract
Persons with HIV are at increased risk of HPV infection, HPV disease, and HPV-related cancers compared to HIV negative persons. In persons with HIV, immune responses to vaccination are often sub-optimal, and while these improve with ART, they often remain lower and decline more rapidly than in HIV-negative individuals. Although the evidence base to support the immunogenicity of HPV vaccines in HIV + ve persons is reasonable, the evidence base to support the efficacy of HPV vaccines in HIV + ve individuals is inconsistent. There is one study in HIV + ve men who have sex with men (MSM) which showed no effect, and two other studies, one in HIV + ve women and one in HIV + ve adolescents that showed reduced effectiveness. All these effectiveness studies used Gardasil 4 (G4). Two studies in HIV + ve persons have shown superior immunogenicity of Cervarix (which uses a TLR4 agonist adjuvant) compared to G4. Studies of Hepatitis B vaccines in HIV + ve persons have shown that either (i) increased number of doses (ii) increased vaccine dose, or (iii) TLR agonist adjuvanted vaccines, all produce increased immunogenicity compared to standard vaccine regimes. Therefore, questions remain as to optimal HPV vaccine regimes in HIV and further clinical trials with different HPV vaccine regimes are needed.
Collapse
|
30
|
Pallikkuth S, de Armas LR, Rinaldi S, George VK, Pan L, Arheart KL, Pahwa R, Pahwa S. Dysfunctional peripheral T follicular helper cells dominate in people with impaired influenza vaccine responses: Results from the FLORAH study. PLoS Biol 2019; 17:e3000257. [PMID: 31100059 PMCID: PMC6542545 DOI: 10.1371/journal.pbio.3000257] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/30/2019] [Accepted: 04/22/2019] [Indexed: 01/09/2023] Open
Abstract
Antigen-primed cluster of differentiation (CD) 4+ T follicular helper (Tfh) cells interact with B cells in the germinal centers (GCs) of lymph nodes to generate vaccine-induced antibody (Ab) responses. In the circulation, peripheral Tfh (pTfh) cells, a subset of memory CD4 T cells, serve as surrogates for GC Tfh because of several functional and phenotypic similarities between them. We investigated features of H1N1 influenza antigen-specific pTfh (Ag.pTfh) in virologically controlled HIV+ volunteers on antiretroviral therapy (ART) and healthy control (HC) participants selected from a seasonal influenza vaccine responsiveness study. Selection of the participants was made based on age, defined as young (18-40 y) and old (>60 y) and on their classification as a vaccine responder (VR) or vaccine nonresponder (VNR). VRs demonstrated expansion of CD40L+ and CD69+ Ag.pTfh, with induction of intracellular interleukin 21 (IL-21) and inducible costimulator (ICOS) post vaccination; these responses were strongest in young HC VRs and were less prominent in HIV+ individuals of all ages. Ag.pTfh in VNRs exhibited dramatically different characteristics from VRs, displaying an altered phenotype and a cytokine profile dominated by cytokines IL-2, tumor necrosis factor alpha (TNF-α), or IL-17 but lacking in IL-21. In coculture experiments, sorted pTfh did not support the B cell IgG production in VNRs and were predominantly an inflammatory T helper 1 (Th1)/T helper 17 (Th17) phenotype with lower ICOS and higher programmed cell death protein 1 (PD1) expression. Induction of IL-21 and ICOS on Ag.pTfh cells are negatively affected by both aging and HIV infection. Our findings demonstrate that dysfunctional Ag.pTfh cells with an altered IL-21/IL-2 axis contribute to inadequate vaccine responses. Approaches for targeting inflammation or expanding functional Tfh may improve vaccine responses in healthy aging and those aging with HIV infection.
Collapse
Affiliation(s)
- Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Lesley R. de Armas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Stefano Rinaldi
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Varghese K. George
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Li Pan
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Kristopher L. Arheart
- Department of Epidemiology and Public Health, Division of Biostatistics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Rajendra Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
31
|
Abstract
De novo donor-specific antibody (DSA) formation is a major problem in transplantation, and associated with long-term graft decline and loss as well as sensitization, limiting future transplant options. Forming high-affinity, long-lived antibody responses involves a process called the germinal center (GC) reaction, and requires interaction between several cell types, including GC B cells, T follicular helper (Tfh) and T follicular regulatory (Tfr) cells. T follicular regulatory cells are an essential component of the GC reaction, limiting its size and reducing nonspecific or self-reactive responses.An imbalance between helper function and regulatory function can lead to excessive antibody production. High proportions of Tfh cells have been associated with DSA formation in transplantation; therefore, Tfr cells are likely to play an important role in limiting DSA production. Understanding the signals that govern Tfr cell development and the balance between helper and regulatory function within the GC is key to understanding how these cells might be manipulated to reduce the risk of DSA development.This review discusses the development and function of Tfr cells and their relevance to transplantation. In particular how current and future immunosuppressive strategies might allow us to skew the ratio between Tfr and Tfh cells to increase or decrease the risk of de novo DSA formation.
Collapse
|
32
|
Tardif V, Muir R, Cubas R, Chakhtoura M, Wilkinson P, Metcalf T, Herro R, Haddad EK. Adenosine deaminase-1 delineates human follicular helper T cell function and is altered with HIV. Nat Commun 2019; 10:823. [PMID: 30778076 PMCID: PMC6379489 DOI: 10.1038/s41467-019-08801-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 01/23/2019] [Indexed: 12/18/2022] Open
Abstract
Follicular helper T cells (Tfh) play critical roles instructing, and initiating T-cell dependent antibody responses. The underlying mechanisms that enhance their function is therefore critical for vaccine development. Here we apply gene array analysis identifying adenosine deaminase (ADA) as a key molecule that delineates a human Tfh helper program in proliferating circulating Tfh (cTfh) cells and Germinal Centers Tfh (GC-Tfh). ADA-1 expression and enzymatic activity are increased in efficient cTfh2-17/GC-Tfh cells. Exogenous ADA-1 enhances less efficient cTfh1 and pro-follicular Tfh PD-1+ CXCR5+ cells to provide B cell help, while pharmacological inhibition of ADA-1 activity impedes cTfh2-17/GC-Tfh function and diminished antibody response. Mechanistically, ADA-1 controls the Tfh program by influencing IL6/IL-2 production, controlling CD26 extracellular expression and could balance signals through adenosine receptors. Interestingly, dysfunctional Tfh from HIV infected-individual fail to regulate the ADA pathway. Thus, ADA-1 regulates human Tfh and represents a potential target for development of vaccine strategy.
Collapse
Affiliation(s)
- Virginie Tardif
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University, Philadelphia, 19102, PA, USA
| | - Roshell Muir
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University, Philadelphia, 19102, PA, USA
| | | | - Marita Chakhtoura
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University, Philadelphia, 19102, PA, USA
| | - Peter Wilkinson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Talibah Metcalf
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University, Philadelphia, 19102, PA, USA
| | - Rana Herro
- La Jolla Institute for Allergy and Immunology, San Diego, 92037, CA, USA
| | - Elias K Haddad
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University, Philadelphia, 19102, PA, USA.
| |
Collapse
|
33
|
Early T Follicular Helper Cell Responses and Germinal Center Reactions Are Associated with Viremia Control in Immunized Rhesus Macaques. J Virol 2019; 93:JVI.01687-18. [PMID: 30463978 DOI: 10.1128/jvi.01687-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022] Open
Abstract
T follicular helper (TFH) cells are fundamental in germinal center (GC) maturation and selection of antigen-specific B cells within secondary lymphoid organs. GC-resident TFH cells have been fully characterized in human immunodeficiency virus (HIV) infection. However, the role of GC TFH cells in GC B cell responses following various simian immunodeficiency virus (SIV) vaccine regimens in rhesus macaques (RMs) has not been fully investigated. We characterized GC TFH cells of RMs over the course of a mucosal/systemic vaccination regimen to elucidate GC formation and SIV humoral response generation. Animals were mucosally primed twice with replicating adenovirus type 5 host range mutant (Ad5hr)-SIV recombinants and systemically boosted with ALVAC-SIVM766Gag/Pro/gp120-TM and SIVM766&CG7V gD-gp120 proteins formulated in alum hydroxide (ALVAC/Env) or DNA encoding SIVenv/SIVGag/rhesus interleukin 12 (IL-12) plus SIVM766&CG7V gD-gp120 proteins formulated in alum phosphate (DNA&Env). Lymph nodes were biopsied in macaque subgroups prevaccination and at day 3, 7, or 14 after the 2nd Ad5hr-SIV prime and the 2nd vector/Env boost. Evaluations of GC TFH and GC B cell dynamics including correlation analyses supported a significant role for early GC TFH cells in providing B cell help during initial phases of GC formation. GC TFH responses at day 3 post-mucosal priming were consistent with generation of Env-specific memory B cells in GCs and elicitation of prolonged Env-specific humoral immunity in the rectal mucosa. GC Env-specific memory B cell responses elicited early post-systemic boosting correlated significantly with decreased viremia postinfection. Our results highlight the importance of early GC TFH cell responses for robust GC maturation and generation of long-lasting SIV-specific humoral responses at mucosal and systemic sites. Further investigation of GC TFH cell dynamics should facilitate development of an efficacious HIV vaccine.IMPORTANCE The modest HIV protection observed in the human RV144 vaccine trial associated antibody responses with vaccine efficacy. T follicular helper (TFH) cells are CD4+ T cells that select antibody secreting cells with high antigenic affinity in germinal centers (GCs) within secondary lymphoid organs. To evaluate the role of TFH cells in eliciting prolonged virus-specific humoral responses, we vaccinated rhesus macaques with a combined mucosal prime/systemic boost regimen followed by repeated low-dose intrarectal challenges with SIV, mimicking human exposure to HIV-1. Although the vaccine regimen did not prevent SIV infection, decreased viremia was observed in the immunized macaques. Importantly, vaccine-induced TFH responses elicited at day 3 postimmunization and robust GC maturation were strongly associated. Further, early TFH-dependent SIV-specific B cell responses were also correlated with decreased viremia. Our findings highlight the contribution of early vaccine-induced GC TFH responses to elicitation of SIV-specific humoral immunity and implicate their participation in SIV control.
Collapse
|
34
|
Wendel BS, Del Alcazar D, He C, Del Río-Estrada PM, Aiamkitsumrit B, Ablanedo-Terrazas Y, Hernandez SM, Ma KY, Betts MR, Pulido L, Huang J, Gimotty PA, Reyes-Terán G, Jiang N, Su LF. The receptor repertoire and functional profile of follicular T cells in HIV-infected lymph nodes. Sci Immunol 2019; 3:3/22/eaan8884. [PMID: 29626170 DOI: 10.1126/sciimmunol.aan8884] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/29/2017] [Accepted: 02/16/2018] [Indexed: 12/15/2022]
Abstract
Follicular helper CD4+ T cells (TFH) play an integral role in promoting B cell differentiation and affinity maturation. Whereas TFH cell frequencies are increased in lymph nodes (LNs) from individuals infected with HIV, humoral immunity remains impaired during chronic HIV infection. Whether HIV inhibits TFH responses in LNs remains unclear. Advances in this area have been limited by the difficulty of accessing human lymphoid tissues. Here, we combined high-dimensional mass cytometry with T cell receptor repertoire sequencing to interrogate the composition of TFH cells in primary human LNs. We found evidence for intact antigen-driven clonal expansion of TFH cells and selective utilization of specific complementarity-determining region 3 (CDR3) motifs during chronic HIV infection, but the resulting TFH cells acquired an activation-related TFH cell signature characterized by interleukin-21 (IL-21) dominance. These IL-21+ TFH cells contained an oligoclonal HIV-reactive population that preferentially accumulated in patients with severe HIV infection and was associated with aberrant B cell distribution in the same LN. These data indicate that TFH cells remain capable of responding to HIV antigens during chronic HIV infection but become functionally skewed and oligoclonally restricted under persistent antigen stimulation.
Collapse
Affiliation(s)
- Ben S Wendel
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel Del Alcazar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania and Philadelphia Veterans Affairs Medical Center, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chenfeng He
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Perla M Del Río-Estrada
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, México
| | - Benjamas Aiamkitsumrit
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania and Philadelphia Veterans Affairs Medical Center, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuria Ablanedo-Terrazas
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, México
| | - Stefany M Hernandez
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Ke-Yue Ma
- Institute for Cellular and Molecular Biology, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Michael R Betts
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura Pulido
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jun Huang
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gustavo Reyes-Terán
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, México
| | - Ning Jiang
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712, USA. .,Institute for Cellular and Molecular Biology, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Laura F Su
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania and Philadelphia Veterans Affairs Medical Center, Philadelphia, PA 19104, USA. .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
35
|
Roider J, Maehara T, Ngoepe A, Ramsuran D, Muenchhoff M, Adland E, Aicher T, Kazer SW, Jooste P, Karim F, Kuhn W, Shalek AK, Ndung'u T, Morris L, Moore PL, Pillai S, Kløverpris H, Goulder P, Leslie A. High-Frequency, Functional HIV-Specific T-Follicular Helper and Regulatory Cells Are Present Within Germinal Centers in Children but Not Adults. Front Immunol 2018; 9:1975. [PMID: 30258437 PMCID: PMC6143653 DOI: 10.3389/fimmu.2018.01975] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023] Open
Abstract
Broadly neutralizing antibodies (bnAbs) against HIV-1 are an effective means of preventing transmission. To better understand the mechanisms by which HIV-specific bnAbs naturally develop, we investigated blood and lymphoid tissue in pediatric infection, since potent bnAbs develop with greater frequency in children than adults. As in adults, the frequency of circulating effector T-follicular helper cells (TFH) in HIV infected, treatment naïve children correlates with neutralization breadth. However, major differences between children and adults were also observed both in circulation, and in a small number of tonsil samples. In children, TFH cells are significantly more abundant, both in blood and in lymphoid tissue germinal centers, than in adults. Second, HIV-specific TFH cells are more frequent in pediatric than in adult lymphoid tissue and secrete the signature cytokine IL-21, which HIV-infected adults do not. Third, the enrichment of IL-21-secreting HIV-specific TFH in pediatric lymphoid tissue is accompanied by increased TFH regulation via more abundant regulatory follicular T-cells and HIV-specific CXCR5+ CD8 T-cells compared to adults. The relationship between regulation and neutralization breadth is also observed in the pediatric PBMC samples and correlates with neutralization breadth. Matching neutralization data from lymphoid tissue samples is not available. However, the distinction between infected children and adults in the magnitude, quality and regulation of HIV-specific TFH responses is consistent with the superior ability of children to develop high-frequency, potent bnAbs. These findings suggest the possibility that the optimal timing for next generation vaccine strategies designed to induce high-frequency, potent bnAbs to prevent HIV infection in adults would be in childhood.
Collapse
Affiliation(s)
- Julia Roider
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, Oxford University, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Infectious Diseases, Medizinische Klinik IV, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Takashi Maehara
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Abigail Ngoepe
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Duran Ramsuran
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Maximilian Muenchhoff
- Department of Virology, Max von Pettenkofer Institute, Ludwig-Maximilians-University Munich, Munich, Germany
- Partner Site Munich, German Center for Infection Research, Munich, Germany
| | - Emily Adland
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, Oxford University, Oxford, United Kingdom
| | - Toby Aicher
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
- Department of Chemistry and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Samuel W. Kazer
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
- Department of Chemistry and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Pieter Jooste
- Paediatric Department, Kimberley Hospital, Kimberley, South Africa
| | - Farina Karim
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Warren Kuhn
- Department of Otorhinolaryngology, Stanger Hospital, KwaZulu-Natal, South Africa
| | - Alex K. Shalek
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
- Department of Chemistry and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Thumbi Ndung'u
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
- Max Planck Institute for Infection Biology, Berlin, Germany
- Department of Infection and Immunity, University College London, London, United Kingdom
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Center for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Center for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Shiv Pillai
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Henrik Kløverpris
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Infection and Immunity, University College London, London, United Kingdom
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Philip Goulder
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, Oxford University, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Alasdair Leslie
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
36
|
Immune response to a Tdap booster in vertically HIV-infected adolescents. Vaccine 2018; 36:5609-5616. [PMID: 30087050 DOI: 10.1016/j.vaccine.2018.07.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pertussis cases have increased worldwide and knowledge on immune response and cytokine profile after Tdap vaccine in immunodeficient adolescents is scarce. OBJECTIVE To evaluate the immune response after Tdap in HIV-infected (HIV) and in healthy adolescents (CONTROL). METHODOLOGY Thirty HIV adolescents with CD4 cell counts >200 and 30 CONTROLs were immunized with Tdap, after a prior whole-cell DTP vaccine primary scheme. Blood samples were collected immediately before and after vaccine. Lymphocyte immunophenotyping was performed by flow cytometry; tetanus, diphtheria and pertussis toxin antibodies were assessed by ELISA; whole blood was stimulated with tetanus toxoid and Bordetella pertussis and supernatants were assessed for cytokines by xMAP. RESULTS Mean age of HIV and CONTROL groups were 17.9 e 17.1 years, respectively. Pain at injection site was more intense in CONTROL group. HIV group had similar increase in tetanus antibodies at 28 days (geometric mean concentration, GMC, 15.6; 95% CI, 7.52-32.4) than CONTROL group (GMC, 23.1; 95% CI, 15.0-35.5), but lower diphtheria antibodies at 28 days (GMC, 2.3; 95% CI, 0.88-6.19) than CONTROL group (GMC, 16.4; 95% CI, 10.3-26.2); for pertussis, the percentage of individuals who seroconverted was lower in HIV than CONTROL group (HIV, 62.1% versus CONTROL, 100%; p = .002). Both groups built a cellular immune response to tetanus, with a Th2 (IL-4, IL-5 and IL-13) and Th1 (IFN-γ) response, with lower cytokine levels in HIV than in CONTROL group. Especially for pertussis, cellular and humoral responses were less intense in HIV adolescents, with a lower Th1 and Th17 profile and higher IL-10 levels. HIV-infected adolescents on viral suppression showed an enhanced immune response to all the three vaccine antigens, although still at lower levels if compared to CONTROL group. CONCLUSIONS Both groups tolerated well and built an immune response after Tdap. However, HIV-infected adolescents would probably benefit from more frequent booster doses.
Collapse
|
37
|
Harnessing T Follicular Helper Cell Responses for HIV Vaccine Development. Viruses 2018; 10:v10060336. [PMID: 29921828 PMCID: PMC6024737 DOI: 10.3390/v10060336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022] Open
Abstract
Passive administration of broadly neutralizing antibodies (bNAbs) capable of recognizing a broad range of viral strains to non-human primates has led to protection from infection with chimeric SIV/HIV virus (SHIV). This data suggests that generating protective antibody responses could be an effective strategy for an HIV vaccine. However, classic vaccine approaches have failed so far to induce such protective antibodies in HIV vaccine trials. HIV-specific bNAbs identified in natural infection show high levels of somatic hypermutations, demonstrating that they underwent extensive affinity maturation. It is likely that to gain ability to recognize diverse viral strains, vaccine-induced humoral responses will also require complex, iterative maturation. T follicular helper cells (Tfh) are a specialized CD4+ T cell subset that provides help to B cells in the germinal center for the generation of high-affinity and long-lasting humoral responses. It is therefore probable that the quality and quantity of Tfh responses upon vaccination will impact development of bNAbs. Here, we review studies that advanced our understanding of Tfh differentiation, function and regulation. We discuss correlates of Tfh responses and bNAb development in natural HIV infection. Finally, we highlight recent strategies to optimize Tfh responses upon vaccination and their impact on prophylactic HIV vaccine research.
Collapse
|
38
|
Aid M, Dupuy FP, Moysi E, Moir S, Haddad EK, Estes JD, Sekaly RP, Petrovas C, Ribeiro SP. Follicular CD4 T Helper Cells As a Major HIV Reservoir Compartment: A Molecular Perspective. Front Immunol 2018; 9:895. [PMID: 29967602 PMCID: PMC6015877 DOI: 10.3389/fimmu.2018.00895] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/10/2018] [Indexed: 01/05/2023] Open
Abstract
Effective antiretroviral therapy (ART) has prevented the progression to AIDS and reduced HIV-related morbidities and mortality for the majority of infected individuals. However, a lifelong administration of ART is necessary, placing an inordinate burden on individuals and public health systems. Therefore, discovering therapeutic regimens able to eradicate or functionally cure HIV infection is of great importance. ART interruption leads to viral rebound highlighting the establishment and maintenance of a latent viral reservoir compartment even under long-term treatment. Follicular helper CD4 T cells (TFH) have been reported as a major cell compartment contributing to viral persistence, consequent to their susceptibility to infection and ability to release replication-competent new virions. Here, we discuss the molecular profiles and potential mechanisms that support the role of TFH cells as one of the major HIV reservoirs.
Collapse
Affiliation(s)
- Malika Aid
- Beth Israel Deaconess Medical Center, Center for Virology and Vaccine Research, Harvard Medical School, Boston, MA, United States
| | - Frank P Dupuy
- Centre hospitalier de l'Université de Montréal, Montreal, QC, United States
| | - Eirini Moysi
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIH, Bethesda, MD, United States
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, United States
| | - Elias K Haddad
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jacob D Estes
- Oregon National Primate Research Center, Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Rafick Pierre Sekaly
- Pathology Department, Case Western Reserve University, Cleveland, OH, United States
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIH, Bethesda, MD, United States
| | | |
Collapse
|
39
|
Greczmiel U, Oxenius A. The Janus Face of Follicular T Helper Cells in Chronic Viral Infections. Front Immunol 2018; 9:1162. [PMID: 29887868 PMCID: PMC5982684 DOI: 10.3389/fimmu.2018.01162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
Chronic infections with non-cytopathic viruses constitutively expose virus-specific adaptive immune cells to cognate antigen, requiring their numeric and functional adaptation. Virus-specific CD8 T cells are compromised by various means in their effector functions, collectively termed T cell exhaustion. Alike CD8 T cells, virus-specific CD4 Th1 cell responses are gradually downregulated but instead, follicular T helper (TFH) cell differentiation and maintenance is strongly promoted during chronic infection. Thereby, the immune system promotes antibody responses, which bear less immune-pathological risk compared to cytotoxic and pro-inflammatory T cell responses. This emphasis on TFH cells contributes to tolerance of the chronic infection and is pivotal for the continued maturation and adaptation of the antibody response, leading eventually to the emergence of virus-neutralizing antibodies, which possess the potential to control the established chronic infection. However, sustained high levels of TFH cells can also result in a less stringent B cell selection process in active germinal center reactions, leading to the activation of virus-unspecific B cells, including self-reactive B cells, and to hypergammaglobulinemia. This dispersal of B cell help comes at the expense of a stringently selected virus-specific antibody response, thereby contributing to its delayed maturation. Here, we discuss these opposing facets of TFH cells in chronic viral infections.
Collapse
Affiliation(s)
- Ute Greczmiel
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
40
|
A High Frequency of HIV-Specific Circulating Follicular Helper T Cells Is Associated with Preserved Memory B Cell Responses in HIV Controllers. mBio 2018; 9:mBio.00317-18. [PMID: 29739909 PMCID: PMC5941072 DOI: 10.1128/mbio.00317-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Follicular helper T cells (Tfh) play an essential role in the affinity maturation of the antibody response by providing help to B cells. To determine whether this CD4+ T cell subset may contribute to the spontaneous control of HIV infection, we analyzed the phenotype and function of circulating Tfh (cTfh) in patients from the ANRS CO21 CODEX cohort who naturally controlled HIV-1 replication to undetectable levels and compared them to treated patients with similarly low viral loads. HIV-specific cTfh (Tet+), detected by Gag-major histocompatibility complex class II (MHC-II) tetramer labeling in the CD45RA− CXCR5+ CD4+ T cell population, proved more frequent in the controller group (P = 0.002). The frequency of PD-1 expression in Tet+ cTfh was increased in both groups (median, >75%) compared to total cTfh (<30%), but the intensity of PD-1 expression per cell remained higher in the treated patient group (P = 0.02), pointing to the persistence of abnormal immune activation in treated patients. The function of cTfh, analyzed by the capacity to promote IgG secretion in cocultures with autologous memory B cells, did not show major differences between groups in terms of total IgG production but proved significantly more efficient in the controller group when measuring HIV-specific IgG production. The frequency of Tet+ cTfh correlated with HIV-specific IgG production (R = 0.71 for Gag-specific and R = 0.79 for Env-specific IgG, respectively). Taken together, our findings indicate that key cTfh-B cell interactions are preserved in controlled HIV infection, resulting in potent memory B cell responses that may play an underappreciated role in HIV control. The rare patients who spontaneously control HIV replication in the absence of therapy provide a unique model to identify determinants of an effective anti-HIV immune response. HIV controllers show signs of particularly efficient antiviral T cell responses, while their humoral response was until recently considered to play only a minor role in viral control. However, emerging evidence suggests that HIV controllers maintain a significant but “silent” antiviral memory B cell population that can be reactivated upon antigenic stimulation. We report that cTfh help likely contributes to the persistence of controller memory B cell responses, as the frequency of HIV-specific cTfh correlated with the induction of HIV-specific antibodies in functional assays. These findings suggest that T follicular help may contribute to HIV control and highlight the need for inducing such help in HIV vaccine strategies that aim at eliciting persistent B cell responses.
Collapse
|
41
|
Loucif H, Gouard S, Dagenais-Lussier X, Murira A, Stäger S, Tremblay C, Van Grevenynghe J. Deciphering natural control of HIV-1: A valuable strategy to achieve antiretroviral therapy termination. Cytokine Growth Factor Rev 2018; 40:90-98. [PMID: 29778137 DOI: 10.1016/j.cytogfr.2018.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023]
Abstract
Antiretroviral therapy (ART) has dramatically reduced HIV-1-associated morbidity and mortality, and has transformed HIV-1 infection into a manageable chronic condition by suppressing viral replication. However, despite recent patient care improvements, ART still fails to cure HIV-1 infection due to the inability to counteract immune defects and metabolic disturbances that are associated with residual inflammation alongside viral persistence. Life-long drug administration also results in multiple side-effects in patients including lipodystrophy and insulin resistance. Thus, it is critical to find new ways to reduce the length of treatment and facilitate the termination of ART, for example by boosting protective immunity. The rare ability of some individuals to naturally control HIV-1 infection despite residual inflammation could be exploited to identify molecular mechanisms involved in host protection that may function as potential therapeutic targets. In this review, we highlight evidence illustrating the molecular and metabolic advantages of HIV-1 controllers over ART treated patients that contribute to the maintenance of effective antiviral immunity.
Collapse
Affiliation(s)
- Hamza Loucif
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Steven Gouard
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Xavier Dagenais-Lussier
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Armstrong Murira
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Simona Stäger
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Cécile Tremblay
- Centre de Recherche de l'Université de Montréal, Montréal, QC, Canada
| | - Julien Van Grevenynghe
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada.
| |
Collapse
|
42
|
Lu J, Lv Y, Lv Z, Xu Y, Huang Y, Cui M, Yan H. Expansion of circulating T follicular helper cells is associated with disease progression in HIV-infected individuals. J Infect Public Health 2018; 11:685-690. [PMID: 29409739 DOI: 10.1016/j.jiph.2018.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/07/2017] [Accepted: 01/04/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND T follicular helper (Tfh) cells within germinal centers (GC) of lymphoid tissue play an important role in HIV infection. Recently, circulating Tfh cells have been described, which share phenotypic and functional characteristics with GC Tfh cells. This study aimed to investigate the effect of HIV infection on four circulating Tfh subsets, including CD4+CXCR5+, CD4+CXCR5+ICOS+, CD4+CXCR5+PD-1+, and CD4+CXCR5+ICOS+PD-1+ cells. PATIENTS AND METHODS Peripheral blood samples were collected from 33 HIV-infected individuals and 21 healthy controls. The frequency and absolute number of CD3, CD4 and CD8 cells were detected by flow cytometry. The frequency of circulating Tfh cell subsets was also determined by flow cytometry. The correlation between the frequency of Tfh subsets and CD4 T cells counts was assessed by Pearson correlation analysis. RESULTS There was no significant difference in the frequency of peripheral CD4+CXCR5+ Tfh cells between HIV-infected individuals and healthy controls. However, the percentages of circulating CD4+CXCR5+ICOS+, CD4+CXCR5+PD-1+, and CD4+CXCR5+ICOS+PD-1+ Tfh cells were significantly higher in individuals with HIV infection than those of healthy controls. Furthermore, the percentage of CD4+CXCR5+PD-1+ Tfh cells showed negative correlation with CD4 T cell counts in HIV-infected individuals. CONCLUSION Our results suggested the potential involvement of circulating CD4+CXCR5+PD-1+ Tfh cells during the development of HIV infection.
Collapse
Affiliation(s)
- Jianhua Lu
- Department of Laboratory Medicine, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050021, China
| | - Ying Lv
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050021, China
| | - Zhuo Lv
- Graduate College of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yi Xu
- Department of Laboratory Medicine, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050021, China
| | - Yan Huang
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050021, China
| | - Meilan Cui
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050021, China
| | - Huimin Yan
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050021, China.
| |
Collapse
|
43
|
Cárdeno A, Magnusson MK, Quiding-Järbrink M, Lundgren A. Activated T follicular helper-like cells are released into blood after oral vaccination and correlate with vaccine specific mucosal B-cell memory. Sci Rep 2018; 8:2729. [PMID: 29426881 PMCID: PMC5807513 DOI: 10.1038/s41598-018-20740-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
T follicular helper (Tfh)-like cells with potent B-cell helping ability are mobilized into human circulation after parenteral vaccination and are generally held to reflect ongoing germinal center reactions. However, whether mucosal vaccination induces systemic Tfh responses and how such responses may relate to IgA production are unknown. We investigated the frequencies, phenotype and function of circulating Tfh-like CD4+CXCR5+ T cells (cTfh) in adults receiving an oral inactivated enterotoxigenic Escherichia coli vaccine. Subjects were classified as vaccine responders or weak/non-responders based on their intestine-derived antibody-secreting cell (ASC) IgA responses to major vaccine antigens. Oral immunization induced significantly increased proportions of cTfh cells expressing the cTfh activation marker inducible costimulator (ICOS) in ASC responders, but not in weak/non-responders. Vaccination also enhanced the expression of IL-21, Th17 markers and integrin β7 by activated cTfh cells, supporting functionality and gut homing potential. cTfh cells promoted total and vaccine specific IgA production from cocultured B cells. Magnitudes of cTfh responses assessed within a week after primary vaccinations correlated with memory intestine-derived vaccine specific IgA responses 1-2 years later. We conclude that activated ICOS+ Tfh-like cells are mobilized into blood after oral vaccination and may be used as biomarkers of vaccine specific mucosal memory in humans.
Collapse
Affiliation(s)
- Ana Cárdeno
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Maria K Magnusson
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | | | - Anna Lundgren
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
44
|
Vella LA, Herati RS, Wherry EJ. CD4 + T Cell Differentiation in Chronic Viral Infections: The Tfh Perspective. Trends Mol Med 2017; 23:1072-1087. [PMID: 29137933 PMCID: PMC5886740 DOI: 10.1016/j.molmed.2017.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022]
Abstract
CD4+ T cells play a critical role in the response to chronic viral infections during the acute phase and in the partial containment of infections once chronic infection is established. As infection persists, the virus-specific CD4+ T cell response begins to shift in phenotype. The predominant change described in both mouse and human studies of chronic viral infection is a decrease in detectable T helper type (Th)1 responses. Some Th1 loss is due to decreased proliferative potential and decreased cytokine production in the setting of chronic antigen exposure. However, recent data suggest that Th1 dysfunction is accompanied by a shift in the differentiation pathway of virus-specific CD4+ T cells, with enrichment for cells with a T follicular helper cell (Tfh) phenotype. A Tfh-like program during chronic infection has now been identified in virus-specific CD8+ T cells as well. In this review, we discuss what is known about CD4+ T cell differentiation in chronic viral infections, with a focus on the emergence of the Tfh program and the implications of this shift with respect to Tfh function and the host-pathogen interaction.
Collapse
Affiliation(s)
- Laura A Vella
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Ramin S Herati
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Peripheral T follicular helper Cells Make a Difference in HIV Reservoir Size between Elite Controllers and Patients on Successful cART. Sci Rep 2017; 7:16799. [PMID: 29196729 PMCID: PMC5711909 DOI: 10.1038/s41598-017-17057-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/21/2017] [Indexed: 01/24/2023] Open
Abstract
HIV latency is the main barrier to HIV eradication. Peripheral T follicular helper (pTfh) cells have a prominent role in HIV persistence. Herein, we analyzed the HIV reservoir size within memory CD4+ T-cell subsets in patients with HIV replication control. Twenty HIV-infected patients with suppressed HIV replication were included, with 10 elite controllers (EC) and 10 treated (TX) individuals. The HIV reservoir size was analyzed in resting memory CD4+ T-cells (Trm), pTfh, and non-pTfh cells using an ultrasensitive digital-droplet-PCR assay. Inter-group and intra-group differences were tested using non-parametric tests. Compared with the TX patients, the EC patients had smaller HIV reservoir not only in Trm but also in pTfh and non-pTfh subsets of memory CD4+ T-cells. The largest differences were observed in pTfh cells (p = 0.025). The pTfh and non-pTfh cells harbored similar levels of HIV-DNA in the EC (p = 0.60) and TX patients (p = 0.17); however, the contribution to HIV-DNA levels in memory CD4+ T-cells varied among the pTfh and non-pTfh subsets in both groups of patients. The EC patients showed smaller HIV reservoir in memory CD4+ cells, especially in the pTfh subset, a population of cells with a pivotal role in the antiviral immune response, suggesting a potential link between low levels of infection in pTfh cells and the ability of the EC patients to spontaneously control HIV replication.
Collapse
|
46
|
Pallikkuth S, de Armas L, Rinaldi S, Pahwa S. T Follicular Helper Cells and B Cell Dysfunction in Aging and HIV-1 Infection. Front Immunol 2017; 8:1380. [PMID: 29109730 PMCID: PMC5660291 DOI: 10.3389/fimmu.2017.01380] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022] Open
Abstract
T follicular helper (Tfh) cells are a subset of CD4 T cells that provide critical signals to antigen-primed B cells in germinal centers to undergo proliferation, isotype switching, and somatic hypermutation to generate long-lived plasma cells and memory B cells during an immune response. The quantity and quality of Tfh cells therefore must be tightly controlled to prevent immune dysfunction in the form of autoimmunity and, on the other hand, immune deficiency. Both Tfh and B cell perturbations appear during HIV infection resulting in impaired antibody responses to vaccines such as seasonal trivalent influenza vaccine, also seen in biologic aging. Although many of the HIV-associated defects improve with antiretroviral therapy (ART), excess immune activation and antigen-specific B and T cell responses including Tfh function are still impaired in virologically controlled HIV-infected persons on ART. Interestingly, HIV infected individuals experience increased risk of age-associated pathologies. This review will discuss Tfh and B cell dysfunction in HIV infection and highlight the impact of chronic HIV infection and aging on Tfh-B cell interactions.
Collapse
Affiliation(s)
- Suresh Pallikkuth
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Lesley de Armas
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stefano Rinaldi
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Savita Pahwa
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
47
|
Preferential Reduction of Circulating Innate Lymphoid Cells Type 2 in Patients with Common Variable Immunodeficiency with Secondary Complications Is Part of a Broader Immune Dysregulation. J Clin Immunol 2017; 37:759-769. [PMID: 28936778 DOI: 10.1007/s10875-017-0444-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/07/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE Over a third of patients with common variable immunodeficiency (CVID) suffer from secondary complications like inflammatory organ disease, autoimmune manifestations, or lymphoproliferation contributing to increased morbidity and mortality in affected patients. Innate lymphoid cells (ILCs) have emerging roles in setting the milieu for physiological, but also pathological, immune responses and inflammation. We therefore sought to correlate the recently identified disturbed homeostasis of ILCs with alterations of the adaptive immune system in complex CVID patients (CVIDc). METHODS We quantified peripheral blood ILC and T helper cell subsets of 58 CVID patients by flow cytometry and compared the results to the clinical and immunological phenotype. RESULTS Total ILCs were significantly reduced in peripheral blood of CVIDc patients compared to healthy individuals, but not to CVID patients who suffered only from infections (CVIDio). This reduction was mainly due to a decrease in ILC2s, while ILC3s were relatively increased in CVIDc compared to CVIDio patients. This alteration in ILC phenotype was more prominent in patients with an expansion of CD21low B cells, but we could not detect an association of the altered ILC phenotype with a TH1-shift among circulating CD4 T cells, which was also prominent in CVIDc patients. CONCLUSION We confirm a relative shift in ILCs of CVIDc patients towards ILC3s which was associated with the expansion of CD21low B cells, but not overtly with the relative expansion of TH1-like T cells. Given the relative abundance of TH1-like T cells compared to ILCs, these probably represent a more prominent source of the observed IFNγ-signature in CVIDc patients.
Collapse
|
48
|
Borrow P, Moody MA. Immunologic characteristics of HIV-infected individuals who make broadly neutralizing antibodies. Immunol Rev 2017; 275:62-78. [PMID: 28133804 PMCID: PMC5299500 DOI: 10.1111/imr.12504] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Induction of broadly neutralizing antibodies (bnAbs) capable of inhibiting infection with diverse variants of human immunodeficiency virus type 1 (HIV‐1) is a key, as‐yet‐unachieved goal of prophylactic HIV‐1 vaccine strategies. However, some HIV‐infected individuals develop bnAbs after approximately 2‐4 years of infection, enabling analysis of features of these antibodies and the immunological environment that enables their induction. Distinct subsets of CD4+ T cells play opposing roles in the regulation of humoral responses: T follicular helper (Tfh) cells support germinal center formation and provide help for affinity maturation and the development of memory B cells and plasma cells, while regulatory CD4+ (Treg) cells including T follicular regulatory (Tfr) cells inhibit the germinal center reaction to limit autoantibody production. BnAbs exhibit high somatic mutation frequencies, long third heavy‐chain complementarity determining regions, and/or autoreactivity, suggesting that bnAb generation is likely to be highly dependent on the activity of CD4+ Tfh cells, and may be constrained by host tolerance controls. This review discusses what is known about the immunological environment during HIV‐1 infection, in particular alterations in CD4+ Tfh, Treg, and Tfr populations and autoantibody generation, and how this is related to bnAb development, and considers the implications for HIV‐1 vaccine design.
Collapse
Affiliation(s)
- Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - M Anthony Moody
- Duke University Human Vaccine Institute and Departments of Pediatrics and Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW The purpose of the present review is to provide an update on the current development in the field of broadly neutralizing antibodies (bNabs) and their potential use in the prevention and therapeutic settings, and an evaluation of the B-cell abnormalities that may impair antibody responses in HIV infection. RECENT FINDINGS Major advances have been achieved in the characterization of bNabs directed against different vulnerable regions of HIV Envelope (Env). Recent observations have clearly demonstrated the ability of bNabs to prevent HIV infection in the nonhuman primate model of HIV infection and to suppress viremia in individuals with chronic HIV infection in the absence of antiretroviral therapy. Furthermore, substantial advances have also been obtained in the development of HIV Env proteins and immunization strategies inducing bNabs in small animal models. Several studies have also shed light on the B-cell abnormalities associated with the viremic phase of HIV infection that cause impaired B-cell maturation and antibody responses. Of note, preliminary observations have provided evidence for a correlation between the expansion of a specific population of B cells, for example, germinal center B cells, the expansion of T follicular helper cells (Tfh), and the generation of neutralizing antibodies. SUMMARY The recent observations on the antiviral effects of bNabs in vivo indicate that bNabs may play a central role in both the prevention and the therapeutic settings. The identification of the role of germinal center B cells and Tfh cells as critical components of the immune response leading to the generation of neutralizing antibodies, will allow the development of specific immunization strategies for the stimulation of germinal center B cells and Tfh cells. A lot of work still remains to be done for the delineation of B-cell and Tfh cell biology from human lymphoid tissues and in the development of HIV Env proteins and immunization strategies leading to the generation of bNabs.
Collapse
|
50
|
Unger S, Seidl M, van Schouwenburg P, Rakhmanov M, Bulashevska A, Frede N, Grimbacher B, Pfeiffer J, Schrenk K, Munoz L, Hanitsch L, Stumpf I, Kaiser F, Hausmann O, Kollert F, Goldacker S, van der Burg M, Keller B, Warnatz K. The T H1 phenotype of follicular helper T cells indicates an IFN-γ-associated immune dysregulation in patients with CD21low common variable immunodeficiency. J Allergy Clin Immunol 2017; 141:730-740. [PMID: 28554560 DOI: 10.1016/j.jaci.2017.04.041] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/31/2017] [Accepted: 04/12/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND A subgroup of patients with common variable immunodeficiency (CVID) experience immune dysregulation manifesting as autoimmunity, lymphoproliferation, and organ inflammation and thereby increasing morbidity and mortality. Therefore treatment of these complications demands a deeper comprehension of their cause and pathophysiology. OBJECTIVES On the basis of the identification of an interferon signature in patients with CVID with secondary complications and a skewed follicular helper T-cell differentiation in defined monogenic immunodeficiencies, we sought to determine the profile of CD4 memory T cells in blood and secondary lymphatic tissues of these patients. METHODS We quantified TH1/TH2/TH17 CD4 memory T cells in blood and lymph nodes of patients with CVID using flow cytometry, analyzed their function, and correlated all findings to the burden of immune dysregulation. RESULTS Patients with CVID with immune dysregulation had a skewed memory CD4 T-cell differentiation toward a CXCR3+CCR6- TH1 phenotype both in blood and lymph nodes. Consistent with our phenotypic findings, we observed a higher IFN-γ production in peripheral CD4 memory T cells and lymph node-derived follicular helper T cells of patients with CVID compared with those of healthy control subjects. Increased IFN-γ production was accompanied by a poor germinal center output, an accumulation of T-box transcription factor (T-bet)+ B cells in lymph nodes, and an accumulation of T-bet+CD21low B cells in peripheral blood of affected patients. CONCLUSION Identification of excessive IFN-γ production by blood and lymph node-derived T cells of patients with CVID with immune dysregulation will offer new therapeutic avenues for this subgroup. CD21low B cells might serve as a marker of this IFN-γ-associated dysregulation.
Collapse
Affiliation(s)
- Susanne Unger
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maximilian Seidl
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Pauline van Schouwenburg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mirzokhid Rakhmanov
- Center for Human Genetics and Laboratory Diagnostics (AHC), Martinsried, Germany
| | - Alla Bulashevska
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Natalie Frede
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Pfeiffer
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Freiburg, Freiburg, Germany
| | - Klaudia Schrenk
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Luis Munoz
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leif Hanitsch
- Institute of Medical Immunology, Charité University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Ina Stumpf
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fabian Kaiser
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Florian Kollert
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
| | - Sigune Goldacker
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Baerbel Keller
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|