1
|
King SD, Cai D, Pillay A, Fraunfelder MM, Allen LAH, Chen SY. SPA Promotes Atherosclerosis Through Mediating Macrophage Foam Cell Formation-Brief Report. Arterioscler Thromb Vasc Biol 2024; 44:e277-e287. [PMID: 39360411 PMCID: PMC11499019 DOI: 10.1161/atvbaha.124.321460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Atherosclerosis is a progressive inflammatory disease in which macrophage foam cells play a central role in disease pathogenesis. SPA (surfactant protein A) is a lipid-associating protein involved with regulating macrophage function in various inflammatory diseases. However, the role of SPA in atherosclerosis and macrophage foam cell formation has not been investigated. METHODS SPA expression was assessed in healthy and atherosclerotic human coronary arteries and the brachiocephalic arteries of wild-type or ApoE-deficient mice fed high-fat diets for 4 weeks. Hypercholesteremic wild-type and SPA-deficient mice fed a high-fat diet for 6 weeks were investigated for atherosclerotic lesions in vivo. In vitro experiments using RAW264.7 macrophages, primary resident peritoneal macrophages extracted from wild-type or SPA-deficient mice, and human monocyte-derived macrophages from the peripheral blood of healthy donors determined the functional effects of SPA in macrophage foam cell formation. RESULTS SPA expression was increased in atherosclerotic lesions in humans and ApoE-deficient mice and in response to a proatherosclerotic stimulus in vitro. SPA deficiency reduced the lipid profiles induced by hypercholesterolemia, attenuated atherosclerosis, and reduced the number of lesion-associated macrophage foam cells. In vitro studies revealed that SPA deficiency reduced intracellular cholesterol accumulation and macrophage foam cell formation. Mechanistically, SPA deficiency dramatically downregulated the expression of scavenger receptor CD36 (cluster of differentiation antigen 36) cellular and lesional expression. Importantly, SPA also increased CD36 expression in human monocyte-derived macrophages. CONCLUSIONS Our results elucidate that SPA is a novel factor promoting atherosclerosis development. SPA enhances macrophage foam cell formation and atherosclerosis by increasing scavenger receptor CD36 expression, leading to increasing cellular OxLDL influx.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- CD36 Antigens/metabolism
- CD36 Antigens/genetics
- CD36 Antigens/deficiency
- Cells, Cultured
- Cholesterol/metabolism
- Cholesterol/blood
- Diet, High-Fat
- Disease Models, Animal
- Foam Cells/metabolism
- Foam Cells/pathology
- Lipoproteins, LDL/metabolism
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Plaque, Atherosclerotic
- Pulmonary Surfactant-Associated Protein A
- RAW 264.7 Cells
Collapse
Affiliation(s)
- Skylar D. King
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Dunpeng Cai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Alisha Pillay
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO
| | | | - Lee-Ann H. Allen
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO
| | - Shi-You Chen
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO
- Department of Molecular Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO
- The Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO
| |
Collapse
|
2
|
Andrews JT, Zhang Z, Prasad GVRK, Huey F, Nazarova EV, Wang J, Ranaraja A, Weinkopff T, Li LX, Mu S, Birrer MJ, Huang SCC, Zhang N, Argüello RJ, Philips JA, Mattila JT, Huang L. Metabolically active neutrophils represent a permissive niche for Mycobacterium tuberculosis. Mucosal Immunol 2024; 17:825-842. [PMID: 38844208 PMCID: PMC11493682 DOI: 10.1016/j.mucimm.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Mycobacterium tuberculosis (Mtb)-infected neutrophils are often found in the airways of patients with active tuberculosis (TB), and excessive recruitment of neutrophils to the lung is linked to increased bacterial burden and aggravated pathology in TB. The basis for the permissiveness of neutrophils for Mtb and the ability to be pathogenic in TB has been elusive. Here, we identified metabolic and functional features of neutrophils that contribute to their permissiveness in Mtb infection. Using single-cell metabolic and transcriptional analyses, we found that neutrophils in the Mtb-infected lung displayed elevated mitochondrial metabolism, which was largely attributed to the induction of activated neutrophils with enhanced metabolic activities. The activated neutrophil subpopulation was also identified in the lung granulomas from Mtb-infected non-human primates. Functionally, activated neutrophils harbored more viable bacteria and displayed enhanced lipid uptake and accumulation. Surprisingly, we found that interferon-γ promoted the activation of lung neutrophils during Mtb infection. Lastly, perturbation of lipid uptake pathways selectively compromised Mtb survival in activated neutrophils. These findings suggest that neutrophil heterogeneity and metabolic diversity are key to their permissiveness for Mtb and that metabolic pathways in neutrophils represent potential host-directed therapeutics in TB.
Collapse
Affiliation(s)
- J Tucker Andrews
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Zijing Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - G V R Krishna Prasad
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Fischer Huey
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Evgeniya V Nazarova
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jocelyn Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ananya Ranaraja
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tiffany Weinkopff
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lin-Xi Li
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael J Birrer
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stanley Ching-Cheng Huang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Nan Zhang
- Immunology, Metastasis & Microenvironment Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Rafael J Argüello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Jennifer A Philips
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA; Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lu Huang
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
3
|
Wang J, Cao H, Yang H, Wang N, Weng Y, Luo H. The function of CD36 in Mycobacterium tuberculosis infection. Front Immunol 2024; 15:1413947. [PMID: 38881887 PMCID: PMC11176518 DOI: 10.3389/fimmu.2024.1413947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
CD36 is a scavenger receptor that has been reported to function as a signaling receptor that responds to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and could integrate metabolic pathways and cell signaling through its dual functions. Thereby influencing activation to regulate the immune response and immune cell differentiation. Recent studies have revealed that CD36 plays critical roles in the process of lipid metabolism, inflammatory response and immune process caused by Mycobacterium tuberculosis infection. This review will comprehensively investigate CD36's functions in lipid uptake and processing, inflammatory response, immune response and therapeutic targets and biomarkers in the infection process of M. tuberculosis. The study also raised outstanding issues in this field to designate future directions.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Hongwei Yang
- Department of Clinical Laboratory, Suzhou BOE Hospital, Suzhou, Jiangsu, China
| | - Nan Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, China
| | - Yiwei Weng
- Department of Clinical Laboratory, The Fourth People’s Hospital of Kunshan, Suzhou, Jiangsu, China
| | - Hao Luo
- Department of Clinical Laboratory, The Second People's Hospital of Kunshan, Suzhou, China
| |
Collapse
|
4
|
Zihad SNK, Sifat N, Islam MA, Monjur-Al-Hossain A, Sikdar KYK, Sarker MMR, Shilpi JA, Uddin SJ. Role of pattern recognition receptors in sensing Mycobacterium tuberculosis. Heliyon 2023; 9:e20636. [PMID: 37842564 PMCID: PMC10570006 DOI: 10.1016/j.heliyon.2023.e20636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 09/06/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
Mycobacterium tuberculosis is one of the major invasive intracellular pathogens causing most deaths by a single infectious agent. The interaction between host immune cells and this pathogen is the focal point of the disease, Tuberculosis. Host immune cells not only mount the protective action against this pathogen but also serve as the primary niche for growth. Thus, recognition of this pathogen by host immune cells and following signaling cascades are key dictators of the disease state. Immune cells, mainly belonging to myeloid cell lineage, recognize a wide variety of Mycobacterium tuberculosis ligands ranging from carbohydrate and lipids to proteins to nucleic acids by different membrane-bound and soluble pattern recognition receptors. Simultaneous interaction between different host receptors and pathogen ligands leads to immune-inflammatory response as well as contributes to virulence. This review summarizes the contribution of pattern recognition receptors of host immune cells in recognizing Mycobacterium tuberculosis and subsequent initiation of signaling pathways to provide the molecular insight of the specific Mtb ligands interacting with specific PRR, key adaptor molecules of the downstream signaling pathways and the resultant effector functions which will aid in identifying novel drug targets, and developing novel drugs and adjuvants.
Collapse
Affiliation(s)
| | - Nazifa Sifat
- Department of Pharmacy, ASA University of Bangladesh, Dhaka, 1207, Bangladesh
| | | | | | | | - Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhaka, 1205, Bangladesh
- Department of Pharmacy, Gono University, Nolam, Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - Jamil A. Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
5
|
Prakhar P, Bhatt B, Lohia GK, Shah A, Mukherjee T, Kolthur-Seetharam U, Sundaresan NR, Rajmani RS, Balaji KN. G9a and Sirtuin6 epigenetically modulate host cholesterol accumulation to facilitate mycobacterial survival. PLoS Pathog 2023; 19:e1011731. [PMID: 37871034 PMCID: PMC10621959 DOI: 10.1371/journal.ppat.1011731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/02/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023] Open
Abstract
Cholesterol derived from the host milieu forms a critical factor for mycobacterial pathogenesis. However, the molecular circuitry co-opted by Mycobacterium tuberculosis (Mtb) to accumulate cholesterol in host cells remains obscure. Here, we report that the coordinated action of WNT-responsive histone modifiers G9a (H3K9 methyltransferase) and SIRT6 (H3K9 deacetylase) orchestrate cholesterol build-up in in vitro and in vivo mouse models of Mtb infection. Mechanistically, G9a, along with SREBP2, drives the expression of cholesterol biosynthesis and uptake genes; while SIRT6 along with G9a represses the genes involved in cholesterol efflux. The accumulated cholesterol in Mtb infected macrophages promotes the expression of antioxidant genes leading to reduced oxidative stress, thereby supporting Mtb survival. In corroboration, loss-of-function of G9a in vitro and pharmacological inhibition in vivo; or utilization of BMDMs derived from Sirt6-/- mice or in vivo infection in haplo-insufficient Sirt6-/+ mice; hampered host cholesterol accumulation and restricted Mtb burden. These findings shed light on the novel roles of G9a and SIRT6 during Mtb infection and highlight the previously unknown contribution of host cholesterol in potentiating anti-oxidative responses for aiding Mtb survival.
Collapse
Affiliation(s)
- Praveen Prakhar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Bharat Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Gaurav Kumar Lohia
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Awantika Shah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Tanushree Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Nagalingam R. Sundaresan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Raju S. Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore–, Karnataka, India
| | | |
Collapse
|
6
|
Chang CY, Armstrong D, Corry DB, Kheradmand F. Alveolar macrophages in lung cancer: opportunities challenges. Front Immunol 2023; 14:1268939. [PMID: 37822933 PMCID: PMC10562548 DOI: 10.3389/fimmu.2023.1268939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Alveolar macrophages (AMs) are critical components of the innate defense mechanism in the lung. Nestled tightly within the alveoli, AMs, derived from the yolk-sac or bone marrow, can phagocytose foreign particles, defend the host against pathogens, recycle surfactant, and promptly respond to inhaled noxious stimuli. The behavior of AMs is tightly dependent on the environmental cues whereby infection, chronic inflammation, and associated metabolic changes can repolarize their effector functions in the lungs. Several factors within the tumor microenvironment can re-educate AMs, resulting in tumor growth, and reducing immune checkpoint inhibitors (ICIs) efficacy in patients treated for non-small cell lung cancer (NSCLC). The plasticity of AMs and their critical function in altering tumor responses to ICIs make them a desirable target in lung cancer treatment. New strategies have been developed to target AMs in solid tumors reprograming their suppressive function and boosting the efficacy of ICIs. Here, we review the phenotypic and functional changes in AMs in response to sterile inflammation and in NSCLC that could be critical in tumor growth and metastasis. Opportunities in altering AMs' function include harnessing their potential function in trained immunity, a concept borrowed from memory response to infections, which could be explored therapeutically in managing lung cancer treatment.
Collapse
Affiliation(s)
- Cheng-Yen Chang
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Dominique Armstrong
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - David B. Corry
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, United States
| | - Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, United States
| |
Collapse
|
7
|
Gail DP, Suzart VG, Du W, Kaur Sandhu A, Jarvela J, Nantongo M, Mwebaza I, Panigrahi S, Freeman ML, Canaday DH, Boom WH, Silver RF, Carpenter SM. Mycobacterium tuberculosis impairs human memory CD4 + T cell recognition of M2 but not M1-like macrophages. iScience 2023; 26:107706. [PMID: 37694142 PMCID: PMC10485162 DOI: 10.1016/j.isci.2023.107706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Direct recognition of Mycobacterium tuberculosis (Mtb)-infected cells is required for protection by CD4+ T cells. While impaired T cell recognition of Mtb-infected macrophages was demonstrated in mice, data are lacking for humans. Using T cells and monocyte-derived macrophages (MDMs) from individuals with latent Mtb infection (LTBI), we quantified the frequency of memory CD4+ T cell activation in response to autologous MDMs infected with virulent Mtb. We observed robust T cell activation in response to Mtb infection of M1-like macrophages differentiated using GM-CSF, while M2-like macrophages differentiated using M-CSF were poorly recognized. However, non-infected GM-CSF and M-CSF MDMs loaded with exogenous antigens elicited similar CD4+ T cell activation. IL-10 was preferentially secreted by infected M-CSF MDMs, and neutralization improved T cell activation. These results suggest that preferential infection of macrophages with an M2-like phenotype limits T cell-mediated protection against Mtb. Vaccine development should focus on T cell recognition of Mtb-infected macrophages.
Collapse
Affiliation(s)
- Daniel P. Gail
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Vinicius G. Suzart
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Weinan Du
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Avinaash Kaur Sandhu
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jessica Jarvela
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Medicine, The Louis Stokes Cleveland V.A. Medical Center, Cleveland, OH 44106, USA
| | - Mary Nantongo
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ivan Mwebaza
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Soumya Panigrahi
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Michael L. Freeman
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - David H. Canaday
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Medicine, The Louis Stokes Cleveland V.A. Medical Center, Cleveland, OH 44106, USA
| | - W. Henry Boom
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44139, USA
| | - Richard F. Silver
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Medicine, The Louis Stokes Cleveland V.A. Medical Center, Cleveland, OH 44106, USA
| | - Stephen M. Carpenter
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Biomedical Sciences Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44139, USA
| |
Collapse
|
8
|
Smith LC, Gow AJ, Abramova E, Vayas K, Guo C, Noto J, Lyman J, Rodriquez J, Gelfand-Titiyevskiy B, Malcolm C, Laskin JD, Laskin DL. Role of PPARγ in dyslipidemia and altered pulmonary functioning in mice following ozone exposure. Toxicol Sci 2023; 194:109-119. [PMID: 37202362 PMCID: PMC10306402 DOI: 10.1093/toxsci/kfad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Exposure to ozone causes decrements in pulmonary function, a response associated with alterations in lung lipids. Pulmonary lipid homeostasis is dependent on the activity of peroxisome proliferator activated receptor gamma (PPARγ), a nuclear receptor that regulates lipid uptake and catabolism by alveolar macrophages (AMs). Herein, we assessed the role of PPARγ in ozone-induced dyslipidemia and aberrant lung function in mice. Exposure of mice to ozone (0.8 ppm, 3 h) resulted in a significant reduction in lung hysteresivity at 72 h post exposure; this correlated with increases in levels of total phospholipids, specifically cholesteryl esters, ceramides, phosphatidylcholines, phosphorylethanolamines, sphingomyelins, and di- and triacylglycerols in lung lining fluid. This was accompanied by a reduction in relative surfactant protein-B (SP-B) content, consistent with surfactant dysfunction. Administration of the PPARγ agonist, rosiglitazone (5 mg/kg/day, i.p.) reduced total lung lipids, increased relative amounts of SP-B, and normalized pulmonary function in ozone-exposed mice. This was associated with increases in lung macrophage expression of CD36, a scavenger receptor important in lipid uptake and a transcriptional target of PPARγ. These findings highlight the role of alveolar lipids as regulators of surfactant activity and pulmonary function following ozone exposure and suggest that targeting lipid uptake by lung macrophages may be an efficacious approach for treating altered respiratory mechanics.
Collapse
Affiliation(s)
- Ley Cody Smith
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, Connecticut 06269, USA
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Elena Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Kinal Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Changjiang Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jack Noto
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jack Lyman
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jessica Rodriquez
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Benjamin Gelfand-Titiyevskiy
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Callum Malcolm
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
9
|
King SD, Cai D, Fraunfelder MM, Chen SY. Surfactant protein A promotes atherosclerosis through mediating macrophage foam cell formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533959. [PMID: 36993244 PMCID: PMC10055352 DOI: 10.1101/2023.03.23.533959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Atherosclerosis is a progressive inflammatory disease where macrophage foam cells play a central role in the pathogenesis. Surfactant protein A (SPA) is a lipid-associating protein involved with regulating macrophage function in various inflammatory diseases. However, the role of SPA in atherosclerosis and macrophage foam cell formation has not been investigated. METHODS Primary resident peritoneal macrophages were extracted from wildtype (WT) and SPA deficient (SPA -/- ) mice to determine the functional effects of SPA in macrophage foam cell formation. SPA expression was assessed in healthy vessels and atherosclerotic aortic tissue from the human coronary artery and WT or apolipoprotein e-deficient (ApoE -/- ) mice brachiocephalic arteries fed high fat diets (HFD) for 4 weeks. Hypercholesteremic WT and SPA -/- mice fed a HFD for 6 weeks were investigated for atherosclerotic lesions in vivo . RESULTS In vitro experiments revealed that global SPA deficiency reduced intracellular cholesterol accumulation and macrophage foam cell formation. Mechanistically, SPA -/- dramatically decreased CD36 cellular and mRNA expression. SPA expression was increased in atherosclerotic lesions in humans and ApoE -/- mice. In vivo SPA deficiency attenuated atherosclerosis and reduced the number of lesion-associated macrophage foam cells. CONCLUSIONS Our results elucidate that SPA is a novel factor for atherosclerosis development. SPA enhances macrophage foam cell formation and atherosclerosis through increasing scavenger receptor cluster of differentiation antigen 36 (CD36) expression.
Collapse
|
10
|
Llibre A, Smith N, Rouilly V, Musvosvi M, Nemes E, Posseme C, Mabwe S, Charbit B, Mbandi SK, Filander E, Africa H, Saint-André V, Bondet V, Bost P, Mulenga H, Bilek N, Albert ML, Scriba TJ, Duffy D. Tuberculosis alters immune-metabolic pathways resulting in perturbed IL-1 responses. Front Immunol 2022; 13:897193. [PMID: 36591308 PMCID: PMC9795069 DOI: 10.3389/fimmu.2022.897193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) remains a major public health problem and we lack a comprehensive understanding of how Mycobacterium tuberculosis (M. tb) infection impacts host immune responses. We compared the induced immune response to TB antigen, BCG and IL-1β stimulation between latently M. tb infected individuals (LTBI) and active TB patients. This revealed distinct responses between TB/LTBI at transcriptomic, proteomic and metabolomic levels. At baseline, we identified a novel immune-metabolic association between pregnane steroids, the PPARγ pathway and elevated plasma IL-1ra in TB. We observed dysregulated IL-1 responses after BCG stimulation in TB patients, with elevated IL-1ra responses being explained by upstream TNF differences. Additionally, distinct secretion of IL-1α/IL-1β in LTBI/TB after BCG stimulation was associated with downstream differences in granzyme mediated cleavage. Finally, IL-1β driven signalling was dramatically perturbed in TB disease but was completely restored after successful treatment. This study improves our knowledge of how immune responses are altered during TB disease, and may support the design of improved preventive and therapeutic tools, including host-directed strategies.
Collapse
Affiliation(s)
- Alba Llibre
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nikaïa Smith
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | | | - Munyaradzi Musvosvi
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Céline Posseme
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Simbarashe Mabwe
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Bruno Charbit
- Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Elizabeth Filander
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Hadn Africa
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Violaine Saint-André
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France,Bioinformatics and Biostatistics HUB, Computational Biology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Pierre Bost
- Sorbonne Université, Complexité du vivant, Paris, France,Systems Biology Group, Computational Biology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Humphrey Mulenga
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicole Bilek
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France,Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Université Paris Cité, Paris, France,*Correspondence: Darragh Duffy,
| |
Collapse
|
11
|
Alveolar macrophage metabolic programming via a C-type lectin receptor protects against lipo-toxicity and cell death. Nat Commun 2022; 13:7272. [PMID: 36433992 PMCID: PMC9700784 DOI: 10.1038/s41467-022-34935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/12/2022] [Indexed: 11/27/2022] Open
Abstract
Alveolar macrophages (AM) hold lung homeostasis intact. In addition to the defense against inhaled pathogens and deleterious inflammation, AM also maintain pulmonary surfactant homeostasis, a vital lung function that prevents pulmonary alveolar proteinosis. Signals transmitted between AM and pneumocytes of the pulmonary niche coordinate these specialized functions. However, the mechanisms that guide the metabolic homeostasis of AM remain largely elusive. We show that the NK cell-associated receptor, NKR-P1B, is expressed by AM and is essential for metabolic programming. Nkrp1b-/- mice are vulnerable to pneumococcal infection due to an age-dependent collapse in the number of AM and the formation of lipid-laden AM. The AM of Nkrp1b-/- mice show increased uptake but defective metabolism of surfactant lipids. We identify a physical relay between AM and alveolar type-II pneumocytes that is dependent on pneumocyte Clr-g expression. These findings implicate the NKR-P1B:Clr-g signaling axis in AM-pneumocyte communication as being important for maintaining metabolism in AM.
Collapse
|
12
|
Al-Sayyar A, Hulme KD, Thibaut R, Bayry J, Sheedy FJ, Short KR, Alzaid F. Respiratory Tract Infections in Diabetes - Lessons From Tuberculosis and Influenza to Guide Understanding of COVID-19 Severity. Front Endocrinol (Lausanne) 2022; 13:919223. [PMID: 35957811 PMCID: PMC9363013 DOI: 10.3389/fendo.2022.919223] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with type-2 diabetes (T2D) are more likely to develop severe respiratory tract infections. Such susceptibility has gained increasing attention since the global spread of Coronavirus Disease 2019 (COVID-19) in early 2020. The earliest reports marked T2D as an important risk-factor for severe forms of disease and mortality across all adult age groups. Several mechanisms have been proposed for this increased susceptibility, including pre-existing immune dysfunction, a lack of metabolic flexibility due to insulin resistance, inadequate dietary quality or adverse interactions with antidiabetic treatments or common comorbidities. Some mechanisms that predispose patients with T2D to severe COVID-19 may indeed be shared with other previously characterized respiratory tract infections. Accordingly, in this review, we give an overview of response to Influenza A virus and to Mycobacterium tuberculosis (Mtb) infections. Similar risk factors and mechanisms are discussed between the two conditions and in the case of COVID-19. Lastly, we address emerging approaches to address research needs in infection and metabolic disease, and perspectives with regards to deployment or repositioning of metabolically active therapeutics.
Collapse
Affiliation(s)
| | - Katina D. Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Ronan Thibaut
- Institut Necker Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1151/CNRS UMRS8253, Immunity and Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, Paris, France
| | - Jagadeesh Bayry
- Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad, India
| | | | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Fawaz Alzaid
- Dasman Diabetes Institute, Dasman, Kuwait
- Institut Necker Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1151/CNRS UMRS8253, Immunity and Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, Paris, France
| |
Collapse
|
13
|
Soni S, O'Dea KP, Abe E, Khamdan M, Shah SV, Sarathchandra P, Wilson MR, Takata M. Microvesicle-Mediated Communication Within the Alveolar Space: Mechanisms of Uptake by Epithelial Cells and Alveolar Macrophages. Front Immunol 2022; 13:853769. [PMID: 35572508 PMCID: PMC9094433 DOI: 10.3389/fimmu.2022.853769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Intra-alveolar microvesicles (MVs) are important mediators of inter-cellular communication within the alveolar space, and are key components in the pathophysiology of lung inflammation such as acute respiratory distress syndrome (ARDS). Despite the abundance of data detailing the pro-inflammatory effects of MVs, it remains unclear how MVs interact or signal with target cells in the alveolus. Using both in vivo and in vitro alveolar models, we analyzed the dynamics of MV uptake by resident alveolar cells: alveolar macrophages and epithelial cells. Under resting conditions, the overwhelming majority of MVs were taken up by alveolar macrophages. However, following lipopolysaccharide (LPS)-mediated inflammation, epithelial cells internalized significantly more MVs (p<0.01) whilst alveolar macrophage internalization was significantly reduced (p<0.01). We found that alveolar macrophages adopted a pro-inflammatory phenotype after internalizing MVs under resting conditions, but reduction of MV uptake following LPS pre-treatment was associated with loss of inflammatory phenotype. Instead, MVs induced significant epithelial cell inflammation following LPS pre-treatment, when MV internalization was most significant. Using pharmacological inhibitors, we interrogated the mechanisms of MV internalization to identify which endocytic pathways and cell surface receptors are involved. We demonstrated that epithelial cells are exclusively dependent on the clathrin and caveolin dependent endocytotic pathway, whereas alveolar macrophage uptake may involve a significant phagocytic component. Furthermore, alveolar macrophages predominantly engulf MVs via scavenger receptors whilst, epithelial cells internalize MVs via a phosphatidylserine/integrin receptor mediated pathway (specifically alpha V beta III), which can be inhibited with phosphatidylserine-binding protein (i.e. annexin V). In summary, we have undertaken a comprehensive evaluation of MV internalization within the alveolar space. Our results demonstrate that different environmental conditions can modulate MV internalization, with inflammatory stimuli strongly enhancing epithelial cell uptake of MVs and inducing epithelial cell activation. Our data reveal the unique mechanisms by which alveolar macrophages and epithelial cells internalize MVs thereby elucidating how MVs exert their pathophysiological effect during lung inflammation and injury. As MVs are potential novel therapeutic targets in conditions such as ARDS, these data provide crucial insights into the dynamics of MV-target cell interactions and highlight potential avenues for researchers to modulate and inhibit their pro-inflammatory actions within the alveolar space.
Collapse
Affiliation(s)
- Sanooj Soni
- Division of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Kieran P O'Dea
- Division of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Eiko Abe
- Division of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Maryam Khamdan
- Division of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Sneh V Shah
- Division of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Padmini Sarathchandra
- National Heart & Lung Institute, Imperial College London, Heart Science Centre, Harefield Hospital, Harefield, United Kingdom
| | - Michael R Wilson
- Division of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Masao Takata
- Division of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| |
Collapse
|
14
|
Ye Y, Liu J, Guo Y, Gao Y, Rao J, Su R, Zhang L, Huang Z, Luo Q, Li J. PPARγ Ameliorates Mycobacterium tuberculosis H37Ra-Induced Foamy Macrophage Formation via the ABCG1-Dependent Cholesterol Efflux Pathway in THP-1 Macrophages. Front Microbiol 2022; 13:829870. [PMID: 35432274 PMCID: PMC9008364 DOI: 10.3389/fmicb.2022.829870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Foamy macrophages are present during the course of Mycobacterium tuberculosis (Mtb) infection and seems to be nutrient-rich reservoir and secure reservoir for the bacilli, which leads to bacterial persistence and infection transmission. Peroxisome proliferator activated receptor γ (PPARγ) is a key transcription factor for cholesterol metabolism in macrophages and its role in regulating atherosclerosis related foamy macrophages (FMs) formation has been well-studied. However, knowledge about the mechanism of PPARγ regulating Mtb infection induced FM formation remains very limited. In this study, we investigate the functional role of PPARγ in Mtb H37Ra infection-induced foamy macrophages formation. H37Ra infection induced a time-dependent decreased expression of PPARγ that paralleled the augmented lipid body formation in THP1-derived macrophages. PPARγ antagonist GW9662 significantly potentiate H37Ra induced lipid body formation and inhibit ABCG1 expression, overexpression of ABCG1 by transduced macrophages with lentivirus significantly reversed the promotion effect of GW9662 on FM formation. Moreover, Treatment with a TLR2 neutralizing antibody ameliorated the activation of ABCG1 by Mtb H37Ra without significantly effecting the suppression of PPARγ, suggesting a greater role for TLR2 to regulate ABCG1 compared to PPARγ. Overall, this study showed that PPARγ is involved in ameliorating FM formation by regulating ABCG1 expression, these observations expose a novel role of PPARγ in the Mtb infection induced FM formation.
Collapse
|
15
|
Kalra R, Tiwari D, Dkhar HK, Bhagyaraj E, Kumar R, Bhardwaj A, Gupta P. Host factors subverted by Mycobacterium tuberculosis: Potential targets for host directed therapy. Int Rev Immunol 2021; 42:43-70. [PMID: 34678117 DOI: 10.1080/08830185.2021.1990277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Despite new approaches in the diagnosis and treatment of tuberculosis (TB), it continues to be a major health burden. Several immunotherapies that potentiate the immune response have come up as adjuncts to drug therapies against drug resistant TB strains; however, there needs to be an urgent appraisal of host specific drug targets for improving their clinical management and to curtail disease progression. Presently, various host directed therapies (HDTs) exist (repurposed drugs, nutraceuticals, monoclonal antibodies and immunomodulatory agents), but these mostly address molecules that combat disease progression. AREAS COVERED The current review discusses major Mycobacterium tuberculosis (M. tuberculosis) survival paradigms inside the host and presents a plethora of host targets subverted by M. tuberculosis which can be further explored for future HDTs. The host factors unique to M. tuberculosis infection (in humans) have also been identified through an in-silico interaction mapping. EXPERT OPINION HDTs could become the next-generation adjunct therapies in order to counter antimicrobial resistance and virulence, as well as to reduce the duration of existing TB treatments. However, current scientific efforts are largely directed toward combatants rather than host molecules co-opted by M. tuberculosis for its survival. This might drive the immune system to a hyper-inflammatory condition; therefore, we emphasize that host factors subverted by M. tuberculosis, and their subsequent neutralization, must be considered for development of better HDTs.
Collapse
Affiliation(s)
- Rashi Kalra
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Drishti Tiwari
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Hedwin Kitdorlang Dkhar
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Ella Bhagyaraj
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Rakesh Kumar
- Bioinformatics Center, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anshu Bhardwaj
- Bioinformatics Center, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pawan Gupta
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
16
|
Pu W, Zhao C, Wazir J, Su Z, Niu M, Song S, Wei L, Li L, Zhang X, Shi X, Wang H. Comparative transcriptomic analysis of THP-1-derived macrophages infected with Mycobacterium tuberculosis H37Rv, H37Ra and BCG. J Cell Mol Med 2021; 25:10504-10520. [PMID: 34632719 PMCID: PMC8581329 DOI: 10.1111/jcmm.16980] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) remains a worldwide healthcare concern, and the exploration of the host‐pathogen interaction is essential to develop therapeutic modalities and strategies to control Mycobacterium tuberculosis (M.tb). In this study, RNA sequencing (transcriptome sequencing) was employed to investigate the global transcriptome changes in the macrophages during the different strains of M.tb infection. THP‐1 cells derived from macrophages were exposed to the virulent M.tb strain H37Rv (Rv) or the avirulent M.tb strain H37Ra (Ra), and the M.tb BCG vaccine strain was used as a control. The cDNA libraries were prepared from M.tb‐infected macrophages and then sequenced. To assess the transcriptional differences between the expressed genes, the bioinformatics analysis was performed using a standard pipeline of quality control, reference mapping, differential expression analysis, protein‐protein interaction (PPI) networks, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Q‐PCR and Western blot assays were also performed to validate the data. Our findings indicated that, when compared to BCG or M.tb H37Ra infection, the transcriptome analysis identified 66 differentially expressed genes in the M.tb H37Rv‐infected macrophages, out of which 36 genes were up‐regulated, and 30 genes were down‐regulated. The up‐regulated genes were associated with immune response regulation, chemokine secretion, and leucocyte chemotaxis. In contrast, the down‐regulated genes were associated with amino acid biosynthetic and energy metabolism, connective tissue development and extracellular matrix organization. The Q‐PCR and Western blot assays confirmed increased expression of pro‐inflammatory factors, altered energy metabolic processes, enhanced activation of pro‐inflammatory signalling pathways and increased pyroptosis in H37Rv‐infected macrophage. Overall, our RNA sequencing‐based transcriptome study successfully identified a comprehensive, in‐depth gene expression/regulation profile in M.tb‐infected macrophages. The results demonstrated that virulent M.tb strain H37Rv infection triggers a more severe inflammatory immune response associated with increased tissue damage, which helps in understanding the host‐pathogen interaction dynamics and pathogenesis features in different strains of M.tb infection.
Collapse
Affiliation(s)
- Wenyuan Pu
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China.,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Chen Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China.,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Junaid Wazir
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China.,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Zhonglan Su
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengyuan Niu
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China.,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Shiyu Song
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China.,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Lulu Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China.,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Li Li
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China.,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xia Zhang
- Nanjing Public Health Clinical Center, the Second hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xudong Shi
- Nanjing Public Health Clinical Center, the Second hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China.,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Shoger KE, Cheemalavagu N, Cao YM, Michalides BA, Chaudhri VK, Cohen JA, Singh H, Gottschalk RA. CISH attenuates homeostatic cytokine signaling to promote lung-specific macrophage programming and function. Sci Signal 2021; 14:eabe5137. [PMID: 34516753 DOI: 10.1126/scisignal.abe5137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Karsen E Shoger
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Neha Cheemalavagu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yuqi M Cao
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Brandon A Michalides
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Virendra K Chaudhri
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jonathan A Cohen
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Harinder Singh
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rachel A Gottschalk
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
18
|
Tanigawa K, Luo Y, Kawashima A, Kiriya M, Nakamura Y, Karasawa K, Suzuki K. Essential Roles of PPARs in Lipid Metabolism during Mycobacterial Infection. Int J Mol Sci 2021; 22:ijms22147597. [PMID: 34299217 PMCID: PMC8304230 DOI: 10.3390/ijms22147597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
The mycobacterial cell wall is composed of large amounts of lipids with varying moieties. Some mycobacteria species hijack host cells and promote lipid droplet accumulation to build the cellular environment essential for their intracellular survival. Thus, lipids are thought to be important for mycobacteria survival as well as for the invasion, parasitization, and proliferation within host cells. However, their physiological roles have not been fully elucidated. Recent studies have revealed that mycobacteria modulate the peroxisome proliferator-activated receptor (PPAR) signaling and utilize host-derived triacylglycerol (TAG) and cholesterol as both nutrient sources and evasion from the host immune system. In this review, we discuss recent findings that describe the activation of PPARs by mycobacterial infections and their role in determining the fate of bacilli by inducing lipid metabolism, anti-inflammatory function, and autophagy.
Collapse
Affiliation(s)
- Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (K.T.); (Y.N.); (K.K.)
| | - Yuqian Luo
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (Y.L.); (A.K.); (M.K.)
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (Y.L.); (A.K.); (M.K.)
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (Y.L.); (A.K.); (M.K.)
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (K.T.); (Y.N.); (K.K.)
| | - Ken Karasawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (K.T.); (Y.N.); (K.K.)
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (Y.L.); (A.K.); (M.K.)
- Correspondence: ; Tel.: +81-3-3964-1211
| |
Collapse
|
19
|
Dubé JY, Fava VM, Schurr E, Behr MA. Underwhelming or Misunderstood? Genetic Variability of Pattern Recognition Receptors in Immune Responses and Resistance to Mycobacterium tuberculosis. Front Immunol 2021; 12:714808. [PMID: 34276708 PMCID: PMC8278570 DOI: 10.3389/fimmu.2021.714808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022] Open
Abstract
Human genetic control is thought to affect a considerable part of the outcome of infection with Mycobacterium tuberculosis (Mtb). Most of us deal with the pathogen by containment (associated with clinical "latency") or sterilization, but tragically millions each year do not. After decades of studies on host genetic susceptibility to Mtb infection, genetic variation has been discovered to play a role in tuberculous immunoreactivity and tuberculosis (TB) disease. Genes encoding pattern recognition receptors (PRRs) enable a consistent, molecularly direct interaction between humans and Mtb which suggests the potential for co-evolution. In this review, we explore the roles ascribed to PRRs during Mtb infection and ask whether such a longstanding and intimate interface between our immune system and this pathogen plays a critical role in determining the outcome of Mtb infection. The scientific evidence to date suggests that PRR variation is clearly implicated in altered immunity to Mtb but has a more subtle role in limiting the pathogen and pathogenesis. In contrast to 'effectors' like IFN-γ, IL-12, Nitric Oxide and TNF that are critical for Mtb control, 'sensors' like PRRs are less critical for the outcome of Mtb infection. This is potentially due to redundancy of the numerous PRRs in the innate arsenal, such that Mtb rarely goes unnoticed. Genetic association studies investigating PRRs during Mtb infection should therefore be designed to investigate endophenotypes of infection - such as immunological or clinical variation - rather than just TB disease, if we hope to understand the molecular interface between innate immunity and Mtb.
Collapse
Affiliation(s)
- Jean-Yves Dubé
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
| | - Vinicius M. Fava
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
| | - Erwin Schurr
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Marcel A. Behr
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
20
|
Palma C, La Rocca C, Gigantino V, Aquino G, Piccaro G, Di Silvestre D, Brambilla F, Rossi R, Bonacina F, Lepore MT, Audano M, Mitro N, Botti G, Bruzzaniti S, Fusco C, Procaccini C, De Rosa V, Galgani M, Alviggi C, Puca A, Grassi F, Rezzonico-Jost T, Norata GD, Mauri P, Netea MG, de Candia P, Matarese G. Caloric Restriction Promotes Immunometabolic Reprogramming Leading to Protection from Tuberculosis. Cell Metab 2021; 33:300-318.e12. [PMID: 33421383 DOI: 10.1016/j.cmet.2020.12.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/13/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
There is a strong relationship between metabolic state and susceptibility to Mycobacterium tuberculosis (MTB) infection, with energy metabolism setting the basis for an exaggerated immuno-inflammatory response, which concurs with MTB pathogenesis. Herein, we show that controlled caloric restriction (CR), not leading to malnutrition, protects susceptible DBA/2 mice against pulmonary MTB infection by reducing bacterial load, lung immunopathology, and generation of foam cells, an MTB reservoir in lung granulomas. Mechanistically, CR induced a metabolic shift toward glycolysis, and decreased both fatty acid oxidation and mTOR activity associated with induction of autophagy in immune cells. An integrated multi-omics approach revealed a specific CR-induced metabolomic, transcriptomic, and proteomic signature leading to reduced lung damage and protective remodeling of lung interstitial tightness able to limit MTB spreading. Our data propose CR as a feasible immunometabolic manipulation to control MTB infection, and this approach offers an unexpected strategy to boost immunity against MTB.
Collapse
Affiliation(s)
- Carla Palma
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy.
| | - Claudia La Rocca
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Vincenzo Gigantino
- Pathology Unit, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, 80131 Naples, Italy
| | - Gabriella Aquino
- Pathology Unit, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, 80131 Naples, Italy
| | - Giovanni Piccaro
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Dario Di Silvestre
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche (ITB-CNR), 20090 Segrate, Milano, Italy
| | - Francesca Brambilla
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche (ITB-CNR), 20090 Segrate, Milano, Italy
| | - Rossana Rossi
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche (ITB-CNR), 20090 Segrate, Milano, Italy
| | - Fabrizia Bonacina
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Maria Teresa Lepore
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Matteo Audano
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Nico Mitro
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Gerardo Botti
- Scientific Directorate, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, 80131 Naples, Italy
| | - Sara Bruzzaniti
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", 80126 Napoli, Italy
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Claudio Procaccini
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Roma, Italy
| | - Veronica De Rosa
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Roma, Italy
| | - Mario Galgani
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Carlo Alviggi
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Department of Neuroscience, Reproductive Science, and Odontostomatology, University of Naples, Federico II, Naples, Italy
| | - Annibale Puca
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi-Salerno, Italy; IRCCS MultiMedica, 20138 Milano, Italy
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Tanja Rezzonico-Jost
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Giuseppe Danilo Norata
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy; Center for the Study of Atherosclerosis, Società Italiana Studio Aterosclerosi, Bassini Hospital, 20092 Cinisello Balsamo, Milano, Italy
| | - Pierluigi Mauri
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche (ITB-CNR), 20090 Segrate, Milano, Italy; Istituto di Scienze della Vita, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Mihai G Netea
- Radboud Center for Infectious Diseases and Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | | | - Giuseppe Matarese
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy.
| |
Collapse
|
21
|
Sheedy FJ, Divangahi M. Targeting immunometabolism in host defence against Mycobacterium tuberculosis. Immunology 2021; 162:145-159. [PMID: 33020911 PMCID: PMC7808148 DOI: 10.1111/imm.13276] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
In the face of ineffective vaccines, increasing antibiotic resistance and the decline in new antibacterial drugs in the pipeline, tuberculosis (TB) still remains pandemic. Exposure to Mycobacterium tuberculosis (Mtb), which causes TB, results in either direct elimination of the pathogen, most likely by the innate immune system, or infection and containment that requires both innate and adaptive immunity to form the granuloma. Host defence strategies against infectious diseases are comprised of both host resistance, which is the ability of the host to prevent invasion or to eliminate the pathogen, and disease tolerance, which is defined by limiting the collateral tissue damage. In this review, we aim to examine the metabolic demands of the immune cells involved in both host resistance and disease tolerance, chiefly the macrophage and T-lymphocyte. We will further discuss how baseline metabolic heterogeneity and inflammation-driven metabolic reprogramming during infection are linked to their key immune functions containing mycobacterial growth and instructing protective immunity. Targeting key players in immune cellular metabolism may provide a novel opportunity for treatments at different stages of TB disease.
Collapse
Affiliation(s)
- Frederick J. Sheedy
- School of Biochemistry & ImmunologyTrinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
| | - Maziar Divangahi
- Meakins‐Christie LaboratoriesDepartment of MedicineDepartment of PathologyDepartment of Microbiology & ImmunologyMcGill University Health CentreMcGill International TB CentreMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
22
|
Thacker VV, Dhar N, Sharma K, Barrile R, Karalis K, McKinney JD. A lung-on-chip model of early Mycobacterium tuberculosis infection reveals an essential role for alveolar epithelial cells in controlling bacterial growth. eLife 2020; 9:59961. [PMID: 33228849 PMCID: PMC7735758 DOI: 10.7554/elife.59961] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
We establish a murine lung-on-chip infection model and use time-lapse imaging to reveal the dynamics of host-Mycobacterium tuberculosis interactions at an air-liquid interface with a spatiotemporal resolution unattainable in animal models and to probe the direct role of pulmonary surfactant in early infection. Surfactant deficiency results in rapid and uncontrolled bacterial growth in both macrophages and alveolar epithelial cells. In contrast, under normal surfactant levels, a significant fraction of intracellular bacteria are non-growing. The surfactant-deficient phenotype is rescued by exogenous addition of surfactant replacement formulations, which have no effect on bacterial viability in the absence of host cells. Surfactant partially removes virulence-associated lipids and proteins from the bacterial cell surface. Consistent with this mechanism, the attenuation of bacteria lacking the ESX-1 secretion system is independent of surfactant levels. These findings may partly explain why smokers and elderly persons with compromised surfactant function are at increased risk of developing active tuberculosis. Tuberculosis is a contagious respiratory disease caused by the bacterium Mycobacterium tuberculosis. Droplets in the air carry these bacteria deep into the lungs, where they cling onto and infect lung cells. Only small droplets, holding one or two bacteria, can reach the right cells, which means that just a couple of bacterial cells can trigger an infection. But people respond differently to the bacteria: some develop active and fatal forms of tuberculosis, while many show no signs of infection. With no effective tuberculosis vaccine for adults, understanding why individuals respond differently to Mycobacterium tuberculosis may help develop treatments. Different responses to Mycobacterium tuberculosis may stem from the earliest stages of infection, but these stages are difficult to study. For one thing, tracking the movements of the few bacterial cells that initiate infection is tricky. For another, studying the molecules, called ‘surfactants’, that the lungs produce to protect themselves from tuberculosis can prove difficult because these molecules are necessary for the lungs to inflate and deflate normally. Normally, the role of a molecule can be studied by genetically modifying an animal so it does not produce the molecule in question, which provides information as to its potential roles. Unfortunately, due to the role of surfactants in normal breathing, animals lacking them die. Therefore, to reveal the role of some of surfactants in tuberculosis, Thacker et al. used ‘lung-on-chip’ technology. The ‘chip’ (a transparent device made of a polymer compatible with biological tissues) is coated with layers of cells and has channels to simulate air and blood flow. To see what effects surfactants have on M. tuberculosis bacteria, Thacker et al. altered the levels of surfactants produced by the cells on the lung-on-chip device. Two types of mouse cells were grown on the chip: lung cells and immune cells. When cells lacked surfactants, bacteria grew rapidly on both lung and immune cells, but when surfactants were present bacteria grew much slower on both cell types, or did not grow at all. Further probing showed that the surfactants pulled out proteins and fats on the surface of M. tuberculosis that help the bacteria to infect their host, highlighting the protective role of surfactants in tuberculosis. These findings lay the foundations for a system to study respiratory infections without using animals. This will allow scientists to study the early stages of Mycobacterium tuberculosis infection, which is crucial for finding ways to manage tuberculosis.
Collapse
Affiliation(s)
- Vivek V Thacker
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Neeraj Dhar
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Kunal Sharma
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | | | | | - John D McKinney
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
23
|
Genoula M, Marín Franco JL, Maio M, Dolotowicz B, Ferreyra M, Milillo MA, Mascarau R, Moraña EJ, Palmero D, Matteo M, Fuentes F, López B, Barrionuevo P, Neyrolles O, Cougoule C, Lugo-Villarino G, Vérollet C, Sasiain MDC, Balboa L. Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation. PLoS Pathog 2020; 16:e1008929. [PMID: 33002063 PMCID: PMC7553279 DOI: 10.1371/journal.ppat.1008929] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/13/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to persist inside host cells relies on metabolic adaptation, like the accumulation of lipid bodies (LBs) in the so-called foamy macrophages (FM), which are favorable to Mtb. The activation state of macrophages is tightly associated to different metabolic pathways, such as lipid metabolism, but whether differentiation towards FM differs between the macrophage activation profiles remains unclear. Here, we aimed to elucidate whether distinct macrophage activation states exposed to a tuberculosis-associated microenvironment or directly infected with Mtb can form FM. We showed that the triggering of signal transducer and activator of transcription 6 (STAT6) in interleukin (IL)-4-activated human macrophages (M(IL-4)) prevents FM formation induced by pleural effusion from patients with tuberculosis. In these cells, LBs are disrupted by lipolysis, and the released fatty acids enter the β-oxidation (FAO) pathway fueling the generation of ATP in mitochondria. Accordingly, murine alveolar macrophages, which exhibit a predominant FAO metabolism, are less prone to become FM than bone marrow derived-macrophages. Interestingly, direct infection of M(IL-4) macrophages with Mtb results in the establishment of aerobic glycolytic pathway and FM formation, which could be prevented by FAO activation or inhibition of the hypoxia-inducible factor 1-alpha (HIF-1α)-induced glycolytic pathway. In conclusion, our results demonstrate that Mtb has a remarkable capacity to induce FM formation through the rewiring of metabolic pathways in human macrophages, including the STAT6-driven alternatively activated program. This study provides key insights into macrophage metabolism and pathogen subversion strategies.
Collapse
Affiliation(s)
- Melanie Genoula
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina—Toulouse, France
| | - José Luis Marín Franco
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina—Toulouse, France
| | - Mariano Maio
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Belén Dolotowicz
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Malena Ferreyra
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - M. Ayelén Milillo
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Rémi Mascarau
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Eduardo José Moraña
- Instituto Prof. Dr. Raúl Vaccarezza, Hospital de Infecciosas Dr. F.J. Muñiz, Buenos Aires, Argentina
| | - Domingo Palmero
- Instituto Prof. Dr. Raúl Vaccarezza, Hospital de Infecciosas Dr. F.J. Muñiz, Buenos Aires, Argentina
| | - Mario Matteo
- Laboratorio de Tuberculosis y Micobacteriosis “Dr. Abel Cetrángolo”, Hospital de Infecciosas Dr. F.J. Muñiz, Buenos Aires, Argentina
| | - Federico Fuentes
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Beatriz López
- Instituto Nacional de Enfermedades Infecciosas (INEI), ANLIS "Carlos G. Malbrán, Buenos Aires, Argentina
| | - Paula Barrionuevo
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Olivier Neyrolles
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina—Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Céline Cougoule
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina—Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina—Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christel Vérollet
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina—Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - María del Carmen Sasiain
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina—Toulouse, France
| | - Luciana Balboa
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina—Toulouse, France
| |
Collapse
|
24
|
Hackett EE, Sheedy FJ. An Army Marches on Its Stomach: Metabolic Intermediates as Antimicrobial Mediators in Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2020; 10:446. [PMID: 32984072 PMCID: PMC7477320 DOI: 10.3389/fcimb.2020.00446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
The cells of the immune system are reliant on their metabolic state to launch effective responses to combat mycobacterial infections. The bioenergetic profile of the cell determines the molecular fuels and metabolites available to the host, as well as to the bacterial invader. How cells utilize the nutrients in their microenvironment—including glucose, lipids and amino acids—to sustain their functions and produce antimicrobial metabolites, and how mycobacteria exploit this to evade the immune system is of great interest. Changes in flux through metabolic pathways alters the intermediate metabolites present. These intermediates are beginning to be recognized as key modulators of immune signaling as well as direct antimicrobial effectors, and their impact on tuberculosis infection is becoming apparent. A better understanding of how metabolism impacts immunity to Mycobacterium tuberculosis and how it is regulated and thus can be manipulated will open the potential for novel therapeutic interventions and vaccination strategies.
Collapse
Affiliation(s)
- Emer E Hackett
- Macrophage Homeostasis, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Frederick J Sheedy
- Macrophage Homeostasis, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Nutritional status positively impacts humoral immunity against its Mycobacterium tuberculosis, disease progression, and vaccine development. PLoS One 2020; 15:e0237062. [PMID: 32760105 PMCID: PMC7410285 DOI: 10.1371/journal.pone.0237062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 07/20/2020] [Indexed: 11/25/2022] Open
Abstract
Nutritional status contributes to the regulation of immune responses against pathogens, and malnutrition has been considered as a risk factor for tuberculosis (TB). Mycobacterium tuberculosis (Mtb), the causative agent of TB, can modulate host lipid metabolism and induce lipid accumulation in macrophages, where the bacilli adopt a dormant phenotype. In addition, serum lipid components play dual roles in the regulation of and protection from Mtb infection. We analyzed the relationship between nutritional status and the humoral immune response in TB patients. We found that serum HDL levels are positively correlated with the serum IgA specific for Mtb antigens. Analysis of the relationship between serum nutritional parameters and clinical parameters in TB patients showed that serum albumin and CRP levels were negatively correlated before treatment. We also observed reduced serum LDL levels in TB patients following treatment. These findings may provide insight into the role of serum lipids in host immune responses against Mtb infection. Furthermore, improving the nutritional status may enhance vaccination efficacy.
Collapse
|
26
|
Cox DJ, Coleman AM, Gogan KM, Phelan JJ, Ó Maoldomhnaigh C, Dunne PJ, Basdeo SA, Keane J. Inhibiting Histone Deacetylases in Human Macrophages Promotes Glycolysis, IL-1β, and T Helper Cell Responses to Mycobacterium tuberculosis. Front Immunol 2020; 11:1609. [PMID: 32793237 PMCID: PMC7390906 DOI: 10.3389/fimmu.2020.01609] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) is the leading infectious killer in the world. Mycobacterium tuberculosis (Mtb), the bacteria that causes the disease, is phagocytosed by alveolar macrophages (AM) and infiltrating monocyte-derived macrophages (MDM) in the lung. Infected macrophages then upregulate effector functions through epigenetic modifications to make DNA accessible for transcription. The metabolic switch to glycolysis and the production of proinflammatory cytokines are key effector functions, governed by epigenetic changes, that are integral to the ability of the macrophage to mount an effective immune response against Mtb. We hypothesised that suberanilohydroxamic acid (SAHA), an FDA-approved histone deacetylase inhibitor (HDACi), can modulate epigenetic changes upstream of the metabolic switch and support immune responses during Mtb infection. The rate of glycolysis in human MDM, infected with Mtb and treated with SAHA, was tracked in real time on the Seahorse XFe24 Analyzer. SAHA promoted glycolysis early in the response to Mtb. This was associated with significantly increased production of IL-1β and significantly reduced IL-10 in human MDM and AM. Since innate immune function directs downstream adaptive immune responses, we used SAHA-treated Mtb-infected AM or MDM in a co-culture system to stimulate T cells. Mtb-infected macrophages that had previously been treated with SAHA promoted IFN-γ, GM-CSF, and TNF co-production in responding T helper cells but did not affect cytotoxic T cells. These results indicate that SAHA promoted the early switch to glycolysis, increased IL-1β, and reduced IL-10 production in human macrophages infected with Mtb. Moreover, the elevated proinflammatory function of SAHA-treated macrophages resulted in enhanced T helper cell cytokine polyfunctionality. These data provide an in vitro proof-of-concept for the use of HDACi to modulate human immunometabolic processes in macrophages to promote innate and subsequent adaptive proinflammatory responses.
Collapse
Affiliation(s)
- Donal J Cox
- Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, The University of Dublin, Dublin, Ireland
| | - Amy M Coleman
- Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, The University of Dublin, Dublin, Ireland
| | - Karl M Gogan
- Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, The University of Dublin, Dublin, Ireland
| | - James J Phelan
- Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, The University of Dublin, Dublin, Ireland
| | - Cilian Ó Maoldomhnaigh
- Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, The University of Dublin, Dublin, Ireland
| | - Pádraic J Dunne
- Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, The University of Dublin, Dublin, Ireland
| | - Sharee A Basdeo
- Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, The University of Dublin, Dublin, Ireland
| | - Joseph Keane
- Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, The University of Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Banesh S, Trivedi V. Therapeutic Potentials of Scavenger Receptor CD36 Mediated Innate Immune Responses Against Infectious and Non-Infectious Diseases. Curr Drug Discov Technol 2020; 17:299-317. [PMID: 31376823 DOI: 10.2174/1570163816666190802153319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/18/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
CD36 is a multifunctional glycoprotein, expressed in different types of cells and known to play a significant role in the pathophysiology of the host. The structural studies revealed that the scavenger receptor consists of short cytosolic domains, two transmembrane domains, and a large ectodomain. The ectodomain serves as a receptor for a diverse number of endogenous and exogenous ligands. The CD36-specific ligands are involved in regulating the immune response during infectious and non-infectious diseases in the host. The role of CD36 in regulating the innate immune response during Pneumonia, Tuberculosis, Malaria, Leishmaniasis, HIV, and Sepsis in a ligand- mediated fashion. Apart from infectious diseases, it is also considered to be involved in metabolic disorders such as Atherosclerosis, Alzheimer's, cancer, and Diabetes. The ligand binding to scavenger receptor modulates the CD36 down-stream innate immune response, and it can be exploited to design suitable immuno-modulators. Hence, the current review focused on the role of the CD36 in innate immune response and therapeutic potentials of novel heterocyclic compounds as CD36 ligands during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Sooram Banesh
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
28
|
Huang H, Han YS, Chen J, Shi LY, Wei LL, Jiang TT, Yi WJ, Yu Y, Li ZB, Li JC. The novel potential biomarkers for multidrug-resistance tuberculosis using UPLC-Q-TOF-MS. Exp Biol Med (Maywood) 2020; 245:501-511. [PMID: 32046521 DOI: 10.1177/1535370220903464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The lack of rapid and efficient diagnostics impedes largely the epidemic control of multidrug-resistant tuberculosis, and might misguide the therapeutic strategies as well. This study aimed to identify novel multidrug-resistant tuberculosis biomarkers to improve the early intervention, symptomatic treatment and control of the prevalence of multidrug-resistant tuberculosis. The serum small molecule metabolites in healthy controls, patients with drug-susceptible tuberculosis, and patients with multidrug-resistant tuberculosis were screened using ultra-high-performance liquid chromatography combined with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The differentially abundant metabolites were filtered out through multidimensional statistical analysis and bioinformatics analysis. Compared with drug-susceptible tuberculosis patients and healthy controls, the levels of 13 metabolites in multidrug-resistant tuberculosis patients altered. Among them, the most significant changes were found in N1-Methyl-2-pyridone-5-carboxamide (N1M2P5C), 1-Myristoyl-sn-glycerol-3-phosphocholine (MG3P), Caprylic acid (CA), and D-Xylulose (DX). And a multidrug-resistant tuberculosis/drug-susceptible tuberculosis differential diagnostic model was built based on these four metabolites, achieved the accuracy, sensitivity, and specificity of 0.928, 86.7%, and 86.7%, respectively. The enrichment analysis of metabolic pathways showed that the phospholipid remodeling of cell membranes was active in multidrug-resistant tuberculosis patients. In addition, in patients with tuberculosis, the metabolites of dipalmitoyl phosphatidylcholine (DPPC), a major component of pulmonary surfactant, were down-regulated. N1M2P5C, MG3P, CA, and DX may have the potential to serve as novel multidrug-resistant tuberculosis biomarkers. This research provides a preliminary experimental basis to further investigate potential multidrug-resistant tuberculosis biomarkers. Impact statement The MDR-TB incidence remains high, making the effective control of TB epidemic yet challenging. Rapid and accurate diagnosis is vitally important for improving the therapeutic efficacy and controlling the prevalence of drug resistance TB. Metabolomics has dramatic potential to distinguish MDR-TB and DS-TB. N1M2P5C, MG3P, CA, and DX that we identified in this study might have potential as novel MDR-TB biomarkers. The phospholipid remodeling of cell membranes was highly active in MDR-TB. The DPPC metabolites in TB were significantly down-regulated. This work aimed to investigate potential MDR-TB biomarkers to enhance the clinical diagnostic efficacy. The metabolic pathway distinctly altered in MDR-TB might provide novel targets to develop new anti-TB drugs.
Collapse
Affiliation(s)
- Huai Huang
- Medical Research Center, Yue Bei People's Hospital, Shaoguan 512025, China.,School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yu-Shuai Han
- Medical Research Center, Yue Bei People's Hospital, Shaoguan 512025, China.,Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Jing Chen
- Medical Research Center, Yue Bei People's Hospital, Shaoguan 512025, China.,Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Li-Ying Shi
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou 310013, China
| | - Li-Liang Wei
- Department of Pneumology, Shaoxing University Affiliated Hospital, Shaoxing 312099, China
| | - Ting-Ting Jiang
- Medical Research Center, Yue Bei People's Hospital, Shaoguan 512025, China.,Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Wen-Jing Yi
- Medical Research Center, Yue Bei People's Hospital, Shaoguan 512025, China.,Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Yi Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhi-Bin Li
- Medical Research Center, Yue Bei People's Hospital, Shaoguan 512025, China.,Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Ji-Cheng Li
- Medical Research Center, Yue Bei People's Hospital, Shaoguan 512025, China.,Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
29
|
Casals C, García-Fojeda B, Minutti CM. Soluble defense collagens: Sweeping up immune threats. Mol Immunol 2019; 112:291-304. [DOI: 10.1016/j.molimm.2019.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
|
30
|
Leopold Wager CM, Arnett E, Schlesinger LS. Mycobacterium tuberculosis and macrophage nuclear receptors: What we do and don't know. Tuberculosis (Edinb) 2019; 116S:S98-S106. [PMID: 31060958 DOI: 10.1016/j.tube.2019.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a wide variety of cells and play a major role in lipid signaling. NRs are key regulators of immune and metabolic functions in macrophages and are linked to macrophage responses to microbial pathogens. Pathogens are also known to induce the expression of specific NRs to promote their own survival. In this review, we focus on the NRs recently shown to influence macrophage responses to Mycobacterium tuberculosis (M.tb), a significant cause of morbidity and mortality worldwide. We provide an overview of NR-controlled transcriptional activity and regulation of macrophage activation. We also discuss in detail the contribution of specific NRs to macrophage responses to M.tb, including influence on macrophage phenotype, cell signaling, and cellular metabolism. We pay particular attention to PPARγ since it is required for differentiation of alveolar macrophages, an important niche for M.tb, and its role during M.tb infection is becoming increasingly appreciated. Research into NRs and M.tb is still in its early stages, therefore continuing to advance our understanding of the complex interactions between M.tb and macrophage NRs may reveal the potential of NRs as pharmacological targets for the treatment of tuberculosis.
Collapse
|
31
|
Vrieling F, Wilson L, Rensen PCN, Walzl G, Ottenhoff THM, Joosten SA. Oxidized low-density lipoprotein (oxLDL) supports Mycobacterium tuberculosis survival in macrophages by inducing lysosomal dysfunction. PLoS Pathog 2019; 15:e1007724. [PMID: 30998773 PMCID: PMC6490946 DOI: 10.1371/journal.ppat.1007724] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 04/30/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (DM) is a major risk factor for developing tuberculosis (TB). TB-DM comorbidity is expected to pose a serious future health problem due to the alarming rise in global DM incidence. At present, the causal underlying mechanisms linking DM and TB remain unclear. DM is associated with elevated levels of oxidized low-density lipoprotein (oxLDL), a pathologically modified lipoprotein which plays a key role during atherosclerosis development through the formation of lipid-loaded foamy macrophages, an event which also occurs during progression of the TB granuloma. We therefore hypothesized that oxLDL could be a common factor connecting DM to TB. To study this, we measured oxLDL levels in plasma samples of healthy controls, TB, DM and TB-DM patients, and subsequently investigated the effect of oxLDL treatment on human macrophage infection with Mycobacterium tuberculosis (Mtb). Plasma oxLDL levels were significantly elevated in DM patients and associated with high triglyceride levels in TB-DM. Strikingly, incubation with oxLDL strongly increased macrophage Mtb load compared to native or acetylated LDL (acLDL). Mechanistically, oxLDL -but not acLDL- treatment induced macrophage lysosomal cholesterol accumulation and increased protein levels of lysosomal and autophagy markers, while reducing Mtb colocalization with lysosomes. Importantly, combined treatment of acLDL and intracellular cholesterol transport inhibitor (U18666A) mimicked the oxLDL-induced lysosomal phenotype and impaired macrophage Mtb control, illustrating that the localization of lipid accumulation is critical. Collectively, these results demonstrate that oxLDL could be an important DM-associated TB-risk factor by causing lysosomal dysfunction and impaired control of Mtb infection in human macrophages. Tuberculosis (TB) is an infectious disease of the lungs caused by a bacterium, Mycobacterium tuberculosis (Mtb), and is responsible for over a million deaths per year worldwide. Population studies have demonstrated that type 2 diabetes mellitus (DM) is a risk factor for TB as it triples the risk of developing the disease. DM is a metabolic disorder which is generally associated with obesity, and is characterized by resistance to the pancreatic hormone insulin and high blood glucose and lipid levels. As the global incidence of DM is rising at an alarming rate, especially in regions where TB is common, it is important to understand precisely how DM increases the risk of developing TB. Both TB and DM are associated with the development of foamy macrophages, lipid-loaded white blood cells, which can be the result of a specific lipoprotein particle called oxidized low-density lipoprotein (oxLDL). Here, we demonstrated that DM patients have high blood levels of oxLDL, and generating foamy macrophages with oxLDL supported Mtb survival after infection as a result of faulty intracellular cholesterol accumulation. Our results propose a proof of concept for oxLDL as a risk factor for TB development, encouraging future studies on lipid-lowering therapies for TB-DM.
Collapse
Affiliation(s)
- Frank Vrieling
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, ZA Leiden, The Netherlands
| | - Louis Wilson
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, ZA Leiden, The Netherlands
| | - Patrick C. N. Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, ZA Leiden, The Netherlands
| | - Gerhard Walzl
- DST/NRF Center of Excellence for Biomedical Tuberculosis Research, SA MRC Center for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town, South Africa
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, ZA Leiden, The Netherlands
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, ZA Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
32
|
Leopold Wager CM, Arnett E, Schlesinger LS. Macrophage nuclear receptors: Emerging key players in infectious diseases. PLoS Pathog 2019; 15:e1007585. [PMID: 30897154 PMCID: PMC6428245 DOI: 10.1371/journal.ppat.1007585] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a variety of cells, including macrophages. For decades, NRs have been therapeutic targets because their activity can be pharmacologically modulated by specific ligands and small molecule inhibitors. NRs regulate a variety of processes, including those intersecting metabolic and immune functions, and have been studied in regard to various autoimmune diseases. However, the complex roles of NRs in host response to infection are only recently being investigated. The NRs peroxisome proliferator-activated receptor γ (PPARγ) and liver X receptors (LXRs) have been most studied in the context of infectious diseases; however, recent work has also linked xenobiotic pregnane X receptors (PXRs), vitamin D receptor (VDR), REV-ERBα, the nuclear receptor 4A (NR4A) family, farnesoid X receptors (FXRs), and estrogen-related receptors (ERRs) to macrophage responses to pathogens. Pharmacological inhibition or antagonism of certain NRs can greatly influence overall disease outcome, and NRs that are protective against some diseases can lead to susceptibility to others. Targeting NRs as a novel host-directed treatment approach to infectious diseases appears to be a viable option, considering that these transcription factors play a pivotal role in macrophage lipid metabolism, cholesterol efflux, inflammatory responses, apoptosis, and production of antimicrobial byproducts. In the current review, we discuss recent findings concerning the role of NRs in infectious diseases with an emphasis on PPARγ and LXR, the two most studied. We also highlight newer work on the activity of emerging NRs during infection.
Collapse
Affiliation(s)
| | - Eusondia Arnett
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Larry S. Schlesinger
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
33
|
Deng M, Lv XD, Fang ZX, Xie XS, Chen WY. The blood transcriptional signature for active and latent tuberculosis. Infect Drug Resist 2019; 12:321-328. [PMID: 30787624 PMCID: PMC6363485 DOI: 10.2147/idr.s184640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Although the incidence of tuberculosis (TB) has dropped substantially, it still is a serious threat to human health. And in recent years, the emergence of resistant bacilli and inadequate disease control and prevention has led to a significant rise in the global TB epidemic. It is known that the cause of TB is Mycobacterium tuberculosis infection. But it is not clear why some infected patients are active while others are latent. METHODS We analyzed the blood gene expression profiles of 69 latent TB patients and 54 active pulmonary TB patients from GEO (Transcript Expression Omnibus) database. RESULTS By applying minimal redundancy maximal relevance and incremental feature selection, we identified 24 signature genes which can predict the TB activation. The support vector machine predictor based on these 24 genes had a sensitivity of 0.907, specificity of 0.913, and accuracy of 0.911, respectively. Although they need to be validated in a large independent dataset, the biological analysis of these 24 genes showed great promise. CONCLUSION We found that cytokine production was a key process during TB activation and genes like CYBB, TSPO, CD36, and STAT1 worth further investigation.
Collapse
Affiliation(s)
- Min Deng
- Department of Infectious Diseases, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China,
| | - Xiao-Dong Lv
- Department of Respiration, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Zhi-Xian Fang
- Department of Respiration, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Xin-Sheng Xie
- Department of Infectious Diseases, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China,
| | - Wen-Yu Chen
- Department of Respiration, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| |
Collapse
|
34
|
Phelan JJ, Basdeo SA, Tazoll SC, McGivern S, Saborido JR, Keane J. Modulating Iron for Metabolic Support of TB Host Defense. Front Immunol 2018; 9:2296. [PMID: 30374347 PMCID: PMC6196273 DOI: 10.3389/fimmu.2018.02296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/17/2018] [Indexed: 02/05/2023] Open
Abstract
Tuberculosis (TB) is the world's biggest infectious disease killer. The increasing prevalence of multidrug-resistant and extensively drug-resistant TB demonstrates that current treatments are inadequate and there is an urgent need for novel therapies. Research is now focused on the development of host-directed therapies (HDTs) which can be used in combination with existing antimicrobials, with a special focus on promoting host defense. Immunometabolic reprogramming is integral to TB host defense, therefore, understanding and supporting the immunometabolic pathways that are altered after infection will be important for the development of new HDTs. Moreover, TB pathophysiology is interconnected with iron metabolism. Iron is essential for the survival of Mycobacterium tuberculosis (Mtb), the bacteria that causes TB disease. Mtb struggles to replicate and persist in low iron environments. Iron chelation has therefore been suggested as a HDT. In addition to its direct effects on iron availability, iron chelators modulate immunometabolism through the stabilization of HIF1α. This review examines immunometabolism in the context of Mtb and its links to iron metabolism. We suggest that iron chelation, and subsequent stabilization of HIF1α, will have multifaceted effects on immunometabolic function and holds potential to be utilized as a HDT to boost the host immune response to Mtb infection.
Collapse
Affiliation(s)
- James J Phelan
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Sharee A Basdeo
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Simone C Tazoll
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Sadhbh McGivern
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Judit R Saborido
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| |
Collapse
|
35
|
Guagliardo R, Pérez-Gil J, De Smedt S, Raemdonck K. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins. J Control Release 2018; 291:116-126. [PMID: 30321577 DOI: 10.1016/j.jconrel.2018.10.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
Pulmonary surfactant (PS) has been extensively studied because of its primary role in mammalian breathing. The deposition of this surface-active material at the alveolar air-water interface is essential to lower surface tension, thus avoiding alveolar collapse during expiration. In addition, PS is involved in host defense, facilitating the clearance of potentially harmful particulates. PS has a unique composition, including 92% of lipids and 8% of surfactant proteins (SPs) by mass. Although they constitute the minor fraction, SPs to a large extent orchestrate PS-related functions. PS contains four surfactant proteins (SPs) that can be structurally and functionally divided in two groups, i.e. the large hydrophilic SP-A and SP-D and the smaller hydrophobic SP-B and SP-C. The former belong to the family of collectins and are involved in opsonization processes, thus promoting uptake of pathogens and (nano)particles by phagocytic cell types. The latter SPs regulate interfacial surfactant adsorption dynamics, facilitating (phospho)lipid transfer and membrane fusion processes. In the context of pulmonary drug delivery, the exploitation of PS as a carrier to promote drug spreading along the alveolar interface is gaining interest. In addition, recent studies investigated the interaction of PS with drug-loaded nanoparticles (nanomedicines) following pulmonary administration, which strongly influences their biological fate, drug delivery efficiency and toxicological profile. Interestingly, the specific biophysical mode-of-action of the four SPs affect the drug delivery process of nanomedicines both on the extra-and intracellular level, modulating pulmonary distribution, cell targeting and intracellular delivery. This knowledge can be harnessed to exploit SPs for the design of unique and bio-inspired drug delivery strategies.
Collapse
Affiliation(s)
- Roberta Guagliardo
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Jesús Pérez-Gil
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Research Institute Hospital 12 Octubre, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain.
| | - Stefaan De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
36
|
Marakalala MJ, Martinez FO, Plüddemann A, Gordon S. Macrophage Heterogeneity in the Immunopathogenesis of Tuberculosis. Front Microbiol 2018; 9:1028. [PMID: 29875747 PMCID: PMC5974223 DOI: 10.3389/fmicb.2018.01028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Macrophages play a central role in tuberculosis, as the site of primary infection, inducers and effectors of inflammation, innate and adaptive immunity, as well as mediators of tissue destruction and repair. Early descriptions by pathologists have emphasized their morphological heterogeneity in granulomas, followed by delineation of T lymphocyte-dependent activation of anti-mycobacterial resistance. More recently, powerful genetic and molecular tools have become available to describe macrophage cellular properties and their role in host-pathogen interactions. In this review we discuss aspects of macrophage heterogeneity relevant to the pathogenesis of tuberculosis and, conversely, lessons that can be learnt from mycobacterial infection, with regard to the immunobiological functions of macrophages in homeostasis and disease.
Collapse
Affiliation(s)
- Mohlopheni J. Marakalala
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Fernando O. Martinez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Botnar Research Centre, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Annette Plüddemann
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Genoula M, Marín Franco JL, Dupont M, Kviatcovsky D, Milillo A, Schierloh P, Moraña EJ, Poggi S, Palmero D, Mata-Espinosa D, González-Domínguez E, León Contreras JC, Barrionuevo P, Rearte B, Córdoba Moreno MO, Fontanals A, Crotta Asis A, Gago G, Cougoule C, Neyrolles O, Maridonneau-Parini I, Sánchez-Torres C, Hernández-Pando R, Vérollet C, Lugo-Villarino G, Sasiain MDC, Balboa L. Formation of Foamy Macrophages by Tuberculous Pleural Effusions Is Triggered by the Interleukin-10/Signal Transducer and Activator of Transcription 3 Axis through ACAT Upregulation. Front Immunol 2018; 9:459. [PMID: 29593722 PMCID: PMC5854656 DOI: 10.3389/fimmu.2018.00459] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/20/2018] [Indexed: 12/18/2022] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to persist in its human host relies on numerous immune evasion strategies, such as the deregulation of the lipid metabolism leading to the formation of foamy macrophages (FM). Yet, the specific host factors leading to the foamy phenotype of Mtb-infected macrophages remain unknown. Herein, we aimed to address whether host cytokines contribute to FM formation in the context of Mtb infection. Our approach is based on the use of an acellular fraction of tuberculous pleural effusions (TB-PE) as a physiological source of local factors released during Mtb infection. We found that TB-PE induced FM differentiation as observed by the increase in lipid bodies, intracellular cholesterol, and expression of the scavenger receptor CD36, as well as the enzyme acyl CoA:cholesterol acyl transferase (ACAT). Importantly, interleukin-10 (IL-10) depletion from TB-PE prevented the augmentation of all these parameters. Moreover, we observed a positive correlation between the levels of IL-10 and the number of lipid-laden CD14+ cells among the pleural cells in TB patients, demonstrating that FM differentiation occurs within the pleural environment. Downstream of IL-10 signaling, we noticed that the transcription factor signal transducer and activator of transcription 3 was activated by TB-PE, and its chemical inhibition prevented the accumulation of lipid bodies and ACAT expression in macrophages. In terms of the host immune response, TB-PE-treated macrophages displayed immunosuppressive properties and bore higher bacillary loads. Finally, we confirmed our results using bone marrow-derived macrophage from IL-10-/- mice demonstrating that IL-10 deficiency partially prevented foamy phenotype induction after Mtb lipids exposure. In conclusion, our results evidence a role of IL-10 in promoting the differentiation of FM in the context of Mtb infection, contributing to our understanding of how alterations of the host metabolic factors may favor pathogen persistence.
Collapse
Affiliation(s)
- Melanie Genoula
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina
| | - José Luis Marín Franco
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina
| | - Maeva Dupont
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Denise Kviatcovsky
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina
| | - Ayelén Milillo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Pablo Schierloh
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina
| | - Eduardo Jose Moraña
- Instituto Prof. Dr. Raúl Vaccarezza, Hospital de Infecciosas Dr. F. J. Muñiz, Buenos Aires, Argentina
| | - Susana Poggi
- Instituto Prof. Dr. Raúl Vaccarezza, Hospital de Infecciosas Dr. F. J. Muñiz, Buenos Aires, Argentina
| | - Domingo Palmero
- Instituto Prof. Dr. Raúl Vaccarezza, Hospital de Infecciosas Dr. F. J. Muñiz, Buenos Aires, Argentina
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Erika González-Domínguez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Juan Carlos León Contreras
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Paula Barrionuevo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Bárbara Rearte
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marlina Olyissa Córdoba Moreno
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | | | - Agostina Crotta Asis
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gabriela Gago
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Céline Cougoule
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Maridonneau-Parini
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carmen Sánchez-Torres
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Christel Vérollet
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - María Del Carmen Sasiain
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina
| | - Luciana Balboa
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina
| |
Collapse
|
38
|
Knight M, Braverman J, Asfaha K, Gronert K, Stanley S. Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense. PLoS Pathog 2018; 14:e1006874. [PMID: 29370315 PMCID: PMC5800697 DOI: 10.1371/journal.ppat.1006874] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/06/2018] [Accepted: 01/10/2018] [Indexed: 12/25/2022] Open
Abstract
Lipid droplet (LD) formation occurs during infection of macrophages with numerous intracellular pathogens, including Mycobacterium tuberculosis. It is believed that M. tuberculosis and other bacteria specifically provoke LD formation as a pathogenic strategy in order to create a depot of host lipids for use as a carbon source to fuel intracellular growth. Here we show that LD formation is not a bacterially driven process during M. tuberculosis infection, but rather occurs as a result of immune activation of macrophages as part of a host defense mechanism. We show that an IFN-γ driven, HIF-1α dependent signaling pathway, previously implicated in host defense, redistributes macrophage lipids into LDs. Furthermore, we show that M. tuberculosis is able to acquire host lipids in the absence of LDs, but not in the presence of IFN-γ induced LDs. This result uncouples macrophage LD formation from bacterial acquisition of host lipids. In addition, we show that IFN-γ driven LD formation supports the production of host protective eicosanoids including PGE2 and LXB4. Finally, we demonstrate that HIF-1α and its target gene Hig2 are required for the majority of LD formation in the lungs of mice infected with M. tuberculosis, thus demonstrating that immune activation provides the primary stimulus for LD formation in vivo. Taken together our data demonstrate that macrophage LD formation is a host-driven component of the adaptive immune response to M. tuberculosis, and suggest that macrophage LDs are not an important source of nutrients for M. tuberculosis.
Collapse
Affiliation(s)
- Matthew Knight
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Jonathan Braverman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kaleb Asfaha
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
| | - Sarah Stanley
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Mycobacterium tuberculosis (M.tb), the etiologic agent of tuberculosis, is a prominent global health threat because of the enormous reservoir of subclinical latent tuberculosis infection (LTBI). Current diagnostic approaches are limited in their ability to predict reactivation risk and LTBI is recalcitrant to antibiotic treatment. The present review summarizes recent advances in our ability to detect, treat and model LTBI as well as our understanding of bacterial physiology during latency. RECENT FINDINGS T-cell subsets and circulating proteins have been identified which could serve as biomarkers for LTBI or indicators of reactivation risk. In addition, experimental and in-silico models have enabled discoveries regarding bacterial physiology during latency and the host immune response following infection with latent M.tb. SUMMARY Despite recent advances, much more research is needed to bolster our ability to detect, implement treatment and model LTBI. The present work is crucial for the eradication of this global problem.
Collapse
|
40
|
Dorhoi A, Du Plessis N. Monocytic Myeloid-Derived Suppressor Cells in Chronic Infections. Front Immunol 2018; 8:1895. [PMID: 29354120 PMCID: PMC5758551 DOI: 10.3389/fimmu.2017.01895] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/11/2017] [Indexed: 01/04/2023] Open
Abstract
Heterogeneous populations of myeloid regulatory cells (MRC), including monocytes, macrophages, dendritic cells, and neutrophils, are found in cancer and infectious diseases. The inflammatory environment in solid tumors as well as infectious foci with persistent pathogens promotes the development and recruitment of MRC. These cells help to resolve inflammation and establish host immune homeostasis by restricting T lymphocyte function, inducing regulatory T cells and releasing immune suppressive cytokines and enzyme products. Monocytic MRC, also termed monocytic myeloid-derived suppressor cells (M-MDSC), are bona fide phagocytes, capable of pathogen internalization and persistence, while exerting localized suppressive activity. Here, we summarize molecular pathways controlling M-MDSC genesis and functions in microbial-induced non-resolved inflammation and immunopathology. We focus on the roles of M-MDSC in infections, including opportunistic extracellular bacteria and fungi as well as persistent intracellular pathogens, such as mycobacteria and certain viruses. Better understanding of M-MDSC biology in chronic infections and their role in antimicrobial immunity, will advance development of novel, more effective and broad-range anti-infective therapies.
Collapse
Affiliation(s)
- Anca Dorhoi
- Institute of Immunology, Bundesforschungsinstitut für Tiergesundheit, Friedrich-Loeffler-Institut (FLI), Insel Riems, Germany.,Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany.,Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Nelita Du Plessis
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, SAMRC Centre for Tuberculosis Research, DST and NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
41
|
Jubrail J, Kurian N, Niedergang F. Macrophage phagocytosis cracking the defect code in COPD. Biomed J 2017; 40:305-312. [PMID: 29433833 PMCID: PMC6138611 DOI: 10.1016/j.bj.2017.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 02/08/2023] Open
Abstract
In the normal non-diseased lung, various macrophage populations maintain homeostasis and sterility by ingesting and clearing inhaled particulates, pathogens and apoptotic cells from the local environment. This process of phagocytosis leads to the degradation of the internalized material, coordinated induction of gene expression, antigen presentation and cytokine production, implicating phagocytosis as a central regulator of innate immunity. Phagocytosis is extremely efficient and any perturbation of this function is deleterious. In inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD), despite their increased numbers, macrophages demonstrate significantly reduced phagocytic capacity of bacteria and apoptotic cells. This defect could play a role in dysbiosis of the lung microbiome contributing to disease pathophysiology. In this review, we will discuss lung macrophages, describe phagocytosis and its related downstream processes and the reported phagocytosis defects in COPD. Finally, we will briefly examine current strategies that focus on restoring the phagocytic capabilities of lung macrophages that may have utility in COPD.
Collapse
Affiliation(s)
- Jamil Jubrail
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nisha Kurian
- AstraZeneca, Precision Medicine & Genomics, RIA Companion Diagnostics Unit, Sweden
| | - Florence Niedergang
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
42
|
Elemental Ingredients in the Macrophage Cocktail: Role of ZIP8 in Host Response to Mycobacterium tuberculosis. Int J Mol Sci 2017; 18:ijms18112375. [PMID: 29120360 PMCID: PMC5713344 DOI: 10.3390/ijms18112375] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) is a global epidemic caused by the infection of human macrophages with the world’s most deadly single bacterial pathogen, Mycobacterium tuberculosis (M.tb). M.tb resides in a phagosomal niche within macrophages, where trace element concentrations impact the immune response, bacterial metal metabolism, and bacterial survival. The manipulation of micronutrients is a critical mechanism of host defense against infection. In particular, the human zinc transporter Zrt-/Irt-like protein 8 (ZIP8), one of 14 ZIP family members, is important in the flux of divalent cations, including zinc, into the cytoplasm of macrophages. It also has been observed to exist on the membrane of cellular organelles, where it can serve as an efflux pump that transports zinc into the cytosol. ZIP8 is highly inducible in response to M.tb infection of macrophages, and we have observed its localization to the M.tb phagosome. The expression, localization, and function of ZIP8 and other divalent cation transporters within macrophages have important implications for TB prevention and dissemination and warrant further study. In particular, given the importance of zinc as an essential nutrient required for humans and M.tb, it is not yet clear whether ZIP-guided zinc transport serves as a host protective factor or, rather, is targeted by M.tb to enable its phagosomal survival.
Collapse
|
43
|
Tuberculosis State Is Associated with Expression of Toll-Like Receptor 2 in Sputum Macrophages. mSphere 2017; 2:mSphere00475-17. [PMID: 29104936 PMCID: PMC5663984 DOI: 10.1128/msphere.00475-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/12/2017] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis is an intracellular pathogen that parasitizes the host macrophage. While approximately two billion people are infected worldwide, only 5 to 10% become diseased with pulmonary tuberculosis, at least in the absence of comorbidities. Tuberculosis control requires development of noninvasive methods probing the host immune status to help distinguish latent infection from active tuberculosis. With such methods, high-risk individuals could be targeted for treatment before disease manifestation. Previous investigations have been based on examination of peripheral blood cells or, more rarely, lung macrophages obtained with invasive procedures, such as bronchoalveolar lavages. Here we show that differences exist in the expression of a surface protein (Toll-like receptor 2) between macrophages recovered from the sputum of individuals in different diagnostic groups: i.e., infection free, latent tuberculosis infection, and active pulmonary tuberculosis. Thus, phenotypic analysis of local macrophages obtained with noninvasive procedures can help distinguish among tuberculosis infection stages. During tuberculosis, macrophages are critical for both pathogen survival and host immune activation. Since expression of particular cell surface markers reflects cell function, we used flow cytometry to measure the abundance of surface markers associated with polarity, lipid uptake, or pattern recognition on macrophages found in induced sputum. Nine macrophage surface markers were examined from three groups of donors: infection-free, latent tuberculosis infection, and active pulmonary tuberculosis. Using a trend test, we found that expression of Toll-like receptor 2 was greater from absence of infection to latent infection and from latent infection to active tuberculosis. The results point to the possibility that innate immune cell phenotypes be used to distinguish among tuberculosis infection stages. Moreover, this study shows that readily accessible sputum macrophages have potential for tuberculosis diagnosis and prognosis. IMPORTANCEMycobacterium tuberculosis is an intracellular pathogen that parasitizes the host macrophage. While approximately two billion people are infected worldwide, only 5 to 10% become diseased with pulmonary tuberculosis, at least in the absence of comorbidities. Tuberculosis control requires development of noninvasive methods probing the host immune status to help distinguish latent infection from active tuberculosis. With such methods, high-risk individuals could be targeted for treatment before disease manifestation. Previous investigations have been based on examination of peripheral blood cells or, more rarely, lung macrophages obtained with invasive procedures, such as bronchoalveolar lavages. Here we show that differences exist in the expression of a surface protein (Toll-like receptor 2) between macrophages recovered from the sputum of individuals in different diagnostic groups: i.e., infection free, latent tuberculosis infection, and active pulmonary tuberculosis. Thus, phenotypic analysis of local macrophages obtained with noninvasive procedures can help distinguish among tuberculosis infection stages.
Collapse
|
44
|
Uribe-Querol E, Rosales C. Control of Phagocytosis by Microbial Pathogens. Front Immunol 2017; 8:1368. [PMID: 29114249 PMCID: PMC5660709 DOI: 10.3389/fimmu.2017.01368] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022] Open
Abstract
Phagocytosis is a fundamental process of cells to capture and ingest foreign particles. Small unicellular organisms such as free-living amoeba use this process to acquire food. In pluricellular organisms, phagocytosis is a universal phenomenon that all cells are able to perform (including epithelial, endothelial, fibroblasts, etc.), but some specialized cells (such as neutrophils and macrophages) perform this very efficiently and were therefore named professional phagocytes by Rabinovitch. Cells use phagocytosis to capture and clear all particles larger than 0.5 µm, including pathogenic microorganisms and cellular debris. Phagocytosis involves a series of steps from recognition of the target particle, ingestion of it in a phagosome (phagocytic vacuole), maturation of this phagosome into a phagolysosome, to the final destruction of the ingested particle in the robust antimicrobial environment of the phagolysosome. For the most part, phagocytosis is an efficient process that eliminates invading pathogens and helps maintaining homeostasis. However, several pathogens have also evolved different strategies to prevent phagocytosis from proceeding in a normal way. These pathogens have a clear advantage to perpetuate the infection and continue their replication. Here, we present an overview of the phagocytic process with emphasis on the antimicrobial elements professional phagocytes use. We also summarize the current knowledge on the microbial strategies different pathogens use to prevent phagocytosis either at the level of ingestion, phagosome formation, and maturation, and even complete escape from phagosomes.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
45
|
Fonseca KL, Rodrigues PNS, Olsson IAS, Saraiva M. Experimental study of tuberculosis: From animal models to complex cell systems and organoids. PLoS Pathog 2017; 13:e1006421. [PMID: 28817682 PMCID: PMC5560521 DOI: 10.1371/journal.ppat.1006421] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is a devastating disease to mankind that has killed more people than any other infectious disease. Despite many efforts and successes from the scientific and health communities, the prospect of TB elimination remains distant. On the one hand, sustainable public health programs with affordable and broad implementation of anti-TB measures are needed. On the other hand, achieving TB elimination requires critical advances in three areas: vaccination, diagnosis, and treatment. It is also well accepted that succeeding in advancing these areas requires a deeper knowledge of host—pathogen interactions during infection, and for that, better experimental models are needed. Here, we review the potential and limitations of different experimental approaches used in TB research, focusing on animal and human-based cell culture models. We highlight the most recent advances in developing in vitro 3D models and introduce the potential of lung organoids as a new tool to study Mycobacterium tuberculosis infection. Tuberculosis (TB) is the number 1 killer in the world due to a bacterial infection. The study of this disease through clinical and epidemiological data and through the use of different experimental models has provided important knowledge on the role of the immune response generated during infection. This is critical for the development of novel vaccines and therapeutic strategies. However, in spite of the advances made, it is well accepted that better models are needed to study TB. This review discusses the different models used to study TB, highlighting the advantages and disadvantages of the available animal and cellular models and introducing recently developed state-of-the-art approaches based on human-based cell culture systems. These new advances are integrated in a road map for future study of TB, converging for the potential of lung organoids in TB research.
Collapse
Affiliation(s)
- Kaori L. Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Pedro N. S. Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - I. Anna S. Olsson
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
46
|
Torrelles JB, Schlesinger LS. Integrating Lung Physiology, Immunology, and Tuberculosis. Trends Microbiol 2017; 25:688-697. [PMID: 28366292 PMCID: PMC5522344 DOI: 10.1016/j.tim.2017.03.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 11/17/2022]
Abstract
Lungs are directly exposed to the air, have enormous surface area, and enable gas exchange in air-breathing animals. They are constantly 'attacked' by microbes from both outside and inside and thus possess a unique, highly regulated local immune defense system which efficiently allows for microbial clearance while minimizing damaging inflammatory responses. As a prototypic host-adapted airborne pathogen, Mycobacterium tuberculosis traverses the lung and has several 'interaction points' (IPs) which it must overcome to cause infection. These interactions are critical, not only from a pathogenesis perspective but also in considering the effectiveness of therapies and vaccines in the lungs. Here we discuss emerging views on immunologic interactions occurring in the lungs for M. tuberculosis and their impact on infection and persistence.
Collapse
Affiliation(s)
- Jordi B Torrelles
- Department of Microbial Infection and Immunity, College of Medicine, and the Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, College of Medicine, and the Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|