1
|
Shkundin A, Halaris A. IL-8 (CXCL8) Correlations with Psychoneuroimmunological Processes and Neuropsychiatric Conditions. J Pers Med 2024; 14:488. [PMID: 38793070 PMCID: PMC11122344 DOI: 10.3390/jpm14050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Interleukin-8 (IL-8/CXCL8), an essential CXC chemokine, significantly influences psychoneuroimmunological processes and affects neurological and psychiatric health. It exerts a profound effect on immune cell activation and brain function, suggesting potential roles in both neuroprotection and neuroinflammation. IL-8 production is stimulated by several factors, including reactive oxygen species (ROS) known to promote inflammation and disease progression. Additionally, CXCL8 gene polymorphisms can alter IL-8 production, leading to potential differences in disease susceptibility, progression, and severity across populations. IL-8 levels vary among neuropsychiatric conditions, demonstrating sensitivity to psychosocial stressors and disease severity. IL-8 can be detected in blood circulation, cerebrospinal fluid (CSF), and urine, making it a promising candidate for a broad-spectrum biomarker. This review highlights the need for further research on the diverse effects of IL-8 and the associated implications for personalized medicine. A thorough understanding of its complex role could lead to the development of more effective and personalized treatment strategies for neuropsychiatric conditions.
Collapse
Affiliation(s)
| | - Angelos Halaris
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago Stritch School of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
| |
Collapse
|
2
|
Mice with double knockout of Egr-1 and RCAN1 exhibit reduced inflammation during Pseudomonas aeruginosa lung infection. Immunobiology 2023; 228:152377. [PMID: 36933529 DOI: 10.1016/j.imbio.2023.152377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Pseudomonas aeruginosa represents one of the major opportunistic pathogens, which causes nosocomial infections in immunocompromised individuals. The molecular mechanisms controlling the host immune response to P. aeruginosa infections are not completely understood. In our previous study, early growth response 1 (Egr-1) and regulator of calcineurin 1 (RCAN1) were found to positively and negatively regulate the inflammatory responses, respectively, during P. aeruginosa pulmonary infection, and both of them had an impact on activating NF-κB pathway. Herein, we examined the inflammatory responses of Egr-1/RCAN1 double knockout mice using a mouse model of P. aeruginosa acute pneumonia. As a result, the Egr-1/RCAN1 double knockout mice showed reduced production of proinflammatory cytokines (IL-1β, IL-6, TNF and MIP-2), diminished inflammatory cell infiltration and decreased mortality, which were similar to those of Egr-1-deficienct mice but different from those of RCAN1-deficient mice. In vitro studies demonstrated that Egr-1 mRNA transcription preceded RCAN1 isoform 4 (RCAN1.4) mRNA transcription in macrophages, and the macrophages with Egr-1 deficiency exhibited decreased RCAN1.4 mRNA levels upon P. aeruginosa LPS stimulation. Moreover, Egr-1/RCAN1 double-deficient macrophages had reduced NF-κB activation compared to RCAN1-deficient macrophages. Taken together, Egr-1 predominates over RCAN1 in regulating inflammation during P. aeruginosa acute lung infection, which influences RCAN1.4 gene expression.
Collapse
|
3
|
Abstract
Fibrosis is a medical condition characterized by an excessive deposition of extracellular matrix compounds such as collagen in tissues. Fibrotic lesions are present in many diseases and can affect all organs. The excessive extracellular matrix accumulation in these conditions can often have serious consequences and in many cases be life-threatening. A typical event seen in many fibrotic conditions is a profound accumulation of mast cells (MCs), suggesting that these cells can contribute to the pathology. Indeed, there is now substantialv evidence pointing to an important role of MCs in fibrotic disease. However, investigations from various clinical settings and different animal models have arrived at partly contradictory conclusions as to how MCs affect fibrosis, with many studies suggesting a detrimental role of MCs whereas others suggest that MCs can be protective. Here, we review the current knowledge of how MCs can affect fibrosis.
Collapse
Affiliation(s)
- Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Ayers LW, Barbachano-Guerrero A, McAllister SC, Ritchie JA, Asiago-Reddy E, Bartlett LC, Cesarman E, Wang D, Rochford R, Martin JN, King CA. Mast Cell Activation and KSHV Infection in Kaposi Sarcoma. Clin Cancer Res 2018; 24:5085-5097. [PMID: 30084838 PMCID: PMC6191350 DOI: 10.1158/1078-0432.ccr-18-0873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/31/2018] [Accepted: 06/27/2018] [Indexed: 12/29/2022]
Abstract
Purpose: Kaposi sarcoma (KS) is a vascular tumor initiated by infection of endothelial cells (ECs) with KS-associated herpesvirus (KSHV). KS is dependent on sustained proinflammatory signals provided by intralesional leukocytes and continued infection of new ECs. However, the sources of these cytokines and infectious virus within lesions are not fully understood. Here, mast cells (MCs) are identified as proinflammatory cells within KS lesions that are permissive for, and activated by, infection with KSHV.Experimental Design: Three validated MC lines were used to assess permissivity of MCs to infection with KSHV and to evaluate MCs activation following infection. Biopsies from 31 AIDS-KS cases and 11 AIDS controls were evaluated by IHC for the presence of MCs in KS lesions and assessment of MC activation state and infection with KSHV. Plasma samples from 26 AIDS-KS, 13 classic KS, and 13 healthy adults were evaluated for levels of MC granule contents tryptase and histamine.Results: In culture, MCs supported latent and lytic KSHV infection, and infection-induced MC degranulation. Within KS lesions, MCs were closely associated with spindle cells. Furthermore, MC activation was extensive within patients with KS, reflected by elevated circulating levels of tryptase and a histamine metabolite. One patient with clinical signs of extensive MC activation was treated with antagonists of MC proinflammatory mediators, which resulted in a rapid and durable regression of AIDS-KS lesions.Conclusions: Using complimentary in vitro and in vivo studies we identify MCs as a potential long-lived reservoir for KSHV and a source of proinflammatory mediators within the KS lesional microenvironment. In addition, we identify MC antagonists as a promising novel therapeutic approach for KS. Clin Cancer Res; 24(20); 5085-97. ©2018 AACR.
Collapse
Affiliation(s)
- Leona W Ayers
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | | | - Shane C McAllister
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Julie A Ritchie
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York
| | | | - Linda C Bartlett
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Dongliang Wang
- Department of Public Health and Preventative Medicine, SUNY Upstate Medical University, Syracuse, New York
| | - Rosemary Rochford
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York
| | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Christine A King
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York.
| |
Collapse
|
5
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
6
|
Abstract
Mast cells (MCs) play a central role in tissue homoeostasis, sensing the local environment through numerous innate cell surface receptors. This enables them to respond rapidly to perceived tissue insults with a view to initiating a co-ordinated programme of inflammation and repair. However, when the tissue insult is chronic, the ongoing release of multiple pro-inflammatory mediators, proteases, cytokines and chemokines leads to tissue damage and remodelling. In asthma, there is strong evidence of ongoing MC activation, and their mediators and cell-cell signals are capable of regulating many facets of asthma pathophysiology. This article reviews the evidence behind this.
Collapse
Affiliation(s)
- P Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - G Arthur
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| |
Collapse
|
7
|
Modena BD, Dazy K, White AA. Emerging concepts: mast cell involvement in allergic diseases. Transl Res 2016; 174:98-121. [PMID: 26976119 DOI: 10.1016/j.trsl.2016.02.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 02/08/2023]
Abstract
In a process known as overt degranulation, mast cells can release all at once a diverse array of products that are preformed and present within cytoplasmic granules. This occurs typically within seconds of stimulation by environmental factors and allergens. These potent, preformed mediators (ie, histamine, heparin, serotonin, and serine proteases) are responsible for the acute symptoms experienced in allergic conditions such as allergic conjunctivitis, allergic rhinitis, allergy-induced asthma, urticaria, and anaphylaxis. Yet, there is reason to believe that the actions of mast cells are important when they are not degranulating. Mast cells release preformed mediators and inflammatory cytokines for periods after degranulation and even without degranulating at all. Mast cells are consistently seen at sites of chronic inflammation, including nonallergic inflammation, where they have the ability to temper inflammatory processes and shape tissue morphology. Mast cells can trigger actions and chemotaxis in other important immune cells (eg, eosinophils and the newly discovered type 2 innate lymphocytes) that then make their own contributions to inflammation and disease. In this review, we will discuss the many known and theorized contributions of mast cells to allergic diseases, focusing on several prototypical allergic respiratory and skin conditions: asthma, chronic rhinosinusitis, aspirin-exacerbated respiratory disease, allergic conjunctivitis, atopic dermatitis, and some of the more common medication hypersensitivity reactions. We discuss traditionally accepted roles that mast cells play in the pathogenesis of each of these conditions, but we also delve into new areas of discovery and research that challenge traditionally accepted paradigms.
Collapse
Affiliation(s)
- Brian D Modena
- Division of Allergy, Asthma and Immunology, Scripps Clinic, San Diego, Calif; Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, Calif
| | - Kristen Dazy
- Division of Allergy, Asthma and Immunology, Scripps Clinic, San Diego, Calif
| | - Andrew A White
- Division of Allergy, Asthma and Immunology, Scripps Clinic, San Diego, Calif.
| |
Collapse
|
8
|
Xenon triggers pro-inflammatory effects and suppresses the anti-inflammatory response compared to sevoflurane in patients undergoing cardiac surgery. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:365. [PMID: 26467531 PMCID: PMC4607103 DOI: 10.1186/s13054-015-1082-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/27/2015] [Indexed: 12/02/2022]
Abstract
Introduction Cardiac surgery encompasses various stimuli that trigger pro-inflammatory mediators, reactive oxygen species and mobilization of leucocytes. The aim of this study was to evaluate the effect of xenon on the inflammatory response during cardiac surgery. Methods This randomized trial enrolled 30 patients who underwent elective on-pump coronary-artery bypass grafting in balanced anaesthesia of either xenon or sevoflurane. For this secondary analysis, blood samples were drawn prior to the operation, intra-operatively and on the first post-operative day to measure the pro- and anti-inflammatory cytokines interleukin-6 (IL-6), interleukin-8/C-X-C motif ligand 8 (IL-8/CXCL8), and interleukin-10 (IL-10). Chemokines such as C-X-C motif ligand 12/ stromal cell-derived factor-1α (CXCL12/SDF-1α) and macrophage migration inhibitory factor (MIF) were measured to characterize xenon’s perioperative inflammatory profile and its impact on migration of peripheral blood mononuclear cells (PBMC). Results Xenon enhanced the postoperative increase of IL-6 compared to sevoflurane (Xenon: 90.7 versus sevoflurane: 33.7 pg/ml; p = 0.035) and attenuated the increase of IL-10 (Xenon: 127.9 versus sevoflurane: 548.3 pg/ml; p = 0.028). Both groups demonstrated a comparable intraoperative increase of oxidative stress (intra-OP: p = 0.29; post-OP: p = 0.65). While both groups showed an intraoperative increase of the cardioprotective mediators MIF and CXCL12/SDF-1α, only MIF levels decreased in the xenon group on the first postoperative day (50.0 ng/ml compared to 23.3 ng/ml; p = 0.012), whereas it remained elevated after sevoflurane anaesthesia (58.3 ng/ml to 53.6 ng/ml). Effects of patients’ serum on chemotactic migration of peripheral mononuclear blood cells taken from healthy volunteers indicated a tendency towards enhanced migration after sevoflurane anaesthesia (p = 0.07). Conclusions Compared to sevoflurane, balanced xenon anaesthesia triggers pro-inflammatory effects and suppresses the anti-inflammatory response in cardiac surgery patients even though the clinical significance remains unknown. Trial registration This clinical trial was approved by the European Medicines Agency (EudraCT-number: 2010-023942-63) and at ClinicalTrials.gov (NCT01285271; first received: January 24, 2011). Electronic supplementary material The online version of this article (doi:10.1186/s13054-015-1082-7) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Reber LL, Sibilano R, Mukai K, Galli SJ. Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunol 2015; 8:444-63. [PMID: 25669149 PMCID: PMC4739802 DOI: 10.1038/mi.2014.131] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/27/2014] [Indexed: 02/04/2023]
Abstract
Mast cells (MCs) are cells of hematopoietic origin that normally reside in mucosal tissues, often near epithelial cells, glands, smooth muscle cells, and nerves. Best known for their contributions to pathology during IgE-associated disorders such as food allergy, asthma, and anaphylaxis, MCs are also thought to mediate IgE-associated effector functions during certain parasite infections. However, various MC populations also can be activated to express functional programs--such as secreting preformed and/or newly synthesized biologically active products--in response to encounters with products derived from diverse pathogens, other host cells (including leukocytes and structural cells), damaged tissue, or the activation of the complement or coagulation systems, as well as by signals derived from the external environment (including animal toxins, plant products, and physical agents). In this review, we will discuss evidence suggesting that MCs can perform diverse effector and immunoregulatory roles that contribute to homeostasis or pathology in mucosal tissues.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Riccardo Sibilano
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Kaori Mukai
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA,Department of Microbiology & Immunology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| |
Collapse
|
10
|
Perbellini O, Cioffi F, Malpeli G, Zanolin E, Lovato O, Scarpa A, Pizzolo G, Scupoli MT. Up-regulation of CXCL8/interleukin-8 production in response to CXCL12 in chronic lymphocytic leukemia. Leuk Lymphoma 2014; 56:1897-900. [DOI: 10.3109/10428194.2014.977889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Junkins RD, Carrigan SO, Wu Z, Stadnyk AW, Cowley E, Issekutz T, Berman J, Lin TJ. Mast Cells Protect against Pseudomonas aeruginosa–Induced Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2310-21. [DOI: 10.1016/j.ajpath.2014.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/07/2014] [Accepted: 05/12/2014] [Indexed: 01/09/2023]
|
12
|
Reber LL, Frossard N. Targeting mast cells in inflammatory diseases. Pharmacol Ther 2014; 142:416-35. [PMID: 24486828 DOI: 10.1016/j.pharmthera.2014.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/24/2022]
Abstract
Although mast cells have long been known to play a critical role in anaphylaxis and other allergic diseases, they also participate in some innate immune responses and may even have some protective functions. Data from the study of mast cell-deficient mice have facilitated our understanding of some of the molecular mechanisms driving mast cell functions during both innate and adaptive immune responses. This review presents an overview of the biology of mast cells and their potential involvement in various inflammatory diseases. We then discuss some of the current pharmacological approaches used to target mast cells and their products in several diseases associated with mast cell activation.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, Faculté de Pharmacie, France
| |
Collapse
|
13
|
Tripathi V, Kumar R, Dinda AK, Kaur J, Luthra K. CXCL12-CXCR7 signaling activates ERK and Akt pathways in human choriocarcinoma cells. ACTA ACUST UNITED AC 2014; 21:221-8. [PMID: 24450273 DOI: 10.3109/15419061.2013.876013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract CXCL12 acts as a physiological ligand for the chemokine receptor CXCR7. Chemokine receptor expression by human trophoblast and other placental cells have important implications for understanding the regulation of placental growth and development. We had previously reported the differential expression of CXCR7 in different stages of the human placenta suggesting its possible role in regulation of placental growth and development. In this study, we determined the expression of CXCR7 in human choriocarcinoma JAR cells at the mRNA level and protein level and the downstream signaling pathway mediated by CXCL12-CXCR7 interaction. We observed that binding of CXCL12 to CXCR7 activates the ERK and Akt cell-survival pathways in JAR cells. Inhibition of the ERK and Akt pathways using specific inhibitors (Wortmanin & PD98509) led to the activation of the p38 pathway. Our findings suggest a possible role of CXCR7 in activating the cell survival pathways ERK and Akt in human choriocarcinoma JAR cells.
Collapse
Affiliation(s)
- Vishwas Tripathi
- Department of Biochemistry, All India Institute of Medical Sciences , New Delhi , India
| | | | | | | | | |
Collapse
|
14
|
Junkins RD, Shen A, Rosen K, McCormick C, Lin TJ. Autophagy enhances bacterial clearance during P. aeruginosa lung infection. PLoS One 2013; 8:e72263. [PMID: 24015228 PMCID: PMC3756076 DOI: 10.1371/journal.pone.0072263] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen which is the leading cause of morbidity and mortality among cystic fibrosis patients. Although P. aeruginosa is primarily considered an extacellular pathogen, recent reports have demonstrated that throughout the course of infection the bacterium acquires the ability to enter and reside within host cells. Normally intracellular pathogens are cleared through a process called autophagy which sequesters and degrades portions of the cytosol, including invading bacteria. However the role of autophagy in host defense against P. aeruginosa in vivo remains unknown. Understanding the role of autophagy during P. aeruginosa infection is of particular importance as mutations leading to cystic fibrosis have recently been shown to cause a blockade in the autophagy pathway, which could increase susceptibility to infection. Here we demonstrate that P. aeruginosa induces autophagy in mast cells, which have been recognized as sentinels in the host defense against bacterial infection. We further demonstrate that inhibition of autophagy through pharmacological means or protein knockdown inhibits clearance of intracellular P. aeruginosa in vitro, while pharmacologic induction of autophagy significantly increased bacterial clearance. Finally we find that pharmacological manipulation of autophagy in vivo effectively regulates bacterial clearance of P. aeruginosa from the lung. Together our results demonstrate that autophagy is required for an effective immune response against P. aeruginosa infection in vivo, and suggest that pharmacological interventions targeting the autophagy pathway could have considerable therapeutic potential in the treatment of P. aeruginosa lung infection.
Collapse
Affiliation(s)
- Robert D. Junkins
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Ann Shen
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kirill Rosen
- Department of Biochemistry and Molecular Biology, Halifax, Nova Scotia, Canada
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Tong-Jun Lin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
15
|
Brown MG, McAlpine SM, Huang YY, Haidl ID, Al-Afif A, Marshall JS, Anderson R. RNA sensors enable human mast cell anti-viral chemokine production and IFN-mediated protection in response to antibody-enhanced dengue virus infection. PLoS One 2012; 7:e34055. [PMID: 22479521 PMCID: PMC3316603 DOI: 10.1371/journal.pone.0034055] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 02/24/2012] [Indexed: 12/13/2022] Open
Abstract
Dengue hemorrhagic fever and/or dengue shock syndrome represent the most serious pathophysiological manifestations of human dengue virus infection. Despite intensive research, the mechanisms and important cellular players that contribute to dengue disease are unclear. Mast cells are tissue-resident innate immune cells that play a sentinel cell role in host protection against infectious agents via pathogen-recognition receptors by producing potent mediators that modulate inflammation, cell recruitment and normal vascular homeostasis. Most importantly, mast cells are susceptible to antibody-enhanced dengue virus infection and respond with selective cytokine and chemokine responses. In order to obtain a global view of dengue virus-induced gene regulation in mast cells, primary human cord blood-derived mast cells (CBMCs) and the KU812 and HMC-1 mast cell lines were infected with dengue virus in the presence of dengue-immune sera and their responses were evaluated at the mRNA and protein levels. Mast cells responded to antibody-enhanced dengue virus infection or polyinosiniċpolycytidylic acid treatment with the production of type I interferons and the rapid and potent production of chemokines including CCL4, CCL5 and CXCL10. Multiple interferon-stimulated genes were also upregulated as well as mRNA and protein for the RNA sensors PKR, RIG-I and MDA5. Dengue virus-induced chemokine production by KU812 cells was significantly modulated by siRNA knockdown of RIG-I and PKR, in a negative and positive manner, respectively. Pretreatment of fresh KU812 cells with supernatants from dengue virus-infected mast cells provided protection from subsequent infection with dengue virus in a type I interferon-dependent manner. These findings support a role for tissue-resident mast cells in the early detection of antibody-enhanced dengue virus infection via RNA sensors, the protection of neighbouring cells through interferon production and the potential recruitment of leukocytes via chemokine production.
Collapse
Affiliation(s)
- Michael G. Brown
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Center for Vaccinology, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Sarah M. McAlpine
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yan Y. Huang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Center for Vaccinology, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Ian D. Haidl
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ayham Al-Afif
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Center for Vaccinology, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Jean S. Marshall
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert Anderson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Center for Vaccinology, IWK Health Centre, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
16
|
Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D. Mast cells and inflammation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1822:21-33. [PMID: 21185371 PMCID: PMC3318920 DOI: 10.1016/j.bbadis.2010.12.014] [Citation(s) in RCA: 567] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/05/2010] [Accepted: 12/16/2010] [Indexed: 12/28/2022]
Abstract
Mast cells are well known for their role in allergic and anaphylactic reactions, as well as their involvement in acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases where they are activated by non-allergic triggers, such as neuropeptides and cytokines, often exerting synergistic effects as in the case of IL-33 and neurotensin. Mast cells can also release pro-inflammatory mediators selectively without degranulation. In particular, IL-1 induces selective release of IL-6, while corticotropin-releasing hormone secreted under stress induces the release of vascular endothelial growth factor. Many inflammatory diseases involve mast cells in cross-talk with T cells, such as atopic dermatitis, psoriasis and multiple sclerosis, which all worsen by stress. How mast cell differential responses are regulated is still unresolved. Preliminary evidence suggests that mitochondrial function and dynamics control mast cell degranulation, but not selective release. Recent findings also indicate that mast cells have immunomodulatory properties. Understanding selective release of mediators could explain how mast cells participate in numerous diverse biologic processes, and how they exert both immunostimulatory and immunosuppressive actions. Unraveling selective mast cell secretion could also help develop unique mast cell inhibitors with novel therapeutic applications. This article is part of a Special Issue entitled: Mast cells in inflammation.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wu J, Li J, Zhang N, Zhang C. Stem cell-based therapies in ischemic heart diseases: a focus on aspects of microcirculation and inflammation. Basic Res Cardiol 2011; 106:317-24. [PMID: 21424917 DOI: 10.1007/s00395-011-0168-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/09/2011] [Accepted: 02/22/2011] [Indexed: 11/28/2022]
Abstract
Stem cells possessing the potential to replace damaged myocardium with functional myocytes have drawn increasing attention in the past decade in treating ischemic heart diseases; these diseases are the leading cause of morbidity and mortality in the world. The adult heart has recently been shown to contain a few cardiac stem cells (CSCs) that, in theory, suggest cardiac repair following acute myocardial infarction is possible if the CSC titer could be increased. Stem cell-based therapies, including hematopoietic stem cells and mesenchymal stem cells, were proven to be marginal and transitional. Multiple factors and mechanisms, rather than direct cardiac regeneration are involved in stem cell-mediated cardiac functional improvement. This review will focus on (1) the interaction between inflammation and stem cells; (2) the fate of stem cells at the microcirculatory level, and their subsequent influences on stem cell-based therapies.
Collapse
Affiliation(s)
- Junxi Wu
- Department of Internal Medicine, Medical Pharmacology and Physiology and Nutrition and Exercise Physiology, Dalton Cardiovascular Research Center, University of Missouri-Columbia, 65211, USA
| | | | | | | |
Collapse
|
18
|
He S, Zhang H, Chen H, Yang H, Huang T, Chen Y, Lin J, Wang F, Chen X, Li TL, Yang P. Expression and release of IL-29 by mast cells and modulation of mast cell behavior by IL-29. Allergy 2010; 65:1234-41. [PMID: 20337614 DOI: 10.1111/j.1398-9995.2010.02349.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND The role of interleukin (IL)-29 in innate immunity has been recognized recently, and it is regarded as a potent bioactive molecule. However, little is known about its role in the pathogenesis of allergy. Because mast cells are recognized as primary effector cells of allergy, we investigated the potential relationship between IL-29 and mast cells in this study. OBJECTIVE To examine the expression of IL-29 in mast cells and the influence of IL-29 on mast cell mediator release and accumulation. METHODS Expression of IL-29 in mast cells was determined by double-labeling immunohistochemistry and flow cytometry analysis. Mast cell cell-line was cultured to examine the mediator release, and mouse peritoneal model was employed to observe the mast cell accumulation. RESULTS Large proportions of mast cells expressing IL-29 were localized in human tissue including the colon, tonsil and lung. Mast cells can release substantial quantity of IL-29 upon challenge with proteolytic allergens. Extrinsic IL-29 provoked IL-4 and IL-13 release from mast cell line P815 cells through PI3K/Akt and (JAK)/STAT3 signaling pathways, but failed to induce mast cell histamine release from human mast cells. Extrinsic IL-29 also induced mast cell infiltration in mouse peritoneum by a CD18- and ICAM1-dependent mechanism. CONCLUSION Mast cell-derived IL-29 has the potential to be involved in the pathogenesis of allergic inflammation.
Collapse
Affiliation(s)
- Shaoheng He
- Clinical Research Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Thevenot PT, Nair AM, Shen J, Lotfi P, Ko CY, Tang L. The effect of incorporation of SDF-1alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials 2010; 31:3997-4008. [PMID: 20185171 DOI: 10.1016/j.biomaterials.2010.01.144] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 01/31/2010] [Indexed: 02/06/2023]
Abstract
Despite significant advances in the understanding of tissue responses to biomaterials, most implants are still plagued by inflammatory responses which can lead to fibrotic encapsulation. This is of dire consequence in tissue engineering, where seeded cells and bioactive components are separated from the native tissue, limiting the regenerative potential of the design. Additionally, these interactions prevent desired tissue integration and angiogenesis, preventing functionality of the design. Recent evidence supports that mesenchymal stem cells (MSC) and hematopoietic stem cells (HSC) can have beneficial effects which alter the inflammatory responses and improve healing. The purpose of this study was to examine whether stem cells could be targeted to the site of biomaterial implantation and whether increasing local stem cell responses could improve the tissue response to PLGA scaffold implants. Through incorporation of SDF-1alpha through factor adsorption and mini-osmotic pump delivery, the host-derived stem cell response can be improved resulting in 3X increase in stem cell populations at the interface for up to 2 weeks. These interactions were found to significantly alter the acute mast cell responses, reducing the number of mast cells and degranulated mast cells near the scaffold implants. This led to subsequent downstream reduction in the inflammatory cell responses, and through altered mast cell activation and stem cell participation, increased angiogenesis and decreased fibrotic responses to the scaffold implants. These results support that enhanced recruitment of autologous stem cells can improve the tissue responses to biomaterial implants through modifying/bypassing inflammatory cell responses and jumpstarting stem cell participation in healing at the implant interface.
Collapse
Affiliation(s)
- Paul T Thevenot
- Bioengineering Department, University of Texas at Arlington, Arlington, TX 76019-0138, USA
| | | | | | | | | | | |
Collapse
|
20
|
Matsuura J, Sakanaka M, Sato N, Ichikawa A, Tanaka S. Suppression of CXCR4 expression in mast cells upon IgE-mediated antigen stimulation. Inflamm Res 2009; 59:123-7. [PMID: 19696965 DOI: 10.1007/s00011-009-0078-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 07/14/2009] [Accepted: 08/02/2009] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Recent studies have demonstrated that a variety of chemokine receptors are expressed in mast cells. We investigated the changes in mRNA expression of CXCRs in murine IL-3-dependent bone marrow-derived mast cells (BMMCs) to clarify how the CXCR expression is regulated in mast cells. METHODS Expression of CXCR mRNA was measured by RNase protection assay. Functional expression of CXCRs was confirmed by monitoring intracellular Ca(2+) mobilization. RESULTS CXCR4 mRNA expression was transiently induced in BMMCs in serum-dependent fashion and was completely suppressed upon IgE-mediated antigen stimulation. In contrast, CXCR5 mRNA expression was induced upon IgE-mediated antigen stimulation. Changes in the intracellular Ca(2+) mobilization induced by CXCL12 strongly indicated the functional expression of CXCR4. The decrease in CXCR4 and the increase in CXCR5 mRNA expression was also observed in BMMCs stimulated with thapsigargin, a phorbol ester, and stem cell factor. CONCLUSION The mRNA expression of CXCR4 is differentially regulated in BMMCs upon various stimuli including IgE-mediated antigen stimulation.
Collapse
Affiliation(s)
- Junji Matsuura
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
21
|
Bansal G, DiVietro JA, Kuehn HS, Rao S, Nocka KH, Gilfillan AM, Druey KM. RGS13 controls g protein-coupled receptor-evoked responses of human mast cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:7882-90. [PMID: 19017978 DOI: 10.4049/jimmunol.181.11.7882] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IgE-mediated mast cell degranulation and release of vasoactive mediators induced by allergens elicits allergic responses. Although G protein-coupled receptor (GPCR)-induced signals may amplify IgE-dependent degranulation, how GPCR signaling in mast cells is regulated remains incompletely defined. We investigated the role of regulator of G protein signaling (RGS) proteins in the modulation of these pathways in human mast cells. Several RGS proteins were expressed in mast cells including RGS13, which we previously showed inhibited IgE-mediated mast cell degranulation and anaphylaxis in mice. To characterize how RGS13 affects GPCR-mediated functions of human mast cells, we analyzed human mast cell lines (HMC-1 and LAD2) depleted of RGS13 by specific small interfering RNA or short hairpin RNA and HMC-1 cells overexpressing RGS13. Transient RGS13 knockdown in LAD2 cells lead to increased degranulation to sphingosine-1-phosphate but not to IgE-Ag or C3a. Relative to control cells, HMC-1 cells stably expressing RGS13-targeted short hairpin RNA had greater Ca(2+) mobilization in response to several natural GPCR ligands such as adenosine, C5a, sphingosine-1-phosphate, and CXCL12 than wild-type cells. Akt phosphorylation, chemotaxis, and cytokine (IL-8) secretion induced by CXCL12 were also greater in short hairpin RGS13-HMC-1 cells compared with control. RGS13 overexpression inhibited CXCL12-evoked Ca(2+) mobilization, Akt phosphorylation and chemotaxis. These results suggest that RGS13 restricts certain GPCR-mediated biological responses of human mast cells.
Collapse
Affiliation(s)
- Geetanjali Bansal
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Kerfoot SM, Andonegui G, Bonder CS, Liu L. Exogenous stromal cell-derived factor-1 induces modest leukocyte recruitment in vivo. Am J Physiol Heart Circ Physiol 2008; 294:H2524-34. [PMID: 18424631 DOI: 10.1152/ajpheart.00984.2007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stromal cell-derived factor-1 (SDF-1; CXCL12), a CXC chemokine, has been found to be involved in inflammation models in vivo and in cell adhesion, migration, and chemotaxis in vitro. This study aimed to determine whether exogenous SDF-1 induces leukocyte recruitment in mice. After systemic administration of SDF-1alpha, expression of the adhesion molecules P-selectin and VCAM-1 in mice was measured using a quantitative dual-radiolabeled Ab assay and leukocyte recruitment in various tissues was evaluated using intravital microscopy. The effect of local SDF-1alpha on leukocyte recruitment was also determined in cremaster muscle and compared with the effect of the cytokine TNFalpha and the CXC chemokine keratinocyte-derived chemokine (KC; CXCL1). Systemic administration of SDF-1alpha (10 microg, 4-5 h) induced upregulation of P-selectin, but not VCAM-1, in most tissues in mice. It caused modest leukocyte recruitment responses in microvasculature of cremaster muscle, intestine, and brain, i.e., an increase in flux of rolling leukocytes in cremaster muscle and intestines, leukocyte adhesion in all three tissues, and emigration in cremaster muscle. Local treatment with SDF-1alpha (1 microg, 4-5 h) reduced leukocyte rolling velocity and increased leukocyte adhesion and emigration in cremasteric venules, but the responses were much less profound than those elicited by KC or TNFalpha. SDF-1alpha-induced recruitment was dependent on endothelial P-selectin, but not P-selectin on platelets. We conclude that the exogenous SDF-1alpha enhances leukocyte-endothelial cell interactions and induces modest and endothelial P-selectin-dependent leukocyte recruitment.
Collapse
Affiliation(s)
- Steven M Kerfoot
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | |
Collapse
|
23
|
Kalin TV, Meliton L, Meliton AY, Zhu X, Whitsett JA, Kalinichenko VV. Pulmonary mastocytosis and enhanced lung inflammation in mice heterozygous null for the Foxf1 gene. Am J Respir Cell Mol Biol 2008; 39:390-9. [PMID: 18421012 DOI: 10.1165/rcmb.2008-0044oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Forkhead Box f1 (Foxf1) transcriptional factor (previously known as HFH-8 or Freac-1) is expressed in endothelial and smooth muscle cells in the embryonic and adult lung. To assess effects of Foxf1 during lung injury, we used CCl(4) and butylated hydroxytoluene (BHT) injury models. Foxf1(+/-) mice developed severe airway obstruction and bronchial edema, associated with increased numbers of pulmonary mast cells and increased mast cell degranulation after injury. Pulmonary inflammation in Foxf1(+/-) mice was associated with diminished expression of Foxf1, increased mast cell tryptase, and increased expression of CXCL12, the latter being essential for mast cell migration and chemotaxis. After ovalbumin (OVA) sensitization and OVA challenge, increased lung inflammation, airway hyperresponsiveness to methacholine, and elevated expression of CXCL12 were observed in Foxf1(+/-) mice. During lung development, Foxf1(+/-) embryos displayed a marked increase in pulmonary mast cells before birth, and this was associated with increased CXCL12 levels in the lung. Expression of a doxycycline-inducible Foxf1 dominant-negative transgene in primary cultures of lung endothelial cells increased CXCL12 expression in vitro. Foxf1 haploinsufficiency caused pulmonary mastocytosis and enhanced pulmonary inflammation after chemically induced or allergen-mediated lung injury, indicating an important role for Foxf1 in the pathogenesis of pulmonary inflammatory responses.
Collapse
Affiliation(s)
- Tanya V Kalin
- Division of Pulmonary Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
24
|
Liu J, Louie S, Hsu W, Yu KM, Nicholas HB, Rosenquist GL. Tyrosine sulfation is prevalent in human chemokine receptors important in lung disease. Am J Respir Cell Mol Biol 2008; 38:738-43. [PMID: 18218997 DOI: 10.1165/rcmb.2007-0118oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Post-translational sulfation of tyrosines affects the affinity and binding of at least some chemokine receptors to their ligand(s) and has been hypothesized to be a feature in all chemokine receptors. This binding initiates downstream signaling cascades. By this mechanism, tyrosine sulfation can influence the cells involved in acute and chronic events of cellular immunity. These events include leukocyte trafficking and airway inflammation important in asthma and chronic obstructive pulmonary disease (COPD). We are using computational methods to convert the poorly defined hypothesis of more widespread sulfation of chemokine receptors to more specific assessments of how closely the sequence environment of each tyrosine residue resembles the sequence environment of tyrosine residues proven to be sulfated. Thus, we provide specific and readily tested hypotheses about the tyrosine residues in all of the chemokine receptors. Tyrosine sulfation was predicted with high scores in the N-terminus domain of 13 out of 18 human chemokine receptor proteins using a position-specific scoring matrix, which was determined to be 94.2% accurate based on Receiver Operating Characteristic analysis. The remaining chemokine receptors have sites exhibiting features of tyrosine sulfation. These putative sites demonstrate clustering in a manner consistent with known tyrosine sulfation sites and conservation both within the chemokine receptor family and across mammalian species. Human chemokine receptors important in asthma and COPD, such as CXCR1, CXCR2, CXCR3, CXCR4, CCR1, CCR2, CCR3, CCR4, CCR5, and CCR8, contain at least one known or predicted tyrosine sulfation site. Recognition that tyrosine sulfation is found in most clinically relevant chemokine receptors could help the development of specific receptor-ligand antagonists to modulate events important in airway diseases.
Collapse
Affiliation(s)
- Justin Liu
- Section of Neurobiology, Physiology and Behavior, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
25
|
Holdsworth SR, Tipping PG. Leukocytes in glomerular injury. Semin Immunopathol 2007; 29:355-74. [DOI: 10.1007/s00281-007-0097-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 09/28/2007] [Indexed: 12/22/2022]
|
26
|
Theoharides TC, Kempuraj D, Tagen M, Conti P, Kalogeromitros D. Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol Rev 2007; 217:65-78. [PMID: 17498052 DOI: 10.1111/j.1600-065x.2007.00519.x] [Citation(s) in RCA: 319] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mast cells are well known for their involvement in allergic and anaphylactic reactions, during which immunoglobulin E (IgE) receptor (Fc epsilon RI) aggregation leads to exocytosis of the content of secretory granules (1000 nm), commonly known as degranulation, and secretion of multiple mediators. Recent findings implicate mast cells also in inflammatory diseases, such as multiple sclerosis, where mast cells appear to be intact by light microscopy. Mast cells can be activated by bacterial or viral antigens, cytokines, growth factors, and hormones, leading to differential release of distinct mediators without degranulation. This process appears to involve de novo synthesis of mediators, such as interleukin-6 and vascular endothelial growth factor, with release through secretory vesicles (50 nm), similar to those in synaptic transmission. Moreover, the signal transduction steps necessary for this process appear to be largely distinct from those known in Fc epsilon RI-dependent degranulation. How these differential mast cell responses are controlled is still unresolved. No clinically available pharmacological agents can inhibit either degranulation or mast cell mediator release. Understanding this process could help develop mast cell inhibitors of selective mediator release with novel therapeutic applications.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Tufts - New England Medical Center, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
27
|
Hallgren J, Gurish MF. Pathways of murine mast cell development and trafficking: tracking the roots and routes of the mast cell. Immunol Rev 2007; 217:8-18. [PMID: 17498048 DOI: 10.1111/j.1600-065x.2007.00502.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The appreciation of the role of the mast cell (MC) in inflammatory processes has expanded dramatically during the last decade. Many of these processes, especially more prolonged responses, are accompanied by an increase in the number of MCs, and much of this increase is likely because of recruitment of immature progenitors with subsequent maturation under the control of the tissue microenvironment. We have begun to identify many of the cell-surface molecules that control this influx and have traced the development of these cells back to their hematopoietic roots. This development proceeds along the myelomonocytic pathway with distinct intermediates having been identified in both bone marrow and spleen. The expression of alpha4beta7 integrins has played a prominent role in this process, as it helped identify a bipotent basophil MC precursor in the spleens of C57BL/6 mice. This integrin also controls basal influx into the intestine and, along with alpha4beta1 integrins, plays a critical role in recruitment to inflamed lungs. Investigation of chemokines and chemokine receptors in these processes led to the identification of a dual role for the murine interleukin-8 receptor CXCR2. This alpha-chemokine receptor affects MC progenitor trafficking by its expression by MC progenitors and by its expression on stromal cells, likely endothelium, affecting trafficking to both intestine under basal conditions and lung during inflammatory recruitment.
Collapse
Affiliation(s)
- Jenny Hallgren
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
28
|
Theoharides TC, Kempuraj D, Tagen M, Vasiadi M, Cetrulo CL. Human umbilical cord blood-derived mast cells: a unique model for the study of neuro-immuno-endocrine interactions. ACTA ACUST UNITED AC 2007; 2:143-54. [PMID: 17237553 DOI: 10.1007/s12015-006-0021-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/24/2022]
Abstract
Findings obtained using animal models have often failed to reflect the processes involved in human disease. Moreover, human cultured cells do not necessarily function as their actual tissue counterparts. Therefore, there is great demand for sources of human progenitor cells that may be directed to acquire specific tissue characteristics and be available in sufficient quantities to carry out functional and pharmacological studies. Acase in point is the mast cell, well known for its involvement in allergic reactions, but also implicated in inflammatory diseases. Mast cells can be activated by allergens, anaphylatoxins, immunoglobulin-free light chains, superantigens, neuropeptides, and cytokines, leading to selective release of mediators. These could be involved in many inflammatory diseases, such as asthma and atopic dermatitis, which worsen by stress, through activation by local release of corticotropin-releasing hormone or related peptides. Umbilical cord blood and cord matrix-derived mast cell progenitors can be separated magnetically and grown in the presence of stem cell factor, interleukin-6, interleukin-4, and other cytokines to yield distinct mast cell populations. The recent use of live cell array, with its ability to study such interactions rapidly at the single-cell level, provides unique new opportunities for fast output screening of mast cell triggers and inhibitors.
Collapse
Affiliation(s)
- T C Theoharides
- Department of Laboratory of Molecular Immunopharmacology and Drug Discovery, Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
29
|
Theoharides TC, Kalogeromitros D. The critical role of mast cells in allergy and inflammation. Ann N Y Acad Sci 2007; 1088:78-99. [PMID: 17192558 DOI: 10.1196/annals.1366.025] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mast cells are well known for their involvement in allergic and anaphylactic reactions, but recent findings implicate them in a variety of inflammatory diseases affecting different organs, including the heart, joints, lungs, and skin. In these cases, mast cells appear to be activated by triggers other than aggregation of their IgE receptors (FcepsilonRI), such as anaphylatoxins, immunoglobulin-free light chains, superantigens, neuropeptides, and cytokines leading to selective release of mediators without degranulation. These findings could explain inflammatory diseases, such as asthma, atopic dermatitis, coronary inflammation, and inflammatory arthritis, all of which worsen by stress. It is proposed that the pathogenesis of these diseases involve mast cell activation by local release of corticotropin-releasing hormone (CRH) or related peptides. Combination of CRH receptor antagonists and mast cell inhibitors may present novel therapeutic interventions.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | |
Collapse
|
30
|
Jenkins CE, Swiatoniowski A, Power MR, Lin TJ. Pseudomonas aeruginosa-Induced Human Mast Cell Apoptosis Is Associated with Up-Regulation of Endogenous Bcl-xSand Down-Regulation of Bcl-xL. THE JOURNAL OF IMMUNOLOGY 2006; 177:8000-7. [PMID: 17114473 DOI: 10.4049/jimmunol.177.11.8000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mast cells play a critical role in the host defense against bacterial infection. Recently, apoptosis has been demonstrated to be essential in the regulation of host response to Pseudomonas aeruginosa. In this study we show that human mast cell line HMC-1 and human cord blood-derived mast cells undergo apoptosis as determined by the ssDNA formation after infection with P. aeruginosa. P. aeruginosa induced activation of caspase-3 in mast cells as evidenced by the cleavage of D4-GDI, an endogenous caspase-3 substrate and the generation of an active form of caspase-3. Interestingly, P. aeruginosa treatment induced up-regulation of Bcl-x(S) and down-regulation of Bcl-x(L). Bcl-x(S), and Bcl-x(L) are alternative variants produced from the same Bcl-x pre-mRNA. The former is proapoptotic and the latter is antiapoptotic likely through regulating mitochondrial membrane integrity. Treatment of mast cells with P. aeruginosa induced release of cytochrome c from mitochondria and loss of mitochondrial membrane potentials. Moreover, P. aeruginosa treatment reduced levels of Fas-associated death domain protein-like IL-1beta-converting enzyme-inhibitory proteins (FLIPs) that are endogenous apoptosis inhibitors through counteraction with caspase-8. Thus, human mast cells undergo apoptosis after encountering P. aeruginosa through a mechanism that likely involves both the Bcl family protein mitochondrial-dependent and the FLIP-associated caspase-8 pathways.
Collapse
Affiliation(s)
- Christopher E Jenkins
- Department of Microbiology and Immunology and Department of Pediatrics, Dalhousie University, 5850 University Avenue, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
31
|
Lee S, Park HH, Son HY, Ha JH, Lee MG, Oh TY, Sohn DH, Jeong TC, Lee SH, Son JK, Lee SG, Jun CD, Kim SH. DA-9601 inhibits activation of the human mast cell line HMC-1 through inhibition of NF-kappaB. Cell Biol Toxicol 2006; 23:105-12. [PMID: 17094021 DOI: 10.1007/s10565-006-0103-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 09/12/2006] [Indexed: 12/13/2022]
Abstract
Mast cell-mediated allergic inflammation is involved in many diseases such as asthma, sinusitis, and rheumatoid arthritis. Mast cells induce synthesis and production of pro-inflammatory cytokines including tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 with immune regulatory properties. The formulated ethanol extract of Artemisia asiatica Nakai (DA-9601) has been reported to have antioxidative and anti-inflammatory activities. In this report, we investigated the effect of DA-9601 on the expression of pro-inflammatory cytokines by the activated human mast cell line HMC-1 and studied its possible mechanisms of action. DA-9601 dose-dependently decreased the gene expression and production of TNF-alpha, IL-1beta, and IL-6 on phorbol 12-myristate 13-acetate (PMA)- and calcium ionophore A23187-stimulated HMC-1 cells. In addition, DA-9601 attenuated PMA- and A23187-induced activation of NF-kappaB as indicated by inhibition of degradation of IkappaBalpha, nuclear translocation of NF-kappaB, NF-kappaB/DNA binding, and NF-kappaB-dependent gene reporter assay. Our in vitro studies provide evidence that DA-9601 might contribute to the treatment of mast cell-derived allergic inflammatory diseases.
Collapse
Affiliation(s)
- S Lee
- Department of Pharmacology, Kyungpook National University Medical School, Daegu, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Holm M, Kvistgaard H, Dahl C, Andersen HB, Hansen TK, Schiøtz PO, Junker S. Modulation of Chemokine Gene Expression in CD133+Cord Blood-Derived Human Mast Cells by Cyclosporin A and Dexamethasone. Scand J Immunol 2006; 64:571-9. [PMID: 17032251 DOI: 10.1111/j.1365-3083.2006.01835.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have recently developed a protocol for generating huge numbers of mature and functional mast cells from in vitro differentiated umbilical cord blood cells. Using CD133 as a positive selection marker to isolate haematopoietic progenitors we routinely expand the number of recovered cells at least 150-fold, which vastly exceeds the yields of conventional protocols using CD34+ cells as a source of progenitors. Taking advantage of the large quantities of in vitro differentiated mast cells, here we assess at the levels of transcription and translation the kinetics of chemokine gene induction following receptor mediated mast cell activation or following pharmacological activation of specific signal transduction cascades that become activated upon classical FcepsilonRI receptor crosslinking. We demonstrate that chemokine genes encoding IL-8, MCP-1, MIP-1alpha, and MIP-1beta are induced with different kinetics and with different amplitudes in a receptor activation dependent manner, and that these events can be mimicked using pharmacological agents which activate distinct signal transduction pathways. These findings were corroborated by adding immunomodulators such as cyclosporin A and dexamethasone prior to mast cell activation. Finally, we demonstrate that the same modulators added after mast cell activation can differentially quench ongoing chemokine gene induction. Thus, considering the vast yields of mast cells, our protocol is valuable not only for studying regulation of gene expression in mast cells in general, but also as an experimental tool to develop better and more balanced treatments of mast cell related disorders.
Collapse
Affiliation(s)
- M Holm
- Department of Human Genetics, University of Aarhus, Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
33
|
Rittner HL, Labuz D, Schaefer M, Mousa SA, Schulz S, Schäfer M, Stein C, Brack A. Pain control by CXCR2 ligands through Ca2+-regulated release of opioid peptides from polymorphonuclear cells. FASEB J 2006; 20:2627-9. [PMID: 17060402 DOI: 10.1096/fj.06-6077fje] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Leukocytes counteract inflammatory pain by releasing opioid peptides, which bind to opioid receptors on peripheral sensory neurons. In the early phase of inflammation, polymorphonuclear cells (PMN) are the major source of opioids. Their recruitment is governed by ligands at the chemokine receptor CXCR2. Here, we examined whether chemokines can also induce opioid peptide secretion from PMN and thus inhibit inflammatory pain. In rats with hindpaw inflammation, intraplantar injection of CXCL2/3, but not of the CXCR4 ligand CXCL12, elicited naloxone-reversible (i.e., opioid receptor mediated) mechanical and thermal analgesia, which was abolished by systemic PMN depletion. Both CXCR1/2- and CXCR4-ligands induced PMN chemotaxis, but only CXCR1/2 ligands triggered opioid release from human and rat PMN in vitro. This release was unaltered by extracellular Ca2+ chelation, was mimicked by thapsigargin and was blocked by inhibitors of the inositol 1,4,5-triphosphate receptor (IP3) and by intracellular Ca2+ chelation, indicating that it required Ca2+ from intracellular but not extracellular sources. Furthermore, release was partially reduced by phosphoinositol-3-kinase (PI3K) inhibitors. Adoptive transfer of allogenic PMN into PMN-depleted rats reconstituted CXCL2/3-induced analgesia, which was inhibited by prior ex vivo chelation of intracellular Ca2+. These findings demonstrate that, beyond cell recruitment, CXCR2 ligands induce Ca2+-regulated opioid release from PMN and thereby inhibit inflammatory pain in vivo.
Collapse
Affiliation(s)
- Heike L Rittner
- Klinik für Anaesthesiologie und Operative Intensivmedizin, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Brown MG, King CA, Sherren C, Marshall JS, Anderson R. A dominant role for FcgammaRII in antibody-enhanced dengue virus infection of human mast cells and associated CCL5 release. J Leukoc Biol 2006; 80:1242-50. [PMID: 16940332 DOI: 10.1189/jlb.0805441] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dengue virus is a major mosquito-borne human pathogen with four known serotypes. The presence of antidengue virus antibodies in the serum of individuals prior to dengue virus infection is believed to be an important risk factor for severe dengue virus disease as a result of the phenomenon of antibody-dependent enhancement operating on Fc receptor (FcR)-bearing cells. In addition to blood monocytes, mast cells are susceptible to antibody-enhanced dengue virus infection, producing a number of inflammatory mediators including IL-1, IL-6, and CCL5. Using the human mast cell-like lines KU812 and HMC-1 as well as primary cultures of human cord blood-derived mast cells (CBMC), we aimed to identify the participating FcRs in antibody-enhanced mast cell dengue virus infection, as FcRs represent a potential site for therapeutic intervention. CBMC expressed significant levels of FcgammaRI, FcgammaRII, and FcgammaRIII, and mast cell-like HMC-1 and KU812 cells expressed predominantly FcgammaRII. All four serotypes of dengue virus showed antibody-enhanced binding to KU812 cells. Specific FcgammaRII blockade with mAb IV.3 was found to significantly abrogate dengue virus binding to KU812 cells and CBMC in the presence of dengue-specific antibody. Dengue virus infection and the production of CCL5 by KU812 cells were also inhibited by FcgammaRII blockade.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibody-Dependent Enhancement/immunology
- Cells, Cultured
- Chemokine CCL5
- Chemokines, CC/biosynthesis
- Chemokines, CC/immunology
- Dengue/blood
- Dengue/drug therapy
- Dengue/immunology
- Dengue Virus/immunology
- Humans
- Interleukin-1/biosynthesis
- Interleukin-1/immunology
- Interleukin-6/biosynthesis
- Interleukin-6/immunology
- Mast Cells/immunology
- Mast Cells/metabolism
- Mast Cells/virology
- Receptors, IgG/antagonists & inhibitors
- Receptors, IgG/biosynthesis
- Receptors, IgG/immunology
- Virus Attachment/drug effects
Collapse
|
35
|
Human leukocytes express ephrinB2 which activates microvascular endothelial cells. Cell Immunol 2006; 242:99-109. [DOI: 10.1016/j.cellimm.2006.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 10/04/2006] [Indexed: 12/14/2022]
|
36
|
Newman MB, Willing AE, Manresa JJ, Sanberg CD, Sanberg PR. Cytokines produced by cultured human umbilical cord blood (HUCB) cells: Implications for brain repair. Exp Neurol 2006; 199:201-8. [PMID: 16730351 DOI: 10.1016/j.expneurol.2006.04.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 04/04/2006] [Indexed: 12/24/2022]
Abstract
The potential therapeutic benefits from human umbilical cord blood (HUCB) cells for the treatment of injuries, diseases, and neurodegeneration are becoming increasingly recognized. The transplantation or infusion of cord blood cells in various animal models, such as ischemia/stroke, traumatic brain injury, myocardial infarction, Parkinson's disease, and amyotropic lateral sclerosis, has resulted in amelioration of behavioral deficits, and with some diseases, a prolonged lifespan decreased neuropathology. Previously, we reported the migration of HUCB cells to ischemic brain supernatant (tissue extracts) is time-dependent, and the expression of specific chemokines responds to this migration pattern. The mechanism(s) responsible for these effects are unknown. The expression of cytokines and chemokines produced by HUCB cells (under various culturing conditions) was investigated in this study. IL-8, MCP-1, and IL-1alpha were consistently expressed by the HUCB mononuclear cells regardless of the culture condition. These results provide insights to factors that may be partially responsible for the functional improvements seen in the animal models of injury investigating the therapeutic use of HUCB cells.
Collapse
Affiliation(s)
- Mary B Newman
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine and College of Arts and Science, Tampa, FL 33612, USA.
| | | | | | | | | |
Collapse
|
37
|
Shin TY, Oh JM, Choi BJ, Park WH, Kim CH, Jun CD, Kim SH. Anti-inflammatory effect of Poncirus trifoliata fruit through inhibition of NF-kappaB activation in mast cells. Toxicol In Vitro 2006; 20:1071-6. [PMID: 16574371 DOI: 10.1016/j.tiv.2006.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/09/2005] [Accepted: 02/10/2006] [Indexed: 11/20/2022]
Abstract
Mast cell-mediated allergic inflammation is involved in many diseases such as asthma, sinusitis, and rheumatoid arthritis. Mast cells induce synthesis and production of pro-inflammatory cytokines including tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 with immune regulatory properties. We investigated the effect of the fruits of Poncirus trifoliata (L.) Raf (Rutaceae) (FPT) on expression of pro-inflammatory cytokines by activated human mast cell line, HMC-1. FPT dose dependently decreased the gene expression and production of TNF-alpha and IL-6 on phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated HMC-1 cells. In addition, FPT attenuated PMA and A23187-induced activation of NF-kappaB indicated by inhibition of degradation of I kappa B alpha, nuclear translocation of NF-kappaB, NF-kappaB/DNA binding, and NF-kappaB-dependent gene reporter assay. Our in vitro studies provide evidence that FPT might contribute to the treatment of mast cell-derived allergic inflammatory diseases.
Collapse
Affiliation(s)
- Tae-Yong Shin
- College of Pharmacy, Woosuk University, Jeonbuk 565-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Nakayama T, Mutsuga N, Yao L, Tosato G. Prostaglandin E2 promotes degranulation-independent release of MCP-1 from mast cells. J Leukoc Biol 2005; 79:95-104. [PMID: 16275896 DOI: 10.1189/jlb.0405226] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mast cells (MCs) are common components of inflammatory infiltrates and a source of proangiogenic factors. Inflammation is often accompanied by vascular changes. However, little is known about modulation of MC-derived proangiogenic factors during inflammation. In this study, we evaluated the effects of the proinflammatory mediator prostaglandin E2 (PGE2) on MC expression and release of proangiogenic factors. We report that PGE2 dose-dependently induces primary MCs to release the proangiogenic chemokine monocyte chemoattractant protein-1 (MCP-1). This release of MCP-1 is complete by 2 h after PGE2 exposure, reaches levels of MCP-1 at least 15-fold higher than background, and is not accompanied by degranulation or increased MCP-1 gene expression. By immunoelectron microscopy, MCP-1 is detected within MCs at a cytoplasmic location distinct from the secretory granules. Dexamethasone and cyclosporine A inhibit PGE2-induced MCP-1 secretion by approximately 60%. Agonists of PGE2 receptor subtypes revealed that the EP1 and EP3 receptors can independently mediate MCP-1 release from MCs. These observations identify PGE2-induced MCP-1 release from MCs as a pathway underlying inflammation-associated angiogenesis and extend current understanding of the activities of PGE2.
Collapse
Affiliation(s)
- Takayuki Nakayama
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
39
|
Newman MB, Willing AE, Manresa JJ, Davis-Sanberg C, Sanberg PR. Stroke-induced Migration of Human Umbilical Cord Blood Cells: Time Course and Cytokines. Stem Cells Dev 2005; 14:576-86. [PMID: 16305342 DOI: 10.1089/scd.2005.14.576] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The therapeutic window for treatment of individuals after stroke is narrow, regardless of the treatment regime; extension of this window would provide a major therapeutic advance. In prior reports, we demonstrated significant improvements in the behavioral defects of rats that received human umbilical cord blood (HUCB) cells 24 h after a middle cerebral arterial occlusion. These effects paralleled the recruitment of these cells to the site of tissue damage. While the administration of HUCB cells 24 h after stroke was effective, the optimal time to administer these cells after stroke has not been established. Here, we investigated the migration of HUCB cells to ischemic tissue extracts. After ischemic assault, brain tissue was homogenized, and the supernatants were assayed for their ability to attract HUCB mononuclear cells as well as for levels of several cytokines. We demonstrate increased migratory activity of HUCB cells toward the extracts harvested at 24-72 h after stroke. The extracts possessed increased levels of certain cytokines and chemokines, suggesting their participation in HUCB cell migration. The results from this study are promising in that the current 3-h therapeutic window for the treatment of stroke victims, using approved anticoagulant treatment, may be extended with the use of HUCB cell therapy 24-72 h post stroke. Last, the chemokines present in the supernatant provide a sound starting point to start examining the mechanisms responsible for the in vivo migration of HUCB cells after the induction of stroke.
Collapse
Affiliation(s)
- Mary B Newman
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL 33612, USA.
| | | | | | | | | |
Collapse
|
40
|
Abstract
BACKGROUND Mast cells (MCs) accumulate at sites of allergic mucosal inflammation where they act as central effectors and regulatory cells. Chemokines are believed to be crucial for the recruitment of MCs to sites of inflammation. We recently reported that human umbilical cord blood MCs (CBMCs) expresses the CC chemokine receptors, CCR1 and CCR4. We found a unique response profile to ligands of the respective receptors in which, of all tested ligands, only CCL5/RANTES-induced migration. OBJECTIVE To further investigate the function of CCR4 in MCs. METHODS CBMCs were used for competition binding experiments, migration, and intracellular calcium mobilization and release response studies. RESULTS The natural ligands for CCR4, CCL17/TARC and CCL22/MDC could both compete for binding with radiolabelled CCL5. Further, both CCL17 and CCL22 act as CCR4 antagonists by inhibiting CCL5-induced migration. Although both CCL17 and CCL22 caused mobilization of intracellular calcium, none of them induced migration or histamine release. CONCLUSIONS These results suggest that CCL5-induced migration of MCs via CCR4 can be regulated by the natural agonists CCL17 and CCL22, which are up-regulated at sites of allergic inflammation.
Collapse
Affiliation(s)
- M Juremalm
- Research Group on Mast Cell Biology, Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
41
|
Na HJ, Moon PD, Ko SG, Lee HJ, Jung HA, Hong SH, Seo Y, Oh JM, Lee BH, Choi BW, Kim HM. Sargassum hemiphyllum inhibits atopic allergic reaction via the regulation of inflammatory mediators. J Pharmacol Sci 2005; 97:219-26. [PMID: 15699580 DOI: 10.1254/jphs.fp0040326] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Sargassum hemiphyllum (SH) has long been used in Korean folk medicine for the therapeutic treatment of various allergic diseases. The effects of SH in previous experimental models, however, have been inconclusive. We studied the effects of methanol extract of SH on mast cells. Our experiments showed that SH significantly inhibited compound 48/80-induced histamine and beta-hexosaminidase release from rat peritoneal mast cells. SH inhibited interleukin (IL)-8 and tumor necrosis factor (TNF)-alpha release induced by phorbol 12-myristate 13-acetate and A23187 from HMC-1, and it also showed an inhibitory effect on the anti-dinitrophenyl IgE antibody-induced passive cutaneous anaphylaxis reaction. In addition, SH inhibited the increase of TNF-alpha-induced NF-kappaB protein levels, transcription factor of TNF-alpha from 293T cells. A period of 48 h exposure to SH had little effect on HMC-1 cell viability. Our results suggest that SH has an inhibitory effect on the atopic allergic reaction and thus this may be useful in the treatment of allergic inflammatory diseases, such as atopic dermatitis.
Collapse
Affiliation(s)
- Ho-Jeong Na
- College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lin TJ, Befus AD. Mast Cells In Mucosal Defenses and Pathogenesis. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Jaleel MA, Tsai AC, Sarkar S, Freedman PV, Rubin LP. Stromal cell-derived factor-1 (SDF-1) signalling regulates human placental trophoblast cell survival. ACTA ACUST UNITED AC 2004; 10:901-9. [PMID: 15475370 DOI: 10.1093/molehr/gah118] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Stromal cell-derived factor-1 (SDF-1 or CXCL12) is the physiologic ligand for the chemokine receptor CXCR4. CXCR4-mediated signalling regulates cell migration and apoptosis in certain haematopoietic and neuronal cells. Using gene profiling, we determined that CXCR4 is the only chemokine receptor for which mRNA expression is regulated during trophoblast differentiation in vitro. Based on the known effects of CXCR4 ligation, we hypothesized that CXCR4 activation may regulate placental trophoblast cell survival (i.e. protection from apoptosis), an important mechanism for the establishment and maintenance of the uteroplacental barrier. Human cytotrophoblasts (CTBs) were cultured in defined media and treated with graded doses of SDF-1 (10-100 ng/ml) or with an anti-CXCR4 neutralizing antibody. Exposure to anti-CXCR4 antibody reduced CTB cell numbers by 25-40%. Treatment with SDF-1 decreased the proportions of apoptotic terminal deoxynucleotidyl transferase-mediated dUTP-FITC nick-end labelling(+) cells (apoptotic index [AI] of 2.79+/-0.61% [control] versus 1.88+/-0.56% [SDF-1]; P<0.05) and caspase-activated cells (AI of 7.95+/-2.49% [control] versus 3.81+/-1.49% [SDF-1]; P<0.05). We determined that SDF-1 also activated the triple MAP Kinase isoforms ERK1/2 and p38 in trophoblasts. Immunocytochemistry confirmed SDF-1-induced nuclear translocation of phosphorylated ERK1/2. Blocking of ERK1/2 signalling with the specific inhibitor PD98059 reversed SDF-1-mediated inhibition of apoptosis (AI of 1.65+/-0.34 [SDF-1] versus 3.50+/-0.5 [SDF-1 + PD98059]; P<0.05), suggesting that SDF-1 acts through this pathway as a trophoblast survival factor. These results indicate that SDF-1/CXCR4 signalling stimulates anti-apoptotic pathways in cultured trophoblasts. This chemotactic ligand/receptor system may promote trophoblast survival during pregnancy. Alterations in SDF-1 and/or CXCR4 expression or function may be associated with specific pregnancy disorders.
Collapse
Affiliation(s)
- Mambarath A Jaleel
- Department of Pediatrics, Division of Neonatology, Women & Infants' Hospital of Rhode Island and Brown Medical School, Providence, RI 02905, USA.
| | | | | | | | | |
Collapse
|
44
|
Abstract
Mast cells have mainly been studied in the setting of allergic disease, but the importance of mast cells for host defence against several pathogens has now been well established. The location of mast cells, which are found closely associated with blood vessels, allows them to have a crucial sentinel role in host defence. The mast cell has a unique 'armamentarium' of receptor systems and mediators for responding to pathogen-associated signals. Studies of this intriguing immune-effector cell provide important insights into the complex mechanisms by which appropriate innate and acquired immune responses are initiated.
Collapse
Affiliation(s)
- Jean S Marshall
- Dalhousie Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Sir Charles Tupper Medical Building, College Street, Halifax, Nova Scotia B3H 1X5, Canada.
| |
Collapse
|
45
|
Hu W, Xu L, Pan J, Zheng X, Chen Z. Effect of cerebral ischemia on brain mast cells in rats. Brain Res 2004; 1019:275-80. [PMID: 15306264 DOI: 10.1016/j.brainres.2004.05.109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2004] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to investigate the effect of transient cerebral ischemia on brain mast cells in rats. The mast cells decreased significantly at 1 h, 2 h, 4 h and 7 days after ischemia. At 1 day following ischemia, the increase of the number of mast cells in the middle aspect of the thalamus (bregma -2.80 to -3.16 mm) was twice as that of other regions in the thalamus. In addition, histamine contents increased significantly in the thalamus and striatum after ischemia. These results indicate that brain mast cells participate in the pathological process after ischemia.
Collapse
Affiliation(s)
- Weiwei Hu
- Department of Pharmacology, School of Medicine, Zhejiang University, 353, Yan-An Road, Hangzhou, Zhejiang 310031, PR China
| | | | | | | | | |
Collapse
|
46
|
Brill A, Baram D, Sela U, Salamon P, Mekori YA, Hershkoviz R. Induction of mast cell interactions with blood vessel wall components by direct contact with intact T cells or T cell membranes in vitro. Clin Exp Allergy 2004; 34:1725-31. [PMID: 15544597 DOI: 10.1111/j.1365-2222.2004.02093.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mast cells exert profound pleiotropic effects on immune cell reactions at inflammatory sites, where they are most likely influenced not only by the extracellular matrix (ECM) and inflammatory mediators but also by the proximity of activated T lymphocytes. We recently reported that activated T cells induce mast cell degranulation with the release of TNF-alpha, and that this activation pathway is mediated by lymphocyte function-associated antigen-1 (LFA-1)/intercellular adhesion molecule-1 (ICAM-1) binding. OBJECTIVE To determine how this contact between the two cell types can modulate mast cell behaviour in an inflammatory milieu by examining the adhesion of mast cells to endothelial cells and ECM ligands in an integrin-dependent manner. METHODS Human mast cells (HMC-1) were co-cultured with resting or activated T cells followed by testing their adhesion to endothelial cell and ECM ligands, stromal derived factor-1alpha (SDF-1alpha)-induced migration, and western blotting. RESULTS Co-culturing HMC-1 with activated, but not with resting T cells resulted in marked stimulation of mast cell adhesion to vascular cell adhesion molecule-1 and ICAM-1 in a very late antigen-4- and LFA-1-dependent fashion. In addition, activated T cells or T cell membranes promoted HMC-1 adhesion to fibronectin (FN) and laminin. This effect was accompanied by the phosphorylation of extracellular regulated kinase and p38, but not of c-Jun N-terminal kinase. Importantly, the adhesive property of mast cells depended exclusively on the direct contact between the two cell types, since neither supernatants from activated T cells nor separation of the two cell populations with a porous membrane affected mast cell adhesion to FN. Furthermore, similar results were obtained when mast cells were incubated with purified membranes from activated T cells. These results suggest that, in addition to stimulating mast cell degranulation, the proximity of activated T lymphocytes to mast cells can mediate the adhesion of mast cell precursors to the endothelial ligands and ECM. Activated T cells also stimulated SDF-1alpha-induced mast cell migration. CONCLUSION This symbiotic relationship between the two types of immune cells may serve to direct mast cells to specific sites of inflammation where their effector functions are required.
Collapse
Affiliation(s)
- A Brill
- Hematology Department, Hadassah Medical Center, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
47
|
Dahl C, Hoffmann HJ, Saito H, Schiøtz PO. Human mast cells express receptors for IL-3, IL-5 and GM-CSF; a partial map of receptors on human mast cells cultured in vitro. Allergy 2004; 59:1087-96. [PMID: 15355468 DOI: 10.1111/j.1398-9995.2004.00606.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mast cells have long been recognized as the principal cell type that initiates the inflammatory response characteristic of acute allergic type 1 reactions. Our goal has been to further characterize maturation of progenitors to mast cells. METHODS Mast cells were cultured from human cord blood derived CD133(+) progenitors. Mast cell function was tested using histamine release. During differentiation mast cells surface marker expression was monitored by flow cytometry. RESULTS CD133(+) progenitors expressed the early haematopoietic and myeloid lineage markers CD34, CD117, CD13 and CD33. Mature mast cells expressed CD117, CD13 and CD33, and expression of the high affinity immunoglobulin E receptor FcepsilonRI increased during culture. Cytokine receptors interleukin (IL)-5R, IL-3R, granulocyte-macrophage-colony stimulating factor (GM-CSF)R and IL-18R were expressed at high levels during maturation. Chemokine receptors CXCR4 and CXCR2 were highly expressed on both newly purified CD133(+) cells and mature cells. CONCLUSION Human mast cells can be cultured from a CD34(+)/CD117(+)/CD13(+)/CD33(+) progenitor cell population in cord blood that is tryptase and chymase negative. Developing and mature mast cells express a wide range of chemokine and cytokine receptors. We found high levels of expression of CD123, IL-5R and GM-CSF receptors, also found on eosinophils and basophils, and high levels of expression of the receptor for the inflammatory cytokine IL-18.
Collapse
MESH Headings
- AC133 Antigen
- Antigens, CD/immunology
- Cells, Cultured
- Fetal Blood
- Glycoproteins/immunology
- Humans
- Mast Cells/immunology
- Peptides/immunology
- Receptors, Cytokine/biosynthesis
- Receptors, Cytokine/immunology
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin/immunology
- Receptors, Interleukin-3/biosynthesis
- Receptors, Interleukin-3/immunology
- Receptors, Interleukin-5
- Stem Cells/immunology
Collapse
Affiliation(s)
- C Dahl
- Department of Paediatrics, Aarhus University Hospital, Aarhus N, Denmark
| | | | | | | |
Collapse
|
48
|
Dabak DO, Aydin G, Ozguner M. Dynamics of Mast Cells in Lymph Node Following Antigenic Stimulation. Anat Histol Embryol 2004; 33:5-10. [PMID: 15027955 DOI: 10.1111/j.1439-0264.2004.00500.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamics of mast cells in rat cervical lymph nodes were examined using conventional histological techniques after injection of Salmonella paratyphi B-H antigen. There was no significant change in the number of mast cells at sixth hour and on the first day of stimulation compared with the controls. The number of mast cells was increased in all lymph node compartments on the second day of stimulation, which continued in the following 3 days. On the eighth day of stimulation, although the mast cell number decreased in the subcapsular area, it was still high in the paracortical area and medullary sinuses of the lymph nodes. On the second day of stimulation, the mast cell number was apparently increased in the subcapsular area than those of the other compartments. In the following days of stimulation, the highest number of mast cells was seen in the medullary sinuses. The highest paracortical mast cell number was determined on the third day of stimulation and some mast cells were observed near the high endothelial venules (HEVs). The changes of mast cell number among the lymph node compartments after antigenic stimulation support the hypothesis that the migration of mast cells occurred. This migration pattern indicates that mast cells enter the lymph node via afferent lymphatics and migrate to the lymph node compartments following antigenic stimulation.
Collapse
Affiliation(s)
- D O Dabak
- Department of Histology and Embryology, Firat University, School of Medicine, 23119, Elazig, Turkey.
| | | | | |
Collapse
|
49
|
Kremer KN, Humphreys TD, Kumar A, Qian NX, Hedin KE. Distinct role of ZAP-70 and Src homology 2 domain-containing leukocyte protein of 76 kDa in the prolonged activation of extracellular signal-regulated protein kinase by the stromal cell-derived factor-1 alpha/CXCL12 chemokine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:360-7. [PMID: 12817019 DOI: 10.4049/jimmunol.171.1.360] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stimulation of T lymphocytes with the ligand for the CXCR4 chemokine receptor stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12), results in prolonged activation of the extracellular signal-regulated kinases (ERK) ERK1 and ERK2. Because SDF-1alpha is unique among several chemokines in its ability to stimulate prolonged ERK activation, this pathway is thought to mediate special functions of SDF-1alpha that are not shared with other chemokines. However, the molecular mechanisms of this response are poorly understood. In this study we show that SDF-1alpha stimulation of prolonged ERK activation in Jurkat T cells requires both the ZAP-70 tyrosine kinase and the Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76) scaffold protein. This pathway involves ZAP-70-dependent tyrosine phosphorylation of SLP-76 at one or more of its tyrosines, 113, 128, and 145. Because TCR activates ERK via SLP-76-mediated activation of the linker of activated T cells (LAT) scaffold protein, we examined the role of LAT in SDF-1alpha-mediated ERK activation. However, neither the SLP-76 proline-rich domain that links to GADS and LAT, nor LAT, itself are required for SDF-1alpha to stimulate SLP-76 tyrosine phosphorylation or to activate ERK. Together, our results describe the distinct mechanism by which SDF-1alpha stimulates prolonged ERK activation in T cells and indicate that this pathway is specific for cells expressing both ZAP-70 and SLP-76.
Collapse
Affiliation(s)
- Kimberly N Kremer
- Department of Surgery, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
50
|
Raqib R, Moly PK, Sarker P, Qadri F, Alam NH, Mathan M, Andersson J. Persistence of mucosal mast cells and eosinophils in Shigella-infected children. Infect Immun 2003; 71:2684-92. [PMID: 12704143 PMCID: PMC153256 DOI: 10.1128/iai.71.5.2684-2692.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cells of the innate immune system and their mediators were studied at the single-cell level in the rectums of pediatric and adult patients with Shigella infection to better understand why children are at higher risk for severe infection. Adult patients had increased infiltration of mucosal mast cells (MMC) at the acute stage (3 to 5 days after the onset of diarrhea) and eosinophils in early convalescence (14 to 16 days after onset). Increased expression of stem cell factor and prostaglandin H synthase-1 (PGHS-1) was associated with increased tryptase-K(i)67-double-positive MMC in the acute stage and increased apoptosis of MMC, which led to a rapid decline in early convalescence. The eosinophils demonstrated increased expression of major basic protein (MBP), eotaxin, and CCR3, as well as increased necrotic death. The neutrophils showed enhanced alpha-defensin and lactoferrin expression in the acute phase. In contrast to adults, the pediatric patients demonstrated delayed accumulation of mast cells and eosinophils, while alpha-defensin expression persisted during convalescence. In contrast, neutrophil counts and lactoferrin expression were reduced in children compared to adults. The results suggest that children with shigellosis have a persistent activation of the innate immune response in the convalescent phase, indicating delayed elimination of Shigella antigens compared to adults.
Collapse
Affiliation(s)
- Rubhana Raqib
- International Centre for Diarrhoeal Diseases Research, Bangladesh, Dhaka, Bangladesh.
| | | | | | | | | | | | | |
Collapse
|