1
|
Wu F, Wu Y, Yao Y, Xu Y, Peng Q, Ma L, Li J, Yao X. The reverse TRBV30 gene of mammals: a defect or superiority in evolution? BMC Genomics 2024; 25:705. [PMID: 39030501 PMCID: PMC11264764 DOI: 10.1186/s12864-024-10632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/17/2024] [Indexed: 07/21/2024] Open
Abstract
At the 3' end of the C2 gene in the mammalian TRB locus, a distinct reverse TRBV30 gene (named TRBV31 in mice) has been conserved throughout evolution. In the fully annotated TRB locus of 14 mammals (including six orders), we observed noteworthy variations in the localization and quality of the reverse V30 genes and Recombination Signal Sequences (RSSs) in the gene trees of 13 mammals. Conversely, the forward V29 genes and RSSs were generally consistent with the species tree of their corresponding species. This finding suggested that the evolution of the reverse V30 gene was not synchronous and likely played a crucial role in regulating adaptive immune responses. To further investigate this possibility, we utilized single-cell TCR sequencing (scTCR-seq) and high-throughput sequencing (HTS) to analyze TCRβ CDR3 repertoires from both central and peripheral tissues of Primates (Homo sapiens and Macaca mulatta), Rodentia (Mus musculus: BALB/c, C57BL/6, and Kunming mice), Artiodactyla (Bos taurus and Bubalus bubalis), and Chiroptera (Rhinolophus affinis and Hipposideros armige). Our investigation revealed several novel observations: (1) The reverse V30 gene exhibits classical rearrangement patterns adhering to the '12/23 rule' and the 'D-J rearrangement preceding the V-(D-J) rearrangement'. This results in the formation of rearranged V30-D2J2, V30-D1J1, and V30-D1J2. However, we also identified 'special rearrangement patterns' wherein V30-D rearrangement preceding D-J rearrangement, giving rise to rearranged V30-D2-J1 and forward Vx-D2-J. (2) Compared to the 'deletional rearrangement' (looping out) of forward V1-V29 genes, the reverse V30 gene exhibits preferential utilization with 'inversional rearrangement'. This may be attributed to the shorter distance between the V30 gene and D gene and the 'inversional rearrangement' modes. In summary, in the mammalian TRB locus, the reverse V30 gene has been uniquely preserved throughout evolution and preferentially utilized in V(D)J recombination, potentially serving a significant role in adaptive immunity. These results will pave the way for novel and specialized research into the mechanisms, efficiency, and function of V(D)J recombination in mammals.
Collapse
Affiliation(s)
- Fengli Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Yingjie Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Yuanning Yao
- Queen Mary School, Nanchang University, Nanchang, China
| | - Yuanyuan Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Qi Peng
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Long Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Luque Duque D, Gaevert JA, Thomas PG, López-García M, Lythe G, Molina-París C. Multi-variate model of T cell clonotype competition and homeostasis. Sci Rep 2023; 13:21995. [PMID: 38081863 PMCID: PMC10713556 DOI: 10.1038/s41598-023-46637-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Diversity of the naive T cell repertoire is maintained by competition for stimuli provided by self-peptides bound to major histocompatibility complexes (self-pMHCs). We extend an existing bi-variate competition model to a multi-variate model of the dynamics of multiple T cell clonotypes which share stimuli. In order to understand the late-time behaviour of the system, we analyse: (i) the dynamics until the extinction of the first clonotype, (ii) the time to the first extinction event, (iii) the probability of extinction of each clonotype, and (iv) the size of the surviving clonotypes when the first extinction event takes place. We also find the probability distribution of the number of cell divisions per clonotype before its extinction. The mean size of a new clonotype at quasi-steady state is an increasing function of the stimulus available to it, and a decreasing function of the fraction of stimuli it shares with other clonotypes. Thus, the probability of, and time to, extinction of a new clonotype entering the pool of T cell clonotypes is determined by the extent of competition for stimuli it experiences and by its initial number of cells.
Collapse
Affiliation(s)
- Daniel Luque Duque
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
| | - Jessica A Gaevert
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, 38105, USA
| | - Martín López-García
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK.
- T-6, Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
3
|
Böttcher L, Wald S, Chou T. Mathematical Characterization of Private and Public Immune Receptor Sequences. Bull Math Biol 2023; 85:102. [PMID: 37707621 PMCID: PMC10501991 DOI: 10.1007/s11538-023-01190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023]
Abstract
Diverse T and B cell repertoires play an important role in mounting effective immune responses against a wide range of pathogens and malignant cells. The number of unique T and B cell clones is characterized by T and B cell receptors (TCRs and BCRs), respectively. Although receptor sequences are generated probabilistically by recombination processes, clinical studies found a high degree of sharing of TCRs and BCRs among different individuals. In this work, we use a general probabilistic model for T/B cell receptor clone abundances to define "publicness" or "privateness" and information-theoretic measures for comparing the frequency of sampled sequences observed across different individuals. We derive mathematical formulae to quantify the mean and the variances of clone richness and overlap. Our results can be used to evaluate the effect of different sampling protocols on abundances of clones within an individual as well as the commonality of clones across individuals. Using synthetic and empirical TCR amino acid sequence data, we perform simulations to study expected clonal commonalities across multiple individuals. Based on our formulae, we compare these simulated results with the analytically predicted mean and variances of the repertoire overlap. Complementing the results on simulated repertoires, we derive explicit expressions for the richness and its uncertainty for specific, single-parameter truncated power-law probability distributions. Finally, the information loss associated with grouping together certain receptor sequences, as is done in spectratyping, is also evaluated. Our approach can be, in principle, applied under more general and mechanistically realistic clone generation models.
Collapse
Affiliation(s)
- Lucas Böttcher
- Department of Computational Science and Philosophy, Frankfurt School of Finance and Management, 60322 Frankfurt am Main, Germany
- Department of Computational Medicine, University of California, Los Angeles, 621 Charles E. Young Dr. S., Los Angeles, 90095-1766 CA USA
- Department of Medicine, University of Florida, Gainesville, 32610 FL USA
| | - Sascha Wald
- Statistical Physics Group, Centre for Fluid and Complex Systems, Coventry University, Priory Street, Coventry, CV1 5FB UK
| | - Tom Chou
- Department of Computational Medicine, University of California, Los Angeles, 621 Charles E. Young Dr. S., Los Angeles, 90095-1766 CA USA
- Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, 90095-1555 CA USA
| |
Collapse
|
4
|
Shireman JM, Gonugunta N, Zhao L, Pattnaik A, Distler E, Her S, Wang X, Das R, Galipeau J, Dey M. GM-CSF and IL-7 fusion cytokine engineered tumor vaccine generates long-term Th-17 memory cells and increases overall survival in aged syngeneic mouse models of glioblastoma. Aging Cell 2023; 22:e13864. [PMID: 37165998 PMCID: PMC10352573 DOI: 10.1111/acel.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023] Open
Abstract
Age-related immune dysfunctions, such as decreased T-cell output, are closely related to pathologies like cancers and lack of vaccine efficacy among the elderly. Engineered fusokine, GIFT-7, a fusion of interleukin 7 (IL-7) and GM-CSF, can reverse aging-related lymphoid organ atrophy. We generated a GIFT-7 fusokine tumor vaccine and employed it in aged syngeneic mouse models of glioblastoma and found that peripheral vaccination with GIFT-7TVax resulted in thymic regeneration and generated durable long-term antitumor immunity specifically in aged mice. Global cytokine analysis showed increased pro-inflammatory cytokines including IL-1β in the vaccinated group that resulted in hyperactivation of dendritic cells. In addition, GIFT-7 vaccination resulted in increased T-cell trafficking to the brain and robust Th-17 long-term effector memory T-cell formation. TCR-seq analysis showed increased productive frequency among detected rearrangements within the vaccinated group. Overall, our data demonstrate that aging immune system can be therapeutically augmented to generate lasting antitumor immunity.
Collapse
Affiliation(s)
- Jack M. Shireman
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Nikita Gonugunta
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Lei Zhao
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Akshita Pattnaik
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Emily Distler
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Skyler Her
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Xiaohu Wang
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Rahul Das
- Department of Medicine, Division of Hematology and OncologyUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Jaques Galipeau
- Department of Medicine, Division of Hematology and OncologyUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Mahua Dey
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| |
Collapse
|
5
|
Meitei HT, Lal G. T cell receptor signaling in the differentiation and plasticity of CD4 + T cells. Cytokine Growth Factor Rev 2023; 69:14-27. [PMID: 36028461 DOI: 10.1016/j.cytogfr.2022.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
CD4+ T cells are critical components of the adaptive immune system. The T cell receptor (TCR) and co-receptor signaling cascades shape the phenotype and functions of CD4+ T cells. TCR signaling plays a crucial role in T cell development, antigen recognition, activation, and differentiation upon recognition of foreign- or auto-antigens. In specific autoimmune conditions, altered TCR repertoire is reported and can predispose autoimmunity with organ-specific inflammation and tissue damage. TCR signaling modulates various signaling cascades and regulates epigenetic and transcriptional regulation during homeostasis and disease conditions. Understanding the mechanism by which coreceptors and cytokine signals control the magnitude of TCR signal amplification will aid in developing therapeutic strategies to treat inflammation and autoimmune diseases. This review focuses on the role of the TCR signaling cascade and its components in the activation, differentiation, and plasticity of various CD4+ T cell subsets.
Collapse
Affiliation(s)
| | - Girdhari Lal
- National Centre for Cell Science, SPPU campus, Ganeshkhind, Pune, MH 411007, India.
| |
Collapse
|
6
|
Abondio P, De Intinis C, da Silva Gonçalves Vianez Júnior JL, Pace L. SINGLE CELL MULTIOMIC APPROACHES TO DISENTANGLE T CELL HETEROGENEITY. Immunol Lett 2022; 246:37-51. [DOI: 10.1016/j.imlet.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/16/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
|
7
|
Sheikh A, Jackson J, Shim HB, Yau C, Seo JH, Abraham N. Selective dependence on IL-7 for antigen-specific CD8 T cell responses during airway influenza infection. Sci Rep 2022; 12:135. [PMID: 34997007 PMCID: PMC8741933 DOI: 10.1038/s41598-021-03936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/06/2021] [Indexed: 11/08/2022] Open
Abstract
Interleukin-7 (IL-7) is a cytokine known for its importance in T cell development and survival. How IL-7 shapes CD8 T cell responses during an acute viral infection is less understood. We had previously shown that IL-7 signaling deficient mice have reduced accumulation of influenza-specific CD8 T cells following influenza infection. We sought to determine whether IL-7 affects early CD8 T cell expansion in the mediastinal lymph node and effector function in the lungs. Using IL-7Rα signaling deficient mice, we show that IL-7 is required for a normal sized mediastinal lymph node and the early clonal expansion of influenza-specific CD8 T cells therein. We show that IL-7 plays a cell-intrinsic role in the accumulation of NP366-374 and PA224-233-specific CD8 T cells in the lymph node. We also found that IL-7 shapes terminal differentiation, degranulation and cytokine production to a greater extent in PA224-233-specific than NP366-374-specific CD8 T cells. We further demonstrate that IL-7 is induced in the lung tissue by viral infection and we characterize multiple cellular sources that contribute to IL-7 production. Our findings on IL-7 and its effects on lower respiratory diseases will be important for expanding the utility of therapeutics that are currently available.
Collapse
Affiliation(s)
- Abdalla Sheikh
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jennie Jackson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Hanjoo Brian Shim
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Clement Yau
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| | - Jung Hee Seo
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ninan Abraham
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Zhang J, Wang Y, Yu H, Chen G, Wang L, Liu F, Yuan J, Ni Q, Xia X, Wan Y. Mapping the spatial distribution of T cells in repertoire dimension. Mol Immunol 2021; 138:161-171. [PMID: 34428621 DOI: 10.1016/j.molimm.2021.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/01/2021] [Accepted: 08/15/2021] [Indexed: 01/13/2023]
Abstract
T cells mediate adaptive immunity in diverse anatomic compartments through recognition of specific antigens via unique T cell receptor (TCR) structures. However, little is known about the spatial distribution of an organism's TCR repertoire. Here, using high-throughput TCR sequencing (TCRseq), we investigated the TCR repertoires of sixteen tissues in healthy C57B/L6 mice. We found that TCR repertoires generally classified into three categories (lymph nodes, non-lymph node tissues and small intestine) based on sequence similarity. Clonal distribution and diversity analyses showed that small intestine compartment had a more skewed repertoire as compared to lymph nodes and non-lymph node tissues. However, analysis of TRBV and TRBJ gene usage across tissue compartments, as well as comparison of CDR3 length distributions, showed no significant tissue-dependent differences. Interestingly, analysis of clonotype sharing between mice showed that although non-redundant public clonotypes were found more easily in lymph nodes, small intestinal CD4 + T cells harbored more abundant public clonotypes. These findings under healthy physiological conditions offer an important reference dataset, which may contribute to our ability to better manipulate T cell responses against infection and vaccination.
Collapse
Affiliation(s)
- Junying Zhang
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, 401331, China
| | - Yu Wang
- Zunyi Medical University, Zunyi, 563003, China
| | - Haili Yu
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Gang Chen
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Fang Liu
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Jiangbei Yuan
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong Province, 518036, China
| | - Qingshan Ni
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China.
| | - Xuefeng Xia
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, 401331, China.
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China; School of Big Data & Software Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
9
|
Ruterbusch M, Pruner KB, Shehata L, Pepper M. In Vivo CD4 + T Cell Differentiation and Function: Revisiting the Th1/Th2 Paradigm. Annu Rev Immunol 2021; 38:705-725. [PMID: 32340571 DOI: 10.1146/annurev-immunol-103019-085803] [Citation(s) in RCA: 305] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of CD4+ T cell subset-defining master transcription factors and framing of the Th1/Th2 paradigm ignited the CD4+ T cell field. Advances in in vivo experimental systems, however, have revealed that more complex lineage-defining transcriptional networks direct CD4+ T cell differentiation in the lymphoid organs and tissues. This review focuses on the layers of fate decisions that inform CD4+ T cell differentiation in vivo. Cytokine production by antigen-presenting cells and other innate cells influences the CD4+ T cell effector program [e.g., T helper type 1 (Th1), Th2, Th17]. Signals downstream of the T cell receptor influence whether individual clones bearing hallmarks of this effector program become T follicular helper cells, supporting development of B cells expressing specific antibody isotypes, or T effector cells, which activate microbicidal innate cells in tissues. These bifurcated, parallel axes allow CD4+ T cells to augment their particular effector program and prevent disease.
Collapse
Affiliation(s)
- Mikel Ruterbusch
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Kurt B Pruner
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Laila Shehata
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| |
Collapse
|
10
|
Pai JA, Satpathy AT. High-throughput and single-cell T cell receptor sequencing technologies. Nat Methods 2021; 18:881-892. [PMID: 34282327 PMCID: PMC9345561 DOI: 10.1038/s41592-021-01201-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
T cells express T cell receptors (TCRs) composed of somatically recombined TCRα and TCRβ chains, which mediate recognition of major histocompatibility complex (MHC)-antigen complexes and drive the antigen-specific adaptive immune response to pathogens and cancer. The TCR repertoire in each individual is highly diverse, which allows for recognition of a wide array of foreign antigens, but also presents a challenge in analyzing this response using conventional methods. Recent studies have developed high-throughput sequencing technologies to identify TCR sequences, analyze their antigen specificities using experimental and computational tools, and pair TCRs with transcriptional and epigenetic cell state phenotypes in single cells. In this Review, we highlight these technological advances and describe how they have been applied to discover fundamental insights into T cell-mediated immunity.
Collapse
Affiliation(s)
- Joy A Pai
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ansuman T Satpathy
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Ohigashi I, Takahama Y. Thymoproteasome optimizes positive selection of CD8 + T cells without contribution of negative selection. Adv Immunol 2021; 149:1-23. [PMID: 33993918 DOI: 10.1016/bs.ai.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Functionally competent and self-tolerant T cell repertoire is shaped through positive and negative selection in the cortical and medullary microenvironments of the thymus. The thymoproteasome specifically expressed in the cortical thymic epithelium is essential for the optimal generation of CD8+ T cells. Although how the thymoproteasome governs the generation of CD8+ T cells is not fully understood, accumulating evidence suggests that the thymoproteasome optimizes CD8+ T cell production through the processing of self-peptides associated with MHC class I molecules expressed by cortical thymic epithelial cells. In this review, we describe recent advances in the mechanism of thymoproteasome-dependent generation of CD8+ T cells, focusing on the process of cortical positive selection independent of apoptosis-mediated negative selection.
Collapse
Affiliation(s)
- Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
12
|
Abstract
Natural killer (NK) cells are innate lymphocytes that provide critical host defense against pathogens and cancer. Originally heralded for their early and rapid effector activity, NK cells have been recognized over the last decade for their ability to undergo adaptive immune processes, including antigen-driven clonal expansion and generation of long-lived memory. This review presents an overview of how NK cells lithely partake in both innate and adaptive responses and how this versatility is manifest in human NK cell-mediated immunity.
Collapse
Affiliation(s)
- Adriana M Mujal
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Rebecca B Delconte
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; .,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
13
|
Yiu HH, Schoettle LN, Garcia‐Neuer M, Blattman JN, Johnson PLF. Selection influences naive CD8+ TCR-β repertoire sharing. Immunology 2021; 162:464-475. [PMID: 33345304 PMCID: PMC7968400 DOI: 10.1111/imm.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 11/28/2022] Open
Abstract
Within each individual, the adaptive immune system generates a repertoire of cells expressing receptors capable of recognizing diverse potential pathogens. The theoretical diversity of the T-cell receptor (TCR) repertoire exceeds the actual size of the T-cell population in an individual by several orders of magnitude - making the observation of identical TCRs in different individuals extremely improbable if all receptors were equally likely. Despite this disparity between the theoretical and the realized diversity of the repertoire, these 'public' receptor sequences have been identified in autoimmune, cancer and pathogen interaction contexts. Biased generation processes explain the presence of public TCRs in the naive repertoire, but do not adequately explain the different abundances of these public TCRs. We investigate and characterize the distribution of genomic TCR-β sequences of naive CD8+ T cells from three genetically identical mice, comparing non-productive (non-functional sequences) and productive sequences. We find public TCR-β sequences at higher abundances compared with unshared sequences in the productive, but not in the non-productive, repertoire. We show that neutral processes such as recombination biases, codon degeneracy and generation probability do not fully account for these differences, and conclude that thymic or peripheral selection plays an important role in increasing the abundances of public TCR-β sequences.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/physiology
- Cells, Cultured
- Clonal Selection, Antigen-Mediated
- Codon Usage
- Genes, T-Cell Receptor beta/genetics
- Humans
- Mice
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombination, Genetic
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Hao H. Yiu
- Department of BiologyUniversity of MarylandCollege ParkMDUSA
| | - Louis N. Schoettle
- School of Life SciencesThe Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Marlene Garcia‐Neuer
- School of Life SciencesThe Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Joseph N. Blattman
- School of Life SciencesThe Biodesign InstituteArizona State UniversityTempeAZUSA
| | | |
Collapse
|
14
|
Ohigashi I, Frantzeskakis M, Jacques A, Fujimori S, Ushio A, Yamashita F, Ishimaru N, Yin D, Cam M, Kelly MC, Awasthi P, Takada K, Takahama Y. The thymoproteasome hardwires the TCR repertoire of CD8+ T cells in the cortex independent of negative selection. J Exp Med 2021; 218:211763. [PMID: 33555295 PMCID: PMC7873839 DOI: 10.1084/jem.20201904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/27/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
The thymoproteasome expressed specifically in thymic cortical epithelium optimizes the generation of CD8+ T cells; however, how the thymoproteasome contributes to CD8+ T cell development is unclear. Here, we show that the thymoproteasome shapes the TCR repertoire directly in cortical thymocytes before migration to the thymic medulla. We further show that the thymoproteasome optimizes CD8+ T cell production independent of the thymic medulla; independent of additional antigen-presenting cells, including medullary thymic epithelial cells and dendritic cells; and independent of apoptosis-mediated negative selection. These results indicate that the thymoproteasome hardwires the TCR repertoire of CD8+ T cells with cortical positive selection independent of negative selection in the thymus.
Collapse
Affiliation(s)
- Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Melina Frantzeskakis
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alison Jacques
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sayumi Fujimori
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Aya Ushio
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Fusano Yamashita
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Da Yin
- Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Margaret Cam
- Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Michael C Kelly
- Single Cell Analysis Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Parirokh Awasthi
- Transgenic Mouse Model Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kensuke Takada
- Laboratory of Molecular Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
15
|
Yang Y, Sun X, Xu J, Cui C, Safari Yazd H, Pan X, Zhu Y, Chen X, Li X, Li J, Tan W. Circular Bispecific Aptamer-Mediated Artificial Intercellular Recognition for Targeted T Cell Immunotherapy. ACS NANO 2020; 14:9562-9571. [PMID: 32584540 DOI: 10.1021/acsnano.9b09884] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adoptive T cell immunotherapy, such as chimeric antigen receptor (CAR) T cell therapy, has proven to be highly efficient in the treatment of hematologic malignancies. However, it is challenged by complicated ex vivo engineering, systemic side effects, and low expression of tumor-specific antigen, especially in solid tumors. In this paper, we present a "recognition-then-activation" strategy, which first assists naïve T cells to recognize and adhere to cancer cells and then activates the accumulated T cell in situ to specifically kill cancer cells. In this way, we could unleash the antitumor power of the T cell without complicated and time-consuming cell engineering. To this end, circular bispecific aptamers (cb-aptamers), a class of chemically cyclized aptamers with improved stability and molecular recognition ability which can simultaneously bind to two different types of cells, were first constructed to form artificial intercellular recognition between naïve T cells and tumor cells. After T cell accumulation in the tumor mediated by cb-aptamers, T cells in the tumor site were subsequently activated in situvia commercial CD3/CD28 T cell activator beads to induce tumor-specific killing. Furthermore, by simply choosing different anticancer aptamers, the application of this "recognition-then-activation" strategy can be expanded for targeted treatment of various types of cancer. This may represent a simple T cell immunotherapy that is useful for the treatment of multiple cancers.
Collapse
Affiliation(s)
- Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jun Xu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Cheng Cui
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Hoda Safari Yazd
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Xiaoshu Pan
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Yujie Zhu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xigao Chen
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Xiaowei Li
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Jin Li
- Molecular Science and Biomedicine Laboratory(MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), and Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Molecular Science and Biomedicine Laboratory(MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
16
|
MHC-II alleles shape the CDR3 repertoires of conventional and regulatory naïve CD4 + T cells. Proc Natl Acad Sci U S A 2020; 117:13659-13669. [PMID: 32482872 DOI: 10.1073/pnas.2003170117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
T cell maturation and activation depend upon T cell receptor (TCR) interactions with a wide variety of antigenic peptides displayed in a given major histocompatibility complex (MHC) context. Complementarity-determining region 3 (CDR3) is the most variable part of the TCRα and -β chains, which govern interactions with peptide-MHC complexes. However, it remains unclear how the CDR3 landscape is shaped by individual MHC context during thymic selection of naïve T cells. We established two mouse strains carrying distinct allelic variants of H2-A and analyzed thymic and peripheral production and TCR repertoires of naïve conventional CD4+ T (Tconv) and naïve regulatory CD4+ T (Treg) cells. Compared with tuberculosis-resistant C57BL/6 (H2-Ab) mice, the tuberculosis-susceptible H2-Aj mice had fewer CD4+ T cells of both subsets in the thymus. In the periphery, this deficiency was only apparent for Tconv and was compensated for by peripheral reconstitution for Treg We show that H2-Aj favors selection of a narrower and more convergent repertoire with more hydrophobic and strongly interacting amino acid residues in the middle of CDR3α and CDR3β, suggesting more stringent selection against a narrower peptide-MHC-II context. H2-Aj and H2-Ab mice have prominent reciprocal differences in CDR3α and CDR3β features, probably reflecting distinct modes of TCR fitting to MHC-II variants. These data reveal the mechanics and extent of how MHC-II shapes the naïve CD4+ T cell CDR3 landscape, which essentially defines adaptive response to infections and self-antigens.
Collapse
|
17
|
Abstract
One of the hallmarks of the vertebrate adaptive immune system is the prolific expansion of individual cell clones that encounter their cognate antigen. More recently, however, there is growing evidence for the clonal expansion of innate lymphocytes, particularly in the context of pathogen challenge. Clonal expansion not only serves to amplify the number of specific lymphocytes to mount a robust protective response to the pathogen at hand but also results in selection and differentiation of the responding lymphocytes to generate a multitude of cell fates. Here, we summarize the evidence for clonal expansion in innate lymphocytes, which has primarily been observed in natural killer (NK) cells responding to cytomegalovirus infection, and consider the requirements for such a response in NK cells in light of those for T cells. Furthermore, we discuss multiple aspects of heterogeneity that both contribute to and result from the fundamental immunological process of clonal expansion, highlighting the parallels between innate and adaptive lymphocytes, with a particular focus on NK cells and CD8+ T cells.
Collapse
|
18
|
Toptygina AP. Heterologous immune responses in health and disease. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2020. [DOI: 10.15789/2220-7619-hir-1292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Immunological memory and tolerance represent major achievements and advantages of adaptive immunity. Organisms bearing adaptive immunity display prominent competitive advantages in the fight against infections. Memory immune cells are preserved for decades and are able to repel a second attack of an infectious agent. However, studies performed in the XXI century have shown that even unrelated pathogens may be quickly and effectively destroyed by memory cells. This type of response is called heterologous so that heterologous immune response is mainly typical to viral infections and other intracellular infections, where T-cells play a lead role in protection. This review will discuss various mechanisms involved in implementing T-cell cross-reactivity, describe molecular prerequisites for heterologous T-cell responses. Experimental evidence of memory T-cell potential to heterologous immune response in mouse models and in human infections are also discussed. Heterologous immune response is an important immune arm in adults and the elderly when the yield of naive cells to the periphery declines due to thymus involution. Along with obvious advantages, heterologous immune response leads to imbalanced memory T-cell repertoire, replacement of immunodominant epitopes with minor ones allowing viruses to evade immune response that results in virus persistence, or, conversely, fulminant infection course. Another threat of heterologous immune response due to switch in dominant repertoire of recognizable epitopes is presented by random self-epitope recognition, which can lead to development of autoimmune pathology. Heterologous immunity can also disrupt drug-induced tolerance in organ and tissue transplants and lead to graft rejection. Heterologous immune response should be taken into consideration while developing and using new vaccines, especially in adults and the elderly.
Collapse
|
19
|
Abstract
Diversity indices are useful single-number metrics for characterizing a complex distribution of a set of attributes across a population of interest. The utility of these different metrics or sets of metrics depends on the context and application, and whether a predictive mechanistic model exists. In this topical review, we first summarize the relevant mathematical principles underlying heterogeneity in a large population, before outlining the various definitions of 'diversity' and providing examples of scientific topics in which its quantification plays an important role. We then review how diversity has been a ubiquitous concept across multiple fields, including ecology, immunology, cellular barcoding experiments, and socioeconomic studies. Since many of these applications involve sampling of populations, we also review how diversity in small samples is related to the diversity in the entire population. Features that arise in each of these applications are highlighted.
Collapse
Affiliation(s)
- Song Xu
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, United States of America
| | | | | |
Collapse
|
20
|
Gupta S, Witas R, Voigt A, Semenova T, Nguyen CQ. Single-Cell Sequencing of T cell Receptors: A Perspective on the Technological Development and Translational Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:29-50. [PMID: 32949388 DOI: 10.1007/978-981-15-4494-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
T cells recognize peptides bound to major histocompatibility complex (MHC) class I and class II molecules at the cell surface. This recognition is accomplished by the expression of T cell receptors (TCR) which are required to be diverse and adaptable in order to accommodate the various and vast number of antigens presented on the MHCs. Thus, determining TCR repertoires of effector T cells is necessary to understand the immunological process in responding to cancer progression, infection, and autoimmune development. Furthermore, understanding the TCR repertoires will provide a solid framework to predict and test the antigen which is more critical in autoimmunity. However, it has been a technical challenge to sequence the TCRs and provide a conceptual context in correlation to the vast number of TCR repertoires in the immunological system. The exploding field of single-cell sequencing has changed how the repertoires are being investigated and analyzed. In this review, we focus on the biology of TCRs, TCR signaling and its implication in autoimmunity. We discuss important methods in bulk sequencing of many cells. Lastly, we explore the most pertinent platforms in single-cell sequencing and its application in autoimmunity.
Collapse
Affiliation(s)
- Shivai Gupta
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, Gainesville, FL, USA
| | - Richard Witas
- Department of Oral Biology, College of Dentistry, Gainesville, FL, USA
| | - Alexandria Voigt
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, Gainesville, FL, USA
| | - Touyana Semenova
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, Gainesville, FL, USA
| | - Cuong Q Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, Gainesville, FL, USA. .,Department of Oral Biology, College of Dentistry, Gainesville, FL, USA. .,Center of Orphaned Autoimmune Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
21
|
Jergović M, Contreras NA, Nikolich-Žugich J. Impact of CMV upon immune aging: facts and fiction. Med Microbiol Immunol 2019; 208:263-269. [PMID: 31004198 PMCID: PMC6635032 DOI: 10.1007/s00430-019-00605-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/30/2019] [Indexed: 12/28/2022]
Abstract
Aging is accompanied by significant defects in immunity and compromised responses to new, previously unencountered microbial pathogens. Most humans carry several persistent or latent viruses as they age, interacting with the host immune systems for years. In that context maybe the most studied persistent virus is Cytomegalovirus, infamous for its ability to recruit very large T cell responses which increase with age and to simultaneously evade elimination by the immune system. Here we will address how lifelong CMV infection and the immunological burden of its control might affect immune reactivity and health of the host over time.
Collapse
Affiliation(s)
- Mladen Jergović
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85718, USA
| | - Nico A Contreras
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85718, USA
| | - Janko Nikolich-Žugich
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85718, USA.
- University of Arizona College of Medicine-Tucson, 1501 N Campbell Ave, P.O. Box 221245, Tucson, AZ, 85724, USA.
| |
Collapse
|
22
|
Hassert M, Brien JD, Pinto AK. Mouse Models of Heterologous Flavivirus Immunity: A Role for Cross-Reactive T Cells. Front Immunol 2019; 10:1045. [PMID: 31143185 PMCID: PMC6520664 DOI: 10.3389/fimmu.2019.01045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Most of the world is at risk of being infected with a flavivirus such as dengue virus, West Nile virus, yellow fever virus, Japanese encephalitis virus, tick-borne encephalitis virus, and Zika virus, significantly impacting millions of lives. Importantly, many of these genetically similar viruses co-circulate within the same geographic regions, making it likely for individuals living in areas of high flavivirus endemicity to be infected with multiple flaviviruses during their lifetime. Following a flavivirus infection, a robust virus-specific T cell response is generated and the memory recall of this response has been demonstrated to provide long-lasting immunity, protecting against reinfection with the same pathogen. However, multiple studies have shown that this flavivirus specific T cell response can be cross-reactive and active during heterologous flavivirus infection, leading to the question: How does immunity to one flavivirus shape immunity to the next, and how does this impact disease? It has been proposed that in some cases unfavorable disease outcomes may be caused by lower avidity cross-reactive memory T cells generated during a primary flavivirus infection that preferentially expand during a secondary heterologous infection and function sub optimally against the new pathogen. While in other cases, these cross-reactive cells still have the potential to facilitate cross-protection. In this review, we focus on cross-reactive T cell responses to flaviviruses and the concepts and consequences of T cell cross-reactivity, with particular emphasis linking data generated using murine models to our new understanding of disease outcomes following heterologous flavivirus infection.
Collapse
Affiliation(s)
- Mariah Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| | - James D Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| | - Amelia K Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
23
|
Dupic T, Marcou Q, Walczak AM, Mora T. Genesis of the αβ T-cell receptor. PLoS Comput Biol 2019; 15:e1006874. [PMID: 30830899 PMCID: PMC6417744 DOI: 10.1371/journal.pcbi.1006874] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 03/14/2019] [Accepted: 02/17/2019] [Indexed: 11/18/2022] Open
Abstract
The T-cell (TCR) repertoire relies on the diversity of receptors composed of two chains, called α and β, to recognize pathogens. Using results of high throughput sequencing and computational chain-pairing experiments of human TCR repertoires, we quantitively characterize the αβ generation process. We estimate the probabilities of a rescue recombination of the β chain on the second chromosome upon failure or success on the first chromosome. Unlike β chains, α chains recombine simultaneously on both chromosomes, resulting in correlated statistics of the two genes which we predict using a mechanistic model. We find that ∼35% of cells express both α chains. Altogether, our statistical analysis gives a complete quantitative mechanistic picture that results in the observed correlations in the generative process. We learn that the probability to generate any TCRαβ is lower than 10(-12) and estimate the generation diversity and sharing properties of the αβ TCR repertoire.
Collapse
MESH Headings
- Chromosomes, Human
- Humans
- Probability
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Recombination, Genetic
Collapse
Affiliation(s)
- Thomas Dupic
- Laboratoire de physique théorique et hautes énergies, CNRS and Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- Laboratoire de physique de l’ENS, CNRS, Sorbonne Université, and École normale supérieure (PSL), 24 rue Lhomond, 75005 Paris, France
| | - Quentin Marcou
- Laboratoire de physique de l’ENS, CNRS, Sorbonne Université, and École normale supérieure (PSL), 24 rue Lhomond, 75005 Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de physique de l’ENS, CNRS, Sorbonne Université, and École normale supérieure (PSL), 24 rue Lhomond, 75005 Paris, France
- * E-mail: (AMW); (TM)
| | - Thierry Mora
- Laboratoire de physique de l’ENS, CNRS, Sorbonne Université, and École normale supérieure (PSL), 24 rue Lhomond, 75005 Paris, France
- * E-mail: (AMW); (TM)
| |
Collapse
|
24
|
Major histocompatibility complex class I diversity limits the repertoire of T cell receptors. Proc Natl Acad Sci U S A 2019; 116:5021-5026. [PMID: 30796191 DOI: 10.1073/pnas.1807864116] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Major histocompatibility complex (MHC) genes encode proteins that initiate adaptive immune responses through the presentation of foreign antigens to T cells. The high polymorphism found at these genes, thought to be promoted and maintained by pathogen-mediated selection, contrasts with the limited number of MHC loci found in most vertebrates. Although expressing many diverse MHC genes should broaden the range of detectable pathogens, it has been hypothesized to also cause deletion of larger fractions of self-reactive T cells, leading to a detrimental reduction of the T cell receptor (TCR) repertoire. However, a key prediction of this TCR depletion hypothesis, that the TCR repertoire should be inversely related to the individual MHC diversity, has never been tested. Here, using high-throughput sequencing and advanced sequencing error correction, we provide evidence of such an association in a rodent species with high interindividual variation in the number of expressed MHC molecules, the bank vole (Myodes glareolus). Higher individual diversity of MHC class I, but not class II, was associated with smaller TCR repertoires. Our results thus provide partial support for the TCR depletion model, while also highlighting the complex, potentially MHC class-specific mechanisms by which autoreactivity may trade off against evolutionary expansion of the MHC gene family.
Collapse
|
25
|
Schober K, Buchholz VR, Busch DH. TCR repertoire evolution during maintenance of CMV-specific T-cell populations. Immunol Rev 2019; 283:113-128. [PMID: 29664573 DOI: 10.1111/imr.12654] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During infections and cancer, the composition of the T-cell receptor (TCR) repertoire of antigen-specific CD8+ T cells changes over time. TCR avidity is thought to be a major driver of this process, thereby interacting with several additional regulators of T-cell responses to form a composite immune response architecture. Infections with latent viruses, such as cytomegalovirus (CMV), can lead to large T-cell responses characterized by an oligoclonal TCR repertoire. Here, we review the current status of experimental studies and theoretical models of TCR repertoire evolution during CMV infection. We will particularly discuss the degree to which this process may be determined through structural TCR avidity. As engineered TCR-redirected T cells have moved into the spotlight for providing more effective immunotherapies, it is essential to understand how the key features of a given TCR influence T-cell expansion and maintenance in settings of infection or malignancy. Deeper insights into these mechanisms will improve our basic understanding of T-cell immunology and help to identify optimal TCRs for immunotherapy.
Collapse
Affiliation(s)
- Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany.,Focus Group 'Clinical Cell Processing and Purification', Institute for Advanced Study, TUM, Munich, Germany.,National Centre for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
26
|
Sprouse ML, Bates NA, Felix KM, Wu HJJ. Impact of gut microbiota on gut-distal autoimmunity: a focus on T cells. Immunology 2019; 156:305-318. [PMID: 30560993 DOI: 10.1111/imm.13037] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/07/2018] [Accepted: 11/25/2018] [Indexed: 12/14/2022] Open
Abstract
The immune system is essential for maintaining a delicate balance between eliminating pathogens and maintaining tolerance to self-tissues to avoid autoimmunity. An enormous and complex community of gut microbiota provides essential health benefits to the host, particularly by regulating immune homeostasis. Many of the metabolites derived from commensals can impact host health by directly regulating the immune system. Many autoimmune diseases arise from an imbalance between pathogenic effector T cells and regulatory T (Treg) cells. Recent interest has emerged in understanding how cross-talk between gut microbiota and the host immune system promotes autoimmune development by controlling the differentiation and plasticity of T helper and Treg cells. At the molecular level, our recent study, along with others, demonstrates that asymptomatic colonization by commensal bacteria in the gut is capable of triggering autoimmune disease by molecular mimicking self-antigen and skewing the expression of dual T-cell receptors on T cells. Dysbiosis, an imbalance of the gut microbiota, is involved in autoimmune development in both mice and humans. Although it is well known that dysbiosis can impact diseases occurring within the gut, growing literature suggests that dysbiosis also causes the development of gut-distal/non-gut autoimmunity. In this review, we discuss recent advances in understanding the potential molecular mechanisms whereby gut microbiota induces autoimmunity, and the evidence that the gut microbiota triggers gut-distal autoimmune diseases.
Collapse
Affiliation(s)
- Maran L Sprouse
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Nicholas A Bates
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Krysta M Felix
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Hsin-Jung Joyce Wu
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA.,Arizona Arthritis Center, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
27
|
Riley TP, Baker BM. The intersection of affinity and specificity in the development and optimization of T cell receptor based therapeutics. Semin Cell Dev Biol 2018; 84:30-41. [DOI: 10.1016/j.semcdb.2017.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/07/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022]
|
28
|
Kavazović I, Polić B, Wensveen FM. Cheating the Hunger Games; Mechanisms Controlling Clonal Diversity of CD8 Effector and Memory Populations. Front Immunol 2018; 9:2831. [PMID: 30555492 PMCID: PMC6281969 DOI: 10.3389/fimmu.2018.02831] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/16/2018] [Indexed: 11/23/2022] Open
Abstract
Effector and memory CD8 T cells have an intrinsic difference in the way they must approach antigen; effector cells need to address the pathogen at hand and therefore favor outgrowth of only high-affinity clones. In contrast, the memory pool benefits from greater clonal diversity to recognize and eliminate pathogens with mutations in their immunogenic epitopes. Effector and memory fates are ultimately the result of the same three signals that control T cell activation; T cell receptor (TCR) engagement together with co-stimulation and cytokines. Great progress has been made in our understanding of the transcriptional programs that drive effector or memory differentiation. However, how these two different programs result from the same initial cues is still a matter of debate. An emerging image is that not only the classical three signals determine T cell differentiation, but also the ability of cells to access these signals relative to that of other activated clones. Inter-clonal competition is therefore not only a selective force, but also a mediator of CD8 T cell fate. How this is regulated on a transcriptional level, especially in the context of a selective “hunger game” based on antigen-affinity in which only cells of high-affinity are supposed to survive, is still poorly defined. In this review, we discuss recent literature that illustrates how antigen-affinity dependent inter-clonal competition shapes effector and memory populations in an environment of antigen affinity-driven selection. We argue that fine-tuning of TCR signal intensity presents an attractive target for regulating the scope of CD8 T cell vaccines.
Collapse
Affiliation(s)
- Inga Kavazović
- Department of Histology & Embryology University of Rijeka, Rijeka, Croatia
| | - Bojan Polić
- Department of Histology & Embryology University of Rijeka, Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology & Embryology University of Rijeka, Rijeka, Croatia.,Department of Experimental Immunology, Amsterdam University Medical Center University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
29
|
Bai Y, Wang D, Li W, Huang Y, Ye X, Waite J, Barry T, Edelmann KH, Levenkova N, Guo C, Skokos D, Wei Y, Macdonald LE, Fury W. Evaluation of the capacities of mouse TCR profiling from short read RNA-seq data. PLoS One 2018; 13:e0207020. [PMID: 30439982 PMCID: PMC6237323 DOI: 10.1371/journal.pone.0207020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/22/2018] [Indexed: 11/18/2022] Open
Abstract
Profiling T cell receptor (TCR) repertoire via short read transcriptome sequencing (RNA-Seq) has a unique advantage of probing simultaneously TCRs and the genome-wide RNA expression of other genes. However, compared to targeted amplicon approaches, the shorter read length is more prone to mapping error. In addition, only a small percentage of the genome-wide reads may cover the TCR loci and thus the repertoire could be significantly under-sampled. Although this approach has been applied in a few studies, the utility of transcriptome sequencing in probing TCR repertoires has not been evaluated extensively. Here we present a systematic assessment of RNA-Seq in TCR profiling. We evaluate the power of both Fluidigm C1 full-length single cell RNA-Seq and bulk RNA-Seq in characterizing the repertoires of different diversities under either naïve conditions or after immunogenic challenges. Standard read length and sequencing coverage were employed so that the evaluation was conducted in accord with the current RNA-Seq practices. Despite high sequencing depth in bulk RNA-Seq, we encountered difficulty quantifying TCRs with low transcript abundance (<1%). Nevertheless, top enriched TCRs with an abundance of 1–3% or higher can be faithfully detected and quantified. When top TCR sequences are of interest and transcriptome sequencing is available, it is worthwhile to conduct a TCR profiling using the RNA-Seq data.
Collapse
Affiliation(s)
- Yu Bai
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
- * E-mail: (YB); (WF)
| | - David Wang
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Wentian Li
- Robert S. Boas Center for Genomics & Human Genetics, Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, United States of America
| | - Ying Huang
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Xuan Ye
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Janelle Waite
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Thomas Barry
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Kurt H. Edelmann
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Natasha Levenkova
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Chunguang Guo
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Dimitris Skokos
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Yi Wei
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Lynn E. Macdonald
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Wen Fury
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
- * E-mail: (YB); (WF)
| |
Collapse
|
30
|
Schneidman-Duhovny D, Khuri N, Dong GQ, Winter MB, Shifrut E, Friedman N, Craik CS, Pratt KP, Paz P, Aswad F, Sali A. Predicting CD4 T-cell epitopes based on antigen cleavage, MHCII presentation, and TCR recognition. PLoS One 2018; 13:e0206654. [PMID: 30399156 PMCID: PMC6219782 DOI: 10.1371/journal.pone.0206654] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 10/17/2018] [Indexed: 12/16/2022] Open
Abstract
Accurate predictions of T-cell epitopes would be useful for designing vaccines, immunotherapies for cancer and autoimmune diseases, and improved protein therapies. The humoral immune response involves uptake of antigens by antigen presenting cells (APCs), APC processing and presentation of peptides on MHC class II (pMHCII), and T-cell receptor (TCR) recognition of pMHCII complexes. Most in silico methods predict only peptide-MHCII binding, resulting in significant over-prediction of CD4 T-cell epitopes. We present a method, ITCell, for prediction of T-cell epitopes within an input protein antigen sequence for given MHCII and TCR sequences. The method integrates information about three stages of the immune response pathway: antigen cleavage, MHCII presentation, and TCR recognition. First, antigen cleavage sites are predicted based on the cleavage profiles of cathepsins S, B, and H. Second, for each 12-mer peptide in the antigen sequence we predict whether it will bind to a given MHCII, based on the scores of modeled peptide-MHCII complexes. Third, we predict whether or not any of the top scoring peptide-MHCII complexes can bind to a given TCR, based on the scores of modeled ternary peptide-MHCII-TCR complexes and the distribution of predicted cleavage sites. Our benchmarks consist of epitope predictions generated by this algorithm, checked against 20 peptide-MHCII-TCR crystal structures, as well as epitope predictions for four peptide-MHCII-TCR complexes with known epitopes and TCR sequences but without crystal structures. ITCell successfully identified the correct epitopes as one of the 20 top scoring peptides for 22 of 24 benchmark cases. To validate the method using a clinically relevant application, we utilized five factor VIII-specific TCR sequences from hemophilia A subjects who developed an immune response to factor VIII replacement therapy. The known HLA-DR1-restricted factor VIII epitope was among the six top-scoring factor VIII peptides predicted by ITCall to bind HLA-DR1 and all five TCRs. Our integrative approach is more accurate than current single-stage epitope prediction algorithms applied to the same benchmarks. It is freely available as a web server (http://salilab.org/itcell).
Collapse
Affiliation(s)
- Dina Schneidman-Duhovny
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
- * E-mail: (AS); (DS); (PP); (FA)
| | - Natalia Khuri
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
- Graduate Group in Biophysics, University of California at San Francisco, San Francisco, CA, United States of America
| | - Guang Qiang Dong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
| | - Michael B. Winter
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
| | - Eric Shifrut
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
- California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, CA, United States of America
| | - Kathleen P. Pratt
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Pedro Paz
- Bayer HealthCare, San Francisco, CA, United States of America
- * E-mail: (AS); (DS); (PP); (FA)
| | - Fred Aswad
- Bayer HealthCare, San Francisco, CA, United States of America
- * E-mail: (AS); (DS); (PP); (FA)
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
- Graduate Group in Biophysics, University of California at San Francisco, San Francisco, CA, United States of America
- * E-mail: (AS); (DS); (PP); (FA)
| |
Collapse
|
31
|
Physiological factors leading to a successful vaccination: A computational approach. J Theor Biol 2018; 454:215-230. [PMID: 29894721 DOI: 10.1016/j.jtbi.2018.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 11/23/2022]
Abstract
The immune system mounts a response to an infection by activating T cells. T cell activation occurs when dendritic cells, which have already interacted with the pathogen, scan a T cell that is cognate for (responsive to) the pathogen. This often occurs inside lymph nodes. The time it takes for this scanning event to occur, indeed the probability that it will occur at all, depends on many factors, including the rate that T cells and dendritic cells enter and leave the lymph node as well as the geometry of the lymph node and of course other cellular and molecular parameters. In this paper, we develop a hybrid stochastic-deterministic mathematical model at the tissue scale of the lymph node and simulate dendritic cells and cognate T cells to investigate the most important physiological factors leading to a successful and timely immune response after a vaccination. We use an agent-based model to describe the small population of cognate naive T cells and a partial differential equation description for the concentration of mature dendritic cells. We estimate the model parameters based on the known literature and measurements previously taken in our lab. We perform a parameter sensitivity analysis to quantify the sensitivity of the model results to the parameters. The results show that increasing T cell inflow through high endothelial venules, restricting cellular egress via the efferent lymph and increasing the total dendritic cell count by improving vaccinations are the among the most important physiological factors leading to an improved immune response. We also find that increasing the physical size of lymph nodes improves the overall likelihood that an immune response will take place but has a fairly weak effect on the response rate. The nature of dendritic cell trafficking through the LN (either passive or active transport) seems to have little effect on the overall immune response except if a change in overall egress time is observed.
Collapse
|
32
|
Lanzer KG, Cookenham T, Reiley WW, Blackman MA. Virtual memory cells make a major contribution to the response of aged influenza-naïve mice to influenza virus infection. IMMUNITY & AGEING 2018; 15:17. [PMID: 30093911 PMCID: PMC6081820 DOI: 10.1186/s12979-018-0122-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022]
Abstract
Background A diverse repertoire of naïve T cells is thought to be essential for a robust response to new infections. However, a key aspect of aging of the T cell compartment is a decline in numbers and diversity of peripheral naïve T cells. We have hypothesized that the age-related decline in naïve T cells forces the immune system to respond to new infections using cross-reactive memory T cells generated to previous infections that dominate the aged peripheral T cell repertoire. Results Here we confirm that the CD8 T cell response of aged, influenza-naïve mice to primary infection with influenza virus is dominated by T cells that derive from the memory T cell pool. These cells exhibit the phenotypic characteristics of virtual memory cells rather than true memory cells. Furthermore, we find that the repertoire of responding CD8 T cells is constrained compared with that of young mice, and differs significantly between individual aged mice. After infection, these virtual memory CD8 T cells effectively develop into granzyme-producing effector cells, and clear virus with kinetics comparable to naïve CD8 T cells from young mice. Conclusions The response of aged, influenza-naive mice to a new influenza infection is mediated largely by memory CD8 T cells. However, unexpectedly, they have the phenotype of VM cells. In response to de novo influenza virus infection, the VM cells develop into granzyme-producing effector cells and clear virus with comparable kinetics to young CD8 T cells.
Collapse
Affiliation(s)
| | - Tres Cookenham
- Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983 USA
| | - William W Reiley
- Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983 USA
| | | |
Collapse
|
33
|
Migalska M, Sebastian A, Radwan J. Profiling of the TCRβ repertoire in non-model species using high-throughput sequencing. Sci Rep 2018; 8:11613. [PMID: 30072736 PMCID: PMC6072738 DOI: 10.1038/s41598-018-30037-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 07/19/2018] [Indexed: 02/06/2023] Open
Abstract
In recent years, immune repertoire profiling with high-throughput sequencing (HTS) has advanced our understanding of adaptive immunity. However, fast progress in the field applied mostly to human and mouse research, with only few studies devoted to other model vertebrates. We present the first in-depth characterization of the T-cell receptor (TCR) repertoire in a non-model mammal (bank vole, Myodes glareolus), widely used in ecological and evolutionary research. We used RNA from spleens, 5′RACE and HTS to describe V and J segments of TCRβ, qualitatively characterize preferential V–J segment usage and CDR3 length distribution. Overall orthology to murine genes was preserved, with 11 J and 37 V genes found in voles (although 3 V genes lacked a close orthologue). Further, we implemented unique molecular identifiers for quantitative analysis of CDR3 repertoire with stringent error correction. A conservative, lower bound estimation of the TCRβ repertoire was similar to that found for mice (1.7–2.3 × 105 clonotypes). We hope that by providing an easy-to-follow molecular protocol and on-line bioinformatics tools that do not require reference sequences (AmpliTCR and AmpliCDR3), we will encourage HTS immune repertoire profiling in other non-model vertebrates, thus opening new research avenues in e.g. comparative immunology, ecology and evolutionary biology.
Collapse
Affiliation(s)
- Magdalena Migalska
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614, Poznan, Poland.
| | - Alvaro Sebastian
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614, Poznan, Poland.,Instituto Aragonés de Empleo (INAEM), c/Royo Villanova 1, 50007, Zaragoza, Spain
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614, Poznan, Poland
| |
Collapse
|
34
|
Behr FM, Chuwonpad A, Stark R, van Gisbergen KPJM. Armed and Ready: Transcriptional Regulation of Tissue-Resident Memory CD8 T Cells. Front Immunol 2018; 9:1770. [PMID: 30131803 PMCID: PMC6090154 DOI: 10.3389/fimmu.2018.01770] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
A fundamental benefit of immunological memory is the ability to respond in an enhanced manner upon secondary encounter with the same pathogen. Tissue-resident memory CD8 T (TRM) cells contribute to improved protection against reinfection through the generation of immediate effector responses at the site of pathogen entry. Key to the potential of TRM cells to develop rapid recall responses is their location within the epithelia of the skin, lungs, and intestines at prime entry sites of pathogens. TRM cells are among the first immune cells to respond to pathogens that have been previously encountered in an antigen-specific manner. Upon recognition of invading pathogens, TRM cells release IFN-γ and other pro-inflammatory cytokines and chemokines. These effector molecules activate the surrounding epithelial tissue and recruit other immune cells including natural killer (NK) cells, B cells, and circulating memory CD8 T cells to the site of infection. The repertoire of TRM effector functions also includes the direct lysis of infected cells through the release of cytotoxic molecules such as perforin and granzymes. The mechanisms enabling TRM cells to respond in such a rapid manner are gradually being uncovered. In this review, we will address the signals that instruct TRM generation and maintenance as well as the underlying transcriptional network that keeps TRM cells in a deployment-ready modus. Furthermore, we will discuss how TRM cells respond to reinfection of the tissue and how transcription factors may control immediate and proliferative TRM responses.
Collapse
Affiliation(s)
- Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, Netherlands.,Department of Experimental Immunology, Academic Medical Center, Amsterdam, Netherlands
| | - Ammarina Chuwonpad
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, Netherlands
| | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, Netherlands.,Department of Experimental Immunology, Academic Medical Center, Amsterdam, Netherlands
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, Netherlands.,Department of Experimental Immunology, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
35
|
Souquette A, Thomas PG. Past Life and Future Effects-How Heterologous Infections Alter Immunity to Influenza Viruses. Front Immunol 2018; 9:1071. [PMID: 29872429 PMCID: PMC5972221 DOI: 10.3389/fimmu.2018.01071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Influenza virus frequently mutates due to its error-prone polymerase. This feature contributes to influenza virus’s ability to evade pre-existing immunity, leading to annual epidemics and periodic pandemics. T cell memory plays a key protective role in the face of an antigenically distinct influenza virus strain because T cell targets are often derived from conserved internal proteins, whereas humoral immunity targets are often sites of increased mutation rates that are tolerated by the virus. Most studies of influenza T cell memory are conducted in naive, specific pathogen free mice and do not account for repetitive influenza infection throughout a lifetime, sequential acute heterologous infections between influenza infections, or heterologous chronic co-infections. By contrast to these mouse models, humans often experience numerous influenza infections, encounter heterologous acute infections between influenza infections, and are infected with at least one chronic virus. In this review, we discuss recent advances in understanding the effects of heterologous infections on the establishment and maintenance of CD8+ T cell immunological memory. Understanding the various factors that affect immune memory can provide insights into the development of more effective vaccines and increase reproducibility of translational studies between animal models and clinical results.
Collapse
Affiliation(s)
- Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
36
|
Intrinsic and extrinsic contributors to defective CD8+ T cell responses with aging. Exp Gerontol 2018; 105:140-145. [DOI: 10.1016/j.exger.2018.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
|
37
|
Revealing the specificity of regulatory T cells in murine autoimmune diabetes. Proc Natl Acad Sci U S A 2018; 115:5265-5270. [PMID: 29712852 DOI: 10.1073/pnas.1715590115] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Regulatory T cells (Tregs) control organ-specific autoimmunity in a tissue antigen-specific manner, yet little is known about their specificity in a natural repertoire. In this study, we used the nonobese diabetic (NOD) mouse model of autoimmune diabetes to investigate the antigen specificity of Tregs present in the inflamed tissue, the islets of Langerhans. Compared with Tregs present in spleen and lymph node, Tregs in the islets showed evidence of antigen stimulation that correlated with higher proliferation and expression of activation markers CD103, ICOS, and TIGIT. T cell receptor (TCR) repertoire profiling demonstrated that islet Treg clonotypes are expanded in the islets, suggesting localized antigen-driven expansion in inflamed islets. To determine their specificity, we captured TCRαβ pairs from islet Tregs using single-cell TCR sequencing and found direct evidence that some of these TCRs were specific for islet-derived antigens including insulin B:9-23 and proinsulin. Consistently, insulin B:9-23 tetramers readily detected insulin-specific Tregs in the islets of NOD mice. Lastly, islet Tregs from prediabetic NOD mice were effective at preventing diabetes in Treg-deficient NOD.CD28-/- recipients. These results provide a glimpse into the specificities of Tregs in a natural repertoire that are crucial for opposing the progression of autoimmune diabetes.
Collapse
|
38
|
Fontaine M, Vogel I, Van Eycke YR, Galuppo A, Ajouaou Y, Decaestecker C, Kassiotis G, Moser M, Leo O. Regulatory T cells constrain the TCR repertoire of antigen-stimulated conventional CD4 T cells. EMBO J 2018; 37:398-412. [PMID: 29263148 PMCID: PMC5793804 DOI: 10.15252/embj.201796881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 01/22/2023] Open
Abstract
To analyze the potential role of Tregs in controlling the TCR repertoire breadth to a non-self-antigen, a TCRβ transgenic mouse model (EF4.1) expressing a limited, yet polyclonal naïve T-cell repertoire was used. The response of EF4.1 mice to an I-Ab-associated epitope of the F-MuLV envelope protein is dominated by clones expressing a Vα2 gene segment, thus allowing a comprehensive analysis of the TCRα repertoire in a relatively large cohort of mice. Control and Treg-depleted EF4.1 mice were immunized, and the extent of the Vα2-bearing, antigen-specific TCR repertoire was characterized by high-throughput sequencing and spectratyping analysis. In addition to increased clonal expansion and acquisition of effector functions, Treg depletion led to the expression of a more diverse TCR repertoire comprising several private clonotypes rarely observed in control mice or in the pre-immune repertoire. Injection of anti-CD86 antibodies in vivo led to a strong reduction in TCR diversity, suggesting that Tregs may influence TCR repertoire diversity by modulating costimulatory molecule availability. Collectively, these studies illustrate an additional mechanism whereby Tregs control the immune response to non-self-antigens.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- B7-2 Antigen/immunology
- Cells, Cultured
- Friend murine leukemia virus/immunology
- Lymphocyte Depletion
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Regulatory/immunology
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Martina Fontaine
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Isabel Vogel
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Yves-Rémi Van Eycke
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Laboratories of Image, Signal processing & Acoustics Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Adrien Galuppo
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Yousra Ajouaou
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Christine Decaestecker
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Laboratories of Image, Signal processing & Acoustics Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London, UK
- Department of Medicine Faculty of Medicine, Imperial College London London, UK
| | - Muriel Moser
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Oberdan Leo
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
39
|
Danahy DB, Strother RK, Badovinac VP, Griffith TS. Clinical and Experimental Sepsis Impairs CD8 T-Cell-Mediated Immunity. Crit Rev Immunol 2017; 36:57-74. [PMID: 27480902 DOI: 10.1615/critrevimmunol.2016017098] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Septic patients experience chronic immunosuppression resulting in enhanced susceptibility to infections normally controlled by T cells. Clinical research on septic patients has shown increased apoptosis and reduced total numbers of CD4 and CD8 T cells, suggesting contributing mechanism driving immunosuppression. Experimental models of sepsis, including cecal ligation and puncture, reverse translated this clinical observation to facilitate hypothesis-driven research and allow the use of an array of experimental tools to probe the impact of sepsis on T-cell immunity. In addition to numerical loss, sepsis functionally impairs the antigen-driven proliferative capacity and effector functions of CD4 and CD8 T cells. Sepsis-induced impairments in both the quantity and quality of T cells results in reduced protective capacity and increased susceptibility of mice to new or previously encountered infections. Therefore, the combined efforts of clinical and experimental sepsis research have begun to elucidate the impact of sepsis on T-cell-mediated immunity and potential T-cell-intrinsic and -extrinsic mechanisms driving chronic immunosuppression. Future work will explore the impact of sepsis on the recently appreciated tissue-resident memory (TRM) T cells, which provide robust protection against localized infections, and dendritic cells, which are needed to activate T cells and promote effective T-cell responses.
Collapse
Affiliation(s)
- Derek B Danahy
- Department of Pathology, University of Iowa, Iowa City, IA; Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | - Vladimir P Badovinac
- Department of Pathology, Interdisciplinary Program in Immunology, University of Iowa, Iowa City, Iowa
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN; Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN; Center for Immunology, University of Minnesota, Minneapolis, MN; Minneapolis VA Health Care System, Minneapolis, Minnesota
| |
Collapse
|
40
|
Marrack P, Krovi SH, Silberman D, White J, Kushnir E, Nakayama M, Crooks J, Danhorn T, Leach S, Anselment R, Scott-Browne J, Gapin L, Kappler J. The somatically generated portion of T cell receptor CDR3α contributes to the MHC allele specificity of the T cell receptor. eLife 2017; 6:30918. [PMID: 29148973 PMCID: PMC5701794 DOI: 10.7554/elife.30918] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/16/2017] [Indexed: 01/24/2023] Open
Abstract
Mature T cells bearing αβ T cell receptors react with foreign antigens bound to alleles of major histocompatibility complex proteins (MHC) that they were exposed to during their development in the thymus, a phenomenon known as positive selection. The structural basis for positive selection has long been debated. Here, using mice expressing one of two different T cell receptor β chains and various MHC alleles, we show that positive selection-induced MHC bias of T cell receptors is affected both by the germline encoded elements of the T cell receptor α and β chain and, surprisingly, dramatically affected by the non germ line encoded portions of CDR3 of the T cell receptor α chain. Thus, in addition to determining specificity for antigen, the non germline encoded elements of T cell receptors may help the proteins cope with the extremely polymorphic nature of major histocompatibility complex products within the species.
Collapse
Affiliation(s)
- Philippa Marrack
- Howard Hughes Medical Institute, Denver, United States.,Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Sai Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Daniel Silberman
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Janice White
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Eleanor Kushnir
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, United States
| | - James Crooks
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Thomas Danhorn
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Sonia Leach
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Randy Anselment
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | | | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - John Kappler
- Howard Hughes Medical Institute, Denver, United States.,Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
41
|
Oakes T, Heather JM, Best K, Byng-Maddick R, Husovsky C, Ismail M, Joshi K, Maxwell G, Noursadeghi M, Riddell N, Ruehl T, Turner CT, Uddin I, Chain B. Quantitative Characterization of the T Cell Receptor Repertoire of Naïve and Memory Subsets Using an Integrated Experimental and Computational Pipeline Which Is Robust, Economical, and Versatile. Front Immunol 2017; 8:1267. [PMID: 29075258 PMCID: PMC5643411 DOI: 10.3389/fimmu.2017.01267] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/22/2017] [Indexed: 11/13/2022] Open
Abstract
The T cell receptor (TCR) repertoire can provide a personalized biomarker for infectious and non-infectious diseases. We describe a protocol for amplifying, sequencing, and analyzing TCRs which is robust, sensitive, and versatile. The key experimental step is ligation of a single-stranded oligonucleotide to the 3' end of the TCR cDNA. This allows amplification of all possible rearrangements using a single set of primers per locus. It also introduces a unique molecular identifier to label each starting cDNA molecule. This molecular identifier is used to correct for sequence errors and for effects of differential PCR amplification efficiency, thus producing more accurate measures of the true TCR frequency within the sample. This integrated experimental and computational pipeline is applied to the analysis of human memory and naive subpopulations, and results in consistent measures of diversity and inequality. After error correction, the distribution of TCR sequence abundance in all subpopulations followed a power law over a wide range of values. The power law exponent differed between naïve and memory populations, but was consistent between individuals. The integrated experimental and analysis pipeline we describe is appropriate to studies of T cell responses in a broad range of physiological and pathological contexts.
Collapse
Affiliation(s)
- Theres Oakes
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - James M. Heather
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Katharine Best
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Rachel Byng-Maddick
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Connor Husovsky
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mazlina Ismail
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Kroopa Joshi
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Gavin Maxwell
- Unilever Safety and Environmental Assurance Centre, Unilever, Sharnbrook, United Kingdom
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Natalie Riddell
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Tabea Ruehl
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Carolin T. Turner
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Imran Uddin
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Benny Chain
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
42
|
Christley S, Levin MK, Toby IT, Fonner JM, Monson NL, Rounds WH, Rubelt F, Scarborough W, Scheuermann RH, Cowell LG. VDJPipe: a pipelined tool for pre-processing immune repertoire sequencing data. BMC Bioinformatics 2017; 18:448. [PMID: 29020925 PMCID: PMC5637252 DOI: 10.1186/s12859-017-1853-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
Abstract
Background Pre-processing of high-throughput sequencing data for immune repertoire profiling is essential to insure high quality input for downstream analysis. VDJPipe is a flexible, high-performance tool that can perform multiple pre-processing tasks with just a single pass over the data files. Results Processing tasks provided by VDJPipe include base composition statistics calculation, read quality statistics calculation, quality filtering, homopolymer filtering, length and nucleotide filtering, paired-read merging, barcode demultiplexing, 5′ and 3′ PCR primer matching, and duplicate reads collapsing. VDJPipe utilizes a pipeline approach whereby multiple processing steps are performed in a sequential workflow, with the output of each step passed as input to the next step automatically. The workflow is flexible enough to handle the complex barcoding schemes used in many immunosequencing experiments. Because VDJPipe is designed for computational efficiency, we evaluated this by comparing execution times with those of pRESTO, a widely-used pre-processing tool for immune repertoire sequencing data. We found that VDJPipe requires <10% of the run time required by pRESTO. Conclusions VDJPipe is a high-performance tool that is optimized for pre-processing large immune repertoire sequencing data sets.
Collapse
Affiliation(s)
- Scott Christley
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Inimary T Toby
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - John M Fonner
- Texas Advanced Computing Center, Austin, TX, 78758-4497, USA
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - William H Rounds
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Florian Rubelt
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, CA, 92037, USA.,Department of Pathology, University of California, San Diego, CA, 92093, USA.,La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
| | - Lindsay G Cowell
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
43
|
Chen X, Poncette L, Blankenstein T. Human TCR-MHC coevolution after divergence from mice includes increased nontemplate-encoded CDR3 diversity. J Exp Med 2017; 214:3417-3433. [PMID: 28835417 PMCID: PMC5679170 DOI: 10.1084/jem.20161784] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/19/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022] Open
Abstract
Chen et al. demonstrate that human MHC selects a larger human TCR repertoire than mouse MHC. They show how humans optimized TCR diversity and suggest that CDR3 length adjusts for different V segment–MHC affinity. For thymic selection and responses to pathogens, T cells interact through their αβ T cell receptor (TCR) with peptide–major histocompatibility complex (MHC) molecules on antigen-presenting cells. How the diverse TCRs interact with a multitude of MHC molecules is unresolved. It is also unclear how humans generate larger TCR repertoires than mice do. We compared the TCR repertoire of CD4 T cells selected from a single mouse or human MHC class II (MHC II) in mice containing the human TCR gene loci. Human MHC II yielded greater thymic output and a more diverse TCR repertoire. The complementarity determining region 3 (CDR3) length adjusted for different inherent V-segment affinities to MHC II. Humans evolved with greater nontemplate-encoded CDR3 diversity than did mice. Our data, which demonstrate human TCR–MHC coevolution after divergence from rodents, explain the greater T cell diversity in humans and suggest a mechanism for ensuring that any V–J gene combination can be selected by a single MHC II.
Collapse
Affiliation(s)
- Xiaojing Chen
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Charité Campus Buch, Institute of Immunology, Berlin, Germany
| | - Lucia Poncette
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany .,Charité Campus Buch, Institute of Immunology, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
44
|
|
45
|
Gonçalves P, Ferrarini M, Molina-Paris C, Lythe G, Vasseur F, Lim A, Rocha B, Azogui O. A new mechanism shapes the naïve CD8 + T cell repertoire: the selection for full diversity. Mol Immunol 2017; 85:66-80. [PMID: 28212502 DOI: 10.1016/j.molimm.2017.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 01/16/2017] [Accepted: 01/28/2017] [Indexed: 12/17/2022]
Abstract
During thymic T cell differentiation, TCR repertoires are shaped by negative, positive and agonist selection. In the thymus and in the periphery, repertoires are also shaped by strong inter-clonal and intra-clonal competition to survive death by neglect. Understanding the impact of these events on the T cell repertoire requires direct evaluation of TCR expression in peripheral naïve T cells. Several studies have evaluated TCR diversity, with contradictory results. Some of these studies had intrinsic technical limitations since they used material obtained from T cell pools, preventing the direct evaluation of clonal sizes. Indeed with these approaches, identical TCRs may correspond to different cells expressing the same receptor, or to several amplicons from the same T cell. We here overcame this limitation by evaluating TCRB expression in individual naïve CD8+ T cells. Of the 2269 Tcrb sequences we obtained from 13 mice, 99% were unique. Mathematical analysis of the data showed that the average number of naïve peripheral CD8+ T cells expressing the same TCRB is 1.1 cell. Since TCRA co-expression studies could only increase repertoire diversity, these results reveal that the number of naïve T cells with unique TCRs approaches the number of naïve cells. Since thymocytes undergo multiple rounds of divisions after TCRB rearrangement and 3-5% of thymocytes survive thymic selection events the number of cells expressing the same TCRB was expected to be much higher. Thus, these results suggest a new repertoire selection mechanism, which strongly selects for full TCRB diversity.
Collapse
Affiliation(s)
- Pedro Gonçalves
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France; INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France.
| | - Marco Ferrarini
- Department of Applied Mathematics, University of Leeds, Leeds LS29JT, UK
| | | | - Grant Lythe
- Department of Applied Mathematics, University of Leeds, Leeds LS29JT, UK
| | - Florence Vasseur
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France; INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France
| | - Annik Lim
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France
| | - Benedita Rocha
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France; INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France.
| | - Orly Azogui
- INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France
| |
Collapse
|
46
|
Hoffmann T, Marion A, Antes I. DynaDom: structure-based prediction of T cell receptor inter-domain and T cell receptor-peptide-MHC (class I) association angles. BMC STRUCTURAL BIOLOGY 2017; 17:2. [PMID: 28148269 PMCID: PMC5289058 DOI: 10.1186/s12900-016-0071-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 12/29/2016] [Indexed: 11/22/2022]
Abstract
Background T cell receptor (TCR) molecules are involved in the adaptive immune response as they distinguish between self- and foreign-peptides, presented in major histocompatibility complex molecules (pMHC). Former studies showed that the association angles of the TCR variable domains (Vα/Vβ) can differ significantly and change upon binding to the pMHC complex. These changes can be described as a rotation of the domains around a general Center of Rotation, characterized by the interaction of two highly conserved glutamine residues. Methods We developed a computational method, DynaDom, for the prediction of TCR Vα/Vβ inter-domain and TCR/pMHC orientations in TCRpMHC complexes, which allows predicting the orientation of multiple protein-domains. In addition, we implemented a new approach to predict the correct orientation of the carboxamide endgroups in glutamine and asparagine residues, which can also be used as an external, independent tool. Results The approach was evaluated for the remodeling of 75 and 53 experimental structures of TCR and TCRpMHC (class I) complexes, respectively. We show that the DynaDom method predicts the correct orientation of the TCR Vα/Vβ angles in 96 and 89% of the cases, for the poses with the best RMSD and best interaction energy, respectively. For the concurrent prediction of the TCR Vα/Vβ and pMHC orientations, the respective rates reached 74 and 72%. Through an exhaustive analysis, we could show that the pMHC placement can be further improved by a straightforward, yet very time intensive extension of the current approach. Conclusions The results obtained in the present remodeling study prove the suitability of our approach for interdomain-angle optimization. In addition, the high prediction rate obtained specifically for the energetically highest ranked poses further demonstrates that our method is a powerful candidate for blind prediction. Therefore it should be well suited as part of any accurate atomistic modeling pipeline for TCRpMHC complexes and potentially other large molecular assemblies. Electronic supplementary material The online version of this article (doi:10.1186/s12900-016-0071-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Hoffmann
- Department of Biosciences and Center for Integrated Protein Science Munich, Technische Universität München, Emil-Erlenmeyer-Forum 8, 85354, Freising, Germany
| | - Antoine Marion
- Department of Biosciences and Center for Integrated Protein Science Munich, Technische Universität München, Emil-Erlenmeyer-Forum 8, 85354, Freising, Germany
| | - Iris Antes
- Department of Biosciences and Center for Integrated Protein Science Munich, Technische Universität München, Emil-Erlenmeyer-Forum 8, 85354, Freising, Germany.
| |
Collapse
|
47
|
Identifying T Cell Receptors from High-Throughput Sequencing: Dealing with Promiscuity in TCRα and TCRβ Pairing. PLoS Comput Biol 2017; 13:e1005313. [PMID: 28103239 PMCID: PMC5289640 DOI: 10.1371/journal.pcbi.1005313] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 02/02/2017] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
Characterisation of the T cell receptors (TCR) involved in immune responses is important for the design of vaccines and immunotherapies for cancer and autoimmune disease. The specificity of the interaction between the TCR heterodimer and its peptide-MHC ligand derives largely from the juxtaposed hypervariable CDR3 regions on the TCRα and TCRβ chains, and obtaining the paired sequences of these regions is a standard for functionally defining the TCR. A brute force approach to identifying the TCRs in a population of T cells is to use high-throughput single-cell sequencing, but currently this process remains costly and risks missing small clones. Alternatively, CDR3α and CDR3β sequences can be associated using their frequency of co-occurrence in independent samples, but this approach can be confounded by the sharing of CDR3α and CDR3β across clones, commonly observed within epitope-specific T cell populations. The accurate, exhaustive, and economical recovery of TCR sequences from such populations therefore remains a challenging problem. Here we describe an algorithm for performing frequency-based pairing (alphabetr) that accommodates CDR3α- and CDR3β-sharing, cells expressing two TCRα chains, and multiple forms of sequencing error. The algorithm also yields accurate estimates of clonal frequencies.
Collapse
|
48
|
Martinez RJ, Andargachew R, Martinez HA, Evavold BD. Low-affinity CD4+ T cells are major responders in the primary immune response. Nat Commun 2016; 7:13848. [PMID: 27976744 PMCID: PMC5234832 DOI: 10.1038/ncomms13848] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 11/04/2016] [Indexed: 12/21/2022] Open
Abstract
A robust primary immune response has been correlated with the precursor number of antigen-specific T cells, as identified using peptide MHCII tetramers. However, these tetramers identify only the highest-affinity T cells. Here we show the entire CD4+ T-cell repertoire, inclusive of low-affinity T cells missed by tetramers, using a T-cell receptor (TCR) signalling reporter and micropipette assay to quantify naive precursors and expanded populations. In vivo limiting dilution assays reveal hundreds more precursor T cells than previously thought, with higher-affinity tetramer-positive T cells, comprising only 5-30% of the total antigen-specific naive repertoire. Lower-affinity T cells maintain their predominance as the primary immune response progresses, with no enhancement of survival of T cells with high-affinity TCRs. These findings demonstrate that affinity for antigen does not control CD4+ T-cell entry into the primary immune response, as a diverse range in affinity is maintained from precursor through peak of T-cell expansion.
Collapse
Affiliation(s)
- Ryan J. Martinez
- Department of Microbiology and Immunology, Emory University, 1510 Clifton Rd NE, Atlanta Georgia, 30322, USA
| | - Rakieb Andargachew
- Department of Microbiology and Immunology, Emory University, 1510 Clifton Rd NE, Atlanta Georgia, 30322, USA
| | - Hunter A. Martinez
- Department of Microbiology and Immunology, Emory University, 1510 Clifton Rd NE, Atlanta Georgia, 30322, USA
| | - Brian D. Evavold
- Department of Microbiology and Immunology, Emory University, 1510 Clifton Rd NE, Atlanta Georgia, 30322, USA
| |
Collapse
|
49
|
Autoimmune susceptibility imposed by public TCRβ chains. Sci Rep 2016; 6:37543. [PMID: 27869234 PMCID: PMC5116635 DOI: 10.1038/srep37543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/01/2016] [Indexed: 11/21/2022] Open
Abstract
Although the TCR repertoire is highly diverse, a small fraction of TCR chains, referred to as public, preferentially form and are shared by most individuals. Prior studies indicated that public TCRβ may be preferentially deployed in autoimmunity. We hypothesized that if these TCRβ modulate the likelihood of a TCRαβ heterodimer productively engaging autoantigen, because they are widely present in the population and often high frequency within individual repertoires, they could also broadly influence repertoire responsiveness to specific autoantigens. We assess this here using a series of public and private TCRβ derived from autoimmune encephalomyelitis-associated TCR. Transgenic expression of public, but not private, disease-associated TCRβ paired with endogenously rearranged TCRα endowed unprimed T cells with autoantigen reactivity. Further, two of six public, but none of five private TCRβ provoked spontaneous early-onset autoimmunity in mice. Our findings indicate that single TCRβ are sufficient to confer on TCRαβ chains reactivity toward disease-associated autoantigens in the context of diverse TCRα. They further suggest that public TCR can skew autoimmune susceptibility, and that subsets of public TCR sequences may serve as disease- specific biomarkers or therapeutic targets.
Collapse
|
50
|
Affiliation(s)
- Veit R. Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 München, Germany; ,
| | - Ton N.M. Schumacher
- Division of Immunology, The Netherlands Cancer Institute (NKI), 1066 CX Amsterdam, The Netherlands;
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 München, Germany; ,
| |
Collapse
|