1
|
Doherty CM, Patterson PR, Emeanuwa JA, Belmares Ortega J, Fox BA, Bzik DJ, Denkers EY. T lymphocyte-dependent IL-10 down-regulates a cytokine storm driven by Toxoplasma gondii GRA24. mBio 2024:e0145524. [PMID: 39440975 DOI: 10.1128/mbio.01455-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
As a model organism in the study of immunity to infection, Toxoplasma gondii has been instrumental in establishing key principles of host anti-microbial defense and its regulation. Here, we employed an attenuated uracil auxotroph strain of Type I Toxoplasma designated OMP to further untangle the early immune response to this parasitic pathogen. Experiments using αβ T cell-deficient Tcrb-/- mice unexpectedly revealed that an intact αβ T lymphocyte compartment was essential to survive infection with OMP. Subsequent antibody depletion and knockout mouse experiments demonstrated contributions from CD4+ T cells and most predominantly CD8+ T cells in resistance. Using transgenic knockout mice, we found only a partial requirement for IFN-γ and a lack of requirement for Toll-like receptor (TLR) adaptor MyD88 in resistance. In contrast to other studies on Toxoplasma, the ability to survive OMP infection did not require IL-12p40. Surprisingly, T cell-dependent IL-10 was found to be critical for survival, and deficiency of this cytokine triggered an abnormally high systemic inflammatory response. We also found that parasite molecule GRA24, a dense granule protein that triggers TLR-independent IL-12 production, acts as a virulence factor contributing to death of OMP-infected Tcrb-/- and IL-10-/- mice. Furthermore, resistance against OMP was restored in Tcrb-/- mice via monoclonal depletion of IL-12p40, suggesting that GRA24-induced IL-12 underlies the fatal immunopathology observed. Collectively, our studies provide insight into a novel and rapidly arising T lymphocyte-dependent anti-inflammatory response to T. gondii which operates independently of MyD88 and IL-12 and that depends on the function of parasite-dense granule protein GRA24.IMPORTANCEAs a model infectious microbe and an important human pathogen, the apicomplexan Toxoplasma gondii has provided many important insights into innate and adaptive immunity to infection. We show here that a low virulence uracil auxotrophic Toxoplasma strain emerges as a virulent parasite in the absence of an intact T cell compartment. Both CD4+ and CD8+ T lymphocytes are required for optimal protection, in line with previous findings in other models of Toxoplasma infection. Nevertheless, several novel aspects of the response were identified in our study. Protection occurs independently of IL-12 and MyD88 and only partially requires IFN-γ. This is noteworthy particularly because the cytokines IL-12 and IFN-γ have previously been regarded as essential for protective immunity to T. gondii. Instead, we identified the anti-inflammatory effects of T cell-dependent IL-10 as the critical factor enabling host survival. The parasite dense granule protein GRA24, a host-directed mitogen-activated protein kinase activator, was identified as a major virulence factor in T cell-deficient hosts. Collectively, our results provide new and unexpected insights into host resistance to Toxoplasma.
Collapse
Affiliation(s)
- Claire M Doherty
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Paige R Patterson
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Julie A Emeanuwa
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jessica Belmares Ortega
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Barbara A Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David J Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Eric Y Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
2
|
Wang C, Fu S, Yu X, Zhou H, Zhang F, Song L, Zhao J, Yang Y, Du J, Luo Q, Shen J, Yu L. Toxoplasma WH3 Δrop18 acts as a live attenuated vaccine against acute and chronic toxoplasmosis. NPJ Vaccines 2024; 9:197. [PMID: 39443531 PMCID: PMC11500380 DOI: 10.1038/s41541-024-00996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Toxoplasma gondii is a significant zoonotic pathogen of toxoplasmosis in humans and animals. Here a live attenuated Toxoplasma vaccine of WH3 Δrop18 was developed. The results showed that all mice vaccinated with WH3 Δrop18 were able to survive when challenge with various strains of Toxoplasma, including RH (type I), ME49 (type II), WH3 or WH6 (type Chinese 1). No cysts, if few, in the brain of the vaccinated animals were seen after challenge with cyst forming strains of ME49 or WH6. Vaccination with the WH3 Δrop18 triggered a strong immune response, including significantly increased level of the cytokines (IFN-γ, IL-12, TNF-α and IL-10) and the activation of CD4+ and CD8+ T-lymphocytes and long term of specific antibodies against Toxoplasma. Our results strongly indicate that vaccine of WH3 Δrop18 might provide effective immune protection against a wide range strains of Toxoplasma infections and be a promising live attenuated vaccine candidate.
Collapse
Affiliation(s)
- Cong Wang
- Department of Microbiology and Parasitology, Anhui Province key Laboratory of Zoonoses and The Provincial Key Laboratory of Zoonoses of High Institutions Anhui School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China
- Department of Clinical Laboratory, The Second People's Hospital of Hefei, Hefei, Anhui Province, PR China
| | - Shengnan Fu
- Department of Microbiology and Parasitology, Anhui Province key Laboratory of Zoonoses and The Provincial Key Laboratory of Zoonoses of High Institutions Anhui School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Xin Yu
- Department of Microbiology and Parasitology, Anhui Province key Laboratory of Zoonoses and The Provincial Key Laboratory of Zoonoses of High Institutions Anhui School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Hang Zhou
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Famin Zhang
- Department of Microbiology and Parasitology, Anhui Province key Laboratory of Zoonoses and The Provincial Key Laboratory of Zoonoses of High Institutions Anhui School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Lingling Song
- Department of Microbiology and Parasitology, Anhui Province key Laboratory of Zoonoses and The Provincial Key Laboratory of Zoonoses of High Institutions Anhui School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Ji Zhao
- Department of Microbiology and Parasitology, Anhui Province key Laboratory of Zoonoses and The Provincial Key Laboratory of Zoonoses of High Institutions Anhui School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Yun Yang
- Department of Microbiology and Parasitology, Anhui Province key Laboratory of Zoonoses and The Provincial Key Laboratory of Zoonoses of High Institutions Anhui School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Jianbing Du
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qingli Luo
- Department of Microbiology and Parasitology, Anhui Province key Laboratory of Zoonoses and The Provincial Key Laboratory of Zoonoses of High Institutions Anhui School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Jilong Shen
- Department of Microbiology and Parasitology, Anhui Province key Laboratory of Zoonoses and The Provincial Key Laboratory of Zoonoses of High Institutions Anhui School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Province key Laboratory of Zoonoses and The Provincial Key Laboratory of Zoonoses of High Institutions Anhui School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China.
| |
Collapse
|
3
|
Bromley JD, Ganchua SKC, Nyquist SK, Maiello P, Chao M, Borish HJ, Rodgers M, Tomko J, Kracinovsky K, Mugahid D, Nguyen S, Wang QD, Rosenberg JM, Klein EC, Gideon HP, Floyd-O'Sullivan R, Berger B, Scanga CA, Lin PL, Fortune SM, Shalek AK, Flynn JL. CD4 + T cells re-wire granuloma cellularity and regulatory networks to promote immunomodulation following Mtb reinfection. Immunity 2024; 57:2380-2398.e6. [PMID: 39214090 PMCID: PMC11466276 DOI: 10.1016/j.immuni.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/03/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Immunological priming-in the context of either prior infection or vaccination-elicits protective responses against subsequent Mycobacterium tuberculosis (Mtb) infection. However, the changes that occur in the lung cellular milieu post-primary Mtb infection and their contributions to protection upon reinfection remain poorly understood. Using clinical and microbiological endpoints in a non-human primate reinfection model, we demonstrated that prior Mtb infection elicited a long-lasting protective response against subsequent Mtb exposure and was CD4+ T cell dependent. By analyzing data from primary infection, reinfection, and reinfection-CD4+ T cell-depleted granulomas, we found that the presence of CD4+ T cells during reinfection resulted in a less inflammatory lung milieu characterized by reprogrammed CD8+ T cells, reduced neutrophilia, and blunted type 1 immune signaling among myeloid cells. These results open avenues for developing vaccines and therapeutics that not only target lymphocytes but also modulate innate immune cells to limit tuberculosis (TB) disease.
Collapse
Affiliation(s)
- Joshua D Bromley
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Graduate Program in Microbiology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sharie Keanne C Ganchua
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah K Nyquist
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Chao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - H Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kara Kracinovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douaa Mugahid
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Son Nguyen
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qianchang Dennis Wang
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob M Rosenberg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edwin C Klein
- Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hannah P Gideon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roisin Floyd-O'Sullivan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philana Ling Lin
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarah M Fortune
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Zou F, Wu MMH, Tan Z, Lu G, Kwok KWH, Leng Z. Ecotoxicological risk of asphalt pavements to aquatic animals associated with pollutant leaching. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173985. [PMID: 38876354 DOI: 10.1016/j.scitotenv.2024.173985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Contaminants such as heavy metals and polycyclic aromatic hydrocarbons (PAHs) can be released from asphalt pavement and transported through stormwater runoff to nearby water bodies, leading to water pollution and potential harm to living aquatic animals. This study characterizes the heavy metal and PAH leaching from various asphalt paving materials and their potential ecotoxicological effects on zebrafish Danio rerio. Artificial runoffs were prepared in the laboratory concerning the effects of water, temperature, and traffic. The concentrations of heavy metals and PAHs in the leachates were quantified, while the toxicity assessment encompassed mortality, metal stress, PAH toxicity, inflammation, carcinogenicity, and oxidative damage. Gene expressions of related proteins or transcription factors were assessed, including metallothionines, aryl hydrocarbon receptors, interleukin-1β, interleukin-10, nuclear factor-κB, tumor necrosis factor-α, tumor suppressor p53, heat shock protein 70, and reactive oxygen species (ROS). The findings demonstrate that leachates from asphalt pavements containing waste bottom ash, crumb rubber, or specific chemicals could induce notable stress and inflammation responses in zebrafish. In addition, potential carcinogenic effects and the elevation of ROS were identified within certain treatment groups. This study represents the first attempt to assess the ecotoxicity of pavement leachates employing a live fish model, thereby improving the current understanding of the environmental impact of asphalt pavements.
Collapse
Affiliation(s)
- Fuliao Zou
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Margaret M H Wu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zhifei Tan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Guoyang Lu
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong
| | - Kevin W H Kwok
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Zhen Leng
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
5
|
García-Alvarez F, Chueca-Marco Á, Martínez-Lostao L, Aso-Gonzalvo M, Estella-Nonay R, Albareda J. Serum levels of IL-6 and IL-10 on admission correlate with complications in elderly patients with hip fracture. Injury 2024:111736. [PMID: 39068064 DOI: 10.1016/j.injury.2024.111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/02/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES Ageing may cause a progressive pro-inflammatory environment and alter functionality of different immune-cell populations. The aim of the present study is to examine the influence of certain serum immunological parameters on hospitalization stay and complications in patients who have suffered a hip fracture. PATIENTS AND METHODS A prospective study was carried out with 87 patients (63 women) presenting with either trochanteric femoral fracture or Garden IV displaced subcapital fracture. The average age was 84.43 ± 9, ranging from 65 to 104 years old. Data regarding different comorbidities were recorded at the time of arrival. The morning after patient's admission peripheral blood samples were obtained and a series of immunological parameters were determined: leukocyte formula, platelets count, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), IL-6 and IL-10 levels, T-lymphocytes count, number of cells/mm3 and percentages of CD3, CD4, CD8, CD3-/CD16/56+ (NK cells), and CD3-/CD19+ (B cells). RESULTS IL-6 serum levels presented a positive and significant correlation with higher levels of CRP (p < 0.001), IL-10 (p = 0.002), and higher percentages of NK CD56+ cells (p = 0.046). IL-6 serum levels at hospitalization presented a positive and significant correlation with a longer hospitalization stay (p = 0.037). Hospitalization increased by 0.231 days for every 1 pg/mL above the IL-6 mean value (40.43 pg/mL). Lower serum IL-10 levels on admission were associated with the appearance of symptomatic urinary tract infection during hospitalization (p = 0.032). Higher number of CD19+ cells/mm3 presented a significant relationship with pneumonia (p = 0.018) and symptomatic urinary tract infection (p = 0.0019). CONCLUSIONS IL-6 serum levels on admission showed a positive and significant correlation with a longer hospitalization stay in elderly patients presenting with hip fracture. Lower levels of IL-10 in peripheral blood on admission were associated with symptomatic urinary tract infections. A higher number of CD19+ cells/mm³ was significantly associated with pneumonia and symptomatic urinary tract infection. These immunological variables on admission may serve as risk indicators of complications during hospitalization.
Collapse
Affiliation(s)
- Felícito García-Alvarez
- Department of Orthopedic Surgery and Traumatology, Hospital Clínico "Lozano Blesa", Zaragoza, Spain; University of Zaragoza, Zaragoza, Spain.
| | - Álvaro Chueca-Marco
- Department of Orthopedic Surgery and Traumatology, Hospital Clínico "Lozano Blesa", Zaragoza, Spain
| | - Luis Martínez-Lostao
- University of Zaragoza, Zaragoza, Spain; Department of Immunology, Hospital Clínico "Lozano Blesa", Zaragoza, Spain
| | | | - Ruben Estella-Nonay
- Department of Orthopedic Surgery and Traumatology, Hospital Clínico "Lozano Blesa", Zaragoza, Spain
| | - Jorge Albareda
- Department of Orthopedic Surgery and Traumatology, Hospital Clínico "Lozano Blesa", Zaragoza, Spain; University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
6
|
Guo F, Wei J, Song Y, Song J, Wang Y, Li K, Li B, Qian Z, Wang X, Wang H, Xu T. Immune responses induced by Mycobacterium tuberculosis heat-resistant antigen (Mtb-HAg) upon co-administration with Bacillus Calmette-Guérin in mice. Cytokine 2024; 179:156610. [PMID: 38640558 DOI: 10.1016/j.cyto.2024.156610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
OBJECTIVES To preliminarily assess the immunogenicity of Mtb-HAg in mice and the synergistic effect provided by HAg when co-immunised with BCG. METHODS Mice were randomly grouped for different immunisations and then spleens were aseptically removed and lymphocytes were extracted for immediate detection of cytokines transcript levels and stimulation index(SI), cytokine secretion and multifunctional antigen-specific T cells were detected after incubation for different times. RESULTS HAg extracted from active Mtb is a group of mixed polypeptides with molecular weights of (10-14) kDa. It can significantly stimulate lymphocytes proliferation and increase SI. Injection of HAg alone and in combination with BCG induced significantly higher numbers of multifunctional antigen-specific T cells including CD4+ IFN-γ+, CD4+ IL-2+, CD8+ IFN-γ+, and CD8+ IL-2+ cells than that in BCG-treated mice. Co-immunisation induced the secretion of higher levels of IFN-γ, TNF-α, IL-2 and IL-4 and increased their mRNA expression levels. Significant increases in the transcription levels of IL-10, IL-12 and IL-17 were observed in the co-immunised group with the assistance of HAg. CONCLUSION We demonstrated that HAg has favourable immunogenicity, triggers a stronger Th1-type immune response and proposed the hypothesis that HAg can be used as a BCG booster to further enhance the benefits of BCG.
Collapse
Affiliation(s)
- Fangzheng Guo
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China.
| | - Jing Wei
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China.
| | - Yamin Song
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China.
| | - Jianhan Song
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China.
| | - Ying Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China.
| | - Kangsheng Li
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China.
| | - Baiqing Li
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China; Department of Clinical Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China.
| | - Zhongqing Qian
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China; Department of Clinical Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China.
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China.
| | - Hongtao Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China; Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu 233000, China; Department of Laboratory Medicine and Rehabilitation, College of Xinjiang Uyghur Medicine, Hetian 848000, China.
| | - Tao Xu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical University, China; Department of Clinical Laboratory, School of Laboratory, Bengbu Medical University, Bengbu 233000, China.
| |
Collapse
|
7
|
Kovacheva E, Gevezova M, Maes M, Sarafian V. The mast cells - Cytokines axis in Autism Spectrum Disorder. Neuropharmacology 2024; 249:109890. [PMID: 38431049 DOI: 10.1016/j.neuropharm.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disturbance, diagnosed in early childhood. It is associated with varying degrees of dysfunctional communication and social skills, repetitive and stereotypic behaviors. Regardless of the constant increase in the number of diagnosed patients, there are still no established treatment schemes in global practice. Many children with ASD have allergic symptoms, often in the absence of mast cell (MC) positive tests. Activation of MCs may release molecules related to inflammation and neurotoxicity, which contribute to the pathogenesis of ASD. The aim of the present paper is to enrich the current knowledge regarding the relationship between MCs and ASD by providing PPI network analysis-based data that reveal key molecules and immune pathways associated with MCs in the pathogenesis of autism. Network and enrichment analyzes were performed using receptor information and secreted molecules from activated MCs identified in ASD patients. Our analyses revealed cytokines and key marker molecules for MCs degranulation, molecular pathways of key mediators released during cell degranulation, as well as various receptors. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, is important for elucidating the pathogenesis of ASD and developing effective future treatments for autistic patients by discovering new therapeutic target molecules.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Michael Maes
- Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand; Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University-Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
8
|
Chen Z, Cheng S, Chen X, Zhang Z, Du Y. New advances in immune mechanism and treatment during ocular toxoplasmosis. Front Immunol 2024; 15:1403025. [PMID: 38799473 PMCID: PMC11116678 DOI: 10.3389/fimmu.2024.1403025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Ocular toxoplasmosis (OT) is an intraocular infection caused by the parasite Toxoplasma gondii. OT is manifested as retinal choroiditis and is the most common infectious cause of posterior uveitis. Invasion of the retina by T. gondii leads to disruption of the blood-ocular barrier and promotes the migration of immune cells to the ocular tissues. Cytokines such as IFN-γ and IL-1β are effective for controlling parasite growth, but excessive inflammatory responses can cause damage to the host. In this review, we will discuss in detail the latest advances in the immunopathology and treatment of OT.
Collapse
Affiliation(s)
- Zijian Chen
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Shizhou Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xiaoming Chen
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Zuhai Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Yanhua Du
- Physical Examination Department, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
9
|
Wang Q, Zhao Z, Sun R, Shi Z, Zhang Y, Wang B, Zhang X, Ji W. Bioinformatics characteristics and expression analysis of IL-8 and IL-10 in largemouth bass (Micropterus salmoides) upon Nocardia seriolae infection. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109465. [PMID: 38408547 DOI: 10.1016/j.fsi.2024.109465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024]
Abstract
IL-8 and IL-10 are crucial inflammatory cytokines that participate in defending host cells against infections. To demonstrate the function of the two interleukin genes in largemouth bass (Micropterus salmoides), we initially cloned and identified the cDNA sequences of il-8 and il-10 in largemouth bass, referred to as Msil-8 and Msil-10, respectively. The open reading frame (ORF) of Msil-8 was 324 bp in length, encoding 107 amino acids, while the ORF of Msil-10 consisted of 726 bp and encoded 241 amino acids. Furthermore, the functional domains of the SCY domain in MsIL-8 and the IL-10 family signature motif in MsIL-10 were highly conserved across vertebrates. Additionally, both MsIL-8 and MsIL-10 showed close relationships with M. dolomieu. Constitutive expression of Msil-8 and Msil-10 was observed in various tissues, with the highest level found in the head kidney. Subsequently, largemouth bass were infected with Nocardia seriolae via intraperitoneal injection to gain a further understanding of the function of these two genes. Bacterial loads were initially detected in the foregut, followed by the midgut, hindgut, and liver. The mRNA expression of Msil-8 was significantly down-regulated after infection, especially at 2 days post-infection (DPI), with a similar expression to Msil-10. In contrast, the expression of Msil-8 and Msil-10 was significantly upregulated in the foregut at 14 DPI. Taken together, these results reveal that the function of IL-8 and IL-10 was likely hindered by N. seriolae, which promoted bacterial proliferation and intercellular diffusion.
Collapse
Affiliation(s)
- Qin Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhangchun Zhao
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruhan Sun
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zechao Shi
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yaqian Zhang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bingchao Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuezhen Zhang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Ji
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Reyes J, Zhao Y, Pandya K, Yap GS. Growth differentiation factor-15 is an IFN-γ regulated mediator of infection-induced weight loss and the hepatic FGF21 response. Brain Behav Immun 2024; 116:24-33. [PMID: 38013040 DOI: 10.1016/j.bbi.2023.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023] Open
Abstract
Infections are often accompanied by weight loss caused by alterations in host behavior and metabolism, also known as sickness behaviors. Recent studies have revealed that sickness behaviors can either promote or impede survival during infections depending on factors such as the type of infectious pathogen. Nevertheless, we have an incomplete understanding of the underlying mechanisms of sickness behaviors. Furthermore, although the host immune responses to infections have long been known to contribute to the induction of sickness behaviors, recent studies have identified emerging cytokines that are also key regulators of host metabolism during infection and inflammation, such as growth differentiation factor 15 (GDF-15). GDF-15 is a distant member of the TGF-β superfamily that causes weight loss by suppressing appetite and food consumption and causing emesis. These effects require activation of neurons that express the only known GDF-15 receptor, the GFRAL receptor. GDF-15 also functions in the periphery including the induction of ketogenesis and immunoregulation. Nevertheless, the functions and regulation of GDF-15 during live infections is not yet known. Murine infection with avirulent Toxoplasma gondii is an established model to understand infection-induced weight loss. Past studies have determined that acute T. gondii infection causes weight loss due to diminished food consumption and increased energy expenditure through unknown mechanisms. Additionally, our lab previously demonstrated that T. gondii causes upregulation in serum GDF-15 in an IFN-γ-dependent manner during the post-acute phase of the infection. In this study, we interrogated the in-vivo functions and immune regulation of GDF-15 during Toxoplasma gondii infection. First, we found that in wild-type mice, acute T. gondii infection caused a significant weight loss that is preceded by elevation of serum levels of IFN-γ and GDF-15. To determine whether IFN-γ regulates GDF-15, we neutralized IFN-γ on days 5 and 6 and measured GDF-15 on day 7 and found that serum but not tissue levels of GDF-15 decreased after IFN-γ neutralization. Additionally, exogenous IFN-γ was sufficient to elevate serum GDF-15 in the absence of infection. Next, we compared the outcomes of T. gondii infection between WT and Gdf15-/- mice. We observed that the weight trajectories were declining in WT mice while they were increasing in Gdf15-/-mice during the acute phase of the infection. This difference in trajectories extended throughout the chronic infection resulting to an overall weight loss relative to initial weights in WT mice but not Gdf15-/-mice. Then, we determined that GDF-15 is not essential for survival and immunoregulation during T. gondii infection. We also demonstrated that GDF-15 is required for the induction of FGF21, stress-induced cytokine with prominent roles in regulating host metabolism. Finally, we discovered a cytokine cascade IFN-γ-GDF-15-FGF21 that is likely involved in the regulation of host metabolism. Overall, our study provides evidence that IFN-γ contributes to the regulation of host metabolism during infection by inducing GDF-15 and FGF21. GDF-15 orchestrates changes in host metabolism that supports the host immune response in clearing the infection. These physiological alterations induce FGF21, which in turn, orchestrates the adaptive responses to the effects of GDF-15, which can be detrimental when protracted.
Collapse
Affiliation(s)
- Jojo Reyes
- Department of Medicine and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, United States
| | - Yanlin Zhao
- Department of Medicine and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, United States
| | - Krushang Pandya
- Department of Medicine and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, United States; Program of Bioengineering, Department of Electrical & Computer Engineering, New York Institute of Technology, United States
| | - George S Yap
- Department of Medicine and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, United States.
| |
Collapse
|
11
|
Chen C, Chen Y, Lu M, Xu L, Yan R, Li X, Song X. IFN-γ inhibitory molecules derived from Eimeria maxima inhibit IL-12 secretion by modulating MAPK pathways in chicken macrophages. Poult Sci 2024; 103:103359. [PMID: 38128458 PMCID: PMC10776662 DOI: 10.1016/j.psj.2023.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
IFN-γ plays a crucial role in resisting intracellular parasitic protozoa, such as Eimeria species. In our previous study, we identified 4 molecules derived from Eimeria maxima (E. maxima) that significantly inhibited IFN-γ production. However, the mechanism underlying this inhibitory effect remains unknown. In this study, we first investigated the effects of these 4 IFN-γ inhibitory molecules on the expression levels of chicken Toll-like receptors (chTLRs), IL-12, IL-10, TGF-β, and TNF-α in chicken macrophage HD11 and bone marrow-derived dendritic cells (BMDCs). The results demonstrated that these 4 inhibitory molecules significantly downregulated the mRNA levels of chTLR-2, chTLR-4, chTLR-21, and both mRNA and protein levels of IL-12. Subsequently, to clarify the effects of these 4 inhibitory molecules on the IL-12 secretion-related signaling pathways in chicken macrophages, qRT-PCR and Western blot were used to detect the changes of key molecules involved in the signaling pathways of IL-12 secretion (NF-κB, ERK1/2, p38, JNK, STAT3) following coincubation with these inhibitory molecules. Finally, RNAi was employed to verify the function of key molecules in the signaling pathway. The results revealed a significant upregulation in the expression of ERK1/2 phosphorylated protein induced by the 4 inhibitory molecules. Knockdown of the ERK1/2 gene significantly reduced the inhibitory effect of the 4 E. maxima inhibitory molecules on IL-12. These findings indicate that the 4 inhibitory molecules can inhibit the secretion of IL-12 by upregulating the expression of ERK1/2 phosphorylated protein, which is a key molecule in the ERK-MAPK pathway. Our study may contribute to elucidating the mechanisms underlying immune evasion during E. maxima infections, thereby providing new insights for the control of chicken coccidiosis.
Collapse
Affiliation(s)
- Chen Chen
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yufeng Chen
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingmin Lu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lixin Xu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruofeng Yan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiangrui Li
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaokai Song
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
12
|
Zhang Y, Li S, Chu H, Li J, Lu S, Zheng B. A novel mRNA vaccine, TGGT1_278620 mRNA-LNP, prolongs the survival time in BALB/c mice with acute toxoplasmosis. Microbiol Spectr 2024; 12:e0286623. [PMID: 38038457 PMCID: PMC10783036 DOI: 10.1128/spectrum.02866-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Toxoplasma gondii, an obligate intracellular eukaryotic parasite, can infect about one-third of the world's population. One vaccine, Toxovax, has been developed and licensed commercially; however, it is only used in the sheep industry to reduce the losses caused by congenital toxoplasmosis. Various other vaccine approaches have been explored, including excretory secretion antigen vaccines, subunit vaccines, epitope vaccines, and DNA vaccines. However, current research has not yet developed a safe and effective vaccine for T. gondii. Here, we generated an mRNA vaccine candidate against T. gondii. We investigated the efficacy of vaccination with a novel identified candidate, TGGT1_278620, in a mouse infection model. We screened T. gondii-derived protective antigens at the genome-wide level, combined them with mRNA-lipid nanoparticle vaccine technology against T. gondii, and investigated immune-related factors and mechanisms. Our findings might contribute to developing vaccines for immunizing humans and animals against T. gondii.
Collapse
Affiliation(s)
- Yizhuo Zhang
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Shiyu Li
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Hongkun Chu
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Jing Li
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Shaohong Lu
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Bin Zheng
- Laboratory of Pathogen Biology, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
13
|
Khorshidvand Z, Shirian S, Amiri H, Zamani A, Maghsood AH. Immunomodulatory chitosan nanoparticles for Toxoplasma gondii infection: Novel application of chitosan in complex propranolol-hydrochloride as an adjuvant in vaccine delivery. Int J Biol Macromol 2023; 253:127228. [PMID: 37839605 DOI: 10.1016/j.ijbiomac.2023.127228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
The study aimed to investigate the immunomodulatory effects of propranolol hydrochloride (PRO) in combination with chitosan nanoparticles (CS NPs) as an adjuvant to develop an effective vaccine against T. gondii. A total of 105 BALB/c mice were randomly divided into seven equal groups including PBS alone, CS NPs, SAG1 (Surface antigen 1), CS-SAG1 NPs, CS-PRO NPs, SAG1-PRO, and CS-SAG1-PRO NPs. The immunostimulatory effect of each adjuvant used for vaccine delivery was evaluated in a mice immunization model. The results showed that the mice immunized with CS-SAG1-PRO NPs exhibited the highest lymphocyte proliferation rate, along with increased secretion of IFN-γ, TNF-α, IL-6, IL-12, IL-17, and IL-23, as well as elevated levels of protective cytokines such as TGF-β, IL-27, and IL-10. Although, the CS-SAG1-PRO NPs immunized mice showed the highest level of T. gondii specific IgG compared to the other groups, a significant production of IgG2a and IgG1 was observed in the sera of mice immunized with the CS-SAG1-PRO NPs compared to the other group (p <0.001). The higher IgG2a/IgG1 ratio observed in the CS-SAG1-PRO NPs group indicates a bias towards Th1 cell polarization, suggesting the promotion of Th1 cell-mediated immune responses. Considering the combination of the highest lymphocyte proliferation and survival rates, IgG2a/IgG1 ratio, and cytokine levels in the mice immunized with CS-SAG1-PRO NPs, this approach holds promise for immunostimulation and vaccine delivery against T. gondii infection.
Collapse
Affiliation(s)
- Zohreh Khorshidvand
- Department of Parasitology and Mycology, School of Medicine Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran; Shiraz Molecular Pathology Research Center, Dr Daneshbod Lab, Shiraz, Iran
| | - Hanieh Amiri
- Shiraz Molecular Pathology Research Center, Dr Daneshbod Lab, Shiraz, Iran; Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Alireza Zamani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amir Hossein Maghsood
- Department of Parasitology and Mycology, School of Medicine Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
14
|
Bromley JD, Ganchua SKC, Nyquist SK, Maiello P, Chao M, Borish HJ, Rodgers M, Tomko J, Kracinovsky K, Mugahid D, Nguyen S, Wang D, Rosenberg JM, Klein EC, Gideon HP, Floyd-O’Sullivan R, Berger B, Scanga CA, Lin PL, Fortune SM, Shalek AK, Flynn JL. CD4 + T cells are homeostatic regulators during Mtb reinfection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572669. [PMID: 38187598 PMCID: PMC10769325 DOI: 10.1101/2023.12.20.572669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Immunological priming - either in the context of prior infection or vaccination - elicits protective responses against subsequent Mycobacterium tuberculosis (Mtb) infection. However, the changes that occur in the lung cellular milieu post-primary Mtb infection and their contributions to protection upon reinfection remain poorly understood. Here, using clinical and microbiological endpoints in a non-human primate reinfection model, we demonstrate that prior Mtb infection elicits a long-lasting protective response against subsequent Mtb exposure and that the depletion of CD4+ T cells prior to Mtb rechallenge significantly abrogates this protection. Leveraging microbiologic, PET-CT, flow cytometric, and single-cell RNA-seq data from primary infection, reinfection, and reinfection-CD4+ T cell depleted granulomas, we identify differential cellular and microbial features of control. The data collectively demonstrate that the presence of CD4+ T cells in the setting of reinfection results in a reduced inflammatory lung milieu characterized by reprogrammed CD8+ T cell activity, reduced neutrophilia, and blunted type-1 immune signaling among myeloid cells, mitigating Mtb disease severity. These results open avenues for developing vaccines and therapeutics that not only target CD4+ and CD8+ T cells, but also modulate innate immune cells to limit Mtb disease.
Collapse
Affiliation(s)
- Joshua D. Bromley
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Graduate Program in Microbiology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sharie Keanne C. Ganchua
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Sarah K. Nyquist
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
| | - Michael Chao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Mark Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Kara Kracinovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Douaa Mugahid
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Son Nguyen
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dennis Wang
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob M. Rosenberg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edwin C. Klein
- Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hannah P. Gideon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Roisin Floyd-O’Sullivan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Philana Ling Lin
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine
| | - Sarah M. Fortune
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alex K. Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
- Lead contact
| |
Collapse
|
15
|
Macedo IS, Lara FA, Barbosa HS, Saraiva EM, Menna-Barreto RFS, Mariante RM. Human neutrophil extracellular traps do not impair in vitro Toxoplasma gondii infection. Front Immunol 2023; 14:1282278. [PMID: 38115994 PMCID: PMC10728484 DOI: 10.3389/fimmu.2023.1282278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction Toxoplasma gondii, responsible for causing toxoplasmosis, is a prevalent food and waterborne pathogen worldwide. It commonly infects warm-blooded animals and affects more than a third of the global human population. Once ingested, the parasite enters the host's small intestine and rapidly disseminates throughout the body via the bloodstream, infiltrating various tissues. Leukocyte-driven responses are vital against T. gondii, with neutrophils playing a dual role: swiftly recruited to infection sites, releasing inflammatory mediators, and serving as a replication hub and Trojan horses, aiding parasite spread. Neutrophils from various hosts release extracellular traps (NETs) against the protozoan. However, gaps persist regarding the mechanisms of NETs production to parasite and their significance in infection control. This study investigates the interplay between human neutrophils and T. gondii, exploring dynamics, key molecules, and signaling pathways involved in NETs production upon protozoan challenge. Methods and Results Using confocal and electron microscopy, live cell imaging, pharmacological inhibitors, and DNA quantification assays, we find that human neutrophils promptly release both classical and rapid NETs upon pathogen stimulation. The NETs structure exhibits diverse phenotypes over time and is consistently associated with microorganisms. Mechanisms involve neutrophil elastase and peptidylarginine deiminase, along with intracellular calcium signaling and the PI3K pathway. Unexpectedly, human traps do not diminish viability or infectivity, but potentially aid in capturing parasites for subsequent neutrophil phagocytosis and elimination. Discussion By revealing NETs formation mechanisms and their nuanced impact on T. gondii infection dynamics, our findings contribute to broader insights into host-pathogen relationships.
Collapse
Affiliation(s)
- Isabela S. Macedo
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Flávio A. Lara
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Helene S. Barbosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Elvira M. Saraiva
- Laboratório de Imunobiologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rafael M. Mariante
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Su R, Yang Y. Gut commensal bacteria exacerbate toxoplasmosis associated with TgSheepCHn5 (ToxoDB#2) and TgRedpandaCHn1 (ToxoDB#20) through Th1 immune response. Parasitol Res 2023; 122:2795-2806. [PMID: 37782335 DOI: 10.1007/s00436-023-07962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Oral infection of mice with several strains of Toxoplasma gondii results in intestinal pathological lesions, which contributes to the invasion of this parasite. However, the exact mechanism is unclear, and only a few strains have been explored. Here, T. gondii TgSheepCHn5 and TgRedpandaCHn1 strains from sheep and red panda were evaluated. The TgSheepCHn5 and TgRedpandaCHn1 strains induced intestinal lesions, loss of Paneth cells, and gut commensal bacteria dysbiosis in Swiss Webster mice. The lesions and loss of Paneth cells were dependent on IFN-γ and gut commensal bacteria during T. gondii infection. Deleting IFN-γ or gut commensal bacteria suppressed the Th1 immune response, alleviated the lesions and parasite loading, and upregulated the number of Paneth cells. Loss of IFN-γ production accelerated mice death, whereas the deletion of gut commensal bacteria enhanced the survival time of the host. The Th1 cell immune responses have positive and negative effects on toxoplasmosis, resistance to T. gondii infection, and acceleration intestine lesions. Adjustment of Th1 cell responses and gut commensal bacteria may be effective treatments for toxoplasmosis.
Collapse
Affiliation(s)
- Ruijing Su
- Veterinary Pathology, College of Veterinary Science, Henan Agricultural University, Zhengzhou, China.
| | - Yurong Yang
- Veterinary Pathology, College of Veterinary Science, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
17
|
Tawfeek GM, Abou-El-Naga IF, Hassan EME, Sabry D, Meselhey RA, Younis SS. Protective efficacy of Toxoplasma gondii infected cells-derived exosomes against chronic murine toxoplasmosis. Acta Trop 2023; 248:107041. [PMID: 37858877 DOI: 10.1016/j.actatropica.2023.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Exosomes were isolated from T. gondii infected human hepatoblastoma cells using the exosome isolation kit and characterized by electron microscopy and Western blotting. Exosomes adsorbed to alum adjuvant were evaluated as a potential immunizing agent against murine chronic toxoplasmosis compared to excretory secretory antigens (ESA)-alum. Mice were immunized at days 1, 15 and 29. The levels of IgG, IFN-γ, IL-4 and IL-10, CD4+ and CD8+ T cells were determined using sandwich enzyme-linked immunosorbent assay (sandwich ELISA) at days 14, 28 and 56 of the experiment. Then mice were infected orally with 10 cysts of T. gondii. The protective efficacy of the antigens were evaluated by counting the brain cysts and measuring the aforementioned humoral and cellular parameters 60 days post infection. The results showed that alum increased the protective efficacy of the exosomes. Immunization with exosome-alum induced both humoral and mixed Th1/Th2 cellular immune responses. Exosome-alum gave higher levels of the humoral and cellular parameters, compared to ESA-alum. After challenge infection, exosome-alum significantly reduced the brain cyst burden by 75 % while ESA-alum gave 42 % reduction and evoked higher humoral and cellular immune responses. Therefore, the possibility of using T. gondii infected cells-derived exosome-alum as a vaccine is a new perspective in toxoplasmosis.
Collapse
Affiliation(s)
- Gihan M Tawfeek
- Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Iman F Abou-El-Naga
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | | | - Dina Sabry
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, Egypt; Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | | | - Salwa Sami Younis
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Orchanian SB, Lodoen MB. Monocytes as primary defenders against Toxoplasma gondii infection. Trends Parasitol 2023; 39:837-849. [PMID: 37633758 DOI: 10.1016/j.pt.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/28/2023]
Abstract
Monocytes are recruited from the bone marrow to sites of infection where they release cytokines and chemokines, function in antimicrobial immunity, and differentiate into macrophages and dendritic cells to control infection. Although many studies have focused on monocyte-derived macrophages and dendritic cells, recent work has examined the unique roles of monocytes during infection to promote immune defense. We focus on the effector functions of monocytes during infection with the parasite Toxoplasma gondii, and discuss the signals that mobilize monocytes to sites of infection, their production of inflammatory cytokines and antimicrobial mediators, their ability to shape the adaptive immune response, and their immunoregulatory functions. Insights from other infections, including Plasmodium and Listeria are also included for comparison and context.
Collapse
Affiliation(s)
- Stephanie B Orchanian
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA; Institute for Immunology, University of California Irvine, Irvine, California, USA
| | - Melissa B Lodoen
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA; Institute for Immunology, University of California Irvine, Irvine, California, USA.
| |
Collapse
|
19
|
West EE, Merle NS, Kamiński MM, Palacios G, Kumar D, Wang L, Bibby JA, Overdahl K, Jarmusch AK, Freeley S, Lee DY, Thompson JW, Yu ZX, Taylor N, Sitbon M, Green DR, Bohrer A, Mayer-Barber KD, Afzali B, Kazemian M, Scholl-Buergi S, Karall D, Huemer M, Kemper C. Loss of CD4 + T cell-intrinsic arginase 1 accelerates Th1 response kinetics and reduces lung pathology during influenza infection. Immunity 2023; 56:2036-2053.e12. [PMID: 37572656 PMCID: PMC10576612 DOI: 10.1016/j.immuni.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/01/2023] [Accepted: 07/19/2023] [Indexed: 08/14/2023]
Abstract
Arginase 1 (Arg1), the enzyme catalyzing the conversion of arginine to ornithine, is a hallmark of IL-10-producing immunoregulatory M2 macrophages. However, its expression in T cells is disputed. Here, we demonstrate that induction of Arg1 expression is a key feature of lung CD4+ T cells during mouse in vivo influenza infection. Conditional ablation of Arg1 in CD4+ T cells accelerated both virus-specific T helper 1 (Th1) effector responses and its resolution, resulting in efficient viral clearance and reduced lung pathology. Using unbiased transcriptomics and metabolomics, we found that Arg1-deficiency was distinct from Arg2-deficiency and caused altered glutamine metabolism. Rebalancing this perturbed glutamine flux normalized the cellular Th1 response. CD4+ T cells from rare ARG1-deficient patients or CRISPR-Cas9-mediated ARG1-deletion in healthy donor cells phenocopied the murine cellular phenotype. Collectively, CD4+ T cell-intrinsic Arg1 functions as an unexpected rheostat regulating the kinetics of the mammalian Th1 lifecycle with implications for Th1-associated tissue pathologies.
Collapse
Affiliation(s)
- Erin E West
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Nicolas S Merle
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Marcin M Kamiński
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gustavo Palacios
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Luopin Wang
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Jack A Bibby
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kirsten Overdahl
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, USA
| | - Alan K Jarmusch
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, USA
| | - Simon Freeley
- School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | | | - J Will Thompson
- Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Zu-Xi Yu
- Pathology Core, NHLBI, NIH, Bethesda, MD, USA
| | - Naomi Taylor
- Pediatric Oncology Branch, Rare Tumor Initiative, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA; Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Marc Sitbon
- Pediatric Oncology Branch, Rare Tumor Initiative, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA; Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrea Bohrer
- Inflammation and Innate Immunity Unit, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Sabine Scholl-Buergi
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Karall
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Pediatric Endocrinology and Diabetology, University Children's Hospital Basel, Basel, Switzerland; Department of Pediatrics, Landeskrankenhaus (LKH) Bregenz, Bregenz, Austria
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
20
|
S Subauste C, Hubal A. Animal Models for Toxoplasma gondii Infection. Curr Protoc 2023; 3:e871. [PMID: 37695167 PMCID: PMC10621533 DOI: 10.1002/cpz1.871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite that commonly infects mammals and birds throughout the world. This protocol describes murine models of acute T. gondii infection, toxoplasmic encephalitis and toxoplasma retinochoroiditis. T. gondii infection in severe combined immunodeficient (SCID) mice, deficient in T and B cells, has allowed for the study of T cell-independent mechanisms of defense against intracellular organisms, as described here. The uracil auxotroph strain cps1-1 and temperature-sensitive mutant strains of T. gondii induce protection against challenge with virulent strains of the parasite. They have allowed studies of immunization and adoptive-transfer experiments. A protocol is provided for infection with these mutant strains. The EGS strain of T. gondii has the unique feature of spontaneously forming tissue cysts in cell culture. Dual fluorescent reporter stains of this strain have allowed the study of tachyzoite to bradyzoite transitions in vitro and in vivo. A protocol for in vitro and in vivo growth of this strain and tissue cyst isolation is provided. Genetic manipulation of T. gondii and mice has led to the development of parasites that express fluorescent proteins as well as mice with fluorescently labeled leukocytes. This together with the use of T. gondii that express model antigens and transgenic mice that express the appropriate T cell receptor have facilitated the in vivo study of parasite host-interaction. In addition, parasites that express bioluminescent markers have made it possible to study the dynamics of infection in real time using bioluminescence imaging. Support protocols present methodology for evaluation of progression of infection and immune response to the parasite that includes these newer methodologies. In addition, support protocols address the maintenance of T. gondii tissue cysts and tachyzoites, as well as preparation of T. gondii lysate antigens. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Induction of acute T. gondii infection in mice Basic Protocol 2: Model of toxoplasmic encephalitis and toxoplasma retinochoroiditis in chronically infected mice Basic Protocol 3: Assessment of T. gondii invasion into neural tissue Basic Protocol 4: T. gondii infection in scid/scid (SCID) mice Basic Protocol 5: Infection with the uracil auxotroph strain CPS1-1 or the temperature-sensitive TS-4 strain of T. gondii Basic Protocol 6: In vivo and in vitro maintenance of the EGS strain of T. gondii Support Protocol 1: Assessment of progression of infection and immune response to T. gondii Support Protocol 2: Maintenance of a bank of T. gondii cysts of the ME49 strain Support Protocol 3: Maintenance of T. gondii tachyzoites using human foreskin fibroblasts Support Protocol 4: Maintenance of T. gondii tachyzoites in mice Support Protocol 5: Preparation of T. gondii lysate antigens Support Protocol 6: Isolation of T. gondii tissue cysts from brain.
Collapse
Affiliation(s)
- Carlos S Subauste
- Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | - Alyssa Hubal
- Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Schultz AB, Kugler DG, Nivelo L, Vitari N, Doyle LP, Ristin S, Hennighausen L, O’Shea JJ, Jankovic D, Villarino AV. T cell intrinsic STAT1 signaling prevents aberrant Th1 responses during acute toxoplasmosis. Front Immunol 2023; 14:1212190. [PMID: 37559725 PMCID: PMC10407301 DOI: 10.3389/fimmu.2023.1212190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Infection-induced T cell responses must be properly tempered and terminated to prevent immuno-pathology. Using transgenic mice, we demonstrate that T cell intrinsic STAT1 signaling is required to curb inflammation during acute infection with Toxoplasma gondii. Specifically, we report that mice lacking STAT1 selectively in T cells expel parasites but ultimately succumb to lethal immuno-pathology characterized by aberrant Th1-type responses with reduced IL-10 and increased IL-13 production. We also find that, unlike STAT1, STAT3 is not required for induction of IL-10 or suppression of IL-13 during acute toxoplasmosis. Each of these findings was confirmed in vitro and ChIP-seq data mining showed that STAT1 and STAT3 co-localize at the Il10 locus, as well as loci encoding other transcription factors that regulate IL-10 production, most notably Maf and Irf4. These data advance basic understanding of how infection-induced T cell responses are managed to prevent immuno-pathology and provide specific insights on the anti-inflammatory properties of STAT1, highlighting its role in shaping the character of Th1-type responses.
Collapse
Affiliation(s)
- Aaron B. Schultz
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - David G. Kugler
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Luis Nivelo
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - Nicolas Vitari
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Laura P. Doyle
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Svetlana Ristin
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - Lothar Hennighausen
- National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John J. O’Shea
- Lymphocyte Cell Biology Section, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dragana Jankovic
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alejandro V. Villarino
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| |
Collapse
|
22
|
Alanazi AZ, Alhazzani K, Alrewily SQ, Aljerian K, Algahtani MM, Alqahtani QH, Haspula D, Alhamed AS, Alqinyah M, Raish M. The Potential Protective Role of Naringenin against Dasatinib-Induced Hepatotoxicity. Pharmaceuticals (Basel) 2023; 16:921. [PMID: 37513833 PMCID: PMC10383559 DOI: 10.3390/ph16070921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Dasatinib (DASA) is a novel tyrosine kinase inhibitor, approved for leukemia treatment. However, the long-term use of DASA induces several complications, especially liver damage. On the other hand, Naringenin (NGN) is a potent antioxidant and anti-inflammatory agent which is known to exert protective effects in several liver disease animal models. Yet, the effect of NGN on DASA-induced hepatotoxicity has not been examined. This study investigated the hepatoprotective effects of NGN against DASA-induced acute liver injury, using a mouse model. The mice were given NGN (50, 100, and 200 mg/kg po) or saline for 7 days, followed by DASA on the eighth day (25 mg/kg p.o.). DASA treatment alone was found to cause overexpression of proinflammatory cytokines, such as interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), and malonyl aldehyde (MDA), whereas attenuation of antioxidant genes including superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase (GPx). Interestingly, a pretreatment with NGN + DASA resulted in minimizing the proinflammatory mediators and restoring the levels of antioxidant genes. In addition, there was evidence of necro-inflammatory changes in histopathological findings in the liver samples after DASA administration which remarkably reduced with NGN + DASA. Thus, this study revealed that NGN could minimize the hepatotoxicity induced by DASA by providing anti-inflammatory and antioxidant protection.
Collapse
Affiliation(s)
- Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia
| | - Salah Q Alrewily
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia
| | - Khaldoon Aljerian
- Department of Pathology, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohammad M Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia
| | - Qamraa H Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia
| | - Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Abdullah S Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
23
|
Shen Y, Zheng B, Sun H, Wu S, Fan J, Ding J, Gao M, Kong Q, Lou D, Ding H, Zhuo X, Lu S. A live attenuated RHΔompdcΔuprt mutant of Toxoplasma gondii induces strong protective immunity against toxoplasmosis in mice and cats. Infect Dis Poverty 2023; 12:60. [PMID: 37322556 DOI: 10.1186/s40249-023-01109-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular apicomplexan parasite and is responsible for zoonotic toxoplasmosis. It is essential to develop an effective anti-T. gondii vaccine for the control of toxoplasmosis, and this study is to explore the immunoprotective effects of a live attenuated vaccine in mice and cats. METHODS First, the ompdc and uprt genes of T. gondii were deleted through the CRISPR-Cas9 system. Then, the intracellular proliferation and virulence of this mutant strain were evaluated. Subsequently, the immune responses induced by this mutant in mice and cats were detected, including antibody titers, cytokine levels, and subsets of T lymphocytes. Finally, the immunoprotective effects were evaluated by challenge with tachyzoites of different strains in mice or cysts of the ME49 strain in cats. Furthermore, to discover the effective immune element against toxoplasmosis, passive immunizations were carried out. GraphPad Prism software was used to conduct the log-rank (Mantel-Cox) test, Student's t test and one-way ANOVA. RESULTS The RHΔompdcΔuprt were constructed by the CRISPR-Cas9 system. Compared with the wild-type strain, the mutant notably reduced proliferation (P < 0.05). In addition, the mutant exhibited virulence attenuation in both murine (BALB/c and BALB/c-nu) and cat models. Notably, limited pathological changes were found in tissues from RHΔompdcΔuprt-injected mice. Furthermore, compared with nonimmunized group, high levels of IgG (IgG1 and IgG2a) antibodies and cytokines (IFN-γ, IL-4, IL-10, IL-2 and IL-12) in mice were detected by the mutant (P < 0.05). Remarkably, all RHΔompdcΔuprt-vaccinated mice survived a lethal challenge with RHΔku80 and ME49 and WH6 strains. The immunized sera and splenocytes, especially CD8+ T cells, could significantly extend (P < 0.05) the survival time of mice challenged with the RHΔku80 strain compared with naïve mice. In addition, compared with nonimmunized cats, cats immunized with the mutant produced high levels of antibodies and cytokines (P < 0.05), and notably decreased the shedding numbers of oocysts in feces (95.3%). CONCLUSIONS The avirulent RHΔompdcΔuprt strain can provide strong anti-T. gondii immune responses, and is a promising candidate for developing a safe and effective live attenuated vaccine.
Collapse
Affiliation(s)
- Yu Shen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bin Zheng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Hao Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Songrui Wu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiyuan Fan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianzu Ding
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Meng Gao
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Qingming Kong
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Di Lou
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Haojie Ding
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Xunhui Zhuo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| | - Shaohong Lu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
24
|
Saad AE, Ashour DS, Rashad E. Immunomodulatory effects of chronic trichinellosis on Toxoplasma gondii RH virulent strain in experimental rats. Pathog Glob Health 2023; 117:417-434. [PMID: 36922743 PMCID: PMC10177679 DOI: 10.1080/20477724.2023.2191233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Mixed parasitic infections could affect the host immunological responses and re-design the pathogenesis of each other. The impact of Toxoplasma gondii (T. gondii) and Trichinella spiralis (T. spiralis) co-infection on the immune response remains unclear. The objective of the present study was to investigate the possible effect of chronic trichinellosis on the immune response of rats infected with T. gondii virulent RH strain. Animals were divided into four groups: group I: non-infected negative control; group II: infected with T. spiralis; group III: infected with T. gondii and group IV: infected with T. spiralis then infected with T. gondii 35 days post T. spiralis infection (co-infected group). The interaction between T. spiralis and T. gondii was evaluated by histopathological examination of liver and brain tissues, immunohistochemical expression of inducible nitric oxide synthase (iNOS), and β-catenin in the brain tissues, and CD4+ and CD8+ T cells percentages, and tumor necrosis factor (TNF)-alpha expression in the spleen tissues. Along with, splenic interleukin (IL)-4 and IL-10 mRNA expression levels were measured 15 days post-Toxoplasma infection. Our study revealed that prior infection with T. spiralis leads to attenuation of Th1 response against T. gondii, including iNOS, TNF-α, and CD8+ T-cell response with improvement of the histopathological changes in the tissues. In conclusion, in the co-infected rats, a balanced immune response has been developed with the end result, improvement of the histopathological changes in the liver and brain.
Collapse
Affiliation(s)
- Abeer E. Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Medical Parasitology sub-unit, Pathology Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Dalia S. Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
25
|
Escobar-Guevara EE, de Quesada-Martínez ME, Roldán-Dávila YB, Alarcón de Noya B, Alfonzo-Díaz MA. Defects in immune response to Toxoplasma gondii are associated with enhanced HIV-1-related neurocognitive impairment in co-infected patients. PLoS One 2023; 18:e0285976. [PMID: 37224128 DOI: 10.1371/journal.pone.0285976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/07/2023] [Indexed: 05/26/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) and Toxoplasma gondii can invade the central nervous system and affect its functionality. Advanced HIV-1 infection has been associated with defects in immune response to T. gondii, leading to reactivation of latent infections and development of toxoplasmic encephalitis. This study evaluates relationship between changes in immune response to T. gondii and neurocognitive impairment in HIV-1/T. gondii co-infected patients, across different stages of HIV-1 infection. The study assessed the immune response to T. gondii by measuring cytokine production in response to parasite antigens, and also neurocognitive functions by performing auditory and visual P300 cognitive evoked potentials, short term memory (Sternberg) and executive function tasks (Wisconsin Card Sorting Test-WCST) in 4 groups of individuals: HIV-1/T. gondii co-infected (P2), HIV-1-infected/T. gondii-non-infected (P1), HIV-1-non-infected/T. gondii-infected (C2) and HIV-1-non-infected/T. gondii-non-infected (C1). Patients (P1 and P2) were grouped in early/asymptomatic (P1A and P2A) or late/symptomatic (P1B/C and P2B/C) according to peripheral blood CD4+ T lymphocyte counts (>350 or <350/μL, respectively). Groups were compared using T-student or U-Mann-Whitney tests as appropriate, p<0.05 was considered as significantly. For P300 waves, HIV-1-infected patients (P1) had significantly longer latencies and significantly smaller amplitudes than uninfected controls, but HIV-1/T. gondii co-infected patients (P2) had significantly longer latencies and smaller amplitude than P1. P1 patients had significantly poorer results than uninfected controls in Sternberg and WCST, but P2 had significantly worse results than P1. HIV-1 infection was associated with significantly lower production of IL-2, TNF-α and IFN-γ in response to T. gondii from early/asymptomatic stages, when comparing P2 patients to C2 controls. These findings may indicate impairment in anti-parasitic response in co-infected patients, facilitating early limited reactivation of the parasitic latent infection, therefore creating cumulative damage in the brain and affecting neurocognitive functions from asymptomatic stages of HIV-1 infection, as suggested by defects in co-infected patients in this study.
Collapse
Affiliation(s)
- Edwin Eliel Escobar-Guevara
- Laboratory of Cellular Immunophysiology, José Maria Vargas School of Medicine, Central University of Venezuela, Caracas, Venezuela
- Department of Immunology, José Maria Vargas School of Medicine, Central University of Venezuela, Caracas, Venezuela
- Laboratory of Physiopathology, Venezuelan Institute for Scientific Research, Caracas, Venezuela
| | | | - Yhajaira Beatriz Roldán-Dávila
- Service of Infectology, José Ignacio Baldó Hospital, Caracas, Venezuela
- Department of Microbiology, José Maria Vargas School of Medicine, Central University of Venezuela, Caracas, Venezuela
| | | | - Miguel Antonio Alfonzo-Díaz
- Laboratory of Cellular Immunophysiology, José Maria Vargas School of Medicine, Central University of Venezuela, Caracas, Venezuela
- Department of Physiology, José Maria Vargas School of Medicine, Central University of Venezuela, Caracas, Venezuela
- Academic Department, Salvador Allende Latin-American School of Medicine, San Antonio de Los Altos, Miranda State, Venezuela
| |
Collapse
|
26
|
Diao Y, Yao Y, El-Ashram S, Bian M. Egress Regulatory Factors: How Toxoplasma Exits from Infected Cells? Pathogens 2023; 12:pathogens12050679. [PMID: 37242349 DOI: 10.3390/pathogens12050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Toxoplasma gondii is an obligatory intracellular protozoan in the family Apicomplexa. It infects almost one-third of the world's population and causes toxoplasmosis, a prevalent disease. The parasite's egress from infected cells is a key step in the pathology caused by T. gondii. Moreover, T. gondii's continuous infection relies heavily on its capacity to migrate from one cell to another. Many pathways are involved in T. gondii egress. Individual routes may be modified to respond to various environmental stimuli, and many paths can converge. Regardless of the stimuli, the relevance of Ca2+ as a second messenger in transducing these signals, and the convergence of various signaling pathways in the control of motility and, ultimately, egress, is well recognized. This review attempts to outline intra- and extra-parasitic regulators that mediate T. gondii egress, and provides insight into potential clinical interventions and research.
Collapse
Affiliation(s)
- Yujie Diao
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yong Yao
- College of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan 528231, China
- Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Maohong Bian
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| |
Collapse
|
27
|
Li H, Liang X, Sun W, Zhuang B, Cao Y, Zhang J, Shen J, Wang Y, Yu L. Immunological evaluation of a recombinant vaccine delivered with an analogous hyaluronic acid chitosan nanoparticle-hydrogel against Toxoplasma gondii in mice. Microb Pathog 2023; 179:106092. [PMID: 37003502 DOI: 10.1016/j.micpath.2023.106092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is not only a threat to the public health but it also poses adverse impacts on the livestock industry. This study aimed to develop a recombinant vaccine composed of T. gondii microneme protein 6 (TgMIC6) and T. gondii rhoptry protein 18 (TgROP18).The vaccine was delivered with a novel vector, named analogous hyaluronic acid chitosan nanoparticle-hydrogel (AHACNP-HG) and its immune protection was evaluated. METHODS The recombinant MIC6 and ROP18 proteins were obtained by affinity chromatography and loaded onto AHACNP-HG by magnetic stirring. The characterizations of AHACNP-HG were investigated, including its structure, rheological property, nanoparticle size and zeta potential, its ability to release protein in vitro and toxicology in vivo. The immunological and anti-infection effects of AHACNP-HG/rMIC6/rROP18 were examined in the mice model. RESULTS AHACNP-HG presented a characteristic of composite system and possessed biosecurity with excellent protein control-release property. AHACNP-HG/rMIC6/rROP18 vaccine enhanced a mixed Th1/Th2 cellular immune response accompanied by an increased level of the cytokines, IFN-γ and IL-10. It also provoked a stronger humoral immune response. Additionally, after challenge with T. gondii tachyzoite, AHACNP-HG/rMIC6/rROP18 inoculation prolonged the survival time of mice. CONCLUSION Our data indicated that mixed rMIC6 and rROP18 induced strong immune response and played a certain protective role in controlling T. gondii infection, and the novel adjuvant AHACNP-HG improved modestly some immunogenicity properties in mouse model, which indicated that it can be used as a novel delivery system in vaccine development.
Collapse
Affiliation(s)
- Hu Li
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Department of Clinical Laboratory, Taihe People's Hospital, Fuyang, 236600, China.
| | - Xiao Liang
- School of Life Sciences, Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230032, China.
| | - Wenze Sun
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Baocan Zhuang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yuanyuan Cao
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Junling Zhang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Jilong Shen
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yongzhong Wang
- School of Life Sciences, Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230032, China.
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
28
|
Clark JT, Weizman OE, Aldridge DL, Shallberg LA, Eberhard J, Lanzar Z, Wasche D, Huck JD, Zhou T, Ring AM, Hunter CA. IL-18BP mediates the balance between protective and pathological immune responses to Toxoplasma gondii. Cell Rep 2023; 42:112147. [PMID: 36827187 PMCID: PMC10131179 DOI: 10.1016/j.celrep.2023.112147] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 12/02/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Interleukin-18 (IL-18) promotes natural killer (NK) and T cell production of interferon (IFN)-γ, a key factor in resistance to Toxoplasma gondii, but previous work has shown a limited role for endogenous IL-18 in control of this parasite. Although infection with T. gondii results in release of IL-18, the production of IFN-γ induces high levels of the IL-18 binding protein (IL-18BP). Antagonism of IL-18BP with a "decoy-to-the-decoy" (D2D) IL-18 construct that does not signal but rather binds IL-18BP results in enhanced innate lymphoid cell (ILC) and T cell responses and improved parasite control. In addition, the use of IL-18 resistant to IL-18BP ("decoy-resistant" IL-18 [DR-18]) is more effective than exogenous IL-18 at promoting innate resistance to infection. DR-18 enhances CD4+ T cell production of IFN-γ but results in CD4+ T cell-mediated pathology. Thus, endogenous IL-18BP restrains aberrant immune pathology, and this study highlights strategies that can be used to tune this regulatory pathway for optimal anti-pathogen responses.
Collapse
Affiliation(s)
- Joseph T Clark
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Orr-El Weizman
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Daniel L Aldridge
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Lindsey A Shallberg
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Julia Eberhard
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Zachary Lanzar
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Devon Wasche
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - John D Huck
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Ting Zhou
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Aaron M Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA.
| | - Christopher A Hunter
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Rai S, Girdhar M, Siraj F, Sharma S, Kumar M, Katyal A. Mechanistic insights into immunopathogenesis of murine cerebral malaria: Cues from "young" C57BL/6J and BALB/c mice. Immunol Lett 2023; 256-257:9-19. [PMID: 36931472 DOI: 10.1016/j.imlet.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Cerebral malaria (CM), a major cause of mortality in children <5 years, presents disparity in pathophysiological features and poor prognosis compared to adults. Adult C57BL/6J mice infected with Plasmodium berghei ANKA (PbA) are widely used to understand CM pathogenesis compared to relatively less prone BALB/c mice; however, age and immune status of the host also influence disease sequelae and cerebral manifestations. Murine models of CM known so far do not project complete disease spectrum of pediatric CM. The present study was designed to dissect and differentiate CM immunopathogenesis in "young" BALB/c and C57BL/6J mice infected with PbA, in search of a competent mouse model mimicking pediatric CM. Multipronged approach including the analysis of blood-brain barrier (BBB) permeability and parasite infiltration, histopathology, nitric oxide levels, and pro/anti-inflammatory (TNF-α, IFN-γ, IL-4, and IL-10) cytokine expression were compared in the cortices of both young BALB/c and C57BL/6J mice. The results illustrate severe course of infection and typical CM like histopathological alterations including monocytic plugging in PbA-infected "young" BALB/c compared to C57BL/6J mice. The decreased expression of tight junction proteins (ZO-1 and Claudin-3) and Evan's blue extravasation was also more evident in BALB/c mice indicating a more permeable BBB. The increased cortical expression of TNF-α, IFN-γ, IL-4, IL-10, iNOS, eNOS, nNOS, and associated activation of brain resident cells in cortices of BALB/c with progressive parasitaemia depicts the cumulative involvement of host immune responses and parasite accumulation in progression of CM. Thus, the incongruity of cytokine balance resulted in worsening of disease manifestation in "young" BALB/c similar to pediatric CM.
Collapse
Affiliation(s)
- Shweta Rai
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India
| | - Meetali Girdhar
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India
| | - Fouzia Siraj
- Department of Pathology, National Institute of Pathology, ICMR, Safdarjung Hospital, New Delhi, India
| | - Sheetal Sharma
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India
| | - Mukesh Kumar
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India
| | - Anju Katyal
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India.
| |
Collapse
|
30
|
B cells promote granulomatous inflammation during chronic Mycobacterium tuberculosis infection in mice. PLoS Pathog 2023; 19:e1011187. [PMID: 36888692 PMCID: PMC9994760 DOI: 10.1371/journal.ppat.1011187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/05/2023] [Indexed: 03/09/2023] Open
Abstract
The current study reveals that in chronic TB, the B cell-deficient μMT strain, relative to wild-type (WT) C57BL/6 mice, displays in the lungs lower levels of inflammation that are associated with decreased CD4+ T cell proliferation, diminished Th1 response, and enhanced levels of interleukin (IL)-10. The latter result raises the possibility that B cells may restrict lung expression of IL-10 in chronic TB. These observations are recapitulated in WT mice depleted for B cells using anti-CD20 antibodies. IL-10 receptor (IL-10R) blockade reverses the phenotypes of decreased inflammation and attenuated CD4+ T cell responses in B cell-depleted mice. Together, these results suggest that in chronic murine TB, B cells, by virtue of their capacity to restrict expression of the anti-inflammatory and immunosuppressive IL-10 in the lungs, promote the development of a robust protective Th1 response, thereby optimizing anti-TB immunity. This vigorous Th1 immunity and restricted IL-10 expression may, however, allow the development of inflammation to a level that can be detrimental to the host. Indeed, decreased lung inflammation observed in chronically infected B cell-deficient mice, which exhibit augmented lung IL-10 levels, is associated with a survival advantage relative to WT animals. Collectively, the results reveal that in chronic murine TB, B cells play a role in modulating the protective Th1 immunity and the anti-inflammatory IL-10 response, which results in augmentation of lung inflammation that can be host-detrimental. Intriguingly, in tuberculous human lungs, conspicuous B cell aggregates are present in close proximity to tissue-damaging lesions manifesting necrosis and cavitation, suggesting the possibility that in human TB, B cells may contribute to the development of exacerbated pathology that is known to promote transmission. Since transmission is a major hindrance to TB control, investigating into whether B cells can shape the development of severe pulmonic pathological responses in tuberculous individuals is warranted.
Collapse
|
31
|
Ferreira PTM, Oliveira-Scussel ACM, Sousa RAP, Gomes BQ, Félix JE, Silva RJ, Millian IB, Assunção TSF, Teixeira SC, Gomes MDLM, Silva MV, Barbosa BF, Rodrigues Junior V, Mineo JR, Oliveira CJF, Ferro EAV, Gomes AO. Macrophage Migration Inhibitory Factor contributes to drive phenotypic and functional macrophages activation in response to Toxoplasma gondii infection. Immunobiology 2023; 228:152357. [PMID: 36857907 DOI: 10.1016/j.imbio.2023.152357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Cytokines are small molecules secreted by numerous cells. Macrophage Migration Inhibitory Factor (MIF) is a cytokine initially described due to its function of inhibiting random macrophage migration. Currently, new functions have been described for MIF, such as stimulating inflammatory functions in response to infections by microorganisms including, Toxoplasma gondii. However, the primordial MIF function related to macrophages has been little addressed. The main purpose of the study was to recapitulate MIF function on macrophages in response to T. gondii infection. To achieve this goal, peritoneal macrophages were collected from C57BL/6WT and Mif1-/- mice after recruitment with thioglycolate. Macrophages were cultured, treated with 4-Iodo-6-phenylpyrimidine (4-IPP), and infected or not by T. gondii for 24 h. Following this, the culture supernatant was collected for cytokine, urea and nitrite analysis. In addition, macrophages were evaluated for phagocytic activity and T. gondii proliferation rates. Results demonstrated that T. gondii infection triggered an increase in MIF production in the WT group as well as an increase in the secretion of IL-10, TNF, IFN-γ, IL-6 and IL-17 in the WT and Mif1-/- macrophages. Regarding the comparison between groups, it was detected that Mif1-/- macrophages secreted more IL-10 compared to WT. On the other hand, the WT macrophages produced greater amounts of TNF, IFN-γ, IL-6 and IL-17. Urea production was more pronounced in Mif1-/- macrophages while nitrite production was higher in WT macrophages. T. gondii showed a greater ability to proliferate in Mif1-/- macrophages and these cells also presented enhanced phagocytic activity. In conclusion, T. gondii infection induces macrophage activation inciting cytokine production. In presence of MIF, T. gondii infected macrophages produce pro-inflammatory cytokines compatible with the M1 activation profile. MIF absence caused a dramatic reduction in pro-inflammatory cytokines that are balanced by increased levels of urea and anti-inflammatory cytokines. These macrophages presented increased phagocytic capacity and shared features activation with the M2 profile.
Collapse
Affiliation(s)
- Paula Tatiane Mutão Ferreira
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | | | - Roberto Augusto Pereira Sousa
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Beatriz Quaresemin Gomes
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Jhennifer Estevão Félix
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Rafaela José Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Iliana Balga Millian
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Thais Soares Farnesi Assunção
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Marcos de Lucca Moreira Gomes
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Marcos Vinícius Silva
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Bellisa Freitas Barbosa
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Virmondes Rodrigues Junior
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - José Roberto Mineo
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Carlo José Freire Oliveira
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | | | - Angelica Oliveira Gomes
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
32
|
Kanayama M, Izumi Y, Akiyama M, Hayashi T, Atarashi K, Roers A, Sato T, Ohteki T. Myeloid-like B cells boost emergency myelopoiesis through IL-10 production during infection. J Exp Med 2023; 220:213845. [PMID: 36719648 PMCID: PMC9930167 DOI: 10.1084/jem.20221221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023] Open
Abstract
Emergency myelopoiesis (EM) is a hematopoietic response against systemic infections that quickly supplies innate immune cells. As lymphopoiesis is strongly suppressed during EM, the role of lymphocytes in that process has not received much attention. Here, we found that myeloid-like B cells (M-B cells), which express myeloid markers, emerge in the bone marrow (BM) after the induction of EM. M-B cells were mainly derived from pre-B cells and preferentially expressed IL-10, which directly stimulates hematopoietic progenitors to enhance their survival and myeloid-biased differentiation. Indeed, lacking IL-10 in B cells, blocking IL-10 in the BM with a neutralizing antibody, and deleting the IL-10 receptor in hematopoietic progenitors significantly suppressed EM, which failed to clear microbes in a cecal ligation and puncture model. Thus, a distinct B cell subset generated during infection plays a pivotal role in boosting EM, which suggests the on-demand reinforcement of EM by adaptive immune cells.
Collapse
Affiliation(s)
- Masashi Kanayama
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuta Izumi
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Megumi Akiyama
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toyoki Hayashi
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koji Atarashi
- Department of Microbiology and Immunology, Keio UniversitySchool of Medicine, Tokyo, Japan
| | - Axel Roers
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Taku Sato
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan,Correspondence to Toshiaki Ohteki:
| |
Collapse
|
33
|
Suzuki Y, Lutshumba J, Chen KC, Abdelaziz MH, Sa Q, Ochiai E. IFN-γ production by brain-resident cells activates cerebral mRNA expression of a wide spectrum of molecules critical for both innate and T cell-mediated protective immunity to control reactivation of chronic infection with Toxoplasma gondii. Front Cell Infect Microbiol 2023; 13:1110508. [PMID: 36875520 PMCID: PMC9975934 DOI: 10.3389/fcimb.2023.1110508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
We previously demonstrated that brain-resident cells produce IFN-γ in response to reactivation of cerebral infection with Toxoplasma gondii. To obtain an overall landscape view of the effects of IFN-γ from brain-resident cells on the cerebral protective immunity, in the present study we employed NanoString nCounter assay and quantified mRNA levels for 734 genes in myeloid immunity in the brains of T and B cell-deficient, bone marrow chimeric mice with and without IFN-γ production by brain-resident cells in response to reactivation of cerebral T. gondii infection. Our study revealed that IFN-γ produced by brain-resident cells amplified mRNA expression for the molecules to activate the protective innate immunity including 1) chemokines for recruitment of microglia and macrophages (CCL8 and CXCL12) and 2) the molecules for activating those phagocytes (IL-18, TLRs, NOD1, and CD40) for killing tachyzoites. Importantly, IFN-γ produced by brain-resident cells also upregulated cerebral expression of molecules for facilitating the protective T cell immunity, which include the molecules for 1) recruiting effector T cells (CXCL9, CXCL10, and CXCL11), 2) antigen processing (PA28αβ, LMP2, and LMP7), transporting the processed peptides (TAP1 and TAP2), assembling the transported peptides to the MHC class I molecules (Tapasin), and the MHC class I (H2-K1 and H2-D1) and Ib molecules (H2-Q1, H-2Q2, and H2-M3) for presenting antigens to activate the recruited CD8+ T cells, 3) MHC class II molecules (H2-Aa, H2-Ab1, H2-Eb1, H2-Ea-ps, H2-DMa, H2-Ob, and CD74) to present antigens for CD4+ T cell activation, 4) co-stimulatory molecules (ICOSL) for T cell activation, and 5) cytokines (IL-12, IL-15, and IL-18) facilitating IFN-γ production by NK and T cells. Notably, the present study also revealed that IFN-γ production by brain-resident cells also upregulates cerebral expressions of mRNA for the downregulatory molecules (IL-10, STAT3, SOCS1, CD274 [PD-L1], IL-27, and CD36), which can prevent overly stimulated IFN-γ-mediated pro-inflammatory responses and tissue damages. Thus, the present study uncovered the previously unrecognized the capability of IFN-γ production by brain-resident cells to upregulate expressions of a wide spectrum of molecules for coordinating both innate and T cell-mediated protective immunity with a fine-tuning regulation system to effectively control cerebral infection with T. gondii.
Collapse
Affiliation(s)
- Yasuhiro Suzuki
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
- *Correspondence: Yasuhiro Suzuki,
| | - Jenny Lutshumba
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Kuey Chu Chen
- Department of Pharmacology and Nutritional Science, University of Kentucky College of Medicine, Lexington, KY, United States
- Genomics Core Laboratory, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Mohamed H. Abdelaziz
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Qila Sa
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Eri Ochiai
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
34
|
Zhang Y, Li D, Shen Y, Li S, Lu S, Zheng B. Immunization with a novel mRNA vaccine, TGGT1_216200 mRNA-LNP, prolongs survival time in BALB/c mice against acute toxoplasmosis. Front Immunol 2023; 14:1161507. [PMID: 37122740 PMCID: PMC10140528 DOI: 10.3389/fimmu.2023.1161507] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Toxoplasma gondii, a specialized intracellular parasite, causes a widespread zoonotic disease and is a severe threat to social and economic development. There is a lack of effective drugs and vaccines against T. gondii infection. Recently, mRNA vaccines have been rapidly developed, and their packaging materials and technologies are well established. In this study, TGGT1_216200 (TG_200), a novel molecule from T. gondii, was identified using bioinformatic screening analysis. TG_200 was purified and encapsulated with a lipid nanoparticle (LNP) to produce the TG_200 mRNA-LNP vaccine. The immune protection provided by the new vaccine and its mechanisms after immunizing BABL/C mice via intramuscular injection were investigated. There was a strong immune response when mice were vaccinated with TG_200 mRNA-LNP. Elevated levels of anti-T. gondii-specific immunoglobulin G (IgG), and a higher IgG2a-to-IgG1 ratio was observed. The levels of interleukin-12 (IL-12), interferon-γ (IFN-γ), IL-4, and IL-10 were also elevated. The result showed that the vaccine induced a mixture of Th1 and Th2 cells, and Th1-dominated humoral immune response. Significantly increased antigen-specific splenocyte proliferation was induced by TG_200 mRNA-LNP immunization. The vaccine could also induce T. gondii-specific cytotoxic T lymphocytes (CTLs). The expression levels of interferon regulatory factor 8 (IRF8), T-Box 21 (T-bet), and nuclear factor kappa B (NF-κB) were significantly elevated after TG_200 mRNA-LNP immunization. The levels of CD83, CD86, MHC-I, MHC-II, CD8, and CD4 molecules were also higher. The results indicated that TG_200 mRNA-LNP produced specific cellular and humoral immune responses. Most importantly, TG_200 mRNA-LNP immunized mice survived significantly longer (19.27 ± 3.438 days) than the control mice, which died within eight days after T. gondii challenge (P< 0.001). The protective effect of adoptive transfer was also assessed, and mice receiving serum and splenocytes from mice immunized with TG_200 mRNA-LNP showed improved survival rates of 9.70 ± 1.64 days and, 13.40 ± 2.32 days, respectively (P< 0.001). The results suggested that TG_200 mRNA-LNP is a safe and promising vaccine against T. gondii infection.
Collapse
Affiliation(s)
- Yizhuo Zhang
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Dan Li
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yu Shen
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Shiyu Li
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Shaohong Lu
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Shaohong Lu, ; Bin Zheng,
| | - Bin Zheng
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Shaohong Lu, ; Bin Zheng,
| |
Collapse
|
35
|
Lopez BS. Can Infectious Disease Control Be Achieved without Antibiotics by Exploiting Mechanisms of Disease Tolerance? Immunohorizons 2022; 6:730-740. [DOI: 10.4049/immunohorizons.2200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/04/2022] [Indexed: 01/04/2023] Open
Abstract
Abstract
Antimicrobial use in animal agriculture may be contributing to the emerging public health crisis of antimicrobial resistance. The sustained prevalence of infectious diseases driving antimicrobial use industry-wide suggests that traditional methods of bolstering disease resistance are, for some diseases, ineffective. A paradigm shift in our approach to infectious disease control is needed to reduce antimicrobial use and sustain animal and human health and the global economy. Targeting the defensive mechanisms that promote the health of an infected host without impacting pathogen fitness, termed “disease tolerance,” is a novel disease control approach ripe for discovery. This article presents examples of disease tolerance dictating clinical outcomes for several infectious diseases in humans, reveals evidence suggesting a similarly critical role of disease tolerance in the progression of infectious diseases plaguing animal agriculture, and thus substantiates the assertion that exploiting disease tolerance mechanisms can positively impact animal and human health.
Collapse
Affiliation(s)
- Brina S. Lopez
- Department of Farm Animal Medicine, Midwestern University College of Veterinary Medicine, Glendale, AZ
| |
Collapse
|
36
|
Warunek J, Jin RM, Blair SJ, Garis M, Marzullo B, Wohlfert EA. Tbet Expression by Regulatory T Cells Is Needed to Protect against Th1-Mediated Immunopathology during Toxoplasma Infection in Mice. Immunohorizons 2021; 5:931-943. [PMID: 34893511 DOI: 10.4049/immunohorizons.2100080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii infection has proven to be an ideal model to understand the delicate balance between protective immunity and immune-mediated pathology during infection. Lethal infection causes a collapse of T regulatory cells (Tregs) mediated by the loss of IL-2 and conversion of Tregs to IFN-γ-producing cells. Importantly, these Tregs highly express the Th1 transcription factor Tbet. To determine the role of Tbet in Tregs, we infected Tbx21f/f -Foxp3YFPCre and control Foxp3YFPCre mice with the type II strain of T. gondii, ME49. The majority of Tbx21f/f -Foxp3YFPCre mice succumbed to a nonlethal dose. Notably, parasite burden was reduced in Tbx21f/f -Foxp3YFPCre compared with Foxp3YFPCre control mice. We found that Tbx21f/f -Foxp3YFPCre mice have significantly higher serum levels of proinflammatory cytokines IFN-γ and TNF-α, suggestive of a heightened immune response. To test if CD4+ T cells were driving immunopathology, we treated Tbx21f/f -Foxp3YFPCre mice with anti-CD4-depleting Abs and partially rescued these mice. Broad-spectrum antibiotic treatment also improved survival, demonstrating a role for commensal flora in immunopathology in Tbx21f/f -Foxp3YFPCre mice. RNA sequencing analysis reinforced that Tbet regulates several key cellular pathways, including leukocyte activation, regulation of lymphocyte activation, and cell cycle progression, that help to maintain fitness in Tregs during Th1 responses. Taken together, our data show an important role for Tbet in Tregs in preventing lethal immunopathology during T. gondii infection, further highlighting the protective role of Treg plasticity in controlling immune responses to infection and the microbiota.
Collapse
Affiliation(s)
- Jordan Warunek
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Amherst, NY; and
| | - Richard M Jin
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Amherst, NY; and
| | - Sarah J Blair
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Amherst, NY; and
| | - Matthew Garis
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Amherst, NY; and
| | - Brandon Marzullo
- Genomics and Bioinformatics Core, State University of New York at Buffalo, Amherst, NY
| | - Elizabeth A Wohlfert
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Amherst, NY; and
| |
Collapse
|
37
|
Reichmann G, Villegas EN, Craig L, Peach R, Hunter CA. The CD28/B7 Interaction Is Not Required for Resistance to Toxoplasma gondii in the Brain but Contributes to the Development of Immunopathology. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.6.3354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Infection of C57BL/6 mice with Toxoplasma gondii leads to chronic encephalitis characterized by infiltration into the brain of T cells that produce IFN-γ and mediate resistance to the parasite. Our studies revealed that expression of B7.1 and B7.2 was up-regulated in brains of mice with toxoplasmic encephalitis (TE). Because CD28/B7-mediated costimulation is important for T cell activation, we assessed the contribution of this interaction to the production of IFN-γ by T cells from brains and spleens of mice with TE. Stimulation of splenocytes with Toxoplasma Ag or anti-CD3 mAb resulted in production of IFN-γ, which was inhibited by 90% in the presence of CTLA4-Ig, an antagonist of B7 stimulation. However, production of IFN-γ by T cells from the brains of these mice was only slightly reduced (20%) by the addition of CTLA4-Ig. To address the role of the CD28/B7 interaction during TE, we compared the development of disease in C57BL/6 wild-type (wt) and CD28−/− mice. Although the parasite burden was similar in wt and CD28−/− mice, CD28−/− mice developed less severe encephalitis and survived longer than wt mice. Ex vivo recall responses revealed that mononuclear cells isolated from the brains of chronically infected CD28−/− mice produced less IFN-γ than wt cells, and this correlated with reduced numbers of intracerebral CD4+ T cells in CD28−/− mice compared with wt mice. Taken together, our data show that resistance to T. gondii in the brain is independent of CD28 and suggest a role for CD28 in development of immune-mediated pathology during TE.
Collapse
Affiliation(s)
- Gaby Reichmann
- *Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, 19104; and
| | - Eric N. Villegas
- *Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, 19104; and
| | - Linden Craig
- *Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, 19104; and
| | - Robert Peach
- †Bristol Myers Squibb Pharmacology Research Institute, Princeton, NJ 08543
| | - Christopher A. Hunter
- *Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, 19104; and
| |
Collapse
|
38
|
Genovese F, Mancuso G, Cuzzola M, Biondo C, Beninati C, Delfino D, Teti G. Role of IL-10 in a Neonatal Mouse Listeriosis Model. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
This study was undertaken to test the hypothesis that altered IL-10 production plays a role in the increased susceptibility of neonates to listeriosis. Plasma IL-10 levels were measured in neonatal and adult mice at various times after infection with Listeria monocytogenes. Relative to adults, neonatal mice had markedly increased IL-10 levels early in the course of infection with Listeria using a 90% lethal dose. Higher neonatal IL-10 responses were also observed after injecting adults and pups with equal doses of killed organisms. Splenic macrophages from neonates produced higher IL-10 levels than those of adults after in vitro stimulation with killed bacteria, confirming in vivo observations. Moreover, IL-10 blockade had differential effects in neonates and adults infected with live Listeria. In adult mice, anti-IL-10 Abs decreased bacterial burden early in the course of infection, but were no longer effective at 6 days or later after challenge. In the pups, however, the same treatment had beneficial effects both early and late during infection and resulted in increased survival. Collectively, our data suggest that an overproduction of IL-10 by macrophages may at least partially explain the increased susceptibility of neonates to listeriosis, and provide further evidence that cytokine production is different in adults and neonates.
Collapse
Affiliation(s)
- Francesco Genovese
- Istituto di Microbiologia, Università di Messina, Facoltà di Medicina e Chirurgia, Messina, Italy
| | - Giuseppe Mancuso
- Istituto di Microbiologia, Università di Messina, Facoltà di Medicina e Chirurgia, Messina, Italy
| | - Maria Cuzzola
- Istituto di Microbiologia, Università di Messina, Facoltà di Medicina e Chirurgia, Messina, Italy
| | - Carmelo Biondo
- Istituto di Microbiologia, Università di Messina, Facoltà di Medicina e Chirurgia, Messina, Italy
| | - Concetta Beninati
- Istituto di Microbiologia, Università di Messina, Facoltà di Medicina e Chirurgia, Messina, Italy
| | - Demetrio Delfino
- Istituto di Microbiologia, Università di Messina, Facoltà di Medicina e Chirurgia, Messina, Italy
| | - Giuseppe Teti
- Istituto di Microbiologia, Università di Messina, Facoltà di Medicina e Chirurgia, Messina, Italy
| |
Collapse
|
39
|
Marshall AJ, Brunet LR, van Gessel Y, Alcaraz A, Bliss SK, Pearce EJ, Denkers EY. Toxoplasma gondii and Schistosoma mansoni Synergize to Promote Hepatocyte Dysfunction Associated with High Levels of Plasma TNF-α and Early Death in C57BL/6 Mice. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.4.2089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
To address the question of how the murine host responds to a prototypic type 1 cytokine inducer while concurrently undergoing a helminth-induced type 2 cytokine response, C57BL/6 strain animals with patent schistosomiasis mansoni were orally infected with the cystogenic Toxoplasma gondii strain ME49. Schistosoma mansoni infection resulted in a significantly higher mortality rate when mice were subsequently orally infected with ME49, and these animals displayed a defective IFN-γ and NO response relative to animals infected with T. gondii alone. Plasma levels of TNF-α and aspartate transaminase in double-infected mice were greatly elevated relative to mice infected with either parasite alone. Consistent with the latter observation, these animals exhibited severe liver pathology, with regions of coagulative necrosis and hepatocyte vacuolization unapparent in mice carrying either infection alone. Interestingly, mean egg granuloma size was ∼50% of that in mice with S. mansoni infection alone. The exacerbated liver pathology in coinfected mice did not appear to be a result of uncontrolled tachyzoite replication, because both parasite-specific RT-PCR analysis and immunohistochemical staining demonstrated a low number of tachyzoites in the liver. We hypothesize that mortality in these animals results from the high level of systemic TNF-α, which mediates a severe liver pathology culminating in death of the animal.
Collapse
Affiliation(s)
| | | | - Yvonne van Gessel
- †Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Ana Alcaraz
- †Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | | | | | | |
Collapse
|
40
|
Perry LL, Su H, Feilzer K, Messer R, Hughes S, Whitmire W, Caldwell HD. Differential Sensitivity of Distinct Chlamydia trachomatis Isolates to IFN-γ-Mediated Inhibition. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.6.3541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Resistance to the mouse pneumonitis (MoPn) strain of Chlamydia trachomatis has been mapped to MHC class II-restricted, IL-12-dependent CD4+ T cells that secrete a type 1 profile of proinflammatory cytokines, which includes IFN-γ and TNF-α. The relative contribution of IFN-γ is controversial, however, due to variation in results presented by different laboratories. To determine whether C. trachomatis strain differences contributed to this apparent conflict, the relative resistance of IFN-γ-deficient mice to murine and human strains of C. trachomatis was compared. All human serovars were much more sensitive to the direct inhibitory actions of IFN-γ than the MoPn strain. Furthermore, genital clearance of human serovar D in the C57BL/6 mouse was mediated by class II-independent mechanisms that probably involved local production of IFN-γ by cells of the innate immune system. TNF-α also contributed indirectly to host resistance against all strains tested. The differential susceptibility of distinct C. trachomatis strains to effector cytokines such as IFN-γ could not have been predicted by interstrain biologic variation or by the profile of cytokines stimulated during infection. These findings indicate that strain variation should be considered in situations where related isolates of a given parasite produce conflicting data in models of infection and immunity. They also suggest that stimulation of mucosal IFN-γ activity is a relevant goal for a human chlamydial vaccine.
Collapse
Affiliation(s)
- Linda L. Perry
- Laboratory of Intracellular Parasites, Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratory, Hamilton, MT 59840
| | - Hua Su
- Laboratory of Intracellular Parasites, Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratory, Hamilton, MT 59840
| | - Karen Feilzer
- Laboratory of Intracellular Parasites, Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratory, Hamilton, MT 59840
| | - Ron Messer
- Laboratory of Intracellular Parasites, Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratory, Hamilton, MT 59840
| | - Scott Hughes
- Laboratory of Intracellular Parasites, Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratory, Hamilton, MT 59840
| | - William Whitmire
- Laboratory of Intracellular Parasites, Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratory, Hamilton, MT 59840
| | - Harlan D. Caldwell
- Laboratory of Intracellular Parasites, Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratory, Hamilton, MT 59840
| |
Collapse
|
41
|
Yang X, Gartner J, Zhu L, Wang S, Brunham RC. IL-10 Gene Knockout Mice Show Enhanced Th1-Like Protective Immunity and Absent Granuloma Formation Following Chlamydia trachomatis Lung Infection. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.2.1010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
We previously reported that higher IL-10 production is correlated with lower IFN-γ production, weaker delayed hypersensitivity (DTH), and slower organism clearance following chlamydial infection in mice. To assess more directly the role of IL-10, we examined protective immunity and pathological reaction in C57BL/6 IL-10 gene knockout (KO) and wild-type mice. The results showed that in the absence of endogenous IL-10, mice had significantly accelerated chlamydial clearance and developed significantly stronger DTH responses, which could be inhibited by local delivery of rIL-10. Consistent with the enhancement of DTH responses, IL-10 KO mice showed stronger and more persistent CD4 T cell-dependent IFN-γ production and significant elevation of IL-12 and TNF-α production. Additionally, wild-type, but not IL-10 KO, mice showed granuloma formation that was correlated with higher levels of Th2 cytokine (IL-5) production at the later stages of infection. Moreover, chlamydial infection, unlike parasitic protozoan infection, did not induce significant acute toxicity in IL-10 KO mice, which may be due to the low (undetectable) levels of systemic release of proinflammatory cytokines. These results suggest that IL-10 inhibits the priming and expansion of Th1-like T cell responses and that IL-10 plays a role in the fibrotic reaction seen with chlamydial infection.
Collapse
Affiliation(s)
- Xi Yang
- *Laboratory for Infection and Immunity,
- †Department of Medical Microbiology, and
| | - John Gartner
- ‡Department of Pathology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lihua Zhu
- *Laboratory for Infection and Immunity,
- †Department of Medical Microbiology, and
| | - Shuhe Wang
- *Laboratory for Infection and Immunity,
- †Department of Medical Microbiology, and
| | | |
Collapse
|
42
|
Mencacci A, Cenci E, Sero GD, Fé d’Ostiani C, Mosci P, Trinchieri G, Adorini L, Romani L. IL-10 Is Required for Development of Protective Th1 Responses in IL-12-Deficient Mice upon Candida albicans Infection. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.11.6228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
IL-12 is both required and prognostic for Th1 development in mice with Candida albicans infection. To delineate further the physiologic role of IL-12 in antifungal immunity, mice deficient for this cytokine were assessed for susceptibility to C. albicans infections, and for parameters of innate and adaptive immunity. IL-12-deficient mice were highly susceptible to gastrointestinal infection or to reinfection and showed elevated production of Candida-specific IgE and IL-4 and defective production of IFN-γ. The failure to mount protective Th1 responses occurred despite the presence of an unimpaired innate antifungal immune response, which correlated with unaltered IFN-γ production, but defective production of, and responsiveness to, inhibitory IL-10. IL-10 or IL-12 neutralization increased the innate antifungal resistance in wild-type mice. However, in IL-12-deficient mice, treatment with exogenous IL-12 or IL-10 impaired IL-4 production and increased resistance to infection, through a negative effect on the CTLA-4/B7-2 costimulatory pathway. These results confirm the obligatory role of IL-12 in the induction of anticandidal Th1 responses, and indicate the existence of a positive regulatory loop between IL-12 and IL-10 that may adversely affect the innate antifungal response, but is required for optimal costimulation of IL-12-dependent CD4+Th1 cells.
Collapse
Affiliation(s)
- Antonella Mencacci
- *Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Elio Cenci
- *Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Giuseppe Del Sero
- *Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Cristiana Fé d’Ostiani
- *Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Paolo Mosci
- *Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | - Luigina Romani
- *Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
43
|
Payvandi F, Amrute S, Fitzgerald-Bocarsly P. Exogenous and Endogenous IL-10 Regulate IFN-α Production by Peripheral Blood Mononuclear Cells in Response to Viral Stimulation. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.12.5861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
IL-10 is an important regulator of the production of proinflammatory cytokines. Its effect on IFN-α production, however, has not been reported. In this study, PBMC from healthy donors were stimulated with virus in the presence of IL-10. Human IL-10 (hIL-10) caused reductions in both the frequency of IFN-α-producing cells (IPC) and bulk IFN in response to herpes simplex virus type-1 (HSV-1), Sendai virus, Newcastle disease virus, and vesicular stomatitis virus. The inhibitory effect occurred when IL-10 was added 2 or 4 h before, or 2 h poststimulation with HSV or Sendai virus, but not when added 4 h postinduction. Unlike IL-10, IL-4 did not affect the IFN-α response to HSV. However, when PBMC were induced with Sendai virus, IFN-α production was also reduced by IL-4. IL-10 treatment of PBMC resulted in strong reductions in the steady state levels of both HSV- and Sendai virus-induced IFN-α1, -α2, and -β mRNA as determined by RT-PCR. IFN-α production to Sendai virus occurs predominantly by monocytes, whereas most enveloped viruses stimulate low frequency “natural IFN-producing cells (NIPC),” which are thought to be dendritic cells. Peripheral blood dendritic cells were found to express the IL-10 receptor, suggesting that IL-10 may directly act on the dendritic IPC. Addition of monoclonal anti-IL-10 to PBMC resulted in a significant increase in both the frequency of IPC and the amount of secreted IFN-α in response to HSV but not Sendai virus. We conclude that human IL-10 can serve as both an endogenous and exogenous regulator of IFN-α production.
Collapse
Affiliation(s)
- Faribourz Payvandi
- *Department of Pathology and Laboratory Medicine, and
- †Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103
| | - Sheela Amrute
- *Department of Pathology and Laboratory Medicine, and
| | - Patricia Fitzgerald-Bocarsly
- *Department of Pathology and Laboratory Medicine, and
- †Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103
| |
Collapse
|
44
|
McRae BL, Semnani RT, Hayes MP, van Seventer GA. Type I IFNs Inhibit Human Dendritic Cell IL-12 Production and Th1 Cell Development. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.9.4298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We have investigated the role of type I IFNs (IFN-α and -β) in human T cell differentiation using anti-CD3 mAb and allogeneic, in vitro-derived dendritic cells (DC) as APCs. DC were very efficient activators of naive CD4+ T cells, providing necessary costimulation and soluble factors to support Th1 differentiation and expansion. Addition of IFN-αβ to DC/T cell cultures resulted in induction of T cell IL-10 production and inhibition of IFN-γ, TNF-α, and LT secretion. Diminished T cell IFN-γ production correlated with IFN-αβ-mediated inhibition of the p40 chain of the IL-12 heterodimer secreted by DC. Suppression of p40 IL-12 and IFN-γ was not due to increased levels of IL-10 in these cultures, and production of IFN-γ could be restored by exogenous IL-12. These data indicate that type I IFNs inhibit DC p40 IL-12 expression, which is required for development of IFN-γ-producing CD4+ T cells. Furthermore, when T cells were restimulated without IFN-β, these cells induced less p40 IL-12 from DC, suggesting that the functional properties of T cells may regulate DC function. Thus, IFN-αβ inhibits both IL-12-dependent and independent Th1 cytokine production and provides a mechanism for inhibition of IL-12-mediated immunity in viral infections.
Collapse
Affiliation(s)
- Bradford L. McRae
- *Committee on Immunology, Department of Pathology, Division of Biological Sciences, University of Chicago, Chicago, IL; and
| | - Roshanak Tolouei Semnani
- *Committee on Immunology, Department of Pathology, Division of Biological Sciences, University of Chicago, Chicago, IL; and
| | - Mark P. Hayes
- †Division of Cytokine Biology, Food and Drug Administration, Bethesda, MD
| | - Gijs A. van Seventer
- *Committee on Immunology, Department of Pathology, Division of Biological Sciences, University of Chicago, Chicago, IL; and
| |
Collapse
|
45
|
Wynn TA, Cheever AW, Williams ME, Hieny S, Caspar P, Kühn R, Müller W, Sher A. IL-10 Regulates Liver Pathology in Acute Murine Schistosomiasis mansoni But Is Not Required for Immune Down-Modulation of Chronic Disease. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.9.4473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We have used IL-10 gene knockout mice (IL-10T) to examine the role of endogenous IL-10 in the down-modulation of hepatic granuloma formation and lymphocyte responses that occurs in chronic infection with the helminth parasite Schistosoma mansoni. Although IL-10-deficient animals showed 20 to 30% mortality between 8 and 14 wk postinfection, they displayed no alterations in their susceptibility to infection and produced similar numbers of eggs as their wild-type littermates. The IL-10T mice displayed a significant increase in hepatic granuloma size at the acute stage of infection, which was associated with increased IFN-γ, IL-2, IL-1β, and TNF-α mRNA expression in liver and elevated Th1-type cytokine production by lymphoid cells. Despite developing an enhanced Th1-type cytokine response, the IL-10T mice showed no consistent decrease in their Th2-type cytokine profile. Surprisingly, although granulomatous inflammation was enhanced at the acute stage of infection, the livers of IL-10T mice displayed no significant increase in fibrosis and underwent normal immune down-modulation at the chronic stage of infection. Moreover, the down-modulated state could be induced in IL-10T mice by sensitizing the animals to schistosome eggs before infection, further demonstrating that the major down-regulatory mechanism is not dependent upon IL-10. We conclude that while IL-10 plays an important role in controlling acute granulomatous inflammation, it plays no essential role in the process of immune down-modulation in chronic schistosome infection.
Collapse
Affiliation(s)
- Thomas A. Wynn
- *Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | - Megan E. Williams
- *Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sara Hieny
- *Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Pat Caspar
- *Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ralf Kühn
- ‡Institute for Genetics, University of Cologne, Weyertal, Cologne, Germany
| | - Werner Müller
- ‡Institute for Genetics, University of Cologne, Weyertal, Cologne, Germany
| | - Alan Sher
- *Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
46
|
Freimark BD, Blezinger HP, Florack VJ, Nordstrom JL, Long SD, Deshpande DS, Nochumson S, Petrak KL. Cationic Lipids Enhance Cytokine and Cell Influx Levels in the Lung Following Administration of Plasmid: Cationic Lipid Complexes. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.9.4580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Administration of plasmid/lipid complexes to the lung airways may be associated, in addition to expression of transgene, with a range of other responses. We report here the induction of cytokines and cellular influx in the lung airway following intratracheal administration of an N-[1-(2–3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride/cholesterol/plasmid positively charged complex in mice. We show that 1) the appearance of the Th1-associated cytokines IFN-γ and IL-12 in bronchoalveolar lavage fluid is caused by unmethylated CpG dinucleotide sequences present within the plasmid, and is enhanced by the lipid formulation; 2) cationic lipids by themselves do not induce IL-12 or IL-12p40; 3) TNF-α is rapidly induced by cationic lipids and plasmid/lipid complex, but not by plasmid alone; 4) an acute cellular influx is induced by cationic lipid alone and by a plasmid/lipid complex, but to a much lesser extent by plasmid alone; and 5) plasmid methylation does not influence the degree of inflammatory cell influx. The induction of the innate immune responses by plasmid/lipid complexes may be advantageous to gene therapy of lung diseases. In particular, induction of the Th1 cell-promoting cytokines by plasmid/lipid complexes could, in conjunction with an expressed transgene, be used to modulate immune responses in the lung airways in disease conditions that are deficient in Th1 cell responses or that have a dominant Th2 phenotype. Alternatively, the elimination of immunostimulatory sequences in plasmids may improve the tolerability and/or efficacy of nonviral gene therapy, especially for diseases requiring chronic administration.
Collapse
|
47
|
Yap GS, Scharton-Kersten T, Charest H, Sher A. Decreased Resistance of TNF Receptor p55- and p75-Deficient Mice to Chronic Toxoplasmosis Despite Normal Activation of Inducible Nitric Oxide Synthase In Vivo. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.3.1340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The importance of TNF-α in host defense to the intracellular parasite, Toxoplasma gondii, was investigated in mice lacking both the p55 and p75 receptors for this cytokine. Upon i.p. infection with the avirulent ME49 strain, knockout mice were capable of limiting acute i.p. infection, but succumbed within 3 to 4 wk to a fulminant necrotizing encephalitis. Receptor-deficient mice harbored higher cyst burdens and exhibited uncontrolled tachyzoite replication in the brain. The lack of TNF receptors did not adversely affect the development of a type 1 IFN-γ response. In vitro studies with peritoneal macrophages stimulated with IFN-γ and tachyzoites indicated that under limiting concentrations of IFN-γ, nitric oxide-mediated toxoplasmastatic activity is TNF-α dependent. However, this requirement is overcome by increasing the dose of IFN-γ. Furthermore, both ex vivo and in vivo studies demonstrated that inducible nitric oxide synthase induction in the peritoneal cavity and brain is unimpaired in receptor-deficient mice. Thus, TNF-dependent immune control of T. gondii expansion in the brain involves an effector function distinct from inducible nitric oxide synthase activation.
Collapse
Affiliation(s)
- George S. Yap
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Tanya Scharton-Kersten
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Hugues Charest
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|