1
|
Jang CH, Chung YC, Lee A, Hwang YH. Hydroethanolic Extract of Polygonum aviculare L. Mediates the Anti-Inflammatory Activity in RAW 264.7 Murine Macrophages Through Induction of Heme Oxygenase-1 and Inhibition of Inducible Nitric Oxide Synthase. PLANTS (BASEL, SWITZERLAND) 2024; 13:3314. [PMID: 39683107 DOI: 10.3390/plants13233314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Polygonum aviculare L. (PAL), commonly known as knotgrass, has been utilized as a traditional folk medicine across Asian, African, Latin American and Middle Eastern countries to treat various inflammatory diseases, including arthritis and airway inflammation. Numerous medicinal herbs exert anti-inflammatory and antioxidative effects that are mediated through the activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and the inhibition of nuclear factor kappa B (NF-κB). However, the underlying molecular mechanisms linking the antioxidative and anti-inflammatory effects remain poorly understood. Heme oxygenase-1 (HO-1) is an antioxidant enzyme that catalyzes heme degradation, ultimately leading to the production of carbon monoxide (CO). Elevated levels of CO have been correlated with the decreased level of inducible nitric oxide synthase (iNOS). In this study, we examined whether HO-1 plays a key role in the relationship between the antioxidative and anti-inflammatory properties of PAL. The anti-inflammatory and antioxidative activities of PAL in an in vitro system were evaluated by determining NF-κB activity, antioxidant response element (ARE) activity, pro-inflammatory cytokine and protein levels, as well as antioxidant protein levels. To examine whether HO-1 inhibition interfered with the anti-inflammatory effect of PAL, we measured nitrite, reactive oxygen species, iNOS, and HO-1 levels in RAW 264.7 murine macrophages pre-treated with Tin protoporphyrin (SnPP, an HO-1 inhibitor). Our results demonstrated that PAL increased ARE activity and the Nrf2-regulated HO-1 level, exerting antioxidative activities in RAW 264.7 macrophages. Additionally, PAL reduced cyclooxygenase-2 (COX-2) and iNOS protein levels by inactivating NF-κB in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Further investigation using the HO-1 inhibitor revealed that HO-1 inhibition promoted iNOS expression, subsequently elevating nitric oxide (NO) generation in LPS-activated RAW 264.7 macrophages treated with PAL compared to those in the macrophages without the HO-1 inhibitor. Overall, our findings suggest that HO-1 induction by PAL may exert anti-inflammatory effects through the reduction of the iNOS protein level. Hence, this study paves the way for further investigation to understand molecular mechanisms underlying the antioxidative and anti-inflammatory activities of medicinal herbs.
Collapse
Affiliation(s)
- Chan Ho Jang
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea
| | - You Chul Chung
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea
| | - Ami Lee
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea
- Korean Convergence Medical Science Major, KIOM School, University of Science & Technology (UST), Daejeon 34054, Republic of Korea
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea
- Korean Convergence Medical Science Major, KIOM School, University of Science & Technology (UST), Daejeon 34054, Republic of Korea
| |
Collapse
|
2
|
Tambe MA, de Rus Jacquet A, Strathearn KE, Hensel JA, Colón BD, Chandran A, Yousef GG, Grace MH, Ferruzzi MG, Wu Q, Simon JE, Lila MA, Rochet JC. Protective Effects of Polyphenol-Rich Extracts against Neurotoxicity Elicited by Paraquat or Rotenone in Cellular Models of Parkinson's Disease. Antioxidants (Basel) 2023; 12:1463. [PMID: 37508001 PMCID: PMC10376534 DOI: 10.3390/antiox12071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder involving motor symptoms caused by a loss of dopaminergic neurons in the substantia nigra region of the brain. Epidemiological evidence suggests that anthocyanin (ANC) intake is associated with a low risk of PD. Previously, we reported that extracts enriched with ANC and proanthocyanidins (PAC) suppressed dopaminergic neuron death elicited by the PD-related toxin rotenone in a primary midbrain culture model. Here, we characterized botanical extracts enriched with a mixed profile of polyphenols, as well as a set of purified polyphenolic standards, in terms of their ability to mitigate dopaminergic cell death in midbrain cultures exposed to another PD-related toxicant, paraquat (PQ), and we examined underlying neuroprotective mechanisms. Extracts prepared from blueberries, black currants, grape seeds, grape skin, mulberries, and plums, as well as several ANC, were found to rescue dopaminergic neuron loss in PQ-treated cultures. Comparison of a subset of ANC-rich extracts for the ability to mitigate neurotoxicity elicited by PQ versus rotenone revealed that a hibiscus or plum extract was only neuroprotective in cultures exposed to rotenone or PQ, respectively. Several extracts or compounds with the ability to protect against PQ neurotoxicity increased the activity of the antioxidant transcription factor Nrf2 in cultured astrocytes, and PQ-induced dopaminergic cell death was attenuated in Nrf2-expressing midbrain cultures. In other studies, we found that extracts prepared from hibiscus, grape skin, or purple basil (but not plums) rescued defects in O2 consumption in neuronal cells treated with rotenone. Collectively, these findings suggest that extracts enriched with certain combinations of ANC, PAC, stilbenes, and other polyphenols could potentially slow neurodegeneration in the brains of individuals exposed to PQ or rotenone by activating cellular antioxidant mechanisms and/or alleviating mitochondrial dysfunction.
Collapse
Affiliation(s)
- Mitali A Tambe
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Aurélie de Rus Jacquet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Katherine E Strathearn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Jennifer A Hensel
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Bryce D Colón
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Aswathy Chandran
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Gad G Yousef
- Department of Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
| | - Mary H Grace
- Department of Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
| | - Mario G Ferruzzi
- Arkansas Children's Nutrition Center, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Qingli Wu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - James E Simon
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Mary Ann Lila
- Department of Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Tambe MA, de Rus Jacquet A, Strathearn KE, Yousef GG, Grace MH, Ferruzzi MG, Wu Q, Simon JE, Lila MA, Rochet JC. Protective effects of polyphenol-rich extracts against neurotoxicity elicited by paraquat or rotenone in cellular models of Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538474. [PMID: 37163110 PMCID: PMC10168339 DOI: 10.1101/2023.04.26.538474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder involving motor symptoms caused by a loss of dopaminergic neurons in the substantia nigra region of the brain. Epidemiological evidence suggests that anthocyanin (ANC) intake is associated with a low risk of PD. Previously, we reported that extracts enriched with ANC and proanthocyanidins (PAC) suppressed dopaminergic neuron death elicited by the PD-related toxin rotenone in a primary midbrain culture model. Here, we characterized botanical extracts enriched with a mixed profile of polyphenols, as well as a set of purified polyphenolic standards, in terms of their ability to mitigate dopaminergic cell death in midbrain cultures exposed to another PD-related toxicant, paraquat (PQ), and we examined underlying neuroprotective mechanisms. Extracts prepared from blueberries, black currants, grape seeds, grape skin, mulberries, and plums, as well as several ANC, were found to rescue dopaminergic neuron loss in PQ-treated cultures. Comparison of a subset of ANC-rich extracts for the ability to mitigate neurotoxicity elicited by PQ versus rotenone revealed that a hibiscus or plum extract was only neuroprotective in cultures exposed to rotenone or PQ, respectively. Several extracts or compounds with the ability to protect against PQ neurotoxicity increased the activity of the antioxidant transcription factor Nrf2 in cultured astrocytes, and PQ-induced dopaminergic cell death was attenuated in Nrf2-expressing midbrain cultures. In other studies, we found that extracts prepared from hibiscus, grape skin, or purple basil (but not plums) rescued defects in O 2 consumption in neuronal cells treated with rotenone. Collectively, these findings suggest that extracts enriched with certain combinations of ANC, PAC, stilbenes, and other polyphenols could potentially slow neurodegeneration in the brains of individuals exposed to PQ or rotenone by activating cellular antioxidant mechanisms and/or alleviating mitochondrial dysfunction.
Collapse
|
4
|
Kim DI, Song MK, Yuk JE, Seo HJ, Lee K. Establishment of an artificial particulate matter-induced lung disease model through analyzing pathological changes and transcriptomic profiles in mice. Sci Rep 2023; 13:5955. [PMID: 37045933 PMCID: PMC10097713 DOI: 10.1038/s41598-023-29919-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/13/2023] [Indexed: 04/14/2023] Open
Abstract
Particulate matter (PM), an environmental risk factor, is linked with health risks such as respiratory diseases. This study aimed to establish an animal model of PM-induced lung injury with artificial PM (APM) and identify the potential of APM for toxicological research. APM was generated from graphite at 600 °C and combined with ethylene. We analyzed diesel exhaust particulate (DEP) and APM compositions and compared toxicity and transcriptomic profiling in lungs according to the exposure. For the animal study, C57BL/6 male mice were intratracheally administered vehicle, DEP, or APM. DEP or APM increased relative lung weight, inflammatory cell numbers, and inflammatory protein levels compared with the vehicle control. Histological assessments showed an increase in particle-pigment alveolar macrophages and slight inflammation in the lungs of DEP and APM mice. In the only APM group, granulomatous inflammation, pulmonary fibrosis, and mucous hyperplasia were observed in the lungs of some individuals. This is the first study to compare pulmonary toxicity between DEP and APM in an animal model. Our results suggest that the APM-treated animal model may contribute to understanding the harmful effects of PM in toxicological studies showing that APM can induce various lung diseases according to different doses of APM.
Collapse
Affiliation(s)
- Dong Im Kim
- Jeonbuk Department of Inhalation Research, Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baekhak1-Gil, Jeongeup, Jeollabuk-Do, 56212, Republic of Korea
| | - Mi-Kyung Song
- Jeonbuk Department of Inhalation Research, Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baekhak1-Gil, Jeongeup, Jeollabuk-Do, 56212, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Ji Eun Yuk
- Jeonbuk Department of Inhalation Research, Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baekhak1-Gil, Jeongeup, Jeollabuk-Do, 56212, Republic of Korea
| | - Hyeon Jin Seo
- Jeonbuk Department of Inhalation Research, Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baekhak1-Gil, Jeongeup, Jeollabuk-Do, 56212, Republic of Korea
| | - Kyuhong Lee
- Jeonbuk Department of Inhalation Research, Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baekhak1-Gil, Jeongeup, Jeollabuk-Do, 56212, Republic of Korea.
- Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
5
|
Bayo Jimenez MT, Frenis K, Hahad O, Steven S, Cohen G, Cuadrado A, Münzel T, Daiber A. Protective actions of nuclear factor erythroid 2-related factor 2 (NRF2) and downstream pathways against environmental stressors. Free Radic Biol Med 2022; 187:72-91. [PMID: 35613665 DOI: 10.1016/j.freeradbiomed.2022.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/23/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
Environmental risk factors, including noise, air pollution, chemical agents, ultraviolet radiation (UVR) and mental stress have a considerable impact on human health. Oxidative stress and inflammation are key players in molecular pathomechanisms of environmental pollution and risk factors. In this review, we delineate the impact of environmental risk factors and the protective actions of the nuclear factor erythroid 2-related factor 2 (NRF2) in connection to oxidative stress and inflammation. We focus on well-established studies that demonstrate the protective actions of NRF2 and its downstream pathways against different environmental stressors. State-of-the-art mechanistic considerations on NRF2 signaling are discussed in detail, e.g. classical concepts like KEAP1 oxidation/electrophilic modification, NRF2 ubiquitination and degradation. Specific focus is also laid on NRF2-dependent heme oxygenase-1 induction with detailed presentation of the protective down-stream pathways of heme oxygenase-1, including interaction with BACH1 system. The significant impact of all environmental stressors on the circadian rhythm and the interactions of NRF2 with the circadian clock will also be considered here. A broad range of NRF2 activators is discussed in relation to environmental stressor-induced health side effects, thereby suggesting promising new mitigation strategies (e.g. by nutraceuticals) to fight the negative effects of the environment on our health.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Katie Frenis
- Department of Hematology and Oncology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Leibniz Insitute for Resilience Research (LIR), Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel; Ben Gurion University of the Negev, Eilat Campus, Eilat, 8855630, Israel
| | - Antonio Cuadrado
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
6
|
Canchola A, Sabbir Ahmed C, Chen K, Chen JY, Lin YH. Formation of Redox-Active Duroquinone from Vaping of Vitamin E Acetate Contributes to Oxidative Lung Injury. Chem Res Toxicol 2022; 35:254-264. [PMID: 35077135 PMCID: PMC8860880 DOI: 10.1021/acs.chemrestox.1c00309] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In late 2019, the outbreak of e-cigarette or vaping-associated lung injuries (EVALIs) in the United States demonstrated to the public the potential health risks of vaping. While studies since the outbreak have identified vitamin E acetate (VEA), a diluent of tetrahydrocannabinol (THC) in vape cartridges, as a potential contributor to lung injuries, the molecular mechanisms through which VEA may cause damage are still unclear. Recent studies have found that the thermal degradation of e-liquids during vaping can result in the formation of products that are more toxic than the parent compounds. In this study, we assessed the role of duroquinone (DQ) in VEA vaping emissions that may act as a mechanism through which VEA vaping causes lung damage. VEA vaping emissions were collected and analyzed for their potential to generate reactive oxygen species (ROS) and induce oxidative stress-associated gene expression in human bronchial epithelial cells (BEAS-2B). Significant ROS generation by VEA vaping emissions was observed in both acellular and cellular systems. Furthermore, exposure to vaping emissions resulted in significant upregulation of NQO1 and HMOX-1 genes in BEAS-2B cells, indicating a strong potential for vaped VEA to cause oxidative damage and acute lung injury; the effects are more profound than exposure to equivalent concentrations of DQ alone. Our findings suggest that there may be synergistic interactions between thermal decomposition products of VEA, highlighting the multifaceted nature of vaping toxicity.
Collapse
Affiliation(s)
- Alexa Canchola
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
| | - C.M. Sabbir Ahmed
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
| | - Kunpeng Chen
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Jin Y. Chen
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
| | - Ying-Hsuan Lin
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA,Department of Environmental Sciences, University of California, Riverside, CA, USA,Corresponding Author Ying-Hsuan Lin - Department of Environmental Sciences, University of California, Riverside, California 92521, United States; Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States; Phone: +1-951-827-3785,
| |
Collapse
|
7
|
de Rus Jacquet A, Ambaw A, Tambe MA, Ma SY, Timmers M, Grace MH, Wu QL, Simon JE, McCabe GP, Lila MA, Shi R, Rochet JC. Neuroprotective mechanisms of red clover and soy isoflavones in Parkinson's disease models. Food Funct 2021; 12:11987-12007. [PMID: 34751296 PMCID: PMC10822195 DOI: 10.1039/d1fo00007a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by nigrostriatal degeneration and the spreading of aggregated forms of the presynaptic protein α-synuclein (aSyn) throughout the brain. PD patients are currently only treated with symptomatic therapies, and strategies to slow or stop the progressive neurodegeneration underlying the disease's motor and cognitive symptoms are greatly needed. The time between the first neurobiochemical alterations and the initial presentation of symptoms is thought to span several years, and early neuroprotective dietary interventions could delay the disease onset or slow PD progression. In this study, we characterized the neuroprotective effects of isoflavones, a class of dietary polyphenols found in soy products and in the medicinal plant red clover (Trifolium pratense). We found that isoflavone-rich extracts and individual isoflavones rescued the loss of dopaminergic neurons and the shortening of neurites in primary mesencephalic cultures exposed to two PD-related insults, the environmental toxin rotenone and an adenovirus encoding the A53T aSyn mutant. The extracts and individual isoflavones also activated the Nrf2-mediated antioxidant response in astrocytes via a mechanism involving inhibition of the ubiquitin-proteasome system, and they alleviated deficits in mitochondrial respiration. Furthermore, an isoflavone-enriched soy extract reduced motor dysfunction exhibited by rats lesioned with the PD-related neurotoxin 6-OHDA. These findings suggest that plant-derived isoflavones could serve as dietary supplements to delay PD onset in at-risk individuals and mitigate neurodegeneration in the brains of patients.
Collapse
Affiliation(s)
- Aurélie de Rus Jacquet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Abeje Ambaw
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Mitali Arun Tambe
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Sin Ying Ma
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Michael Timmers
- Plants for Human Health Institute, Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Mary H Grace
- Plants for Human Health Institute, Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Qing-Li Wu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - James E Simon
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - George P McCabe
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Riyi Shi
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
8
|
Gómez X, Sanon S, Zambrano K, Asquel S, Bassantes M, Morales JE, Otáñez G, Pomaquero C, Villarroel S, Zurita A, Calvache C, Celi K, Contreras T, Corrales D, Naciph MB, Peña J, Caicedo A. Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species (ROS) during manned space missions. NPJ Microgravity 2021; 7:35. [PMID: 34556658 PMCID: PMC8460669 DOI: 10.1038/s41526-021-00162-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Exposure to microgravity and ionizing radiation during spaceflight missions causes excessive reactive oxygen species (ROS) production that contributes to cellular stress and damage in astronauts. Average spaceflight mission time is expected to lengthen as humanity aims to visit other planets. However, longer missions or spaceflights will undoubtedly lead to an increment in microgravity, ionizing radiation and ROS production. Strategies to minimize ROS damage are necessary to maintain the health of astronauts, future space colonists, and tourists during and after spaceflight missions. An antioxidant cocktail formulated to prevent or mitigate ROS damage during space exploration could help maintain the health of space explorers. We propose key points to consider when developing an antioxidant cocktail. We discuss how ROS damages our body and organs, the genetic predisposition of astronauts to its damage, characteristics and evidence of the effectiveness of antioxidants to combat excess ROS, differences in drug metabolism when on Earth and in space that could modify antioxidant effects, and the characteristics and efficacy of common antioxidants. Based on this information we propose a workflow for assessing astronaut resistance to ROS damage, infight monitoring of ROS production, and an antioxidant cocktail. Developing an antioxidant cocktail represents a big challenge to translate current medical practices from an Earth setting to space. The key points presented in this review could promote the development of different antioxidant formulations to maintain space explorers' health in the future.
Collapse
Affiliation(s)
- Xavier Gómez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Serena Sanon
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Cornell University, Ithaca, NY, USA
- Mito-Act Research Consortium, Quito, Ecuador
| | - Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Samira Asquel
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Mariuxi Bassantes
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Julián E Morales
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Gabriela Otáñez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Core Pomaquero
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Sarah Villarroel
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Alejandro Zurita
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Carlos Calvache
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Kathlyn Celi
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Terry Contreras
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Dylan Corrales
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - María Belén Naciph
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - José Peña
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador.
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador.
- Mito-Act Research Consortium, Quito, Ecuador.
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador.
| |
Collapse
|
9
|
Hara Y, Nakashima K, Nagasawa R, Murohashi K, Tagami Y, Aoki A, Okudela K, Kaneko T. Heme Oxygenase-1 in Patients With Interstitial Lung Disease: A Review of the Clinical Evidence. Am J Med Sci 2021; 362:122-129. [PMID: 33587911 DOI: 10.1016/j.amjms.2021.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
The clinical course and rate of progression of interstitial lung disease (ILD) are extremely variable among patients. For the purpose of monitoring disease activity, ILD diagnosis, and predicting disease prognosis, there are various biomarkers, including symptoms, physiological, radiological, and pathological findings, and peripheral blood and bronchoalveolar lavage fluid results. Of these, blood biomarkers such as sialylated carbohydrate antigen, surfactant proteins-A and -D, CC-chemokine ligand 18, matrix metalloprotease-1 and -7, CA19-9, and CA125 have been previously proposed. In the future, heme oxygenase-1 (HO-1) may also become a candidate ILD biomarker; it is a 32-kDa heat shock protein converting heme to carbon monoxide, biliverdin/bilirubin, and free iron to play a role in the pulmonary cytoprotective reaction in response to various stimuli. Recent research suggests that HO-1 can increase in lung tissues of patients with ILD, reflecting anti-inflammatory M2 macrophage activation, and the measurement of HO-1 levels in peripheral blood can be useful for evaluating the severity of lung damage in ILD and for predicting subsequent fibrosis formation.
Collapse
Affiliation(s)
- Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 4-57 Fukuura, Kanazawa-ku, Yokohama City, 236-0024, Japan.
| | - Kentaro Nakashima
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 4-57 Fukuura, Kanazawa-ku, Yokohama City, 236-0024, Japan
| | - Ryo Nagasawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 4-57 Fukuura, Kanazawa-ku, Yokohama City, 236-0024, Japan
| | - Kota Murohashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 4-57 Fukuura, Kanazawa-ku, Yokohama City, 236-0024, Japan
| | - Yoichi Tagami
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 4-57 Fukuura, Kanazawa-ku, Yokohama City, 236-0024, Japan
| | - Ayako Aoki
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 4-57 Fukuura, Kanazawa-ku, Yokohama City, 236-0024, Japan
| | - Koji Okudela
- Department of Pathology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama City, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 4-57 Fukuura, Kanazawa-ku, Yokohama City, 236-0024, Japan
| |
Collapse
|
10
|
Komeno M, Pang X, Shimizu A, Molla MR, Yasuda-Yamahara M, Kume S, Rahman NIA, Soh JEC, Nguyen LKC, Ahmat Amin MKB, Kokami N, Sato A, Asano Y, Maegawa H, Ogita H. Cardio- and reno-protective effects of dipeptidyl peptidase III in diabetic mice. J Biol Chem 2021; 296:100761. [PMID: 33971198 PMCID: PMC8167299 DOI: 10.1016/j.jbc.2021.100761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus (DM) causes injury to tissues and organs, including to the heart and kidney, resulting in increased morbidity and mortality. Thus, novel potential therapeutics are continuously required to minimize DM-related organ damage. We have previously shown that dipeptidyl peptidase III (DPPIII) has beneficial roles in a hypertensive mouse model, but it is unknown whether DPPIII has any effects on DM. In this study, we found that intravenous administration of recombinant DPPIII in diabetic db/db mice for 8 weeks suppressed the DM-induced cardiac diastolic dysfunctions and renal injury without alteration of the blood glucose level. This treatment inhibited inflammatory cell infiltration and fibrosis in the heart and blocked the increase in albuminuria by attenuating the disruption of the glomerular microvasculature and inhibiting the effacement of podocyte foot processes in the kidney. The beneficial role of DPPIII was, at least in part, mediated by the cleavage of a cytotoxic peptide, named Peptide 2, which was increased in db/db mice compared with normal mice. This peptide consisted of nine amino acids, was a digested fragment of complement component 3 (C3), and had an anaphylatoxin-like effect determined by the Miles assay and chemoattractant analysis. The effect was dependent on its interaction with the C3a receptor and protein kinase C-mediated RhoA activation downstream of the receptor in endothelial cells. In conclusion, DPPIII plays a protective role in the heart and kidney in a DM animal model through cleavage of a peptide that is a part of C3.
Collapse
Affiliation(s)
- Masahiro Komeno
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Xiaoling Pang
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan; Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Md Rasel Molla
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | | | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Nor Idayu A Rahman
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Joanne Ern Chi Soh
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Le Kim Chi Nguyen
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Mohammad Khusni B Ahmat Amin
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Nao Kokami
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
11
|
Nrf2 Lowers the Risk of Lung Injury via Modulating the Airway Innate Immune Response Induced by Diesel Exhaust in Mice. Biomedicines 2020; 8:biomedicines8100443. [PMID: 33096811 PMCID: PMC7589508 DOI: 10.3390/biomedicines8100443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
In the present study, we investigated the role of Nrf2 in airway immune responses induced by diesel exhaust (DE) inhalation in mice. C57BL/6J Nrf2+/+ and Nrf2−/− mice were exposed to DE or clean air for 8 h/day and 6 days/week for 4 weeks. After DE exposure, the number of neutrophils and macrophage inflammatory protein (MIP)-2 level in bronchoalveolar lavage fluid (BALF) and interleukin (IL)-17 level in the lung tissue increased in Nrf2−/− mice compared with Nrf2+/+ mice; however, the lack of an increase in the level of tumor necrosis factor (TNF)-α in the lung tissue in Nrf2+/+ mice and mild suppression of the level of TNF-α in Nrf2−/− mice were observed; the level of granulocyte macrophage colony-stimulating factor (GM-CSF) in the lung tissue decreased in Nrf2−/− mice than in Nrf2+/+ mice; the number of DE particle-laden alveolar macrophages in BALF were larger in Nrf2−/− mice than in Nrf2+/+ mice. The results of electron microscope observations showed alveolar type II cell injury and degeneration of the lamellar body after DE exposure in Nrf2−/− mice. Antioxidant enzyme NAD(P)H quinone dehydrogenase (NQO)1 mRNA expression level was higher in Nrf2+/+ mice than in Nrf2−/− mice after DE exposure. Our results suggested that Nrf2 reduces the risk of pulmonary disease via modulating the airway innate immune response caused by DE in mice.
Collapse
|
12
|
Cervellati F, Woodby B, Benedusi M, Ferrara F, Guiotto A, Valacchi G. Evaluation of oxidative damage and Nrf2 activation by combined pollution exposure in lung epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31841-31853. [PMID: 32504424 DOI: 10.1007/s11356-020-09412-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
The lungs are one the main organs exposed to environmental pollutants, such as tropospheric ozone (O3) and particulate matter (PM), which induce lung pathologies through similar mechanisms, resulting in altered redox homeostasis and inflammation. Although numerous studies have investigated the effects of these pollutants in the respiratory tract, there are only a few evidences that have evaluated the combined effects of outdoor stressors, despite the fact that humans are consistently exposed to more pollutants simultaneously. In this study, we wanted to investigate whether exposure to PM and O3 could have an additive, noxious effect in lung epithelial cells by measuring oxidative damage and the activity of redox-sensitive nuclear factor erythroid 2-related factor 2 (Nrf2) which is a master regulator of cellular antioxidant defenses. First, we measured the cytotoxic effects of O3 and PM individually and in combination. We observed that both pollutants alone increased LDH release 24 h post-exposure. Interestingly, we did observe via TEM that combined exposure to O3 and PM resulted in increased cellular penetration of PM particles. Furthermore, we found that levels of 4-hydroxy-nonenal (4HNE), a marker of oxidative damage, significantly increased 24 h post-exposure, in response to the combined pollutants. In addition, we observed increased levels of Nrf2, in response to the combined pollutants vs. either pollutant, although this effect was not followed by the increase in Nrf2-responsive genes expression HO1, SOD1, GPX, or GR nor enzymatic activity. Despite these observations, our study suggests that O3 exposure facilitate the cellular penetration of the particles leading to an increased oxidative damage, and additive defensive response.
Collapse
Affiliation(s)
- Franco Cervellati
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Brittany Woodby
- Animal Science Department, NC Research Campus Kannapolis, Plants for Human Health Institute, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Mascia Benedusi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
- Animal Science Department, NC Research Campus Kannapolis, Plants for Human Health Institute, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Anna Guiotto
- Animal Science Department, NC Research Campus Kannapolis, Plants for Human Health Institute, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy.
- Animal Science Department, NC Research Campus Kannapolis, Plants for Human Health Institute, 600 Laureate Way, Kannapolis, NC, 28081, USA.
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
13
|
Liu Y, Ge M, Zhang T, Chen L, Xing Y, Liu L, Li F, Cheng L. Exploring the correlation between deltamethrin stress and Keap1-Nrf2-ARE pathway from Drosophila melanogaster RNASeq data. Genomics 2020; 112:1300-1308. [DOI: 10.1016/j.ygeno.2019.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/28/2019] [Accepted: 07/30/2019] [Indexed: 01/20/2023]
|
14
|
Diffuse alveolar hemorrhage complicating acute exacerbation of IPF. Respir Med Case Rep 2020; 29:101022. [PMID: 32071858 PMCID: PMC7016274 DOI: 10.1016/j.rmcr.2020.101022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 11/22/2022] Open
Abstract
An 83-year-old man with a history of interstitial lung disease (ILD) presented with a 1-week history of progressive dyspnea. Computed tomography of the chest revealed right lung-predominant, diffuse, ground glass opacities superimposed upon reticular opacities. Despite methylprednisolone pulse therapy under a diagnosis of acute exacerbation (AE) of ILD, lung involvement and renal dysfunction worsened and disseminated intravascular coagulation developed. The patient died on day 5 of hospitalization. Pathological examination at autopsy revealed diffuse alveolar hemorrhage (DAH) superimposed upon organizing diffuse alveolar damage and usual interstitial pneumonia. We reached a final diagnosis of DAH-predominant AE of idiopathic pulmonary fibrosis (IPF). Abundant expression of the oxidative stress marker hemeoxygenase-1 (HO-1) was observed in alveolar macrophages. These suggest that HO-1 expression in the lungs may offer a useful biomarker for this atypical histological subtype of AE of IPF.
Collapse
Key Words
- AE, acute exacerbation
- CO, carbon monoxide
- DAD, diffuse alveolar damage
- DAH, diffuse alveolar hemorrhage
- DIC, disseminated intravascular coagulation
- Diffuse alveolar damage
- Diffuse alveolar hemorrhage
- Disseminated intravascular coagulation
- HO-1, hemeoxygenase-1
- Hemeoxygenase-1
- ILD, interstitial lung disease
- IP, interstitial pneumonia
- IPF, idiopathic pulmonary fibrosis
- Oxidative stress
- UIP, usual interstitial pneumonia
Collapse
|
15
|
TF-343 Alleviates Diesel Exhaust Particulate-Induced Lung Inflammation via Modulation of Nuclear Factor- κB Signaling. J Immunol Res 2019; 2019:8315845. [PMID: 31781683 PMCID: PMC6875297 DOI: 10.1155/2019/8315845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Inhalation of diesel exhaust particulate (DEP) causes oxidative stress-induced lung inflammation. This study investigated the protective effects of TF-343, an antioxidant and anti-inflammatory agent, in mouse and cellular models of DEP-induced lung inflammation as well as the underlying molecular mechanisms. Mice were intratracheally instilled with DEP or vehicle (0.05% Tween 80 in saline). TF-343 was orally administered for 3 weeks. Cell counts and histological analysis of lung tissue showed that DEP exposure increased the infiltration of neutrophils and macrophages in the peribronchial/perivascular/interstitial regions, with macrophages harboring black pigments observed in alveoli. TF-343 pretreatment reduced lung inflammation caused by DEP exposure. In an in vitro study using alveolar macrophages (AMs), DEP exposure reduced cell viability and increased the levels of intracellular reactive oxygen species and inflammatory genes (IL-1β, inhibitor of nuclear factor- (NF-) κB (IκB), and Toll-like receptor 4), effects that were reduced by TF-343. A western blot analysis showed that the IκB degradation-induced increase in NF-κB nuclear localization caused by DEP was reversed by TF-343. In conclusion, TF-343 reduces DEP-induced lung inflammation by suppressing NF-κB signaling and may protect against adverse respiratory effects caused by DEP exposure.
Collapse
|
16
|
Vaughan A, Stevanovic S, Jafari M, Bowman RV, Fong KM, Ristovski ZD, Yang IA. Primary human bronchial epithelial cell responses to diesel and biodiesel emissions at an air-liquid interface. Toxicol In Vitro 2019; 57:67-75. [PMID: 30738890 DOI: 10.1016/j.tiv.2019.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Diesel emissions have a high level of particulate matter which can cause inflammation and oxidative stress in the airways. A strategy to reduce diesel particulate matter and the associated adverse effects is the use of biodiesels and fuel additives. However, very little is known about the biological effects of these alternative emissions. The aim of this study is to compare the effect of biodiesel and triacetin/biodiesel emissions on primary human bronchial epithelial cells (pHBECs) compared to diesel emissions. METHODS pHBECs were exposed to diesel, biodiesel (20%, 50% and 100% biodiesel derived from coconut oil) and triacetin/biodiesel (4% and 10% triacetin) emissions for 30 min at air-liquid interface. Cell viability (cellular metabolism, cell death, CASP3 mRNA expression and BCL2 mRNA expression), inflammation (IL-8 and IL-6 secretion), antioxidant production (HO-1 mRNA expression) and xenobiotic metabolism (CYP1a1 mRNA expression) were measured. RESULTS Biodiesel emissions (B50) reduced cell viability, and increased oxidative stress. Triacetin/biodiesel emissions (B90) decreased cell viability and increased antioxidant production, inflammation and xenobiotic metabolism. Biodiesel emissions (B100) reduced cell viability, and increased IL-8 secretion and xenobiotic metabolism. CONCLUSIONS Biodiesel substitution in diesel fuel and triacetin substitution in biodiesel can increase the adverse effects of diesel emissions of pHBECs. Further studies of the effect of these diesel fuel alternatives on pHBECs are required.
Collapse
Affiliation(s)
- Annalicia Vaughan
- The University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, QLD, Australia.
| | - Svetlana Stevanovic
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mohammad Jafari
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rayleen V Bowman
- The University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Kwun M Fong
- The University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Zoran D Ristovski
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ian A Yang
- The University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Murohashi K, Hara Y, Shinada K, Nagai K, Shinkai M, Kawana A, Kaneko T. Clinical Significance of Serum Hemeoxygenase-1 as a New Biomarker for the Patients with Interstitial Pneumonia. Can Respir J 2018; 2018:7260178. [PMID: 30595776 PMCID: PMC6282126 DOI: 10.1155/2018/7260178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Serum hemeoxygenase-1 (HO-1) has been proposed to be a biomarker of lung disease activity and prognosis. The present study aimed at evaluating whether HO-1 could be a useful marker for evaluating disease activity and predicting prognosis in patients with interstitial pneumonia (IP). MATERIALS AND METHODS Serum HO-1 levels of newly diagnosed or untreated patients with IP were measured at hospitalization. We evaluated the relationships between serum HO-1 and other serum biomarkers, high resolution CT (HRCT) findings, and hospital mortality. RESULTS Twenty-eight patients with IP, including 14 having an acute exacerbation (AE) and 14 not having an AE, were evaluated. The patients having an AE had significantly higher HO-1 levels than those not having an AE (53.5 ng/mL vs. 24.1 ng/mL; p < 0.001), and the best cut-off level to discriminate between having an AE or not having an AE was 41.6 ng/mL. Serum HO-1 levels were positively correlated with serum levels of surfactant protein-D (r=0.66, p < 0.001) and the ground glass opacity score (calculated from HRCT; r=0.40, p=0.036). Patients who subsequently died in hospital had presented with significantly higher HO-1 levels than those who did not die in hospital (64.8 ng/mL vs. 32.0 ng/mL; p=0.009). CONCLUSION Serum HO-1 may serve as a useful biomarker for detecting AE or predicting hospital mortality in patients with IP.
Collapse
Affiliation(s)
- Kota Murohashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kanako Shinada
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenjiro Nagai
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masaharu Shinkai
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Pulmonology, Tokyo-Shinagawa Hospital, Shinagawa, Japan
| | - Akihiko Kawana
- Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
18
|
Aztatzi-Aguilar OG, Valdés-Arzate A, Debray-García Y, Calderón-Aranda ES, Uribe-Ramirez M, Acosta-Saavedra L, Gonsebatt ME, Maciel-Ruiz JA, Petrosyan P, Mugica-Alvarez V, Gutiérrez-Ruiz MC, Gómez-Quiroz LE, Osornio-Vargas A, Froines J, Kleinman MT, De Vizcaya-Ruiz A. Exposure to ambient particulate matter induces oxidative stress in lung and aorta in a size- and time-dependent manner in rats. TOXICOLOGY RESEARCH AND APPLICATION 2018. [DOI: 10.1177/2397847318794859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Exposure to particulate matter (PM) has been implicated in oxidative stress (OxS) and inflammation as underlying mechanisms of lung damage and cardiovascular alterations. PM is a chemical mixture that can be subdivided according to their aerodynamic size into coarse (CP), fine (FP), and ultrafine (UFP) particulates. We investigated, in a rat model, the induction of OxS (protein oxidation and antioxidant response), carcinogen-DNA adduct formation, and inflammatory mediators in lung in response to different airborne particulate fractions, CP, FP, and UFP, after an acute and subchronic exposure. In addition, OxS was evaluated in the aorta to assess the effects beyond the lungs. Exposure to CP, FP, and UFP induced time- and size-dependent lung protein oxidation and DNA adduct formation. After acute and subchronic exposure, nuclear factor erythroid-2 (Nrf2) activation was observed in the lung, by electrophoretic mobility shift assay, and the induction of mRNA antioxidant enzymes in the FP and UFP groups, but not in the CP. Cytokine concentration of interleukin 1β, interleukin 6, and macrophage inflammatory protein-2 was significantly increased in bronchoalveolar lavage fluid after acute exposure to FP and UFP. Activation of Nrf2 and expression of mRNA antioxidant enzymes were observed only after the subchronic exposure to FP and UFP in the aorta. Our results indicate that FP and UFP were mainly accountable for the oxidant toxic effects in the lung; OxS is spread from the lung to the cardiovascular system. We conclude that the biological mechanisms associated with transient OxS and inflammation are particle size and time-dependent exposure resulting in acute lung injury, which later reaches the vascular system.
Collapse
Affiliation(s)
- OG Aztatzi-Aguilar
- Cátedras-CONACYT
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, CDMX, Mexico
| | - A Valdés-Arzate
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional, CDMX, México
| | - Y Debray-García
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional, CDMX, México
| | - ES Calderón-Aranda
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional, CDMX, México
| | - M Uribe-Ramirez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional, CDMX, México
| | - L Acosta-Saavedra
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional, CDMX, México
| | - ME Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, México
| | - JA Maciel-Ruiz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, México
| | - P Petrosyan
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, México
| | - V Mugica-Alvarez
- Área de Química Aplicada, Universidad Autónoma Metropolitana, CDMX, México
| | - MC Gutiérrez-Ruiz
- Departamento Ciencias de la Salud, Universidad Autónoma Metropolitana, and Unidad de Medicina Traslacional UNAM/INCICH, Instituto de Investigaciones Biomédicas, CDMX, México
| | - LE Gómez-Quiroz
- Departamento Ciencias de la Salud, Universidad Autónoma Metropolitana, and Unidad de Medicina Traslacional UNAM/INCICH, Instituto de Investigaciones Biomédicas, CDMX, México
| | - A Osornio-Vargas
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - J Froines
- Center for Occupational and Environmental Health, School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - MT Kleinman
- Department of Medicine, School of Medicine, University of California-Irvine, Irvine, CA, USA
| | - A De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional, CDMX, México
| |
Collapse
|
19
|
Fizeșan I, Chary A, Cambier S, Moschini E, Serchi T, Nelissen I, Kiss B, Pop A, Loghin F, Gutleb AC. Responsiveness assessment of a 3D tetra-culture alveolar model exposed to diesel exhaust particulate matter. Toxicol In Vitro 2018; 53:67-79. [PMID: 30081072 DOI: 10.1016/j.tiv.2018.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/09/2018] [Accepted: 07/31/2018] [Indexed: 01/12/2023]
Abstract
The aim of the current study was to evaluate the responses of a 3D tetra-culture alveolar model cultivated at the air-liquid-interface (ALI) after apical exposure to diesel exhaust particulate matter (DEPM) based on the three-tiered oxidative stress concept. The alveolar model exposed to increasing doses of DEPM (1.75-5 μg/cm2) responded with increasing activity of the anti-oxidant defense mechanisms (Nrf2 translocation, increased gene expression for anti-oxidant proteins and increased HMOX-1 synthesis) (tier 1). Higher exposure generated a proinflammatory response (NF-kB translocation, increased gene expression of pro-inflammatory cytokines and adhesion molecules, and increased IL-6 and IL-8 synthesis) (tier 2) and, finally, the highest doses applied resulted in a decrease of cell viability due to necrosis (extra-cellular release of LDH) or apoptosis (increased expression of the pro-apoptotic genes CASP7 and FAS) (tier 3). Overall, the results of our study demonstrate that the 3D tetra-culture model when directly exposed to DEPM potently generates a realistic response according to the three-tiered oxidative stress concept. Further evaluation and benchmarking against currently used in vivo rodent models is needed to show its suitability, and to serve in the future as an alternative for in vivo studies in the hazard evaluation of inhalable irritants.
Collapse
Affiliation(s)
- Ionel Fizeșan
- Toxicology Department, Iuliu Hațieganu University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| | - Aline Chary
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Elisa Moschini
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Tommaso Serchi
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Inge Nelissen
- Health Unit, Flemish Institute for Technological Research (VITO NV), Mol, Belgium
| | - Béla Kiss
- Toxicology Department, Iuliu Hațieganu University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| | - Anca Pop
- Toxicology Department, Iuliu Hațieganu University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| | - Felicia Loghin
- Toxicology Department, Iuliu Hațieganu University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg.
| |
Collapse
|
20
|
Kimura A, Kitajima M, Nishida K, Serada S, Fujimoto M, Naka T, Fujii-Kuriyama Y, Sakamato S, Ito T, Handa H, Tanaka T, Yoshimura A, Suzuki H. NQO1 inhibits the TLR-dependent production of selective cytokines by promoting IκB-ζ degradation. J Exp Med 2018; 215:2197-2209. [PMID: 29934320 PMCID: PMC6080903 DOI: 10.1084/jem.20172024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/02/2018] [Accepted: 05/14/2018] [Indexed: 01/02/2023] Open
Abstract
Kimura et al. demonstrate that NQO1 plays a crucial role in degrading IκB-ζ protein through forming the complex together with PDLIM2 and selectively suppresses IL-6 and IL-12 production induced by TLR ligands. NAD(P)H:quinone oxidoreductase 1 (NQO1) protects cells against oxidative stress and toxic quinones. In this study, we found a novel role of NQO1 in suppressing Toll-like receptor (TLR)–mediated innate immune responses. NQO1-deficient macrophages selectively produced excessive amounts of IL-6, IL-12, and GM-CSF on LPS stimulation, and the deletion of NQO1 in macrophages exacerbated LPS-induced septic shock. NQO1 interacted with the nuclear IκB protein IκB-ζ, which is essential for the TLR-mediated induction of a subset of secondary response genes, including IL-6, and promoted IκB-ζ degradation in a ubiquitin-dependent manner. We demonstrated that PDLIM2, known as the ubiquitin E3 ligase, participates in NQO1-dependent IκB-ζ degradation. NQO1 augmented the association between PDLIM2 and IκB-ζ, resulting in increased IκB-ζ degradation. Collectively, this study describes a mechanism of the NQO1–PDLIM2 complex as a novel and important regulator in the innate immune signaling and suggests the therapeutic potential of NQO1 in TLR-mediated inflammation and disorders.
Collapse
Affiliation(s)
- Akihiro Kimura
- Department of Immunology and Pathology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Masayuki Kitajima
- Department of Immunology and Pathology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Kyoko Nishida
- Department of Immunology and Pathology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan.,Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Serada
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan
| | - Minoru Fujimoto
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tetsuji Naka
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan
| | | | - Satoshi Sakamato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takumi Ito
- Department of Nanoparticle Translational Research, Tokyo Medical University, Tokyo, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, Tokyo, Japan
| | - Takashi Tanaka
- Laboratory for Inflammatory Regulation, Institute of Physical and Chemical Research Center for Integrative Medical Sciences (IMS), RIKEN Research Center for Allergy and Immunology (RCAI), Kanagawa, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| |
Collapse
|
21
|
Tarifeño-Saldivia E, Aguilar A, Contreras D, Mercado L, Morales-Lange B, Márquez K, Henríquez A, Riquelme-Vidal C, Boltana S. Iron Overload Is Associated With Oxidative Stress and Nutritional Immunity During Viral Infection in Fish. Front Immunol 2018; 9:1296. [PMID: 29922300 PMCID: PMC5996096 DOI: 10.3389/fimmu.2018.01296] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022] Open
Abstract
Iron is a trace element, essential to support life due to its inherent ability to exchange electrons with a variety of molecules. The use of iron as a cofactor in basic metabolic pathways is essential to both pathogenic microorganisms and their hosts. During evolution, the shared requirement of micro- and macro-organisms for this important nutrient has shaped the pathogen-host relationship. Infectious pancreatic necrosis virus (IPNv) affects salmonids constituting a sanitary problem for this industry as it has an important impact on post-smolt survival. While immune modulation induced by IPNv infection has been widely characterized on Salmo salar, viral impact on iron host metabolism has not yet been elucidated. In the present work, we evaluate short-term effect of IPNv on several infected tissues from Salmo salar. We observed that IPNv displayed high tropism to headkidney, which directly correlates with a rise in oxidative stress and antiviral responses. Transcriptional profiling on headkidney showed a massive modulation of gene expression, from which biological pathways involved with iron metabolism were remarkable. Our findings suggest that IPNv infection increase oxidative stress on headkidney as a consequence of iron overload induced by a massive upregulation of genes involved in iron metabolism.
Collapse
Affiliation(s)
- Estefanía Tarifeño-Saldivia
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Andrea Aguilar
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, Concepción, Chile
| | - David Contreras
- Renewable Resources Laboratory, Biotechnology Center, University of Concepción, University Campus, Concepción, Chile
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Byron Morales-Lange
- Grupo de Marcadores Inmunológicos, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Katherine Márquez
- Renewable Resources Laboratory, Biotechnology Center, University of Concepción, University Campus, Concepción, Chile
| | - Adolfo Henríquez
- Renewable Resources Laboratory, Biotechnology Center, University of Concepción, University Campus, Concepción, Chile
| | - Camila Riquelme-Vidal
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Sebastian Boltana
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, Concepción, Chile
| |
Collapse
|
22
|
Pomatto LCD, Cline M, Woodward N, Pakbin P, Sioutas C, Morgan TE, Finch CE, Forman HJ, Davies KJA. Aging attenuates redox adaptive homeostasis and proteostasis in female mice exposed to traffic-derived nanoparticles ('vehicular smog'). Free Radic Biol Med 2018; 121:86-97. [PMID: 29709705 PMCID: PMC5987225 DOI: 10.1016/j.freeradbiomed.2018.04.574] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 01/02/2023]
Abstract
Environmental toxicants are catalysts for protein damage, aggregation, and the aging process. Fortunately, evolution selected adaptive homeostasis as a system to mitigate such damage by expanding the normal capacity to cope with toxic stresses. Little is known about the subcellular degradative responses to proteins oxidatively damaged by air pollution. To better understand the impact of environmental toxicants upon the adaptive homeostatic response, female C57BL/6 mice were exposed for 10 weeks to filtered air or reaerosolized vehicular-derived nano-scale particulate matter (nPM), at which point tissues from young (6 month) and middle-aged (21 month) mice were studied. We found significant increases of proteolytic capacity in lung, liver, and heart. Up to two-fold increases were seen in the 20S Proteasome, the Immunoproteasome, the mitochondrial Lon protease, and NF-E2-related factor 2 (Nrf2), a major transcriptional factor for these and other stress-responsive genes. The responses were equivalent in all organs, despite the indirect input of inhaled particles to heart and liver which are downstream of lung. To our knowledge, this is the first exploration of proteostatic responses to oxidative damage by air pollution. Although, middle-aged mice had higher basal levels, their Nrf2-responsive-genes exhibited no response to nanoparticulate exposure. We also found a parallel age-associated rise in the Nrf2 transcriptional inhibitors, Bach1 and c-Myc which appear to attenuate adaptive responses in older mammals, possibly explaining the 'age-ceiling effect.' This report extends prior findings in male mice by demonstrating the involvement of proteolytic responses to traffic-related air pollution in lung, liver, and heart of female mice, with an age-dependent loss of adaptive homeostasis.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Mayme Cline
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Nicholas Woodward
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Payam Pakbin
- Department of Civil and Environmental Engineering of the Viterbi School of Engineering, the University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering of the Viterbi School of Engineering, the University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 90089-0191, USA; Molecular and Computational Biology Program, Department of Biological Sciences of the Dornsife College of Letters, Arts & Sciences, the University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Henry Jay Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 90089-0191, USA; Molecular and Computational Biology Program, Department of Biological Sciences of the Dornsife College of Letters, Arts & Sciences, the University of Southern California, Los Angeles, CA 90089-0191, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, the University of Southern California, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
23
|
Hara Y, Shinkai M, Taguri M, Nagai K, Hashimoto S, Kaneko T. ELISA Development for Serum Hemeoxygenase-1 and Its Application to Patients with Acute Respiratory Distress Syndrome. Can Respir J 2018; 2018:9627420. [PMID: 29849835 PMCID: PMC5932439 DOI: 10.1155/2018/9627420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/29/2018] [Accepted: 03/13/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hemeoxygenase-1 (HO-1) is an essential enzyme in heme catabolism and has been proposed as a biomarker of lung disease prognosis. We modified a commercial HO-1 enzyme-linked immunosorbent assay (ELISA) kit to achieve higher sensitivity and evaluated if serum HO-1 could be a biomarker to predict the prognosis of acute respiratory distress syndrome (ARDS) patients. METHODS Serum samples were collected from 15 healthy volunteers to validate the modified ELISA. In the 22 patients with ARDS who were enrolled, serum HO-1 was measured upon diagnosis (D0) and at 7 days after diagnosis (D7). RESULTS The serum HO-1 concentration could be measured in all healthy volunteers. The intra- and interassay tests and the percentage recovery test were acceptable. Compared with normal control subjects, patients with ARDS had significantly higher D0 HO-1 concentrations (75.4 ng/mL versus 31.7 ng/mL, P < 0.001). The 28-day survival was significantly better in patients with low D0 HO-1 (<75.8 ng/mL) than in those with high D0 HO-1 (≥75.8 ng/mL) (mortality rate: 18% versus 73%, P=0.016). Nonsurvivors had significantly higher D0 and D7 HO-1 concentrations than survivors (P < 0.05). CONCLUSION Serum HO-1 may be a useful biomarker to predict the prognosis of patients with ARDS.
Collapse
Affiliation(s)
- Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masaharu Shinkai
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masataka Taguri
- Department of Biostatistics, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kenjiro Nagai
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoru Hashimoto
- Division of Intensive Care Unit, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
24
|
Diesel Exhaust Particles and the Induction of Macrophage Activation and Dysfunction. Inflammation 2017; 41:356-363. [DOI: 10.1007/s10753-017-0682-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Karavalakis G, Gysel N, Schmitz DA, Cho AK, Sioutas C, Schauer JJ, Cocker DR, Durbin TD. Impact of biodiesel on regulated and unregulated emissions, and redox and proinflammatory properties of PM emitted from heavy-duty vehicles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:1230-1238. [PMID: 28148458 DOI: 10.1016/j.scitotenv.2017.01.187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 05/09/2023]
Abstract
The emissions and the potential health effects of particulate matter (PM) were assessed from two heavy-duty trucks with and without emission control aftertreatment systems when operating on CARB ultra-low sulfur diesel (ULSD) and three different biodiesel blends. The CARB ULSD was blended with soy-based biodiesel, animal fat biodiesel, and waste cooking oil biodiesel at 50vol%. Testing was conducted over the EPA Urban Dynamometer Driving Schedule (UDDS) in triplicate for both trucks. The aftertreatment controls effectively decreased PM mass and number emissions, as well as the polycyclic aromatic hydrocarbons (PAHs) compared to the uncontrolled truck. Emissions of nitrogen oxides (NOx) exhibited increases with the biodiesel blends, showing some feedstock dependency for the controlled truck. The oxidative potential of the emitted PM, measured by means of the dithiothreitol (DTT) assay, showed reductions with the use of biodiesel blends relative to CARB ULSD for the uncontrolled truck. Overall, the cellular responses to the particles from each fuel were reflective of the chemical content, i.e., particles from CARB ULSD were the most reactive and exhibited the highest cellular responses.
Collapse
Affiliation(s)
- Georgios Karavalakis
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA.
| | - Nicholas Gysel
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA
| | - Debra A Schmitz
- Department of Molecular and Medical Pharmacology, UCLA Center for Health Sciences, Los Angeles, CA 90095, USA; Department of Environmental Health Sciences, UCLA Center for Health Sciences, Los Angeles, CA 90095, USA
| | - Arthur K Cho
- Department of Molecular and Medical Pharmacology, UCLA Center for Health Sciences, Los Angeles, CA 90095, USA; Department of Environmental Health Sciences, UCLA Center for Health Sciences, Los Angeles, CA 90095, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA
| | - James J Schauer
- University of Wisconsin-Madison, Environmental Chemistry and Technology Program, 660 North Park Street, Madison, WI, USA
| | - David R Cocker
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA
| | - Thomas D Durbin
- University of California, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), 1084 Columbia Avenue, Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
26
|
Nrf2 Regulates the Risk of a Diesel Exhaust Inhalation-Induced Immune Response during Bleomycin Lung Injury and Fibrosis in Mice. Int J Mol Sci 2017; 18:ijms18030649. [PMID: 28304344 PMCID: PMC5372661 DOI: 10.3390/ijms18030649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/03/2017] [Accepted: 03/09/2017] [Indexed: 01/09/2023] Open
Abstract
The present study investigated the effects of diesel exhaust (DE) on an experimental model of bleomycin (BLM)-induced lung injury and fibrosis in mice. BLM was intravenously administered to both Nrf2+/+ and Nrf2−/− C57BL/6J mice on day 0. The mice were exposed to DE for 56 days from 28 days before the BLM injection to 28 days after the BLM injection. Inhalation of DE induced significant inhibition of airway clearance function and the proinflammatory cytokine secretion in macrophages, an increase in neutrophils, and severe lung inflammatory injury, which were greater in Nrf2−/− mice than in Nrf2+/+ mice. In contrast, inhalation of DE was observed to induce a greater increase of hydroxyproline content in the lung tissues and significantly higher pulmonary antioxidant enzyme mRNA expression in the Nrf2+/+ mice than in Nrf2−/− mice. DE is an important risk factor, and Nrf2 regulates the risk of a DE inhalation induced immune response during BLM lung injury and fibrosis in mice.
Collapse
|
27
|
Hesperetin Suppresses Inflammatory Responses in Lipopolysaccharide-Induced RAW 264.7 Cells via the Inhibition of NF-κB and Activation of Nrf2/HO-1 Pathways. Inflammation 2017; 39:964-73. [PMID: 26994999 DOI: 10.1007/s10753-016-0311-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hesperetin (Hesp), a common flavanone glycoside, was extracted from the fruit peel of Citrus aurantium L. (Rutaceae). Hesp has been shown to possess various biological properties, including antioxidant, neuroprotective, and anti-inflammatory properties. In this study, we investigated the protective effect of Hesp on inflammatory responses in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Our results indicated that Hesp treatment dramatically suppressed secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β; reduced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) gene expression; inhibited NF-κB (p65) phosphorylation; and blocked IκBα phosphorylation and degradation. Further studies revealed Hesp markedly enhanced the heme oxygenase (HO)-1 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression, which were involved with inducing Nrf2 nuclear translocation and decreasing Keap1 protein expression. Together, these results indicated that the anti-inflammatory effect of Hesp may be associated with NF-κB inhibition and Nrf2/HO-1 activation.
Collapse
|
28
|
Castañeda AR, Bein KJ, Smiley-Jewell S, Pinkerton KE. Fine particulate matter (PM 2.5) enhances allergic sensitization in BALB/c mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:197-207. [PMID: 28494199 PMCID: PMC6159927 DOI: 10.1080/15287394.2016.1222920] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ambient particulate matter (PM), a component of air pollution, exacerbates airway inflammation and hyperreactivity in asthmatic patients. Studies showed that PM possesses adjuvant-like properties that enhance the allergic inflammatory response; however, the mechanism (or mechanisms) by which PM enhances the allergic response remains to be determined. The aim of this study was to assess how exposure to fine PM collected from Sacramento, CA, shapes the allergic airway immune response in BALB/c mice undergoing sensitization and challenge with ovalbumin (OVA). Eight-week-old BALB/c male mice were sensitized/challenged with phosphate-buffered saline (PBS/PBS; n = 6), PM/PBS (n = 6), OVA/OVA (n = 6), or OVA + PM/OVA (n = 6). Lung tissue, bronchoalveolar lavage fluid (BALF), and plasma were analyzed for cellular inflammation, cytokines, immunoglobulin E, and heme oxygenase-1 (HO-1) expression. Mice in the OVA + PM/OVA group displayed significantly increased airway inflammation compared to OVA/OVA animals. Total cells, macrophages, and eosinophils recovered in BALF were significantly elevated in the OVA + PM/OVA compared to OVA/OVA group. Histopathological grading indicated that OVA + PM/OVA treatment induced significant inflammation compared to OVA/OVA. Both immunoglobulin (Ig) E and tumor necrosis factor (TNF) α levels were significantly increased in OVA/OVA and OVA + PM /OVA groups compared to PBS/PBS control. The number of HO-1 positive alveolar macrophages was significantly elevated in lungs of mice treated with OVA + PM /OVA compared to OVA/OVA. Our findings suggest that fine PM enhances allergic inflammatory response in pulmonary tissue through mechanisms involving increased oxidative stress.
Collapse
Affiliation(s)
- Alejandro R Castañeda
- a Center for Health and the Environment, University of California , Davis , California , USA
| | - Keith J Bein
- a Center for Health and the Environment, University of California , Davis , California , USA
- b Air Quality Research Center, University of California , Davis , California , USA
| | - Suzette Smiley-Jewell
- a Center for Health and the Environment, University of California , Davis , California , USA
| | - Kent E Pinkerton
- a Center for Health and the Environment, University of California , Davis , California , USA
- c Department of Pediatrics , University of California , Davis , California , USA
| |
Collapse
|
29
|
Hara Y, Shinkai M, Kanoh S, Fujikura Y, K Rubin B, Kawana A, Kaneko T. Arterial Carboxyhemoglobin Measurement Is Useful for Evaluating Pulmonary Inflammation in Subjects with Interstitial Lung Disease. Intern Med 2017; 56:621-626. [PMID: 28321059 PMCID: PMC5410469 DOI: 10.2169/internalmedicine.56.7418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objective The arterial concentration of carboxyhemoglobin (CO-Hb) in subjects with inflammatory pulmonary disease is higher than that in healthy individuals. We retrospectively analyzed the relationship between the CO-Hb concentration and established markers of disease severity in subjects with interstitial lung disease (ILD). Methods The CO-Hb concentration was measured in subjects with newly diagnosed or untreated ILD and the relationships between the CO-Hb concentration and the serum biomarker levels, lung function, high-resolution CT (HRCT) findings, and the uptake in gallium-67 (67Ga) scintigraphy were evaluated. Results Eighty-one non-smoking subjects were studied (mean age, 67 years). Among these subjects, (A) 17 had stable idiopathic pulmonary fibrosis (IPF), (B) 9 had an acute exacerbation of IPF, (C) 44 had stable non-IPF, and (D) 11 had an exacerbation of non-IPF. The CO-Hb concentrations of these subjects were (A) 1.5±0.5%, (B) 2.1±0.5%, (C) 1.2±0.4%, and (D) 1.7±0.5%. The CO-Hb concentration was positively correlated with the serum levels of surfactant protein (SP)-A (r=0.38), SP-D (r=0.39), and the inflammation index (calculated from HRCT; r=0.57) and was negatively correlated with the partial pressure of oxygen in the arterial blood (r=-0.56) and the predicted diffusion capacity of carbon monoxide (r=-0.61). The CO-Hb concentrations in subjects with a negative heart sign on 67Ga scintigraphy were higher than those in subjects without a negative heart sign (1.4±0.5% vs. 1.1±0.3%, p=0.018). Conclusion The CO-Hb levels of subjects with ILD were increased, particularly during an exacerbation, and were correlated with the parameters that reflect pulmonary inflammation.
Collapse
Affiliation(s)
- Yu Hara
- Division of Infectious Diseases and Pulmonary Medicine, Department of Internal Medicine, National Defense Medical College, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Heme Oxygenase-1-Expressing Dendritic Cells Promote Foxp3+ Regulatory T Cell Differentiation and Induce Less Severe Airway Inflammation in Murine Models. PLoS One 2016; 11:e0168919. [PMID: 28033400 PMCID: PMC5199094 DOI: 10.1371/journal.pone.0168919] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/08/2016] [Indexed: 12/17/2022] Open
Abstract
Dendritic cells (DCs) are critical for instructing immune responses toward inflammatory or anti-inflammatory status. Heme oxygenase-1 (HO-1) is known for its cytoprotective effect against oxidative stress and inflammation, suggesting its immune regulatory role in allergic lung inflammation. HO-1 has been implicated in affecting DC maturation; however, its role in DC-mediated T-cell differentiation is unclear. In this study, we demonstrated that HO-1-expressing bone marrow-derived dendritic cells (BM-DCs) displayed tolerogenic phenotypes, including their resistance to lipopolysaccharide (LPS)-induced maturation, high level expression of IL-10, and low T-cell stimulatory activity. In addition, HO-1-expressing DCs were able to induce antigen-specific Foxp3+ regulatory T cells (Treg) differentiation in vitro and in vivo. Also, HO-1-expressing DCs modulated the severity of lung inflammatory responses in two murine models of airway inflammation. This study provided evidence supporting the role of HO-1-expressing DCs in tolerance induction and as a potential therapeutic target for allergic asthma as well as other inflammatory diseases.
Collapse
|
31
|
Miousse IR, Koturbash I, Chalbot MC, Hauer-Jensen M, Kavouras I, Pathak R. Analysis of the Ambient Particulate Matter-induced Chromosomal Aberrations Using an In Vitro System. J Vis Exp 2016:54969. [PMID: 28060322 PMCID: PMC5226431 DOI: 10.3791/54969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exposure to particulate matter (PM) is a major world health concern, which may damage various cellular components, including the nuclear genetic material. To assess the impact of PM on nuclear genetic integrity, structural chromosomal aberrations are scored in the metaphase spreads of mouse RAW264.7 macrophage cells. PM is collected from ambient air with a high volume total suspended particles sampler. The collected material is solubilized and filtered to retain the water-soluble, fine portion. The particles are characterized for chemical composition by nuclear magnetic resonance (NMR) spectroscopy. Different concentrations of particle suspension are added onto an in vitro culture of RAW264.7 mouse macrophages for a total exposure time of 72 hr, along with untreated control cells. At the end of exposure, the culture is treated with colcemid to arrest cells in metaphase. Cells are then harvested, treated with hypotonic solution, fixed in acetomethanol, dropped onto glass slides and finally stained with Giemsa solution. Slides are examined to assess the structural chromosomal aberrations (CAs) in metaphase spreads at 1,000X magnification using a bright-field microscope. 50 to 100 metaphase spread are scored for each treatment group. This technique is adapted for the detection of structural chromosomal aberrations (CAs), such as chromatid-type breaks, chromatid-type exchanges, acentric fragments, dicentric and ring chromosomes, double minutes, endoreduplication, and Robertsonian translocations in vitro after exposure to PM. It is a powerful method to associate a well-established cytogenetic endpoint to epigenetic alterations.
Collapse
Affiliation(s)
- Isabelle R Miousse
- Department of Occupational and Environmental Health, University of Arkansas for Medical Sciences;
| | - Igor Koturbash
- Department of Occupational and Environmental Health, University of Arkansas for Medical Sciences;
| | - Marie-Cécile Chalbot
- Department of Environmental Health Sciences, University of Alabama at Birmingham
| | | | - Ilias Kavouras
- Department of Environmental Health Sciences, University of Alabama at Birmingham
| | - Rupak Pathak
- Division of Radiation Health, University of Arkansas for Medical Sciences
| |
Collapse
|
32
|
Sagai M, Win-Shwe TT. [Oxidative stress derived from airborne fine and ultrafine particles and the effects on brain-nervous system: part 1]. Nihon Eiseigaku Zasshi 2016; 70:127-33. [PMID: 25994344 DOI: 10.1265/jjh.70.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Traffic-related air pollution is a major contributor to urban air pollution. Diesel exhaust (DE) is the most important component of near-road and urban air pollution and is commonly used as a surrogate model of air pollution in health effects studies. In particular, diesel exhaust particles (DEP) and the nanoparticles in DEP are considered hazardous components on health effects. It is widely known that exposure to DEP is associated with mortality due to respiratory and cardiovascular diseases. Recently, there has been accumulating evidence that DEP and the nanoparticles in DEP may be causes of neurodegenerative disorders. Here, we introduce the evidence suggesting their association with such disorders. First, we describe the chemical components and the translocation of DEP and nanoparticles to the brain, and then introduce the evidence and a mechanism by which reactive oxygen species (ROS) and any inflammatory mediators can be produced by DEP phagocytosis of macrophages, microglia and astrocyte cells in the brain. There are many lines of evidence showing that the neurodegenerative disorders are profoundly associated with enhanced oxidative and inflammatory events. Second, we describe a mechanism by which neurodegenerative diseases, such as stroke, Alzheimer's disease and Parkinson's disease, are induced via oxidative stress and inflammatory events.
Collapse
Affiliation(s)
- Masaru Sagai
- Tsukuba Institute for Healthy Life (Aomori University of Health and Welfare)
| | | |
Collapse
|
33
|
Involvement of MEK-ERK1-2 pathway in the anti-oxidant response in C6 glioma cells after diesel exhaust particles exposure. Toxicol Lett 2016; 250-251:57-65. [DOI: 10.1016/j.toxlet.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/18/2022]
|
34
|
Shuster-Meiseles T, Shafer MM, Heo J, Pardo M, Antkiewicz DS, Schauer JJ, Rudich A, Rudich Y. ROS-generating/ARE-activating capacity of metals in roadway particulate matter deposited in urban environment. ENVIRONMENTAL RESEARCH 2016; 146:252-62. [PMID: 26775006 DOI: 10.1016/j.envres.2016.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/23/2015] [Accepted: 01/06/2016] [Indexed: 05/25/2023]
Abstract
In this study we investigated the possible causal role for soluble metal species extracted from roadway traffic emissions in promoting particulate matter (PM)-induced reactive oxygen species (ROS) production and antioxidant response element (ARE) promoter activation. To this end, these responses have been evaluated in alveolar macrophage and epithelial lung cells that have been exposed to 'Unfiltered', 'Filtered' and 'Filtered+Chelexed' water extracts of PM samples collected from the roadway urban environments of Thessaloniki, Milan and London. Except for Thessaloniki, our results demonstrate that filtration resulted in a minor decrease in ROS activity of the fine PM fraction, suggesting that ROS activity is attributed mainly to water-soluble PM species. In contrast to ROS, ARE activity was mediated predominantly by the water-soluble component of PM present in both the fine and coarse extracts. Further removal of metals by Chelex treatment from filtered water extracts showed that soluble metal species are the major factors mediating ROS and ARE activities of the soluble fraction, especially in the London PM extracts. Finally, utilizing step-wise multiple-regression analysis, we show that 87% and 78% of the total variance observed in ROS and ARE assays, respectively, is accounted for by changes in soluble metal concentration. Using a statistical analysis we find that As, Zn and Fe best predict the ROS-generating/ARE-activating capacity of the near roadway particulate matter in the pulmonary cells studied. Collectively, our findings imply that soluble metals present in roadside PM are potential drivers of both pro- and anti-oxidative effects of PM in respiratory tract.
Collapse
Affiliation(s)
- Timor Shuster-Meiseles
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Martin M Shafer
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, WI, USA
| | - Jongbae Heo
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - James J Schauer
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, WI, USA
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
35
|
Yan Z, Jin Y, An Z, Liu Y, Samet JM, Wu W. Inflammatory cell signaling following exposures to particulate matter and ozone. Biochim Biophys Acta Gen Subj 2016; 1860:2826-34. [PMID: 27015762 DOI: 10.1016/j.bbagen.2016.03.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Particulate matter (PM) and ozone (O3) are two major ambient air pollutants. Epidemiological and toxicological studies have demonstrated exposure to these pollutants is associated with a variety of adverse health effects, including cardiovascular and respiratory disease, in which inflammation is believed to be a common and essential factor. SCOPE OF REVIEW This review mainly focuses on major inflammatory cell signaling pathways triggered by exposure to PM and O3. The receptors covered in this review include the EGF receptor, toll like receptor, and NOD-like receptor. Intracellular signaling protein kinases depicted in this review are phosphatidylinositol 3-kinase and mitogen-activated protein kinases. Activation of antioxidant and inflammatory transcription factors such as NrF2 and NFκB induced by PM and O3 is also discussed. MAJOR CONCLUSIONS Exposure to PM or O3 can activate cellular signaling networks including membrane receptors, intracellular kinases and phosphatases, and transcription factors that regulate inflammatory responses. While PM-induced cell signaling is associated with resultant ROS, O3-induced cell signaling implicates phosphates. Notably, the cellular signaling induced by PM and O3 exposure varies with cell type and physiochemical properties of these pollutants. GENERAL SIGNIFICANCE Cellular signaling plays a critical role in the regulation of inflammatory pathogenesis. Elucidation of cellular signaling pathways initiated by PM or O3 cannot only help to uncover the mechanisms of air pollutant toxicity but also provide clues for development of interventional measures against air pollution-induced disorders. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Zhen Yan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yuefei Jin
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China; Xinxiang Key Laboratory of Environmental Effects and Intervention, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Yingying Liu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China; Xinxiang Key Laboratory of Environmental Effects and Intervention, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, NC 27599, USA
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China; Xinxiang Key Laboratory of Environmental Effects and Intervention, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China.
| |
Collapse
|
36
|
Noël A, Xiao R, Perveen Z, Zaman HM, Rouse RL, Paulsen DB, Penn AL. Incomplete lung recovery following sub-acute inhalation of combustion-derived ultrafine particles in mice. Part Fibre Toxicol 2016; 13:10. [PMID: 26911867 PMCID: PMC4766714 DOI: 10.1186/s12989-016-0122-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022] Open
Abstract
Background Particulate matter (PM) is one of the six criteria pollutant classes for which National Ambient Air Quality Standards have been set by the United States Environmental Protection Agency. Exposures to PM have been correlated with increased cardio-pulmonary morbidity and mortality. Butadiene soot (BDS), generated from the incomplete combustion of 1,3-butadiene (BD), is both a model PM mixture and a real-life example of a petrochemical product of incomplete combustion. There are numerous events, including wildfires, accidents at refineries and tank car explosions that result in sub-acute exposure to high levels of airborne particles, with the people exposed facing serious health problems. These real-life events highlight the need to investigate the health effects induced by short-term exposure to elevated levels of PM, as well as to assess whether, and if so, how well these adverse effects are resolved over time. In the present study, we investigated the extent of recovery of mouse lungs 10 days after inhalation exposures to environmentally-relevant levels of BDS aerosols had ended. Methods Female BALB/c mice exposed to either HEPA-filtered air or to BDS (5 mg/m3 in HEPA filtered air, 4 h/day, 21 consecutive days) were sacrificed immediately, or 10 days after the final BDS exposure. Bronchoalveolar lavage fluid (BALF) was collected for cytology and cytokine analysis. Lung proteins and RNA were extracted for protein and gene expression analysis. Lung histopathology evaluation also was performed. Results Sub-acute exposures of mice to hydrocarbon-rich ultrafine particles induced: (1) BALF neutrophil elevation; (2) lung mucosal inflammation, and (3) increased BALF IL-1β concentration; with all three outcomes returning to baseline levels 10 days post-exposure. In contrast, (4) lung connective tissue inflammation persisted 10 days post-exposure; (5) we detected time-dependent up-regulation of biotransformation and oxidative stress genes, with incomplete return to baseline levels; and (6) we observed persistent particle alveolar load following 10 days of recovery. Conclusion These data show that 10 days after a 21-day exposure to 5 mg/m3 of BDS has ended, incomplete lung recovery promotes a pro-biotransformation, pro-oxidant, and pro-inflammatory milieu, which may be a starting point for potential long-term cardio-pulmonary effects.
Collapse
Affiliation(s)
- A Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA
| | - R Xiao
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Z Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA
| | - H M Zaman
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA
| | - R L Rouse
- United States Food and Drug Administration, Silver Spring, MD, USA
| | - D B Paulsen
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - A L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA.
| |
Collapse
|
37
|
Sobočanec S, Filić V, Matovina M, Majhen D, Šafranko ŽM, Hadžija MP, Krsnik Ž, Kurilj AG, Šarić A, Abramić M, Balog T. Prominent role of exopeptidase DPP III in estrogen-mediated protection against hyperoxia in vivo. Redox Biol 2016; 8:149-59. [PMID: 26774752 PMCID: PMC4732022 DOI: 10.1016/j.redox.2016.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 02/07/2023] Open
Abstract
A number of age-related diseases have a low incidence in females, which is attributed to a protective effect of sex hormones. For instance, the female sex hormone estrogen (E2) has a well established cytoprotective effect against oxidative stress, which strongly contributes to ageing. However, the mechanism by which E2 exerts its protective activity remains elusive. In this study we address the question whether the E2-induced protective effect against hyperoxia is mediated by the Nrf-2/Keap-1 signaling pathway. In particular, we investigate the E2-induced expression and cellular distribution of DPP III monozinc exopeptidase, a member of the Nrf-2/Keap-1 pathway, upon hyperoxia treatment. We find that DPP III accumulates in the nucleus in response to hyperoxia. Further, we show that combined induction of hyperoxia and E2 administration have an additive effect on the nuclear accumulation of DPP III. The level of nuclear accumulation of DPP III is comparable to nuclear accumulation of Nrf-2 in healthy female mice exposed to hyperoxia. In ovariectomized females exposed to hyperoxia, supplementation of E2 induced upregulation of DPP III, Ho-1, Sirt-1 and downregulation of Ppar-γ. While other cytoprotective mechanisms cannot be excluded, these findings demonstrate a prominent role of DPP III, along with Sirt-1, in the E2-mediated protection against hyperoxia. DPP III accumulates in the nucleus in response to hyperoxia. Additive effect of hyperoxia and E2 on nuclear accumulation of DPP III is observed. Protective effect of E2 is associated with increased DPP III, Ho-1 and Sirt-1.
Collapse
Affiliation(s)
- Sandra Sobočanec
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Mihaela Matovina
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | | | - Željka Krsnik
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Andrea Gudan Kurilj
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Šarić
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marija Abramić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tihomir Balog
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
38
|
Misaki K, Takamura-Enya T, Ogawa H, Takamori K, Yanagida M. Tumour-promoting activity of polycyclic aromatic hydrocarbons and their oxygenated or nitrated derivatives. Mutagenesis 2015; 31:205-13. [PMID: 26656082 DOI: 10.1093/mutage/gev076] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Various types of polycyclic aromatic compounds (PACs) in diesel exhaust particles are thought to contribute to carcinogenesis in mammals. Although the carcinogenicity, mutagenicity and tumour-initiating activity of these compounds have been evaluated, their tumour-promoting activity is unclear. In the present study, to determine the tumour-inducing activity of PACs, including previously known mutagenic compounds in atmospheric environments, a transformation assay for promoting activity mediated by the release of contact inhibition was conducted for six polycyclic aromatic hydrocarbons (PAHs), seven oxygenated PAHs (oxy-PAHs) and seven nitrated PAHs (nitro-PAHs) using mouse embryonic fibroblast cells transfected with the v-Ha-ras gene (Bhas 42 cells). Of these, two PAHs [benzo[k]fluoranthene (B[k]FA) and benzo[b]fluoranthene (B[b]FA)], one oxy-PAH [6H-benzo[cd]pyren-6-one (BPO)] and two nitro-PAHs (3-nitro-7H-benz[de]anthracen-7-one and 6-nitrochrysene) were found to exhibit particularly powerful tumour-promoting activity (≥10 foci following exposure to <100nM). In addition, clear mRNA expression of CYP1A1, which is associated with aryl hydrocarbon receptor (AhR)-mediated activation, was observed following the exposure of cells to two PAHs (B[k]FA and B[b]FA) and three oxy-PAHs (1,2-naphthoquinone, 11H-benzo[b]fluoren-11-one and BPO). Further, an HO-1 antioxidant response activation was observed following exposure to B[k]FA, B[b]FA and BPO, suggesting that the induction of tumour-promoting activity in these compounds is correlated with the dysfunction of signal transduction via AhR-mediated responses and/or oxidative stress responses.
Collapse
Affiliation(s)
- Kentaro Misaki
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan, School of Nursing, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan and
| | - Takeji Takamura-Enya
- Department of Applied Chemistry, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Hideoki Ogawa
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Kenji Takamori
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Mitsuaki Yanagida
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| |
Collapse
|
39
|
Bach N, Bølling AK, Brinchmann BC, Totlandsdal AI, Skuland T, Holme JA, Låg M, Schwarze PE, Øvrevik J. Cytokine responses induced by diesel exhaust particles are suppressed by PAR-2 silencing and antioxidant treatment, and driven by polar and non-polar soluble constituents. Toxicol Lett 2015; 238:72-82. [PMID: 26160521 DOI: 10.1016/j.toxlet.2015.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 12/14/2022]
Abstract
Adsorbed soluble organics seem to be the main drivers of inflammatory responses induced by diesel exhaust particles (DEP). The specific compounds contributing to this process and the cellular mechanisms behind DEP-induced inflammation are not well known. We have assessed pro-inflammatory effects of DEP and various soluble DEP fractions, in human bronchial epithelial cells (BEAS-2B). DEP increased the expression of interleukin (IL)-6 and CXCL8. Silencing of the aryl hydrocarbon receptor (AhR) by siRNA or pretreatment with AhR-antagonists did not attenuate DEP-induced IL-6 and CXCL8 responses. However, the halogenated aromatic hydrocarbon (HAH)-selective AhR antagonist CH223191 caused a considerable reduction in DEP-induced CYP1A1 expression indicating that this response may be due to dioxin or dioxin-like constituents in DEP. Knock-down of protease activated receptor (PAR)-2 attenuated IL-6 responses without affecting CXCL8. Antioxidants did not affect IL-6 expression after 4h DEP-exposure and only partly reduced CXCL8 expression. However, after 24h exposure antioxidant treatment partly suppressed IL-6 protein release and completely blocked CXCL8 release. Furthermore, a heptane-soluble (non-polar) extract of DEP induced both IL-6 and CXCL8 release, whereas a PBS-soluble (highly polar) extract induced only IL-6. Thus, pro-inflammatory responses in DEP-exposed epithelial cells appear to be the result of both reactive oxygen species and receptor signaling, mediated through combinatorial effects between both non-polar and polar constituents adhered to the particle surface.
Collapse
Affiliation(s)
- Nicolai Bach
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Norway; Department of Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Anette Kocbach Bølling
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Norway
| | - Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Norway
| | - Annike I Totlandsdal
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Norway
| | - Tonje Skuland
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Norway
| | - Jørn A Holme
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Norway
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Norway
| | - Per E Schwarze
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Norway
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Norway.
| |
Collapse
|
40
|
Øvrevik J, Refsnes M, Låg M, Holme JA, Schwarze PE. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms. Biomolecules 2015; 5:1399-440. [PMID: 26147224 PMCID: PMC4598757 DOI: 10.3390/biom5031399] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/23/2022] Open
Abstract
Inflammation is considered to play a central role in a diverse range of disease outcomes associated with exposure to various types of inhalable particulates. The initial mechanisms through which particles trigger cellular responses leading to activation of inflammatory responses are crucial to clarify in order to understand what physico-chemical characteristics govern the inflammogenic activity of particulate matter and why some particles are more harmful than others. Recent research suggests that molecular triggering mechanisms involved in activation of proinflammatory genes and onset of inflammatory reactions by particles or soluble particle components can be categorized into direct formation of reactive oxygen species (ROS) with subsequent oxidative stress, interaction with the lipid layer of cellular membranes, activation of cell surface receptors, and direct interactions with intracellular molecular targets. The present review focuses on the immediate effects and responses in cells exposed to particles and central down-stream signaling mechanisms involved in regulation of proinflammatory genes, with special emphasis on the role of oxidant and non-oxidant triggering mechanisms. Importantly, ROS act as a central second-messenger in a variety of signaling pathways. Even non-oxidant mediated triggering mechanisms are therefore also likely to activate downstream redox-regulated events.
Collapse
Affiliation(s)
- Johan Øvrevik
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Magne Refsnes
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Jørn A Holme
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Per E Schwarze
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| |
Collapse
|
41
|
Johnston H, Brown DM, Kanase N, Euston M, Gaiser BK, Robb CT, Dyrynda E, Rossi AG, Brown ER, Stone V. Mechanism of neutrophil activation and toxicity elicited by engineered nanomaterials. Toxicol In Vitro 2015; 29:1172-84. [PMID: 25962642 DOI: 10.1016/j.tiv.2015.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 02/03/2023]
Abstract
The effects of nanomaterials (NMs) on biological systems, especially their ability to stimulate inflammatory responses requires urgent investigation. We evaluated the response of the human differentiated HL60 neutrophil-like cell line to NMs. It was hypothesised that NM physico-chemical characteristics would influence cell responsiveness by altering intracellular Ca2+ concentration [Ca2+]i and reactive oxygen species production. Cells were exposed (1.95-125 μg/ml, 24 h) to silver (Ag), zinc oxide (ZnO), titanium dioxide (TiO2), multi-walled carbon nanotubes (MWCNTs) or ultrafine carbon black (ufCB) and cytotoxicity assessed (alamar blue assay). Relatively low (TiO2, MWCNTs, ufCB) or high (Ag, ZnO) cytotoxicity NMs were identified. Sub-lethal impacts of NMs on cell function were investigated for selected NMs only, namely TiO2, Ag and ufCB. Only Ag stimulated cell activation. Within minutes, Ag stimulated an increase in [Ca2+]i (in Fura-2 loaded cells), and a prominent inward ion current (assessed by electrophysiology). Within 2-4 h, Ag increased superoxide anion release and stimulated cytokine production (MCP-1, IL-8) that was diminished by Ca2+ inhibitors or trolox. Light microscopy demonstrated that cells had an activated phenotype. In conclusion NM toxicity was ranked; Ag>ufCB>TiO2, and the battery of tests used provided insight into the mechanism of action of NM toxicity to guide future testing strategies.
Collapse
Affiliation(s)
- Helinor Johnston
- School of Life Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom.
| | - David M Brown
- School of Life Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Nilesh Kanase
- School of Life Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Matthew Euston
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Birgit K Gaiser
- School of Life Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Calum T Robb
- School of Life Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom; MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Elisabeth Dyrynda
- School of Life Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Adriano G Rossi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Euan R Brown
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Vicki Stone
- School of Life Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
42
|
Mačak Šafranko Ž, Sobočanec S, Šarić A, Jajčanin-Jozić N, Krsnik Ž, Aralica G, Balog T, Abramić M. The effect of 17β-estradiol on the expression of dipeptidyl peptidase III and heme oxygenase 1 in liver of CBA/H mice. J Endocrinol Invest 2015; 38:471-9. [PMID: 25432329 DOI: 10.1007/s40618-014-0217-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/19/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND 17β-estradiol (E₂) has well-established cardioprotective, antioxidant and neuroprotective role, and exerts a vast range of biological effects in both sexes. Dipeptidyl peptidase III (DPP III) is protease involved as activator in Keap1-Nrf2 signalling pathway, which is important in cellular defense to oxidative and electrophilic stress. It is generally accepted that oxidative stress is crucial in promoting liver diseases. OBJECTIVE To examine the effect of E₂ on the expression of DPP III and haeme oxygenase 1 (HO-1) in liver of adult CBA/H mice of both sexes. METHODS Gene and protein expressions of studied enzymes were determined by quantitative real-time PCR and Western blot analysis. Immunohistochemistry was performed to analyse the localization of both proteins in different liver cell types. RESULTS Ovariectomy diminished expression of DPP III and HO-1 proteins. E₂ administration abolished this effect, and even increased these proteins above the control. A significant enhancement in DPP III protein was found in E₂-treated males, as well. A decrease in the expression of HO-1, but not of the DPP III gene, was detected in the liver of ovariectomized females. HO-1 protein was found localized in the pericentral areas of hepatic lobules (Kupffer cells and hepatocytes), whilst DPP III showed a uniform distribution within hepatic tissue. CONCLUSIONS We demonstrate for the first time that E₂ influences the protein level of DPP III in vivo, and confirm earlier finding on HO-1 gene upregulation by 17β-estradiol. These results additionally confer new insights into complexity of protective action of E₂.
Collapse
Affiliation(s)
- Ž Mačak Šafranko
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - S Sobočanec
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia.
| | - A Šarić
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - N Jajčanin-Jozić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ž Krsnik
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - G Aralica
- Department of Pathology, Medical School University of Zagreb and University Hospital, Dubrava, Zagreb, Croatia
| | - T Balog
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - M Abramić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
43
|
Jaguin M, Fardel O, Lecureur V. Exposure to diesel exhaust particle extracts (DEPe) impairs some polarization markers and functions of human macrophages through activation of AhR and Nrf2. PLoS One 2015; 10:e0116560. [PMID: 25710172 PMCID: PMC4339390 DOI: 10.1371/journal.pone.0116560] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/09/2014] [Indexed: 02/07/2023] Open
Abstract
Macrophages (MΦ), well-known to play an important role in immune response, also respond to environmental toxic chemicals such as diesel exhaust particles (DEP). Potential effects of DEPs towards MΦ polarization, a key hall-mark of MΦ physiology, remain however poorly documented. This study was therefore designed to evaluate the effects of a reference DEP extract (DEPe) on human MΦ polarization. Human blood monocytes-derived MΦ were incubated with IFNγ+LPS or IL-4 to obtain M1 and M2 subtypes, respectively; a 24 h exposure of polarizing MΦ to 10 μg/ml DEPe was found to impair expression of some macrophagic M1 and M2 markers, without however overall inhibition of M1 and M2 polarization processes. Notably, DEPe treatment increased the secretion of the M1 marker IL-8 and the M2 marker IL-10 in both MΦ subtypes, whereas it reduced lipopolysaccharide-induced IL-6 and IL-12p40 secretion in M1 MΦ. In M2 MΦ, DEPe exposure led to a reduction of CD200R expression and of CCL17, CCL18 and CCL22 secretion, associated with a lower chemotaxis of CCR4-positive cells. DEPe activated the Nrf2 and AhR pathways and induced expression of their reference target genes such as Hmox-1 and cytochrome P-4501B1 in M1 and M2 MΦ. Nrf2 or AhR silencing through RNA interference prevented DEPe-related down-regulation of IL-6. AhR silencing also inhibited the down-secretion of IL-12p40 and CCL18 in M1- and M2-DEPe-exposed MΦ, respectively. DEPs are therefore likely to alter expression of some M1 and M2 markers in an AhR- and Nrf2-dependent manner; such regulations may contribute to deleterious immune effects of atmospheric DEP.
Collapse
Affiliation(s)
- Marie Jaguin
- UMR INSERM U1085, Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043, Rennes, France
| | - Olivier Fardel
- UMR INSERM U1085, Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Valérie Lecureur
- UMR INSERM U1085, Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043, Rennes, France
- * E-mail:
| |
Collapse
|
44
|
Gavett SH, Wood CE, Williams MA, Cyphert JM, Boykin EH, Daniels MJ, Copeland LB, King C, Krantz TQ, Richards JH, Andrews DL, Jaskot RH, Gilmour MI. Soy biodiesel emissions have reduced inflammatory effects compared to diesel emissions in healthy and allergic mice. Inhal Toxicol 2015; 27:533-44. [PMID: 26514781 DOI: 10.3109/08958378.2015.1054966] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 01/14/2023]
Abstract
Toxicity of exhaust from combustion of petroleum diesel (B0), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM(2.5)) concentrations of 50, 150, or 500 μg/m(3). Studies in healthy mice showed greater levels of neutrophils and MIP-2 in bronchoalveolar lavage (BAL) fluid 2 h after a single 4-h exposure to B0 compared with mice exposed to B20 or B100. No consistent differences in BAL cells and biochemistry, or hematological parameters, were observed after 5 d or 4 weeks of exposure to any of the emissions. Air-exposed HDM-allergic mice had significantly increased responsiveness to methacholine aerosol challenge compared with non-allergic mice. Exposure to any of the emissions for 4 weeks did not further increase responsiveness in either non-allergic or HDM-allergic mice, and few parameters of allergic inflammation in BAL fluid were altered. Lung and nasal pathology were not significantly different among B0-, B20-, or B100-exposed groups. In HDM-allergic mice, exposure to B0, but not B20 or B100, significantly increased resting peribronchiolar lymph node cell proliferation and production of T(H)2 cytokines (IL-4, IL-5, and IL-13) and IL-17 in comparison with air-exposed allergic mice. These results suggest that diesel exhaust at a relatively high concentration (500 μg/m(3)) can induce inflammation acutely in healthy mice and exacerbate some components of allergic responses, while comparable concentrations of B20 or B100 soy biodiesel fuels did not elicit responses different from those caused by air exposure alone.
Collapse
Affiliation(s)
- Stephen H Gavett
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Charles E Wood
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Marc A Williams
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Jaime M Cyphert
- b Curriculum in Toxicology, UNC School of Medicine , Chapel Hill , NC , USA
| | - Elizabeth H Boykin
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Mary J Daniels
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Lisa B Copeland
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Charly King
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Todd Q Krantz
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Judy H Richards
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Debora L Andrews
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - Richard H Jaskot
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| | - M Ian Gilmour
- a National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA , Research Triangle Park , NC , USA and
| |
Collapse
|
45
|
Turner J, Hernandez M, Snawder JE, Handorean A, McCabe KM. A toxicology suite adapted for comparing parallel toxicity responses of model human lung cells to diesel exhaust particles and their extracts. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2015; 49:599-610. [PMID: 26412929 PMCID: PMC4583370 DOI: 10.1080/02786826.2015.1053559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Epidemiological studies have shown that exposure to airborne particulate matter can be an important risk factor for some common respiratory diseases. While many studies have shown that particulate matter exposures are associated with inflammatory reactions, the role of specific cellular responses in the manifestation of primary hypersensitivities, and the progression of respiratory diseases remains unclear. In order to better understand mechanisms by which particulate matter can exert adverse health effects, more robust approaches to support in vitro studies are warranted. In response to this need, a group of accepted toxicology assays were adapted to create an analytical suite for screening and evaluating the effects of important, ubiquitous atmospheric pollutants on two model human lung cell lines (epithelial and immature macrophage). To demonstrate the utility of this suite, responses to intact diesel exhaust particles, and mass-based equivalent doses of their organic extracts were examined. Results suggest that extracts have the potential to induce greater biological responses than those associated with their colloidal counterpart. Additionally, macrophage cells appear to be more susceptible to the cytotoxic effects of both intact diesel exhaust particles and their organic extract, than epithelial cells tested in parallel. As designed, the suite provided a more robust basis for characterizing toxicity mechanisms than the analysis of any individual assay. Findings suggest that cellular responses to particulate matter are cell line dependent, and show that the collection and preparation of PM and/or their extracts have the potential to impact cellular responses relevant to screening fundamental elements of respiratory toxicity.
Collapse
Affiliation(s)
- Jane Turner
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado, USA
| | - Mark Hernandez
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado, USA
| | - John E. Snawder
- Biomonitoring Research, National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA
| | - Alina Handorean
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado, USA
| | - Kevin M. McCabe
- Biology Department, Columbia Gorge Community College, The Dalles, Oregon, USA
| |
Collapse
|
46
|
Laumbach RJ, Kipen HM, Ko S, Kelly-McNeil K, Cepeda C, Pettit A, Ohman-Strickland P, Zhang L, Zhang J, Gong J, Veleeparambil M, Gow AJ. A controlled trial of acute effects of human exposure to traffic particles on pulmonary oxidative stress and heart rate variability. Part Fibre Toxicol 2014; 11:45. [PMID: 25361615 PMCID: PMC4236446 DOI: 10.1186/s12989-014-0045-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/25/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND For many individuals, daily commuting activities on roadways account for a substantial proportion of total exposure, as well as peak-level exposures, to traffic-related air pollutants (TRAPS) including ultrafine particles, but the health impacts of these exposures are not well-understood. We sought to determine if exposure to TRAPs particles during commuting causes acute oxidative stress in the respiratory tract or changes in heart rate variability (HRV), a measure of autonomic activity. METHODS We conducted a randomized, cross-over trial in which twenty-one young adults took two 1.5-hr rides in a passenger vehicle in morning rush-hour traffic. The subjects wore a powered-air-purifying respirator, and were blinded to high-efficiency particulate air (HEPA) filtration during one of the rides. At time points before and after the rides, we measured HRV and markers of oxidative stress in exhaled breath condensate (EBC) including nitrite, the sum of nitrite and nitrate, malondialdehyde, and 8-isoprostane. We used mixed linear models to evaluate the effect of exposure on EBC and HRV outcomes, adjusting for pre-exposure response levels. We used linear models to examine the effects of particle concentrations on EBC outcomes at post-exposure time points. RESULTS Mean EBC nitrite and the sum of nitrite and nitrate were increased from baseline at immediately post-exposure comparing unfiltered to filtered rides (2.11 μM vs 1.70 μM, p = 0.02 and 19.1 μM vs 10.0 μM, p = 0.02, respectively). Mean EBC malondialdehyde (MDA) concentrations were about 10% greater following the unfiltered vs. filtered exposures, although this result was not statistically significant. We found no significant associations between exposure to traffic particles and HRV outcomes at any of the time points. At immediately post-exposure, an interquartile range increase in particle number concentration was associated with statistically significant increases in nitrite (99.4%, 95% CI 32.1% to 166.7%) and nitrite + nitrate (75.7%, 95% CI 21.5% to 130.0%). CONCLUSIONS Increases in markers of oxidative stress in EBC may represent early biological responses to widespread exposures to TRAPs particles that affect passengers in vehicles on heavily trafficked roadways.
Collapse
Affiliation(s)
- Robert J Laumbach
- Department of Environmental and Occupational Medicine and the Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Howard M Kipen
- Department of Environmental and Occupational Medicine and the Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Susan Ko
- Department of Environmental and Occupational Medicine and the Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Kathie Kelly-McNeil
- Department of Environmental and Occupational Medicine and the Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Clarimel Cepeda
- Department of Environmental and Occupational Medicine and the Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Ashley Pettit
- Department of Environmental and Occupational Medicine and the Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | | | - Lin Zhang
- Nicholas School of the Environment and Duke Global Health Institute, Duke University, 450 Research Dr, Durham, NC, 27708, USA.
| | - Junfeng Zhang
- Nicholas School of the Environment and Duke Global Health Institute, Duke University, 450 Research Dr, Durham, NC, 27708, USA.
| | - Jicheng Gong
- Nicholas School of the Environment and Duke Global Health Institute, Duke University, 450 Research Dr, Durham, NC, 27708, USA.
| | - Manoj Veleeparambil
- Department of Molecular Genetics, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Andrew J Gow
- Pharmacy and Toxicology, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
47
|
Huang J, Shen XD, Yue S, Zhu J, Gao F, Zhai Y, Busuttil RW, Ke B, Kupiec-Weglinski JW. Adoptive transfer of heme oxygenase-1 (HO-1)-modified macrophages rescues the nuclear factor erythroid 2-related factor (Nrf2) antiinflammatory phenotype in liver ischemia/reperfusion injury. Mol Med 2014; 20:448-55. [PMID: 25014792 DOI: 10.2119/molmed.2014.00103] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/07/2014] [Indexed: 01/07/2023] Open
Abstract
Macrophages are instrumental in the pathophysiology of liver ischemia/reperfusion injury (IRI). Although Nrf2 regulates macrophage-specific heme oxygenase-1 (HO-1) antioxidant defense, it remains unknown whether HO-1 induction might rescue macrophage Nrf2-dependent antiinflammatory functions. This study explores the mechanisms by which the Nrf2-HO-1 axis regulates sterile hepatic inflammation responses after adoptive transfer of ex vivo modified HO-1 overexpressing bone marrow-derived macrophages (BMMs). Livers in Nrf2-deficient mice preconditioned with Ad-HO-1 BMMs, but not Ad-β-Gal-BMMs, ameliorated liver IRI (at 6 h of reperfusion after 90 min of warm ischemia), evidenced by improved hepatocellular function (serum alanine aminotransferase [sALT] levels) and preserved hepatic architecture (Suzuki histological score). Treatment with Ad-HO-1 BMMs decreased neutrophil accumulation, proinflammatory mediators and hepatocellular necrosis/apoptosis in ischemic livers. Moreover, Ad-HO-1 transfection of Nrf2-deficient BMMs suppressed M1 (Nos2(+)) while promoting the M2 (Mrc-1/Arg-1(+)) phenotype. Unlike in controls, Ad-HO-1 BMMs increased the expression of Notch1, Hes1, phosphorylation of Stat3 and Akt in IR-stressed Nrf2-deficient livers as well as in lipopolysaccharide (LPS)-stimulated BMMs. Thus, adoptive transfer of ex vivo generated Ad-HO-1 BMMs rescued Nrf2-dependent antiinflammatory phenotype by promoting Notch1/Hes1/Stat3 signaling and reprogramming macrophages toward the M2 phenotype. These findings provide the rationale for a novel clinically attractive strategy to manage IR liver inflammation/damage.
Collapse
Affiliation(s)
- Jing Huang
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Xiu-Da Shen
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Shi Yue
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jianjun Zhu
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Feng Gao
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Yuan Zhai
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Ronald W Busuttil
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Bibo Ke
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jerzy W Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
48
|
Li N, Bhattacharya P, Karavalakis G, Williams K, Gysel N, Rivera-Rios N. Emissions from commercial-grade charbroiling meat operations induce oxidative stress and inflammatory responses in human bronchial epithelial cells. Toxicol Rep 2014; 1:802-811. [PMID: 28962293 PMCID: PMC5598377 DOI: 10.1016/j.toxrep.2014.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 01/06/2023] Open
Abstract
Commercial charbroiling emissions are a significant source of ambient particulate matter (PM) in urban settings. The objective of this study was to determine whether organic extract of PM emissions from commercial charbroiling meat operations could induce an inflammatory response in human bronchial epithelial cells and whether this effect was mediated by oxidative stress. PM samples were collected during cooking hamburgers on a commercial-grade under-fired charbroiler and sequentially extracted with water and methanol to obtain the aqueous PM suspension (AqPM) and organic extract (OE). The pro-oxidative and pro-inflammatory effects of OE were assessed using human bronchial epithelial cell line BEAS-2B. While AqPM did not have any effect, OE effectively induced the expression of heme oxygennase-1 and cyclooxygenase-2 in BEAS-2B cells. OE also up-regulated the levels of IL-6, IL-8, and prostaglandin E2. OE-induced cellular inflammatory response could be effectively suppressed by the antioxidant N-acetyl cysteine, nuclear factor (erythroid-derived 2)-like 2 activator sulforaphane and p38 MAPK inhibitor SB203580. In conclusion, organic chemicals emitted from commercial charbroiling meat operations could induce an inflammatory response in human bronchial epithelial cells, which was mediated by oxidative stress and p38 MAPK.
Collapse
Key Words
- AqPM, aqueous PM suspension
- COX, cyclooxygenase
- Commercial charbroiling meat emissions
- DEP, diesel exhaust particles
- Environmental and occupational health
- HO-1, heme oxygenase-1
- Human bronchial epithelial cells
- Inflammatory response
- MAPK, mitogen activated protein kinase
- NAC, N-acetyl cysteine
- OC, organic carbon
- OE, organic extract
- Oxidative stress
- PAH, polycyclic aromatic hydrocarbon
- PG, prostaglandin
- PM, particulate matter
- SFN, sulforaphane
- SOD2, superoxide dismutase 2
- TSLP, thymic stromal lymphopoietin
- UFP, ultrafine particles
- p38 MAPK
Collapse
Affiliation(s)
- Ning Li
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Poulomi Bhattacharya
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Georgios Karavalakis
- Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, Riverside, CA, USA
| | - Keisha Williams
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Nicholas Gysel
- Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, Riverside, CA, USA
| | - Nachamari Rivera-Rios
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
49
|
Zhao X, Aronowski J. Nrf2 to pre-condition the brain against injury caused by products of hemolysis after ICH. Transl Stroke Res 2014; 4:71-5. [PMID: 23378859 DOI: 10.1007/s12975-012-0245-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Brain damage caused by intracerebral hemorrhage (ICH) is mediated in part by the toxicity of extravascular blood deposited in brain parenchyma during the hematoma formation. In this paper we discuss the therapeutic benefits and potential mechanisms associated with the activation of transcription factor Nrf2 regarding its role in defending brain tissue against toxicity of blood, a component of secondary injury. We emphasize the pleiotropic capacity of Nrf2 as it recruits multiple pathways aiming at reducing deleterious effects of blood lysis products.
Collapse
Affiliation(s)
- Xiurong Zhao
- University of Texas Medical School - Houston; Department of Neurology, Stroke Program
| | | |
Collapse
|
50
|
Fireman E, Bliznuk D, Schwarz Y, Soferman R, Kivity S. Biological monitoring of particulate matter accumulated in the lungs of urban asthmatic children in the Tel-Aviv area. Int Arch Occup Environ Health 2014; 88:443-53. [PMID: 25138777 DOI: 10.1007/s00420-014-0972-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/07/2014] [Indexed: 11/27/2022]
Abstract
PURPOSE Lung inflammation from exposure to airborne particulate matter (PM) may be responsible for morbidity in asthma, but several studies using environmental monitoring data showed inconsistent results. Thus, the aim of this study was to evaluate the capability of induced sputum (IS) technology in order to biologically monitor PM in the lungs of urban asthmatic children. METHODS We collected clinical, demographic, biological and environmental monitoring data on 136 children referred for asthma evaluations. The study participants were divided into two groups according to IS eosinophil counts of <3% (non-eosinophilic inflammation, n = 52) and ≥3% (eosinophilic inflammation, n = 84). RESULTS The eosinophilic group displays significantly higher levels of fractional exhaled nitric oxide than the non-eosinophilic one (58.8 ± 47.5 vs 28.9 ± 34.2 ppm, p = 0.007). Particles (0-2.5 and 0-5 µm) comprised a strong risk factor for eosinophilic inflammation in IS (≥3%). Children with >80% of particles (0-2.5 µm) out of the total PM accumulated in the airways displayed the highest OR 10.7 (CI 2.052-56.4 p = 0.005) for an existing eosinophilic inflammation. Heme oxygenase-1 (HO-1) enzyme levels in IS positively correlated with % eosinophils and with particles in IS ranging between 2 and 3 μm. The level of HO-1 enzyme activity and FEV1/FVC in children with <3% eosinophils, but not ≥3%, was positively and significantly correlated, showing a protective effect of HO-1. CONCLUSION Accumulation of PM involves oxidative stress pathways and is a risk factor for developing eosinophilic inflammation in asthmatic children. IS can biologically monitor this process.
Collapse
Affiliation(s)
- Elizabeth Fireman
- Laboratory of Pulmonary and Allergic Diseases, Tel-Aviv Sourasky Medical Center Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,
| | | | | | | | | |
Collapse
|