1
|
Lantieri MA, Perdomo Trejo JR, Le Q, Dighe A, Cui Q, Yang X. Formyl peptide receptors in bone research. Connect Tissue Res 2023; 64:229-237. [PMID: 36440821 PMCID: PMC10164673 DOI: 10.1080/03008207.2022.2149397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE/AIM OF THE STUDY The formyl peptide receptor (FPR) participates in the immune response, with roles in infection and inflammation. In this review article, we summarize the current literature on these roles before discussing the function of FPRs in the pathogenesis of musculoskeletal disorders including osteoarthritis (OA), degenerative disc disease (DDD), and rheumatoid arthritis (RA). Additionally, we discuss the potential diagnostic and therapeutic roles of FPRs in these domains. METHODS PubMed and Ovid MEDLINE searches were performed from 1965 through March 2022. Keywords included "FPR, tissue expression, inflammation, infection, musculoskeletal disorder, bone, rheumatoid arthritis, osteoarthritis, degenerative disc disease, mitochondria." RESULTS Sixty-nine studies were included in this review article. FPRs appear to be ubiquitous in the pathogenesis, diagnosis, and treatment of common musculoskeletal disorders. They can potentially be utilized for the earlier diagnosis of OA and DDD. They may be employed with mesenchymal stem cells (MSCs) to reverse OA and DDD pathologies. With anti-inflammatory, anti-osteolytic, and pro-angiogenic functions, they may broaden treatment options in RA. CONCLUSIONS FPRs appear to be heavily involved in the pathogenesis of common musculoskeletal conditions, including arthritis, degenerative disc disease, and rheumatoid arthritis. Furthermore, they demonstrate much promise in the diagnosis and treatment of these conditions. Their roles should continue to be explored.
Collapse
Affiliation(s)
- Mark A. Lantieri
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA
| | | | - Quang Le
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA
| | - Abhijit Dighe
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA
| | - Quanjun Cui
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA
| | - Xinlin Yang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA
| |
Collapse
|
2
|
Senent Y, Ajona D, González-Martín A, Pio R, Tavira B. The Complement System in Ovarian Cancer: An Underexplored Old Path. Cancers (Basel) 2021; 13:3806. [PMID: 34359708 PMCID: PMC8345190 DOI: 10.3390/cancers13153806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecological cancers. Current therapeutic strategies allow temporary control of the disease, but most patients develop resistance to treatment. Moreover, although successful in a range of solid tumors, immunotherapy has yielded only modest results in ovarian cancer. Emerging evidence underscores the relevance of the components of innate and adaptive immunity in ovarian cancer progression and response to treatment. Particularly, over the last decade, the complement system, a pillar of innate immunity, has emerged as a major regulator of the tumor microenvironment in cancer immunity. Tumor-associated complement activation may support chronic inflammation, promote an immunosuppressive microenvironment, induce angiogenesis, and activate cancer-related signaling pathways. Recent insights suggest an important role of complement effectors, such as C1q or anaphylatoxins C3a and C5a, and their receptors C3aR and C5aR1 in ovarian cancer progression. Nevertheless, the implication of these factors in different clinical contexts is still poorly understood. Detailed knowledge of the interplay between ovarian cancer cells and complement is required to develop new immunotherapy combinations and biomarkers. In this context, we discuss the possibility of targeting complement to overcome some of the hurdles encountered in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yaiza Senent
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
| | - Daniel Ajona
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Antonio González-Martín
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Oncology, Clinica Universidad de Navarra, 28027 Madrid, Spain
| | - Ruben Pio
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Beatriz Tavira
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
3
|
Chen K, Tang P, Bao Z, He T, Xiang Y, Gong W, Yoshimura T, Le Y, Tessarollo L, Chen X, Wang JM. Deficiency in Fpr2 results in reduced numbers of Lin -cKit +Sca1 + myeloid progenitor cells. J Biol Chem 2018; 293:13452-13463. [PMID: 30018139 PMCID: PMC6120191 DOI: 10.1074/jbc.ra118.002683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/26/2018] [Indexed: 11/06/2022] Open
Abstract
The Lin-c-Kit+ Sca-1+ cell population in the bone marrow (BM) serves as the direct precursor for differentiation of myeloid cells. In this study, we report that deficiency in Fpr2, a G protein-coupled chemoattractant receptor in mice, is associated with reduced BM nucleated cells, including CD31+Ly6C+ (granulocytes and monocytes), CD31-/Ly6Cint (granuloid cells), and CD31-/Ly6Chigh (predominantly monocytes) cells. In particular, the number of Lin-c-Kit+Sca-1+ (LKS) cells was reduced in Fpr2-/- mouse BM. This was supported by observations of the reduced incorporation of intraperitoneally injected bromodeoxyuridine by cells in the c-Kit+ population from Fpr2-/- mouse BM. Purified c-Kit+ cells from Fpr2-/- mice showed reduced expansion when cultured in vitro with stem cell factor (SCF). SCF/c-Kit-mediated phosphorylation of P38, STAT1, Akt (Thr-308), and Akt (Ser-473) was also significantly reduced in c-Kit+ cells from Fpr2-/- mice. Furthermore, Fpr2 agonists enhanced SCF-induced proliferation of c-Kit+ cells. Colony-forming unit assays revealed that CFU-granulocyte-macrophage formation of BM cells from Fpr2-/- mice was significantly reduced. After heat-inactivated bacterial stimulation in the airway, the expansion of c-kit+ Sca-1+ cells in BM and recruitment of Ly6G+ cells to the lungs and CD11b+Ly6C+TNFα+ cells to the spleen of Fpr2-/- mice was significantly reduced. These results demonstrate an important role for Fpr2 in the development of myeloid lineage precursors in mouse BM.
Collapse
Affiliation(s)
| | - Peng Tang
- From the Cancer and Inflammation Program and
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhiyao Bao
- From the Cancer and Inflammation Program and
- the Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Tianzhen He
- the State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Yi Xiang
- the Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Wanghua Gong
- the Basic Research Program, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Teizo Yoshimura
- the Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan, and
| | - Yingying Le
- the Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Xin Chen
- the State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | | |
Collapse
|
4
|
The role of C5a in acute lung injury induced by highly pathogenic viral infections. Emerg Microbes Infect 2015; 4:e28. [PMID: 26060601 PMCID: PMC4451266 DOI: 10.1038/emi.2015.28] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/12/2015] [Accepted: 03/31/2015] [Indexed: 12/14/2022]
Abstract
The complement system, an important part of innate immunity, plays a critical role in pathogen clearance. Unregulated complement activation is likely to play a crucial role in the pathogenesis of acute lung injury (ALI) induced by highly pathogenic virus including influenza A viruses H5N1, H7N9, and severe acute respiratory syndrome (SARS) coronavirus. In highly pathogenic virus-induced acute lung diseases, high levels of chemotactic and anaphylatoxic C5a were produced as a result of excessive complement activaiton. Overproduced C5a displays powerful biological activities in activation of phagocytic cells, generation of oxidants, and inflammatory sequelae named "cytokine storm", and so on. Blockade of C5a signaling have been implicated in the treatment of ALI induced by highly pathogenic virus. Herein, we review the literature that links C5a and ALI, and review our understanding of the mechanisms by which C5a affects ALI during highly pathogenic viral infection. In particular, we discuss the potential of the blockade of C5a signaling to treat ALI induced by highly pathogenic viruses.
Collapse
|
5
|
Gouwy M, Struyf S, Leutenez L, Pörtner N, Sozzani S, Van Damme J. Chemokines and other GPCR ligands synergize in receptor-mediated migration of monocyte-derived immature and mature dendritic cells. Immunobiology 2013; 219:218-29. [PMID: 24268109 DOI: 10.1016/j.imbio.2013.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/27/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) are potent antigen presenting cells, described as the initiators of adaptive immune responses. Immature monocyte-derived DCs (MDDC) showed decreased CD14 expression, increased cell surface markers DC-SIGN and CD1a and enhanced levels of receptors for the chemokines CCL3 (CCR1/CCR5) and CXCL8 (CXCR1/CXCR2) compared with human CD14⁺ monocytes. After further MDDC maturation by LPS, the markers CD80 and CD83 and the chemokine receptors CXCR4 and CCR7 were upregulated, whereas CCR1, CCR2 and CCR5 expression was reduced. CCL3 dose-dependently synergized with CXCL8 or CXCL12 in chemotaxis of immature MDDC. CXCL12 augmented the CCL3-induced ERK1/2 and Akt phosphorylation in immature MDDC, although the synergy between CCL3 and CXCL12 in chemotaxis of immature MDDC was dependent on the Akt signaling pathway but not on ERK1/2 phosphorylation. CCL2 also synergized with CXCL12 in immature MDDC migration. Moreover, two CXC chemokines not sharing receptors (CXCL12 and CXCL8) cooperated in immature MDDC chemotaxis, whereas two CC chemokines (CCL3 and CCL7) sharing CCR1 did not. Further, the non-chemokine G protein-coupled receptor ligands chemerin and fMLP synergized with respectively CCL7 and CCL3 in immature MDDC signaling and migration. Finally, CXCL12 and CCL3 did not cooperate, but CXCL12 synergized with CCL21 in mature MDDC chemotaxis. Thus, chemokine synergy in immature and mature MDDC migration is dose-dependently regulated by chemokines via alterations in their chemokine receptor expression pattern according to their role in immune responses.
Collapse
Affiliation(s)
- Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Lien Leutenez
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Noëmie Pörtner
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Humanitas Clinical and Research Center, Rozzano, Italy
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Lanzi A, Fehres CM, de Gruijl TD, van Kooyk Y, Mastrobattista E. Effects of antigen-expressing immunostimulatory liposomes on chemotaxis and maturation of dendritic cells in vitro and in human skin explants. Pharm Res 2013; 31:516-26. [PMID: 24072262 DOI: 10.1007/s11095-013-1179-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/09/2013] [Indexed: 12/15/2022]
Abstract
PURPOSE Antigen-Expressing Immunostimulatory Liposomes (AnExILs) represent a novel DNA vaccination platform based on the production of protein antigens from DNA templates inside liposomes mediated by an in vitro transcription and translation (IVTT) mix. The aim of this study was to analyze the effects of AnExILs on different dendritic cells (DCs) models and to better understand the role of the different components of this formulation on its adjuvanticity. METHODS The effect of β-galactosidase-expressing AnExILs on maturation and particle uptake by murine DC cell line, fresh human monocyte-derived DCs or human dermal DCs in skin explants was investigated and compared to the effects of either plain liposomes or IVTT mix alone. RESULTS AnExILs induced efficient DC chemotaxis and promoted up-regulation of maturation markers on murine DCs, due to the presence of IVTT in the formulation. Furthermore, the amount of active βGal associated with DCs was higher for AnExILs than for free βGal expressed in IVTT or βGal encapsulated into non-adjuvanted liposomes. Most interestingly, the same trend was observed with human DCs. CONCLUSIONS Both IVTT mix and liposomal vehicles were shown to be key components of the AnExIL formulation responsible for its adjuvanticity. AnExILs combine antigen production, adjuvanticity and delivery in one system, and can efficiently activate both murine and human DCs.
Collapse
Affiliation(s)
- Anastasia Lanzi
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
7
|
Zhao Z, Ni Y, Chen J, Zhong J, Yu H, Xu X, He H, Yan Z, Scholze A, Liu D, Zhu Z, Tepel M. Increased migration of monocytes in essential hypertension is associated with increased transient receptor potential channel canonical type 3 channels. PLoS One 2012; 7:e32628. [PMID: 22438881 PMCID: PMC3306381 DOI: 10.1371/journal.pone.0032628] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 02/01/2012] [Indexed: 02/06/2023] Open
Abstract
Increased transient receptor potential canonical type 3 (TRPC3) channels have been observed in patients with essential hypertension. In the present study we tested the hypothesis that increased monocyte migration is associated with increased TRPC3 expression. Monocyte migration assay was performed in a microchemotaxis chamber using chemoattractants formylated peptide Met-Leu-Phe (fMLP) and tumor necrosis factor-α (TNF-α). Proteins were identified by immunoblotting and quantitative in-cell Western assay. The effects of TRP channel-inhibitor 2–aminoethoxydiphenylborane (2-APB) and small interfering RNA knockdown of TRPC3 were investigated. We observed an increased fMLP-induced migration of monocytes from hypertensive patients compared with normotensive control subjects (246±14% vs 151±10%). The TNF-α-induced migration of monocytes in patients with essential hypertension was also significantly increased compared to normotensive control subjects (221±20% vs 138±18%). In the presence of 2-APB or after siRNA knockdown of TRPC3 the fMLP-induced monocyte migration was significantly blocked. The fMLP-induced changes of cytosolic calcium were significantly increased in monocytes from hypertensive patients compared to normotensive control subjects. The fMLP-induced monocyte migration was significantly reduced in the presence of inhibitors of tyrosine kinase and phosphoinositide 3-kinase. We conclude that increased monocyte migration in patients with essential hypertension is associated with increased TRPC3 channels.
Collapse
Affiliation(s)
- Zhigang Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Yinxing Ni
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Jing Chen
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Jian Zhong
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Hao Yu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Xingsen Xu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Hongbo He
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Alexandra Scholze
- Department of Nephrology, Charité, Berlin, Germany; and University of Southern Denmark, Institute for Molecular Medicine, Odense, Denmark
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
- * E-mail: (DL); (Z. Zhu)
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
- * E-mail: (DL); (Z. Zhu)
| | - Martin Tepel
- Department of Nephrology, Charité, Berlin, Germany; and University of Southern Denmark, Institute for Molecular Medicine, Odense, Denmark
| |
Collapse
|
8
|
Zhang X, Brann TW, Zhou M, Yang J, Oguariri RM, Lidie KB, Imamichi H, Huang DW, Lempicki RA, Baseler MW, Veenstra TD, Young HA, Lane HC, Imamichi T. Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather than type I IFN. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:4541-5. [PMID: 21398614 PMCID: PMC3720676 DOI: 10.4049/jimmunol.1003389] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cytosolic foreign DNA is detected by pattern recognition receptors and mainly induces type I IFN production. We found that transfection of different types of DNA into various untreated cells induces type III IFN (IFN-λ1) rather than type I IFN, indicating the presence of uncharacterized DNA sensor(s). A pull-down assay using cytosolic proteins identified that Ku70 and Ku80 are the DNA-binding proteins. The knockdown studies and the reporter assay revealed that Ku70 is a novel DNA sensor inducing the IFN-lambda1 activation. The functional analysis of IFNL1 promoter revealed that positive-regulatory domain I and IFN-stimulated response element sites are predominantly involved in the DNA-mediated IFNL1 activation. A pull-down assay using nuclear proteins demonstrated that the IFN-λ1 induction is associated with the activation of IFN regulatory factor-1 and -7. Thus, to our knowledge, we show for the first time that Ku70 mediates type III IFN induction by DNA.
Collapse
Affiliation(s)
- Xing Zhang
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Terrence W. Brann
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Ming Zhou
- Advanced Technology Program Directorate, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
| | - Jun Yang
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Raphael M. Oguariri
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Kristy B. Lidie
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Hiromi Imamichi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Da-Wei Huang
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Richard A. Lempicki
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Michael W. Baseler
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Timothy D. Veenstra
- Advanced Technology Program Directorate, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
| | - Howard A. Young
- Laboratory of Experimental Immunology, Center for Cancer Research, NCI-Frederick, Frederick, Maryland, USA
| | - H. Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tomozumi Imamichi
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| |
Collapse
|
9
|
Inadequate cytoplasmatic calcium signals in alveolar macrophages after cardiac surgery. Inflamm Res 2010; 59:767-73. [DOI: 10.1007/s00011-010-0188-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 02/03/2010] [Accepted: 03/15/2010] [Indexed: 11/27/2022] Open
|
10
|
Zhang Z, Cherryholmes G, Chang F, Rose DM, Schraufstatter I, Shively JE. Evidence that cathelicidin peptide LL-37 may act as a functional ligand for CXCR2 on human neutrophils. Eur J Immunol 2009; 39:3181-94. [PMID: 19750480 PMCID: PMC3076219 DOI: 10.1002/eji.200939496] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
LL-37, derived from human cathelicidin, stimulates immune responses in neutrophils. Although FPR2 and P2X7 were proposed as LL-37 receptors, we have shown that among 21 neutrophil receptors only CXCR2 was down-regulated by LL-37. LL-37 functions similarly to CXCR2-specific chemokines CXCL1 and CXCL7 in terms of receptor down-regulation and intracellular calcium mobilization on freshly isolated neutrophils. Neutrophils pretreated with CXCL8, a chemokine that binds both CXCR1/2, completely blocked the calcium mobilization in response to LL-37, while LL-37 also partially inhibited (125)I-CXCL8 binding to neutrophils. SB225002, a selective CXCR2 antagonist, blocked LL-37-induced calcium mobilization and migration of neutrophils. LL-37 stimulates calcium mobilization in CXCR2-transfected HEK293 cells, CXCR2(+) THP-1 cells and monocytes, but not in CXCR1-transfected HEK293 cells. WKYMVm peptide (ligand for FPR2) does not block LL-37-stimulated calcium flux in either THP-1 (FPR2(-)) or monocytes (FPR2(high)), further confirming the specificity of LL-37 for CXCR2 and not FPR2. Among all ligands tested (ATP, BzATP, WKYMVm, CXCL1, and LL-37), only LL-37 stimulated migration of monocytes (CXCR2(+) and FPR2(+)) and migration was inhibited by the CXCR2 inhibitor SB225002. Moreover, CXCR2 but not CXCR1 was internalized in LL-37-treated neutrophils. Thus, our data provide evidence that LL-37 may act as a functional ligand for CXCR2 on human neutrophils.
Collapse
Affiliation(s)
- Zhifang Zhang
- Department of Immunology, Beckman Research Institute of City of Hope, 1450 E Duarte Road, Duarte, CA 91010, USA
| | - Gregory Cherryholmes
- Department of Immunology, Beckman Research Institute of City of Hope, 1450 E Duarte Road, Duarte, CA 91010, USA
| | - Frances Chang
- Department of Immunology, Beckman Research Institute of City of Hope, 1450 E Duarte Road, Duarte, CA 91010, USA
| | - David M. Rose
- Department of Medicine, University of California at San Diego, La Jolla, CA 92161 USA
| | | | - John E. Shively
- Department of Immunology, Beckman Research Institute of City of Hope, 1450 E Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
11
|
Taylor K, Barran PE, Dorin JR. Structure-activity relationships in beta-defensin peptides. Biopolymers 2008; 90:1-7. [PMID: 18041067 DOI: 10.1002/bip.20900] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The beta-defensins comprise a large family of small cationic antimicrobial peptides widely distributed in plants, mammals and insects. These cysteine rich peptides display multifunctional properties with implications as potential therapeutic agents. Recent research has highlighted their role in both the innate and adaptive immune systems as well as being novel melanocortin ligands. Studies investigating structure and function provide an insight into the molecular basis of their immunological properties.
Collapse
Affiliation(s)
- Karen Taylor
- MRC Human Genetics Unit, Edinburgh, Scotland, United Kingdom
| | | | | |
Collapse
|
12
|
Yang D, Chen Q, Su SB, Zhang P, Kurosaka K, Caspi RR, Michalek SM, Rosenberg HF, Zhang N, Oppenheim JJ. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. ACTA ACUST UNITED AC 2008; 205:79-90. [PMID: 18195069 PMCID: PMC2234357 DOI: 10.1084/jem.20062027] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Eosinophil-derived neurotoxin (EDN) is an eosinophil granule-derived secretory protein with ribonuclease and antiviral activity. We have previously shown that EDN can induce the migration and maturation of dendritic cells (DCs). Here, we report that EDN can activate myeloid DCs by triggering the Toll-like receptor (TLR)2-myeloid differentiation factor 88 signaling pathway, thus establishing EDN as an endogenous ligand of TLR2. EDN activates TLR2 independently of TLR1 or TLR6. When mice were immunized with ovalbumin (OVA) together with EDN or with EDN-treated OVA-loaded DCs, EDN enhanced OVA-specific T helper (Th)2-biased immune responses as indicated by predominant production of OVA-specific interleukin (IL)-5, IL-6, IL-10, and IL-13, as well as higher levels of immunoglobulin (Ig)G1 than IgG2a. Based on its ability to serve as a chemoattractant and activator of DCs, as well as the capacity to enhance antigen-specific immune responses, we consider EDN to have the properties of an endogenous alarmin that alerts the adaptive immune system for preferential enhancement of antigen-specific Th2 immune responses.
Collapse
Affiliation(s)
- De Yang
- Basic Research Program, SAIC-Frederick, Inc., MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Local production and activation of complement up-regulates the allostimulatory function of dendritic cells through C3a-C3aR interaction. Blood 2007; 111:2452-61. [PMID: 18056835 DOI: 10.1182/blood-2007-06-095018] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Donor cell expression of C3 enhances the alloimmune response and is associated with the fate of transplantation. To clarify the mechanism for enhancement of the immune response, we have explored the role of C3a receptor (C3aR)-ligand interaction on murine bone marrow dendritic cells (DCs). We show that DCs either lacked receptor for C3a (a C3 cleavage product) or were treated with C3aR antagonist, elicited defective T-cell priming against alloantigen expressed on the DCs. This was associated with reduced surface expression of major histocompatibility complex (MHC) and costimulatory molecules on the DCs, and with defective priming in skin allograft rejection. In addition, DCs lacking factor B were unable to generate potent T-cell responses against donor antigen, whereas lack of C4 had no detectable effect, suggesting a role for the alternative pathway contributing to allostimulation. Furthermore, therapeutic complement regulator can down-regulate DC allostimulatory function. These findings suggest that the capacity of DCs for allostimulation depends on their ability to express, activate, and detect relevant complement components leading to C3aR signaling. This mechanism, in addition to underpinning the cell-autonomous action of donor C3 on allostimulation, has implications for a wider range of immune responses in self-restricted T-cell priming.
Collapse
|
14
|
Baatar D, Olkhanud P, Newton D, Sumitomo K, Biragyn A. CCR4-expressing T cell tumors can be specifically controlled via delivery of toxins to chemokine receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:1996-2004. [PMID: 17641067 PMCID: PMC2262935 DOI: 10.4049/jimmunol.179.3.1996] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Expression of chemokine receptors by tumors, specifically CCR4 on cutaneous T cell lymphomas, is often associated with a poor disease outcome. To test the hypothesis that chemokine receptor-expressing tumors can be successfully controlled by delivering toxins through their chemokine receptors, we have generated fusion proteins designated chemotoxins: chemokines fused with toxic moieties that are nontoxic unless delivered into the cell cytosol. We demonstrate that chemokines fused with human RNase eosinophil-derived neurotoxin or with a truncated fragment of Pseudomonas exotoxin 38 are able to specifically kill tumors in vitro upon internalization through their respective chemokine receptors. Moreover, treatment with the thymus and activation-regulated chemokine (CCL17)-expressing chemotoxin efficiently eradicated CCR4-expressing cutaneous T cell lymphoma/leukemia established in NOD-SCID mice. Taken together, this work represents a novel concept that may allow control of growth and dissemination of tumors that use chemokine receptors to metastasize and circumvent immunosurveillance.
Collapse
MESH Headings
- ADP Ribose Transferases/genetics
- ADP Ribose Transferases/toxicity
- Animals
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/toxicity
- Bacterial Toxins/genetics
- Bacterial Toxins/toxicity
- Cell Death/genetics
- Cell Death/immunology
- Cell Line
- Cell Line, Tumor
- Chemokine CCL17
- Chemokines, CC/administration & dosage
- Chemokines, CC/genetics
- Chemokines, CC/toxicity
- Cytotoxicity, Immunologic/genetics
- Eosinophil-Derived Neurotoxin/genetics
- Eosinophil-Derived Neurotoxin/toxicity
- Exotoxins/genetics
- Exotoxins/toxicity
- Female
- Humans
- Immunotoxins/genetics
- Immunotoxins/toxicity
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Leukemia-Lymphoma, Adult T-Cell/therapy
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Recurrence, Local
- Receptors, CCR4
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/metabolism
- Viral Proteins/genetics
- Viral Proteins/toxicity
- Virulence Factors/genetics
- Virulence Factors/toxicity
- Pseudomonas aeruginosa Exotoxin A
Collapse
Affiliation(s)
- Dolgor Baatar
- Laboratory of Immunology, Gerontology Research Center, National Institute on Aging, Baltimore, MD 21224
| | - Purevdorj Olkhanud
- Laboratory of Immunology, Gerontology Research Center, National Institute on Aging, Baltimore, MD 21224
| | - Dianne Newton
- Department of Microbiology, SAIC-Frederick, National Cancer Institute, Frederick, MD 21702
| | - Kenya Sumitomo
- Laboratory of Immunology, Gerontology Research Center, National Institute on Aging, Baltimore, MD 21224
| | - Arya Biragyn
- Laboratory of Immunology, Gerontology Research Center, National Institute on Aging, Baltimore, MD 21224
| |
Collapse
|
15
|
Rabiet MJ, Huet E, Boulay F. The N-formyl peptide receptors and the anaphylatoxin C5a receptors: an overview. Biochimie 2007; 89:1089-106. [PMID: 17428601 PMCID: PMC7115771 DOI: 10.1016/j.biochi.2007.02.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 02/23/2007] [Indexed: 12/31/2022]
Abstract
Leukocyte recruitment to sites of inflammation and infection is dependent on the presence of a gradient of locally produced chemotactic factors. This review is focused on current knowledge about the activation and regulation of chemoattractant receptors. Emphasis is placed on the members of the N-formyl peptide receptor family, namely FPR (N-formyl peptide receptor), FPRL1 (FPR like-1) and FPRL2 (FPR like-2), and the complement fragment C5a receptors (C5aR and C5L2). Upon chemoattractant binding, the receptors transduce an activation signal through a G protein-dependent pathway, leading to biochemical responses that contribute to physiological defense against bacterial infection and tissue damage. C5aR, and the members of the FPR family that were previously thought to be restricted to phagocytes proved to have a much broader spectrum of cell expression. In addition to N-formylated peptides, numerous unrelated ligands were recently found to interact with FPR and FPRL1. Novel agonists include both pathogen- and host-derived components, and synthetic peptides. Antagonistic molecules have been identified that exhibit limited receptor specificity. How distinct ligands can both induce different biological responses and produce different modes of receptor activation and unique sets of cellular responses are discussed. Cell responses to chemoattractants are tightly regulated at the level of the receptors. This review describes in detail the regulation of receptor signalling and the multi-step process of receptor inactivation. New concepts, such as receptor oligomerization and receptor clustering, are considered. Although FPR, FPRL1 and C5aR trigger similar biological functions and undergo a rapid chemoattractant-mediated phosphorylation, they appear to be differentially regulated and experience different intracellular fates.
Collapse
Affiliation(s)
| | | | - François Boulay
- Corresponding author. Tel.: +33 438 78 31 38; fax: +33 438 78 51 85.
| |
Collapse
|
16
|
Sabatté J, Maggini J, Nahmod K, Amaral MM, Martínez D, Salamone G, Ceballos A, Giordano M, Vermeulen M, Geffner J. Interplay of pathogens, cytokines and other stress signals in the regulation of dendritic cell function. Cytokine Growth Factor Rev 2007; 18:5-17. [PMID: 17321783 DOI: 10.1016/j.cytogfr.2007.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dendritic cells (DCs) are the only antigen-presenting cell capable of activating naïve T lymphocytes, and hence they play a crucial role in the induction of adaptive immunity. Immature DCs sample and process antigens, and efficiently sense a large variety of signals from the surrounding environment. Upon activation, they become capable to activate naïve T cells and to direct the differentiation and polarization of effector T lymphocytes. It is becoming increasingly clear that different signals are able to determine distinct programs of DC differentiation and different forms of immunity and tolerance. In the past few years many advances have been made in addressing the action exerted by pathogen-associated molecular patterns (PAMPs), cytokines, chemokines, and other less characterized stress molecules on the activity of DCs. In this review we focus on the multiplicity of innate signals able to modulate the functional profile of DCs.
Collapse
Affiliation(s)
- Juan Sabatté
- Institute of Haematological Research, National Academy of Medicine and National Reference Centre for AIDS, Department of Microbiology, Buenos Aires University School of Medicine, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Köhl J. Self, non-self, and danger: a complementary view. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 586:71-94. [PMID: 16893066 DOI: 10.1007/0-387-34134-x_6] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complement is a sophisticated system of molecules that is critical to the functional integrity of the body. Initially considered as a defense system to ward off infections, it becomes increasingly clear that the complement system is one of the most important humoral systems to sense danger, i.e., to recognize conserved patterns on pathogens and on altered/damaged self. In addition to this important role in danger recognition, the complement system has the ability to translate the danger information into an adequate cellular innate or adaptive immune response. This is accomplished by two distinct mechanisms: (a) danger sensors that have recognized altered cells or pathogens can directly activate cell-bound receptors (e.g., C1q/C1q receptor interaction), and/or (b) danger sensors initiate cleavage of complement factors C3 and C5, the fragments of which acquire the ability to bind to complement receptors and/or regulators. It is the specific interaction of the danger sensors and of the cleavage fragments with distinct cell-bound receptors/regulators that directs the immune response toward an innate or an adaptive phenotype. Further, the expression pattern of the complement receptors critically impacts the shape of the immune response. Complement has the ability to discriminate between physiological and pathological danger, i.e., physiological cell death and death in response to injury. In the former case, cells are merely flagged for enhanced phagocytosis (by C3 fragments) without accompanying inflammation (through CR3), whereas in the latter case inflammatory signals are accessorily triggered (e.g., by the release of ATs, which recruit and activate neutrophils, eosinophils, etc.). This function is of major importance for apoptotic cell clearance and tissue repair but plays also important roles in fibrotic tissue remodeling in response to chronic tissue injury. Further, complement cleavage fragments may prevent the development of maldaptive immune responses at the mucosal surface. Here, complement fragment C5a does not act as a danger transmitter but as a "homeostasis transmitter," as its interaction with the C5a receptor on DCs provides a signal that prevents DCs from activating CD4+ T cells. The generation of regulatory T cells in response to CD46 ligation may have a similar function, as injured cells lose CD46 expresssion, which may lead to decreased proliferation of Tregs and, consecutively, increased production of T effector cells. Although we are still at the beginning of understanding the complex interaction patterns within the complement system, recent data suggest substantial crosstalk between the signaling pathways downstream of complement receptors and other receptors of the innate immune system that function as immune sensors and/or transmitters (i.e., TLRs, FcgammaRs130,131). Given the importance of complement as a sensor and effector system of innate and adaptive immune responses, a complement-related view of the immune system might help to unravel some enigmas of autoimmunity, allergy, and transplantation.
Collapse
Affiliation(s)
- Jörg Köhl
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, MLC 7021, Cincinnati, OH 45229, USA.
| |
Collapse
|
18
|
Karlsson A, Nygren E, Karlsson J, Nordström I, Dahlgren C, Eriksson K. Ability of monocyte-derived dendritic cells to secrete oxygen radicals in response to formyl peptide receptor family agonists compared to that of myeloid and plasmacytoid dendritic cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:328-30. [PMID: 17215332 PMCID: PMC1828863 DOI: 10.1128/cvi.00349-06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We show that human monocyte-derived dendritic cells (DC) differ considerably from freshly isolated blood-derived myeloid and plasmacytoid DC in their abilities to produce reactive oxygen species in response to different agonists to the formyl peptide receptor family and are thus poor representatives of blood DC in this field of research.
Collapse
Affiliation(s)
- Anna Karlsson
- Department of Rheumatology and Inflammation Research, Guldhedsgatan 10A, 413 46 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
19
|
Klinke DJ. An age-structured model of dendritic cell trafficking in the lung. Am J Physiol Lung Cell Mol Physiol 2006; 291:L1038-49. [PMID: 17030902 DOI: 10.1152/ajplung.00048.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As the sentinels of the immune system, dendritic cells (DC) play a critical role in initiating and maintaining appropriate T cell responses through capture and presentation of antigen, costimulation, and mediator release. Although much is known about certain aspects of DC function, the exact relationship between lung epithelial DC precursor populations in the blood and their functional role in antigen presentation are not clearly understood. I created an age-structured mathematical model for DC trafficking into the lung to address this question. While capturing experimentally observed system dynamics, I found that blood DC are preferentially recruited over blood monocytes. For short-lived antigens, the model results suggest that lung epithelial DC derived from blood DC exhibit a 625% increase in antigen density compared with those derived from blood monocytes. Finally, these results motivate future experimental studies to clarify aspects of DC trafficking in the lung.
Collapse
Affiliation(s)
- David J Klinke
- Department of Chemical Engineering, West Virginia University, PO Box 6102, Morgantown, 26506-6102, USA.
| |
Collapse
|
20
|
Connelly MA, Moulton RA, Smith AK, Lindsey DR, Sinha M, Wetsel RA, Jagannath C. Mycobacteria-primed macrophages and dendritic cells induce an up-regulation of complement C5a anaphylatoxin receptor (CD88) in CD3+ murine T cells. J Leukoc Biol 2006; 81:212-20. [PMID: 16997854 DOI: 10.1189/jlb.1005582] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Complement C5a anaphylatoxin is a potent activator of macrophages, neutrophils, and dendritic cells (DC) and binds the C5a receptor (C5a-R; CD88). Although C5a is chemotactic for T cells, expression of C5a-R on murine T cells has been disputed. We report here that naïve, Con A-activated, and cytokine (IL-12, IL-18)-stimulated murine CD3+ T cells from three strains of mice [C57Bl/6, B10.nSn (C5+/+), B10.on (C5-/-)] lacked C5a-R, as evaluated by immunophenotyping with an anti-C5a-R mAb. Ligation of CD3 induced a modest up-regulation with 3% of CD3+ T cells expressing cell surface C5a-R. T cells primed by APC differentiate into effector T cells. Activation of mycobacteria [bacillus Calmette-Guerin (BCG)]-sensitized T cells through MHC II and TCR interactions via BCG-infected macrophages enhanced the expression of C5a-R with approximately 14% of CD3+ T cells positive for C5a-R. Comparable expression was found in C5+/+ as well as C5-/- strains of mice (14% and 15%, respectively). Furthermore, anti-CD3-activated T cells were primed by BCG-infected DC, and a larger proportion of the primed T cells expressed C5a-R (30-40%). Finally, mice infected with BCG showed significant numbers of CD3+ T cells expressing C5a-R in the spleens during infection. As APC, such as macrophages and DC, can secrete C5 and cleave C5 to C5a and C5b through a peptidase, we suggest that macrophage and DC-T cell interactions can up-regulate C5a-R on T cells through MHC II-TCR and provide a C5a peptide for additional local activation of T cells via C5a-R.
Collapse
Affiliation(s)
- Mary Anne Connelly
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, MSB 2.200, 6431 Fannin, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Köhl J, Wills-Karp M. Complement regulates inhalation tolerance at the dendritic cell/T cell interface. Mol Immunol 2006; 44:44-56. [PMID: 16889830 DOI: 10.1016/j.molimm.2006.06.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 06/22/2006] [Indexed: 12/31/2022]
Abstract
Pulmonary exposure to innocuous aeroallergens is a common event leading to inhalation tolerance. Distinct subsets of pulmonary dendritic cells (DC) and regulatory T cells (T(Reg)) play critical roles in mediating and maintaining such tolerance. In asthmatics, the same aeroallergens drive a maladaptive, Th2-biased immune response resulting in airway inflammation and airway hyper-reactivity. The mechanisms underlying the breakdown of inhalation tolerance, leading to the Th2-driven inflammation in rising numbers of asthmatic patients from industrialized countries remain elusive. The recent resurgence of interest in the role of the innate immune mediators in regulating adaptive immune response has sparked studies aimed at identifying the role of complement in allergic asthma. In this context, an unexpected role for the anaphylatoxin C5a receptor in allergic sensitization has been found. In models of experimental allergic asthma, ablation of C5aR signaling during initial allergen exposure either induced or enhanced Th2 sensitization. Mechanistically, C5aR signaling directly affected the function of distinct pulmonary DC subsets that induce or control allergen-induced adaptive immune responses. Signaling pathways downstream of C5 may also impact the function of T(Reg), as T(Reg) from C5 sufficient, but not from C5 deficient mice, suppress DC activation and subsequent development of Th2-driven inflammation. The emerging paradigm is that constitutive local generation of C5a and C5aR signaling in airway DCs controls inhalation tolerance directly as well as indirectly through sensitization of airway DCs for T(Reg)-mediated immunosuppression.
Collapse
Affiliation(s)
- Jörg Köhl
- Division of Molecular Immunology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | | |
Collapse
|
22
|
Wang ZY, Yang D, Chen Q, Leifer CA, Segal DM, Su SB, Caspi RR, Howard ZOM, Oppenheim JJ. Induction of dendritic cell maturation by pertussis toxin and its B subunit differentially initiate Toll-like receptor 4–dependent signal transduction pathways. Exp Hematol 2006; 34:1115-24. [PMID: 16863919 DOI: 10.1016/j.exphem.2006.04.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Pertussis toxin (PT) has the capacity to activate dendritic cells (DCs) for the augmentation of cell-mediated immune responses. To investigate the mechanism(s) by which PT activates DCs, we investigated the effects of PT and its B-oligomer (PTB) on the maturation of human and mouse DCs and determined whether PT could act as a pathogen-associated molecular pattern to activate one of the Toll-like receptors (TLRs). METHODS The effects of PT and PTB on the maturation of human and mouse DCs were analyzed in terms of surface marker expression, cytokine production, antigen-presenting capacity, and intracellular signaling. The participation of TLR4 in PT-induced signaling was determined by comparing the effect of PT on DCs derived from TLR4-deficient and wild-type mice, as well as by measuring PT-induced NF-kappaB activation in HEK293 cells transiently transfected to express various TLRs. RESULTS Although both promoted phenotypic and functional maturation DCs, however, unlike PT that induced DC production of interleukin (IL)-6, tumor necrosis factor-alpha, IL-12, and interferon-inducible protein, PTB was capable of stimulating the production of interferon-inducible protein. Bone marrow-derived DCs from C3H/HeJ mice with defective TLR-4 alleles were unresponsive to PT and PTB, whereas DCs from C3H/HeN mice responded. In addition, PT induced NF-kappaB activation and IL-8 production in HEK293 cells transfected with a combination of TLR4 and MD2 but not in nontransfected or TLR2-transfected HEK293 cells. Comparison of the patterns of cytokine induction and intracellular signaling events in DCs treated by PT and PTB revealed that although PT, like lipopolysaccharide, triggered both MyD88-dependent and -independent pathways, PTB preferentially triggered MyD88-independent pathways. Interestingly, mouse splenocyte proliferation in response to PT and PTB was only partially dependent on TLR4. CONCLUSION The data identify PT as another pathogen-associated molecular pattern that induces DC maturation in a TLR4-dependent manner. Unlike PT, which triggers both MyD88-dependent and -independent pathways, PTB only triggers the MyD88-independent pathway in DCs.
Collapse
Affiliation(s)
- Zhao Yuan Wang
- Intramural Basic Research Program, SAIC-Frederick, Inc, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Köhl J. The role of complement in danger sensing and transmission. Immunol Res 2006; 34:157-76. [PMID: 16760575 DOI: 10.1385/ir:34:2:157] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/08/2023]
Abstract
Self-non-self discrimination has long been considered the main function of the immune system. Increasing evidence supports the view of the immune system as a network of complex danger sensors and transmitters in which self-non-self discrimination is only one facet. To meet the challenge of danger sensing, the immune system carries a large stock of germline-encoded, highly conserved molecules that can recognize microbial as well as modified host structures. Among those are the Toll-like receptors (TLR), which comprise a dozen membrane-bound pattern-recognition receptors that directly link danger recognition to danger transmission through activation of several distinct cellular signaling pathways. Here, I discuss the function and biology of a complex, evolutionary ancient system, the complement system, which has long been considered critical to host defense. In contrast to TLRs, the complement system senses danger by a panel of soluble molecules that can directly bind to specific complement receptors and/or initiate a complex cascade of proteolytic events that lead to the generation of soluble complement fragments able to bind to another, distinct set of specific complement receptors. As I will outline in this review, complement- mediated danger sensing and the complex transition of this information into distinct cellular activation profiles is critical for tissue homeostasis under steady-state conditions and in response to infection and cell injury. Furthermore, I will discuss recent findings that support a concept of intense cross-talk between the complement system and TLRs, which defines the quality and the magnitude of immune responses in vivo.
Collapse
Affiliation(s)
- Jörg Köhl
- Division of Molecular Immunology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA.
| |
Collapse
|
24
|
Bajtay Z, Csomor E, Sándor N, Erdei A. Expression and role of Fc- and complement-receptors on human dendritic cells. Immunol Lett 2006; 104:46-52. [PMID: 16448704 DOI: 10.1016/j.imlet.2005.11.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 11/22/2005] [Accepted: 11/22/2005] [Indexed: 10/25/2022]
Abstract
Dendritic cells (DCs) are professional antigen presenting cells, which take up pathogens/foreign structures in peripheral tissues, then migrate to secondary lymphoid organs where they initiate adaptive immune responses by activating naive T-cells. In the early phase of antigen uptake pattern recognition receptors (including mannose-, scavenger- and toll-like receptors) that recognize pathogen-associated molecular patterns play an important role. Later receptors binding opsonized antigen are also involved in phagocytosis. These cell membrane molecules include various Fc-receptors, recognizing different isotypes of antibodies and various complement-receptors, such as CR3, CR4 and the C1q-binding complex of calreticulin and CD91. Here we aim to summarize how these immunecomplex binding receptors are involved in the initiation of DC maturation, and how they influence antigen presentation as well as some additional functions of these cells.
Collapse
Affiliation(s)
- Zsuzsa Bajtay
- Department of Immunology, Eötvös Loránd University, Pázmány Peter s. 1/C, Budapest H-1117, Hungary
| | | | | | | |
Collapse
|
25
|
Pétrin D, Turcotte S, Gilbert AK, Rola-Pleszczynski M, Stankova J. The anti-apoptotic effect of leukotriene B4 in neutrophils: A role for phosphatidylinositol 3-kinase, extracellular signal-regulated kinase and Mcl-1. Cell Signal 2006; 18:479-87. [PMID: 15970427 DOI: 10.1016/j.cellsig.2005.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 05/24/2005] [Indexed: 11/19/2022]
Abstract
The constitutive commitment of neutrophils to apoptosis is a key process for the control and resolution of inflammation and it can be delayed by various inflammatory mediators including leukotriene B4 (LTB4). The mechanisms by which LTB4 contributes to neutrophil survival are still unclear and the present work aims at identifying intracellular pathways underlying this effect. Inhibition of human neutrophil apoptosis by LTB4 was abrogated by the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and by the specific MEK inhibitor PD98059. In contrast, inhibitors of p38 MAPK, Jak2/3 and Src did not hinder the anti-apoptotic effect of LTB4. We also investigated the effects of members of the Bcl-2 family as they play a crucial role in the regulation of programmed cell death. When neutrophils were incubated with LTB4 for 1 to 6 h, the mRNA levels of the anti-apoptotic protein Mcl-1 were upregulated approximately 2-fold, while those of the pro-apoptotic protein Bax were downregulated 3- to 4-fold, as determined by real-time PCR. Accordingly, Western blot analysis revealed that the expression of Mcl-1 was upregulated in presence of LTB4, while flow cytometric analysis revealed that Bax protein was downregulated. Furthermore, the modulatory effects of LTB4 on Mcl-1 and Bax proteins were abolished in the presence of either wortmannin or PD98059. Taken together, these results demonstrate the participation of PI3-K and MEK/ERK kinases, as well as regulatory apoptotic proteins such as Mcl-1 and Bax, in the anti-apoptotic effects of LTB4 in human neutrophils.
Collapse
Affiliation(s)
- Darlaine Pétrin
- Immunology Division, Department of Pediatrics, Faculty of Medicine, Université de Sherbrooke, 3001, North 12th Avenue, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | |
Collapse
|
26
|
Legler DF, Krause P, Scandella E, Singer E, Groettrup M. Prostaglandin E2 is generally required for human dendritic cell migration and exerts its effect via EP2 and EP4 receptors. THE JOURNAL OF IMMUNOLOGY 2006; 176:966-73. [PMID: 16393982 DOI: 10.4049/jimmunol.176.2.966] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The control of dendritic cell (DC) migration is pivotal for the initiation of cellular immune responses. In this study, we demonstrate that the migration of human monocyte-derived (Mo)DCs as well as of ex vivo peripheral blood DCs toward CCL21, CXCL12, and C5a is stringently dependent on the presence of the proinflammatory mediator PGE2, although DCs expressed CXCR4 and C5aR on their surface and DC maturation was accompanied by CCR7 up-regulation independently of PGE2. The necessity of exogenous PGE2 for DC migration is not due to the suppression of PGE2 synthesis by IL-4, which is used for MoDC differentiation, because maturation-induced endogenous production of PGE2 cannot promote DC migration. Surprisingly, PGE2 was absolutely required at early time points of maturation to enable MoDC chemotaxis, whereas PGE2 addition during terminal maturation events was ineffective. In contrast to mouse DCs, which exclusively rely on EP4 receptor triggering for migration, human MoDCs require a signal mediated by EP2 or EP4 either alone or in combination. Our results provide clear evidence that PGE2 is a general and mandatory factor for the development of a migratory phenotype of human MoDCs as well as for peripheral blood myeloid DCs.
Collapse
MESH Headings
- Base Sequence
- Cell Differentiation
- Cell Movement/drug effects
- Cell Movement/physiology
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/physiology
- DNA, Complementary/genetics
- Dendritic Cells/cytology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/physiology
- Dinoprostone/biosynthesis
- Dinoprostone/pharmacology
- Dinoprostone/physiology
- Gene Expression/drug effects
- Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology
- Humans
- In Vitro Techniques
- Interleukin-13/pharmacology
- Interleukin-4/pharmacology
- Membrane Proteins/genetics
- Receptor, Anaphylatoxin C5a
- Receptors, CCR7
- Receptors, CXCR4/genetics
- Receptors, Chemokine/genetics
- Receptors, Complement/genetics
- Receptors, Prostaglandin E/physiology
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
- Recombinant Proteins
- Signal Transduction
Collapse
|
27
|
Rittner HL, Mousa SA, Labuz D, Beschmann K, Schäfer M, Stein C, Brack A. Selective local PMN recruitment by CXCL1 or CXCL2/3 injection does not cause inflammatory pain. J Leukoc Biol 2006; 79:1022-32. [PMID: 16522746 DOI: 10.1189/jlb.0805452] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Polymorphonuclear cells (PMN) are recruited in early inflammation and are believed to contribute to inflammatory pain. However, studies demonstrating a hyperalgesic role of PMN did not examine selective PMN recruitment or did not document effective PMN recruitment. We hypothesized that hyperalgesia does not develop after chemokine-induced PMN selective recruitment and is independent of PMN infiltration in complete Freund's adjuvant (CFA)-induced, local inflammation. PMN were recruited by intraplantar injection of CXC chemokine ligand 1 (CXCL1; keratinocyte-derived chemokine), CXCL2/3 (macrophage inflammatory protein-2), or CFA, with or without preceding systemic PMN depletion. Chemokine inoculation resulted in dose (0-30 microg)- and time (0-12 h)-dependent, selective recruitment of PMN as quantified by flow cytometry. CXCL2/3, but not CXCL1, was less effective at high doses, probably as a result of significant down-regulation of CXC chemokine receptor 2 expression on blood PMN. Neither chemokine caused mechanical or thermal hyperalgesia as determined by the Randall-Selitto and Hargreaves test, respectively, despite comparable expression of activation markers (i.e., CD11b, CD18, and L-selectin) on infiltrating PMN. In contrast, CFA injection induced hyperalgesia, independent of PMN recruitment. c-Fos mRNA and immunoreactivity in the spinal cord were increased significantly after inoculation of CFA-independent of PMN-migration but not of CXCL2/3. Measurement of potential hyperalgesic mediators showed that hyperalgesia correlated with local prostaglandin E2 (PGE2) but not with interleukin-1beta production. In summary, hyperalgesia, local PGE2 production, and spinal c-Fos expression occur after CFA-induced inflammation but not after CXCL1- or CXCL2/3-induced, selective PMN recruitment. Thus, PMN seem to be less important in inflammatory hyperalgesia than previously thought.
Collapse
Affiliation(s)
- Heike L Rittner
- Klinik für Anaesthesiologie und operative Intensivmedizin, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Vegh Z, Kew RR, Gruber BL, Ghebrehiwet B. Chemotaxis of human monocyte-derived dendritic cells to complement component C1q is mediated by the receptors gC1qR and cC1qR. Mol Immunol 2005; 43:1402-7. [PMID: 16140380 DOI: 10.1016/j.molimm.2005.07.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Indexed: 10/25/2022]
Abstract
Dendritic cells (DCs) are recruited to inflammatory sites where they phagocytose and process antigens for subsequent presentation to the T lymphocytes in the lymphoid tissue. Several leukocyte chemoattractants and their specific receptors have been shown to induce the migration of DC. The complement protein C1q has multiple immune functions including acting as a chemoattractant for neutrophils, eosinophils and mast cells. Therefore, the objective of this study was to determine if soluble C1q can induce chemotaxis of DC. Culturing cells in GM-CSF and IL-4 for 5 to 7 days generated human monocyte-derived DCs. In addition, LPS was added from day 5 to 7 to induce DC maturation. Cells were classified as either immature or mature DC by assessing the cell surface markers by flow cytometry, phagocytosis of dextran-FITC and T cell proliferation in an allogenic MLR. Immature DCs express the C1q receptors (C1qR), gC1qR and cC1qR/CR and, accordingly, display a vigorous migratory response to soluble C1q with maximal cell movement observed at 10-50nM. In contrast, mature DCs neither express C1qR nor do move to a gradient of soluble C1q. Varying the concentration gradient of C1q (checkerboard assay) showed that the protein largely induces a chemotactic response. Finally, blocking gC1qR and cC1qR/CR by using specific antibodies abolished the chemotactic response to C1q but had no effect on a different chemoattractant C5a. These results clearly demonstrate that C1q functions as a chemotactic factor for immature DC, and migration is mediated through ligation of both gC1qR and cC1qR/CR.
Collapse
Affiliation(s)
- Zsuzsa Vegh
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8161, USA
| | | | | | | |
Collapse
|
29
|
Kurosaka K, Chen Q, Yarovinsky F, Oppenheim JJ, Yang D. Mouse cathelin-related antimicrobial peptide chemoattracts leukocytes using formyl peptide receptor-like 1/mouse formyl peptide receptor-like 2 as the receptor and acts as an immune adjuvant. THE JOURNAL OF IMMUNOLOGY 2005; 174:6257-65. [PMID: 15879124 DOI: 10.4049/jimmunol.174.10.6257] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mammalian antimicrobial proteins, such as defensins and cathelicidin, have stimulating effects on host leukocytes. Cathelin-related antimicrobial peptide (CRAMP), the orthologue of human cathelicidin/LL-37, is the sole identified murine cathelicidin. CRAMP has been shown to have both antimicrobial and angiogenic activities. However, whether CRAMP, like human cathelicidin/LL-37, also exhibits a direct effect on the migration and function of leukocytes is not known. We have observed that CRAMP, like LL-37, was chemotactic for human monocytes, neutrophils, macrophages, and mouse peripheral blood leukocytes. CRAMP also induced calcium mobilization and the activation of MAPK in monocytes. CRAMP-induced calcium flux in monocytes was desensitized by MMK-1, an agonistic ligand specific for formyl peptide receptor-like-1 (FPRL1), and vice versa, suggesting the use of FPRL1 by CRAMP as a receptor. Furthermore, CRAMP induced the chemotaxis of human embryonic kidney 293 cells transfected with either FPRL1 or mouse formyl peptide receptor-2, the mouse homologue of FPRL1, but not by untransfected parental human embryonic kidney 293 cells, confirming the use of FPRL1/mouse formyl peptide receptor-2 by CRAMP. Injection of CRAMP into mouse air pouches resulted in the recruitment predominantly of neutrophils and monocytes, indicating that CRAMP acts as a chemotactic factor in vivo. Finally, simultaneous administration of OVA with CRAMP to mice promoted both humoral and cellular Ag-specific immune responses. Thus, CRAMP functions as both a chemoattractant for phagocytic leukocytes and an enhancer of adaptive immune response.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/metabolism
- Adjuvants, Immunologic/physiology
- Amino Acid Sequence
- Animals
- Anti-Bacterial Agents/administration & dosage
- Anti-Bacterial Agents/pharmacology
- Antimicrobial Cationic Peptides/administration & dosage
- Antimicrobial Cationic Peptides/metabolism
- Antimicrobial Cationic Peptides/physiology
- Cathelicidins
- Cell Line
- Chemotactic Factors/metabolism
- Chemotactic Factors/physiology
- Chemotaxis, Leukocyte/immunology
- Diffusion Chambers, Culture
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Female
- GTP-Binding Protein alpha Subunits, Gi-Go/physiology
- Humans
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Monocytes/cytology
- Monocytes/immunology
- Monocytes/metabolism
- Neutrophils/cytology
- Neutrophils/immunology
- Neutrophils/metabolism
- Receptors, Formyl Peptide/metabolism
- Receptors, Formyl Peptide/physiology
Collapse
Affiliation(s)
- Kahori Kurosaka
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, and Basic Research Program, Science Applications International Corporation-Frederick, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
30
|
Yang D, Chen Q, Rosenberg HF, Rybak SM, Newton DL, Wang ZY, Fu Q, Tchernev VT, Wang M, Schweitzer B, Kingsmore SF, Patel DD, Oppenheim JJ, Zack Howard OM. Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. THE JOURNAL OF IMMUNOLOGY 2004; 173:6134-42. [PMID: 15528350 PMCID: PMC2847482 DOI: 10.4049/jimmunol.173.10.6134] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A number of mammalian antimicrobial proteins produced by neutrophils and cells of epithelial origin have chemotactic and activating effects on host cells, including cells of the immune system. Eosinophil granules contain an antimicrobial protein known as eosinophil-derived neurotoxin (EDN), which belongs to the RNase A superfamily. EDN has antiviral and chemotactic activities in vitro. In this study, we show that EDN, and to a lesser extent human pancreatic RNase (hPR), another RNase A superfamily member, activates human dendritic cells (DCs), leading to the production of a variety of inflammatory cytokines, chemokines, growth factors, and soluble receptors. Human angiogenin, a RNase evolutionarily more distant to EDN and hPR, did not display such activating effects. Additionally, EDN and hPR also induced phenotypic and functional maturation DCs. These RNases were as efficacious as TNF-alpha, but induced a different set of cytokine mediators. Furthermore, EDN production by human macrophages could be induced by proinflammatory stimuli. The results reveal the DC-activating activity of EDN and hPR and suggest that they are likely participants of inflammatory and immune responses. A number of endogenous mediators in addition to EDN have been reported to have both chemotactic and activating effects on APCs, and can thus amplify innate and Ag-specific immune responses to danger signals. We therefore propose these mediators be considered as endogenous multifunctional immune alarmins.
Collapse
Affiliation(s)
- De Yang
- Basic Research Program, National Cancer Institute, Frederick, MD 21702
| | - Qian Chen
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Helene F. Rosenberg
- Eosinophil Pathophysiology Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Susanna M. Rybak
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD 21702
| | - Dianne L. Newton
- Division of Cancer Treatment and Diagnosis/Developmental Therapeutics Program Support Program, Science Applications International Corporation (SAIC)-Frederick, National Cancer Institute, Frederick, MD 21702
| | - Zhao Yuan Wang
- Basic Research Program, National Cancer Institute, Frederick, MD 21702
| | - Qin Fu
- Molecular Staging, New Haven, CT 06511
| | | | | | | | | | - Dhavalkumar D. Patel
- Molecular Staging, New Haven, CT 06511
- Thurston Arthritis Research Center and Department of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Joost J. Oppenheim
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - O. M. Zack Howard
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
- Address correspondence and reprint requests to Dr. O. M. Zack Howard, Laboratory of Molecular Immunoregulation and Center for Cancer Research, National Cancer Institute, P.O. Box B, Frederick, MD 21702-1201.
| |
Collapse
|
31
|
Melendez AJ, Ibrahim FBM. Antisense knockdown of sphingosine kinase 1 in human macrophages inhibits C5a receptor-dependent signal transduction, Ca2+ signals, enzyme release, cytokine production, and chemotaxis. THE JOURNAL OF IMMUNOLOGY 2004; 173:1596-603. [PMID: 15265887 DOI: 10.4049/jimmunol.173.3.1596] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The anaphylatoxin C5a is produced following the activation of the complement system and is associated with a variety of pathologies, including septic shock and adult respiratory distress syndrome, and with immune complex-dependent diseases such as rheumatoid arthritis. C5a has been shown to regulate inflammatory functions by interacting with its receptor, C5aR, which belong to the rhodopsin family of seven-transmembrane GPCRs. However, the intracellular signaling pathways triggered by C5aR on immune-effector cells are not well understood. In this report we present data showing that, in human monocyte-derived macrophages, C5aR uses the intracellular signaling molecule sphingosine kinase (SPHK)1 to trigger various physiological responses. Our data show that C5a rapidly stimulates the generation of sphingosine-1-phosphate, SPHK activity, and membrane translocation of SPHK1. Using an antisense oligonucleotide against SPHK1, we show that knockdown of SPHK1 abolishes the C5a-triggered intracellular Ca(2+) signals, degranulation, cytokine generation, and chemotaxis. Our study shows for the first time that SPHK1 not only plays a key role in the generation and release of proinflammatory mediators triggered by anaphylatoxins from human macrophages but is also involved in the process of immune cell motility, thus pointing out SPHK1 as a potential therapeutic target for the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Alirio J Melendez
- Department of Physiology, National University of Singapore, Singapore.
| | | |
Collapse
|
32
|
Chen Q, Wade D, Kurosaka K, Wang ZY, Oppenheim JJ, Yang D. Temporin A and related frog antimicrobial peptides use formyl peptide receptor-like 1 as a receptor to chemoattract phagocytes. THE JOURNAL OF IMMUNOLOGY 2004; 173:2652-9. [PMID: 15294982 DOI: 10.4049/jimmunol.173.4.2652] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many mammalian antimicrobial peptides (AMPs) have multiple effects on antimicrobial immunity. We found that temporin A (TA), a representative frog-derived AMP, induced the migration of human monocytes, neutrophils, and macrophages with a bell-shaped response curve in a pertussis toxin-sensitive manner, activated p44/42 MAPK, and stimulated Ca(2+) flux in monocytes, suggesting that TA is capable of chemoattracting phagocytic leukocytes by the use of a G(ialpha) protein-coupled receptor. TA-induced Ca(2+) flux in monocytes was cross-desensitized by an agonistic ligand MMK-1 specific for formyl peptide receptor-like 1 (FPRL1) and vice versa, suggesting that TA uses FPRL1 as a receptor. This conclusion was confirmed by data showing that TA selectively stimulated chemotaxis of HEK 293 cells transfected with human FPRL1 or its mouse ortholog, murine formyl peptide receptor 2. In addition, TA elicited the infiltration of neutrophils and monocytes into the injection site of mice, indicating that TA is also functionally chemotactic in vivo. Examination of two additional temporins revealed that Rana-6 was also able to attract human phagocytes using FPRL1, but temporin 1P selectively induced the migration of neutrophils using a distinct receptor. Comparison of the chemotactic and antimicrobial activities of several synthetic analogues suggested that these activities are likely to rely on different structural characteristics. Overall, the results demonstrate that certain frog-derived temporins have the capacity to chemoattract phagocytes by the use of human FPRL1 (or its orthologs in other species), providing the first evidence suggesting the potential participation of certain amphibian antimicrobial peptides in host antimicrobial immunity.
Collapse
Affiliation(s)
- Qian Chen
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
33
|
Kim AHJ, Dimitriou ID, Holland MCH, Mastellos D, Mueller YM, Altman JD, Lambris JD, Katsikis PD. Complement C5a receptor is essential for the optimal generation of antiviral CD8+ T cell responses. THE JOURNAL OF IMMUNOLOGY 2004; 173:2524-9. [PMID: 15294968 DOI: 10.4049/jimmunol.173.4.2524] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The complement system has been long regarded as an important effector of the innate immune response. Furthermore, complement contributes to various aspects of B and T cell immunity. Nevertheless, the role of complement in CD8(+) T cell antiviral responses has yet to be fully delineated. We examined the CD8(+) T cell response in influenza type A virus-infected mice treated with a peptide antagonist to C5aR to test the potential role of complement components in CD8(+) T cell responses. We show that both the frequency and absolute numbers of flu-specific CD8(+) T cells are greatly reduced in C5aR antagonist-treated mice compared with untreated mice. This reduction in flu-specific CD8(+) T cells is accompanied by attenuated antiviral cytolytic activity in the lungs. These results demonstrate that the binding of the C5a component of complement to the C5a receptor plays an important role in CD8(+) T cell responses.
Collapse
Affiliation(s)
- Alfred H J Kim
- Department of Microbiology and Immunology and Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Czapiga M, Kirk AD, Lekstrom-Himes J. Platelets deliver costimulatory signals to antigen-presenting cells: A potential bridge between injury and immune activation. Exp Hematol 2004; 32:135-9. [PMID: 15102473 DOI: 10.1016/j.exphem.2003.11.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Revised: 11/03/2003] [Accepted: 11/10/2003] [Indexed: 11/23/2022]
Abstract
The danger model of immunity and tolerance holds that antigen-presenting cells (APCs), activated by stress, injury, or necrosis, but not by physiological (apoptotic) cell death, initiate adaptive immune responses. APC activation is fundamentally associated with binding of CD40 to its ligand CD154. Platelets express CD154 upon activation and are thus potential primal danger signals linking the homeostatic response to trauma to activation of the acquired immune system. Previously, we showed that platelets can undergo gradient-driven migration, or chemotaxis, toward supernatants from cells injured by repeated freeze/thaws, UV light, or ischemia/reperfusion. Herein, we demonstrate that platelet-derived CD154 induces immature dendritic cell maturation with upregulation of costimulatory molecules and IL-12p40 production. Overall, these results provide a mechanism for platelet activation of APC facilitating the induction of adaptive immunity in environments of cell injury.
Collapse
Affiliation(s)
- Meggan Czapiga
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Md, USA
| | | | | |
Collapse
|
35
|
Weinmann O, Gutzmer R, Zwirner J, Wittmann M, Langer K, Lisewski M, Mommert S, Kapp A, Werfel T. Up-regulation of C5a receptor expression and function on human monocyte derived dendritic cells by prostaglandin E2. Immunology 2004; 110:458-65. [PMID: 14632643 PMCID: PMC1783066 DOI: 10.1111/j.1365-2567.2003.01764.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The expression of the C5a-receptor (C5aR) on dendritic cells, its regulation and function have not been well established thus far. We show that the C5aR is expressed on human monocyte-derived dendritic cells (DC) and can be down-regulated by maturation stimuli such as tumour necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS) or CD40L and by the T helper 1-cytokine interferon-gamma (INF-gamma). Prostaglandin E2 (PGE2), a proinflammatory mediator supporting dendritic cell activation and necessary for adequate DC migration, leads to the up-regulation of C5aR expression when incubated alone and prevents down-regulation when given in combination with TNF-alpha or LPS. Stimulation of C5aR on DC triggered F-actin polymerization, indicating the chemotactic potential of DC elicited by C5a. C5a induced F-actin polymerization was increased when C5aR was up-regulated by PGE2. Stimulation of DC with C5a resulted in interleukin-10 production which was significantly increased after C5aR up-regulation with TNF-alpha and PGE2. Therefore, up-regulation of the C5aR on human DC alters their chemotactic and immunologic response to C5a.
Collapse
Affiliation(s)
- Oliver Weinmann
- Department of Dermatology and Allergology, Hannover Medical UniversityHannover, Germany
| | - Ralf Gutzmer
- Department of Dermatology and Allergology, Hannover Medical UniversityHannover, Germany
| | - Jörg Zwirner
- Department of Immunology, University of GöttingenGöttingen, Germany
| | - Miriam Wittmann
- Department of Dermatology and Allergology, Hannover Medical UniversityHannover, Germany
| | - Katja Langer
- Department of Dermatology and Allergology, Hannover Medical UniversityHannover, Germany
| | - Margarete Lisewski
- Department of Dermatology and Allergology, Hannover Medical UniversityHannover, Germany
| | - Susanne Mommert
- Department of Dermatology and Allergology, Hannover Medical UniversityHannover, Germany
| | - Alexander Kapp
- Department of Dermatology and Allergology, Hannover Medical UniversityHannover, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergology, Hannover Medical UniversityHannover, Germany
| |
Collapse
|
36
|
Bae YS, Park EY, Kim Y, He R, Ye RD, Kwak JY, Suh PG, Ryu SH. Novel chemoattractant peptides for human leukocytes. Biochem Pharmacol 2003; 66:1841-51. [PMID: 14563494 DOI: 10.1016/s0006-2952(03)00552-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phospholipase A(2) plays a key role in phagocytic cell functions. By screening a synthetic hexapeptide combinatorial library, we identified 24 novel peptides based on their ability to stimulate arachidonic acid release associated with cytosolic phospholipase A(2) activity in differentiated HL60 cells. The identified peptides, that contain the consensus sequence (K/R/M)KYY(P/V/Y)M, also induce intracellular calcium release in a pertussis toxin-sensitive manner showing specific action on phagocytic leukocytes, but not on other cells. Functionally, the peptides stimulate superoxide generation and chemotactic migration in human neutrophils and monocytes. Four of the tested active peptides were ligands for formyl peptide receptor like 1. Among these, two peptides with the consensus sequence (R/M)KYYYM can induce intracellular calcium release in undifferentiated HL60 cells that do not express formyl peptide receptor like 1, indicating usage of other receptor(s). A study of intracellular signaling in differentiated HL60 cells induced by the peptides has revealed that four of the novel peptides can induce extracellular signal-regulated protein kinase activation via shared and distinct signaling pathways, based on their dependence of phospatidylinositol-3-kinase, protein kinase C, and MEK. These peptides provide previously unavailable tools for study of differential signaling in leukocytes.
Collapse
Affiliation(s)
- Yoe-Sik Bae
- Department of Biochemistry, College of Medicine, Medical Research Center for Cancer Molecular Therapy, Dong-A University, Busan 02-714, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Yang D, Rosenberg HF, Chen Q, Dyer KD, Kurosaka K, Oppenheim JJ. Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood 2003; 102:3396-403. [PMID: 12855582 DOI: 10.1182/blood-2003-01-0151] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent publications have highlighted the chemotactic activities of antimicrobial proteins derived from the granules of neutrophils and basophils. Eosinophil granules also contain antimicrobial proteins. One of them is eosinophil-derived neurotoxin (EDN), a protein belonging to the ribonuclease A (RNase A) superfamily, which has recently been found to have antiviral activity in vitro. We found that EDN was selectively chemotactic for dendritic cells (DCs). The DC chemotactic activity of EDN was inhibited by either pretreatment of DCs with pertussis toxin or by simultaneous addition of placental RNase inhibitor to inhibit the activity of EDN. EDN was not chemotactic for leukocytes other than DCs. Mouse eosinophil-associated RNase 2 (mEAR2), one of a cluster of divergent orthologs of human EDN, was also chemotactic for human as well as mouse DCs. Sequence and mutational analysis demonstrated the importance of the N-terminal region of mEAR2 in mediating its chemotactic effect on DCs. EDN also induced the activation of p42/44 mitogen-activated protein kinase (MAPK) in DCs. Furthermore, injection of mEAR2 into the air pouches of mice resulted in the recruitment of DCs into the air pouches. Thus, EDN and its mouse ortholog, mEAR2, are eosinophil granule-derived antimicrobial RNases that function as chemoattractants for DCs in vitro and in vivo.
Collapse
Affiliation(s)
- De Yang
- Basic Research Program, SAIC-Frederick, Laboratory of Molecular Regulation, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg 560, Rm 31-19, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Soruri A, Kim S, Kiafard Z, Zwirner J. Characterization of C5aR expression on murine myeloid and lymphoid cells by the use of a novel monoclonal antibody. Immunol Lett 2003; 88:47-52. [PMID: 12853161 DOI: 10.1016/s0165-2478(03)00052-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The anaphylatoxin C5a is a potent proinflammatory stimulus with immunomodulatory activities. Expression of its receptor C5aR (CD88) has been detected on cells of myeloid origin such as granulocytes and monocytes/macrophages. However, controversial results exist on the expression of C5aR on T and B lymphocytes as well as on mature dendritic cells (DC). The aim of the present study was to characterize expression of C5aR protein on myeloid and lymphoid cells in the mouse. For this purpose, rat monoclonal antibodies with specificity against the murine C5aR were generated. Using these reagents a distinct amount of C5aR antigen was observed on neutrophils and macrophages. In contrast, C5aR protein was not detectable on resting or stimulated murine T or B lymphocytes. Furthermore, no C5aR protein could be observed on splenic CD11c positive DC which have been classified in the literature as relatively mature. Taken together, our results suggest that in the mouse expression of C5aR protein may be restricted to leukocytes of myeloid origin whereas previous evidence for C5aR expression on lymphoid cells may be reevaluated.
Collapse
Affiliation(s)
- Afsaneh Soruri
- Department of Immunology, Georg-August-University Göttingen, Kreuzbergring 57, D-37075 Gottingen, Germany
| | | | | | | |
Collapse
|
39
|
Soruri A, Kiafard Z, Dettmer C, Riggert J, Köhl J, Zwirner J. IL-4 down-regulates anaphylatoxin receptors in monocytes and dendritic cells and impairs anaphylatoxin-induced migration in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3306-14. [PMID: 12626590 DOI: 10.4049/jimmunol.170.6.3306] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anaphylatoxins mobilize leukocytes to the sites of inflammation. In the present study we investigated the impact of GM-CSF, IL-4, and IFN-gamma on anaphylatoxin receptor expression in monocytes and dendritic cells (DC). IL-4 was identified as the strongest down-regulator of the receptors for C5a and C3a in monocytes and monocyte-derived DC (MoDC). To study the impact of IL-4 on anaphylatoxin-induced chemotaxis, an in vivo migration model was established. For this purpose, human monocytes and MoDC were injected i.v. into SCID mice that at the same time received anaphylatoxins into the peritoneal cavity. A peritoneal influx of human monocytes could be demonstrated by 4 h after injections of C5a and C3a. In line with receptor down-regulation, IL-4 treatment inhibited in vivo mobilization of human monocytes and MoDC in response to C5a and C3a. In addition to its effects on human cells, IL-4 reduced C5a receptors in murine bone marrow-derived DC and impaired recruitment of labeled bone marrow-derived DC in syngeneic BALB/c mice to i.p. injected C5a. Overall, these data suggest that inhibition of a rapid anaphylatoxin-induced mobilization of monocytes and DC to inflamed tissues represents an important anti-inflammatory activity of the Th2 cytokine IL-4.
Collapse
MESH Headings
- Anaphylaxis/immunology
- Anaphylaxis/pathology
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/metabolism
- Bone Marrow Cells/cytology
- Cell Differentiation/immunology
- Cell Movement/immunology
- Cells, Cultured
- Complement C3/administration & dosage
- Complement C3/metabolism
- Complement C5a/administration & dosage
- Complement C5a/metabolism
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Disease Models, Animal
- Down-Regulation/immunology
- Female
- Humans
- Injections, Intraperitoneal
- Injections, Intravenous
- Interleukin-4/administration & dosage
- Interleukin-4/pharmacology
- Male
- Membrane Proteins
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Monocytes/immunology
- Monocytes/metabolism
- Monocytes/transplantation
- Receptor, Anaphylatoxin C5a
- Receptors, Complement/antagonists & inhibitors
- Receptors, Complement/biosynthesis
- Receptors, Complement/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Afsaneh Soruri
- Department of Immunology, Georg August University Gottingen, Gottingen, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Suresh M, Molina H, Salvato MS, Mastellos D, Lambris JD, Sandor M. Complement component 3 is required for optimal expansion of CD8 T cells during a systemic viral infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:788-94. [PMID: 12517942 DOI: 10.4049/jimmunol.170.2.788] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In addition to its established role in innate immune mechanisms, complement component C3 is also of critical importance in B cell activation and T cell-dependent Ab responses. In this study, we have examined the requirement for C3 in the generation of primary CD8 T cell responses to an acute systemic viral infection. We compared Ag-specific CD8 T cell responses to lymphocytic choriomeningitis virus (LCMV) between wild-type (+/+) and C3-deficient (C3(-/-)) mice on both 129/B6 and B6 backgrounds. These studies revealed that C3 activity is required for optimal expansion of LCMV-specific effector CD8 T cells in an epitope-dependent fashion, which is influenced by the genetic background of the mice. Studies in complement receptor 1/2 (CR1/CR2)-deficient mice showed that regulation of LCMV-specific CD8 T cell responses by C3 is not dependent upon CR1/CR2. These findings may have implications in vaccine development, therapy of autoimmune diseases, and prevention of graft rejection.
Collapse
Affiliation(s)
- M Suresh
- Department of Pathobiological Sciences, University of Wisconsin, Madison 53706, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Scapini P, Crepaldi L, Pinardi C, Calzetti F, Cassatella MA. CCL20/macrophage inflammatory protein-3alpha production in LPS-stimulated neutrophils is enhanced by the chemoattractant formyl-methionyl-leucyl-phenylalanine and IFN-gamma through independent mechanisms. Eur J Immunol 2002; 32:3515-24. [PMID: 12442334 DOI: 10.1002/1521-4141(200212)32:12<3515::aid-immu3515>3.0.co;2-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have recently demonstrated that polymorphonuclear neutrophils (PMN), when cultured with LPS or TNF-alpha, have the capacity to release CCL20, a chemokine primarily chemotactic for immature dendritic cells and specific lymphocyte subsets. Here, we report that the chemoattractant formyl-methionyl-leucyl-phenylalanine (fMLP), as well as the immunoregulatory cytokine IFN-gamma, can significantly up-modulate the production of neutrophil-derived CCL20 through entirely unrelated mechanisms. We found that fMLP dramatically up-regulates CCL20 mRNA expression and synthesis in neutrophils stimulated with LPS for 2-3 h, and that its effect takes place through CCL20 mRNA stabilization. In contrast, IFN-gamma potentiates CCL20 gene expression and production only after 21 h of LPS treatment, its effect being mediated by endogenous TNF-alpha in an autocrine fashion, as revealed using neutralizing anti-TNF-alpha antibodies added to IFN-gamma plus LPS-treated PMN. Finally, we demonstrate that activation of p38 mitogen-activated protein kinase (MAPK) plays an important role in mediating the production of CCL20 induced by LPS (with or without IFN-gamma), whereas activation of p42/44 extracellular signal-regulated kinases (ERK) is involved in the enhancing effect of fMLP. Taken together, these findings identify novel biological actions exerted by fMLP and IFN-gamma, potentially involved in the orchestration of inflammatory and immune responses within epithelial and mucosal tissue.
Collapse
Affiliation(s)
- Patrizia Scapini
- Department of Pathology, Section of General Pathology, University of Verona, Verona, Italy
| | | | | | | | | |
Collapse
|
42
|
Banda NK, Kraus D, Vondracek A, Huynh LH, Bendele A, Holers VM, Arend WP. Mechanisms of effects of complement inhibition in murine collagen-induced arthritis. ARTHRITIS AND RHEUMATISM 2002; 46:3065-75. [PMID: 12428251 DOI: 10.1002/art.10591] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To determine the mechanisms of amelioration of collagen-induced arthritis (CIA) in DBA/1J mice by inhibition of complement activation. METHODS Mice received 2 intradermal injections of bovine type II collagen (CII), on days 0 and 21. From day 21 (immediately after the second injection of CII) through day 35, mice received intraperitoneal injections of either phosphate buffered saline (PBS), a monoclonal mouse antibody to murine C5 (anti-C5 antibody), or the C3 convertase inhibitor Crry-Ig. RESULTS On days 30 and 32, the clinical disease activity score was lower in mice treated with anti-C5 antibody than in those treated with Crry-Ig. Histopathologic evidence of joint damage was 75% lower in the mice treated with anti-C5 antibody than in those treated with either PBS or Crry-Ig. Spleen cells from mice receiving either form of complement inhibition exhibited decreased CII-stimulated proliferation, whereas increased proliferative responses were exhibited by lymph node cells from mice treated with Crry-Ig. Treatment with anti-C5 antibody decreased production of IgG1 anticollagen antibody, while production of IgG2a antibody was inhibited by both complement inhibitory treatments. CII-stimulated spleen cells from anti-C5-treated mice produced lower levels of tumor necrosis factor alpha (TNFalpha) and interleukin-10 (IL-10) compared with those from mice treated with Crry-Ig. Lower steady-state messenger RNA (mRNA) levels for TNFalpha, interferon-gamma (IFNgamma), IL-18, and IL-6 were observed in the joints of anti-C5-treated mice, and for IFNgamma and IL-6 in mice receiving Crry-Ig, all in comparison with PBS-treated mice. However, mRNA levels for IL-1beta and TNFalpha were lower in the joints after treatment with anti-C5 compared with Crry-Ig. CONCLUSION These results indicate that inhibition of complement in CIA leads to decreased production of IgG2a antibody and suppressed CII-induced spleen cell proliferation. The greater inhibitory effects on CIA of anti-C5 antibody in comparison with Crry-Ig may be attributable primarily to decreased levels of IL-1beta and TNFalpha mRNA in the joints.
Collapse
Affiliation(s)
- Nirmal K Banda
- University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Yang D, Chen Q, Gertz B, He R, Phulsuksombati M, Ye RD, Oppenheim JJ. Human dendritic cells express functional formyl peptide receptor‐like‐2 (FPRL2) throughout maturation. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.3.598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- De Yang
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Maryland; and
| | - Qian Chen
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Maryland; and
| | - Barry Gertz
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Maryland; and
| | - Rong He
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago
| | - Michele Phulsuksombati
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Maryland; and
| | - Richard D. Ye
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago
| | - Joost J. Oppenheim
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Maryland; and
| |
Collapse
|
44
|
Idzko M, Dichmann S, Ferrari D, Di Virgilio F, la Sala A, Girolomoni G, Panther E, Norgauer J. Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin-sensitive P2y receptors. Blood 2002; 100:925-32. [PMID: 12130504 DOI: 10.1182/blood.v100.3.925] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dendritic cells (DCs) are considered the principal initiators of immune response because of their ability to migrate into peripheral tissues and lymphoid organs, process antigens, and activate naive T cells. There is evidence that extracellular nucleotides regulate certain functions of DCs via G-protein-coupled P2Y receptors (P2YR) and ion-channel-gated P2X receptors (P2XR). Here we investigated the chemotactic activity and analyzed the migration-associated intracellular signaling events such as actin reorganization and Ca(++) transients induced by common P2R agonists such as adenosine 5'-triphosphate (ATP) and 2-methylthioadenosine triphosphate, the P2YR agonists UTP and adenosine 5'-diphosphate (ADP), or the P2XR agonists alphabeta-methylenadenosine-5'-triphosphate and 2',3'-(4-benzoyl)benzoyl-ATP. The common P2R agonists and the selective P2YR agonists turned out to be potent chemotactic stimuli for immature DCs, but not for mature DCs. In contrast, P2XR agonists had only marginal chemotactic activity in both DC types. Chemotaxis was paralleled by a rise in the intracellular Ca(++) concentration and by actin polymerization. Studies with pertussis toxin implicated that intracellular signaling events such as actin polymerization, mobilization of intracellular Ca(++), and migration induced by nucleotides was mediated via G(i/o) protein-coupled P2YR. Moreover, functional studies revealed selective down-regulation of this G(i/o) protein-coupled chemotactic P2YR responsiveness during maturation, although immature and mature DCs expressed similar amounts of mRNA for the P2R subtypes (P2Y(2)R, P2Y(4)R, P2Y(5)R, P2Y(7)R, P2Y(11)R and P2X(1)R, P2X(4)R, P2X(7)R), and no major differences in respect to the mRNA expression of these receptors could be observed by semiquantitative reverse transcription and polymerase chain reaction (RT-PCR). In summary, our data describe a differential chemotactic response of immature and mature DCs to nucleotides, and lend further support to the hypothesis that P2R are a novel class of immunomodulatory plasma membrane receptors suitable for pharmacological intervention.
Collapse
Affiliation(s)
- Marco Idzko
- Department of Experimental Dermatology, University of Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Although immune responses are generally considered to be systemic, local events such as interaction of complement products with blood vessels and with inflammatory cells play a pivotal role in determining the nature and manifestations of immune responses. This paper will discuss how blood vessel physiology and immunity influence one another to reach homeostasis upon exposure to an infectious agent. We review new insights into the mechanisms by which the microenvironment of tissues protects against microbial invasion yet facilitates migration of leukocytes and 'decides' whether immunity or tolerance ensues and whether, in the face of immunity, protective responses or tissue injury ensues. These 'decisions' are made based on interaction of components of normal tissues such as proteoglycans and injured tissues such as cell-associated cytokines with receptors on immune cells and blood vessels.
Collapse
Affiliation(s)
- Soheyla Saadi
- Department of Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
46
|
Idzko M, la Sala A, Ferrari D, Panther E, Herouy Y, Dichmann S, Mockenhaupt M, Di Virgilio F, Girolomoni G, Norgauer J. Expression and function of histamine receptors in human monocyte-derived dendritic cells. J Allergy Clin Immunol 2002; 109:839-46. [PMID: 11994709 DOI: 10.1067/mai.2002.124044] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Histamine is a well-known mediator eliciting different responses in immune and nonimmune cells, but its role in modulating dendritic cell (DC) functions has been marginally investigated. OBJECTIVE The purpose of this investigation was to analyze whether human monocyte-derived DCs express functional histamine receptors according to their maturation stage. METHODS DCs were derived from monocytes and used as immature or LPS-differentiated cells. DCs were tested for histamine receptor expression, chemotaxis, cytokine release, and the capacity to induce T-cell differentiation in response to specific histamine receptor agonists. RESULTS Immature and mature DCs expressed the mRNA for H1, H2, and H3 histamine receptors. Histamine induced intracellular Ca2+ transients, actin polymerization, and chemotaxis in immature DCs. Maturation of DCs resulted in the loss of these responses. In maturing DCs, however, histamine dose-dependently enhanced intracellular cAMP levels and stimulated IL-10 secretion while inhibiting production of IL-12. As a consequence, histamine might contribute to the impairment of generation of allogeneic type 1 responses via maturing DCs. Specific histamine receptor agonists or antagonists revealed that Ca2+ transients, actin polymerization, and chemotaxis of immature DCs were due to stimulation of H1 and H3 subtypes. Modulation of IL-12 and IL-10 secretion by histamine involved the H2 and H3 receptors exclusively. CONCLUSIONS Our study suggests that histamine has important biological effects on DC activities, opening the possibility that histamine released during inflammatory or immune responses could regulate DC functions and ultimately favor type 2 lymphocyte-dominated immunity.
Collapse
Affiliation(s)
- Marco Idzko
- Department of Experimental Dermatology, University Hospital, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Dendritic cells (DCs) are bone marrow-derived cells of both lymphoid and myeloid stem cell origin that populate all lymphoid organs including the thymus, spleen, and lymph nodes, as well as nearly all nonlymphoid tissues and organs. Although DCs are a moderately diverse set of cells, they all have potent antigen-presenting capacity for stimulating naive, memory, and effector T cells. DCs are members of the innate immune system in that they can respond to dangers in the host environment by immediately generating protective cytokines. Most important, immature DCs respond to danger signals in the microenvironment by maturing, i.e., differentiating, and acquiring the capacity to direct the development of primary immune responses appropriate to the type of danger perceived. The powerful adjuvant activity that DCs possess in stimulating specific CD4 and CD8 T cell responses has made them targets in vaccine development strategies for the prevention and treatment of infections, allograft reactions, allergic and autoimmune diseases, and cancer. This review addresses the origins and migration of DCs to their sites of activity, their basic biology as antigen-presenting cells, their roles in important human diseases and, finally, selected strategies being pursued to harness their potent antigen-stimulating activity.
Collapse
Affiliation(s)
- Mary F Lipscomb
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131-5301, USA.
| | | |
Collapse
|
48
|
Biragyn A, Surenhu M, Yang D, Ruffini PA, Haines BA, Klyushnenkova E, Oppenheim JJ, Kwak LW. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6644-53. [PMID: 11714836 DOI: 10.4049/jimmunol.167.11.6644] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chemokine receptors are differentially expressed on immature and mature dendritic cells (DC). Herein, we demonstrate for the first time that murine antimicrobial peptides beta-defensins 2 and 3 bind murine CCR6, similarly to inflammatory chemokine macrophage-inflammatory protein 3alpha, and they chemoattract bone marrow-derived immature, but not mature DC. Using various chemokines or defensins fused with nonimmunogenic tumor Ags, we studied their capacity to delivery Ags to subsets of immune cells to elicit antitumor immunity. We demonstrate that DNA immunizations with fusion constructs with beta-defensin 2 or inflammatory chemokines that target immature DC, but not homeostatic chemokines secondary lymphoid tissue chemokine, CCL21, or stromal cell-derived factor 1, CXCL12, which chemoattract mature DC, elicit humoral, protective, and therapeutic immunity against two different syngeneic lymphomas.
Collapse
MESH Headings
- Animals
- Antibodies, Anti-Idiotypic/biosynthesis
- Antibodies, Anti-Idiotypic/genetics
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Chemokines/administration & dosage
- Chemokines/genetics
- Chemokines/immunology
- Chemokines/physiology
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Female
- Gene Targeting
- Humans
- Immunity, Innate/genetics
- Immunoglobulin Variable Region/administration & dosage
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Immunotherapy, Adoptive/methods
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Receptors, Chemokine/genetics
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/chemical synthesis
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/physiology
- Tumor Cells, Cultured
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- beta-Defensins/administration & dosage
- beta-Defensins/genetics
- beta-Defensins/immunology
- beta-Defensins/physiology
Collapse
Affiliation(s)
- A Biragyn
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Yang D, Chertov O, Oppenheim JJ. Participation of mammalian defensins and cathelicidins in anti‐microbial immunity: receptors and activities of human defensins and cathelicidin (LL‐37). J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.5.691] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- De Yang
- Laboratory of Molecular Immunoregulation, Division of Basic Sciences, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland
| | - Oleg Chertov
- Laboratory of Molecular Immunoregulation, Division of Basic Sciences, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland
| | - Joost J. Oppenheim
- Laboratory of Molecular Immunoregulation, Division of Basic Sciences, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland
| |
Collapse
|
50
|
Yang D, Chen Q, Le Y, Wang JM, Oppenheim JJ. Differential regulation of formyl peptide receptor-like 1 expression during the differentiation of monocytes to dendritic cells and macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4092-8. [PMID: 11238658 DOI: 10.4049/jimmunol.166.6.4092] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monocytes are the common precursors for myeloid dendritic cells (DC) and macrophages. Identification of chemotactic receptors expressed by myeloid DC, macrophages, and their precursors in the course of differentiation and maturation is important not only for elucidation of their in vivo trafficking, but also for understanding of the functional distinction between DC and macrophages. We chose to study formyl peptide receptor like-1 (FPRL1), a chemotactic receptor known to interact with several endogenous agonists that are involved in inflammatory and host defense responses. Here we show that FPRL1 is down-regulated as monocytes differentiate into DC. This down-regulation occurs at both mRNA and functional levels. Therefore, the interaction of FPRL1 with its agonists is more likely to regulate the in vivo trafficking of DC precursors than DC. In contrast, FPRL1 expression is maintained at both mRNA and functional levels as monocytes differentiate into macrophages. Thus, our results demonstrate further distinctions between myeloid DC and macrophages, albeit they share a common precursor. The fact that macrophages rather than myeloid DC express functional FPRL1 suggests that this chemotactic receptor may be more involved in inflammatory reactions and innate host defense than in adaptive immune responses.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Cells, Cultured
- Chemotaxis, Leukocyte/immunology
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Down-Regulation/immunology
- Humans
- Ligands
- Macrophages/cytology
- Macrophages/immunology
- Macrophages/metabolism
- Monocytes/cytology
- Monocytes/immunology
- Monocytes/metabolism
- N-Formylmethionine Leucyl-Phenylalanine/metabolism
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- Rats
- Receptors, Formyl Peptide
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Receptors, Lipoxin
- Receptors, Peptide/antagonists & inhibitors
- Receptors, Peptide/biosynthesis
- Receptors, Peptide/genetics
- Receptors, Peptide/physiology
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- D Yang
- Laboratory of Molecular Immunoregulation, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|