1
|
Mutchler AL, Haynes AP, Saleem M, Jamison S, Khan MM, Ertuglu L, Kirabo A. Epigenetic Regulation of Innate and Adaptive Immune Cells in Salt-Sensitive Hypertension. Circ Res 2025; 136:232-254. [PMID: 39819017 PMCID: PMC11750173 DOI: 10.1161/circresaha.124.325439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Access to excess dietary sodium has heightened the risk of cardiovascular diseases, particularly affecting individuals with salt sensitivity of blood pressure. Our research indicates that innate antigen-presenting immune cells contribute to rapid blood pressure increases in response to excess sodium intake. Emerging evidence suggests that epigenetic reprogramming, with subsequent transcriptional and metabolic changes, of innate immune cells allows these cells to have a sustained response to repetitive stimuli. Epigenetic mechanisms also steer T-cell differentiation in response to innate immune signaling. Immune cells respond to environmental and nutritional cues, such as salt, promoting epigenetic regulation changes. This article aims to identify and discuss the role of epigenetic mechanisms in the immune system contributing to salt-sensitive hypertension.
Collapse
Affiliation(s)
- Ashley L. Mutchler
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandria Porcia Haynes
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Saleem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Mohd Mabood Khan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lale Ertuglu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37212-8802, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health
| |
Collapse
|
2
|
Ashayeripanah M, Villadangos JA. Protocol to study ex vivo T cell priming by conventional dendritic cells from the mouse spleen. STAR Protoc 2024; 5:103382. [PMID: 39666462 PMCID: PMC11697547 DOI: 10.1016/j.xpro.2024.103382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/22/2024] [Accepted: 09/20/2024] [Indexed: 12/14/2024] Open
Abstract
Conventional dendritic cells (cDC) are professional antigen-presenting cells able to prime naive T cells. Here, we present a protocol for ex vivo T cell priming by murine splenic cDC. We describe the steps of injecting fluorescently labeled antigens to mice, purifying antigen-bearing cDC, and priming antigen-specific T cells ex vivo. This protocol is suitable for studying the T cell priming function of cDC in various murine models and helps factor in the effect of the microenvironment on cDC ability to uptake and process antigens. For complete details on the use and execution of this protocol, please refer to Ashayeripanah et al.1.
Collapse
Affiliation(s)
- Mitra Ashayeripanah
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
3
|
Nelson RB, Rose KN, Menniti FS, Zorn SH. Hiding in plain sight: Do recruited dendritic cells surround amyloid plaques in Alzheimer's disease? Biochem Pharmacol 2024; 228:116258. [PMID: 38705533 DOI: 10.1016/j.bcp.2024.116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Over the past decade, human genome-wide association and expression studies have strongly implicated dysregulation of the innate immune system in the pathogenesis of Alzheimer's disease (AD). Single cell mRNA sequencing studies have identified innate immune cell subtypes that are minimally present in normal healthy brain, but whose numbers greatly increase in association with AD pathology. These AD pathology-associated immune cells are putatively the locus for the immune-related AD risk. While the prevailing view is that these immune cells arise from transformation of resident brain microglia, studies across several decades and using multiple techniques and strategies suggest instead that the pathology-associated immune cells are bone-marrow derived hematopoietic cells that are recruited into brain. We critically review this translational literature, emphasizing the strengths and limitations of techniques used to address recruitment and the experimental designs employed. We conclude that the aggregate evidence points toward recruitment into brain of innate immune cells of the myeloid dendritic cell lineage. Recruitment of dendritic cells and their role in AD pathogenesis has broad implications for our understanding of the etiology and pathobiology of AD that impact the strategies to develop new, immune system-targeted therapeutics for this devastating disease.
Collapse
Affiliation(s)
- Robert B Nelson
- MindImmune Therapeutics, Inc., Kingston, RI; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI.
| | - Kenneth N Rose
- MindImmune Therapeutics, Inc., Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI
| | - Frank S Menniti
- MindImmune Therapeutics, Inc., Kingston, RI; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI
| | - Stevin H Zorn
- MindImmune Therapeutics, Inc., Kingston, RI; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI
| |
Collapse
|
4
|
Shen X, Li X, Wu T, Guo T, Lv J, He Z, Luo M, Zhu X, Tian Y, Lai W, Dong C, Hu X, Wu L. TRIM33 plays a critical role in regulating dendritic cell differentiation and homeostasis by modulating Irf8 and Bcl2l11 transcription. Cell Mol Immunol 2024; 21:752-769. [PMID: 38822080 PMCID: PMC11214632 DOI: 10.1038/s41423-024-01179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
The development of distinct dendritic cell (DC) subsets, namely, plasmacytoid DCs (pDCs) and conventional DC subsets (cDC1s and cDC2s), is controlled by specific transcription factors. IRF8 is essential for the fate specification of cDC1s. However, how the expression of Irf8 is regulated is not fully understood. In this study, we identified TRIM33 as a critical regulator of DC differentiation and maintenance. TRIM33 deletion in Trim33fl/fl Cre-ERT2 mice significantly impaired DC differentiation from hematopoietic progenitors at different developmental stages. TRIM33 deficiency downregulated the expression of multiple genes associated with DC differentiation in these progenitors. TRIM33 promoted the transcription of Irf8 to facilitate the differentiation of cDC1s by maintaining adequate CDK9 and Ser2 phosphorylated RNA polymerase II (S2 Pol II) levels at Irf8 gene sites. Moreover, TRIM33 prevented the apoptosis of DCs and progenitors by directly suppressing the PU.1-mediated transcription of Bcl2l11, thereby maintaining DC homeostasis. Taken together, our findings identified TRIM33 as a novel and crucial regulator of DC differentiation and maintenance through the modulation of Irf8 and Bcl2l11 expression. The finding that TRIM33 functions as a critical regulator of both DC differentiation and survival provides potential benefits for devising DC-based immune interventions and therapies.
Collapse
Affiliation(s)
- Xiangyi Shen
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Xiaoguang Li
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Tao Wu
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Tingting Guo
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Jiaoyan Lv
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Zhimin He
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Maocai Luo
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Xinyi Zhu
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yujie Tian
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Wenlong Lai
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Chen Dong
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, 100084, Beijing, China
- Westlake University School of Medicine, Hangzhou, 310024, China
| | - Xiaoyu Hu
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, 100084, Beijing, China
| | - Li Wu
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China.
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, 100084, Beijing, China.
| |
Collapse
|
5
|
Ashayeripanah M, Vega-Ramos J, Fernandez-Ruiz D, Valikhani S, Lun ATL, White JT, Young LJ, Yaftiyan A, Zhan Y, Wakim L, Caminschi I, Lahoud MH, Lew AM, Shortman K, Smyth GK, Heath WR, Mintern JD, Roquilly A, Villadangos JA. Systemic inflammatory response syndrome triggered by blood-borne pathogens induces prolonged dendritic cell paralysis and immunosuppression. Cell Rep 2024; 43:113754. [PMID: 38354086 DOI: 10.1016/j.celrep.2024.113754] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Blood-borne pathogens can cause systemic inflammatory response syndrome (SIRS) followed by protracted, potentially lethal immunosuppression. The mechanisms responsible for impaired immunity post-SIRS remain unclear. We show that SIRS triggered by pathogen mimics or malaria infection leads to functional paralysis of conventional dendritic cells (cDCs). Paralysis affects several generations of cDCs and impairs immunity for 3-4 weeks. Paralyzed cDCs display distinct transcriptomic and phenotypic signatures and show impaired capacity to capture and present antigens in vivo. They also display altered cytokine production patterns upon stimulation. The paralysis program is not initiated in the bone marrow but during final cDC differentiation in peripheral tissues under the influence of local secondary signals that persist after resolution of SIRS. Vaccination with monoclonal antibodies that target cDC receptors or blockade of transforming growth factor β partially overcomes paralysis and immunosuppression. This work provides insights into the mechanisms of paralysis and describes strategies to restore immunocompetence post-SIRS.
Collapse
Affiliation(s)
- Mitra Ashayeripanah
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia
| | - Javier Vega-Ramos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia; School of Biomedical Sciences, Faculty of Medicine & Health and the UNSW RNA Institute, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Shirin Valikhani
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia
| | - Aaron T L Lun
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jason T White
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia
| | - Louise J Young
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Atefeh Yaftiyan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia
| | - Yifan Zhan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Linda Wakim
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia
| | - Irina Caminschi
- Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Mireille H Lahoud
- Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Andrew M Lew
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ken Shortman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - William R Heath
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia
| | - Justine D Mintern
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Antoine Roquilly
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia; Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000 Nantes, France; CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, 44000 Nantes, France.
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3000, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
6
|
Adachi R, Tamura T. Plasmodium Infection-Cure Cycles Increase the Capacity of Phagocytosis in Conventional Dendritic Cells. Pathogens 2023; 12:1262. [PMID: 37887778 PMCID: PMC10609740 DOI: 10.3390/pathogens12101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Malaria stands as one of the most pervasive human infectious diseases globally and represents a prominent cause of mortality. Immunity against clinical malaria disease is achieved through multiple infection and treatment cycles, culminating in a substantial reduction in parasite burden. To investigate this phenomenon, we established a murine model involving repeated infection-cure cycles, whereby mice were infected with the lethal rodent malarial parasite Plasmodium berghei ANKA and subsequently treated with the anti-malarial drug pyrimethamine. Our earlier study revealed a significant decrease in the capacity of conventional dendritic cells (cDCs) to produce cytokines upon stimulation in infection-cured mice. In the present study, we aimed to further elucidate the modulation of cDC functionality during repeated infection-cure cycles by examining their phagocytic capacity. Administering fluorescent beads to mice resulted in no significant difference in the total number of bead-positive cells within the spleens of both uninfected and 3-cure (three cycles of infection-cure) mice. However, the proportion of the CD11c+F4/80- population within bead-positive cells was notably higher in 3-cure mice compared to uninfected mice. Subsequent in vitro analysis of bead phagocytosis by purified CD11c+cDCs revealed that the cDC2 subset from 3-cure mice exhibited significantly enhanced phagocytic capacity in comparison to their uninfected counterparts. These findings underscore the substantial impact of repeated infection-cure cycles on various facets of cDC function, potentially influencing the trajectory of immune responses against subsequent malaria infections.
Collapse
Affiliation(s)
| | - Takahiko Tamura
- School of Pharmacy, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
7
|
Abascal J, Oh MS, Liclican EL, Dubinett SM, Salehi-Rad R, Liu B. Dendritic Cell Vaccination in Non-Small Cell Lung Cancer: Remodeling the Tumor Immune Microenvironment. Cells 2023; 12:2404. [PMID: 37830618 PMCID: PMC10571973 DOI: 10.3390/cells12192404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) remains one of the leading causes of death worldwide. While NSCLCs possess antigens that can potentially elicit T cell responses, defective tumor antigen presentation and T cell activation hinder host anti-tumor immune responses. The NSCLC tumor microenvironment (TME) is composed of cellular and soluble mediators that can promote or combat tumor growth. The composition of the TME plays a critical role in promoting tumorigenesis and dictating anti-tumor immune responses to immunotherapy. Dendritic cells (DCs) are critical immune cells that activate anti-tumor T cell responses and sustain effector responses. DC vaccination is a promising cellular immunotherapy that has the potential to facilitate anti-tumor immune responses and transform the composition of the NSCLC TME via tumor antigen presentation and cell-cell communication. Here, we will review the features of the NSCLC TME with an emphasis on the immune cell phenotypes that directly interact with DCs. Additionally, we will summarize the major preclinical and clinical approaches for DC vaccine generation and examine how effective DC vaccination can transform the NSCLC TME toward a state of sustained anti-tumor immune signaling.
Collapse
Affiliation(s)
- Jensen Abascal
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Michael S. Oh
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Elvira L. Liclican
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Steven M. Dubinett
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095-1690, USA
| | - Ramin Salehi-Rad
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Bin Liu
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| |
Collapse
|
8
|
Schluck M, Weiden J, Verdoes M, Figdor CG. Insights in the host response towards biomaterial-based scaffolds for cancer therapy. Front Bioeng Biotechnol 2023; 11:1149943. [PMID: 37342507 PMCID: PMC10277494 DOI: 10.3389/fbioe.2023.1149943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Immunotherapeutic strategies have shown promising results in the treatment of cancer. However, not all patients respond, and treatments can have severe side-effects. Adoptive cell therapy (ACT) has shown remarkable therapeutic efficacy across different leukaemia and lymphoma types. But the treatment of solid tumours remains a challenge due to limited persistence and tumour infiltration. We believe that biomaterial-based scaffolds are promising new tools and may address several of the challenges associated with cancer vaccination and ACT. In particular, biomaterial-based scaffold implants allow for controlled delivery of activating signals and/or functional T cells at specific sites. One of the main challenges for their application forms the host response against these scaffolds, which includes unwanted myeloid cell infiltration and the formation of a fibrotic capsule around the scaffold, thereby limiting cell traffic. In this review we provide an overview of several of the biomaterial-based scaffolds designed for cancer therapy to date. We will discuss the host responses observed and we will highlight design parameters that influence this response and their potential impact on therapeutic outcome.
Collapse
Affiliation(s)
- Marjolein Schluck
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Oncode Institute, Nijmegen, Netherlands
- Institute for Chemical Immunology, Nijmegen, Netherlands
| | - Jorieke Weiden
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Oncode Institute, Nijmegen, Netherlands
- Institute for Chemical Immunology, Nijmegen, Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Institute for Chemical Immunology, Nijmegen, Netherlands
| | - Carl G. Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Oncode Institute, Nijmegen, Netherlands
- Institute for Chemical Immunology, Nijmegen, Netherlands
| |
Collapse
|
9
|
Ohara RA, Murphy KM. The evolving biology of cross-presentation. Semin Immunol 2023; 66:101711. [PMID: 36645993 PMCID: PMC10931539 DOI: 10.1016/j.smim.2023.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/16/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Cross-priming was first recognized in the context of in vivo cytotoxic T lymphocyte (CTL) responses generated against minor histocompatibility antigens induced by immunization with lymphoid cells. Even though the basis for T cell antigen recognition was still largely unclear at that time, these early studies recognized the implication that such minor histocompatibility antigens were derived from the immunizing cells and were obtained exogenously by the host's antigen presenting cells (APCs) that directly prime the CTL response. As antigen recognition by the T cell receptor became understood to involve peptides derived from antigens processed by the APCs and presented by major histocompatibility molecules, the "cross-priming" phenomenon was subsequently recast as "cross-presentation" and the scope considered for examining this process gradually broadened to include many different forms of antigens, including soluble proteins, and different types of APCs that may not be involved in in vivo CTL priming. Many studies of cross-presentation have relied on in vitro cell models that were recently found to differ from in vivo APCs in particular mechanistic details. A recent trend has focused on the APCs and pathways of cross-presentation used in vivo, especially the type 1 dendritic cells. Current efforts are also being directed towards validating the in vivo role of various putative pathways and gene candidates in cross-presentation garnered from various in vitro studies and to determine the relative contributions they make to CTL responses across various forms of antigens and immunologic settings. Thus, cross-presentation appears to be carried by different pathways in various types of cells for different forms under different physiologic settings, which remain to be evaluated in an in vivo physiologic setting.
Collapse
Affiliation(s)
- Ray A Ohara
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Backer RA, Probst HC, Clausen BE. Classical DC2 subsets and monocyte-derived DC: Delineating the developmental and functional relationship. Eur J Immunol 2023; 53:e2149548. [PMID: 36642930 DOI: 10.1002/eji.202149548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/08/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023]
Abstract
To specifically tailor immune responses to a given pathogenic threat, dendritic cells (DC) are highly heterogeneous and comprise many specialized subtypes, including conventional DC (cDC) and monocyte-derived DC (MoDC), each with distinct developmental and functional characteristics. However, the functional relationship between cDC and MoDC is not fully understood, as the overlapping phenotypes of certain type 2 cDC (cDC2) subsets and MoDC do not allow satisfactory distinction of these cells in the tissue, particularly during inflammation. However, precise cDC2 and MoDC classification is required for studies addressing how these diverse cell types control immune responses and is therefore currently one of the major interests in the field of cDC research. This review will revise murine cDC2 and MoDC biology in the steady state and under inflammatory conditions and discusses the commonalities and differences between ESAMlo cDC2, inflammatory cDC2, and MoDC and their relative contribution to the initiation, propagation, and regulation of immune responses.
Collapse
Affiliation(s)
- Ronald A Backer
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Bourque J, Hawiger D. Life and death of tolerogenic dendritic cells. Trends Immunol 2023; 44:110-118. [PMID: 36599743 PMCID: PMC9892261 DOI: 10.1016/j.it.2022.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/03/2023]
Abstract
In contrast to conventional dendritic cells (cDCs) that are constantly exposed to microbial signals at anatomical barriers, cDCs in systemic lymphoid organs are sheltered from proinflammatory stimulation in the steady state but respond to inflammatory signals by gaining specific immune functions in a process referred to as maturation. Recent findings show that, during maturation, a population of systemic tolerogenic cDCs undergoes an acute tumor necrosis factor α (TNFα)-mediated cell death, resulting in the loss of tolerance-inducing capacity. This tolerogenic cDC population is restored upon return to the homeostatic baseline. We propose that such a dynamic reshaping of cDC populations becomes the foundation of a novel framework for maintaining tolerance at the steady state while being conducive to unhampered initiation of immune responses under proinflammatory conditions.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
12
|
Lellahi SM, Azeem W, Hua Y, Gabriel B, Paulsen Rye K, Reikvam H, Kalland KH. GM-CSF, Flt3-L and IL-4 affect viability and function of conventional dendritic cell types 1 and 2. Front Immunol 2023; 13:1058963. [PMID: 36713392 PMCID: PMC9880532 DOI: 10.3389/fimmu.2022.1058963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Conventional type 1 dendritic cells (cDC1) and conventional type 2 dendritic cells (cDC2) have attracted increasing attention as alternatives to monocyte-derived dendritic cells (moDCs) in cancer immunotherapy. Use of cDCs for therapy has been hindered by their low numbers in peripheral blood. In the present study, we found that extensive spontaneous apoptosis and cDC death in culture within 24hrs represent an additional challenge. Different media conditions that maintain cDC viability and function were investigated. CD141+ cDC1 and CD1c+ cDC2 were isolated from healthy blood donor buffy coats. Low viabilities were found with CellGenix DC, RPMI-1640, and X-VIVO 15 standard culture media and with several supplements at 24hrs and 48hrs. Among multiple factors it was found that GM-CSF improved both cDC1 and cDC2 viability, whereas Flt3-L and IL-4 only increased viability of cDC1 and cDC2, respectively. Combinations of these three cytokines improved viability of both cDCs further, both at 24hrs and 48hrs time points. Although these cytokines have been extensively investigated for their role in myeloid cell differentiation, and are also used clinically, their effects on mature cDCs remain incompletely known, in particular effects on pro-inflammatory or tolerogenic cDC features. HLA-DR, CD80, CD83, CD86, PD-L1 and PD-L2 cDC membrane expressions were relatively little affected by GM-CSF, IL-4 and Flt3-L cytokine supplements compared to the strong induction following Toll-like receptor (TLR) stimulation for 24hrs. With minor exceptions the three cytokines appeared to be permissive to the TLR-induced marker expression. Allogeneic mixed leukocyte reaction showed that the cytokines promoted T-cell proliferation and revealed a potential to boost both Th1 and Th2 polarizing cytokines. GM-CSF and Flt3-L and their combination improved the capability of cDC1 for dextran uptake, while in cDC2, dextran capture was improved by GM-CSF. The data suggest that GM-CSF, IL-4 and Flt3-L and combinations might be beneficial for DC viability and function in vitro. Limited viability of cDCs could be a confounding variable experimentally and in immunotherapy.
Collapse
Affiliation(s)
- Seyed Mohammad Lellahi
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Waqas Azeem
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Helse Bergen, Bergen, Norway
| | - Yaping Hua
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Benjamin Gabriel
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karl-Henning Kalland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Helse Bergen, Bergen, Norway
| |
Collapse
|
13
|
Wang S, Chen Y, Ling Z, Li J, Hu J, He F, Chen Q. The role of dendritic cells in the immunomodulation to implanted biomaterials. Int J Oral Sci 2022; 14:52. [PMCID: PMC9636170 DOI: 10.1038/s41368-022-00203-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Considering the substantial role played by dendritic cells (DCs) in the immune system to bridge innate and adaptive immunity, studies on DC-mediated immunity toward biomaterials principally center on their adjuvant effects in facilitating the adaptive immunity of codelivered antigens. However, the effect of the intrinsic properties of biomaterials on dendritic cells has not been clarified. Recently, researchers have begun to investigate and found that biomaterials that are nonadjuvant could also regulate the immune function of DCs and thus affect subsequent tissue regeneration. In the case of proteins adsorbed onto biomaterial surfaces, their intrinsic properties can direct their orientation and conformation, forming “biomaterial-associated molecular patterns (BAMPs)”. Thus, in this review, we focused on the intrinsic physiochemical properties of biomaterials in the absence of antigens that affect DC immune function and summarized the underlying signaling pathways. Moreover, we preliminarily clarified the specific composition of BAMPs and the interplay between some key molecules and DCs, such as heat shock proteins (HSPs) and high mobility group box 1 (HMGB1). This review provides a new direction for future biomaterial design, through which modulation of host immune responses is applicable to tissue engineering and immunotherapy.
Collapse
Affiliation(s)
- Siyuan Wang
- grid.13402.340000 0004 1759 700XStomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Yanqi Chen
- grid.13402.340000 0004 1759 700XStomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Zhaoting Ling
- grid.13402.340000 0004 1759 700XStomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Jia Li
- grid.13402.340000 0004 1759 700XStomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Jun Hu
- grid.13402.340000 0004 1759 700XStomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Fuming He
- grid.13402.340000 0004 1759 700XStomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Qianming Chen
- grid.13402.340000 0004 1759 700XStomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| |
Collapse
|
14
|
Antoni AC, Pylaeva E, Budeus B, Jablonska J, Klein-Hitpaß L, Dudda M, Flohé SB. TLR2-induced CD8+ T-cell deactivation shapes dendritic cell differentiation in the bone marrow during sepsis. Front Immunol 2022; 13:945409. [PMID: 36148245 PMCID: PMC9488929 DOI: 10.3389/fimmu.2022.945409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Sepsis is associated with profound immune dysregulation that increases the risk for life-threatening secondary infections: Dendritic cells (DCs) undergo functional reprogramming due to yet unknown changes during differentiation in the bone marrow (BM). In parallel, lymphopenia and exhaustion of T lymphocytes interfere with antigen-specific adaptive immunity. We hypothesized that there exists a link between T cells and the modulation of DC differentiation in the BM during murine polymicrobial sepsis. Sepsis was induced by cecal ligation and puncture (CLP), a model for human bacterial sepsis. At different time points after CLP, the BM and spleen were analyzed in terms of T-cell subpopulations, activation, and Interferon (IFN)-γ synthesis as well as the number of pre-DCs. BM-derived DCs were generated in vitro. We observed that naïve and virtual memory CD8+ T cells, but not CD4+ T cells, were activated in an antigen-independent manner and accumulated in the BM early after CLP, whereas lymphopenia was evident in the spleen. The number of pre-DCs strongly declined during acute sepsis in the BM and almost recovered by day 4 after CLP, which required the presence of CD8+ T cells. Adoptive transfer experiments and in vitro studies with purified T cells revealed that Toll-like receptor 2 (TLR2) signaling in CD8+ T cells suppressed their capacity to secrete IFN-γ and was sufficient to change the transcriptome of the BM during sepsis. Moreover, the diminished IFN-γ production of CD8+ T cells favored the differentiation of DCs with increased production of the immune-activating cytokine Interleukin (IL)-12. These data identify a novel role of CD8+ T cells in the BM during sepsis as they sense TLR2 ligands and control the number and function of de novo differentiating DCs.
Collapse
Affiliation(s)
- Anne-Charlotte Antoni
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bettina Budeus
- Institute of Cell Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ludger Klein-Hitpaß
- Institute of Cell Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marcel Dudda
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stefanie B. Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- *Correspondence: Stefanie B. Flohé,
| |
Collapse
|
15
|
Iberg CA, Bourque J, Fallahee I, Son S, Hawiger D. TNF-α sculpts a maturation process in vivo by pruning tolerogenic dendritic cells. Cell Rep 2022; 39:110657. [PMID: 35417681 PMCID: PMC9113652 DOI: 10.1016/j.celrep.2022.110657] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
It remains unclear how the pro-immunogenic maturation of conventional dendritic cells (cDCs) abrogates their tolerogenic functions. Here, we report that the loss of tolerogenic functions depends on the rapid death of BTLAhi cDC1s, which, in the steady state, are present in systemic peripheral lymphoid organs and promote tolerance that limits subsequent immune responses. A canonical inducer of maturation, lipopolysaccharide (LPS), initiates a burst of tumor necrosis factor alpha (TNF-α) production and the resultant acute death of BTLAhi cDC1s mediated by tumor necrosis factor receptor 1. The ablation of these individual tolerogenic cDCs is amplified by TNF-α produced by neighboring cells. This loss of tolerogenic cDCs is transient, accentuating the restoration of homeostatic conditions through biological turnover of cDCs in vivo. Therefore, our results reveal that the abrogation of tolerogenic functions during an acute immunogenic maturation depends on an ablation of the tolerogenic cDC population, resulting in a dynamic remodeling of the cDC functional landscape.
Collapse
Affiliation(s)
- Courtney A Iberg
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ian Fallahee
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Sungho Son
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
16
|
Roquilly A, Mintern JD, Villadangos JA. Spatiotemporal Adaptations of Macrophage and Dendritic Cell Development and Function. Annu Rev Immunol 2022; 40:525-557. [PMID: 35130030 DOI: 10.1146/annurev-immunol-101320-031931] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages and conventional dendritic cells (cDCs) are distributed throughout the body, maintaining tissue homeostasis and tolerance to self and orchestrating innate and adaptive immunity against infection and cancer. As they complement each other, it is important to understand how they cooperate and the mechanisms that integrate their functions. Both are exposed to commensal microbes, pathogens, and other environmental challenges that differ widely among anatomical locations and over time. To adjust to these varying conditions, macrophages and cDCs acquire spatiotemporal adaptations (STAs) at different stages of their life cycle that determine how they respond to infection. The STAs acquired in response to previous infections can result in increased responsiveness to infection, termed training, or in reduced responses, termed paralysis, which in extreme cases can cause immunosuppression. Understanding the developmental stage and location where macrophages and cDCs acquire their STAs, and the molecular and cellular players involved in their induction, may afford opportunities to harness their beneficial outcomes and avoid or reverse their deleterious effects. Here we review our current understanding of macrophage and cDC development, life cycle, function, and STA acquisition before, during, and after infection. We propose a unified framework to explain how these two cell types adjust their activities to changing conditions over space and time to coordinate their immunosurveillance functions. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Antoine Roquilly
- Center for Research in Transplantation and Translational Immunology, INSERM, UMR 1064, CHU Nantes, University of Nantes, Nantes, France
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
17
|
Hodge AL, Baxter AA, Poon IKH. Gift bags from the sentinel cells of the immune system: The diverse role of dendritic cell-derived extracellular vesicles. J Leukoc Biol 2021; 111:903-920. [PMID: 34699107 DOI: 10.1002/jlb.3ru1220-801r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dendritic cells (DCs) are professional APCs of the immune system that continuously sample their environment and function to stimulate an adaptive immune response by initiating Ag-specific immunity or tolerance. Extracellular vesicles (EVs), small membrane-bound structures, are released from DCs and have been discovered to harbor functional peptide-MHC complexes, T cell costimulatory molecules, and other molecules essential for Ag presentation, immune cell regulation, and stimulating immune responses. As such, DC-derived EVs are being explored as potential immunotherapeutic agents. DC-derived EVs have also been implicated to function as a trafficking mechanism of infectious particles aiding viral propagation. This review will explore the unique features that enable DC-derived EVs to regulate immune responses and interact with recipient cells, their roles within Ag-presentation and disease settings, as well as speculating on a potential immunological role of apoptotic DC-derived EVs.
Collapse
Affiliation(s)
- Amy L Hodge
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Amy A Baxter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Jenkins MM, Bachus H, Botta D, Schultz MD, Rosenberg AF, León B, Ballesteros-Tato A. Lung dendritic cells migrate to the spleen to prime long-lived TCF1 hi memory CD8 + T cell precursors after influenza infection. Sci Immunol 2021; 6:eabg6895. [PMID: 34516781 DOI: 10.1126/sciimmunol.abg6895] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Meagan M Jenkins
- Division of Clinical Immunology and Rheumatology Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Holly Bachus
- Division of Clinical Immunology and Rheumatology Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Davide Botta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael D Schultz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander F Rosenberg
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - André Ballesteros-Tato
- Division of Clinical Immunology and Rheumatology Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
19
|
Wimmers F, Donato M, Kuo A, Ashuach T, Gupta S, Li C, Dvorak M, Foecke MH, Chang SE, Hagan T, De Jong SE, Maecker HT, van der Most R, Cheung P, Cortese M, Bosinger SE, Davis M, Rouphael N, Subramaniam S, Yosef N, Utz PJ, Khatri P, Pulendran B. The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell 2021; 184:3915-3935.e21. [PMID: 34174187 PMCID: PMC8316438 DOI: 10.1016/j.cell.2021.05.039] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/15/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Emerging evidence indicates a fundamental role for the epigenome in immunity. Here, we mapped the epigenomic and transcriptional landscape of immunity to influenza vaccination in humans at the single-cell level. Vaccination against seasonal influenza induced persistently diminished H3K27ac in monocytes and myeloid dendritic cells (mDCs), which was associated with impaired cytokine responses to Toll-like receptor stimulation. Single-cell ATAC-seq analysis revealed an epigenomically distinct subcluster of monocytes with reduced chromatin accessibility at AP-1-targeted loci after vaccination. Similar effects were observed in response to vaccination with the AS03-adjuvanted H5N1 pandemic influenza vaccine. However, this vaccine also stimulated persistently increased chromatin accessibility at interferon response factor (IRF) loci in monocytes and mDCs. This was associated with elevated expression of antiviral genes and heightened resistance to the unrelated Zika and Dengue viruses. These results demonstrate that vaccination stimulates persistent epigenomic remodeling of the innate immune system and reveal AS03's potential as an epigenetic adjuvant.
Collapse
Affiliation(s)
- Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michele Donato
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alex Kuo
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tal Ashuach
- Department of Electrical Engineering and Computer Sciences and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shakti Gupta
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive MC 0412, La Jolla, CA 92093, USA
| | - Chunfeng Li
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mai Dvorak
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mariko Hinton Foecke
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah E Chang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Hagan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sanne E De Jong
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Peggie Cheung
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mario Cortese
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven E Bosinger
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mark Davis
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive MC 0412, La Jolla, CA 92093, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Sciences and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Paul J Utz
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Engevik MA, Ruan W, Esparza M, Fultz R, Shi Z, Engevik KA, Engevik AC, Ihekweazu FD, Visuthranukul C, Venable S, Schady DA, Versalovic J. Immunomodulation of dendritic cells by Lactobacillus reuteri surface components and metabolites. Physiol Rep 2021; 9:e14719. [PMID: 33463911 PMCID: PMC7814497 DOI: 10.14814/phy2.14719] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Lactic acid bacteria are commensal members of the gut microbiota and are postulated to promote host health. Secreted factors and cell surface components from Lactobacillus species have been shown to modulate the host immune system. However, the precise role of L. reuteri secreted factors and surface proteins in influencing dendritic cells (DCs) remains uncharacterized. HYPOTHESIS We hypothesize that L. reuteri secreted factors will promote DC maturation, skewing cells toward an anti-inflammatory phenotype. In acute colitis, we speculate that L. reuteri promotes IL-10 and dampens pro-inflammatory cytokine production, thereby improving colitis. METHODS & RESULTS Mouse bone marrow-derived DCs were differentiated into immature dendritic cells (iDCs) via IL-4 and GM-CSF stimulation. iDCs exposed to L. reuteri secreted factors or UV-irradiated bacteria exhibited greater expression of DC maturation markers CD83 and CD86 by flow cytometry. Additionally, L. reuteri stimulated DCs exhibited phenotypic maturation as denoted by cytokine production, including anti-inflammatory IL-10. Using mouse colonic organoids, we found that the microinjection of L. reuteri secreted metabolites and UV-irradiated bacteria was able to promote IL-10 production by DCs, indicating potential epithelial-immune cross-talk. In a TNBS-model of acute colitis, L. reuteri administration significantly improved histological scoring, colonic cytokine mRNA, serum cytokines, and bolstered IL-10 production. CONCLUSIONS Overall these data demonstrate that both L. reuteri secreted factors and its bacterial components are able to promote DC maturation. This work points to the specific role of L. reuteri in modulating intestinal DCs. NEW & NOTEWORTHY Lactobacillus reuteri colonizes the mammalian gastrointestinal tract and exerts beneficial effects on host health. However, the mechanisms behind these effects have not been fully explored. In this article, we identified that L. reuteri ATTC PTA 6475 metabolites and surface components promote dendritic cell maturation and IL-10 production. In acute colitis, we also demonstrate that L. reuteri can promote IL-10 and suppress inflammation. These findings may represent a crucial mechanism for maintaining intestinal immune homeostasis.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Wenly Ruan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - Magdalena Esparza
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Robert Fultz
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Zhongcheng Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Kristen A Engevik
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Amy C Engevik
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Faith D Ihekweazu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - Chonnikant Visuthranukul
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Pediatric Nutrition Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Susan Venable
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Deborah A Schady
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
21
|
Vanderkerken M, Maes B, Vandersarren L, Toussaint W, Deswarte K, Vanheerswynghels M, Pouliot P, Martens L, Van Gassen S, Arthur CM, Kirkling ME, Reizis B, Conrad D, Stowell S, Hammad H, Lambrecht BN. TAO-kinase 3 governs the terminal differentiation of NOTCH2-dependent splenic conventional dendritic cells. Proc Natl Acad Sci U S A 2020; 117:31331-31342. [PMID: 33214146 PMCID: PMC7733863 DOI: 10.1073/pnas.2009847117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antigen-presenting conventional dendritic cells (cDCs) are broadly divided into type 1 and type 2 subsets that further adapt their phenotype and function to perform specialized tasks in the immune system. The precise signals controlling tissue-specific adaptation and differentiation of cDCs are currently poorly understood. We found that mice deficient in the Ste20 kinase Thousand and One Kinase 3 (TAOK3) lacked terminally differentiated ESAM+ CD4+ cDC2s in the spleen and failed to prime CD4+ T cells in response to allogeneic red-blood-cell transfusion. These NOTCH2- and ADAM10-dependent cDC2s were absent selectively in the spleen, but not in the intestine of Taok3-/- and CD11c-cre Taok3fl/fl mice. The loss of splenic ESAM+ cDC2s was cell-intrinsic and could be rescued by conditional overexpression of the constitutively active NOTCH intracellular domain in CD11c-expressing cells. Therefore, TAOK3 controls the terminal differentiation of NOTCH2-dependent splenic cDC2s.
Collapse
Affiliation(s)
- Matthias Vanderkerken
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Bastiaan Maes
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Lana Vandersarren
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Wendy Toussaint
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Philippe Pouliot
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Liesbet Martens
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Sofie Van Gassen
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Connie M Arthur
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA 30322
| | - Margaret E Kirkling
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Daniel Conrad
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298
| | - Sean Stowell
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA 30322
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus Medical Center, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Audiger C, Lesage S. FLT3 Ligand Is Dispensable for the Final Stage of Type 1 Conventional Dendritic Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2020; 205:2117-2127. [PMID: 32887750 DOI: 10.4049/jimmunol.2000742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/10/2020] [Indexed: 12/29/2022]
Abstract
Conventional dendritic cells (cDCs) are comprised of two major subsets, type 1 cDC (cDC1) and type 2 cDC (cDC2). As each cDC subset differentially influences the nature of immune responses, we sought factors that would allow the manipulation of their relative abundance. Notably, cDC1 are less abundant than cDC2 in both lymphoid and nonlymphoid organs. We demonstrate that this bias is already apparent in bone marrow precommitted precursors. However, comparison of five common inbred strains revealed a disparity in precursor-product relationship, in which mice with fewer precursors to cDC1 had more cDC1. This disparity associated with contrasting variations in CD135 (FLT3) expression on cDC subsets. Hence, we characterized the response to FLT3 ligand during cDC1 and cDC2 lineage differentiation and find that although FLT3 ligand is required throughout cDC2 differentiation, it is surprisingly dispensable during late-stage cDC1 differentiation. Overall, we find that tight regulation of FLT3 ligand levels throughout cDC differentiation dictates the cDC1 to cDC2 ratio in lymphoid organs.
Collapse
Affiliation(s)
- Cindy Audiger
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; and Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Sylvie Lesage
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; and Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
23
|
Anselmi G, Helft J, Guermonprez P. Development and function of human dendritic cells in humanized mice models. Mol Immunol 2020; 125:151-161. [PMID: 32688117 DOI: 10.1016/j.molimm.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) are sentinel cells of the immune system arising from hematopoietic stem cells. DCs play a key role in the regulation of both adaptive and innate lymphocyte responses. As such, experimental models enabling a thorough analysis of human DCs development and function are needed. Humanized mice models (termed collectively as HIS mice, or human immune system mice models) provide unique opportunities to model human hematopoiesis and tackle the function of human immune cell types in vivo. Here, we review experimental approaches enabling to recapitulate the ontogeny of DC subsets in HIS mice and discuss studies addressing the biology of human DC subsets implementing HIS mice models.
Collapse
Affiliation(s)
- Giorgio Anselmi
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, United Kingdom
| | - Julie Helft
- PSL Research University, Institut Curie Research Center, Immunity and Cancer department, INSERM U932, Paris, France
| | - Pierre Guermonprez
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, United Kingdom; Université de Paris, Centre for Inflammation Research, CNRS ERL8252, INSERM 1149, Hopital Bichat Claude Bernard, France.
| |
Collapse
|
24
|
Soto JA, Gálvez NMS, Andrade CA, Pacheco GA, Bohmwald K, Berrios RV, Bueno SM, Kalergis AM. The Role of Dendritic Cells During Infections Caused by Highly Prevalent Viruses. Front Immunol 2020; 11:1513. [PMID: 32765522 PMCID: PMC7378533 DOI: 10.3389/fimmu.2020.01513] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are a type of innate immune cells with major relevance in the establishment of an adaptive response, as they are responsible for the activation of lymphocytes. Since their discovery, several reports of their role during infectious diseases have been performed, highlighting their functions and their mechanisms of action. DCs can be categorized into different subsets, and each of these subsets expresses a wide arrange of receptors and molecules that aid them in the clearance of invading pathogens. Interferon (IFN) is a cytokine -a molecule of protein origin- strongly associated with antiviral immune responses. This cytokine is secreted by different cell types and is fundamental in the modulation of both innate and adaptive immune responses against viral infections. Particularly, DCs are one of the most important immune cells that produce IFN, with type I IFNs (α and β) highlighting as the most important, as they are associated with viral clearance. Type I IFN secretion can be induced via different pathways, activated by various components of the virus, such as surface proteins or genetic material. These molecules can trigger the activation of the IFN pathway trough surface receptors, including IFNAR, TLR4, or some intracellular receptors, such as TLR7, TLR9, and TLR3. Here, we discuss various types of dendritic cells found in humans and mice; their contribution to the activation of the antiviral response triggered by the secretion of IFN, through different routes of the induction for this important antiviral cytokine; and as to how DCs are involved in human infections that are considered highly frequent nowadays.
Collapse
Affiliation(s)
- Jorge A Soto
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolas M S Gálvez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gaspar A Pacheco
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roslye V Berrios
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
25
|
Audiger C, Fois A, Thomas AL, Janssen E, Pelletier M, Lesage S. Merocytic Dendritic Cells Compose a Conventional Dendritic Cell Subset with Low Metabolic Activity. THE JOURNAL OF IMMUNOLOGY 2020; 205:121-132. [PMID: 32461238 DOI: 10.4049/jimmunol.1900970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
Conventional dendritic cells (cDCs) are arguably the most potent APCs that induce the activation of naive T cells in response to pathogens. In addition, at steady-state, cDCs help maintain immune tolerance. Two subsets of cDCs have been extensively characterized, namely cDC1 and cDC2, each contributing differently to immune responses. Recently, another dendritic cell (DC) subset, termed merocytic DCs (mcDCs), was defined. In contrast to both cDC1 and cDC2, mcDCs reverse T cell anergy, properties that could be exploited to potentiate cancer treatments. Yet, whether mcDCs represent an unconventional DC or a cDC subset remains to be defined. In this article, we further characterize mcDCs and find that they bear true characteristics of cDC subsets. Indeed, as for cDCs, mcDCs express the cDC-restricted transcription factor Zbtb46 and display very potent APC activity. In addition, mcDC population dynamics parallels that of cDC1 and cDC2 in both reconstitution kinetic studies and parabiotic mice. We next investigated their relatedness to cDC1 and cDC2 and demonstrate that mcDCs are not dependent on cDC1-related Irf8 and Batf3 transcription factors, are dependent on Irf4, a cDC2-specific transcription factor, and express a unique transcriptomic signature. Finally, we find that cDC1, cDC2, and mcDCs all present with different metabolic phenotypes, in which mcDCs exhibit the lowest glucose uptake activity and mcDC survival is the least affected by glycolysis inhibition. Defining the properties of mcDCs in mice may help identify a functionally equivalent subset in humans leading to the development of innovative cancer immunotherapies.
Collapse
Affiliation(s)
- Cindy Audiger
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Adrien Fois
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Alyssa L Thomas
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Edith Janssen
- Janssen Research and Development, Spring House, PA 19477
| | - Martin Pelletier
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada; and.,Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | - Sylvie Lesage
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
26
|
Al Mahmud MR, Ishii K, Bernal-Lozano C, Delgado-Sainz I, Toi M, Akamatsu S, Fukumoto M, Watanabe M, Takeda S, Cortés-Ledesma F, Sasanuma H. TDP2 suppresses genomic instability induced by androgens in the epithelial cells of prostate glands. Genes Cells 2020; 25:450-465. [PMID: 32277721 PMCID: PMC7497232 DOI: 10.1111/gtc.12770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 01/08/2023]
Abstract
Androgens stimulate the proliferation of epithelial cells in the prostate by activating topoisomerase 2 (TOP2) and regulating the transcription of target genes. TOP2 resolves the entanglement of genomic DNA by transiently generating double‐strand breaks (DSBs), where TOP2 homodimers covalently bind to 5′ DSB ends, called TOP2‐DNA cleavage complexes (TOP2ccs). When TOP2 fails to rejoin TOP2ccs generating stalled TOP2ccs, tyrosyl DNA phosphodiesterase‐2 (TDP2) removes 5′ TOP2 adducts from stalled TOP2ccs prior to the ligation of the DSBs by nonhomologous end joining (NHEJ), the dominant DSB repair pathway in G0/G1 phases. We previously showed that estrogens frequently generate stalled TOP2ccs in G0/G1 phases. Here, we show that physiological concentrations of androgens induce several DSBs in individual human prostate cancer cells during G1 phase, and loss of TDP2 causes a five times higher number of androgen‐induced chromosome breaks in mitotic chromosome spreads. Intraperitoneally injected androgens induce several DSBs in individual epithelial cells of the prostate in TDP2‐deficient mice, even at 20 hr postinjection. In conclusion, physiological concentrations of androgens have very strong genotoxicity, most likely by generating stalled TOP2ccs.
Collapse
Affiliation(s)
- Md Rasel Al Mahmud
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichiro Ishii
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Cristina Bernal-Lozano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide, Sevilla, Spain
| | - Irene Delgado-Sainz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide, Sevilla, Spain
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Manabu Fukumoto
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide, Sevilla, Spain.,Topology and DNA Breaks Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. NATURE NANOTECHNOLOGY 2020; 15:313-320. [PMID: 32251383 PMCID: PMC7735425 DOI: 10.1038/s41565-020-0669-6] [Citation(s) in RCA: 1184] [Impact Index Per Article: 236.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/19/2020] [Indexed: 04/14/2023]
Abstract
CRISPR-Cas gene editing and messenger RNA-based protein replacement therapy hold tremendous potential to effectively treat disease-causing mutations with diverse cellular origin. However, it is currently impossible to rationally design nanoparticles that selectively target specific tissues. Here, we report a strategy termed selective organ targeting (SORT) wherein multiple classes of lipid nanoparticles are systematically engineered to exclusively edit extrahepatic tissues via addition of a supplemental SORT molecule. Lung-, spleen- and liver-targeted SORT lipid nanoparticles were designed to selectively edit therapeutically relevant cell types including epithelial cells, endothelial cells, B cells, T cells and hepatocytes. SORT is compatible with multiple gene editing techniques, including mRNA, Cas9 mRNA/single guide RNA and Cas9 ribonucleoprotein complexes, and is envisioned to aid the development of protein replacement and gene correction therapeutics in targeted tissues.
Collapse
Affiliation(s)
- Qiang Cheng
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tuo Wei
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lukas Farbiak
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lindsay T Johnson
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sean A Dilliard
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J Siegwart
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
28
|
Cho KJ, Ishido S, Eisenlohr LC, Roche PA. Activation of Dendritic Cells Alters the Mechanism of MHC Class II Antigen Presentation to CD4 T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:1621-1629. [PMID: 31996461 DOI: 10.4049/jimmunol.1901234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/31/2019] [Indexed: 11/19/2022]
Abstract
Both immature and mature dendritic cells (DCs) can process and present foreign Ags to CD4 T cells; however, the mechanism by which MHC class II (MHC-II) in mature DCs acquires antigenic peptides remains unknown. To address this, we have studied Ag processing and presentation of two distinct CD4 T cell epitopes of the influenza virus hemagglutinin coat protein by both immature and mature mouse DCs. We find that immature DCs almost exclusively use newly synthesized MHC-II targeted to DM+ late endosomes for presentation to influenza virus-specific CD4 T cells. By contrast, mature DCs exclusively use recycling MHC-II that traffics to both early and late endosomes for antigenic peptide binding. Rab11a knockdown partially inhibits recycling of MHC-II in mature DCs and selectively inhibits presentation of an influenza virus hemagglutinin CD4 T cell epitope generated in early endosomes. These studies highlight a "division of labor" in MHC-II peptide binding, in which immature DCs preferentially present Ags acquired in Rab11a- DM+ late endosomes, whereas mature DCs use recycling MHC-II to present antigenic peptides acquired in both Rab11a+ early endosomes and Rab11a- endosomes for CD4 T cell activation.
Collapse
Affiliation(s)
- Kyung-Jin Cho
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, 663-8501 Japan
| | - Laurence C Eisenlohr
- The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104; and.,Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
29
|
Kohli K, Pillarisetty VG. Dendritic Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1273:29-38. [PMID: 33119874 DOI: 10.1007/978-3-030-49270-0_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) of the immune system. They capture foreign antigens and can present them to lymphocytes, that is, T cells and B cells, to activate them. DCs are the most potent of all immune cells at inducing the adaptive immune system. Thus, the presence of DCs at the anatomical site of the immune challenge is imperative for the immune system to mount an effective immune response. From the anatomical site of the immune challenge, DCs cargo antigens to the draining lymph nodes, specialized immune organs where adaptive immunity is generated. DCs are heterogeneous as a type of immune cell, and various subsets of DCs have been reported and their functions described. In this chapter, we discuss various aspects of DC development and function. We further discuss how various tumor microenvironments can affect DC development, function, and migration, thus evading a strong adaptive immune response.
Collapse
Affiliation(s)
- Karan Kohli
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
30
|
Tsur N, Kogan Y, Rehm M, Agur Z. Response of patients with melanoma to immune checkpoint blockade – insights gleaned from analysis of a new mathematical mechanistic model. J Theor Biol 2020; 485:110033. [DOI: 10.1016/j.jtbi.2019.110033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/05/2019] [Accepted: 09/26/2019] [Indexed: 12/30/2022]
|
31
|
Kilgore AM, Pennock ND, Kedl RM. cDC1 IL-27p28 Production Predicts Vaccine-Elicited CD8 + T Cell Memory and Protective Immunity. THE JOURNAL OF IMMUNOLOGY 2019; 204:510-517. [PMID: 31871021 DOI: 10.4049/jimmunol.1901357] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/23/2019] [Indexed: 01/07/2023]
Abstract
Although adjuvants and formulations are often either empirically derived, or at best judged by their ability to elicit broad inflammation, it would be ideal if specific innate correlates of adaptive immunity could be identified to set a universally applicable benchmark for adjuvant evaluation. Using an IL-27 reporter transgenic mouse model, we show in this study that conventional type 1 dendritic cell IL-27 production in the draining lymph node 12 h after s.c. vaccination directly correlates with downstream CD8+ T cell memory and protective immunity against infectious challenge. This correlation is robust, reproducible, predictive, entirely unique to vaccine biology, and is the only innate correlate of CD8+ T cell immune memory yet to be identified. Our results provide new insights into the basic biology of adjuvant-elicited cellular immunity and have clear implications for the screening and evaluation of novel adjuvants.
Collapse
Affiliation(s)
- Augustus M Kilgore
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | | | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| |
Collapse
|
32
|
Sigal D, Przedborski M, Sivaloganathan D, Kohandel M. Mathematical modelling of cancer stem cell-targeted immunotherapy. Math Biosci 2019; 318:108269. [DOI: 10.1016/j.mbs.2019.108269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Accepted: 10/05/2019] [Indexed: 12/15/2022]
|
33
|
Guermonprez P, Gerber-Ferder Y, Vaivode K, Bourdely P, Helft J. Origin and development of classical dendritic cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:1-54. [PMID: 31759429 DOI: 10.1016/bs.ircmb.2019.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Classical dendritic cells (cDCs) are mononuclear phagocytes of hematopoietic origin specialized in the induction and regulation of adaptive immunity. Initially defined by their unique T cell activation potential, it became quickly apparent that cDCs would be difficult to distinguish from other phagocyte lineages, by solely relying on marker-based approaches. Today, cDCs definition increasingly embed their unique ontogenetic features. A growing consensus defines cDCs on multiple criteria including: (1) dependency on the fms-like tyrosine kinase 3 ligand hematopoietic growth factor, (2) development from the common DC bone marrow progenitor, (3) constitutive expression of the transcription factor ZBTB46 and (4) the ability to induce, after adequate stimulation, the activation of naïve T lymphocytes. cDCs are a heterogeneous cell population that contains two main subsets, named type 1 and type 2 cDCs, arising from divergent ontogenetic pathways and populating multiple lymphoid and non-lymphoid tissues. Here, we present recent knowledge on the cellular and molecular pathways controlling the specification and commitment of cDC subsets from murine and human hematopoietic stem cells.
Collapse
Affiliation(s)
- Pierre Guermonprez
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immmunobiology, London, United Kingdom; Université de Paris, CNRS ERL8252, INSERM1149, Centre for Inflammation Research, Paris, France.
| | - Yohan Gerber-Ferder
- Institut Curie, PSL Research University, INSERM U932, SiRIC «Translational Immunotherapy Team», Paris, France; Université de Paris, Immunity and Cancer Department, INSERM U932, Institut Curie, Paris, France
| | - Kristine Vaivode
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immmunobiology, London, United Kingdom
| | - Pierre Bourdely
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immmunobiology, London, United Kingdom
| | - Julie Helft
- Institut Curie, PSL Research University, INSERM U932, SiRIC «Translational Immunotherapy Team», Paris, France; Université de Paris, Immunity and Cancer Department, INSERM U932, Institut Curie, Paris, France.
| |
Collapse
|
34
|
Thomas AM, Dong Y, Beskid NM, García AJ, Adams AB, Babensee JE. Brief exposure to hyperglycemia activates dendritic cells in vitro and in vivo. J Cell Physiol 2019; 235:5120-5129. [PMID: 31674663 DOI: 10.1002/jcp.29380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
Dendritic cells are key players in regulating immunity. These cells both activate and inhibit the immune response depending on their cellular environment. Their response to hyperglycemia, a condition common amongst diabetics wherein glucose is abnormally elevated, remains to be elucidated. In this study, the phenotype and immune response of dendritic cells exposed to hyperglycemia were characterized in vitro and in vivo using the streptozotocin-induced diabetes model. Dendritic cells were shown to be sensitive to hyperglycemia both during and after differentiation from bone marrow precursor cells. Dendritic cell behavior under hyperglycemic conditions was found to vary by phenotype, among which, tolerogenic dendritic cells were particularly sensitive. Expression of the costimulatory molecule CD86 was found to reliably increase when dendritic cells were exposed to hyperglycemia. Additionally, hydrogel-based delivery of the anti-inflammatory molecule interleukin-10 was shown to partially inhibit these effects in vivo.
Collapse
Affiliation(s)
- Aline M Thomas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Ying Dong
- Department of Surgery, Emory University, Atlanta, Georgia
| | - Nicholas M Beskid
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Andrew B Adams
- Department of Surgery, Emory University, Atlanta, Georgia
| | - Julia E Babensee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
35
|
Madel MB, Ibáñez L, Wakkach A, de Vries TJ, Teti A, Apparailly F, Blin-Wakkach C. Immune Function and Diversity of Osteoclasts in Normal and Pathological Conditions. Front Immunol 2019; 10:1408. [PMID: 31275328 PMCID: PMC6594198 DOI: 10.3389/fimmu.2019.01408] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Osteoclasts (OCLs) are key players in controlling bone remodeling. Modifications in their differentiation or bone resorbing activity are associated with a number of pathologies ranging from osteopetrosis to osteoporosis, chronic inflammation and cancer, that are all characterized by immunological alterations. Therefore, the 2000s were marked by the emergence of osteoimmunology and by a growing number of studies focused on the control of OCL differentiation and function by the immune system. At the same time, it was discovered that OCLs are much more than bone resorbing cells. As monocytic lineage-derived cells, they belong to a family of cells that displays a wide heterogeneity and plasticity and that is involved in phagocytosis and innate immune responses. However, while OCLs have been extensively studied for their bone resorption capacity, their implication as immune cells was neglected for a long time. In recent years, new evidence pointed out that OCLs play important roles in the modulation of immune responses toward immune suppression or inflammation. They unlocked their capacity to modulate T cell activation, to efficiently process and present antigens as well as their ability to activate T cell responses in an antigen-dependent manner. Moreover, similar to other monocytic lineage cells such as macrophages, monocytes and dendritic cells, OCLs display a phenotypic and functional plasticity participating to their anti-inflammatory or pro-inflammatory effect depending on their cell origin and environment. This review will address this novel vision of the OCL, not only as a phagocyte specialized in bone resorption, but also as innate immune cell participating in the control of immune responses.
Collapse
Affiliation(s)
- Maria-Bernadette Madel
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| | - Lidia Ibáñez
- Department of Pharmacy, Cardenal Herrera-CEU University, València, Spain
| | - Abdelilah Wakkach
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| | - Teun J de Vries
- Department of Periodontology, Academic Centre of Dentistry Amsterdam, University of Amsterdam and Vrije Univeristeit, Amsterdam, Netherlands
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Claudine Blin-Wakkach
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| |
Collapse
|
36
|
Kermarrec L, Eissa N, Wang H, Kapoor K, Diarra A, Gounni AS, Bernstein CN, Ghia J. Semaphorin-3E attenuates intestinal inflammation through the regulation of the communication between splenic CD11C + and CD4 + CD25 - T-cells. Br J Pharmacol 2019; 176:1235-1250. [PMID: 30736100 PMCID: PMC6468259 DOI: 10.1111/bph.14614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 01/02/2019] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE An alteration in the communication between the innate and adaptive immune cells is a hallmark of ulcerative colitis (UC). Semaphorin-3E (SEMA3E), a secreted guidance protein, regulates various immune responses. EXPERIMENTAL APPROACH We investigated the expression of SEMA3E in colonic biopsies of active UC patients and its mechanisms in Sema3e-/- mice using an experimental model of UC. KEY RESULTS SEMA3E level was decreased in active UC patients and negatively correlated with pro-inflammatory mediators. Colonic expression of SEMA3E was reduced in colitic Sema3e+/+ mice, and recombinant (rec-) Plexin-D1 treatment exacerbated disease severity. In vivo rec-SEMA3E treatment restored SEMA3E level in colitic Sema3e+/+ mice. In Sema3e-/- mice, disease severity was increased, and rec-SEMA3E ameliorated these effects. Lack of Sema3e increased the expression of CD11c and CD86 markers. Colitic Sema3e-/- splenocytes and splenic CD11c+ cells produced more IL-12/23 and IFN-γ compared to Sema3e+/+ , and rec-SEMA3E reduced their release as much as NF-κB inhibitors, whereas an NF-κB activator increased their production and attenuated the effect of rec-SEMA3E. Colitic Sema3e-/- splenic CD11c+ /CD4+ CD25- T-cell co-cultures produced higher concentrations of IFN-γ and IL-17 when compared to colitic Sema3e+/+ splenic cell co-cultures, and rec-SEMA3E decreased these effects. In vitro, anti-IL-12p19 and -12p35 antibodies and rec-IL-12 and -23 treatment confirmed the crosstalk between CD11c+ and CD4+ CD25- T-cells. CONCLUSION AND IMPLICATIONS SEMA3E is reduced in colitis and modulates colonic inflammation by regulating the interaction between CD11c+ and CD4+ CD25- T-cells via an NF-κB-dependent mechanism. Thus, SEMA3E could be a potential therapeutic target for UC patients.
Collapse
Affiliation(s)
| | - Nour Eissa
- Department of ImmunologyUniversity of ManitobaWinnipegManitobaCanada
- Children Research Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegManitobaCanada
- Department of Internal Medicine Section of Gastroenterology, IBD Clinical and Research CentreUniversity of ManitobaWinnipegManitobaCanada
| | - Hongxing Wang
- Department of ImmunologyUniversity of ManitobaWinnipegManitobaCanada
| | - Kunal Kapoor
- Department of ImmunologyUniversity of ManitobaWinnipegManitobaCanada
| | - Abdoulaye Diarra
- Department of ImmunologyUniversity of ManitobaWinnipegManitobaCanada
| | | | - Charles N. Bernstein
- Department of Internal Medicine Section of Gastroenterology, IBD Clinical and Research CentreUniversity of ManitobaWinnipegManitobaCanada
| | - Jean‐Eric Ghia
- Department of ImmunologyUniversity of ManitobaWinnipegManitobaCanada
- Children Research Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegManitobaCanada
- Department of Internal Medicine Section of Gastroenterology, IBD Clinical and Research CentreUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
37
|
Abstract
Dendritic cells (DCs) can be viewed as translators between innate and adaptive immunity. They integrate signals derived from tissue infection or damage and present processed antigen from these sites to naive T cells in secondary lymphoid organs while also providing multiple soluble and surface-bound signals that help to guide T cell differentiation. DC-mediated tailoring of the appropriate T cell programme ensures a proper cascade of immune responses that adequately targets the insult. Recent advances in our understanding of the different types of DC subsets along with the cellular organization and orchestration of DC and lymphocyte positioning in secondary lymphoid organs over time has led to a clearer understanding of how the nature of the T cell response is shaped. This Review discusses how geographical organization and ordered sequences of cellular interactions in lymph nodes and the spleen regulate immunity.
Collapse
Affiliation(s)
- S C Eisenbarth
- Department of Laboratory Medicine, Immunobiology, Section of Allergy & Immunology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
38
|
Jin D, Sprent J. GM-CSF Culture Revisited: Preparation of Bulk Populations of Highly Pure Dendritic Cells from Mouse Bone Marrow. THE JOURNAL OF IMMUNOLOGY 2018; 201:3129-3139. [PMID: 30322963 DOI: 10.4049/jimmunol.1800031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/15/2018] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DC) loaded with specific peptides are strongly immunogenic for T cells and can be used for cancer immunotherapy. For immunogenic tumors such as melanoma, injection of autologous DC loaded with tumor cell extracts or peptides can induce tumor regression but in only a small proportion of patients. Nevertheless, recent studies on the efficacy of checkpoint blockade for boosting antitumor immunity plus advances in defining tumor neoantigens are stimulating renewed interest in DC immunotherapy. Despite intensive investigation, however, preparation of bulk populations of mature DC has proved difficult, and most preparations contain a significant proportion of potentially tolerogenic immature DC. In this study, we have modified the well-established GM-CSF culture system to prepare substantial quantities of highly pure (>95%) mature DC from mouse bone marrow cells and defined their progenitors. We show that obtaining high yields and purity of DC are heavily dependent on cell density in the cultures and the tempo of addition of growth and maturation stimuli. When loaded with specific peptide, the DC are strongly immunogenic for CD4 and CD8 T cells in vivo and elicit effective antitumor immunity.
Collapse
Affiliation(s)
- Dongbin Jin
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; and
| | - Jonathan Sprent
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; and .,St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
39
|
Darisipudi MN, Nordengrün M, Bröker BM, Péton V. Messing with the Sentinels-The Interaction of Staphylococcus aureus with Dendritic Cells. Microorganisms 2018; 6:microorganisms6030087. [PMID: 30111706 PMCID: PMC6163568 DOI: 10.3390/microorganisms6030087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a dangerous pathogen as well as a frequent colonizer, threatening human health worldwide. Protection against S. aureus infection is challenging, as the bacteria have sophisticated strategies to escape the host immune response. To maintain equilibrium with S. aureus, both innate and adaptive immune effector mechanisms are required. Dendritic cells (DCs) are critical players at the interface between the two arms of the immune system, indispensable for inducing specific T cell responses. In this review, we highlight the importance of DCs in mounting innate as well as adaptive immune responses against S. aureus with emphasis on their role in S. aureus-induced respiratory diseases. We also review what is known about mechanisms that S. aureus has adopted to evade DCs or manipulate these cells to its advantage.
Collapse
Affiliation(s)
- Murthy N Darisipudi
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| | - Maria Nordengrün
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| | - Barbara M Bröker
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| | - Vincent Péton
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| |
Collapse
|
40
|
Hillyer LM, Woodward B. Acutely malnourished weanling mice administered Flt3 ligand can support a cell-mediated inflammatory response. Cytokine 2018; 113:39-49. [PMID: 30539781 DOI: 10.1016/j.cyto.2018.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/20/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
The main objective of this investigation was to determine whether, despite acute (wasting) deficits of dietary nitrogen and energy, weanling mice could respond to the dendritic cell hematopoietin, Fms-like tyrosine kinase 3 ligand (Flt3L), in terms of an index of cell-mediated inflammatory competence. Male and female C57BL/6J weanlings were used, initially 19 days of age, and malnutrition was produced using a nitrogen-deficient diet. In preliminary work ten daily subcutaneous 1.0 µg doses of murine Flt3L, comparable to a protocol effective in humans, expanded the splenic conventional dendritic cell compartment (CD11c+F4/80-/low) of healthy weanlings without affecting the numbers of lymphocytes, macrophages, or recoverable mononuclear cells. Two subsequent experiments showed that, despite advancing malnutrition, exogenous Flt3L was able both to exert its classic influence on splenic conventional dendritic cell numbers and to invigorate the attenuated primary splenic cell-mediated inflammatory response to sheep erythrocytes. A final experiment showed that the cytokine intervention did not affect dendritic cell maturity according to several phenotypic indices. The findings provide new support for the proposition that dendritic cell numbers are the first limiting factor in the weak cell-mediated immune competence of acute pre-pubescent malnutrition. More substantially, intervention with Flt3L sustained an inflammatory systemic immune character despite progressive weanling malnutrition and weight loss. This outcome provides new support of fundamental character for the Tolerance Model which posits that the cell-mediated inflammatory incompetence of acute pre-pubescent protein and energy deficits is a regulated adaptive attempt, the antithesis of the classic paradigm of unregulated immunological attrition.
Collapse
Affiliation(s)
- Lyn M Hillyer
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| | - Bill Woodward
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
41
|
Kumar P, John V, Gupta A, Bhaskar S. Enhanced survival of BCG-stimulated dendritic cells: involvement of anti-apoptotic proteins and NF-κB. Biol Open 2018; 7:bio.032045. [PMID: 29848490 PMCID: PMC6031337 DOI: 10.1242/bio.032045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BCG (Bacillus Calmette-Guérin) is the only available vaccine against TB and is also used for the treatment of superficial bladder cancer. BCG-mediated protection against TB and bladder cancer has been shown to rely on its ability to induce superior CD4+ and CD8+ T cell responses. As the magnitude of T cell responses is defined by dendritic cell (DC) lifespan, we examined the effect of BCG on DC survival and its underlying mechanisms. It was observed that BCG stimulation enhanced DC survival and prolonged DC lifespan in a dose-dependent manner. Live BCG led to a higher DC survival compared with heat-killed BCG. FITC-Annexin V staining showed that BCG promoted DC survival by inhibiting apoptosis. Consistently, higher expressions of anti-apoptotic proteins Bcl-2 and Bcl-xL were observed in BCG-stimulated DCs. Pharmacological inhibition of Bcl-2 and Bcl-xL drastically reduced the DC survival efficacy of BCG. Comparable survival of BCG-stimulated wild-type and MyD88−/− DCs suggested that MyD88 signaling is dispensable for BCG-induced DC survival. NF-κB is one of the key regulators of innate immune responses. We observed that pharmacological inhibition of NF-κB abrogated BCG-mediated increase in DC survival and expression of anti-apoptotic proteins. These findings provide a novel insight into the effect of BCG on DC physiology. Summary: BCG enhanced the survival of dendritic cells (DCs) and prolonged their lifespan. BCG promoted DC survival by up-regulating Bcl-2 and Bcl-xL. Increased survival of BCG-stimulated DCs was dependent on NF-κB, but was independent of MyD88 signaling.
Collapse
Affiliation(s)
- Pawan Kumar
- Product Development Cell-I, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vini John
- Product Development Cell-I, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ananya Gupta
- Product Development Cell-I, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sangeeta Bhaskar
- Product Development Cell-I, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
42
|
Dress RJ, Wong AYW, Ginhoux F. Homeostatic control of dendritic cell numbers and differentiation. Immunol Cell Biol 2018; 96:463-476. [DOI: 10.1111/imcb.12028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Regine J Dress
- Singapore Immunology Network (SIgN); Agency for Science; Technology, and Research (A*STAR); Singapore 138648 Singapore
| | - Alicia YW Wong
- Singapore Immunology Network (SIgN); Agency for Science; Technology, and Research (A*STAR); Singapore 138648 Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN); Agency for Science; Technology, and Research (A*STAR); Singapore 138648 Singapore
| |
Collapse
|
43
|
Bosteels C, Lambrecht BN, Hammad H. Isolation of Conventional Murine Lung Dendritic Cell Subsets. ACTA ACUST UNITED AC 2018; 120:3.7B.1-3.7B.16. [PMID: 29512143 DOI: 10.1002/cpim.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lungs are continuously exposed to environmental threats, requiring an adequate and stringent immune response of a heterogeneous set of effector cells. Dendritic cells (DCs) form a dense network in the respiratory mucosa and act as the central regulators of the different components of this response, both sensing the nature of the threats and precisely coordinating the effector mechanisms best suited for overcoming it. The DCs are classically subdivided in two main groups, plasmacytoid DCs (pDCs) and conventional DCs (cDCs), the latter being further subdivided into cDC1s and cDC2s based on ontogeny and their distinct non-redundant functions. This protocol provides different enrichment methods and represents an up-to-date, universal framework that uses a minimal set of highly specific lineage markers to discriminate and sort pure cDC subsets from the murine lung but also across tissues and species which is an added value in intra- and interspecies comparative research. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Cédric Bosteels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
44
|
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that play a pivotal role in the pathogenesis of periodontitis. The use of animal models to study the role of DCs in periodontitis has been limited by lack of a method for sustained depletion of DCs. Hence, the objectives of this study were to validate the zDC-DTR knockin mouse model of conventional DCs (cDCs) depletion, as well as to investigate whether this depletion could be sustained long enough to induce alveolar bone loss in this model. zDC-DTR mice were treated with different dose regimens of diphtheria toxin (DT) to determine survival rate. A loading DT dose of 20ng/bw, followed and maintained with doses of 10ng/bm every 3days for up to 4weeks demonstrated 80% survival. Animals were weighed weekly and peripheral blood was obtained to confirm normal neutrophil counts. Five animals per group were euthanized at baseline, 24h, 1 and 4weeks. Bone marrow (BM), spleen (SP) and gingival tissue (GT) were harvested, and cells were isolated, separated and stained for Pre-DCs precursors (CD45R-MHCII+CD11c+Flt3+CD172a+) in BM, cDCs (CD11c+MHCII+CD209+) in spleen, and DCs in GT (CD45R+MHCII+CD11c+ DC-SIGN/CD209+). Pre-DCs in BM were significantly depleted at 24h and depletion maintained for up to 4weeks, as compared to blank (PBS) controls. Circulating cDCs in spleen demonstrated a non-significant trend to deplete in 1week with high variability among mice. GT also showed a similar non-significant trend to deplete in 24h. The zDC-DTR model seems to be viable for evaluating the role of DCs immune homeostasis disruption and alveolar bone loss pathogenesis in response to long-term oral infection.
Collapse
|
45
|
Xu L, Kwak M, Zhang W, Lee PCW, Jin JO. Time-dependent effect of E. coli LPS in spleen DC activation in vivo: Alteration of numbers, expression of co-stimulatory molecules, production of pro-inflammatory cytokines, and presentation of antigens. Mol Immunol 2017; 85:205-213. [PMID: 28285188 DOI: 10.1016/j.molimm.2017.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/13/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022]
Abstract
Lipopolysaccharide (LPS) is a well-known stimuli of dendritic cells (DCs). However, in vivo spleen DC maturation by Escherichia coli (E.coli) LPS has not been fully investigated. In this study, we examined the effect of LPS on the activation of spleen DCs and its subsets in a time-dependent manner on mice in vivo. The frequency, number and migration of spleen conventional DCs (cDCs) were increased 6 and 12h after completion of LPS treatment. Those increased DC numbers in spleen were then gradually decreased with apoptosis of the DCs. The highest levels of co-stimulatory molecule expression in the spleen cDCs and their subsets occurred 18h after LPS treatment, while the pro-inflammatory cytokines reached their maximum in the intracellular levels of the spleen cDCs and their subsets 3h after LPS treatment. The antigen presentation of the spleen cDCs and their subsets increased gradually from 3 to 12h after LPS treatment, but those levels decreased rapidly after 18h post-LPS treatment. Thus, by highlighting the importance of time in the stimulation of spleen DCs by LPS in mice in vivo, our data provided a model that could be used by immunologists when considering the manipulation of DC functions in vivo for experimental and clinical applications.
Collapse
Affiliation(s)
- Li Xu
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan, South Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, South Korea.
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
46
|
CD1 - and CD1 + porcine blood dendritic cells are enriched for the orthologues of the two major mammalian conventional subsets. Sci Rep 2017; 7:40942. [PMID: 28106145 PMCID: PMC5247722 DOI: 10.1038/srep40942] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022] Open
Abstract
Conventional dendritic cells (cDC) are professional antigen-presenting cells that induce immune activation or tolerance. Two functionally specialised populations, termed cDC1 and cDC2, have been described in humans, mice, ruminants and recently in pigs. Pigs are an important biomedical model species and a key source of animal protein; therefore further understanding of their immune system will help underpin the development of disease prevention strategies. To characterise cDC populations in porcine blood, DC were enriched from PBMC by CD14 depletion and CD172a enrichment then stained with lineage mAbs (Lin; CD3, CD8α, CD14 and CD21) and mAbs specific for CD172a, CD1 and CD4. Two distinct porcine cDC subpopulations were FACSorted CD1- cDC (Lin-CD172+ CD1-CD4-) and CD1+ cDC (Lin-CD172a+ CD1+ CD4-), and characterised by phenotypic and functional analyses. CD1+ cDC were distinct from CD1- cDC, expressing higher levels of CD172a, MHC class II and CD11b. Following TLR stimulation, CD1+ cDC produced IL-8 and IL-10 while CD1- cDC secreted IFN-α, IL-12 and TNF-α. CD1- cDC were superior in stimulating allogeneic T cell responses and in cross-presenting viral antigens to CD8 T cells. Comparison of transcriptional profiles further suggested that the CD1- and CD1+ populations were enriched for the orthologues of cDC1 and cDC2 subsets respectively.
Collapse
|
47
|
Application of Immunohistochemistry in Toxicologic Pathology of the Hematolymphoid System. IMMUNOPATHOLOGY IN TOXICOLOGY AND DRUG DEVELOPMENT 2017. [DOI: 10.1007/978-3-319-47377-2_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Calabro S, Liu D, Gallman A, Nascimento MSL, Yu Z, Zhang TT, Chen P, Zhang B, Xu L, Gowthaman U, Krishnaswamy JK, Haberman AM, Williams A, Eisenbarth SC. Differential Intrasplenic Migration of Dendritic Cell Subsets Tailors Adaptive Immunity. Cell Rep 2016; 16:2472-85. [PMID: 27545885 PMCID: PMC6323650 DOI: 10.1016/j.celrep.2016.07.076] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/20/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
Evidence suggests that distinct splenic dendritic cell (DC) subsets activate either CD4+ or CD8+ T cells in vivo. This bias has been partially ascribed to differential antigen presentation; however, all DC subsets can activate both T cell lineages in vitro. Therefore, we tested whether the organization of DC and T cell subsets in the spleen dictated this preference. We discovered that CD4+ and CD8+ T cells segregated within splenic T cell zones prior to immunization. After intravenous immunization, the two major conventional DC populations, distinguished by 33D1 and XCR1 staining, migrated into separate regions of the T cell zone: 33D1+ DCs migrated into the CD4+ T cell area, whereas XCR1+ DCs migrated into the CD8+ T cell area. Thus, the post-immunization location of each DC subset correlated with the T cell lineage it preferentially primes. Preventing this co-localization selectively impaired either CD4+ or CD8+ T cell immunity to blood-borne antigens.
Collapse
Affiliation(s)
- Samuele Calabro
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Roche Pharma Research and Early Development, Roche Innovation Center Zurich, 8952 Schlieren, Switzerland
| | - Dong Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Antonia Gallman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Manuela Sales L Nascimento
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Zizi Yu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ting-Ting Zhang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Pei Chen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Yuexiu, Guangzhou, Guangdong 510080, China
| | - Biyan Zhang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lan Xu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Uthaman Gowthaman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jayendra Kumar Krishnaswamy
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development, AstraZeneca, 431 50 Mölndal, Sweden
| | - Ann M Haberman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA.
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
49
|
GATA2 regulates dendritic cell differentiation. Blood 2016; 128:508-18. [PMID: 27259979 DOI: 10.1182/blood-2016-02-698118] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/18/2016] [Indexed: 12/29/2022] Open
Abstract
Dendritic cells (DCs) are critical immune response regulators; however, the mechanism of DC differentiation is not fully understood. Heterozygous germ line GATA2 mutations induce GATA2-deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia/acute myeloid leukemia, and a profoundly reduced DC population, which is associated with increased susceptibility to viral infections, impaired phagocytosis, and decreased cytokine production. To define the role of GATA2 in DC differentiation and function, we studied Gata2 conditional knockout and haploinsufficient mice. Gata2 conditional deficiency significantly reduced the DC count, whereas Gata2 haploinsufficiency did not affect this population. GATA2 was required for the in vitro generation of DCs from Lin(-)Sca-1(+)Kit(+) cells, common myeloid-restricted progenitors, and common dendritic cell precursors, but not common lymphoid-restricted progenitors or granulocyte-macrophage progenitors, suggesting that GATA2 functions in the myeloid pathway of DC differentiation. Moreover, expression profiling demonstrated reduced expression of myeloid-related genes, including mafb, and increased expression of T-lymphocyte-related genes, including Gata3 and Tcf7, in Gata2-deficient DC progenitors. In addition, GATA2 was found to bind an enhancer element 190-kb downstream region of Gata3, and a reporter assay exhibited significantly reduced luciferase activity after adding this enhancer region to the Gata3 promoter, which was recovered by GATA sequence deletion within Gata3 +190. These results suggest that GATA2 plays an important role in cell-fate specification toward the myeloid vs T-lymphocyte lineage by regulating lineage-specific transcription factors in DC progenitors, thereby contributing to DC differentiation.
Collapse
|
50
|
Calabro S, Gallman A, Gowthaman U, Liu D, Chen P, Liu J, Krishnaswamy JK, Nascimento MSL, Xu L, Patel SR, Williams A, Tormey CA, Hod EA, Spitalnik SL, Zimring JC, Hendrickson JE, Stowell SR, Eisenbarth SC. Bridging channel dendritic cells induce immunity to transfused red blood cells. J Exp Med 2016; 213:887-96. [PMID: 27185856 PMCID: PMC4886363 DOI: 10.1084/jem.20151720] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 04/06/2016] [Indexed: 11/30/2022] Open
Abstract
Calabro et al. show that 33D1+ dendritic cells present in the bridging channel of the spleen are essential for alloantibody response to transfused red blood cells. Red blood cell (RBC) transfusion is a life-saving therapeutic tool. However, a major complication in transfusion recipients is the generation of antibodies against non-ABO alloantigens on donor RBCs, potentially resulting in hemolysis and renal failure. Long-lived antibody responses typically require CD4+ T cell help and, in murine transfusion models, alloimmunization requires a spleen. Yet, it is not known how RBC-derived antigens are presented to naive T cells in the spleen. We sought to answer whether splenic dendritic cells (DCs) were essential for T cell priming to RBC alloantigens. Transient deletion of conventional DCs at the time of transfusion or splenic DC preactivation before RBC transfusion abrogated T and B cell responses to allogeneic RBCs, even though transfused RBCs persisted in the circulation for weeks. Although all splenic DCs phagocytosed RBCs and activated RBC-specific CD4+ T cells in vitro, only bridging channel 33D1+ DCs were required for alloimmunization in vivo. In contrast, deletion of XCR1+CD8+ DCs did not alter the immune response to RBCs. Our work suggests that blocking the function of one DC subset during a narrow window of time during RBC transfusion could potentially prevent the detrimental immune response that occurs in patients who require lifelong RBC transfusion support.
Collapse
Affiliation(s)
- Samuele Calabro
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520 Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Antonia Gallman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520 Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Uthaman Gowthaman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520 Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Dong Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520 Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Pei Chen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Yuexiu, Guangzhou, Guangdong, 510080, China
| | - Jingchun Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Jayendra Kumar Krishnaswamy
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520 Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Manuela Sales L Nascimento
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520 Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Lan Xu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520 Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Seema R Patel
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030
| | - Christopher A Tormey
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University Medical Center-New York Presbyterian Hospital, New York, NY 10032
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Medical Center-New York Presbyterian Hospital, New York, NY 10032
| | - James C Zimring
- Bloodworks NW Research Institute, University of Washington School of Medicine, Seattle, WA 98102 Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98102 Division of Hematology, Department of Internal Medicine, University of Washington School of Medicine, Seattle, WA 98102
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520 Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Sean R Stowell
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520 Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|