1
|
Liu Y, Tian X, Jia C, Cheng X, Cui C, Li C, Yang S. The role of CXCL16 in atherosclerosis: from mechanisms to therapy. Front Immunol 2025; 16:1555438. [PMID: 40491927 PMCID: PMC12146295 DOI: 10.3389/fimmu.2025.1555438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 05/05/2025] [Indexed: 06/11/2025] Open
Abstract
Atherosclerosis (AS), as the primary pathological basis of cardiovascular and cerebrovascular diseases, is closely associated with chemokines in its occurrence and progression. CXCL16 establishes a new link between chemokines and AS. We briefly introduced the structural characteristics of CXCL16 and its specific receptor CXCR6, as well as related signaling pathways. Furthermore, the significant role of CXCL16 in the progression of AS was elaborated from the perspective of pathological mechanisms and signal pathways. Meanwhile, we objectively evaluated the potential arterial protective effects of CXCL16. Finally, we discussed various novel therapeutic strategies to alleviate AS by targeting the inhibition of CXCL16 and its regulatory pathways. This review systematically summarizes the multifaceted roles of CXCL16 in AS, providing theoretical foundations and research insights for the precise prevention and treatment of AS.
Collapse
Affiliation(s)
- Yue Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xintao Tian
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chunyan Jia
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xinrui Cheng
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Changxing Cui
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Cuiping Li
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shaonan Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Thomas K, Rossaint J, Ludwig N, Mersmann S, Kötting N, Grenzheuser J, Schemmelmann L, Oguama M, Margraf A, Block H, Henke K, Hellenthal K, Mirakaj V, Gerke V, Hansen U, Gäher K, Engelhardt M, Roth J, Eble J, Hub E, Rot A, Alon R, Zarbock A. Alveolar epithelial and vascular CXCR2 mediates transcytosis of CXCL1 in inflamed lungs. Nat Commun 2025; 16:4846. [PMID: 40413164 PMCID: PMC12103508 DOI: 10.1038/s41467-025-60174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/16/2025] [Indexed: 05/27/2025] Open
Abstract
Pulmonary infections are characterized by neutrophil recruitment into the lung driven by chemokine ligands of CXCR2, which is expressed on neutrophils, but also present in non-hematopoietic lung cells, in which its role remains unclear. We hypothesize that CXCR2 in epithelial and endothelial cells contributes to neutrophil recruitment into the lung by modifying the availability of its cognate chemokines in lung alveoli. Using conditional endothelial and epithelial CXCR2 knockout mice, we demonstrate that selective CXCR2 deletion in either compartment impairs neutrophil recruitment into the lung during bacterial pneumonia and reduces bacterial clearance. We show that CXCR2 ablation in epithelial and endothelial cells compromises respective trans-epithelial and trans-endothelial transcytosis of alveolar CXCL1. Mechanistically, CXCR2-mediated CXCL1 endothelial and epithelial cell transcytosis requires the function of Bruton's tyrosine kinase in these cells. In conclusion, CXCR2 plays an important role in alveolar epithelial and endothelial cells, where it mediates cognate chemokine transcytosis, thus actively supporting their activities in neutrophil recruitment to the infected lungs.
Collapse
Affiliation(s)
- Katharina Thomas
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Nadine Ludwig
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Sina Mersmann
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Niklas Kötting
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Julia Grenzheuser
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Lena Schemmelmann
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Marina Oguama
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Helena Block
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Katharina Henke
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Katharina Hellenthal
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Valbona Mirakaj
- Department of Anaesthesiology and Intensive Care Medicine, University Tübingen, Tübingen, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Uwe Hansen
- Institute of Experimental Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Karin Gäher
- Institute of Experimental Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Miguel Engelhardt
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University Hospital Münster, Münster, Germany
| | - Johannes Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Elin Hub
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Antal Rot
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ronen Alon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany.
| |
Collapse
|
3
|
Korbecki J, Bosiacki M, Pilarczyk M, Kot M, Defort P, Walaszek I, Chlubek D, Baranowska-Bosiacka I. The CXCL1-CXCR2 Axis as a Component of Therapy Resistance, a Source of Side Effects in Cancer Treatment, and a Therapeutic Target. Cancers (Basel) 2025; 17:1674. [PMID: 40427171 PMCID: PMC12110541 DOI: 10.3390/cancers17101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/06/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
CXCL1 (Gro-α, MGSA) is a chemokine functionally similar to CXCL8/IL-8, as both activate the same receptor, CXCR2. CXCL1 levels are frequently elevated in tumors compared to healthy tissue, where they play a key role in promoting cancer cell migration, angiogenesis, and neutrophil recruitment. While the involvement of CXCL1 in tumor progression is well established, its relevance to cancer therapy remains underexplored. This review examines the therapeutic potential of targeting CXCL1 and its receptor, CXCR2, in cancer treatment. It discusses anti-CXCL1 antibodies and CXCR2 antagonists, including AZD5069, SB225002, SCH-479833, navarixin/SCH-527123, ladarixin/DF2156A, and reparixin, as well as strategies to enhance CXCR2 expression in lymphocytes during adoptive cell therapy to improve immunotherapy outcomes. Particular attention is given to the role of CXCL1 in treatment resistance, including resistance to chemotherapy, radiotherapy, and anti-angiogenic therapy. Cancer therapies often upregulate CXCL1 expression, which in turn drives treatment resistance. Additionally, this review explores the contribution of CXCL1 to therapy-induced side effects, such as chemotherapy-induced metastasis, neuropathy, nephrotoxicity, diarrhea, and cardiotoxicity. CXCR2 inhibitors are well tolerated by patients in clinical trials. However, the limited number of studies evaluating these agents in combination with standard chemotherapy precludes any definitive conclusions.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland;
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Maciej Pilarczyk
- Neurosurgery Center University Hospital, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-417 Zielona Gora, Poland; (M.P.); (M.K.); (P.D.)
| | - Marcin Kot
- Neurosurgery Center University Hospital, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-417 Zielona Gora, Poland; (M.P.); (M.K.); (P.D.)
| | - Piotr Defort
- Neurosurgery Center University Hospital, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-417 Zielona Gora, Poland; (M.P.); (M.K.); (P.D.)
| | - Ireneusz Walaszek
- Department of Nursing, Pomeranian Medical University in Szczecin, Żołnierska 48, 71-210 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| |
Collapse
|
4
|
Masrour M, Moeinafshar A, Poopak A, Razi S, Rezaei N. The role of CXC chemokines and receptors in breast cancer. Clin Exp Med 2025; 25:128. [PMID: 40278951 PMCID: PMC12031896 DOI: 10.1007/s10238-025-01662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
CXC chemokines are a class of cytokines possessing chemotactic properties. Studies indicate that CXC chemokines exhibit dysregulation in miscellaneous cancer categories and are significantly associated with the advancement of tumors. Breast cancer is a commonly diagnosed and fatal cancer among the female population. Breast cancer pathogenesis and progression involve various mechanisms, including invasion, metastasis, angiogenesis, and inflammation. Chemokines and their receptors are involved in all of these processes. The CXC chemokine receptors (CXCRs) and their related ligands have attracted considerable attention due to their multifaceted functions in facilitating and controlling tumor proliferation. CXCRs are expressed by both cancer cells and immune cells, and they play a crucial role in regulating the tumor microenvironment and the immune response. This review aims to assess the potential of CXCRs and CXC chemokines as therapeutic targets or biomarkers for personalized therapy. Additionally, it provides an overview of the current understanding of the expression, function, and prognostic relevance of CXCRs in breast cancer. Furthermore, the challenges and potential prospects pertaining to CXCR investigation in breast cancer are deliberated.
Collapse
Affiliation(s)
- Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Aysan Moeinafshar
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amirhossein Poopak
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific and Education Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
5
|
Hussain MS, Goyal A, Goyal K, S. RJ, Nellore J, Shahwan M, Rekha A, Ali H, Dhanasekaran M, MacLoughlin R, Dua K, Gupta G. Targeting CXCR2 signaling in inflammatory lung diseases: neutrophil-driven inflammation and emerging therapies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025. [DOI: 10.1007/s00210-025-03970-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/20/2025] [Indexed: 05/04/2025]
|
6
|
Yang Q, Guo H, Li H, Li Z, Ni F, Wen Z, Liu K, Kong H, Wei W. The CXCL8/MAPK/hnRNP-K axis enables susceptibility to infection by EV-D68, rhinovirus, and influenza virus in vitro. Nat Commun 2025; 16:1715. [PMID: 39962077 PMCID: PMC11832783 DOI: 10.1038/s41467-025-57094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
Respiratory viruses pose an ongoing threat to human health with excessive cytokine secretion contributing to severe illness and mortality. However, the relationship between cytokine secretion and viral infection remains poorly understood. Here we elucidate the role of CXCL8 as an early response gene to EV-D68 infection. Silencing CXCL8 or its receptors, CXCR1/2, impedes EV-D68 replication in vitro. Upon recognition of CXCL8 by CXCR1/2, the MAPK pathway is activated, facilitating the translocation of nuclear hnRNP-K to the cytoplasm. This translocation increases the recognition of viral RNA by hnRNP-K in the cytoplasm, promoting the function of the 5' untranslated region in the viral genome. Moreover, our investigations also reveal the importance of the CXCL8 signaling pathway in the replication of both influenza virus and rhinovirus. In summary, our findings hint that these viruses exploit the CXCL8/MAPK/hnRNP-K axis to enhance viral replication in respiratory cells in vitro.
Collapse
Affiliation(s)
- Qingran Yang
- Department of Respiration, Children's Medical Center, First Hospital, Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Huili Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Zhaoxue Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Fushun Ni
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Zhongmei Wen
- Center for Pathogen Biology and Infectious Diseases, Department of Respiratory Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Huihui Kong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China.
- Cancer Center, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
7
|
Tang Z, Hu J, Li XC, Wang W, Zhang HY, Guo YY, Shuai X, Chu Q, Xie C, Lin D, Zhong B. A subset of neutrophils activates anti-tumor immunity and inhibits non-small-cell lung cancer progression. Dev Cell 2025; 60:379-395.e8. [PMID: 39515330 DOI: 10.1016/j.devcel.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Neutrophils in the tumor microenvironment (TME) are heterogeneous populations associated with cancer prognosis and immunotherapy. However, the plasticity and function of heterogeneous neutrophils in the TME of non-small-cell lung cancer (NSCLC) remain unclear. Here, we show that neutrophils produce high levels of interleukin (IL)-8, which induce the differentiation of CD74highSiglecFlow neutrophils and suppress the generation of CD74lowSiglecFhigh neutrophils in the TME of IL-8-humanized NSCLC mice. The CD74highSiglecFlow neutrophils boost anti-tumor T cell responses via antigen cross-presentation. Deleting CD74 in IL-8-humanized neutrophils impairs T cell activation and exacerbates NSCLC progression, whereas a CD74 agonist enhances T cell activation and the efficacy of anti-programmed cell death 1 (PD-1) or osimertinib therapies. Additionally, the CD74highCD63low neutrophils in the TME and peripheral blood of advanced NSCLC patients phenocopy the CD74highSiglecFlow neutrophils in the TME of NSCLC mice and correlate well with the responsiveness to anti-PD-1 plus chemotherapies. These findings demonstrate an IL-8-CD74high neutrophil axis that promotes anti-tumor immunity in NSCLC.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jing Hu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xu-Chang Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Han-Yue Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yu-Yao Guo
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Shuai
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
8
|
Righi D, Manco C, Pardini M, Stufano A, Schino V, Pelagotti V, Massa F, Stefano ND, Plantone D. Investigating interleukin-8 in Alzheimer's disease: A comprehensive review. J Alzheimers Dis 2025; 103:38-55. [PMID: 39558604 DOI: 10.1177/13872877241298973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Several studies indicate that the development of Alzheimer's disease (AD) has strong interactions with immune mechanisms within the brain, indicating a close association between inflammation in the central nervous system and the progression of neurodegeneration. Despite considerable progress in understanding the inflammatory aspects of AD, several of them remain unresolved. Pro-inflammatory cytokines and microglia are pivotal components in the inflammatory cascade. Among these, the role of interleukin-8 (IL-8) in neurodegeneration seems complex and multifaceted, involving inflammation, neurotoxicity, blood-brain barrier disruption, and oxidative stress, and is still poorly characterized. We conducted a review to describe the evidence of IL-8 involvement in AD. IL-8 is a cytokine known for its proinflammatory properties and typically produced by macrophages, predominantly functions as a chemotactic signal for attracting neutrophils to inflamed sites in the bloodstream. Interestingly, IL-8 is also present in the brain, where it is primarily released by microglia in response to inflammatory signals. This review aims to provide a comprehensive overview of the structure, function, and regulatory mechanisms of IL-8 relevant to AD pathology.
Collapse
Affiliation(s)
- Delia Righi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Carlo Manco
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Angela Stufano
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Valentina Schino
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Virginia Pelagotti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
9
|
Garcia MJ, Morales MS, Yang TS, Holden J, Bossardet OL, Palmer SA, Jhala M, Priest S, Namburu N, Beatty N, D'Empaire Salomon SE, Vancel J, Wareham LK, Padovani-Claudio DA. Adverse effects of CXCR2 deficiency in mice reared under non-gnotobiotic conditions. Sci Rep 2024; 14:26159. [PMID: 39478033 PMCID: PMC11525579 DOI: 10.1038/s41598-024-75532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
The family of pro-inflammatory and pro-angiogenic chemokines including Interleukin-8 (IL-8, aka CXCL8) and its homologues (CXCL1,2,3,5,6, and 7) exhibit promiscuous binding and activation of several G-protein-coupled receptors (i.e., CXCR2, CXCR1, and the atypical chemokine receptor (ACKR1)). A high proportion of their biological activity is attributed to CXCR2 activation, thus many CXCR2 inhibitors are in clinical trials for several chronic diseases. However, CXCR2 inhibition is often only investigated acutely in these trials or in Cxcr2-/- mice grown in gnotobiotic conditions. Since humans do not live in germ-free environments, our first goal is to highlight novel retinal and systemic observations in Cxcr2-/- mice grown in non-gnotobiotic conditions that suggest potential harmful consequences of long-term CXCR2 deficiency or blockade. Beyond confirmation of circulating blood/immune cell-related phenotypes, we report novel findings in Cxcr2-/- mice including: (1) delayed dye transit to the retinal vasculature, (2) alterations in the density and distribution of retinal vessels, astrocytes and microglia, (3) decreased electroretinogram a- and b-wave amplitudes, (4) reduced visual acuity, and (5) increased polymorphonuclear cell accumulation in vascular lumina abutting venular walls in the retina and in vital non-ocular tissues (lung and liver). Furthermore, PheWAS of CXCR2 CXCR1, and ACKR1 gene variants using data from UK Biobank participants suggest clinical associations with both retinal and vascular disease phenotypes. We conclude that chronic CXCR2 deficiency in mice contributes to functional damage to the retina and that the long-term safety of CXCR1/2 inhibitors designed for chronic use in humans should be explored before clinical adoption to safeguard sight and overall vascular health.
Collapse
Affiliation(s)
- Maximilian J Garcia
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Monica S Morales
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Tzushan S Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph Holden
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Olivia L Bossardet
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Samuel A Palmer
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Marvarakumari Jhala
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Stephen Priest
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Neeraj Namburu
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Nolan Beatty
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Sariah E D'Empaire Salomon
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Jordan Vancel
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Lauren K Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Dolly Ann Padovani-Claudio
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA.
- Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
10
|
Zhao L, Shireman J, Probelsky S, Rigg B, Wang X, Huff WX, Kwon JH, Dey M. CCL21 Induces Plasmacytoid Dendritic Cell Migration and Activation in a Mouse Model of Glioblastoma. Cancers (Basel) 2024; 16:3459. [PMID: 39456552 PMCID: PMC11506458 DOI: 10.3390/cancers16203459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that are traditionally divided into two distinct subsets: myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). pDCs are known for their ability to secrete large amounts of cytokine type I interferons (IFN- α). In our previous work, we have demonstrated that pDC infiltration promotes glioblastoma (GBM) tumor immunosuppression through decreased IFN-α secretion via TLR-9 signaling and increased suppressive function of regulatory T cells (Tregs) via increased IL-10 secretion, resulting in poor overall outcomes in mouse models of GBM. Further dissecting the overall mechanism of pDC-mediated GBM immunosuppression, in this study, we identified CCL21 as highly upregulated by multiple GBM cell lines, which recruit pDCs to tumor sites via CCL21-CCR7 signaling. Furthermore, pDCs are activated by CCL21 in the GBM microenvironment through intracellular signaling of β-arrestin and CIITA. Finally, we found that CCL21-treated pDCs directly suppress CD8+ T cell proliferation without affecting regulatory T cells (Tregs) differentiation, which is considered the canonical pathway of immunotolerant regulation. Taken together, our results show that pDCs play a multifaced role in GBM immunosuppression, and CCL21 could be a novel therapeutic target in GBM to overcome pDC-mediated immunosuppression.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI 53706, USA; (L.Z.); (J.S.); (S.P.); (B.R.); (X.W.)
| | - Jack Shireman
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI 53706, USA; (L.Z.); (J.S.); (S.P.); (B.R.); (X.W.)
| | - Samantha Probelsky
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI 53706, USA; (L.Z.); (J.S.); (S.P.); (B.R.); (X.W.)
| | - Bailey Rigg
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI 53706, USA; (L.Z.); (J.S.); (S.P.); (B.R.); (X.W.)
| | - Xiaohu Wang
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI 53706, USA; (L.Z.); (J.S.); (S.P.); (B.R.); (X.W.)
| | - Wei X. Huff
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (W.X.H.); (J.H.K.)
| | - Jae H. Kwon
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (W.X.H.); (J.H.K.)
| | - Mahua Dey
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI 53706, USA; (L.Z.); (J.S.); (S.P.); (B.R.); (X.W.)
| |
Collapse
|
11
|
Hilage P, Birajdar A, Marsale T, Patil D, Patil AM, Telang G, Somasundaram I, Sharma RK, Joshi MG. Characterization and angiogenic potential of CD146 + endometrial stem cells. Stem Cell Res Ther 2024; 15:330. [PMID: 39334237 PMCID: PMC11438155 DOI: 10.1186/s13287-024-03918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The human endometrium, lining the inner uterus, regenerates over 400 times uniquely during a woman's reproductive life. Endometrial stem cells (eSCs) enrich the tissue, resulting in a dense vascular network, significant angiogenic potential, and effective regeneration power. Being of natural angiogenic properties and proven effective in the treatment of vascular disorders, eSCs can be considered safe, reliable, and superior to other post-natal stem cells. Cluster of Differentiation 146 (CD146) has emerged as a pivotal marker associated with pericytes and endothelial cells for promoting angiogenesis. Endometrial cells with high CD146 expression could proliferate and differentiate into multiple lineages. This study will explore the role of CD146 in eSCs, focusing on the potential to boost the angiogenic and regenerative functions of the cells. The novelty of this study lies in the investigation of CD146 on eSC function, which may open new possibilities for eSC-based therapy in regenerative medicine and vascular disorders. METHODS The study involved obtaining endometrial biopsies from active reproducing women to isolate and cultivate eSCs. eSCs were assessed for growth factor secretion pattern, characterized for their mesenchymal properties. Finally, eSCs were tested for their angiogenic potential by angiogenic gene expression profile and in-ovo chick embryo model. As aimed, to check the role of CD146 in eSC angiogenesis, CD146+ cells were magnetically sorted and cultured. The sorted cells underwent various analyses, including flowcytometry to identify mesenchymal markers and human growth factor panel to analyze growth factor secretion profiles The study evaluated the angiogenic potential of CD146 + cells using functional assays, including ring formation, endothelial differentiation, and wound scratch assays, to evaluate cell migration and healing capabilities. Molecular insights were obtained through chemokine and cytokine investigations In-ovo Chick model assay was conducted to check the angiogenic potential and evaluated through macroscopic as well as through immunohistochemistry. RESULT Endometrial stem cells (eSCs) were successfully isolated using a combination of mechanical and enzymatic digestion, followed by culturing in complete DMEM media. The secretion profile of eSCs revealed significant production of various angiogenic growth factors, including Granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), Vascular endothelial growth factor (VEGF), Fibroblast growth factors (FGF), and Platelet derived growth factor AA (PDGF-AA). The angiogenic gene profile indicated upregulation of several angiogenic genes in eSCs. The mesenchymal nature of eSCs was demonstrated through surface marker analysis (Cluster of differentiation 73, Cluster of differentiation 90, Cluster of differentiation 105) and trilineage differentiation. The in-ovo chick model confirmed the angiogenic potential of eSCs. CD146+ cells, isolated via magnetic sorting, exhibited enhanced angiogenic potential. These cells secreted significant levels of angiogenic growth factors such as VEGF. In Matrigel assays, CD146+ cells formed endothelial ring structures more rapidly and persistently than unsorted eSCs. Semi-quantitative PCR confirmed their endothelial differentiation. CD146+ cells express various angiogenic chemokines such as CXCL5, CXCL8, CCL3, and CCL20 and cytokines such as GM-CSF, Interleukin-1β (IL-1β), Interleukin-6 (IL-6), PDGF AA/BB, Epidermal growth factor (EGF), Endothelin 1, Angiopoietin. In-ovo chick model assay showed that CD146+ cells had superior angiogenesis, with more nodes, junctions, and segments compared to eSCs and controls. Immunohistochemistry confirmed increased expression of endothelial markers (Cluster of differentiation 31, VEGF, Vascular associated protein (VAP), Von Willebrand factor (vWF) in CD146+ cells. CONCLUSION The study highlights the angiogenic potential of endometrial stem cells, particularly the CD146+ cell population. These cells promote angiogenesis, secreting growth factors and forming stable blood vessel structures. CD146+ cells have higher expression levels of VEGF and TGF-α, key factors in angiogenesis. This suggests CD146+ eSCs may be promising for therapeutic applications in vascular diseases requiring angiogenesis. Further research is needed.
Collapse
Affiliation(s)
- Priyanka Hilage
- Department of Stem Cells & Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), D. Y. Patil Vidyanagar, Kasab Bawada, Kolhapur, 416006, Maharashtra, India
| | - Apurva Birajdar
- Department of Stem Cells & Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), D. Y. Patil Vidyanagar, Kasab Bawada, Kolhapur, 416006, Maharashtra, India
| | - Tejesh Marsale
- PCI Pharma Services, 23 commerce Dr, Bedford, NH, 03110, USA
| | - Dhanashree Patil
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education and Research, NH Service Road, Nehru Nagar, Belagavi, 590010, Karnataka, India
| | - Ashwini Mane Patil
- Aster Adhar Hospital, Shastri Nagar, Kolhapur, 416012, Maharashtra, India
| | - Gaurang Telang
- BioRadius Therapeutics Research Pvt. Ltd, Pune, 411057, Maharashtra, India
| | - Indumathi Somasundaram
- Department of Stem Cells & Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), D. Y. Patil Vidyanagar, Kasab Bawada, Kolhapur, 416006, Maharashtra, India
| | - Rakesh Kumar Sharma
- Department of Obstetrics and Gynecology, D.Y. Patil Medical College, Kasaba Bawada, Kolhapur, 416006, Maharashtra, India.
| | - Meghnad G Joshi
- Department of Stem Cells & Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), D. Y. Patil Vidyanagar, Kasab Bawada, Kolhapur, 416006, Maharashtra, India.
- Stem Plus Biotech Pvt. Ltd, Sangli Miraj Kupwad Commercial Complex, C/S No. 1317/2, Near Shivaji Maharaj Putla, Bus Stand Road, Gaon Bhag, Sangli, 416416, MS, India.
| |
Collapse
|
12
|
Bao Y, Tong C, Xiong X. CXCL3: A key player in tumor microenvironment and inflammatory diseases. Life Sci 2024; 348:122691. [PMID: 38714265 DOI: 10.1016/j.lfs.2024.122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
CXCL3 (C-X-C Motif Chemokine 3), a member of the C-X-C chemokine subfamily, operates as a potent chemoattractant for neutrophils, thereby orchestrating the recruitment and migration of leukocytes alongside eliciting an inflammatory response. Recent inquiries have shed light on the pivotal roles of CXCL3 in the context of carcinogenesis. In the tumor microenvironment, CXCL3 emanating from both tumor and stromal cells intricately modulates cellular behaviors through autocrine and paracrine actions, primarily via interaction with its receptor CXCR2. Activation of signaling cascades such as ERK/MAPK, AKT, and JAK2/STAT3 underscores CXCL3's propensity to favor tumorigenic processes. However, CXCL3 exhibits dualistic behaviors, as evidenced by its capacity to exert anti-tumor effects under specific conditions. Additionally, the involvement of CXCL3 extends to inflammatory disorders like eclampsia, obesity, and asthma. This review encapsulates the structural attributes, biological functionalities, and molecular underpinnings of CXCL3 across both tumorigenesis and inflammatory diseases.
Collapse
Affiliation(s)
- Yuxuan Bao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Queen Mary School of Nanchang University, Nanchang 330006, China
| | - Chang Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
13
|
Horvath L, Puschmann C, Scheiber A, Martowicz A, Sturm G, Trajanoski Z, Wolf D, Pircher A, Salcher S. Beyond binary: bridging neutrophil diversity to new therapeutic approaches in NSCLC. Trends Cancer 2024; 10:457-474. [PMID: 38360439 DOI: 10.1016/j.trecan.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Neutrophils represent the most abundant myeloid cell subtype in the non-small-cell lung cancer (NSCLC) tumor microenvironment (TME). By anti- or protumor polarization, they impact multiple aspects of tumor biology and affect sensitivity to conventional therapies and immunotherapies. Single-cell RNA sequencing (scRNA-seq) analyses have unraveled an extensive neutrophil heterogeneity, helping our understanding of their pleiotropic role. In this review we summarize recent data and models on tumor-associated neutrophil (TAN) biology, focusing on the diversity that evolves in response to tumor-intrinsic cues. We categorize available transcriptomic profiles from different cancer entities into a defined set of neutrophil subclusters with distinct phenotypic properties, to step beyond the traditional binary N1/2 classification. Finally, we discuss potential ways to exploit these neutrophil states in the setting of anticancer therapy.
Collapse
Affiliation(s)
- Lena Horvath
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Constanze Puschmann
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Alexandra Scheiber
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Agnieszka Martowicz
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria; Boehringer Ingelheim International Pharma GmbH & Co KG, Biberach, Germany
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Andreas Pircher
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Stefan Salcher
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria.
| |
Collapse
|
14
|
Korbecki J, Bosiacki M, Szatkowska I, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Involvement in Molecular Cancer Processes of Chemokine CXCL1 in Selected Tumors. Int J Mol Sci 2024; 25:4365. [PMID: 38673949 PMCID: PMC11050300 DOI: 10.3390/ijms25084365] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Chemokines play a key role in cancer processes, with CXCL1 being a well-studied example. Due to the lack of a complete summary of CXCL1's role in cancer in the literature, in this study, we examine the significance of CXCL1 in various cancers such as bladder, glioblastoma, hemangioendothelioma, leukemias, Kaposi's sarcoma, lung, osteosarcoma, renal, and skin cancers (malignant melanoma, basal cell carcinoma, and squamous cell carcinoma), along with thyroid cancer. We focus on understanding how CXCL1 is involved in the cancer processes of these specific types of tumors. We look at how CXCL1 affects cancer cells, including their proliferation, migration, EMT, and metastasis. We also explore how CXCL1 influences other cells connected to tumors, like promoting angiogenesis, recruiting neutrophils, and affecting immune cell functions. Additionally, we discuss the clinical aspects by exploring how CXCL1 levels relate to cancer staging, lymph node metastasis, patient outcomes, chemoresistance, and radioresistance.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Iwona Szatkowska
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland;
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| |
Collapse
|
15
|
Park SB, Yang Y, Bang SI, Kim TS, Cho D. AESIS-1, a Rheumatoid Arthritis Therapeutic Peptide, Accelerates Wound Healing by Promoting Fibroblast Migration in a CXCR2-Dependent Manner. Int J Mol Sci 2024; 25:3937. [PMID: 38612747 PMCID: PMC11012285 DOI: 10.3390/ijms25073937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
In patients with autoimmune disorders such as rheumatoid arthritis (RA), delayed wound healing is often observed. Timely and effective wound healing is a crucial determinant of a patient's quality of life, and novel materials for skin wound repair, such as bioactive peptides, are continuously being studied and developed. One such bioactive peptide, AESIS-1, has been studied for its well-established anti-rheumatoid arthritis properties. In this study, we attempted to use the anti-RA material AESIS-1 as a therapeutic wound-healing agent based on disease-modifying antirheumatic drugs (DMARDs), which can help restore prompt wound healing. The efficacy of AESIS-1 in wound healing was assessed using a full-thickness excision model in diabetic mice; this is a well-established model for studying chronic wound repair. Initial observations revealed that mice treated with AESIS-1 exhibited significantly advanced wound repair compared with the control group. In vitro studies revealed that AESIS-1 increased the migration activity of human dermal fibroblasts (HDFs) without affecting proliferative activity. Moreover, increased HDF cell migration is mediated by upregulating chemokine receptor expression, such as that of CXC chemokine receptor 2 (CXCR2). The upregulation of CXCR2 through AESIS-1 treatment enhanced the chemotactic reactivity to CXCR2 ligands, including CXC motif ligand 8 (CXCL8). AESIS-1 directly activates the ERK and p38 mitogen-activated protein kinase (MAPK) signaling cascades, which regulate the migration and expression of CXCR2 in fibroblasts. Our results suggest that the AESIS-1 peptide is a strong wound-healing substance that increases the movement of fibroblasts and the expression of CXCR2 by turning on the ERK and p38 MAPK signaling cascades.
Collapse
Affiliation(s)
- Seung Beom Park
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Yoolhee Yang
- Kine Sciences, 6F, 24, Eonju-ro85gil, Gangnam-gu, Seoul 06221, Republic of Korea; (Y.Y.); (D.C.)
| | - Sa Ik Bang
- Department of Plastic Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Gangnam-gu, Seoul 06351, Republic of Korea;
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Daeho Cho
- Kine Sciences, 6F, 24, Eonju-ro85gil, Gangnam-gu, Seoul 06221, Republic of Korea; (Y.Y.); (D.C.)
- Institute of Convergence Science, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
16
|
Abdulnour-Nakhoul SM, Kolls JK, Flemington EK, Ungerleider NA, Nakhoul HN, Song K, Nakhoul NL. Alterations in gene expression and microbiome composition upon calcium-sensing receptor deletion in the mouse esophagus. Am J Physiol Gastrointest Liver Physiol 2024; 326:G438-G459. [PMID: 38193195 PMCID: PMC11213479 DOI: 10.1152/ajpgi.00066.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024]
Abstract
The calcium-sensing receptor (CaSR), a G protein-coupled receptor, regulates Ca2+ concentration in plasma by regulating parathyroid hormone secretion. In other tissues, it is reported to play roles in cellular differentiation and migration and in secretion and absorption. We reported previously that CaSR can be conditionally deleted in the mouse esophagus. This conditional knockout (KO) (EsoCaSR-/-) model showed a significant reduction in the levels of adherens and tight junction proteins and had a marked buildup of bacteria on the luminal esophageal surface. To further examine the role of CaSR, we used RNA sequencing to determine gene expression profiles in esophageal epithelia of control and EsoCaSR-/-mice RNA Seq data indicated upregulation of gene sets involved in DNA replication and cell cycle in EsoCaSR-/-. This is accompanied by the downregulation of gene sets involved in the innate immune response and protein homeostasis including peptide elongation and protein trafficking. Ingenuity pathway analysis (IPA) demonstrated that these genes are mapped to important biological networks including calcium and Ras homologus A (RhoA) signaling pathways. To further explore the bacterial buildup in EsoCaSR-/- esophageal tissue, 16S sequencing of the mucosal-associated bacterial microbiome was performed. Three bacterial species, g_Rodentibacter, s_Rodentibacter_unclassified, and s_Lactobacillus_hilgardi were significantly increased in EsoCaSR-/-. Furthermore, metagenomic analysis of 16S sequences indicated that pathways related to oxidative phosphorylation and metabolism were downregulated in EsoCaSR-/- tissues. These data demonstrate that CaSR impacts major pathways of cell proliferation, differentiation, cell cycle, and innate immune response in esophageal epithelium. The disruption of these pathways causes inflammation and significant modifications of the microbiome.NEW & NOTEWORTHY Calcium-sensing receptor (CaSR) plays a significant role in maintaining the barrier function of esophageal epithelium. Using RNA sequencing, we show that conditional deletion of CaSR from mouse esophagus causes upregulation of genes involved in DNA replication and cell cycle and downregulation of genes involved in the innate immune response, protein translation, and cellular protein synthesis. Pathway analysis shows disruption of signaling pathways of calcium and actin cytoskeleton. These changes caused inflammation and esophageal dysbiosis.
Collapse
Affiliation(s)
- Solange M Abdulnour-Nakhoul
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Jay K Kolls
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Erik K Flemington
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States
| | - Nathan A Ungerleider
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States
| | - Hani N Nakhoul
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States
| | - Kejing Song
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Nazih L Nakhoul
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| |
Collapse
|
17
|
Moadab A, Valizadeh MR, Nazari A, Khorramdelazad H. Association of interleukin-17A and chemokine/vascular endothelial growth factor-induced angiogenesis in newly diagnosed patients with bladder cancer. BMC Immunol 2024; 25:20. [PMID: 38515019 PMCID: PMC10956274 DOI: 10.1186/s12865-024-00612-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND The human interleukin-17 (IL-17) family comprises IL-17A to IL-17 F; their receptors are IL-17RA to IL-17RE. Evidence revealed that these cytokines can have a tumor-supportive or anti-tumor impact on human malignancies. The purpose of this study was to assess the expression of CXCR2, IL-17RA, and IL-17RC genes at the mRNA level as well as tissue and serum levels of IL-17A, vascular endothelial growth factor (VEGF), and transforming growth factor β (TGF-β) in patients with bladder cancer (BC) compared to control. RESULTS This study showed that gene expression of IL-17RA, IL-17RC, and CXCR2 in the tumoral tissue of BC patients was significantly upregulated compared with normal tissue. The findings disclosed a significant difference in the serum and tissue concentrations of IL-17A, VEGF, and TGF-β between the patient and the control groups, as well as tumor and normal tissues. CONCLUSION This study reveals notable dysregulation of CXCR2, IL-17RA, and IL-17RC genes, alongside changes in IL-17A, VEGF, and TGF-β levels in patients with BC than in controls. These findings indicate their possible involvement in BC development and their potential as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Ali Moadab
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Rafie Valizadeh
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Alireza Nazari
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Surgery, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
18
|
Kuo CH, Lee GH, Wu HL, Huang JY, Tang MJ. Breaking the symmetry of cell contractility drives tubulogenesis via CXCL1 polarization. Proc Natl Acad Sci U S A 2024; 121:e2315894121. [PMID: 38377213 PMCID: PMC10907267 DOI: 10.1073/pnas.2315894121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024] Open
Abstract
The intricate interplay between biomechanical and biochemical pathways in modulating morphogenesis is an interesting research topic. How biomechanical force regulates epithelial cell tubulogenesis remains poorly understood. Here, we established a model of tubulogenesis by culturing renal proximal tubular epithelial cells on a collagen gel while manipulating contractile force. Epithelial cells were dynamically self-organized into tubule-like structures by augmentation of cell protrusions and cell-cell association. Reduction and asymmetric distribution of phosphorylated myosin light chain 2, the actomyosin contractility, in cells grown on soft matrix preceded tube connection. Notably, reducing matrix stiffness via sonication of collagen fibrils and inhibiting actomyosin contractility with blebbistatin promoted tubulogenesis, whereas inhibition of cytoskeleton polymerization suppressed it. CXC chemokine ligand 1 (CXCL1) expression was transcriptionally upregulated in cells undergoing tubulogenesis. Additionally, inhibiting actomyosin contractility facilitated CXCL1 polarization and cell protrusions preceding tube formation. Conversely, inhibiting the CXCL1-CXC receptor 1 pathway hindered cell protrusions and tubulogenesis. Mechanical property asymmetry with cell-collagen fibril interaction patterns at cell protrusions and along the tube structure supported the association of anisotropic contraction with tube formation. Furthermore, suppressing the mechanosensing machinery of integrin subunit beta 1 reduced CXCL1 expression, collagen remodeling, and impaired tubulogenesis. In summary, symmetry breaking of cell contractility on a soft collagen gel promotes CXCL1 polarization at cell protrusions which in turn facilitates cell-cell association and thus tubule connection.
Collapse
Affiliation(s)
- Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan701, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan701, Taiwan
| | - Gang-Hui Lee
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan701, Taiwan
| | - Hua-Lin Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan701, Taiwan
| | - Jyun-Yuan Huang
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan701, Taiwan
| | - Ming-Jer Tang
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan701, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan701, Taiwan
| |
Collapse
|
19
|
Šutić M, Dmitrović B, Jakovčević A, Džubur F, Oršolić N, Debeljak Ž, Försti A, Seiwerth S, Brčić L, Madzarac G, Samaržija M, Jakopović M, Knežević J. Transcriptomic Profiling for Prognostic Biomarkers in Early-Stage Squamous Cell Lung Cancer (SqCLC). Cancers (Basel) 2024; 16:720. [PMID: 38398111 PMCID: PMC10887138 DOI: 10.3390/cancers16040720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Squamous cell lung carcinoma (SqCLC) is associated with high mortality and limited treatment options. Identification of therapeutic targets and prognostic biomarkers is still lacking. This research aims to analyze the transcriptomic profile of SqCLC samples and identify the key genes associated with tumorigenesis, overall survival (OS), and a profile of the tumor-infiltrating immune cells. Differential gene expression analysis, pathway enrichment analysis, and Gene Ontology analysis on RNA-seq data obtained from FFPE tumor samples (N = 23) and healthy tissues (N = 3) were performed (experimental cohort). Validation of the results was conducted on publicly available gene expression data using TCGA LUSC (N = 225) and GTEx healthy donors' cohorts (N = 288). We identified 1133 upregulated and 644 downregulated genes, common for both cohorts. The most prominent upregulated genes were involved in cell cycle and proliferation regulation pathways (MAGEA9B, MAGED4, KRT, MMT11/13), while downregulated genes predominately belonged to immune-related pathways (DEFA1B, DEFA1, DEFA3). Results of the survival analysis, conducted on the validation cohort and commonly deregulated genes, indicated that overexpression of HOXC4 (p < 0.001), LLGL1 (p = 0.0015), and SLC4A3 (p = 0.0034) is associated with worse OS in early-stage SqCLC patients. In contrast, overexpression of GSTZ1 (p = 0.0029) and LILRA5 (p = 0.0086) was protective, i.e., associated with better OS. By applying a single-sample gene-set enrichment analysis (ssGSEA), we identified four distinct immune subtypes. Immune cell distribution suggests that the memory T cells (central and effector) and follicular helper T cells could serve as important stratification parameters.
Collapse
Affiliation(s)
- Maja Šutić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Branko Dmitrović
- Department of Pathology, Faculty of Dental Medicine and Health Osijek, Clinical Medical Center Osijek, 31000 Osijek, Croatia;
| | - Antonia Jakovčević
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.J.); (S.S.)
| | - Feđa Džubur
- Clinical Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (F.D.); (M.S.)
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Željko Debeljak
- Clinical Institute of Laboratory Diagnostics, University Hospital Center Osijek, 31000 Osijek, Croatia;
- Faculty of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Asta Försti
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.J.); (S.S.)
| | - Luka Brčić
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Goran Madzarac
- Department for Thoracic Surgery, University Hospital Zagreb, 10000 Zagreb, Croatia;
| | - Miroslav Samaržija
- Clinical Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (F.D.); (M.S.)
| | - Marko Jakopović
- Clinical Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (F.D.); (M.S.)
| | - Jelena Knežević
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
- Faculty of Dental Medicine and Health, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
20
|
Zheng C, Chen X, Ke Y, Xu X, Wu C, Jiang L. Constructing models for Crohn's disease diagnosis and prediction of infliximab non-response based on angiogenesis-related genes. Front Immunol 2024; 15:1239496. [PMID: 38343536 PMCID: PMC10853379 DOI: 10.3389/fimmu.2024.1239496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Background Angiogenesis response plays a crucial role in the occurrence and development of Crohn's disease (CD) and may involve the mechanism of infliximab non-response. However, the role of angiogenesis-related genes in Crohn's disease has not been comprehensively studied. This study aimed to explore the expression profiles of angiogenesis-related genes in CD patients and construct models for disease diagnosis and prediction of infliximab non-response. Methods CD-related microarray datasets were collected from the GEO database. Unsupervised consensus clustering analysis was performed based on differentially expressed angiogenesis-related genes to divide CD samples into two distinct clusters. Weighted gene co-expression network analysis (WGCNA) was conducted on the clusters to identify angiogenesis-related module. Based on the differentially expressed genes in the module, machine learning algorithms were employed to further identify hub genes and construct a disease diagnostic model. Subsequently, treatment outcome-related genes were extracted from these hub genes, and a predictive model for infliximab non-response in CD patients was ultimately built. Results Based on angiogenesis-related genes, we identified two distinct CD clusters (C1 and C2). Compared to C1, the metabolic pathways in C2 were significantly upregulated, and there was a higher abundance of cell clusters such as M1 macrophages and plasma cells. Additionally, C2 showed a poorer response to infliximab. Furthermore, a predictive model for infliximab non-response in CD patients was constructed based on the hub genes, and it was successfully validated using an external dataset. Conclusion Comprehensive analysis of angiogenesis-related genes revealed different clusters of CD, which exhibited differential response rates to infliximab. The construction of models provides a reference for disease diagnosis and drug selection, aiding in clinical decision-making.
Collapse
Affiliation(s)
- Chenwei Zheng
- School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
- Department of Gastroscopy, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian, China
| | - Xiangbo Chen
- School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
- Department of Gastroscopy, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian, China
| | - Yujing Ke
- School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
- Department of Gastroscopy, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian, China
| | - Xiaolin Xu
- School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
- Department of Gastroscopy, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian, China
| | - Chao Wu
- School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
- Department of Gastroscopy, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian, China
| | - Lingling Jiang
- School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
- Department of Gastroscopy, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian, China
| |
Collapse
|
21
|
Boon K, Vanalken N, Szpakowska M, Chevigné A, Schols D, Van Loy T. Systematic assessment of chemokine ligand bias at the human chemokine receptor CXCR2 indicates G protein bias over β-arrestin recruitment and receptor internalization. Cell Commun Signal 2024; 22:43. [PMID: 38233929 PMCID: PMC10795402 DOI: 10.1186/s12964-023-01460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/26/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND The human CXC chemokine receptor 2 (CXCR2) is a G protein-coupled receptor (GPCR) interacting with multiple chemokines (i.e., CXC chemokine ligands CXCL1-3 and CXCL5-8). It is involved in inflammatory diseases as well as cancer. Consequently, much effort is put into the identification of CXCR2 targeting drugs. Fundamental research regarding CXCR2 signaling is mainly focused on CXCL8 (IL-8), which is the first and best described high-affinity ligand for CXCR2. Much less is known about CXCR2 activation induced by other chemokines and it remains to be determined to what extent potential ligand bias exists within this signaling system. This insight might be important to unlock new opportunities in therapeutic targeting of CXCR2. METHODS Ligand binding was determined in a competition binding assay using labeled CXCL8. Activation of the ELR + chemokine-induced CXCR2 signaling pathways, including G protein activation, β-arrestin1/2 recruitment, and receptor internalization, were quantified using NanoBRET-based techniques. Ligand bias within and between these pathways was subsequently investigated by ligand bias calculations, with CXCL8 as the reference CXCR2 ligand. Statistical significance was tested through a one-way ANOVA followed by Dunnett's multiple comparisons test. RESULTS All chemokines (CXCL1-3 and CXCL5-8) were able to displace CXCL8 from CXCR2 with high affinity and activated the same panel of G protein subtypes (Gαi1, Gαi2, Gαi3, GαoA, GαoB, and Gα15) without any statistically significant ligand bias towards any one type of G protein. Compared to CXCL8, all other chemokines were less potent in β-arrestin1 and -2 recruitment and receptor internalization while equivalently activating G proteins, indicating a G protein activation bias for CXCL1,-2,-3,-5,-6 and CXCL7. Lastly, with CXCL8 used as reference ligand, CXCL2 and CXCL6 showed ligand bias towards β-arrestin1/2 recruitment compared to receptor internalization. CONCLUSION This study presents an in-depth analysis of signaling bias upon CXCR2 stimulation by its chemokine ligands. Using CXCL8 as a reference ligand for bias index calculations, no ligand bias was observed between chemokines with respect to activation of separate G proteins subtypes or recruitment of β-arrestin1/2 subtypes, respectively. However, compared to β-arrestin recruitment and receptor internalization, CXCL1-3 and CXCL5-7 were biased towards G protein activation when CXCL8 was used as reference ligand.
Collapse
Affiliation(s)
- Katrijn Boon
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium
| | - Nathan Vanalken
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-Sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-Sur-Alzette, Luxembourg
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium
| | - Tom Van Loy
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
22
|
Zefferino R, Conese M. A Vaccine against Cancer: Can There Be a Possible Strategy to Face the Challenge? Possible Targets and Paradoxical Effects. Vaccines (Basel) 2023; 11:1701. [PMID: 38006033 PMCID: PMC10674257 DOI: 10.3390/vaccines11111701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Is it possible to have an available vaccine that eradicates cancer? Starting from this question, this article tries to verify the state of the art, proposing a different approach to the issue. The variety of cancers and different and often unknown causes of cancer impede, except in some cited cases, the creation of a classical vaccine directed at the causative agent. The efforts of the scientific community are oriented toward stimulating the immune systems of patients, thereby preventing immune evasion, and heightening chemotherapeutic agents effects against cancer. However, the results are not decisive, because without any warning signs, metastasis often occurs. The purpose of this paper is to elaborate on a vaccine that must be administered to a patient in order to prevent metastasis; metastasis is an event that leads to death, and thus, preventing it could transform cancer into a chronic disease. We underline the fact that the field has not been studied in depth, and that the complexity of metastatic processes should not be underestimated. Then, with the aim of identifying the target of a cancer vaccine, we draw attention to the presence of the paradoxical actions of different mechanisms, pathways, molecules, and immune and non-immune cells characteristic of the tumor microenvironment at the primary site and pre-metastatic niche in order to exclude possible vaccine candidates that have opposite effects/behaviors; after a meticulous evaluation, we propose possible targets to develop a metastasis-targeting vaccine. We conclude that a change in the current concept of a cancer vaccine is needed, and the efforts of the scientific community should be redirected toward a metastasis-targeting vaccine, with the increasing hope of eradicating cancer.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
23
|
Casella B, Farmer JP, Nesheva DN, Williams HEL, Charlton SJ, Holliday ND, Laughton CA, Mistry SN. Design, Synthesis, and Application of Fluorescent Ligands Targeting the Intracellular Allosteric Binding Site of the CXC Chemokine Receptor 2. J Med Chem 2023; 66:12911-12930. [PMID: 37523859 PMCID: PMC10544029 DOI: 10.1021/acs.jmedchem.3c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Indexed: 08/02/2023]
Abstract
The inhibition of CXC chemokine receptor 2 (CXCR2), a key inflammatory mediator, is a potential strategy in the treatment of several pulmonary diseases and cancers. The complexity of endogenous chemokine interaction with the orthosteric binding site has led to the development of CXCR2 negative allosteric modulators (NAMs) targeting an intracellular pocket near the G protein binding site. Our understanding of NAM binding and mode of action has been limited by the availability of suitable tracer ligands for competition studies, allowing direct ligand binding measurements. Here, we report the rational design, synthesis, and pharmacological evaluation of a series of fluorescent NAMs, based on navarixin (2), which display high affinity and preferential binding for CXCR2 over CXCR1. We demonstrate their application in fluorescence imaging and NanoBRET binding assays, in whole cells or membranes, capable of kinetic and equilibrium analysis of NAM binding, providing a platform to screen for alternative chemophores targeting these receptors.
Collapse
Affiliation(s)
- Bianca
Maria Casella
- Division
of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, Nottingham NG7 2RD, UK
| | - James P. Farmer
- Division
of Physiology, Pharmacology & Neuroscience, Medical School, School
of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Desislava N. Nesheva
- Division
of Physiology, Pharmacology & Neuroscience, Medical School, School
of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Huw E. L. Williams
- School
of Chemistry, University of Nottingham Biodiscovery
Institute, Nottingham NG7 2RD, UK
| | - Steven J. Charlton
- Division
of Physiology, Pharmacology & Neuroscience, Medical School, School
of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
- OMass
Therapeutics Ltd., Oxford OX4 2GX, UK
| | - Nicholas D. Holliday
- Division
of Physiology, Pharmacology & Neuroscience, Medical School, School
of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
- Excellerate
Bioscience Ltd., Biocity, University of
Nottingham, Nottingham NG1 1GF, UK
| | - Charles A. Laughton
- Division
of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, Nottingham NG7 2RD, UK
| | - Shailesh N. Mistry
- Division
of Biomolecular Sciences and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, Nottingham NG7 2RD, UK
| |
Collapse
|
24
|
Korbecki J, Kupnicka P, Barczak K, Bosiacki M, Ziętek P, Chlubek D, Baranowska-Bosiacka I. The Role of CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 Ligands in Molecular Cancer Processes and Clinical Aspects of Acute Myeloid Leukemia (AML). Cancers (Basel) 2023; 15:4555. [PMID: 37760523 PMCID: PMC10526350 DOI: 10.3390/cancers15184555] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Acute myeloid leukemia (AML) is a type of leukemia known for its unfavorable prognoses, prompting research efforts to discover new therapeutic targets. One area of investigation involves examining extracellular factors, particularly CXC chemokines. While CXCL12 (SDF-1) and its receptor CXCR4 have been extensively studied, research on other CXC chemokine axes in AML is less developed. This study aims to bridge that gap by providing an overview of the significance of CXC chemokines other than CXCL12 (CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 ligands and CXCL14 and CXCL17) in AML's oncogenic processes. We explore the roles of all CXC chemokines other than CXCL12, in particular CXCL1 (Gro-α), CXCL8 (IL-8), CXCL10 (IP-10), and CXCL11 (I-TAC) in AML tumor processes, including their impact on AML cell proliferation, bone marrow angiogenesis, interaction with non-leukemic cells like MSCs and osteoblasts, and their clinical relevance. We delve into how they influence prognosis, association with extramedullary AML, induction of chemoresistance, effects on bone marrow microvessel density, and their connection to French-American-British (FAB) classification and FLT3 gene mutations.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| | - Paweł Ziętek
- Department of Orthopaedics, Traumatology and Orthopaedic Oncology, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| |
Collapse
|
25
|
Sitaru S, Budke A, Bertini R, Sperandio M. Therapeutic inhibition of CXCR1/2: where do we stand? Intern Emerg Med 2023; 18:1647-1664. [PMID: 37249756 PMCID: PMC10227827 DOI: 10.1007/s11739-023-03309-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Mounting experimental evidence from in vitro and in vivo animal studies points to an essential role of the CXCL8-CXCR1/2 axis in neutrophils in the pathophysiology of inflammatory and autoimmune diseases. In addition, the pathogenetic involvement of neutrophils and the CXCL8-CXCR1/2 axis in cancer progression and metastasis is increasingly recognized. Consequently, therapeutic targeting of CXCR1/2 or CXCL8 has been intensively investigated in recent years using a wide array of in vitro and animal disease models. While a significant benefit for patients with unwanted neutrophil-mediated inflammatory conditions may be expected from a potential clinical use of inhibitors, their use in severe infections or sepsis might be problematic and should be carefully and thoroughly evaluated in animal models and clinical trials. Translating the approaches using inhibitors of the CXCL8-CXCR1/2 axis to cancer therapy is definitively a new and promising research avenue, which parallels the ongoing efforts to clearly define the involvement of neutrophils and the CXCL8-CXCR1/2 axis in neoplastic diseases. Our narrative review summarizes the current literature on the activation and inhibition of these receptors in neutrophils, key inhibitor classes for CXCR2 and the therapeutic relevance of CXCR2 inhibition focusing here on gastrointestinal diseases.
Collapse
Affiliation(s)
- Sebastian Sitaru
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Agnes Budke
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany
| | | | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany.
| |
Collapse
|
26
|
Molinelli E, Ceccarelli G, Fantone S, Di Mercurio E, Gambini D, Maurizi A, Perugini J, Tossetta G, Brisigotti V, De Simoni E, Sapigni C, Rizzetto G, Campanati A, Simonetti O, Marzioni D, Offidani A. Melanoma and subcutaneous adipose tissue: Role of peritumoral adipokines in disease characterization and prognosis. Pigment Cell Melanoma Res 2023; 36:423-430. [PMID: 37334675 DOI: 10.1111/pcmr.13103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 06/20/2023]
Abstract
In the last decades, the concept of adipose organ has emerged, giving adipose tissue an active endocrine and immunologic function through the secretion of multiple cytokines and chemokines that seem to be implicated in the development and progression of several cancer, including cutaneous melanoma. In this pilot experimental study, we analyzed the expression in the peritumor subcutaneous adipose tissue of the most significant adipokines involved in the processes of carcinogenesis and metastasis in a population of melanoma patients and in two control groups composed of melanocytic nevi and epidermoid cysts, respectively. We correlated the results obtained with the main disease prognostic factors observing a statistically significant increase in the expression of PAI1, LEP, CXCL1, NAMPT, and TNF-α at the level of the peritumor tissue of the melanoma samples compared to the control groups and a correlation of the same with the histopathological prognostic factor of melanoma. Our preliminary study shows that the overexpression of PAI1, LEP, CXCL1, NAMPT, and TNF-α may contribute to the growth and to the local aggressiveness of cutaneous melanoma. It opens the hypothesis of a direct oncogenic role of subcutaneous adipose tissue and adipokines in the tumorigenesis of melanoma.
Collapse
Affiliation(s)
- Elisa Molinelli
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Eleonora Di Mercurio
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Daisy Gambini
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Maurizi
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Valerio Brisigotti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Edoardo De Simoni
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Claudia Sapigni
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Giulio Rizzetto
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Anna Campanati
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Oriana Simonetti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Annamaria Offidani
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
27
|
Korbecki J, Bosiacki M, Chlubek D, Baranowska-Bosiacka I. Bioinformatic Analysis of the CXCR2 Ligands in Cancer Processes. Int J Mol Sci 2023; 24:13287. [PMID: 37686093 PMCID: PMC10487711 DOI: 10.3390/ijms241713287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Human CXCR2 has seven ligands, i.e., CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8/IL-8-chemokines with nearly identical properties. However, no available study has compared the contribution of all CXCR2 ligands to cancer progression. That is why, in this study, we conducted a bioinformatic analysis using the GEPIA, UALCAN, and TIMER2.0 databases to investigate the role of CXCR2 ligands in 31 different types of cancer, including glioblastoma, melanoma, and colon, esophageal, gastric, kidney, liver, lung, ovarian, pancreatic, and prostate cancer. We focused on the differences in the regulation of expression (using the Tfsitescan and miRDB databases) and analyzed mutation types in CXCR2 ligand genes in cancers (using the cBioPortal). The data showed that the effect of CXCR2 ligands on prognosis depends on the type of cancer. CXCR2 ligands were associated with EMT, angiogenesis, recruiting neutrophils to the tumor microenvironment, and the count of M1 macrophages. The regulation of the expression of each CXCR2 ligand was different and, thus, each analyzed chemokine may have a different function in cancer processes. Our findings suggest that each type of cancer has a unique pattern of CXCR2 ligand involvement in cancer progression, with each ligand having a unique regulation of expression.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska Str. 54, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| |
Collapse
|
28
|
Qu X, Dou B, Yang R, Tan C, Chen H, Wang X. C-X-C Motif Chemokine 3 Promotes the Inflammatory Response of Microglia after Escherichia coli-Induced Meningitis. Int J Mol Sci 2023; 24:10432. [PMID: 37445610 DOI: 10.3390/ijms241310432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Meningitis is a major clinical manifestation of Escherichia coli (E. coli) infection characterized by inflammation of the meninges and subarachnoid space. Many chemokines are secreted during meningitic E. coli infection, of which C-X-C motif chemokine 3 (CXCL3) is the most highly expressed. However, it is unclear how CXCL3 plays a role in meningitic E. coli infection. Therefore, this study used in vitro and in vivo assays to clarify these contributions and to identify novel therapeutic targets for central nervous system inflammation. We found a significantly upregulated expression of CXCL3 in human brain microvascular endothelial cells and U251 cells after meningitic E. coli infection, and the CXCL3 receptor, C-X-C motif chemokine receptor 2 (CXCR2), was expressed in microglia. Furthermore, CXCL3 induced M1 microglia by selectively activating mitogen-activated protein kinases signaling and significantly upregulating tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, nitric oxide synthase 2 (NOS2), and cluster of differentiation 86 (CD86) expression levels, promoting an inflammatory response. Our findings clarify the role of CXCL3 in meningitic E. coli-induced neuroinflammation and demonstrate that CXCL3 may be a potential therapeutic target for future investigation and prevention of E. coli-induced neuroinflammation.
Collapse
Affiliation(s)
- Xinyi Qu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Beibei Dou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan 430070, China
| |
Collapse
|
29
|
Gąssowska-Dobrowolska M, Chlubek M, Kolasa A, Tomasiak P, Korbecki J, Skowrońska K, Tarnowski M, Masztalewicz M, Baranowska-Bosiacka I. Microglia and Astroglia-The Potential Role in Neuroinflammation Induced by Pre- and Neonatal Exposure to Lead (Pb). Int J Mol Sci 2023; 24:9903. [PMID: 37373050 DOI: 10.3390/ijms24129903] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Neuroinflammation is one of the postulated mechanisms for Pb neurotoxicity. However, the exact molecular mechanisms responsible for its pro-inflammatory effect are not fully elucidated. In this study, we examined the role of glial cells in neuroinflammation induced by Pb exposure. We investigated how microglia, a type of glial cell, responded to the changes caused by perinatal exposure to Pb by measuring the expression of Iba1 at the mRNA and protein levels. To assess the state of microglia, we analyzed the mRNA levels of specific markers associated with the cytotoxic M1 phenotype (Il1b, Il6, and Tnfa) and the cytoprotective M2 phenotype (Arg1, Chi3l1, Mrc1, Fcgr1a, Sphk1, and Tgfb1). Additionally, we measured the concentration of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α). To assess the reactivity and functionality status of astrocytes, we analyzed the GFAP (mRNA expression and protein concentration) as well as glutamine synthase (GS) protein level and activity. Using an electron microscope, we assessed ultrastructural abnormalities in the examined brain structures (forebrain cortex, cerebellum, and hippocampus). In addition, we measured the mRNA levels of Cxcl1 and Cxcl2, and their receptor, Cxcr2. Our data showed that perinatal exposure to Pb at low doses affected both microglia and astrocyte cells' status (their mobilization, activation, function, and changes in gene expression profile) in a brain-structure-specific manner. The results suggest that both microglia and astrocytes represent a potential target for Pb neurotoxicity, thus being key mediators of neuroinflammation and further neuropathology evoked by Pb poisoning during perinatal brain development.
Collapse
Affiliation(s)
- Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Mikołaj Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Patrycja Tomasiak
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Katarzyna Skowrońska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Marta Masztalewicz
- Department of Neurology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
30
|
Yang J, Bergdorf K, Yan C, Luo W, Chen SC, Ayers GD, Liu Q, Liu X, Boothby M, Weiss VL, Groves SM, Oleskie AN, Zhang X, Maeda DY, Zebala JA, Quaranta V, Richmond A. CXCR2 expression during melanoma tumorigenesis controls transcriptional programs that facilitate tumor growth. Mol Cancer 2023; 22:92. [PMID: 37270599 PMCID: PMC10239119 DOI: 10.1186/s12943-023-01789-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Though the CXCR2 chemokine receptor is known to play a key role in cancer growth and response to therapy, a direct link between expression of CXCR2 in tumor progenitor cells during induction of tumorigenesis has not been established. METHODS To characterize the role of CXCR2 during melanoma tumorigenesis, we generated tamoxifen-inducible tyrosinase-promoter driven BrafV600E/Pten-/-/Cxcr2-/- and NRasQ61R/INK4a-/-/Cxcr2-/- melanoma models. In addition, the effects of a CXCR1/CXCR2 antagonist, SX-682, on melanoma tumorigenesis were evaluated in BrafV600E/Pten-/- and NRasQ61R/INK4a-/- mice and in melanoma cell lines. Potential mechanisms by which Cxcr2 affects melanoma tumorigenesis in these murine models were explored using RNAseq, mMCP-counter, ChIPseq, and qRT-PCR; flow cytometry, and reverse phosphoprotein analysis (RPPA). RESULTS Genetic loss of Cxcr2 or pharmacological inhibition of CXCR1/CXCR2 during melanoma tumor induction resulted in key changes in gene expression that reduced tumor incidence/growth and increased anti-tumor immunity. Interestingly, after Cxcr2 ablation, Tfcp2l1, a key tumor suppressive transcription factor, was the only gene significantly induced with a log2 fold-change greater than 2 in these three different melanoma models. CONCLUSIONS Here, we provide novel mechanistic insight revealing how loss of Cxcr2 expression/activity in melanoma tumor progenitor cells results in reduced tumor burden and creation of an anti-tumor immune microenvironment. This mechanism entails an increase in expression of the tumor suppressive transcription factor, Tfcp2l1, along with alteration in the expression of genes involved in growth regulation, tumor suppression, stemness, differentiation, and immune modulation. These gene expression changes are coincident with reduction in the activation of key growth regulatory pathways, including AKT and mTOR.
Collapse
Affiliation(s)
- J Yang
- TVHS Department of Veterans Affairs, Nashville, TN, 37212, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - K Bergdorf
- TVHS Department of Veterans Affairs, Nashville, TN, 37212, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - C Yan
- TVHS Department of Veterans Affairs, Nashville, TN, 37212, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - W Luo
- TVHS Department of Veterans Affairs, Nashville, TN, 37212, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - S C Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37203-1742, USA
| | - G D Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37203-1742, USA
| | - Q Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37203-1742, USA
| | - X Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37203-1742, USA
| | - M Boothby
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - V L Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - S M Groves
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - A N Oleskie
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - X Zhang
- Department of Genomic Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX, 77030, USA
| | - D Y Maeda
- Syntrix Pharmaceuticals, Auburn, WA, 98001, USA
| | - J A Zebala
- Syntrix Pharmaceuticals, Auburn, WA, 98001, USA
| | - V Quaranta
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
- Department of Biochemistry, Vanderbilt University, TN, 37240, Nashville, USA
| | - A Richmond
- TVHS Department of Veterans Affairs, Nashville, TN, 37212, USA.
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA.
| |
Collapse
|
31
|
Prajapati DR, Molczyk C, Purohit A, Saxena S, Sturgeon R, Dave BJ, Kumar S, Batra SK, Singh RK. Small molecule antagonist of CXCR2 and CXCR1 inhibits tumor growth, angiogenesis, and metastasis in pancreatic cancer. Cancer Lett 2023; 563:216185. [PMID: 37062329 PMCID: PMC10218365 DOI: 10.1016/j.canlet.2023.216185] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/18/2023]
Abstract
Pancreatic cancer (PC) has a poor prognosis, and current therapeutic strategies are ineffective in advanced diseases. We and others have shown the aberrant expression of CXCR2 and its ligands in PC development and progression. Our objective for this study was to evaluate the therapeutic utility of CXCR2/1 targeting using an small molecule antagonist, SCH-479833, in different PC preclinical murine models (syngeneic or xenogeneic). Our results demonstrate that CXCR2/1 antagonist had both antitumor and anti-metastatic effects in PC. CXCR2/1 antagonist treatment inhibited tumor cell proliferation, migration, angiogenesis, and recruitment of neutrophils, while it increased apoptosis. Treatment with the antagonist enhanced fibrosis, tumor necrosis, and extramedullary hematopoiesis. Together, these findings suggest that selectively targeting CXCR2/1 with small molecule inhibitors is a promising therapeutic approach for inhibiting PC growth, angiogenesis, and metastasis.
Collapse
Affiliation(s)
- Dipakkumar R Prajapati
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Caitlin Molczyk
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Abhilasha Purohit
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Sugandha Saxena
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Reegan Sturgeon
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Bhavana J Dave
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5845, United States
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5845, United States
| | - Rakesh K Singh
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States.
| |
Collapse
|
32
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Brodowska A, Chlubek D, Baranowska-Bosiacka I. Involvement in Tumorigenesis and Clinical Significance of CXCL1 in Reproductive Cancers: Breast Cancer, Cervical Cancer, Endometrial Cancer, Ovarian Cancer and Prostate Cancer. Int J Mol Sci 2023; 24:ijms24087262. [PMID: 37108425 PMCID: PMC10139049 DOI: 10.3390/ijms24087262] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
C-X-C motif chemokine ligand 1 (CXCL1) is a member of the CXC chemokine subfamily and a ligand for CXCR2. Its main function in the immune system is the chemoattraction of neutrophils. However, there is a lack of comprehensive reviews summarizing the significance of CXCL1 in cancer processes. To fill this gap, this work describes the clinical significance and participation of CXCL1 in cancer processes in the most important reproductive cancers: breast cancer, cervical cancer, endometrial cancer, ovarian cancer, and prostate cancer. The focus is on both clinical aspects and the significance of CXCL1 in molecular cancer processes. We describe the association of CXCL1 with clinical features of tumors, including prognosis, ER, PR and HER2 status, and TNM stage. We present the molecular contribution of CXCL1 to chemoresistance and radioresistance in selected tumors and its influence on the proliferation, migration, and invasion of tumor cells. Additionally, we present the impact of CXCL1 on the microenvironment of reproductive cancers, including its effect on angiogenesis, recruitment, and function of cancer-associated cells (macrophages, neutrophils, MDSC, and Treg). The article concludes by summarizing the significance of introducing drugs targeting CXCL1. This paper also discusses the significance of ACKR1/DARC in reproductive cancers.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 Str., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Agnieszka Brodowska
- Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
33
|
Yang J, Bergdorf K, Yan C, Luo W, Chen SC, Ayers D, Liu Q, Liu X, Boothby M, Groves SM, Oleskie AN, Zhang X, Maeda DY, Zebala JA, Quaranta V, Richmond A. CXCR2 expression during melanoma tumorigenesis controls transcriptional programs that facilitate tumor growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529548. [PMID: 36865260 PMCID: PMC9980137 DOI: 10.1101/2023.02.22.529548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Background Though the CXCR2 chemokine receptor is known to play a key role in cancer growth and response to therapy, a direct link between expression of CXCR2 in tumor progenitor cells during induction of tumorigenesis has not been established. Methods To characterize the role of CXCR2 during melanoma tumorigenesis, we generated tamoxifen-inducible tyrosinase-promoter driven Braf V600E /Pten -/- /Cxcr2 -/- and NRas Q61R /INK4a -/- /Cxcr2 -/- melanoma models. In addition, the effects of a CXCR1/CXCR2 antagonist, SX-682, on melanoma tumorigenesis were evaluated in Braf V600E /Pten -/- and NRas Q61R /INK4a -/- mice and in melanoma cell lines. Potential mechanisms by which Cxcr2 affects melanoma tumorigenesis in these murine models were explored using RNAseq, mMCP-counter, ChIPseq, and qRT-PCR; flow cytometry, and reverse phosphoprotein analysis (RPPA). Results Genetic loss of Cxcr2 or pharmacological inhibition of CXCR1/CXCR2 during melanoma tumor induction resulted in key changes in gene expression that reduced tumor incidence/growth and increased anti-tumor immunity. Interestingly, after Cxcr2 ablation, Tfcp2l1 , a key tumor suppressive transcription factor, was the only gene significantly induced with a log 2 fold-change greater than 2 in these three different melanoma models. Conclusions Here, we provide novel mechanistic insight revealing how loss of Cxcr2 expression/activity in melanoma tumor progenitor cells results in reduced tumor burden and creation of an anti-tumor immune microenvironment. This mechanism entails an increase in expression of the tumor suppressive transcription factor, Tfcp2l1, along with alteration in the expression of genes involved in growth regulation, tumor suppression, stemness, differentiation, and immune modulation. These gene expression changes are coincident with reduction in the activation of key growth regulatory pathways, including AKT and mTOR.
Collapse
|
34
|
Van Hoof M, Claes S, Boon K, Van Loy T, Schols D, Dehaen W, De Jonghe S. Exploration of Pyrido[3,4- d]pyrimidines as Antagonists of the Human Chemokine Receptor CXCR2. Molecules 2023; 28:molecules28052099. [PMID: 36903345 PMCID: PMC10004157 DOI: 10.3390/molecules28052099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Upregulated CXCR2 signalling is found in numerous inflammatory, autoimmune and neurodegenerative diseases, as well as in cancer. Consequently, CXCR2 antagonism is a promising therapeutic strategy for treatment of these disorders. We previously identified, via scaffold hopping, a pyrido[3,4-d]pyrimidine analogue as a promising CXCR2 antagonist with an IC50 value of 0.11 µM in a kinetic fluorescence-based calcium mobilization assay. This study aims at exploring the structure-activity relationship (SAR) and improving the CXCR2 antagonistic potency of this pyrido[3,4-d]pyrimidine via systematic structural modifications of the substitution pattern. Almost all new analogues completely lacked the CXCR2 antagonism, the exception being a 6-furanyl-pyrido[3,4-d]pyrimidine analogue (compound 17b) that is endowed with similar antagonistic potency as the original hit.
Collapse
Affiliation(s)
- Max Van Hoof
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Sandra Claes
- Department of Microbiology, Immunology and Transplantation—Laboratory of Virology and Chemotherapy, KU Leuven—Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Katrijn Boon
- Department of Microbiology, Immunology and Transplantation—Laboratory of Virology and Chemotherapy, KU Leuven—Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Tom Van Loy
- Department of Microbiology, Immunology and Transplantation—Laboratory of Virology and Chemotherapy, KU Leuven—Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation—Laboratory of Virology and Chemotherapy, KU Leuven—Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Steven De Jonghe
- Department of Microbiology, Immunology and Transplantation—Laboratory of Virology and Chemotherapy, KU Leuven—Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
35
|
Korbecki J, Rębacz-Maron E, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. Synthesis and Significance of Arachidonic Acid, a Substrate for Cyclooxygenases, Lipoxygenases, and Cytochrome P450 Pathways in the Tumorigenesis of Glioblastoma Multiforme, Including a Pan-Cancer Comparative Analysis. Cancers (Basel) 2023; 15:cancers15030946. [PMID: 36765904 PMCID: PMC9913267 DOI: 10.3390/cancers15030946] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive gliomas. New and more effective therapeutic approaches are being sought based on studies of the various mechanisms of GBM tumorigenesis, including the synthesis and metabolism of arachidonic acid (ARA), an omega-6 polyunsaturated fatty acid (PUFA). PubMed, GEPIA, and the transcriptomics analysis carried out by Seifert et al. were used in writing this paper. In this paper, we discuss in detail the biosynthesis of this acid in GBM tumors, with a special focus on certain enzymes: fatty acid desaturase (FADS)1, FADS2, and elongation of long-chain fatty acids family member 5 (ELOVL5). We also discuss ARA metabolism, particularly its release from cell membrane phospholipids by phospholipase A2 (cPLA2, iPLA2, and sPLA2) and its processing by cyclooxygenases (COX-1 and COX-2), lipoxygenases (5-LOX, 12-LOX, 15-LOX-1, and 15-LOX-2), and cytochrome P450. Next, we discuss the significance of lipid mediators synthesized from ARA in GBM cancer processes, including prostaglandins (PGE2, PGD2, and 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2)), thromboxane A2 (TxA2), oxo-eicosatetraenoic acids, leukotrienes (LTB4, LTC4, LTD4, and LTE4), lipoxins, and many others. These lipid mediators can increase the proliferation of GBM cancer cells, cause angiogenesis, inhibit the anti-tumor response of the immune system, and be responsible for resistance to treatment.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ewa Rębacz-Maron
- Department of Ecology and Anthropology, Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48-914-661-515
| |
Collapse
|
36
|
Bałaban J, Wierzbicki M, Zielińska-Górska M, Sosnowska M, Daniluk K, Jaworski S, Koczoń P, Cysewski D, Chwalibog A, Sawosz E. Graphene Oxide Decreases Pro-Inflammatory Proteins Production in Skeletal Muscle Cells Exposed to SARS-CoV-2 Spike Protein. Nanotechnol Sci Appl 2023; 16:1-18. [PMID: 36699443 PMCID: PMC9869801 DOI: 10.2147/nsa.s391761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
Aim The experiments aimed to document the presence of the ACE2 receptor on human muscle cells and the effects of the interaction of these cells with the spike protein of the SARS-CoV-2 virus in terms of induction of pro-inflammatory proteins, as well as to assess the possibility of reducing the pool of these proteins with the use of graphene oxide (GO) flakes. Methods Human Skeletal Myoblast (HSkM), purchased from Gibco were maintained in standard condition according to the manufacturer's instruction. The cells were divided into 4 groups; 1. C-control, 2. S-with addition of spike protein, 3. GO-with the addition of graphene oxide, 4. GO-S-with addition of GO followed by the addition of S protein. Protein S (PX-COV-P049) was purchased from ProteoGenix (France). GO was obtained from Advanced Graphene Products (Zielona Gora, Poland). The influence of all the factors on the morphology of cells was investigated using light and confocal microscopy. ACE2 protein expression on muscle cells was visualized and 40 pro-inflammatory cytokines were investigated using the membrane antibody array method. The protein profile of the lysate of cells from individual groups was also analyzed by mass spectrometry. Conclusion The experiments confirmed the presence of the ACE2 receptor in human skeletal muscle cells. It has also been documented that the SARS-CoV-2 virus spike protein influences the activation of selected pro-inflammatory proteins that promote cytokine storm and oxidative stress in muscle cells. The use of low levels of graphene oxide does not adversely affect muscle cells, reducing the levels of most proteins, including pro-inflammatory proteins. It can be assumed that GO may support anti-inflammatory therapy in muscles by scavenging proteins that activate cytokine storm.
Collapse
Affiliation(s)
- Jaśmina Bałaban
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marlena Zielińska-Górska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Karolina Daniluk
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, Białystok, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark,Correspondence: André Chwalibog, University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark, Tel +45 40963573, Email
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
37
|
Martins-Lima C, Chianese U, Benedetti R, Altucci L, Jerónimo C, Correia MP. Tumor microenvironment and epithelial-mesenchymal transition in bladder cancer: Cytokines in the game? Front Mol Biosci 2023; 9:1070383. [PMID: 36699696 PMCID: PMC9868260 DOI: 10.3389/fmolb.2022.1070383] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
Bladder cancer (BlCa) is a highly immunogenic cancer. Bacillus Calmette-Guérin (BCG) is the standard treatment for non-muscle invasive bladder cancer (NMIBC) patients and, recently, second-line immunotherapies have arisen to treat metastatic BlCa patients. Understanding the interactions between tumor cells, immune cells and soluble factors in bladder tumor microenvironment (TME) is crucial. Cytokines and chemokines released in the TME have a dual role, since they can exhibit both a pro-inflammatory and anti-inflammatory potential, driving infiltration and inflammation, and also promoting evasion of immune system and pro-tumoral effects. In BlCa disease, 70-80% are non-muscle invasive bladder cancer, while 20-30% are muscle-invasive bladder cancer (MIBC) at the time of diagnosis. However, during the follow up, about half of treated NMIBC patients recur once or more, with 5-25% progressing to muscle-invasive bladder cancer, which represents a significant concern to the clinic. Epithelial-mesenchymal transition (EMT) is one biological process associated with tumor progression. Specific cytokines present in bladder TME have been related with signaling pathways activation and EMT-related molecules regulation. In this review, we summarized the immune landscape in BlCa TME, along with the most relevant cytokines and their putative role in driving EMT processes, tumor progression, invasion, migration and metastasis formation.
Collapse
Affiliation(s)
- Cláudia Martins-Lima
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy,BIOGEM, Molecular Biology and Genetics Research Institute, Avellino, Italy,IEOS, Institute of Endocrinology and Oncology, Naples, Italy
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal,*Correspondence: Carmen Jerónimo, , ; Margareta P. Correia,
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal,*Correspondence: Carmen Jerónimo, , ; Margareta P. Correia,
| |
Collapse
|
38
|
Kono M, Okuda T, Ishihara N, Hagino H, Tani Y, Okochi H, Tokoro C, Takaishi M, Ikeda H, Ishihara Y. Chemokine expression in human 3-dimensional cultured epidermis exposed to PM2.5 collected by cyclonic separation. Toxicol Res 2023; 39:1-13. [PMID: 36726829 PMCID: PMC9839915 DOI: 10.1007/s43188-022-00142-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Fine particulate matter (PM2.5) exposure has a risk of inducing several health problems, especially in the respiratory tract. The skin is the largest organ of the human body and is therefore the primary target of PM2.5. In this study, we examined the effects of PM2.5 on the skin using a human 3-dimensional cultured epidermis model. PM2.5 was collected by cyclonic separation in Yokohama, Japan. Global analysis of 34 proteins released from the epidermis revealed that the chemokines, chemokine C-X-C motif ligand 1 (CXCL1) and interleukin 8 (IL-8), were significantly increased in response to PM2.5 exposure. These chemokines stimulated neutrophil chemotaxis in a C-X-C motif chemokine receptor 2-dependent manner. The oxidative stress and signal transducer and activator of transcription 3 pathways may be involved in the increased expression of CXCL1 and IL-8 in the human epidermis model. Interestingly, in the HaCaT human keratinocyte cell line, PM2.5 did not affect chemokine expression but did induce IL-6 expression, suggesting a different effect of PM2.5 between the epidermis model and HaCaT cells. Overall, PM2.5 could induce the epidermis to release chemokines, followed by neutrophil activation, which might cause an unregulated inflammatory reaction in the skin.
Collapse
Affiliation(s)
- Maori Kono
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871 Japan
- Product Assurance Division, Mandom Corporation, Osaka, 540-8530 Japan
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Kanagawa, 223-8522 Japan
| | - Nami Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521 Japan
| | - Hiroyuki Hagino
- Japan Automobile Research Institute, Ibaraki, 305-0822 Japan
| | - Yuto Tani
- School of Creative Science and Engineering, Waseda University, Tokyo, 169-8555 Japan
| | - Hiroshi Okochi
- School of Creative Science and Engineering, Waseda University, Tokyo, 169-8555 Japan
| | - Chiharu Tokoro
- School of Creative Science and Engineering, Waseda University, Tokyo, 169-8555 Japan
| | - Masayuki Takaishi
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871 Japan
- Product Assurance Division, Mandom Corporation, Osaka, 540-8530 Japan
| | - Hidefumi Ikeda
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871 Japan
- Product Assurance Division, Mandom Corporation, Osaka, 540-8530 Japan
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521 Japan
| |
Collapse
|
39
|
The Potential Importance of CXCL1 in the Physiological State and in Noncancer Diseases of the Cardiovascular System, Respiratory System and Skin. Int J Mol Sci 2022; 24:ijms24010205. [PMID: 36613652 PMCID: PMC9820720 DOI: 10.3390/ijms24010205] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
In this paper, we present a literature review of the role of CXC motif chemokine ligand 1 (CXCL1) in physiology, and in selected major non-cancer diseases of the cardiovascular system, respiratory system and skin. CXCL1, a cytokine belonging to the CXC sub-family of chemokines with CXC motif chemokine receptor 2 (CXCR2) as its main receptor, causes the migration and infiltration of neutrophils to the sites of high expression. This implicates CXCL1 in many adverse conditions associated with inflammation and the accumulation of neutrophils. The aim of this study was to describe the significance of CXCL1 in selected diseases of the cardiovascular system (atherosclerosis, atrial fibrillation, chronic ischemic heart disease, hypertension, sepsis including sepsis-associated encephalopathy and sepsis-associated acute kidney injury), the respiratory system (asthma, chronic obstructive pulmonary disease (COPD), chronic rhinosinusitis, coronavirus disease 2019 (COVID-19), influenza, lung transplantation and ischemic-reperfusion injury and tuberculosis) and the skin (wound healing, psoriasis, sunburn and xeroderma pigmentosum). Additionally, the significance of CXCL1 is described in vascular physiology, such as the effects of CXCL1 on angiogenesis and arteriogenesis.
Collapse
|
40
|
Delobel P, Ginter B, Rubio E, Balabanian K, Lazennec G. CXCR2 intrinsically drives the maturation and function of neutrophils in mice. Front Immunol 2022; 13:1005551. [PMID: 36311783 PMCID: PMC9606682 DOI: 10.3389/fimmu.2022.1005551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophils play a major role in the protection from infections but also in inflammation related to tumor microenvironment. However, cell-extrinsic and -intrinsic cues driving their function at steady state is still fragmentary. Using Cxcr2 knock-out mice, we have evaluated the function of the chemokine receptor Cxcr2 in neutrophil physiology. We show here that Cxcr2 deficiency decreases the percentage of mature neutrophils in the spleen, but not in the bone marrow (BM). There is also an increase of aged CD62Llo CXCR4hi neutrophils in the spleen of KO animals. Spleen Cxcr2-/- neutrophils display a reduced phagocytic ability, whereas BM neutrophils show an enhanced phagocytic ability compared to WT neutrophils. Spleen Cxcr2-/- neutrophils show reduced reactive oxygen species production, F-actin and α-tubulin levels. Moreover, spleen Cxcr2-/- neutrophils display an altered signaling with reduced phosphorylation of ERK1/2 and p38 MAPK, impaired PI3K-AKT, NF-κB, TGFβ and IFNγ pathways. Altogether, these results suggest that Cxcr2 is essential for neutrophil physiology.
Collapse
Affiliation(s)
- Pauline Delobel
- CNRS, UMR9005, Sys2Diag-ALCEN, Cap delta, Montpellier, France
| | - Benjamin Ginter
- CNRS, UMR9005, Sys2Diag-ALCEN, Cap delta, Montpellier, France
| | - Eliane Rubio
- CNRS, UMR9005, Sys2Diag-ALCEN, Cap delta, Montpellier, France
| | - Karl Balabanian
- CNRS, GDR 3697 “Microenvironment of tumor niches”, Micronit, France
- Université Paris-Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
| | - Gwendal Lazennec
- CNRS, UMR9005, Sys2Diag-ALCEN, Cap delta, Montpellier, France
- CNRS, GDR 3697 “Microenvironment of tumor niches”, Micronit, France
- *Correspondence: Gwendal Lazennec,
| |
Collapse
|
41
|
A Comprehensive Characterization of Stemness in Cell Lines and Primary Cells of Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2022; 23:ijms231810663. [PMID: 36142575 PMCID: PMC9503169 DOI: 10.3390/ijms231810663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/18/2023] Open
Abstract
The aim of this study is to provide a comprehensive characterization of stemness in pancreatic ductal adenocarcinoma (PDAC) cell lines. Seventeen cell lines were evaluated for the expression of cancer stem cell (CSC) markers. The two putative pancreatic CSC phenotypes were expressed heterogeneously ranging from 0 to 99.35% (median 3.46) for ESA+CD24+CD44+ and 0 to 1.94% (median 0.13) for CXCR4+CD133+. Cell lines were classified according to ESA+CD24+CD44+ expression as: Low-Stemness (LS; <5%, n = 9, median 0.31%); Medium-Stemness (MS; 6−20%, n = 4, median 12.4%); and High-Stemness (HS; >20%, n = 4, median 95.8%) cell lines. Higher degree of stemness was associated with in vivo tumorigenicity but not with in vitro growth kinetics, clonogenicity, and chemo-resistance. A wide characterization (chemokine receptors, factors involved in pancreatic organogenesis, markers of epithelial−mesenchymal transition, and secretome) revealed that the degree of stemness was associated with KRT19 and NKX2.2 mRNA expression, with CD49a and CA19.9/Tie2 protein expression, and with the secretion of VEGF, IL-7, IL-12p70, IL-6, CCL3, IL-10, and CXCL9. The expression of stem cell markers was also evaluated on primary tumor cells from 55 PDAC patients who underwent pancreatectomy with radical intent, revealing that CXCR4+/CD133+ and CD24+ cells, but not ESA+CD24+CD44+, are independent predictors of mortality.
Collapse
|
42
|
Urbantat RM, Jelgersma C, Vajkoczy P, Brandenburg S, Acker G. Combining TMZ and SB225002 induces changes of CXCR2 and VEGFR signalling in primary human endothelial cells in vitro. Oncol Rep 2022; 48:158. [PMID: 35856448 PMCID: PMC9350968 DOI: 10.3892/or.2022.8373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022] Open
Abstract
Standard of care therapy for glioblastoma (GBM) consisting of surgical removal, temozolomide (TMZ) and radiotherapy fails to cure the disease and median survival is limited to 15 months. Therapeutic approaches targeting vascular endothelial growth factor (VEGF)-mediated angiogenesis, one of the major drivers of tumour growth, have not prolonged patient survival as reported in clinical studies. Apart from VEGFR signalling, proangiogenic C-X-C motif chemokine receptor 2 (CXCR2) is of special interest as its ligands C-X-C motif chemokine ligand 2 (CXCL2) and interleukin-8 (IL8) are upregulated and associated with reduced survival in GBM patients. As CXCR2 is also expressed by endothelial cells, the aim of the present study was to elucidate the effect of combination therapy on gene and protein expression of primary human endothelial cells (HUVECs). To mimic the GBM specific CXCL2/IL8 oversupply environment [referred to as stimulation (STIM)], HUVECs were treated with a cocktail of CXCL2/IL8 and/or TMZ and/or CXCR2-antagonist SB225002 (SB). In brief, six treatment conditions were utilized: i) Control, ii) STIM (CXCL2/IL8), iii) TMZ + SB, iv) STIM + TMZ, v) STIM + SB, vi) STIM + TMZ + SB followed by either RNA-isolation and RT-qPCR for BAX, BCL2, vascular endothelial growth receptor (VEGFR)1/2, VEGF, CXCR1/2, CXCL2 and IL8 or immunofluorescence staining for VEGFR2 and CXCR2. SB and TMZ led to morphological changes of HUVECs and downregulated antiapoptotic BCL2 in vitro. In addition, gene expression of the alternative proangiogenic CXCL2/IL8/CXCR2 signalling pathway was significantly altered by the combination therapy, while the VEGF/VEGFR1/2 axis was only mildly affected. Furthermore, VEGFR2 and CXCR2 gene and protein expression regulation differed. VEGFR2 was not altered at the gene expression level, while combination therapy with TMZ and SB led to a 74% upregulation of VEGFR2 at the protein level. By contrast, CXCR2 was upregulated 5-fold by the combination therapy at the gene expression level and downregulated by 72.5% at the protein expression level. The present study provided first insights into the molecular changes of two major proangiogenic pathways in primary endothelial cells during treatment with TMZ and SB. Different gene and protein expression levels of the proangiogenic receptors CXCR2 and VEGFR2 in vitro must be taken into consideration in future studies.
Collapse
Affiliation(s)
- Ruth M Urbantat
- Department of Neurosurgery, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, D‑10117 Berlin, Germany
| | - Claudius Jelgersma
- Department of Neurosurgery, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, D‑10117 Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, D‑10117 Berlin, Germany
| | - Susan Brandenburg
- Department of Neurosurgery, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, D‑10117 Berlin, Germany
| | - Gueliz Acker
- Department of Neurosurgery, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, D‑10117 Berlin, Germany
| |
Collapse
|
43
|
Abdelaziz RR, Abdelrahman RS, Abdelmageed ME. SB332235, a CXCR2 antagonist, ameliorates thioacetamide-induced hepatic encephalopathy through modulation of the PI3K/AKT pathways in rats. Neurotoxicology 2022; 92:110-121. [PMID: 35961375 DOI: 10.1016/j.neuro.2022.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
RATIONALE Hepatic encephalopathy (HE) is a neuropsychiatric disorder that results from either acute or chronic liver failure. CXCR2 plays an essential role in the pathophysiology of liver and brain diseases. In the present study, the potential beneficial effects of SB332235, a selective inhibitor of CXCR2, against HE were evaluated. METHODS HE was induced in male rats by thioacetamide injection (200 mg/kg, i.p.) at three alternative days. SB332235 was injected in rats 1 h before TAA at a dose of 1 and 3 mg/kg i.p. RESULTS SB332235 alleviated oxidative stress as shown by the decreased serum NO and reduced MDA, elevated GSH and SOD levels, and reduced TNF-α and NF-κB levels in both brain and liver tissues of rats. Additionally, SB332235 suppressed brain ASK-1, JNK, IL-8, and caspase-3 expression, and activated PI3K/AKT expression in brain tissues. Markers of brain dysfunction, such as ammonia, and markers of hepatic injury, such as LDH, albumin, bilirubin, γGT, AST, ALT, and ALP, were significantly ameliorated. Also, the protective effect of SB332235 was confirmed by histological examination of both brain and liver tissues. CONCLUSIONS Both doses (1 and 3 mg/kg) of SB332235 revealed significant hepatic/neuroprotective effects due to their anti-inflammatory, antioxidant, and antiapoptotic activities via activation of the PI3K/AKT pathway. Between the two, the 1 mg/kg dose provided significantly improved outcomes.
Collapse
Affiliation(s)
- Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, 30001, Saudi Arabia
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
44
|
Wang B, Zhang Y, Lou Y, Hu X, Li F. Initial research on the effect and mechanism of Tivozanib on pulsed dye laser induced angiogenesis. Lasers Surg Med 2022; 54:1157-1166. [PMID: 35916102 DOI: 10.1002/lsm.23586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Pulsed dye laser (PDL) is the main treatment for port wine stain (PWS), but a considerable number of patients show low clearances. The reason for the poor efficacy is related to PDL-induced angiogenesis. Vascular endothelial growth factor (VEGF) plays an important role in PDL-induced angiogenesis and can activate the tyrosine kinase activity of VEGF receptor (VEGFR) in endothelial cells. It triggers a full range of responses, and then participates in the regulation of angiogenesis. Tivozanib is an inhibitor of VEGFR tyrosine kinase activity, which can block the pro-angiogenic effect of VEGF and reduce vascular permeability. METHOD Different energy densities of PDL were used to irradiate the abdominal skin of rats. According to the general and pathological changes of the irradiated area, the energy density of 8 J/cm2 with smaller scab and stronger vascular effect was selected for follow-up experiments. Divided the rat abdomen skin into four areas, irradiated three of them uniformly with an energy density of 8 J/cm2 , and applied different concentrations of Tivozanib coating agent to the laser irradiation area, and grouped them as follows: (1) vacant group, (2) control group, (3) 0.5% Tivozanib group, (4) 1% Tivozanib group. Camera and dermoscopy were used to observe skin changes. Hematoxylin-eosin staining, immunohistochemical staining, and blood vessels were counted to detect dermal vascular regeneration. Transcriptome sequencing and real-time polymerase chain reaction (PCR) were conducted to elucidate the mechanism and validate the reliability. RESULTS The number of blood vessels in the 0.5% Tivozanib group and 1% Tivozanib group was significantly reduced on the 7, 10, and 14 days compared with the control group. The number of blood vessels in the 1% Tivozanib group was significantly reduced compared with the 0.5% Tivozanib group, indicating that Tivozanib successfully inhibited PDL-induced angiogenesis, and the inhibitory effect of 1% Tivozanib was more significant than that of 0.5% Tivozanib. Transcriptome sequencing results showed a total of 588 significantly differentially expressed genes, including 90 upregulated genes and 498 downregulated genes. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that the significantly differentially expressed genes were mainly enriched in the metabolic pathways which were closely related to angiogenesis. Finally, real-time PCR was used to verify the genes with higher expression differences, the top ranking and closely related to angiogenesis, namely, Cxcl1, Cxcl2, Cxcl3, Cxcl6, Ccl3, Csf3, IL1β, iNOS, Mmp9, Mmp13, Plau, Ets1, Spp1, Nr4a1. The results were consistent with the trend of transcriptome sequencing results, which proved the reliability of this study. CONCLUSION This study explored the inhibitory effect of Tivozanib on PDL-induced angiogenesis, and provided a new idea for the treatment of clinical PWS. Transcriptome sequencing explored the mechanism and provided reliable clues for later in-depth research.
Collapse
Affiliation(s)
- Bing Wang
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yaqin Zhang
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xin Hu
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fuqiu Li
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
45
|
Dong Q, Tian J, Zheng W, Fan Q, Wu X, Tang Y, Liu T, Yin H. Interleukin-33 protects mice against hindlimb ischemic injury by enhancing endothelial angiogenesis. Int Immunopharmacol 2022; 109:108850. [DOI: 10.1016/j.intimp.2022.108850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
|
46
|
Qiu J, Li M, Su C, Liang Y, Ou R, Chen X, Huang C, Zhang Y, Ye Y, Liao W, Zhang C. FOXS1 Promotes Tumor Progression by Upregulating CXCL8 in Colorectal Cancer. Front Oncol 2022; 12:894043. [PMID: 35898871 PMCID: PMC9309265 DOI: 10.3389/fonc.2022.894043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022] Open
Abstract
Background Forkhead box S1 (FOXS1) is a member of the forkhead box (FOX) transcriptional factor superfamily. The biological roles and underlying regulatory mechanism of FOXS1 in CRC remain unclear. Methods Bioinformatics analysis, Western blotting, real-time PCR, and immunohistochemistry (IHC) were used to detect the expression FOXS1 in CRC. MTT assay, transwell assay, human umbilical vein endothelial cell tube formation assay, and chicken chorioallantoic membrane assay were performed to investigate the effects of FOXS1 on proliferation, invasion, and angiogenesis. Additionally, tumor formation assay and orthotopic implantation assay were used to investigate the effects of FOXS1 on tumor growth and metastasis in vivo. Furthermore, gene set enrichment analysis (GSEA) was used to analyze the correlation between FOXS1 and EMT or angiogenesis. The correlation between FOXS1 and CXCL8 expression was analyzed in clinical CRC samples using IHC. Results The results showed that FOXS1 expression was upregulated in CRC tissues compared with adjacent normal intestine tissues. A high FOXS1 expression is positively correlated with poor survival. FOXS1 promoted the malignant behavior of CRC cancer cells in vitro, including proliferation, invasion, and angiogenesis. In addition, FOXS1 promoted tumor growth and metastasis in nude mice. Mechanistically, FOXS1 upregulated the expression of C–X–C motif chemokine ligand 8 (CXCL8) at the transcriptional level. Knockdown of CXCL8 blocked FOXS1 induced the enhancement of the EMT and angiogenesis. GSEAs in public CRC datasets revealed strong correlations between FOXS1 expression and EMT marker and angiogenesis markers. IHC showed that FOXS1 expression was positively correlated with CXCL8 expression and CD31 expression in clinical CRC samples. Conclusion The results suggest that FOXS1 promotes angiogenesis and metastasis by upregulating CXCL8 in CRC. Interference with the FOXS1/CXCL8 axis may serve as a potential therapeutic target for the treatment of metastatic CRC.
Collapse
Affiliation(s)
- Junfeng Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Mingzhou Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cailin Su
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yihao Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruizhang Ou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Xiaoning Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Chengmei Huang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yaxin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yaping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
- *Correspondence: Yaping Ye, ; Wenting Liao, ; Chao Zhang,
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- *Correspondence: Yaping Ye, ; Wenting Liao, ; Chao Zhang,
| | - Chao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- *Correspondence: Yaping Ye, ; Wenting Liao, ; Chao Zhang,
| |
Collapse
|
47
|
Rath M, Schwefel K, Malinverno M, Skowronek D, Leopoldi A, Pilz RA, Biedenweg D, Bekeschus S, Penninger JM, Dejana E, Felbor U. Contact-dependent signaling triggers tumor-like proliferation of CCM3 knockout endothelial cells in co-culture with wild-type cells. Cell Mol Life Sci 2022; 79:340. [PMID: 35661927 PMCID: PMC9166869 DOI: 10.1007/s00018-022-04355-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 12/18/2022]
Abstract
Cerebral cavernous malformations (CCM) are low-flow vascular lesions prone to cause severe hemorrhage-associated neurological complications. Pathogenic germline variants in CCM1, CCM2, or CCM3 can be identified in nearly 100% of CCM patients with a positive family history. In line with the concept that tumor-like mechanisms are involved in CCM formation and growth, we here demonstrate an abnormally increased proliferation rate of CCM3-deficient endothelial cells in co-culture with wild-type cells and in mosaic human iPSC-derived vascular organoids. The observation that NSC59984, an anticancer drug, blocked the abnormal proliferation of mutant endothelial cells further supports this intriguing concept. Fluorescence-activated cell sorting and RNA sequencing revealed that co-culture induces upregulation of proangiogenic chemokine genes in wild-type endothelial cells. Furthermore, genes known to be significantly downregulated in CCM3−/− endothelial cell mono-cultures were upregulated back to normal levels in co-culture with wild-type cells. These results support the hypothesis that wild-type ECs facilitate the formation of a niche that promotes abnormal proliferation of mutant ECs. Thus, targeting the cancer-like features of CCMs is a promising new direction for drug development.
Collapse
|
48
|
Korbecki J, Gąssowska-Dobrowolska M, Wójcik J, Szatkowska I, Barczak K, Chlubek M, Baranowska-Bosiacka I. The Importance of CXCL1 in Physiology and Noncancerous Diseases of Bone, Bone Marrow, Muscle and the Nervous System. Int J Mol Sci 2022; 23:ijms23084205. [PMID: 35457023 PMCID: PMC9024980 DOI: 10.3390/ijms23084205] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023] Open
Abstract
This review describes the role of CXCL1, a chemokine crucial in inflammation as a chemoattractant for neutrophils, in physiology and in selected major non-cancer diseases. Due to the vast amount of available information, we focus on the role CXCL1 plays in the physiology of bones, bone marrow, muscle and the nervous system. For this reason, we describe its effects on hematopoietic stem cells, myoblasts, oligodendrocyte progenitors and osteoclast precursors. We also present the involvement of CXCL1 in diseases of selected tissues and organs including Alzheimer’s disease, epilepsy, herpes simplex virus type 1 (HSV-1) encephalitis, ischemic stroke, major depression, multiple sclerosis, neuromyelitis optica, neuropathic pain, osteoporosis, prion diseases, rheumatoid arthritis, tick-borne encephalitis (TBE), traumatic spinal cord injury and West Nile fever.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Jerzy Wójcik
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Iwona Szatkowska
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland; (J.W.); (I.S.)
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Mikołaj Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland; (J.K.); (M.C.)
- Correspondence: ; Tel.: +48-914-661-515
| |
Collapse
|
49
|
Arora S, Khan S, Zaki A, Tabassum G, Mohsin M, Bhutto HN, Ahmad T, Fatma T, Syed MA. Integration of chemokine signaling with non-coding RNAs in tumor microenvironment and heterogeneity in different cancers. Semin Cancer Biol 2022; 86:720-736. [DOI: 10.1016/j.semcancer.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
50
|
Sun HY, Min ZC, Gao L, Zhang ZY, Pang TL, Gao YJ, Pan H, Ou-Yang J. Association between IL8RB C1208T mutation and risk of cancer: A pooled analysis based on 5299 cases and 6899 controls. Medicine (Baltimore) 2022; 101:e28986. [PMID: 35212311 PMCID: PMC8878631 DOI: 10.1097/md.0000000000028986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/11/2022] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION The CXC chemokines are unique cytokines that play a vital role in the progression of many cancers. Association between chemokine (C-X-C motif) receptor 2 (IL8RB) C1208T mutation and cancer risk remains incomprehensive. METHODS We therefore utilized odds ratios and in silico analysis to explore the relationship of IL8RB polymorphism on risk to cancer. Furthermore, we adopted gene set enrichment analysis to investigate the IL8RB expression in prostate adenocarcinoma. RESULTS A total of 14 case-control studies combined with 5299 cases and 6899 controls were included in our analysis. We revealed that individuals carrying TT genotype had an 14% increased cancer risk compared with those with TC + colon cancer (CC) genotype (odds ratio [OR] = 1.14, 95% CI = 1.05-1.25, P = .003, I2 = 35.6). Stratification analysis by race showed that East Asians with TT + TC genotype may have a 25% decreased cancer risk compared with control. Stratification analysis by cancer type revealed that individuals with TT genotype were associated with elevated risk of urinary cancer than control. The expression of IL8RB was attenuated in prostate adenocarcinoma. CONCLUSIONS IL8RB C1208T may be correlated with the risk of cancer, especially prostate adenocarcinoma.
Collapse
Affiliation(s)
- He-Yun Sun
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhi-Chao Min
- Department of Urology, The First People's Hospital of Hangzhou Lin’an District, 548 Yijin Road, Lin’an, China
| | - Lei Gao
- Department of Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Zi-Yi Zhang
- Department of Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Ting-Le Pang
- Department of Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Ying-Jun Gao
- Department of Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Hong Pan
- Department of Operation theatre, Changzhou No.2 People's Hospital, Changzhou, China
| | - Jun Ou-Yang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|