1
|
Kotrba J, Müller I, Pausder A, Hoffmann A, Camp B, Boehme JD, Müller AJ, Schreiber J, Bruder D, Kahlfuss S, Dudeck A, Stegemann-Koniszewski S. Innate players in Th2 and non-Th2 asthma: emerging roles for the epithelial cell, mast cell, and monocyte/macrophage network. Am J Physiol Cell Physiol 2024; 327:C1373-C1383. [PMID: 39401422 DOI: 10.1152/ajpcell.00488.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 11/12/2024]
Abstract
Asthma is one of the most common chronic respiratory diseases and is characterized by airway inflammation, increased mucus production, and structural changes in the airways. Recently, there is increasing evidence that the disease is much more heterogeneous than expected, with several distinct asthma endotypes. Based on the specificity of T cells as the best-known driving force in airway inflammation, bronchial asthma is categorized into T helper cell 2 (Th2) and non-Th2 asthma. The most studied effector cells in Th2 asthma include T cells and eosinophils. In contrast to Th2 asthma, much less is known about the pathophysiology of non-Th2 asthma, which is often associated with treatment resistance. Besides T cells, the interaction of myeloid cells such as monocytes/macrophages and mast cells with the airway epithelium significantly contributes to the pathogenesis of asthma. However, the underlying molecular regulation and particularly the specific relevance of this cellular network in certain asthma endotypes remain to be understood. In this review, we summarize recent findings on the regulation of and complex interplay between epithelial cells and the "nonclassical" innate effector cells mast cells and monocytes/macrophages in Th2 and non-Th2 asthma with the ultimate goal of providing the rationale for future research into targeted therapy regimens.
Collapse
Affiliation(s)
- Johanna Kotrba
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ilka Müller
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Pausder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Aaron Hoffmann
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Belinda Camp
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Julia D Boehme
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas J Müller
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Jens Schreiber
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dunja Bruder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sascha Kahlfuss
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Sabine Stegemann-Koniszewski
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
2
|
Eiers AK, Vettorazzi S, Tuckermann JP. Journey through discovery of 75 years glucocorticoids: evolution of our knowledge of glucocorticoid receptor mechanisms in rheumatic diseases. Ann Rheum Dis 2024; 83:1603-1613. [PMID: 39107081 DOI: 10.1136/ard-2023-225371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/20/2024] [Indexed: 08/09/2024]
Abstract
For three-quarters of a century, glucocorticoids (GCs) have been used to treat rheumatic and autoimmune diseases. Over these 75 years, our understanding of GCs binding to nuclear receptors, mainly the glucocorticoid receptor (GR) and their molecular mechanisms has changed dramatically. Initially, in the late 1950s, GCs were considered important regulators of energy metabolism. By the 1970s/1980s, they were characterised as ligands for hormone-inducible transcription factors that regulate many aspects of cell biology and physiology. More recently, their impact on cellular metabolism has been rediscovered. Our understanding of cell-type-specific GC actions and the crosstalk between various immune and stromal cells in arthritis models has evolved by investigating conditional GR mutant mice using the Cre/LoxP system. A major achievement in studying the complex, cell-type-specific interplay is the recent advent of omics technologies at single-cell resolution, which will provide further unprecedented insights into the cell types and factors mediating GC responses. Alongside gene-encoded factors, anti-inflammatory metabolites that participate in resolving inflammation by GCs during arthritis are just being uncovered. The translation of this knowledge into therapeutic concepts will help tackle inflammatory diseases and reduce side effects. In this review, we describe major milestones in preclinical research that led to our current understanding of GC and GR action 75 years after the first use of GCs in arthritis.
Collapse
Affiliation(s)
- Ann-Kathrin Eiers
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| |
Collapse
|
3
|
Guan J, Yao W, Zhang L, Xie H, Li L, Wen Y, Chen H, Huang Y, Wen J, Ou C, Liang C, Wang J, Zhang Q, Tao A, Yan J. Contribution of Pseudomonas aeruginosa - mediated club cell necroptosis to the bias of type 17 inflammation and steroid insensitivity in asthma. J Adv Res 2024:S2090-1232(24)00475-2. [PMID: 39442871 DOI: 10.1016/j.jare.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Opportunistic pathogen infection is one of the important inducements for asthma exacerbation. Pseudomonas aeruginosa (PA) is a kind of dominant pathogenic bacteria in the respiratory tract that is associated with severe asthma, but the underlying mechanisms still remains unclear. OBJECTIVES To examine the role of PA infection in the bias of the inflammatory endotype in asthma and its effect on the sensitivity to steroid therapy. METHODS An adjusted HDM (House Dust Mite) -induced asthma model with PA inoculation in the airway was utilized to mimic the process of opportunistic PA infection in asthma, focusing on the interaction between bacteria and epithelium. Dexamethasone administration in vivo was used to test the sensitivity to steroid therapy. RESULTS It was uncovered that PA could promote the loss of club cells in the necroptosis pattern through cellular CYP450 activation, leading to an imbalance of inflammatory response and steroid insensitivity. Club cell loss results in the activation of cellular E-cadherin/β-catenin axis in the rest of club cells for goblet metaplasia and mucus hypersecretion, as well as epithelial damage and GR downregulation for steroid resistance. For clinical applications, the necroptosis inhibitor Nec-1 can effectively relieve the pathological symptoms of asthma in vivo. Meanwhile, CCSP administration in the airway can regulate the pulmonary inflammation and restore the steroid sensitivity in asthma. CONCLUSION These experiments provide a novel mechanism of concurrent PA infection in asthma through club cell necroptosis and the pathological consequences. Nec-1 treatment and CCSP supplementation may be possible therapeutic strategies for asthma treatment.
Collapse
Affiliation(s)
- Jieying Guan
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China; Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The First People's Hospital of Zhaoqing, Guangdong province, China
| | - Wenruo Yao
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Le Zhang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Huancheng Xie
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Linmei Li
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yuhuan Wen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Honglv Chen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yuyi Huang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Junjie Wen
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changxing Ou
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Canyang Liang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Jing Wang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Qingling Zhang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Ailin Tao
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.
| | - Jie Yan
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Kim HS, Kim B, Holzapfel WH, Kang H. Lactiplantibacillusplantarum APsulloc331261 (GTB1 ™) promotes butyrate production to suppress mucin hypersecretion in a murine allergic airway inflammation model. Front Microbiol 2024; 14:1292266. [PMID: 38449878 PMCID: PMC10915089 DOI: 10.3389/fmicb.2023.1292266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/15/2023] [Indexed: 03/08/2024] Open
Abstract
Introduction Allergic airway diseases are one of the serious health problems in worldwide and allergic airway inflammation is a prerequisite led to the exacerbated situation such as mucus hypersecretion, epithelial barrier damage and microbiota dysbiosis. Because of side effects and low efficiencies of current therapeutics, the need for novel alternatives has been urged. Probiotics in which have diverse and beneficial modulatory effects have been applied to the airway inflammation model and the underlying mechanism needs to be investigated. Methods We aimed to evaluate whether our target strain, Lactiplantibacillus plantarum APsulloc331261 (GTB1TM) isolated from green tea, can ameliorate allergic airway inflammation in mice and to figure out the mechanism. We induced allergic airway inflammation to mice by ovalbumin (OVA) and administered GTB1 orally and the immune and epithelial barrier markers were assessed. The gut metabolite and microbiota were also analysed, and the in vitro cell-line experiment was introduced to confirm the hypothesis of the study. Results GTB1 ameliorated type 2 inflammation and suppressed mucin hypersecretion with the inhibition of MUC5AC in inflamed mice. Moreover, GTB1 increased the butyrate production and the relative abundance of butyrate producer, Clostridium cluster IV. We assumed that butyrate may have a potential role and investigated the effect of butyrate in mucin regulation via human airway epithelial cell line, A549. Butyrate significantly reduced the gene expression of MUC5AC in A549 cells suggesting its regulatory role in mucus production. Conclusion Therefore, our study demonstrates that the oral administration of GTB1 can ameliorate allergic airway inflammation and mucin hypersecretion by butyrate production.
Collapse
Affiliation(s)
- Hye-Shin Kim
- Department of Advanced Convergence, Handong Global University, Pohang, Republic of Korea
- HEM Pharma, Pohang, Republic of Korea
| | - Bobae Kim
- HEM Pharma, Pohang, Republic of Korea
| | - Wilhelm H. Holzapfel
- Department of Advanced Convergence, Handong Global University, Pohang, Republic of Korea
- HEM Pharma, Pohang, Republic of Korea
| | | |
Collapse
|
5
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
6
|
Bansal A, Kooi C, Kalyanaraman K, Gill S, Thorne A, Chandramohan P, Necker-Brown A, Mostafa MM, Milani A, Leigh R, Newton R. Synergy between Interleukin-1 β, Interferon- γ, and Glucocorticoids to Induce TLR2 Expression Involves NF- κB, STAT1, and the Glucocorticoid Receptor. Mol Pharmacol 2023; 105:23-38. [PMID: 37863662 DOI: 10.1124/molpharm.123.000740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
Glucocorticoids act via the glucocorticoid receptor (GR; NR3C1) to downregulate inflammatory gene expression and are effective treatments for mild to moderate asthma. However, in severe asthma and virus-induced exacerbations, glucocorticoid therapies are less efficacious, possibly due to reduced repressive ability and/or the increased expression of proinflammatory genes. In human A549 epithelial and primary human bronchial epithelial cells, toll-like receptor (TLR)-2 mRNA and protein were supra-additively induced by interleukin-1β (IL-1β) plus dexamethasone (IL-1β+Dex), interferon-γ (IFN-γ) plus dexamethasone (IFN-γ+Dex), and IL-1β plus IFN-γ plus dexamethasone (IL-1β+IFN-γ+Dex). Indeed, ∼34- to 2100-fold increases were apparent at 24 hours for IL-1β+IFN-γ+Dex, and this was greater than for any single or dual treatment. Using the A549 cell model, TLR2 induction by IL-1β+IFN-γ+Dex was antagonized by Org34517, a competitive GR antagonist. Further, when combined with IL-1β, IFN-γ, or IL-1β+IFN-γ, the enhancements by dexamethasone on TLR2 expression required GR. Likewise, inhibitor of κB kinase 2 inhibitors reduced IL-1β+IFN-γ+Dex-induced TLR2 expression, and TLR2 expression induced by IL-1β+Dex, with or without IFN-γ, required the nuclear factor (NF)-κB subunit, p65. Similarly, signal transducer and activator of transcription (STAT)-1 phosphorylation and γ-interferon-activated sequence-dependent transcription were induced by IFN-γ These, along with IL-1β+IFN-γ+Dex-induced TLR2 expression, were inhibited by Janus kinase (JAK) inhibitors. As IL-1β+IFN-γ+Dex-induced TLR2 expression also required STAT1, this study reveals cooperation between JAK-STAT1, NF-κB, and GR to upregulate TLR2 expression. Since TLR2 agonism elicits inflammatory responses, we propose that synergies involving TLR2 may occur within the cytokine milieu present in the immunopathology of glucocorticoid-resistant disease, and this could promote glucocorticoid resistance. SIGNIFICANCE STATEMENT: This study highlights that in human pulmonary epithelial cells, glucocorticoids, when combined with the inflammatory cytokines interleukin-1β (IL-1β) and interferon-γ (IFN-γ), can synergistically induce the expression of inflammatory genes, such as TLR2. This effect involved positive combinatorial interactions between NF-κB/p65, glucocorticoid receptor, and JAK-STAT1 signaling to synergistically upregulate TLR2 expression. Thus, synergies involving glucocorticoid enhancement of TLR2 expression may occur in the immunopathology of glucocorticoid-resistant inflammatory diseases, including severe asthma.
Collapse
Affiliation(s)
- Akanksha Bansal
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Cora Kooi
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Keerthana Kalyanaraman
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Sachman Gill
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Andrew Thorne
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Priyanka Chandramohan
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Amandah Necker-Brown
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Arya Milani
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Richard Leigh
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Robert Newton
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
7
|
Albers GJ, Amouret A, Ciupka K, Montes-Cobos E, Feldmann C, Reichardt HM. Glucocorticoid Nanoparticles Show Full Therapeutic Efficacy in a Mouse Model of Acute Lung Injury and Concomitantly Reduce Adverse Effects. Int J Mol Sci 2023; 24:16843. [PMID: 38069173 PMCID: PMC10705980 DOI: 10.3390/ijms242316843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Glucocorticoids (GCs) are widely used to treat inflammatory disorders such as acute lung injury (ALI). Here, we explored inorganic-organic hybrid nanoparticles (IOH-NPs) as a new delivery vehicle for GCs in a mouse model of ALI. Betamethasone (BMZ) encapsulated into IOH-NPs (BNPs) ameliorated the massive infiltration of neutrophils into the airways with a similar efficacy as the free drug. This was accompanied by a potent inhibition of pulmonary gene expression and secretion of pro-inflammatory mediators, whereas the alveolar-capillary barrier integrity was only restored by BMZ in its traditional form. Experiments with genetically engineered mice identified myeloid cells and alveolar type II (AT II) cells as essential targets of BNPs in ALI therapy, confirming their high cell-type specificity. Consequently, adverse effects were reduced when using IOH-NPs for GC delivery. BNPs did not alter T and B cell numbers in the blood and also prevented the induction of muscle atrophy after three days of treatment. Collectively, our data suggest that IOH-NPs target GCs to myeloid and AT II cells, resulting in full therapeutic efficacy in the treatment of ALI while being associated with reduced adverse effects.
Collapse
Affiliation(s)
- Gesa J. Albers
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Agathe Amouret
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Katrin Ciupka
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Elena Montes-Cobos
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Claus Feldmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;
| | - Holger M. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
8
|
Qian G, Jiang W, Sun D, Sun Z, Chen A, Fang H, Wang J, Liu Y, Yin Z, Wei H, Fang H, Zhang X. B-cell-derived IL-10 promotes allergic sensitization in asthma regulated by Bcl-3. Cell Mol Immunol 2023; 20:1313-1327. [PMID: 37653127 PMCID: PMC10616210 DOI: 10.1038/s41423-023-01079-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
Aeroallergen sensitization, mainly mediated by lung epithelium and dendritic cells (DCs), is integral to allergic asthma pathogenesis and progression. IL-10 has a dual role in immune responses, as it inhibits myeloid cell activation but promotes B-cell responses and epithelial cell proliferation. Here, we report a proinflammatory function of B-cell-derived IL-10 modulated by Bcl-3 in allergic asthma. Specifically, Bcl-3-/- mice showed elevated IL-10 levels and were found to be highly vulnerable to allergic asthma induced by house dust mites (HDMs). IL-10 had a positive correlation with the levels of the DC chemoattractant CCL-20 in HDM-sensitized mice and in patients with asthma and induced a selective increase in CCL-20 production by mouse lung epithelial cells. Blockade of IL-10 or IL-10 receptors during sensitization dampened both HDM-induced sensitization and asthma development. IL-10 levels peaked 4 h post sensitization with HDM and IL-10 was primarily produced by B cells under Bcl-3-Blimp-1-Bcl-6 regulation. Mice lacking B-cell-derived IL-10 displayed decreased lung epithelial CCL-20 production and diminished DC recruitment to the lungs upon HDM sensitization, thereby demonstrating resistance to HDM-induced asthma. Moreover, responses to HDM stimulation in Bcl-3-/- mice lacking B-cell-derived IL-10 were comparable to those in Bcl-3+/+ mice. The results revealed an unexpected role of B-cell-derived IL-10 in promoting allergic sensitization and demonstrated that Bcl-3 prevents HDM-induced asthma by inhibiting B-cell-derived IL-10 production. Thus, targeting the Bcl-3/IL-10 axis to inhibit allergic sensitization is a promising approach for treating allergic asthma. IL-10 is released rapidly from lung plasma cells under Bcl-3-Blimp-1-Bcl-6 regulation upon house dust mite exposure and amplifies lung epithelial cell (EC)-derived CCL-20 production and subsequent dendritic cell (DC) recruitment to promote allergic sensitization in asthma.
Collapse
Affiliation(s)
- Guojun Qian
- Affiliated Cancer Hospital/Institute and GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, 511436, Guangzhou, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, 200001, Shanghai, China.
| | - Wenxia Jiang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Donglin Sun
- Affiliated Cancer Hospital/Institute and GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, 511436, Guangzhou, China
| | - Zhun Sun
- Affiliated Cancer Hospital/Institute and GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, 511436, Guangzhou, China
| | - Anning Chen
- Affiliated Cancer Hospital/Institute and GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, 511436, Guangzhou, China
| | - Hongwei Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Jingyao Wang
- Affiliated Cancer Hospital/Institute and GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, 511436, Guangzhou, China
| | - Yongzhong Liu
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China
| | - Zhinan Yin
- Zhuhai People's Hospital, Biomedical Translational Research Institute, Jinan University, 510632, Guangzhou, China
| | - Haiming Wei
- Institute of Immunology, University of Science and Technology of China, 230000, Hefei, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
- Department of Anesthesiology, Minhang Hospital, Fudan University, 201100, Shanghai, China.
| | - Xiaoren Zhang
- Affiliated Cancer Hospital/Institute and GMU-GIBH Joint School of Life Sciences of Guangzhou Medical University, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, 511436, Guangzhou, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
9
|
Ginebaugh SP, Hagner M, Ray A, Erzurum SC, Comhair SAA, Denlinger LC, Jarjour NN, Castro M, Woodruff PG, Christenson SA, Bleecker ER, Meyers DA, Hastie AT, Moore WC, Mauger DT, Israel E, Levy BD, Wenzel SE, Camiolo MJ. Bronchial epithelial cell transcriptional responses to inhaled corticosteroids dictate severe asthmatic outcomes. J Allergy Clin Immunol 2023; 151:1513-1524. [PMID: 36796454 PMCID: PMC10257752 DOI: 10.1016/j.jaci.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Inhaled corticosteroids (CSs) are the backbone of asthma treatment, improving quality of life, exacerbation rates, and mortality. Although effective for most, a subset of patients with asthma experience CS-resistant disease despite receiving high-dose medication. OBJECTIVE We sought to investigate the transcriptomic response of bronchial epithelial cells (BECs) to inhaled CSs. METHODS Independent component analysis was performed on datasets, detailing the transcriptional response of BECs to CS treatment. The expression of these CS-response components was examined in 2 patient cohorts and investigated in relation to clinical parameters. Supervised learning was used to predict BEC CS responses using peripheral blood gene expression. RESULTS We identified a signature of CS response that was closely correlated with CS use in patients with asthma. Participants could be separated on the basis of CS-response genes into groups with high and low signature expression. Patients with low expression of CS-response genes, particularly those with a severe asthma diagnosis, showed worse lung function and quality of life. These individuals demonstrated enrichment for T-lymphocyte infiltration in endobronchial brushings. Supervised machine learning identified a 7-gene signature from peripheral blood that reliably identified patients with poor CS-response expression in BECs. CONCLUSIONS Loss of CS transcriptional responses within bronchial epithelium was related to impaired lung function and poor quality of life, particularly in patients with severe asthma. These individuals were identified using minimally invasive blood sampling, suggesting these findings may enable earlier triage to alternative treatments.
Collapse
Affiliation(s)
- Scott P Ginebaugh
- Integrative Systems Biology, University of Pittsburgh, Pittsburgh, Pa
| | | | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | | | | | - Loren C Denlinger
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Mario Castro
- University of Kansas School of Medicine, Kansas City, Mo
| | - Prescott G Woodruff
- University of California, San Francisco School of Medicine, San Francisco, Calif
| | | | - Eugene R Bleecker
- Division for Genetics, Genomics and Personalized Medicine, University of Arizona College of Medicine, Tucson, Ariz
| | - Deborah A Meyers
- Division for Genetics, Genomics and Personalized Medicine, University of Arizona College of Medicine, Tucson, Ariz
| | | | - Wendy C Moore
- Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Elliot Israel
- Department of Medicine, Divisions of Pulmonary & Critical Care Medicine & Allergy & Immunology, Brigham & Women's Hospital, Harvard Medical School, Boston, Mass
| | - Bruce D Levy
- Department of Medicine, Divisions of Pulmonary & Critical Care Medicine & Allergy & Immunology, Brigham & Women's Hospital, Harvard Medical School, Boston, Mass
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pa; Department of Environmental Medicine and Occupational Health, Graduate School of Public Health, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | | |
Collapse
|
10
|
Riedel JH, Robben L, Paust HJ, Zhao Y, Asada N, Song N, Peters A, Kaffke A, Borchers A, Tiegs G, Seifert L, Tomas NM, Hoxha E, Wenzel UO, Huber TB, Wiech T, Turner JE, Krebs CF, Panzer U. Glucocorticoids target the CXCL9/CXCL10-CXCR3 axis and confer protection against immune-mediated kidney injury. JCI Insight 2023; 8:160251. [PMID: 36355429 PMCID: PMC9870076 DOI: 10.1172/jci.insight.160251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Glucocorticoids remain a cornerstone of therapeutic regimes for autoimmune and chronic inflammatory diseases - for example, in different forms of crescentic glomerulonephritis - because of their rapid antiinflammatory effects, low cost, and wide availability. Despite their routine use for decades, the underlying cellular mechanisms by which steroids exert their therapeutic effects need to be fully elucidated. Here, we demonstrate that high-dose steroid treatment rapidly reduced the number of proinflammatory CXCR3+CD4+ T cells in the kidney by combining high-dimensional single-cell and morphological analyses of kidney biopsies from patients with antineutrophil cytoplasmic antibody-associated (ANCA-associated) crescentic glomerulonephritis. Using an experimental model of crescentic glomerulonephritis, we show that the steroid-induced decrease in renal CD4+ T cells is a consequence of reduced T cell recruitment, which is associated with an ameliorated disease course. Mechanistic in vivo and in vitro studies revealed that steroids act directly on renal tissue cells, such as tubular epithelial cells, but not on T cells, which resulted in an abolished renal expression of CXCL9 and CXCL10 as well as in the prevention of CXCR3+CD4+ T cell recruitment to the inflamed kidneys. Thus, we identified the CXCL9/CXCL10-CXCR3 axis as a previously unrecognized cellular and molecular target of glucocorticoids providing protection from immune-mediated pathology.
Collapse
Affiliation(s)
- Jan-Hendrik Riedel
- Division of Translational Immunology, III. Department of Medicine and,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Robben
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Yu Zhao
- Division of Translational Immunology, III. Department of Medicine and,Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), Hamburg, Germany
| | - Nariaki Asada
- Division of Translational Immunology, III. Department of Medicine and
| | - Ning Song
- Division of Translational Immunology, III. Department of Medicine and
| | - Anett Peters
- Division of Translational Immunology, III. Department of Medicine and
| | - Anna Kaffke
- Division of Translational Immunology, III. Department of Medicine and
| | - Alina Borchers
- Division of Translational Immunology, III. Department of Medicine and
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology,,Institute of Pathology, Section of Nephropathology, and
| | - Larissa Seifert
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M. Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, Section of Nephropathology, and
| | - Elion Hoxha
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich O. Wenzel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F. Krebs
- Division of Translational Immunology, III. Department of Medicine and,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- Division of Translational Immunology, III. Department of Medicine and,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Rocamora-Reverte L, Villunger A, Wiegers GJ. Cell-Specific Immune Regulation by Glucocorticoids in Murine Models of Infection and Inflammation. Cells 2022; 11:cells11142126. [PMID: 35883569 PMCID: PMC9324070 DOI: 10.3390/cells11142126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoids (GC) are highly potent negative regulators of immune and inflammatory responses. Effects of GC are primarily mediated by the glucocorticoid receptor (GR) which is expressed by all cell types of the immune system. It is, therefore, difficult to elucidate how endogenous GC mediate their effects on immune responses that involve multiple cellular interactions between various immune cell subsets. This review focuses on endogenous GC targeting specific cells of the immune system in various animal models of infection and inflammation. Without the timed release of these hormones, animals infected with various microbes or challenged in inflammatory disease models succumb as a consequence of overshooting immune and inflammatory responses. A clearer picture is emerging that endogenous GC thereby act in a cell-specific and disease model-dependent manner, justifying the need to develop techniques that target GC to individual immune cell types for improved clinical application.
Collapse
Affiliation(s)
- Lourdes Rocamora-Reverte
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - G. Jan Wiegers
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
- Correspondence:
| |
Collapse
|
12
|
Tiwari D, Ahuja N, Kumar S, Kalra R, Nanduri R, Gupta S, Khare AK, Bhagyaraj E, Arora R, Gupta P. Nuclear receptor Nr1d1 alleviates asthma by abating GATA3 gene expression and Th2 cell differentiation. Cell Mol Life Sci 2022; 79:308. [PMID: 35596832 PMCID: PMC11073070 DOI: 10.1007/s00018-022-04323-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022]
Abstract
Nuclear receptors are a unique family of transcription factors that play cardinal roles in physiology and plethora of human diseases. The adopted orphan nuclear receptor Nr1d1 is a constitutive transcriptional repressor known to modulate several biological processes. In this study, we found that Nr1d1 plays a decisive role in T helper (Th)-cell polarization and transcriptionally impedes the formation of Th2 cells by directly binding to the promoter region of GATA binding protein 3 (GATA3) gene. Nr1d1 interacts with its cellular companion, the nuclear receptor corepressor and histone deacetylase 3 to form a stable repression complex on the GATA3 promoter. The presence of Nr1d1 also imparts protection against associated inflammatory responses in murine model of asthma and its ligand SR9011 eased disease severity by suppressing Th2 responses. Moreover, Chip-seq profiling uncovered Nr1d1 interactions with other gene subsets that impedes Th2-linked pathways and regulates metabolism, immunity and brain functions, therefore, providing empirical evidence regarding the genetic link between asthma and other comorbid conditions. Thus, Nr1d1 emerges as a molecular switch that could be targeted to subdue asthma.
Collapse
Affiliation(s)
- Drishti Tiwari
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India.
| | - Nancy Ahuja
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Sumit Kumar
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Rashi Kalra
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ravikanth Nanduri
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Shalini Gupta
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Asheesh Kumar Khare
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Ella Bhagyaraj
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Department of Infectious Disease and Immunology, University of Florida, Gainesville, FL, USA
| | - Rashmi Arora
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Pawan Gupta
- Department of Molecular Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India.
| |
Collapse
|
13
|
Timmermans S, Vandewalle J, Libert C. Dimerization of the Glucocorticoid Receptor and Its Importance in (Patho)physiology: A Primer. Cells 2022; 11:cells11040683. [PMID: 35203332 PMCID: PMC8870481 DOI: 10.3390/cells11040683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 02/01/2023] Open
Abstract
The glucocorticoid receptor (GR) is a very versatile protein that comes in several forms, interacts with many proteins and has multiple functions. Numerous therapies are based on GRs’ actions but the occurrence of side effects and reduced responses to glucocorticoids have motivated scientists to study GRs in great detail. The notion that GRs can perform functions as a monomeric protein, but also as a homodimer has raised questions about the underlying mechanisms, structural aspects of dimerization, influencing factors and biological functions. In this review paper, we are providing an overview of the current knowledge and insights about this important aspect of GR biology.
Collapse
Affiliation(s)
- Steven Timmermans
- Center for Inflammation Research, VIB, 9052 Ghent, Belgium; (S.T.); (J.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, VIB, 9052 Ghent, Belgium; (S.T.); (J.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, 9052 Ghent, Belgium; (S.T.); (J.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- Correspondence:
| |
Collapse
|
14
|
Gayer FA, Reichardt SD, Bohnenberger H, Engelke M, Reichardt HM. Characterization of testicular macrophagesubpopulations in mice. Immunol Lett 2022; 243:44-52. [PMID: 35149127 DOI: 10.1016/j.imlet.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Testis is an immune privileged site, a feature that prevents germ cells from eliciting an autoimmune response. Macrophages contribute to this state of tolerance by adopting an immunoregulatory phenotype. Here, we further characterized their features in mice by analyzing surface markers, anatomic localization as well as morphology and function. Testicular macrophages (TMF) were stained for various surface receptors, and MHCII and CD206 were found to be most suitable to discriminate between two subpopulations. Our immunohistochemical analysis further confirmed a predominant localization of CD206+ cells in the interstitial space. Imaging flow cytometry revealed that both subtypes of TMF differed in size and contrast, and to some extent also in their ability to engulf high-molecular dextran. To investigate whether the polarization of the immune system had any influence on the phenotype of TMF, we compared C57BL/6 and BALB/c mice. Importantly, our analysis revealed that the abundance of cells expressing either MHCII or any of the scavenger receptors CD206, CD163 and CD71 differed between both mouse strains. In addition, the presence of the glucocorticoid receptor in macrophages affected the ratio between individual subpopulations, which is consistent with a crucial role of glucocorticoids in macrophage polarization. Collectively, our results indicate that TMF are composed in a variable ratio of distinct subsets with characteristic features, which may shape the immune privilege of the testis also in humans.
Collapse
Affiliation(s)
- Fabian A Gayer
- University Medical Center Göttingen, Institute for Cellular and Molecular Immunology, Göttingen, Germany; University Medical Center Göttingen, Clinic of Urology, Göttingen, Germany
| | - Sybille D Reichardt
- University Medical Center Göttingen, Institute for Cellular and Molecular Immunology, Göttingen, Germany
| | | | - Michael Engelke
- University Medical Center Göttingen, Institute for Cellular and Molecular Immunology, Göttingen, Germany
| | - Holger M Reichardt
- University Medical Center Göttingen, Institute for Cellular and Molecular Immunology, Göttingen, Germany.
| |
Collapse
|
15
|
Bansal A, Mostafa MM, Kooi C, Sasse SK, Michi AN, Shah SV, Leigh R, Gerber AN, Newton R. Interplay between nuclear factor-κB, p38 MAPK and glucocorticoid receptor signaling synergistically induces functional TLR2 in lung epithelial cells. J Biol Chem 2022; 298:101747. [PMID: 35189144 PMCID: PMC8942839 DOI: 10.1016/j.jbc.2022.101747] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/05/2022] Open
Abstract
While glucocorticoids act via the glucocorticoid receptor (GR; NR3C1) to reduce the expression of many inflammatory genes, repression is not an invariable outcome. Here, we explore synergy occurring between synthetic glucocorticoids (dexamethasone and budesonide) and proinflammatory cytokines (IL1B and TNF) on the expression of the toll-like receptor 2 (TLR2). This effect is observed in epithelial cell lines and both undifferentiated and differentiated primary human bronchial epithelial cells (pHBECs). In A549 cells, IL1B-plus-glucocorticoid–induced TLR2 expression required nuclear factor (NF)-κB and GR. Likewise, in A549 cells, BEAS-2B cells, and pHBECs, chromatin immunoprecipitation identified GR- and NF-κB/p65-binding regions ∼32 kb (R1) and ∼7.3 kb (R2) upstream of the TLR2 gene. Treatment of BEAS-2B cells with TNF or/and dexamethasone followed by global run-on sequencing confirmed transcriptional activity at these regions. Furthermore, cloning R1 or R2 into luciferase reporters revealed transcriptional activation by budesonide or IL1B, respectively, while R1+R2 juxtaposition enabled synergistic activation by IL1B and budesonide. In addition, small-molecule inhibitors and siRNA knockdown showed p38α MAPK to negatively regulate both IL1B-induced TLR2 expression and R1+R2 reporter activity. Finally, agonism of IL1B-plus-dexamethasone–induced TLR2 in A549 cells and pHBECs stimulated NF-κB- and interferon regulatory factor-dependent reporter activity and chemokine release. We conclude that glucocorticoid-plus-cytokine-driven synergy at TLR2 involves GR and NF-κB acting via specific enhancer regions, which combined with the inhibition of p38α MAPK promotes TLR2 expression. Subsequent inflammatory effects that occur following TLR2 agonism may be pertinent in severe neutrophilic asthma or chronic obstructive pulmonary disease, where glucocorticoid-based therapies are less efficacious.
Collapse
Affiliation(s)
- Akanksha Bansal
- Department of Physiology & Pharmacology and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Department of Physiology & Pharmacology and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cora Kooi
- Department of Medicine and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Aubrey N Michi
- Department of Physiology & Pharmacology and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Suharsh V Shah
- Department of Physiology & Pharmacology and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard Leigh
- Department of Physiology & Pharmacology and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Medicine and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado, USA; Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Robert Newton
- Department of Physiology & Pharmacology and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
16
|
Reichardt SD, Amouret A, Muzzi C, Vettorazzi S, Tuckermann JP, Lühder F, Reichardt HM. The Role of Glucocorticoids in Inflammatory Diseases. Cells 2021; 10:cells10112921. [PMID: 34831143 PMCID: PMC8616489 DOI: 10.3390/cells10112921] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
For more than 70 years, glucocorticoids (GCs) have been a powerful and affordable treatment option for inflammatory diseases. However, their benefits do not come without a cost, since GCs also cause side effects. Therefore, strong efforts are being made to improve their therapeutic index. In this review, we illustrate the mechanisms and target cells of GCs in the pathogenesis and treatment of some of the most frequent inflammatory disorders affecting the central nervous system, the gastrointestinal tract, the lung, and the joints, as well as graft-versus-host disease, which often develops after hematopoietic stem cell transplantation. In addition, an overview is provided of novel approaches aimed at improving GC therapy based on chemical modifications or GC delivery using nanoformulations. GCs remain a topic of highly active scientific research despite being one of the oldest class of drugs in medical use.
Collapse
Affiliation(s)
- Sybille D. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Agathe Amouret
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Chiara Muzzi
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Holger M. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
- Correspondence: ; Tel.: +49-551-3963365
| |
Collapse
|
17
|
Shimba A, Ejima A, Ikuta K. Pleiotropic Effects of Glucocorticoids on the Immune System in Circadian Rhythm and Stress. Front Immunol 2021; 12:706951. [PMID: 34691020 PMCID: PMC8531522 DOI: 10.3389/fimmu.2021.706951] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Glucocorticoids (GCs) are a class of steroid hormones secreted from the adrenal cortex. Their production is controlled by circadian rhythm and stress, the latter of which includes physical restraint, hunger, and inflammation. Importantly, GCs have various effects on immunity, metabolism, and cognition, including pleiotropic effects on the immune system. In general, GCs have strong anti-inflammatory and immunosuppressive effects. Indeed, they suppress inflammatory cytokine expression and cell-mediated immunity, leading to increased risks of some infections. However, recent studies have shown that endogenous GCs induced by the diurnal cycle and dietary restriction enhance immune responses against some infections by promoting the survival, redistribution, and response of T and B cells via cytokine and chemokine receptors. Furthermore, although GCs are reported to reduce expression of Th2 cytokines, GCs enhance type 2 immunity and IL-17-associated immunity in some stress conditions. Taken together, GCs have both immunoenhancing and immunosuppressive effects on the immune system.
Collapse
Affiliation(s)
- Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aki Ejima
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Hu X, Deng S, Luo L, Jiang Y, Ge H, Yin F, Zhang Y, Zhang D, Li X, Feng J. GLCCI1 Deficiency Induces Glucocorticoid Resistance via the Competitive Binding of IRF1:GRIP1 and IRF3:GRIP1 in Asthma. Front Med (Lausanne) 2021; 8:686493. [PMID: 34504850 PMCID: PMC8421568 DOI: 10.3389/fmed.2021.686493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
GLCCI1 plays a significant role in modulating glucocorticoid (GC) sensitivity in asthma. This project determines the underlying mechanism that GLCCI1 deficiency attenuates GC sensitivity in dexamethasone (Dex)-treated Ovalbumin (OVA)-induced asthma mice and epithelial cells through upregulating binding of IRF1:GRIP1 and IRF3:GRIP1. Dexamethasone treatment led to less reduced inflammation, airway hyperresponsiveness, and activation of the components responsible for GC activity, as determined by decreased GR and glucocorticoid receptor interacting protein 1 (GRIP1) expression but augmented IRF1 and IRF3 expression in GLCCI1−/− asthmatic mice compared with wild type asthmatic mice. Moreover, the recruitment of GRIP1 to GR was downregulated, while the individual recruitment of GRIP1 to IRF1 and IRF3 was upregulated in GLCCI1−/− Dex-treated asthmatic mice compared to wild type Dex-treated asthmatic mice. We also found that GLCCI1 knockdown reduced GR and GRIP1 expression but increased IRF1 and IRF3 expression in Beas2B and A549 cells. Additionally, GLCCI1 silencing increased the interactions between GRIP1 with IRF1 and GRIP1 with IRF3, but decreased the recruitment of GRIP1 to GR. These studies support a critical but previously unrecognized effect of GLCCI1 expression on epithelial cells in asthma GC responses by which GLCCI1 deficiency reduces the GR and GRIP1 interaction but competitively enhances the recruitment of GRIP1 to IRF1 and IRF3.
Collapse
Affiliation(s)
- Xinyue Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Lisha Luo
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Ge
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Feifei Yin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Yingyu Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Daimo Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Juntao Feng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants (Basel) 2021; 10:antiox10091335. [PMID: 34572965 PMCID: PMC8471691 DOI: 10.3390/antiox10091335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Corticosteroid insensitivity is a key characteristic of patients with severe asthma and COPD. These individuals experience greater pulmonary oxidative stress and inflammation, which contribute to diminished lung function and frequent exacerbations despite the often and prolonged use of systemic, high dose corticosteroids. Reactive oxygen and nitrogen species (RONS) promote corticosteroid insensitivity by disrupting glucocorticoid receptor (GR) signaling, leading to the sustained activation of pro-inflammatory pathways in immune and airway structural cells. Studies in asthma and COPD models suggest that corticosteroids need a balanced redox environment to be effective and to reduce airway inflammation. In this review, we discuss how oxidative stress contributes to corticosteroid insensitivity and the importance of optimizing endogenous antioxidant responses to enhance corticosteroid sensitivity. Future studies should aim to identify how antioxidant-based therapies can complement corticosteroids to reduce the need for prolonged high dose regimens in patients with severe asthma and COPD.
Collapse
|
20
|
Jaeger N, McDonough RT, Rosen AL, Hernandez-Leyva A, Wilson NG, Lint MA, Russler-Germain EV, Chai JN, Bacharier LB, Hsieh CS, Kau AL. Airway Microbiota-Host Interactions Regulate Secretory Leukocyte Protease Inhibitor Levels and Influence Allergic Airway Inflammation. Cell Rep 2021; 33:108331. [PMID: 33147448 PMCID: PMC7685510 DOI: 10.1016/j.celrep.2020.108331] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/22/2020] [Accepted: 10/08/2020] [Indexed: 01/04/2023] Open
Abstract
Homeostatic mucosal immune responses are fine-tuned by naturally evolved interactions with native microbes, and integrating these relationships into experimental models can provide new insights into human diseases. Here, we leverage a murine-adapted airway microbe, Bordetella pseudohinzii (Bph), to investigate how chronic colonization impacts mucosal immunity and the development of allergic airway inflammation (AAI). Colonization with Bph induces the differentiation of interleukin-17A (IL-17A)-secreting T-helper cells that aid in controlling bacterial abundance. Bph colonization protects from AAI and is associated with increased production of secretory leukocyte protease inhibitor (SLPI), an antimicrobial peptide with anti-inflammatory properties. These findings are additionally supported by clinical data showing that higher levels of upper respiratory SLPI correlate both with greater asthma control and the presence of Haemophilus, a bacterial genus associated with AAI. We propose that SLPI could be used as a biomarker of beneficial host-commensal relationships in the airway. Asthma is known to be modified by airway microbes. Jaeger et al. use a murine-adapted bacterium to show that airway colonization evokes a Th17 response associated with increased SLPI, an antimicrobial peptide, and protection from lung inflammation. In people, SLPI was correlated with airway microbiota composition.
Collapse
Affiliation(s)
- Natalia Jaeger
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan T McDonough
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anne L Rosen
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ariel Hernandez-Leyva
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Naomi G Wilson
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael A Lint
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emilie V Russler-Germain
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiani N Chai
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leonard B Bacharier
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew L Kau
- Division of Allergy and Immunology, Department of Medicine and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
A flow cytometric approach to study glucocorticoid receptor expression in immune cell subpopulations of genetically engineered mice. Immunol Lett 2021; 233:68-79. [PMID: 33753134 DOI: 10.1016/j.imlet.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022]
Abstract
Glucocorticoids (GCs) constitute one of the most powerful classes of anti-inflammatory agents and are used for the treatment of a plethora of diseases related to autoimmunity, allergy, cancer, and infection. In the last two decades, multiple studies using genetically engineered mice with targeted deletions of the GC receptor (GR) in individual cell types have provided insights into the mechanisms of GCs in the control of the immune system. The characterization of GR expression in these mouse models, however, mostly relied on the analysis of mRNA expression or reporter gene activity. In contrast, approaches directly detecting the GR protein on a cellular level are scarce. Thus, we here used a flow cytometric method to analyze mice in which the GR gene locus was disrupted with the help of a Cre recombinase expressed under the control of either the lck or the lysM promoter. Measuring GR protein expression in immune cell subpopulations unveiled an efficient and highly selective depletion in both strains of knock-out mice in accordance with the expected cellular specificity of the employed promoters for T cells or myeloid cells, respectively. The flow cytometric data were well in line with those from the analysis of GR mRNA expression in magnetically sorted immune cell subpopulations but they could be obtained much more quickly. In summary, our data indicate that flow cytometry is a powerful tool with which to define GR protein content at a single cell level when studying the function of GCs in the immune system.
Collapse
|
22
|
León B, Ballesteros-Tato A. Modulating Th2 Cell Immunity for the Treatment of Asthma. Front Immunol 2021; 12:637948. [PMID: 33643321 PMCID: PMC7902894 DOI: 10.3389/fimmu.2021.637948] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
It is estimated that more than 339 million people worldwide suffer from asthma. The leading cause of asthma development is the breakdown of immune tolerance to inhaled allergens, prompting the immune system's aberrant activation. During the early phase, also known as the sensitization phase, allergen-specific T cells are activated and become central players in orchestrating the subsequent development of allergic asthma following secondary exposure to the same allergens. It is well-established that allergen-specific T helper 2 (Th2) cells play central roles in developing allergic asthma. As such, 80% of children and 60% of adult asthma cases are linked to an unwarranted Th2 cell response against respiratory allergens. Thus, targeting essential components of Th2-type inflammation using neutralizing antibodies against key Th2 modulators has recently become an attractive option for asthmatic patients with moderate to severe symptoms. In addition to directly targeting Th2 mediators, allergen immunotherapy, also known as desensitization, is focused on redirecting the allergen-specific T cells response from a Th2-type profile to a tolerogenic one. This review highlights the current understanding of the heterogeneity of the Th2 cell compartment, their contribution to allergen-induced airway inflammation, and the therapies targeting the Th2 cell pathway in asthma. Further, we discuss available new leads for successful targeting pulmonary Th2 cell responses for future therapeutics.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andre Ballesteros-Tato
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
23
|
Tiwari D, Gupta P. Nuclear Receptors in Asthma: Empowering Classical Molecules Against a Contemporary Ailment. Front Immunol 2021; 11:594433. [PMID: 33574813 PMCID: PMC7870687 DOI: 10.3389/fimmu.2020.594433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
The escalation in living standards and adoption of 'Western lifestyle' has an allied effect on the increased allergy and asthma burden in both developed and developing countries. Current scientific reports bespeak an association between allergic diseases and metabolic dysfunction; hinting toward the critical requirement of organized lifestyle and dietary habits. The ubiquitous nuclear receptors (NRs) translate metabolic stimuli into gene regulatory signals, integrating diet inflences to overall developmental and physiological processes. As a consequence of such promising attributes, nuclear receptors have historically been at the cutting edge of pharmacy world. This review discusses the recent findings that feature the cardinal importance of nuclear receptors and how they can be instrumental in modulating current asthma pharmacology. Further, it highlights a possible future employment of therapy involving dietary supplements and synthetic ligands that would engage NRs and aid in eliminating both asthma and linked comorbidities. Therefore, uncovering new and evolving roles through analysis of genomic changes would represent a feasible approach in both prevention and alleviation of asthma.
Collapse
Affiliation(s)
| | - Pawan Gupta
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
24
|
Mostafa MM, Bansal A, Michi AN, Sasse SK, Proud D, Gerber AN, Newton R. Genomic determinants implicated in the glucocorticoid-mediated induction of KLF9 in pulmonary epithelial cells. J Biol Chem 2021; 296:100065. [PMID: 33184061 PMCID: PMC7949084 DOI: 10.1074/jbc.ra120.015755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Ligand-activated glucocorticoid receptor (GR) elicits variable glucocorticoid-modulated transcriptomes in different cell types. However, some genes, including Krüppel-like factor 9 (KLF9), a putative transcriptional repressor, demonstrate conserved responses. We show that glucocorticoids induce KLF9 expression in the human airways in vivo and in differentiated human bronchial epithelial (HBE) cells grown at air-liquid interface (ALI). In A549 and BEAS-2B pulmonary epithelial cells, glucocorticoids induce KLF9 expression with similar kinetics to primary HBE cells in submersion culture. A549 and BEAS-2B ChIP-seq data reveal four common glucocorticoid-induced GR binding sites (GBSs). Two GBSs mapped to the 5'-proximal region relative to KLF9 transcription start site (TSS) and two occurred at distal sites. These were all confirmed in primary HBE cells. Global run-on (GRO) sequencing indicated robust enhancer RNA (eRNA) production from three of these GBSs in BEAS-2B cells. This was confirmed in A549 cells, plus submersion, and ALI culture of HBE cells. Cloning each GBS into luciferase reporters revealed glucocorticoid-induced activity requiring a glucocorticoid response element (GRE) within each distal GBS. While the proximal GBSs drove modest reporter induction by glucocorticoids, this region exhibited basal eRNA production, RNA polymerase II enrichment, and looping to the TSS, plausibly underlying constitutive KLF9 expression. Post glucocorticoid treatment, interactions between distal and proximal GBSs and the TSS correlated with KLF9 induction. CBP/P300 silencing reduced proximal GBS activity, but negligibly affected KLF9 expression. Overall, a model for glucocorticoid-mediated regulation of KLF9 involving multiple GBSs is depicted. This work unequivocally demonstrates that mechanistic insights gained from cell lines can translate to physiologically relevant systems.
Collapse
Affiliation(s)
- Mahmoud M Mostafa
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Akanksha Bansal
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Aubrey N Michi
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - David Proud
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado, USA; Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Robert Newton
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
25
|
Mostafa MM, Rider CF, Wathugala ND, Leigh R, Giembycz MA, Newton R. Transcriptome-Level Interactions between Budesonide and Formoterol Provide Insight into the Mechanism of Action of Inhaled Corticosteroid/Long-Acting β 2-Adrenoceptor Agonist Combination Therapy in Asthma. Mol Pharmacol 2020; 99:197-216. [PMID: 33376135 DOI: 10.1124/molpharm.120.000146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022] Open
Abstract
In 2019, the Global Initiative for Asthma treatment guidelines were updated to recommend that inhaled corticosteroid (ICS)/long-acting β 2-adrenoceptor agonist (LABA) combination therapy should be a first-in-line treatment option for asthma. Although clinically superior to ICS, mechanisms underlying the efficacy of this combination therapy remain unclear. We hypothesized the existence of transcriptomic interactions, an effect that was tested in BEAS-2B and primary human bronchial epithelial cells (pHBECs) using formoterol and budesonide as representative LABA and ICS, respectively. In BEAS-2B cells, formoterol produced 267 (212 induced; 55 repressed) gene expression changes (≥2/≤0.5-fold) that were dominated by rapidly (1 to 2 hours) upregulated transcripts. Conversely, budesonide induced 370 and repressed 413 mRNAs, which occurred predominantly at 6-18 hours and was preceded by transcripts enriched in transcriptional regulators. Significantly, genes regulated by both formoterol and budesonide were over-represented in the genome; moreover, budesonide plus formoterol induced and repressed 609 and 577 mRNAs, respectively, of which ∼one-third failed the cutoff criterion for either treatment alone. Although induction of many mRNAs by budesonide plus formoterol was supra-additive, the dominant (and potentially beneficial) effect of budesonide on formoterol-induced transcripts, including those encoding many proinflammatory proteins, was repression. Gene ontology analysis of the budesonide-modulated transcriptome returned enriched terms for transcription, apoptosis, proliferation, differentiation, development, and migration. This "functional" ICS signature was augmented in the presence of formoterol. Thus, LABAs modulate glucocorticoid action, and comparable transcriptome-wide interactions in pHBECs imply that such effects may be extrapolated to individuals with asthma taking combination therapy. Although repression of formoterol-induced proinflammatory mRNAs should be beneficial, the pathophysiological consequences of other interactions require investigation. SIGNIFICANCE STATEMENT: In human bronchial epithelial cells, formoterol, a long-acting β 2-adrenoceptor agonist (LABA), enhanced the expression of inflammatory genes, and many of these changes were reduced by the glucocorticoid budesonide. Conversely, the ability of formoterol to enhance both gene induction and repression by budesonide provides mechanistic insight as to how adding a LABA to an inhaled corticosteroid may improve clinical outcomes in asthma.
Collapse
Affiliation(s)
- Mahmoud M Mostafa
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Christopher F Rider
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - N Dulmini Wathugala
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Richard Leigh
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
26
|
Wepler M, Preuss JM, Merz T, McCook O, Radermacher P, Tuckermann JP, Vettorazzi S. Impact of downstream effects of glucocorticoid receptor dysfunction on organ function in critical illness-associated systemic inflammation. Intensive Care Med Exp 2020; 8:37. [PMID: 33336296 PMCID: PMC7746781 DOI: 10.1186/s40635-020-00325-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) are stress hormones that regulate developmental and physiological processes and are among the most potent anti-inflammatory drugs to suppress chronic and acute inflammation. GCs act through the glucocorticoid receptor (GR), a ubiquitously expressed ligand-activated transcription factor, which translocates into the nucleus and can act via two different modes, as a GR monomer or as a GR dimer. These two modes of action are not clearly differentiated in practice and may lead to completely different therapeutic outcomes. Detailed aspects of GR mechanisms are often not taken into account when GCs are used in different clinical scenarios. Patients, with critical illness-related corticosteroid insufficiency, treated with natural or synthetic GCs are still missing a clearly defined therapeutic strategy. This review discusses the different modes of GR function and its importance on organ function in vivo.
Collapse
Affiliation(s)
- Martin Wepler
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany. .,Department of Anesthesia, University Hospital Ulm, Ulm, Germany.
| | - Jonathan M Preuss
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| |
Collapse
|
27
|
Muzzi C, Watanabe N, Twomey E, Meers GK, Reichardt HM, Bohnenberger H, Reichardt SD. The Glucocorticoid Receptor in Intestinal Epithelial Cells Alleviates Colitis and Associated Colorectal Cancer in Mice. Cell Mol Gastroenterol Hepatol 2020; 11:1505-1518. [PMID: 33316454 PMCID: PMC8039723 DOI: 10.1016/j.jcmgh.2020.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease is commonly treated by administration of glucocorticoids. While the importance of intestinal epithelial cells for the pathogenesis of this disorder is widely accepted, their role as target cells for glucocorticoids has not been explored. To address this issue, we induced colonic inflammation in GRvillin mice, which carry an inducible deletion of the glucocorticoid receptor in intestinal epithelial cells. METHODS Colitis and colitis-associated colorectal cancer were induced by administration of dextran sulfate sodium and azoxymethane in mice. Clinical parameters, epithelial permeability and tumor development were monitored during disease progression. Colon tissue, lamina propria cells and intestinal epithelial cells were examined by gene expression analyses, flow cytometry, histopathology, and immunohistochemistry. RESULTS The absence of the intestinal epithelial glucocorticoid receptor aggravated clinical symptoms and tissue damage, and compromised epithelial barrier integrity during colitis. Gene expression of chemokines, pattern recognition receptors and molecules controlling epithelial permeability was dysregulated in intestinal epithelial cells of GRvillin mice, leading to a reduced recruitment and a hyperactivation of leukocytes in the lamina propria of the colon. Importantly, the exaggerated inflammatory response in GRvillin mice also enhanced associated tumorigenesis, resulting in a higher number and larger size of tumors in the colon. CONCLUSIONS Our results reveal an important role of intestinal epithelial cells as targets of glucocorticoid action in inflammatory bowel disease and suggest that the efficacy with which colitis is kept at bay directly affects the progression of colorectal cancer.
Collapse
Affiliation(s)
- Chiara Muzzi
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Norika Watanabe
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Eric Twomey
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Garrit K. Meers
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Holger M. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Sybille D. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany,Correspondence Address correspondence to: Sybille Reichardt, PhD, Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Humboldtallee 34, 37073 Göttingen, Germany. fax: +49 551-395843.
| |
Collapse
|
28
|
Shimba A, Ikuta K. Control of immunity by glucocorticoids in health and disease. Semin Immunopathol 2020; 42:669-680. [PMID: 33219395 DOI: 10.1007/s00281-020-00827-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/13/2020] [Indexed: 12/15/2022]
Abstract
Animals receive environmental stimuli from neural signals in order to produce hormones that control immune responses. Glucocorticoids (GCs) are a group of steroid hormones produced in the adrenal cortex and well-known mediators for the nervous and immune systems. GC secretion is induced by circadian rhythm and stress, and plasma GC levels are high at the active phase of animals and under stress condition. Clinically, GCs are used for allergies, autoimmunity, and chronic inflammation, because they have strong anti-inflammatory effects and induce the apoptosis of lymphocytes. Glucocorticoid receptor (GR) acts as a transcription factor and represses the expression of inflammatory cytokines, chemokines, and prostaglandins by binding to its motif, glucocorticoid-response element, or to other transcription factors. In mice, GR suppresses the antigen-stimulated inflammation mediated by macrophages, dendritic cells, and epithelial cells, and impairs cytotoxic immune responses by downregulating interferon-γ production and inhibiting the development of type-1 helper T cells, CD8+ T cells, and natural killer cells. These immune inhibitory effects prevent lethality by excessive inflammation, but at the same time increase the susceptibility to infection and cancer. GCs can also activate the immune system. The circadian cycle of GC secretion controls the diurnal oscillations of the distribution and response of T cells, thus supporting T cell maintenance and effective immune protection against infection. Moreover, several reports have shown that GR has the potential to enhance the activities of Th2, Th17, and immunoglobulin-producing B cells. Stress has two different effects on immune responses: immune suppression to cause mortality by infection and cancer, and excessive immune activation to induce chronic inflammation and autoimmune disease. Consistently, stress-induced GCs strongly suppress cell-mediated immunity and cause viral infection and tumor development. They may also enhance the development of pathogenic helper T cells and cause tissue damage through neural and intestinal inflammation. Past studies have reported the positive and negative effects of GCs on the immune system. These opposing properties of GCs may regulate the immune balance between the responsiveness to antigens and excessive inflammation in steady-state and stress conditions.
Collapse
Affiliation(s)
- Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.,Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
29
|
New insights into the cell- and tissue-specificity of glucocorticoid actions. Cell Mol Immunol 2020; 18:269-278. [PMID: 32868909 PMCID: PMC7456664 DOI: 10.1038/s41423-020-00526-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/11/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoids (GCs) are endogenous hormones that are crucial for the homeostasis of the organism and adaptation to the external environment. Because of their anti-inflammatory effects, synthetic GCs are also extensively used in clinical practice. However, almost all cells in the body are sensitive to GC regulation. As a result, these mediators have pleiotropic effects, which may be undesirable or detrimental to human health. Here, we summarize the recent findings that contribute to deciphering the molecular mechanisms downstream of glucocorticoid receptor activation. We also discuss the complex role of GCs in infectious diseases such as sepsis and COVID-19, in which the balance between pathogen elimination and protection against excessive inflammation and immunopathology needs to be tightly regulated. An understanding of the cell type- and context-specific actions of GCs from the molecular to the organismal level would help to optimize their therapeutic use.
Collapse
|
30
|
Drasler B, Karakocak BB, Tankus EB, Barosova H, Abe J, Sousa de Almeida M, Petri-Fink A, Rothen-Rutishauser B. An Inflamed Human Alveolar Model for Testing the Efficiency of Anti-inflammatory Drugs in vitro. Front Bioeng Biotechnol 2020; 8:987. [PMID: 32974315 PMCID: PMC7471931 DOI: 10.3389/fbioe.2020.00987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
A large number of prevalent lung diseases is associated with tissue inflammation. Clinically, corticosteroid therapies are applied systemically or via inhalation for the treatment of lung inflammation, and a number of novel therapies are being developed that require preclinical testing. In alveoli, macrophages and dendritic cells play a key role in initiating and diminishing pro-inflammatory reactions and, in particular, macrophage plasticity (M1 and M2 phenotypes shifts) has been reported to play a significant role in these reactions. Thus far, no studies with in vitro lung epithelial models have tested the comparison between systemic and direct pulmonary drug delivery. Therefore, the aim of this study was to develop an inflamed human alveolar epithelium model and to test the resolution of LPS-induced inflammation in vitro with a corticosteroid, methylprednisolone (MP). A specific focus of the study was the macrophage phenotype shifts in response to these stimuli. First, human monocyte-derived macrophages were examined for phenotype shifts upon exposure to lipopolysaccharide (LPS), followed by treatment with MP. A multicellular human alveolar model, composed of macrophages, dendritic cells, and epithelial cells, was then employed for the development of inflamed models. The models were used to test the anti-inflammatory potency of MP by monitoring the secretion of pro-inflammatory mediators (interleukin [IL]-8, tumor necrosis factor-α [TNF-α], and IL-1β) through four different approaches, mimicking clinical scenarios of inflammation and treatment. In macrophage monocultures, LPS stimulation shifted the phenotype towards M1, as demonstrated by increased release of IL-8 and TNF-α and altered expression of phenotype-associated surface markers (CD86, CD206). MP treatment of inflamed macrophages reversed the phenotype towards M2. In multicellular models, increased pro-inflammatory reactions after LPS exposure were observed, as demonstrated by protein secretion and gene expression measurements. In all scenarios, among the tested mediators the most pronounced anti-inflammatory effect of MP was observed for IL-8. Our findings demonstrate that our inflamed multicellular human lung model is a promising tool for the evaluation of anti-inflammatory potency of drug candidates in vitro. With the presented setup, our model allows a meaningful comparison of the systemic vs. inhalation administration routes for the evaluation of the efficacy of a drug in vitro.
Collapse
Affiliation(s)
- Barbara Drasler
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Bedia Begum Karakocak
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Esma Bahar Tankus
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Hana Barosova
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Mauro Sousa de Almeida
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Alke Petri-Fink
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland.,Département de Chimie, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| |
Collapse
|
31
|
Kim D, Nguyen QT, Lee J, Lee SH, Janocha A, Kim S, Le HT, Dvorina N, Weiss K, Cameron MJ, Asosingh K, Erzurum SC, Baldwin WM, Lee JS, Min B. Anti-inflammatory Roles of Glucocorticoids Are Mediated by Foxp3 + Regulatory T Cells via a miR-342-Dependent Mechanism. Immunity 2020; 53:581-596.e5. [PMID: 32707034 DOI: 10.1016/j.immuni.2020.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/15/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Glucocorticoids (GC) are the mainstay treatment option for inflammatory conditions. Despite the broad usage of GC, the mechanisms by which GC exerts its effects remain elusive. Here, utilizing murine autoimmune and allergic inflammation models, we report that Foxp3+ regulatory T (Treg) cells are irreplaceable GC target cells in vivo. Dexamethasone (Dex) administered in the absence of Treg cells completely lost its ability to control inflammation, and the lack of glucocorticoid receptor in Treg cells alone resulted in the loss of therapeutic ability of Dex. Mechanistically, Dex induced miR-342-3p specifically in Treg cells and miR-342-3p directly targeted the mTORC2 component, Rictor. Altering miRNA-342-3p or Rictor expression in Treg cells dysregulated metabolic programming in Treg cells, controlling their regulatory functions in vivo. Our results uncover a previously unknown contribution of Treg cells during glucocorticoid-mediated treatment of inflammation and the underlying mechanisms operated via the Dex-miR-342-Rictor axis.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Quang Tam Nguyen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Juyeun Lee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sung Hwan Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Allison Janocha
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sohee Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Hongnga T Le
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Kelly Weiss
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Booki Min
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195.
| |
Collapse
|
32
|
He N, Liu L, Ding J, Sun Y, Xing H, Wang S. MiR-222-3p ameliorates glucocorticoid-induced inhibition of airway epithelial cell repair through down-regulating GILZ expression. J Recept Signal Transduct Res 2020; 40:301-312. [PMID: 32202184 DOI: 10.1080/10799893.2020.1742739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
GILZ expression is induced by glucocorticoids (GCs) and is involved in the mechanism of airway epithelial cell repair in patients with asthma. The present study aimed to investigate the role of miR-222-3p/GILZ pathway in treatment of airway epithelial cell repair by GCs. 9HTE cells were treated by 10 µmol/L dexamethasone (Dex) for 6, 12, and 24 hours (h). MiR-222-3p mimic and GILZ were used for cell transfection. Cell vitality, migration, and invasion were detected by methyl-thiazolyl tetrazolium (MTT), wound healing, and Transwell. The targeting relationship between miR-222-3p and GILZ was predicted by TargetScan and further confirmed by dual-luciferase reporter assay. The expressions of relative mRNAs or proteins were detected by Western blot and quantitative polymerase chain reaction (qPCR). The results showed that Dex treatment up-regulated the GILZ expression level but inhibited the levels of p-Raf1, p-MEK1/2, p-ERK1/2, and miR-222-3p of the cells, moreover, it also inhibited cell activity, migration, and invasion in a time-dependent manner. MiR-222-3p specifically targeted GILZ. MiR-222-3p mimic ameliorated the cell viability, migration, and invasion reduced by Dex treatment, increased the expression levels of p-Raf1 and p-MEK1/2, p-ERK1/2, and partially reversed the effects of GILZ overexpression on the above indexes. Moreover, GILZ showed the opposite effects to miR-222-3p. MiR-222-3p activated MAPK signaling pathway through inhibiting the GILZ expression, thus promoting the cell viability, migration, and invasion previously reduced by Dex.
Collapse
Affiliation(s)
- Ning He
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, China
| | - Liping Liu
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, China
| | - Juan Ding
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, China
| | - Yuemei Sun
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, China
| | - Haiyan Xing
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, China
| | - Shuyun Wang
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
33
|
Highly selective organ distribution and cellular uptake of inorganic-organic hybrid nanoparticles customized for the targeted delivery of glucocorticoids. J Control Release 2020; 319:360-370. [DOI: 10.1016/j.jconrel.2020.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/11/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
|
34
|
Goldblatt DL, Flores JR, Valverde Ha G, Jaramillo AM, Tkachman S, Kirkpatrick CT, Wali S, Hernandez B, Ost DE, Scott BL, Chen J, Evans SE, Tuvim MJ, Dickey BF. Inducible epithelial resistance against acute Sendai virus infection prevents chronic asthma-like lung disease in mice. Br J Pharmacol 2020; 177:2256-2273. [PMID: 31968123 DOI: 10.1111/bph.14977] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Respiratory viral infections play central roles in the initiation, exacerbation and progression of asthma in humans. An acute paramyxoviral infection in mice can cause a chronic lung disease that resembles human asthma. We sought to determine whether reduction of Sendai virus lung burden in mice by stimulating innate immunity with aerosolized Toll-like receptor (TLR) agonists could attenuate the severity of chronic asthma-like lung disease. EXPERIMENTAL APPROACH Mice were treated by aerosol with 1-μM oligodeoxynucleotide (ODN) M362, an agonist of the TLR9 homodimer, and 4-μM Pam2CSK4 (Pam2), an agonist of the TLR2/6 heterodimer, within a few days before or after Sendai virus challenge. KEY RESULTS Treatment with ODN/Pam2 caused ~75% reduction in lung Sendai virus burden 5 days after challenge. The reduction in acute lung virus burden was associated with marked reductions 49 days after viral challenge in eosinophilic and lymphocytic lung inflammation, airway mucous metaplasia, lumenal mucus occlusion and hyperresponsiveness to methacholine. Mechanistically, ODN/Pam2 treatment attenuated the chronic asthma phenotype by suppressing IL-33 production by type 2 pneumocytes, both by reducing the severity of acute infection and by down-regulating Type 2 (allergic) inflammation. CONCLUSION AND IMPLICATIONS These data suggest that treatment of susceptible human hosts with aerosolized ODN and Pam2 at the time of a respiratory viral infection might attenuate the severity of the acute infection and reduce initiation, exacerbation and progression of asthma.
Collapse
Affiliation(s)
- David L Goldblatt
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jose R Flores
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriella Valverde Ha
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana M Jaramillo
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sofya Tkachman
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carson T Kirkpatrick
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shradha Wali
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Belinda Hernandez
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David E Ost
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott E Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Tuvim
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Burton F Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
35
|
Escoter-Torres L, Caratti G, Mechtidou A, Tuckermann J, Uhlenhaut NH, Vettorazzi S. Fighting the Fire: Mechanisms of Inflammatory Gene Regulation by the Glucocorticoid Receptor. Front Immunol 2019; 10:1859. [PMID: 31440248 PMCID: PMC6693390 DOI: 10.3389/fimmu.2019.01859] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
For many decades, glucocorticoids have been widely used as the gold standard treatment for inflammatory conditions. Unfortunately, their clinical use is limited by severe adverse effects such as insulin resistance, cardiometabolic diseases, muscle and skin atrophies, osteoporosis, and depression. Glucocorticoids exert their effects by binding to the Glucocorticoid Receptor (GR), a ligand-activated transcription factor which both positively, and negatively regulates gene expression. Extensive research during the past several years has uncovered novel mechanisms by which the GR activates and represses its target genes. Genome-wide studies and mouse models have provided valuable insight into the molecular mechanisms of inflammatory gene regulation by GR. This review focusses on newly identified target genes and GR co-regulators that are important for its anti-inflammatory effects in innate immune cells, as well as mutations within the GR itself that shed light on its transcriptional activity. This research progress will hopefully serve as the basis for the development of safer immune suppressants with reduced side effect profiles.
Collapse
Affiliation(s)
- Laura Escoter-Torres
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany
| | - Giorgio Caratti
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Aikaterini Mechtidou
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany
| | - Jan Tuckermann
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Nina Henriette Uhlenhaut
- Molecular Endocrinology, Helmholtz Zentrum München (HMGU), German Center for Diabetes Research (DZD), Institute for Diabetes and Cancer IDC, Munich, Germany.,Gene Center, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Sabine Vettorazzi
- Department of Biology, Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| |
Collapse
|
36
|
Strehl C, Ehlers L, Gaber T, Buttgereit F. Glucocorticoids-All-Rounders Tackling the Versatile Players of the Immune System. Front Immunol 2019; 10:1744. [PMID: 31396235 PMCID: PMC6667663 DOI: 10.3389/fimmu.2019.01744] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids regulate fundamental processes of the human body and control cellular functions such as cell metabolism, growth, differentiation, and apoptosis. Moreover, endogenous glucocorticoids link the endocrine and immune system and ensure the correct function of inflammatory events during tissue repair, regeneration, and pathogen elimination via genomic and rapid non-genomic pathways. Due to their strong immunosuppressive, anti-inflammatory and anti-allergic effects on immune cells, tissues and organs, glucocorticoids significantly improve the quality of life of many patients suffering from diseases caused by a dysregulated immune system. Despite the multitude and seriousness of glucocorticoid-related adverse events including diabetes mellitus, osteoporosis and infections, these agents remain indispensable, representing the most powerful, and cost-effective drugs in the treatment of a wide range of rheumatic diseases. These include rheumatoid arthritis, vasculitis, and connective tissue diseases, as well as many other pathological conditions of the immune system. Depending on the therapeutically affected cell type, glucocorticoid actions strongly vary among different diseases. While immune responses always represent complex reactions involving different cells and cellular processes, specific immune cell populations with key responsibilities driving the pathological mechanisms can be identified for certain autoimmune diseases. In this review, we will focus on the mechanisms of action of glucocorticoids on various leukocyte populations, exemplarily portraying different autoimmune diseases as heterogeneous targets of glucocorticoid actions: (i) Abnormalities in the innate immune response play a crucial role in the initiation and perpetuation of giant cell arteritis (GCA). (ii) Specific types of CD4+ T helper (Th) lymphocytes, namely Th1 and Th17 cells, represent important players in the establishment and course of rheumatoid arthritis (RA), whereas (iii) B cells have emerged as central players in systemic lupus erythematosus (SLE). (iv) Allergic reactions are mainly triggered by several different cytokines released by activated Th2 lymphocytes. Using these examples, we aim to illustrate the versatile modulating effects of glucocorticoids on the immune system. In contrast, in the treatment of lymphoproliferative disorders the pro-apoptotic action of glucocorticoids prevails, but their mechanisms differ depending on the type of cancer. Therefore, we will also give a brief insight into the current knowledge of the mode of glucocorticoid action in oncological treatment focusing on leukemia.
Collapse
Affiliation(s)
- Cindy Strehl
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Lisa Ehlers
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| |
Collapse
|
37
|
Louw A. GR Dimerization and the Impact of GR Dimerization on GR Protein Stability and Half-Life. Front Immunol 2019; 10:1693. [PMID: 31379877 PMCID: PMC6653659 DOI: 10.3389/fimmu.2019.01693] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022] Open
Abstract
Pharmacologically, glucocorticoids, which mediate their effects via the glucocorticoid receptor (GR), are a most effective therapy for inflammatory diseases despite the fact that chronic use causes side-effects and acquired GC resistance. The design of drugs with fewer side-effects and less potential for the development of resistance is therefore considered crucial for improved therapy. Dimerization of the GR is an integral step in glucocorticoid signaling and has been identified as a possible molecular site to target for drug development of anti-inflammatory drugs with an improved therapeutic index. Most of the current understanding regarding the role of GR dimerization in GC signaling derives for dimerization deficient mutants, although the role of ligands biased toward monomerization has also been described. Even though designing for loss of dimerization has mostly been applied for reduction of side-effect profile, designing for loss of dimerization may also be a fruitful strategy for the development of GC drugs with less potential to develop GC resistance. GC-induced resistance affects up to 30% of users and is due to a reduction in the GR functional pool. Several molecular mechanisms of GC-mediated reductions in GR pool have been described, one of which is the autologous down-regulation of GR density by the ubiquitin-proteasome-system (UPS). Loss of GR dimerization prevents autologous down-regulation of the receptor through modulation of interactions with components of the UPS and post-translational modifications (PTMs), such as phosphorylation, which prime the GR for degradation. Rational design of conformationally biased ligands that select for a monomeric GR conformation, which increases GC sensitivity through improving GR protein stability and increasing half-life, may be a productive avenue to explore. However, potential drawbacks to this approach should be considered as well as the advantages and disadvantages in chronic vs. acute treatment regimes.
Collapse
Affiliation(s)
- Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
38
|
Mostafa MM, Rider CF, Shah S, Traves SL, Gordon PMK, Miller-Larsson A, Leigh R, Newton R. Glucocorticoid-driven transcriptomes in human airway epithelial cells: commonalities, differences and functional insight from cell lines and primary cells. BMC Med Genomics 2019; 12:29. [PMID: 30704470 PMCID: PMC6357449 DOI: 10.1186/s12920-018-0467-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022] Open
Abstract
Background Glucocorticoids act on the glucocorticoid receptor (GR; NR3C1) to resolve inflammation and, as inhaled corticosteroids (ICS), are the cornerstone of treatment for asthma. However, reduced efficacy in severe disease or exacerbations indicates a need to improve ICS actions. Methods Glucocorticoid-driven transcriptomes were compared using PrimeView microarrays between primary human bronchial epithelial (HBE) cells and the model cell lines, pulmonary type II A549 and bronchial epithelial BEAS-2B cells. Results In BEAS-2B cells, budesonide induced (≥2-fold, P ≤ 0.05) or, in a more delayed fashion, repressed (≤0.5-fold, P ≤ 0.05) the expression of 63, 133, 240, and 257 or 15, 56, 236, and 344 mRNAs at 1, 2, 6, and 18 h, respectively. Within the early-induced mRNAs were multiple transcriptional activators and repressors, thereby providing mechanisms for the subsequent modulation of gene expression. Using the above criteria, 17 (BCL6, BIRC3, CEBPD, ERRFI1, FBXL16, FKBP5, GADD45B, IRS2, KLF9, PDK4, PER1, RGCC, RGS2, SEC14L2, SLC16A12, TFCP2L1, TSC22D3) induced and 8 (ARL4C, FLRT2, IER3, IL11, PLAUR, SEMA3A, SLC4A7, SOX9) repressed mRNAs were common between A549, BEAS-2B and HBE cells at 6 h. As absolute gene expression change showed greater commonality, lowering the cut-off (≥1.25 or ≤ 0.8-fold) within these groups produced 93 induced and 82 repressed genes in common. Since large changes in few mRNAs and/or small changes in many mRNAs may drive function, gene ontology (GO)/pathway analyses were performed using both stringency criteria. Budesonide-induced genes showed GO term enrichment for positive and negative regulation of transcription, signaling, proliferation, apoptosis, and movement, as well as FOXO and PI3K-Akt signaling pathways. Repressed genes were enriched for inflammatory signaling pathways (TNF, NF-κB) and GO terms for cytokine activity, chemotaxis and cell signaling. Reduced growth factor expression and effects on proliferation and apoptosis were highlighted. Conclusions While glucocorticoids repress mRNAs associated with inflammation, prior induction of transcriptional activators and repressors may explain longer-term responses to these agents. Furthermore, positive and negative effects on signaling, proliferation, migration and apoptosis were revealed. Since many such gene expression changes occurred in human airways post-ICS inhalation, the effects observed in cell lines and primary HBE cells in vitro may be relevant to ICS in vivo. Electronic supplementary material The online version of this article (10.1186/s12920-018-0467-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mahmoud M Mostafa
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Cardiovascular and Respiratory Sciences graduate program, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christopher F Rider
- Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Suharsh Shah
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Suzanne L Traves
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Paul M K Gordon
- Centre for Health Genomics and Informatics, University of Calgary, Calgary, Alberta, Canada
| | | | - Richard Leigh
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
39
|
Napp J, Markus MA, Heck JG, Dullin C, Möbius W, Gorpas D, Feldmann C, Alves F. Therapeutic Fluorescent Hybrid Nanoparticles for Traceable Delivery of Glucocorticoids to Inflammatory Sites. Am J Cancer Res 2018; 8:6367-6383. [PMID: 30613305 PMCID: PMC6299685 DOI: 10.7150/thno.28324] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/19/2018] [Indexed: 01/15/2023] Open
Abstract
Treatment of inflammatory disorders with glucocorticoids (GCs) is often accompanied by severe adverse effects. Application of GCs via nanoparticles (NPs), especially those using simple formulations, could possibly improve their delivery to sites of inflammation and therefore their efficacy, minimising the required dose and thus reducing side effects. Here, we present the evaluation of NPs composed of GC betamethasone phosphate (BMP) and the fluorescent dye DY-647 (BMP-IOH-NPs) for improved treatment of inflammation with simultaneous in vivo monitoring of NP delivery. Methods: BMP-IOH-NP uptake by MH-S macrophages was analysed by fluorescence and electron microscopy. Lipopolysaccharide (LPS)-stimulated cells were treated for 48 h with BMP-IOH-NPs (1×10-5-1×10-9 M), BMP or dexamethasone (Dexa). Drug efficacy was assessed by measurement of interleukin 6. Mice with Zymosan-A-induced paw inflammation were intraperitoneally treated with BMP-IOH-NPs (10 mg/kg) and mice with ovalbumin (OVA)-induced allergic airway inflammation (AAI) were treated intranasally with BMP-IOH-NPs, BMP or Dexa (each 2.5 mg/kg). Efficacy was assessed in vivo by paw volume measurements with µCT and ex vivo by measurement of paw weight for Zymosan-A-treated mice, or in the AAI model by in vivo x-ray-based lung function assessment and by cell counts in the bronchoalveolar lavage (BAL) fluid and histology. Delivery of BMP-IOH-NPs to the lungs of AAI mice was monitored by in vivo optical imaging and by fluorescence microscopy. Results: Uptake of BMP-IOH-NPs by MH-S cells was observed during the first 10 min of incubation, with the NP load increasing over time. The anti-inflammatory effect of BMP-IOH-NPs in vitro was dose dependent and higher than that of Dexa or free BMP, confirming efficient release of the drug. In vivo, Zymosan-A-induced paw inflammation was significantly reduced in mice treated with BMP-IOH-NPs. AAI mice that received BMP-IOH-NPs or Dexa but not BMP revealed significantly decreased eosinophil numbers in BALs and reduced immune cell infiltration in lungs. Correspondingly, lung function parameters, which were strongly affected in non-treated AAI mice, were unaffected in AAI mice treated with BMP-IOH-NPs and resembled those of healthy animals. Accumulation of BMP-IOH-NPs within the lungs of AAI mice was detectable by optical imaging for at least 4 h in vivo, where they were preferentially taken up by peribronchial and alveolar M2 macrophages. Conclusion: Our results show that BMP-IOH-NPs can effectively be applied in therapy of inflammatory diseases with at least equal efficacy as the gold standard Dexa, while their delivery can be simultaneously tracked in vivo by fluorescence imaging. BMP-IOH-NPs thus have the potential to reach clinical applications.
Collapse
|
40
|
Rider CF, Carlsten C. Air pollution and resistance to inhaled glucocorticoids: Evidence, mechanisms and gaps to fill. Pharmacol Ther 2018; 194:1-21. [PMID: 30138638 DOI: 10.1016/j.pharmthera.2018.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Substantial evidence indicates that cigarette smoke exposure induces resistance to glucocorticoids, the primary maintenance medication in asthma treatment. Modest evidence also suggests that air pollution may reduce the effectiveness of these critical medications. Cigarette smoke, which has clear parallels with air pollution, has been shown to induce glucocorticoid resistance in asthma and it has been speculated that air pollution may have similar effects. However, the literature on an association of air pollution with glucocorticoid resistance is modest to date. In this review, we detail the evidence for, and against, the effects of air pollution on glucocorticoid effectiveness, focusing on results from epidemiology and controlled human exposure studies. Epidemiological studies indicate a correlation between increased air pollution exposure and worse asthma symptoms. But these studies also show a mix of beneficial and harmful effects of glucocorticoids on spirometry and asthma symptoms, perhaps due to confounding influences, or the induction of glucocorticoid resistance. We describe mechanisms that may contribute to reductions in glucocorticoid responsiveness following air pollution exposure, including changes to phosphorylation or oxidation of the glucocorticoid receptor, repression by cytokines, or inflammatory pathways, and epigenetic effects. Possible interactions between air pollution and respiratory infections are also briefly discussed. Finally, we detail a number of therapies that may boost glucocorticoid effectiveness or reverse resistance in the presence of air pollution, and comment on the beneficial effects of engineering controls, such as air filtration and asthma action plans. We also call attention to the benefits of improved clean air policy on asthma. This review highlights numerous gaps in our knowledge of the interactions between air pollution and glucocorticoids to encourage further research in this area with a view to reducing the harm caused to those with airways disease.
Collapse
Affiliation(s)
- Christopher F Rider
- Respiratory Medicine, Faculty of Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease (COERD), University of British Columbia, Vancouver, BC, Canada.
| | - Chris Carlsten
- Respiratory Medicine, Faculty of Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease (COERD), University of British Columbia, Vancouver, BC, Canada; Institute for Heart and Lung Health, University of British Columbia, Vancouver, BC, Canada; School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Rider CF, Altonsy MO, Mostafa MM, Shah SV, Sasse S, Manson ML, Yan D, Kärrman-Mårdh C, Miller-Larsson A, Gerber AN, Giembycz MA, Newton R. Long-Acting β2-Adrenoceptor Agonists Enhance Glucocorticoid Receptor (GR)-Mediated Transcription by Gene-Specific Mechanisms Rather Than Generic Effects via GR. Mol Pharmacol 2018; 94:1031-1046. [PMID: 29959223 DOI: 10.1124/mol.118.112755] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Abstract
In asthma, the clinical efficacy of inhaled corticosteroids (ICSs) is enhanced by long-acting β2-adrenoceptor agonists (LABAs). ICSs, or more accurately, glucocorticoids, promote therapeutically relevant changes in gene expression, and, in primary human bronchial epithelial cells (pHBECs) and airway smooth muscle cells, this genomic effect can be enhanced by a LABA. Modeling this interaction in human bronchial airway epithelial BEAS-2B cells transfected with a 2× glucocorticoid response element (2×GRE)-driven luciferase reporter showed glucocorticoid-induced transcription to be enhanced 2- to 3-fold by LABA. This glucocorticoid receptor (GR; NR3C1)-dependent effect occurred rapidly, was insensitive to protein synthesis inhibition, and was maximal when glucocorticoid and LABA were added concurrently. The ability of LABA to enhance GR-mediated transcription was not associated with changes in GR expression, serine (Ser203, Ser211, Ser226) phosphorylation, ligand affinity, or nuclear translocation. Chromatin immunoprecipitation demonstrated that glucocorticoid-induced recruitment of GR to the integrated 2×GRE reporter and multiple gene loci, whose mRNAs were unaffected or enhanced by LABA, was also unchanged by LABA. Transcriptomic analysis revealed glucocorticoid-induced mRNAs were variably enhanced, unaffected, or repressed by LABA. Thus, events leading to GR binding at target genes are not the primary explanation for how LABAs modulate GR-mediated transcription. As many glucocorticoid-induced genes are independently induced by LABA, gene-specific control by GR- and LABA-activated transcription factors may explain these observations. Because LABAs promote similar effects in pHBECs, therapeutic relevance is likely. These data illustrate the need to understand gene function(s), and the mechanisms leading to gene-specific induction, if existing ICS/LABA combination therapies are to be improved.
Collapse
Affiliation(s)
- Christopher F Rider
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Mohammed O Altonsy
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Mahmoud M Mostafa
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Suharsh V Shah
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Sarah Sasse
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Martijn L Manson
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Dong Yan
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Carina Kärrman-Mårdh
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Anna Miller-Larsson
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Anthony N Gerber
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Mark A Giembycz
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Robert Newton
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| |
Collapse
|
42
|
The glucocorticoid receptor in recipient cells keeps cytokine secretion in acute graft-versus-host disease at bay. Oncotarget 2018; 9:15437-15450. [PMID: 29643984 PMCID: PMC5884639 DOI: 10.18632/oncotarget.24602] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/24/2018] [Indexed: 11/25/2022] Open
Abstract
Graft-versus-host disease (GvHD) is a life-threatening complication of hematopoietic stem cell transplantation (HSCT), which is caused by allogeneic T cells recognizing molecules of the recipient as foreign. Endogenous glucocorticoids (GC) released from the adrenal gland are crucial in regulating such inflammatory diseases. Here we demonstrate that genetically engineered mice, that are largely unresponsive to GC, suffer from aggravated clinical symptoms and increased mortality after HSCT, effects that could be tempered by neutralization of IL-6. Interestingly, selective ablation of the GC receptor (GR) in recipient myeloid cells resulted in fulminant disease as well. While histopathological analysis of the jejunum failed to reveal any differences between sick mice of both genotypes, systemic IL-6 and TNFα secretion was strongly increased in transplanted mice lacking the GR in myeloid cells briefly before the majority of them succumbed to the disease. Collectively, our findings reveal an important role of the GR in recipient cells in limiting the cytokine storm caused by GvHD induction.
Collapse
|
43
|
Petrescu AD, Grant S, Frampton G, Kain J, Hadidi K, Williams E, McMillin M, DeMorrow S. Glucocorticoids Cause Gender-Dependent Reversal of Hepatic Fibrosis in the MDR2-Knockout Mouse Model. Int J Mol Sci 2017; 18:E2389. [PMID: 29125588 PMCID: PMC5713358 DOI: 10.3390/ijms18112389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatic cholestasis is associated with a significant suppression of the hypothalamus-pituitary-adrenal axis (HPA). In the present study, we tested the hypothesis that activation of the HPA axis by corticosterone treatment can reverse liver inflammation and fibrosis in a multidrug resistance protein 2 knockout (MDR2KO) transgenic mouse model of hepatic cholestasis. Friend Virus B NIH-Jackson (FVBN) control and MDR2KO male and female mice were treated with vehicle or corticosterone for two weeks, then serum and liver analyses of hepatic cholestasis markers were performed. Indicators of inflammation, such as increased numbers of macrophages, were determined. MDR2KO mice had lower corticotropin releasing hormone and corticosterone levels than FVBN controls in the serum. There was a large accumulation of CD68 and F4/80 macrophages in MDR2KO mice livers, which indicated greater inflammation compared to FVBNs, an effect reversed by corticosterone treatment. Intrahepatic biliary duct mass, collagen deposition and alpha smooth muscle actin (αSMA) were found to be much higher in livers of MDR2KO mice than in controls; corticosterone treatment significantly decreased these fibrosis markers. When looking at the gender-specific response to corticosterone treatment, male MDR2KO mice tended to have a more pronounced reversal of liver fibrosis than females treated with corticosterone.
Collapse
Affiliation(s)
- Anca D Petrescu
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
| | - Stephanie Grant
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
| | - Gabriel Frampton
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
| | - Jessica Kain
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
| | - Karam Hadidi
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
| | - Elaina Williams
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
| | - Matthew McMillin
- Central Texas Veterans Health Care System, Temple, TX 76504, USA.
| | - Sharon DeMorrow
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
- Central Texas Veterans Health Care System, Temple, TX 76504, USA.
| |
Collapse
|
44
|
Novel Drug Delivery Systems Tailored for Improved Administration of Glucocorticoids. Int J Mol Sci 2017; 18:ijms18091836. [PMID: 28837059 PMCID: PMC5618485 DOI: 10.3390/ijms18091836] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids (GC) are one of the most popular and versatile classes of drugs available to treat chronic inflammation and cancer, but side effects and resistance constrain their use. To overcome these hurdles, which are often related to the uniform tissue distribution of free GC and their short half-life in biological fluids, new delivery vehicles have been developed including PEGylated liposomes, polymeric micelles, polymer-drug conjugates, inorganic scaffolds, and hybrid nanoparticles. While each of these nanoformulations has individual drawbacks, they are often superior to free GC in many aspects including therapeutic efficacy when tested in cell culture or animal models. Successful application of nanomedicines has been demonstrated in various models of neuroinflammatory diseases, cancer, rheumatoid arthritis, and several other disorders. Moreover, investigations using human cells and first clinical trials raise the hope that the new delivery vehicles may have the potential to make GC therapies more tolerable, specific and efficient in the future.
Collapse
|