1
|
Schweiger P, Hamann L, Strobel J, Weisbach V, Wandersee A, Christ J, Kehl S, Weidenthaler F, Antoniadis S, Hackstein H, Cunningham S. Functional Heterogeneity of Umbilical Cord Blood Monocyte-Derived Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:115-124. [PMID: 38809115 PMCID: PMC11215632 DOI: 10.4049/jimmunol.2400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Human umbilical cord blood (UCB) represents a unique resource for hematopoietic stem cell transplantation for children and patients lacking suitable donors. UCB harbors a diverse set of leukocytes such as professional APCs, including monocytes, that could act as a novel source for cellular therapies. However, the immunological properties of UCB monocytes and monocyte-derived dendritic cells (MoDCs) are not fully characterized. In this study, we characterized the phenotype and functions of UCB-MoDCs to gauge their potential for future applications. UCB exhibited higher frequencies of platelets and lymphocytes as well as lower frequencies of neutrophils in comparison with adult whole blood. Leukocyte subset evaluation revealed significantly lower frequencies of granulocytes, NK cells, and CD14+CD16- monocytes. Surface marker evaluation revealed significantly lower rates of costimulatory molecules CD80 and CD83 while chemokine receptors CCR7 and CXCR4, as well as markers for Ag presentation, were similarly expressed. UCB-MoDCs were sensitive to TLR1-9 stimulation and presented quantitative differences in the release of proinflammatory cytokines. UCB-MoDCs presented functional CCR7-, CXCR4-, and CCR5-associated migratory behavior as well as adequate receptor- and micropinocytosis-mediated Ag uptake. When cocultured with allogeneic T lymphocytes, UCB-MoDCs induced weak CD4+ T lymphocyte proliferation, CD71 expression, and release of IFN-γ and IL-2. Taken together, UCB-MoDCs present potentially advantageous properties for future medical applications.
Collapse
Affiliation(s)
- Petra Schweiger
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Livia Hamann
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Julian Strobel
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Alexandra Wandersee
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Julia Christ
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Sven Kehl
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Filip Weidenthaler
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Sophia Antoniadis
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Sarah Cunningham
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
2
|
Labeur-Iurman L, Harker JA. Mechanisms of antibody mediated immunity - Distinct in early life. Int J Biochem Cell Biol 2024; 172:106588. [PMID: 38768890 DOI: 10.1016/j.biocel.2024.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Immune responses in early life are characterized by a failure to robustly generate long-lasting protective responses against many common pathogens or upon vaccination. This is associated with a reduced ability to generate T-cell dependent high affinity antibodies. This review highlights the differences in T-cell dependent antibody responses observed between infants and adults, in particular focussing on the alterations in immune cell function that lead to reduced T follicular helper cell-B cell crosstalk within germinal centres in early life. Understanding the distinct functional characteristics of early life humoral immunity, and how these are regulated, will be critical in guiding age-appropriate immunological interventions in the very young.
Collapse
Affiliation(s)
- Lucia Labeur-Iurman
- National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| | - James A Harker
- National Heart & Lung Institute, Imperial College London, London, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom.
| |
Collapse
|
3
|
Mitchell AE, Scanlon KM, Flowers EM, Jordan CM, Tibbs EJ, Bukowski A, Gallop D, Carbonetti NH. Age-dependent natural killer cell and interferon γ deficits contribute to severe pertussis in infant mice. J Leukoc Biol 2024; 115:1143-1153. [PMID: 38285898 PMCID: PMC11135619 DOI: 10.1093/jleuko/qiae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/29/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Many respiratory infections are selectively injurious to infants, yet the etiology of age-associated susceptibility is unknown. One such bacterial pathogen is Bordetella pertussis. In adult mice, innate interferon γ (IFN-γ) is produced by natural killer (NK) cells and restricts infection to the respiratory tract. In contrast, infant pertussis resembles disease in NK cell- and IFN-γ-deficient adult mice that experience disseminated lethal infection. We hypothesized that infants exhibit age-associated deficits in NK cell frequency, maturation, and responsiveness to B. pertussis, associated with low IFN-γ levels. To delineate mechanisms behind age-dependent susceptibility, we compared infant and adult mouse models of infection. Infection in infant mice resulted in impaired upregulation of IFN-γ and substantial bacterial dissemination. B. pertussis-infected infant mice displayed fewer pulmonary NK cells than adult mice. Furthermore, the NK cells in the infant mouse lungs had an immature phenotype, and the infant lung showed no upregulation of the IFN-γ-inducing cytokine IL-12p70. Adoptive transfer of adult NK cells into infants, or treatment with exogenous IFN-γ, significantly reduced bacterial dissemination. These data indicate that the lack of NK cell-produced IFN-γ significantly contributes to infant fulminant pertussis and could be the basis for other pathogen-induced, age-dependent respiratory diseases.
Collapse
Affiliation(s)
- Ashley E Mitchell
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., Baltimore, MD 21201, United States
| | - Karen M Scanlon
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., Baltimore, MD 21201, United States
| | - Emily M Flowers
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., Baltimore, MD 21201, United States
| | - Cassandra M Jordan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., Baltimore, MD 21201, United States
| | - Ellis J Tibbs
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., Baltimore, MD 21201, United States
| | - Alicia Bukowski
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., Baltimore, MD 21201, United States
| | - Danisha Gallop
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., Baltimore, MD 21201, United States
| | - Nicholas H Carbonetti
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., Baltimore, MD 21201, United States
| |
Collapse
|
4
|
Crofts KF, Page CL, Swedik SM, Holbrook BC, Meyers AK, Zhu X, Parsonage D, Westcott MM, Alexander-Miller MA. An Analysis of Linker-Dependent Effects on the APC Activation and In Vivo Immunogenicity of an R848-Conjugated Influenza Vaccine. Vaccines (Basel) 2023; 11:1261. [PMID: 37515076 PMCID: PMC10383912 DOI: 10.3390/vaccines11071261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Subunit or inactivated vaccines comprise the majority of vaccines used against viral and bacterial pathogens. However, compared to their live/attenuated counterparts, these vaccines often demonstrate reduced immunogenicity, requiring multiple boosters and or adjuvants to elicit protective immune responses. For this reason, studies of adjuvants and the mechanism through which they can improve inactivated vaccine responses are critical for the development of vaccines with increased efficacy. Studies have shown that the direct conjugation of adjuvant to antigen promotes vaccine immunogenicity, with the advantage of both the adjuvant and antigen targeting the same cell. Using this strategy of direct linkage, we developed an inactivated influenza A (IAV) vaccine that is directly conjugated with the Toll-like receptor 7/8 agonist resiquimod (R848) through a heterobifunctional crosslinker. Previously, we showed that this vaccine resulted in improved protection and viral clearance in newborn nonhuman primates compared to a non-adjuvanted vaccine. We subsequently discovered that the choice of linker used to conjugate R848 to the virus alters the stimulatory activity of the vaccine, promoting increased maturation and proinflammatory cytokine production from DC differentiated in vitro. With this knowledge, we explored how the choice of crosslinker impacts the stimulatory activity of these vaccines. We found that the linker choice alters signaling through the NF-κB pathway in human monocyte-derived dendritic cells (moDCs). Further, we extended our analyses to in vivo differentiated APC present in human peripheral blood, replicating the linker-dependent differences found in in vitro differentiated cells. Finally, we demonstrated in a mouse model that the choice of linker impacts the amount of IAV-specific IgG antibody produced in response to vaccination. These data enhance our understanding of conjugation approaches for improving vaccine immunogenicity.
Collapse
Affiliation(s)
- Kali F. Crofts
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| | - Courtney L. Page
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| | - Stephanie M. Swedik
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| | - Beth C. Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| | - Allison K. Meyers
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| | - Xuewei Zhu
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Marlena M. Westcott
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| | - Martha A. Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| |
Collapse
|
5
|
Pelosi U, Pintus R, Savasta S, Fanos V. Pulmonary Tuberculosis in Children: A Forgotten Disease? Microorganisms 2023; 11:1722. [PMID: 37512894 PMCID: PMC10385511 DOI: 10.3390/microorganisms11071722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Even today, tuberculosis in childhood is a disease that is often undiagnosed and undertreated. In the absence of therapy with antituberculosis drugs, children in the first years of life have a high degree of severe forms and mortality. In these children, symptoms are often not very specific and can easily be confused with other diseases of bacterial, viral or fungal etiology, making diagnosis more difficult. Nevertheless, the introduction of new diagnostic techniques has allowed a more rapid identification of the infection. Indeed, Interferon gamma release assay (IGRA) is preferred to the Mantoux, albeit with obvious limitations in children aged <2 years. While the Xpert Mtb/RIF Ultra test is recommended as an initial diagnostic investigation of the gastric aspirate and/or stools in children with signs and symptoms of pulmonary tuberculosis. The drugs used in the treatment of susceptible and resistant TB are the same as those used in adults but doses and combinations are different in the pediatric age. In children, brief therapy is preferable in both the latent infection and the active disease, as a significant reduction in side effects is obtained.
Collapse
Affiliation(s)
- Umberto Pelosi
- Pediatric Unit, Santa Barbara Hospital, 09016 Iglesias, Italy
| | - Roberta Pintus
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, AOU Cagliari, 09124 Cagliari, Italy
| | - Salvatore Savasta
- Department of Pediatrics and Rare Diseases, Ospedale Microcitemico Antonio Cao, University of Cagliari, 09124 Cagliari, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, AOU Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
6
|
Luo Y, Acevedo D, Baños N, Pluma A, Castellanos-Moreira R, Moreno E, Rodríguez-García S, Deyà-Martínez A, García-García A, Quesada-Masachs E, Torres M, Casellas M, Grados D, Martí-Castellote C, Antón J, Vlagea A, Juan M, Esteve-Solé A, Alsina L. Expected impact of immunomodulatory agents during pregnancy: A newborn's perspective. Pediatr Allergy Immunol 2023; 34:e13911. [PMID: 36825745 DOI: 10.1111/pai.13911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
The neonatal immune ontogeny begins during pregnancy to ensure that the neonate is well-suited for perinatal life. It prioritizes Th2/M2 and regulatory responses over Th/M1 activity to avoid excessive inflammatory responses and to ensure immune tolerance and homeostasis. Newborns also present increased Th17/Th22 responses providing effective anti-fungal immunity and mucosal protection. Intrauterine exposure to immune modulatory drugs with the placental transfer may influence the natural course of the fetal immune development. The vertical transfer of both biological therapy and small molecules begins during the first trimester through neonatal Fc receptor or placental diffusion, respectively, reaching its maximum transfer potential during the third trimester of pregnancy. Most of the biological therapy have a prolonged half-life in newborn's blood, being detectable in infants up to 12 months after birth (usually 6-9 months). The use of immunomodulators during pregnancy is gaining global interest. Current evidence mainly reports birth-related outcomes without exhaustive analysis of the on-target side effect on the perinatal immune system ontogeny, the infection risk, or the immune dysregulation. The present review will focus on: (1) the main characteristics of the perinatal immune system to understand its specific features and vulnerabilities to immune modulation; (2) the mechanisms of placental transfer of immunomodulators; and (3) the immune changes reported to date in newborns exposed to immunomodulators with emphasis on the current concerns and gaps in knowledge.
Collapse
Affiliation(s)
- Yiyi Luo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain.,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Daniel Acevedo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain.,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Núria Baños
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Institut Clínic de Ginecologia, Obstetrícia i Neonatologia Fetal i+D Fetal Medicine Research Center, Barcelona, Spain
| | - Andrea Pluma
- Rheumatology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - Estefania Moreno
- Rheumatology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - Angela Deyà-Martínez
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain.,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ana García-García
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain.,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | | | - Mireia Torres
- Rheumatology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Manel Casellas
- High Risk Obstetric Unit, Gynecology and Obstetrics Department, Vall de Hebron Hospital Campus, Universitat Autónoma of Barcelona (UAB), Barcelona, Spain
| | - Dolors Grados
- Rheumatology Department, Hospital Universitari d'Igualada, Igualada, Spain
| | - Celia Martí-Castellote
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Jordi Antón
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Pediatric Rheumatology, Hospital Sant Joan de Déu, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Alexandru Vlagea
- Immunology Department, Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Manel Juan
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain.,Immunology Department, Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain.,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain.,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
TLR agonists induce sustained IgG to hemagglutinin stem and modulate T cells following newborn vaccination. NPJ Vaccines 2022; 7:102. [PMID: 36038596 PMCID: PMC9424286 DOI: 10.1038/s41541-022-00523-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The newborn immune system is characterized by diminished immune responses that leave infants vulnerable to virus-mediated disease and make vaccination more challenging. Optimal vaccination strategies for influenza A virus (IAV) in newborns should result in robust levels of protective antibodies, including those with broad reactivity to combat the variability in IAV strains across seasons. The stem region of the hemagglutinin (HA) molecule is a target of such antibodies. Using a nonhuman primate model, we investigate the capacity of newborns to generate and maintain antibodies to the conserved stem region following vaccination. We find adjuvanting an inactivated vaccine with the TLR7/8 agonist R848 is effective in promoting sustained HA stem-specific IgG. Unexpectedly, HA stem-specific antibodies were generated with a distinct kinetic pattern compared to the overall response. Administration of R848 was associated with increased influenza-specific T follicular helper cells as well as Tregs with a less suppressive phenotype, suggesting adjuvant impacts multiple cell types that have the potential to contribute to the HA-stem response.
Collapse
|
8
|
Pediatric Tuberculosis Management: A Global Challenge or Breakthrough? CHILDREN 2022; 9:children9081120. [PMID: 36010011 PMCID: PMC9406656 DOI: 10.3390/children9081120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 12/17/2022]
Abstract
Managing pediatric tuberculosis (TB) remains a public health problem requiring urgent and long-lasting solutions as TB is one of the top ten causes of ill health and death in children as well as adolescents universally. Minors are particularly susceptible to this severe illness that can be fatal post-infection or even serve as reservoirs for future disease outbreaks. However, pediatric TB is the least prioritized in most health programs and optimal infection/disease control has been quite neglected for this specialized patient category, as most scientific and clinical research efforts focus on developing novel management strategies for adults. Moreover, the ongoing coronavirus pandemic has meaningfully hindered the gains and progress achieved with TB prophylaxis, therapy, diagnosis, and global eradication goals for all affected persons of varying age bands. Thus, the opening of novel research activities and opportunities that can provide more insight and create new knowledge specifically geared towards managing TB disease in this specialized group will significantly improve their well-being and longevity.
Collapse
|
9
|
Eddens T, Parks OB, Williams JV. Neonatal Immune Responses to Respiratory Viruses. Front Immunol 2022; 13:863149. [PMID: 35493465 PMCID: PMC9047724 DOI: 10.3389/fimmu.2022.863149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Respiratory tract infections are a leading cause of morbidity and mortality in newborns, infants, and young children. These early life infections present a formidable immunologic challenge with a number of possibly conflicting goals: simultaneously eliminate the acute pathogen, preserve the primary gas-exchange function of the lung parenchyma in a developing lung, and limit long-term sequelae of both the infection and the inflammatory response. The latter has been most well studied in the context of childhood asthma, where multiple epidemiologic studies have linked early life viral infection with subsequent bronchospasm. This review will focus on the clinical relevance of respiratory syncytial virus (RSV), human metapneumovirus (HMPV), and rhinovirus (RV) and examine the protective and pathogenic host responses within the neonate.
Collapse
Affiliation(s)
- Taylor Eddens
- Pediatric Scientist Development Program, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
- Division of Allergy/Immunology, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Olivia B. Parks
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - John V. Williams
- Division of Pediatric Infectious Diseases, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Clemens EA, Alexander-Miller MA. Understanding Antibody Responses in Early Life: Baby Steps towards Developing an Effective Influenza Vaccine. Viruses 2021; 13:v13071392. [PMID: 34372597 PMCID: PMC8310046 DOI: 10.3390/v13071392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
The immune system of young infants is both quantitatively and qualitatively distinct from that of adults, with diminished responsiveness leaving these individuals vulnerable to infection. Because of this, young infants suffer increased morbidity and mortality from respiratory pathogens such as influenza viruses. The impaired generation of robust and persistent antibody responses in these individuals makes overcoming this increased vulnerability through vaccination challenging. Because of this, an effective vaccine against influenza viruses in infants under 6 months is not available. Furthermore, vaccination against influenza viruses is challenging even in adults due to the high antigenic variability across viral strains, allowing immune evasion even after induction of robust immune responses. This has led to substantial interest in understanding how specific antibody responses are formed to variable and conserved components of influenza viruses, as immune responses tend to strongly favor recognition of variable epitopes. Elicitation of broadly protective antibody in young infants, therefore, requires that both the unique characteristics of young infant immunity as well as the antibody immunodominance present among epitopes be effectively addressed. Here, we review our current understanding of the antibody response in newborns and young infants and discuss recent developments in vaccination strategies that can modulate both magnitude and epitope specificity of IAV-specific antibody.
Collapse
|
11
|
Cord-Blood-Derived Professional Antigen-Presenting Cells: Functions and Applications in Current and Prospective Cell Therapies. Int J Mol Sci 2021; 22:ijms22115923. [PMID: 34072923 PMCID: PMC8199409 DOI: 10.3390/ijms22115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
Human umbilical cord blood (UCB) represents a valuable source of hematopoietic stem cells, particularly for patients lacking a matching donor. UCB provides practical advantages, including a lower risk of graft-versus-host-disease and permissive human leukocyte antigen mismatching. These advantageous properties have so far been applied for stem cell, mesenchymal stromal cell, and chimeric antigen receptor T cell therapies. However, UCB-derived professional antigen-presenting cells are increasingly being utilized in the context of immune tolerance and regenerative therapy. Here, we review the cell-specific characteristics as well as recent advancements in UCB-based cell therapies focusing on dendritic cells, monocytes, B lymphocytes, innate lymphoid cells, and macrophages.
Collapse
|
12
|
Ness S, Lin S, Gordon JR. Regulatory Dendritic Cells, T Cell Tolerance, and Dendritic Cell Therapy for Immunologic Disease. Front Immunol 2021; 12:633436. [PMID: 33777019 PMCID: PMC7988082 DOI: 10.3389/fimmu.2021.633436] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) are antigen-presenting cells that can communicate with T cells both directly and indirectly, regulating our adaptive immune responses against environmental and self-antigens. Under some microenvironmental conditions DC develop into anti-inflammatory cells which can induce immunologic tolerance. A substantial body of literature has confirmed that in such settings regulatory DC (DCreg) induce T cell tolerance by suppression of effector T cells as well as by induction of regulatory T cells (Treg). Many in vitro studies have been undertaken with human DCreg which, as a surrogate marker of antigen-specific tolerogenic potential, only poorly activate allogeneic T cell responses. Fewer studies have addressed the abilities of, or mechanisms by which these human DCreg suppress autologous effector T cell responses and induce infectious tolerance-promoting Treg responses. Moreover, the agents and properties that render DC as tolerogenic are many and varied, as are the cells’ relative regulatory activities and mechanisms of action. Herein we review the most current human and, where gaps exist, murine DCreg literature that addresses the cellular and molecular biology of these cells. We also address the clinical relevance of human DCreg, highlighting the outcomes of pre-clinical mouse and non-human primate studies and early phase clinical trials that have been undertaken, as well as the impact of innate immune receptors and symbiotic microbial signaling on the immunobiology of DCreg.
Collapse
Affiliation(s)
- Sara Ness
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shiming Lin
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John R Gordon
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Respirology, Critical Care and Sleep Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Köhler A, Delbauve S, Smout J, Torres D, Flamand V. Very early-life exposure to microbiota-induced TNF drives the maturation of neonatal pre-cDC1. Gut 2021; 70:511-521. [PMID: 32546472 DOI: 10.1136/gutjnl-2019-319700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Induction of immune protection against pathogens is particularly crucial during the neonatal period dominated by anti-inflammatory and tolerance immunity. The preclinical study was carried out to determine whether environmental factors such as microbiota may influence early life immunity by impacting the development and the functional maturation of precursors of type 1 conventional dendritic cells (pre-cDC1), endowed with regulatory properties. DESIGN Pre-cDC1 phenotype and cytokine expression in the spleen of neonates from antibiotic-treated mothers were established. The role of myeloid-derived tumour necrosis factor (TNF) was tested in vitro and in vivo. RNA sequencing analysis on neonatal sorted pre-cDC1 was performed. The early life protective CD8+ T-cell response against Listeria monocytogenes was monitored. RESULTS We observed that first exposure to microbiota promotes TNF secretion by monocytes and macrophages shortly after birth. We demonstrated that this myeloid-derived inflammatory cytokine is crucial to induce the maturation of these neonatal regulatory pre-cDC1. Myeloid TNF signalling acts on C1q and β-catenin pathway and modifies the fatty acid metabolism in neonatal pre-cDC1. Furthermore, we showed that during neonatal L. monocytogenes infection, microbiota-associated myeloid TNF promotes the capacity of these pre-cDC1 to induce protective CD8+ T-cell responses, by modulating their ability to secrete interleukin-10 (IL-10) and IL-12p40. CONCLUSION Our findings emphasise the role of microbiota-derived TNF to kick-start the differentiation and the functional maturation of the neonatal splenic pre-cDC1 compartment. They bring a better understanding of potential mechanisms underlying some microbiota-linked immune dysfunction in early life.
Collapse
Affiliation(s)
- Arnaud Köhler
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Sandrine Delbauve
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Justine Smout
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - David Torres
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Véronique Flamand
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium .,ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| |
Collapse
|
14
|
Environmental signals rather than layered ontogeny imprint the function of type 2 conventional dendritic cells in young and adult mice. Nat Commun 2021; 12:464. [PMID: 33469015 PMCID: PMC7815729 DOI: 10.1038/s41467-020-20659-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/13/2020] [Indexed: 01/29/2023] Open
Abstract
Conventional dendritic cells (cDC) are key activators of naive T cells, and can be targeted in adults to induce adaptive immunity, but in early life are considered under-developed or functionally immature. Here we show that, in early life, when the immune system develops, cDC2 exhibit a dual hematopoietic origin and, like other myeloid and lymphoid cells, develop in waves. Developmentally distinct cDC2 in early life, despite being distinguishable by fate mapping, are transcriptionally and functionally similar. cDC2 in early and adult life, however, are exposed to distinct cytokine environments that shape their transcriptional profile and alter their ability to sense pathogens, secrete cytokines and polarize T cells. We further show that cDC2 in early life, despite being distinct from cDC2 in adult life, are functionally competent and can induce T cell responses. Our results thus highlight the potential of harnessing cDC2 for boosting immunity in early life.
Collapse
|
15
|
Blank A, Kremenetskaia I, Urbantat RM, Acker G, Turkowski K, Radke J, Schneider UC, Vajkoczy P, Brandenburg S. Microglia/macrophages express alternative proangiogenic factors depending on granulocyte content in human glioblastoma. J Pathol 2020; 253:160-173. [PMID: 33044746 DOI: 10.1002/path.5569] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/27/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Myeloid cells are an inherent part of the microenvironment of glioblastoma multiforme (GBM). There is growing evidence for their participation in mechanisms of tumor escape, especially in the development of resistance following initially promising anti-VEGF/VEGFR treatment. Thus, we sought to define the capability of myeloid cells to contribute to the expression of proangiogenic molecules in human GBM. We investigated GBM specimens in comparison with anaplastic astrocytoma (WHO grade III) and epilepsy patient samples freshly obtained from surgery. Flow cytometric analyses revealed two distinct CD11b+ CD45+ cell populations in GBM tissues, which were identified as microglia/macrophages and granulocytes. Due to varied granulocyte influx, GBM samples were subdivided into groups with low (GBM-lPMNL) and high (GBM-hPMNL) numbers of granulocytes (polymorphonuclear leukocytes; PMNL), which were related to activation of the microglia/macrophage population. Microglia/macrophages of the GBM-lPMNL group were similar to those of astrocytoma specimens, but those of GBM-hPMNL tissues revealed an altered phenotype by expressing high levels of CD163, TIE2, HIF1α, VEGF, CXCL2 and CD13. Although microglia/macrophages represented the main source of alternative proangiogenic factors, additionally granulocytes participated by production of IL8 and CD13. Moreover, microglia/macrophages of the GBM-hPMNL specimens were highly associated with tumor blood vessels, accompanied by remodeling of the vascular structure. Our data emphasize that tumor-infiltrating myeloid cells might play a crucial role for limited efficacy of anti-angiogenic therapy bypassing VEGF-mediated pathways through expression of alternative proangiogenic factors. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anne Blank
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Irina Kremenetskaia
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ruth M Urbantat
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Güliz Acker
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Kati Turkowski
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Josefine Radke
- Berlin Institute of Health, Berlin, Germany.,Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
| | - Ulf C Schneider
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Vajkoczy
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susan Brandenburg
- Department of Experimental Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
16
|
Alexander-Miller MA. Challenges for the Newborn Following Influenza Virus Infection and Prospects for an Effective Vaccine. Front Immunol 2020; 11:568651. [PMID: 33042150 PMCID: PMC7524958 DOI: 10.3389/fimmu.2020.568651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/18/2020] [Indexed: 01/10/2023] Open
Abstract
Newborns are at significantly increased risk of severe disease following infection with influenza virus. This is the collective result of their naïve status, altered immune responsiveness, and the lack of a vaccine that is effective in these individuals. Numerous studies have revealed impairments in both the innate and adaptive arms of the immune system of newborns. The consequence of these alterations is a quantitative and qualitative decrease in both antibody and T cell responses. This review summarizes the hurdles newborns experience in mounting an effective response that can clear influenza virus and limit disease following infection. In addition, the challenges, as well as the opportunities, for developing vaccines that can elicit protective responses in these at risk individuals are discussed.
Collapse
Affiliation(s)
- Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
17
|
Challenges for the Newborn Immune Response to Respiratory Virus Infection and Vaccination. Vaccines (Basel) 2020; 8:vaccines8040558. [PMID: 32987691 PMCID: PMC7712002 DOI: 10.3390/vaccines8040558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
The initial months of life reflect an extremely challenging time for newborns as a naïve immune system is bombarded with a large array of pathogens, commensals, and other foreign entities. In many instances, the immune response of young infants is dampened or altered, resulting in increased susceptibility and disease following infection. This is the result of both qualitative and quantitative changes in the response of multiple cell types across the immune system. Here we provide a review of the challenges associated with the newborn response to respiratory viral pathogens as well as the hurdles and advances for vaccine-mediated protection.
Collapse
|
18
|
Gutiérrez-Reyna DY, Cedillo-Baños A, Kempis-Calanis LA, Ramírez-Pliego O, Bargier L, Puthier D, Abad-Flores JD, Thomas-Chollier M, Thieffry D, Medina-Rivera A, Spicuglia S, Santana MA. IL-12 Signaling Contributes to the Reprogramming of Neonatal CD8 + T Cells. Front Immunol 2020; 11:1089. [PMID: 32582178 PMCID: PMC7292210 DOI: 10.3389/fimmu.2020.01089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/05/2020] [Indexed: 01/26/2023] Open
Abstract
Neonates are highly susceptible to intracellular pathogens, leading to high morbidity and mortality rates. CD8+ T lymphocytes are responsible for the elimination of infected cells. Understanding the response of these cells to normal and high stimulatory conditions is important to propose better treatments and vaccine formulations for neonates. We have previously shown that human neonatal CD8+ T cells overexpress innate inflammatory genes and have a low expression of cytotoxic and cell signaling genes. To investigate the activation potential of these cells, we evaluated the transcriptome of human neonatal and adult naïve CD8+ T cells after TCR/CD28 signals ± IL-12. We found that in neonatal cells, IL-12 signals contribute to the adult-like expression of genes associated with cell-signaling, T-cell cytokines, metabolism, and cell division. Additionally, IL-12 signals contributed to the downregulation of the neutrophil signature transcription factor CEBPE and other immaturity related genes. To validate the transcriptome results, we evaluated the expression of a series of genes by RT-qPCR and the promoter methylation status on independent samples. We found that in agreement with the transcriptome, IL-12 signals contributed to the chromatin closure of neutrophil-like genes and the opening of cytotoxicity genes, suggesting that IL-12 signals contribute to the epigenetic reprogramming of neonatal lymphocytes. Furthermore, high expression of some inflammatory genes was observed in naïve and stimulated neonatal cells, in agreement with the high inflammatory profile of neonates to infections. Altogether our results point to an important contribution of IL-12 signals to the reprogramming of the neonatal CD8+ T cells.
Collapse
Affiliation(s)
- Darely Y Gutiérrez-Reyna
- Centro de Investigación en Dinámica Celular (IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Alejandra Cedillo-Baños
- Centro de Investigación en Dinámica Celular (IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Linda A Kempis-Calanis
- Centro de Investigación en Dinámica Celular (IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Oscar Ramírez-Pliego
- Centro de Investigación en Dinámica Celular (IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Lisa Bargier
- Aix-Marseille University, TAGC, INSERM UMR1090, Marseille, France
| | - Denis Puthier
- Aix-Marseille University, TAGC, INSERM UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Jose D Abad-Flores
- Aix-Marseille University, TAGC, INSERM UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Morgane Thomas-Chollier
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Denis Thieffry
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Alejandra Medina-Rivera
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de Mexico, Juriquilla, Mexico
| | - Salvatore Spicuglia
- Aix-Marseille University, TAGC, INSERM UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Maria A Santana
- Centro de Investigación en Dinámica Celular (IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
19
|
Alkie TN, Yitbarek A, Hodgins DC, Kulkarni RR, Taha-Abdelaziz K, Sharif S. Development of innate immunity in chicken embryos and newly hatched chicks: a disease control perspective. Avian Pathol 2019; 48:288-310. [PMID: 31063007 DOI: 10.1080/03079457.2019.1607966] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Newly hatched chickens are confronted by a wide array of pathogenic microbes because their adaptive immune defences have limited capabilities to control these pathogens. In such circumstances, and within this age group, innate responses provide a degree of protection. Moreover, as the adaptive immune system is relatively naïve to foreign antigens, synergy with innate defences is critical. This review presents knowledge on the ontogeny of innate immunity in chickens pre-hatch and early post-hatch and provides insights into possible interventions to modulate innate responses early in the life of the bird. As in other vertebrate species, the chicken innate immune system which include cellular mediators, cytokine and chemokine repertoires and molecules involved in antigen detection, develop early in life. Comparison of innate immune systems in newly hatched chickens and mature birds has revealed differences in magnitude and quality, but responses in younger chickens can be boosted using innate immune system modulators. Functional expression of pattern recognition receptors and several defence molecules by innate immune system cells of embryos and newly hatched chicks suggests that innate responses can be modulated at this stage of development to combat pathogens. Improved understanding of innate immune system ontogeny and functionality in chickens is critical for the implementation of sound and safe interventions to provide long-term protection against pathogens. Next-generation tools for studying genetic and epigenetic regulation of genes, functional metagenomics and gene knockouts can be used in the future to explore and dissect the contributions of signalling pathways of innate immunity and to devise more efficacious disease control strategies.
Collapse
Affiliation(s)
- Tamiru N Alkie
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Alexander Yitbarek
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Douglas C Hodgins
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Raveendra R Kulkarni
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Khaled Taha-Abdelaziz
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada.,b Pathology Department, Faculty of Veterinary Medicine , Beni-Suef University , Beni-Suef , Egypt
| | - Shayan Sharif
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| |
Collapse
|
20
|
Bedke N, Swindle EJ, Molnar C, Holt PG, Strickland DH, Roberts GC, Morris R, Holgate ST, Davies DE, Blume C. A method for the generation of large numbers of dendritic cells from CD34+ hematopoietic stem cells from cord blood. J Immunol Methods 2019; 477:112703. [PMID: 31711888 PMCID: PMC6983936 DOI: 10.1016/j.jim.2019.112703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) play a central role in regulating innate and adaptive immune responses. It is well accepted that their regulatory functions change over the life course. In order to study DCs function during early life it is important to characterize the function of neonatal DCs. However, the availability of neonatal DCs is limited due to ethical reasons or relative small samples of cord blood making it difficult to perform large-scale experiments. Our aim was to establish a robust protocol for the generation of neonatal DCs from cord blood derived CD34+ hematopoietic stem cells. For the expansion of DC precursor cells we used a cytokine cocktail containing Flt-3 L, SCF, TPO, IL-3 and IL-6. The presence of IL-3 and IL-6 in the first 2 weeks of expansion culture was essential for the proliferation of DC precursor cells expressing CD14. After 4 weeks in culture, CD14+ precursor cells were selected and functional DCs were generated in the presence of GM-CSF and IL-4. Neonatal DCs were then stimulated with Poly(I:C) and LPS to mimic viral or bacterial infections, respectively. Poly(I:C) induced a higher expression of the maturation markers CD80, CD86 and CD40 compared to LPS. In line with literature data using cord blood DCs, our Poly(I:C) matured neonatal DCs cells showed a higher release of IL-12p70 compared to LPS matured neonatal DCs. Additionally, we demonstrated a higher release of IFN-γ, TNF-α, IL-1β and IL-6, but lower release of IL-10 in Poly(I:C) matured compared to LPS matured neonatal DCs derived from cord blood CD34+ hematopoietic stem cells. In summary, we established a robust protocol for the generation of large numbers of functional neonatal DCs. In line with previous studies, we showed that neonatal DCs generated form CD34+ cord blood progenitors have a higher inflammatory potential when exposed to viral than bacterial related stimuli. A robust protocol for the generation of high numbers of neonatal dendritic cells. IL-3 and IL-6 are crucial for the proliferation of cord blood CD34+ progenitors. Neonatal DCs have a higher inflammatory potential when exposed to viral stimuli. LPS induces higher release of IL-10 in neonatal DCs compared to Poly(I:C).
Collapse
Affiliation(s)
- Nicole Bedke
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Emily J Swindle
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Camelia Molnar
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Patrick G Holt
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Deborah H Strickland
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Graham C Roberts
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ruth Morris
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Stephen T Holgate
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Donna E Davies
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Cornelia Blume
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
21
|
Horton C, Davies TJ, Lahiri P, Sachamitr P, Fairchild PJ. Induced pluripotent stem cells reprogrammed from primary dendritic cells provide an abundant source of immunostimulatory dendritic cells for use in immunotherapy. Stem Cells 2019; 38:67-79. [PMID: 31621975 PMCID: PMC7003857 DOI: 10.1002/stem.3095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/10/2019] [Accepted: 08/30/2019] [Indexed: 12/30/2022]
Abstract
Cell types differentiated from induced pluripotent stem cells (iPSCs) are frequently arrested in their development program, more closely resembling a fetal rather than an adult phenotype, potentially limiting their utility for downstream clinical applications. The fetal phenotype of iPSC‐derived dendritic cells (ipDCs) is evidenced by their low expression of MHC class II and costimulatory molecules, impaired secretion of IL‐12, and poor responsiveness to conventional maturation stimuli, undermining their use for applications such as immune‐oncology. Given that iPSCs display an epigenetic memory of the cell type from which they were originally derived, we investigated the feasibility of reprogramming adult DCs to pluripotency to determine the impact on the phenotype and function of ipDCs differentiated from them. Using murine bone marrow‐derived DCs (bmDCs) as proof of principle, we show here that immature DCs are tractable candidates for reprogramming using non‐integrating Sendai virus for the delivery of Oct4, Sox2, Klf4, and c‐Myc transcription factors. Reprogramming efficiency of DCs was lower than mouse embryonic fibroblasts (MEFs) and highly dependent on their maturation status. Although control iPSCs derived from conventional MEFs yielded DCs that displayed a predictable fetal phenotype and impaired immunostimulatory capacity in vitro and in vivo, DCs differentiated from DC‐derived iPSCs exhibited a surface phenotype, immunostimulatory capacity, and responsiveness to maturation stimuli indistinguishable from the source DCs, a phenotype that was retained for 15 passages of the parent iPSCs. Our results suggest that the epigenetic memory of iPSCs may be productively exploited for the generation of potently immunogenic DCs for immunotherapeutic applications.
Collapse
Affiliation(s)
- Christopher Horton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Timothy J Davies
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Priyoshi Lahiri
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Patty Sachamitr
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Odorizzi PM, Jagannathan P, McIntyre TI, Budker R, Prahl M, Auma A, Burt TD, Nankya F, Nalubega M, Sikyomu E, Musinguzi K, Naluwu K, Kakuru A, Dorsey G, Kamya MR, Feeney ME. In utero priming of highly functional effector T cell responses to human malaria. Sci Transl Med 2019; 10:10/463/eaat6176. [PMID: 30333241 DOI: 10.1126/scitranslmed.aat6176] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/10/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
Malaria remains a significant cause of morbidity and mortality worldwide, particularly in infants and children. Some studies have reported that exposure to malaria antigens in utero results in the development of tolerance, which could contribute to poor immunity to malaria in early life. However, the effector T cell response to pathogen-derived antigens encountered in utero, including malaria, has not been well characterized. Here, we assessed the frequency, phenotype, and function of cord blood T cells from Ugandan infants born to mothers with and without placental malaria. We found that infants born to mothers with active placental malaria had elevated frequencies of proliferating effector memory fetal CD4+ T cells and higher frequencies of CD4+ and CD8+ T cells that produced inflammatory cytokines. Fetal CD4+ and CD8+ T cells from placental malaria-exposed infants exhibited greater in vitro proliferation to malaria antigens. Malaria-specific CD4+ T cell proliferation correlated with prospective protection from malaria during childhood. These data demonstrate that placental malaria is associated with the generation of proinflammatory malaria-responsive fetal T cells. These findings add to our current understanding of fetal immunity and indicate that a functional and protective pathogen-specific T cell response can be generated in utero.
Collapse
Affiliation(s)
- Pamela M Odorizzi
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA 94110 USA
| | | | - Tara I McIntyre
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA 94110 USA
| | - Rachel Budker
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA 94110 USA
| | - Mary Prahl
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Ann Auma
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Trevor D Burt
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94110, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | - Esther Sikyomu
- Infectious Disease Research Collaboration, Kampala, Uganda
| | | | - Kate Naluwu
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Abel Kakuru
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA 94110 USA
| | - Moses R Kamya
- School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Margaret E Feeney
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA 94110 USA. .,Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
23
|
Pietrasanta C, Pugni L, Ronchi A, Bottino I, Ghirardi B, Sanchez-Schmitz G, Borriello F, Mosca F, Levy O. Vascular Endothelium in Neonatal Sepsis: Basic Mechanisms and Translational Opportunities. Front Pediatr 2019; 7:340. [PMID: 31456998 PMCID: PMC6700367 DOI: 10.3389/fped.2019.00340] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
Neonatal sepsis remains a major health issue worldwide, especially for low-birth weight and premature infants, with a high risk of death and devastating sequelae. Apart from antibiotics and supportive care, there is an unmet need for adjunctive treatments to improve the outcomes of neonatal sepsis. Strong and long-standing research on adult patients has shown that vascular endothelium is a key player in the pathophysiology of sepsis and sepsis-associated organ failure, through a direct interaction with pathogens, leukocytes, platelets, and the effect of soluble circulating mediators, in part produced by endothelial cells themselves. Despite abundant evidence that the neonatal immune response to sepsis is distinct from that of adults, comparable knowledge on neonatal vascular endothelium is much more limited. Neonatal endothelial cells express lower amounts of adhesion molecules compared to adult ones, and present a reduced capacity to neutralize reactive oxygen species. Conversely, available evidence on biomarkers of endothelial damage in neonates is not as robust as in adult patients, and endothelium-targeted therapeutic opportunities for neonatal sepsis are almost unexplored. Here, we summarize current knowledge on the structure of neonatal vascular endothelium, its interactions with neonatal immune system and possible endothelium-targeted diagnostic and therapeutic tools for neonatal sepsis. Furthermore, we outline areas of basic and translational research worthy of further study, to shed light on the role of vascular endothelium in the context of neonatal sepsis.
Collapse
Affiliation(s)
- Carlo Pietrasanta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Lorenza Pugni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Andrea Ronchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Ilaria Bottino
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Beatrice Ghirardi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Francesco Borriello
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Division of Immunology, Boston Children's Hospital, Boston, MA, United States.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organisation Center of Excellence, Naples, Italy
| | - Fabio Mosca
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
24
|
Wampach L, Heintz-Buschart A, Fritz JV, Ramiro-Garcia J, Habier J, Herold M, Narayanasamy S, Kaysen A, Hogan AH, Bindl L, Bottu J, Halder R, Sjöqvist C, May P, Andersson AF, de Beaufort C, Wilmes P. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat Commun 2018; 9:5091. [PMID: 30504906 PMCID: PMC6269548 DOI: 10.1038/s41467-018-07631-x] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/13/2018] [Indexed: 01/07/2023] Open
Abstract
The rate of caesarean section delivery (CSD) is increasing worldwide. It remains unclear whether disruption of mother-to-neonate transmission of microbiota through CSD occurs and whether it affects human physiology. Here we perform metagenomic analysis of earliest gut microbial community structures and functions. We identify differences in encoded functions between microbiomes of vaginally delivered (VD) and CSD neonates. Several functional pathways are over-represented in VD neonates, including lipopolysaccharide (LPS) biosynthesis. We link these enriched functions to individual-specific strains, which are transmitted from mothers to neonates in case of VD. The stimulation of primary human immune cells with LPS isolated from early stool samples of VD neonates results in higher levels of tumour necrosis factor (TNF-α) and interleukin 18 (IL-18). Accordingly, the observed levels of TNF-α and IL-18 in neonatal blood plasma are higher after VD. Taken together, our results support that CSD disrupts mother-to-neonate transmission of specific microbial strains, linked functional repertoires and immune-stimulatory potential during a critical window for neonatal immune system priming.
Collapse
Affiliation(s)
- Linda Wampach
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
- Laboratoire National de Santé, rue Louis Rech 1, 3555, Dudelange, Luxembourg
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Helmholtz Centre for Environmental Research GmbH - UFZ, Theodor-Lieser-Str. 4, 06120, Halle (Saale), Germany
| | - Joëlle V Fritz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
- Centre Hospitalier de Luxembourg, rue Nicolas Ernest Barblé 4, 1210, Luxembourg, Luxembourg
| | - Javier Ramiro-Garcia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
| | - Janine Habier
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
| | - Malte Herold
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
| | - Shaman Narayanasamy
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
- Megeno S.A., avenue des Hauts-Fourneaux 9, 4362, Esch-sur-Alzette, Luxembourg
| | - Anne Kaysen
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
- Centre Hospitalier de Luxembourg, rue Nicolas Ernest Barblé 4, 1210, Luxembourg, Luxembourg
| | - Angela H Hogan
- Integrated BioBank of Luxembourg, rue Louis Rech 1, 3555, Dudelange, Luxembourg
| | - Lutz Bindl
- Centre Hospitalier de Luxembourg, rue Nicolas Ernest Barblé 4, 1210, Luxembourg, Luxembourg
| | - Jean Bottu
- Centre Hospitalier de Luxembourg, rue Nicolas Ernest Barblé 4, 1210, Luxembourg, Luxembourg
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
| | - Conny Sjöqvist
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, Tomtebodavägen 23a, 17165, Solna, Sweden
- Environmental and Marine Biology, Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg
| | - Anders F Andersson
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, Tomtebodavägen 23a, 17165, Solna, Sweden
| | - Carine de Beaufort
- Centre Hospitalier de Luxembourg, rue Nicolas Ernest Barblé 4, 1210, Luxembourg, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, avenue des Hauts-Fourneaux 7, 4362, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
25
|
Permar S, Levy O, Kollman TR, Singh A, De Paris K. Early Life HIV-1 Immunization: Providing a Window for Protection Before Sexual Debut. AIDS Res Hum Retroviruses 2018; 34:823-827. [PMID: 29860868 DOI: 10.1089/aid.2018.0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Limited success of current HIV-1 vaccines warrants new approaches. We discuss feasibility and potential benefits of early life HIV-1 immunization followed by vaccine boosts during childhood that may enable maturation of vaccine-induced broad anti-HIV-1 immunity over several years. By initiating this immunization approach in the very young, well before sexual debut, such a strategy may dramatically reduce the risk of HIV-1 infection.
Collapse
Affiliation(s)
- Sallie Permar
- Department of Pediatrics, Duke University Medical School, Durham, North Carolina
- Human Vaccine Institute, Duke University Medical School, Durham, North Carolina
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard University, Boston, Massachusetts
| | - Tobias R. Kollman
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Anjali Singh
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
26
|
Roles of microRNA in the immature immune system of neonates. Cancer Lett 2018; 433:99-106. [DOI: 10.1016/j.canlet.2018.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/24/2018] [Accepted: 06/06/2018] [Indexed: 01/09/2023]
|
27
|
Restori KH, Srinivasa BT, Ward BJ, Fixman ED. Neonatal Immunity, Respiratory Virus Infections, and the Development of Asthma. Front Immunol 2018; 9:1249. [PMID: 29915592 PMCID: PMC5994399 DOI: 10.3389/fimmu.2018.01249] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/18/2018] [Indexed: 12/27/2022] Open
Abstract
Infants are exposed to a wide range of potential pathogens in the first months of life. Although maternal antibodies acquired transplacentally protect full-term neonates from many systemic pathogens, infections at mucosal surfaces still occur with great frequency, causing significant morbidity and mortality. At least part of this elevated risk is attributable to the neonatal immune system that tends to favor T regulatory and Th2 type responses when microbes are first encountered. Early-life infection with respiratory viruses is of particular interest because such exposures can disrupt normal lung development and increase the risk of chronic respiratory conditions, such as asthma. The immunologic mechanisms that underlie neonatal host-virus interactions that contribute to the subsequent development of asthma have not yet been fully defined. The goals of this review are (1) to outline the differences between the neonatal and adult immune systems and (2) to present murine and human data that support the hypothesis that early-life interactions between the immune system and respiratory viruses can create a lung environment conducive to the development of asthma.
Collapse
Affiliation(s)
- Katherine H Restori
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Bharat T Srinivasa
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Brian J Ward
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Elizabeth D Fixman
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
28
|
Chen XF, Wu J, Zhang YD, Zhang CX, Chen XT, Sun JH, Chen TX. Role of Zc3h12a in enhanced IL-6 production by newborn mononuclear cells in response to lipopolysaccharide. Pediatr Neonatol 2018; 59:288-295. [PMID: 29054363 DOI: 10.1016/j.pedneo.2017.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/07/2017] [Accepted: 09/15/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The uncontrolled inflammatory response following infection is closely related to the morbidity and mortality of neonates. Interleukin 6 (IL-6) plays an important role in the pathogenesis and prognosis of this process. To better elucidate the secretion of IL-6 following infection in neonates, we investigated the IL-6 level and mechanism of IL-6/TLR4 signaling pathways. METHODS We compared the IL-6, procalcitonin (PCT), and CRP levels between septic neonates and toddlers. In vitro cord blood samples from healthy term neonates and peripheral venous blood from healthy adult volunteers were collected. Protein expression was analyzed by Western blotting, mRNA expression by real-time PCR and membrane molecule expression by flow cytometry. RESULTS The IL-6 concentrations were significantly higher in the neonate group than in the toddler group (p < 0.05). In the toddler group, the IL-6 concentrations were correlated positively with both PCT and CRP (PCT: r = 0.451, p = 0.001; CRP: r = 0.243, p = 0.023). In vitro, the secretion of IL-6 increased with the rising concentrations of LPS; at 1000 ng/ml LPS, IL-6 secretion from the monocytes of neonates was significantly higher than that of adults. There was a marked decreased level of MyD88 in neonate monocytes compared with that in adult monocytes. Additionally, the mRNA levels of Zc3h12a in neonate monocytes were significantly lower than those in adult monocytes following LPS stimulation. CONCLUSION Neonates displayed enhanced IL-6 production after infection. Our study, for the first time, reported a significant decrease in the expression of Zc3h12a in neonates. Thus, Zc3h12a may be a key factor for the aberrant increase in IL-6 after neonate infection.
Collapse
Affiliation(s)
- Xia-Fang Chen
- Department of Allergy and Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai, Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jing Wu
- Department of Allergy and Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai, Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yi-Dan Zhang
- Department of Internal Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Chen-Xing Zhang
- Department of Allergy and Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai, Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xu-Ting Chen
- Department of Allergy and Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai, Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jian-Hua Sun
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Tong-Xin Chen
- Department of Allergy and Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai, Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
29
|
Sachamitr P, Leishman AJ, Davies TJ, Fairchild PJ. Directed Differentiation of Human Induced Pluripotent Stem Cells into Dendritic Cells Displaying Tolerogenic Properties and Resembling the CD141 + Subset. Front Immunol 2018; 8:1935. [PMID: 29358940 PMCID: PMC5766641 DOI: 10.3389/fimmu.2017.01935] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/15/2017] [Indexed: 12/24/2022] Open
Abstract
The advent of induced pluripotent stem cells (iPSCs) has begun to revolutionize cell therapy by providing a convenient source of rare cell types not normally available from patients in sufficient numbers for therapeutic purposes. In particular, the development of protocols for the differentiation of populations of leukocytes as diverse as naïve T cells, macrophages, and natural killer cells provides opportunities for their scale-up and quality control prior to administration. One population of leukocytes whose therapeutic potential has yet to be explored is the subset of conventional dendritic cells (DCs) defined by their surface expression of CD141. While these cells stimulate cytotoxic T cells in response to inflammation through the cross-presentation of viral and tumor-associated antigens in an MHC class I-restricted manner, under steady-state conditions CD141+ DCs resident in interstitial tissues are focused on the maintenance of homeostasis through the induction of tolerance to local antigens. Here, we describe protocols for the directed differentiation of human iPSCs into a mixed population of CD11c+ DCs through the spontaneous formation of embryoid bodies and exposure to a cocktail of growth factors, the scheduled withdrawal of which serves to guide the process of differentiation. Furthermore, we describe the enrichment of DCs expressing CD141 through depletion of CD1c+ cells, thereby obtaining a population of “untouched” DCs unaffected by cross-linking of surface CD141. The resulting cells display characteristic phagocytic and endocytic capacity and acquire an immunostimulatory phenotype following exposure to inflammatory cytokines and toll-like receptor agonists. Nevertheless, under steady-state conditions, these cells share some of the tolerogenic properties of tissue-resident CD141+ DCs, which may be further reinforced by exposure to a range of pharmacological agents including interleukin-10, rapamycin, dexamethasone, and 1α,25-dihydoxyvitamin D3. Our protocols therefore provide access to a novel source of DCs analogous to the CD141+ subset under steady-state conditions in vivo and may, therefore, find utility in the treatment of a range of disease states requiring the establishment of immunological tolerance.
Collapse
Affiliation(s)
- Patty Sachamitr
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alison J Leishman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Timothy J Davies
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Holbrook BC, Aycock ST, Machiele E, Clemens E, Gries D, Jorgensen MJ, Hadimani MB, King SB, Alexander-Miller MA. An R848 adjuvanted influenza vaccine promotes early activation of B cells in the draining lymph nodes of non-human primate neonates. Immunology 2017; 153:357-367. [PMID: 28940186 DOI: 10.1111/imm.12845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 12/31/2022] Open
Abstract
Impaired immune responsiveness is a significant barrier to vaccination of neonates. By way of example, the low seroconversion observed following influenza vaccination has led to restriction of its use to infants over 6 months of age, leaving younger infants vulnerable to infection. Our previous studies using a non-human primate neonate model demonstrated that the immune response elicited following vaccination with inactivated influenza virus could be robustly increased by inclusion of the Toll-like receptor agonist flagellin or R848, either delivered individually or in combination. When delivered individually, R848 was found to be the more effective of the two. To gain insights into the mechanism through which these adjuvants functioned in vivo, we assessed the initiation of the immune response, i.e. at 24 hr, in the draining lymph node of neonate non-human primates. Significant up-regulation of co-stimulatory molecules on dendritic cells could be detected, but only when both adjuvants were present. In contrast, R848 alone could increase the number of cells in the lymph node, presumably through enhanced recruitment, as well as B-cell activation at this early time-point. These changes were not observed with flagellin and the dual adjuvanted vaccine did not promote increases beyond those observed with R848 alone. In vitro studies showed that R848 could promote B-cell activation, supporting a model wherein a direct effect on neonate B-cell activation is an important component of the in vivo potency of R848 in neonates.
Collapse
Affiliation(s)
- Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - S Tyler Aycock
- Animal Resources Program, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Emily Machiele
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Elene Clemens
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Danielle Gries
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Matthew J Jorgensen
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - S Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, USA
| | | |
Collapse
|
31
|
Kwoczek J, Riese SB, Tischer S, Bak S, Lahrberg J, Oelke M, Maul H, Blasczyk R, Sauer M, Eiz-Vesper B. Cord blood-derived T cells allow the generation of a more naïve tumor-reactive cytotoxic T-cell phenotype. Transfusion 2017; 58:88-99. [PMID: 29023759 DOI: 10.1111/trf.14365] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Transplantation of hematopoietic stem cells (HSCs) from peripheral blood (PB) or cord blood (CB) is well established. HSCs from CB are associated with a lower risk of graft-versus-host disease (GVHD), but antigen-independent expanded CB- and PB-derived T cells can induce GVHD in allo-HSC recipients. CB-derived cells might be more suitable for adoptive immunotherapy as they have unique T-cell characteristics. Here, we describe functional differences between CB and PB T cells stimulated with different cytokine combinations involved in central T-cell activation. STUDY DESIGN AND METHODS Isolated CD8+ T cells from CB and PB were stimulated antigen independently with anti-CD3/CD28 stimulator beads or in an antigen-dependent manner with artificial antigen-presenting cells loaded with the HLA-A*02:01-restricted peptide of tumor-associated melanoma antigen recognized by T cells 1 (MART1). CB and PB T cells cultured in the presence of interleukin (IL)-7, IL-15, IL-12, and IL-21 were characterized for T-cell phenotype and specificity, that is, by CD107a, interferon-γ, tumor necrosis factor-α, and IL-2 expression. RESULTS After antigen-independent stimulation, activated CD8+ CB T cells exhibited stronger proliferation and function than those from PB. After antigenic stimulation, MART1-reactive CB T cells were naïve (CD45RA+CCR7+), cytotoxic, and highly variable in expressing homing marker CD62L. Addition of IL-21 resulted in increased T-cell proliferation, whereas supplementation with IL-12 decreased IL-21-induced expansion, but increased the functionality and cytotoxicity of CB and PB T cells. CONCLUSION MART1-reactive CB T cells with a more naïve phenotype and improved properties for homing can be generated. The results contribute to better understanding the effects on GVHD and graft versus tumor.
Collapse
Affiliation(s)
- Julian Kwoczek
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Sebastian B Riese
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Sabine Tischer
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Szilvia Bak
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Julia Lahrberg
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Mathias Oelke
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland.,NexImmune, Inc, Gaithersburg, Maryland
| | - Holger Maul
- Department of Gynecology and Obstetrics, Marienkrankenhaus, Hamburg, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Martin Sauer
- Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany.,Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Dreesman A, Corbière V, Dirix V, Smits K, Debulpaep S, De Schutter I, Libin M, Singh M, Malfroot A, Locht C, Mascart F. Age-Stratified T Cell Responses in Children Infected with Mycobacterium tuberculosis. Front Immunol 2017; 8:1059. [PMID: 28928738 PMCID: PMC5591888 DOI: 10.3389/fimmu.2017.01059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB) in young children differs from adult TB in that the risk of rapid progression to active TB (aTB) is higher in children than in adults. The reasons for this increased risk are not fully understood. Early differentiation remains difficult between children at risk to develop aTB from those who will remain healthy and develop a latent TB infection (LTBI). Biomarkers to differentiate aTB from LTBI in children, especially in very young children, are urgently needed. To identify M. tuberculosis-specific functional T cell subsets related to clinical manifestations in children, we enrolled 87 children exposed to M. tuberculosis. After standard clinical assessment, the children were classified as aTB, LTBI, or uninfected. Their CD4+ T cell cytokine profiles (IFN-γ, TNF-α, IL-2, IL-17) were analyzed at the single-cell level by flow cytometry after stimulation with three mycobacterial antigens, purified protein derivative (PPD), early-secreted-antigenic target-6 (ESAT-6), or heparin-binding hemagglutinin (HBHA). This approach identified age-related discriminative markers between aTB and LTBI. Whereas among the 3- to 15-year-old children, an excellent discrimination between aTB and LTBI was provided by comparing the ratio between the proportions of ESAT-6-induced IFN-γsingle+ and ESAT-6-induced TNF-αsingle+CD4+ T lymphocytes, this was not the case for children younger than 3 years. By contrast, in this group (<3years), the analysis of HBHA-induced IL-17single+CD4+ T lymphocytes allowed us to identify children with LTBI by the high proportion of this cellular lymphocyte subset, whereas this was not the case for children with aTB. The analysis at the single-cell level of T cell immune responses induced by mycobacterial antigens are, thus, different in infected children younger or older than 3 years of age. HBHA-induced IL-17 production by CD4+ T lymphocytes was associated with protection only in children under 3 years who are at high risk for rapid progression to aTB. This suggests that the HBHA-induced IL-17 production by CD4+ T lymphocytes is a potential new correlate of protection against M. tuberculosis in humans, and that the distinction between children with LTBI and those with aTB is possible based on age-related diagnostic markers.
Collapse
Affiliation(s)
- Alexandra Dreesman
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Violette Dirix
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Kaat Smits
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Sara Debulpaep
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium.,Department of Pediatrics, CHU Saint-Pierre, Brussels, Belgium
| | - Iris De Schutter
- Department of Pediatric Pulmonology, Cystic Fibrosis Clinic and Pediatric Infectious Diseases, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Myriam Libin
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Mahavir Singh
- Lionex Diagnostics and Therapeutics, Braunschweig, Germany
| | - Anne Malfroot
- Department of Pediatric Pulmonology, Cystic Fibrosis Clinic and Pediatric Infectious Diseases, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Camille Locht
- INSERM, U1019, Lille, France.,CNRS, UMR8204, Lille, France.,Université de Lille, Lille, France.,Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium.,Immunobiology Clinic, Hôpital Erasme, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| |
Collapse
|
33
|
Han M, Hong JY, Jaipalli S, Rajput C, Lei J, Hinde JL, Chen Q, Hershenson NM, Bentley JK, Hershenson MB. IFN-γ Blocks Development of an Asthma Phenotype in Rhinovirus-Infected Baby Mice by Inhibiting Type 2 Innate Lymphoid Cells. Am J Respir Cell Mol Biol 2017; 56:242-251. [PMID: 27679954 DOI: 10.1165/rcmb.2016-0056oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Early-life wheezing-associated infections with rhinovirus (RV) have been associated with asthma development in children. We have shown that RV infection of 6-day-old mice induces mucous metaplasia and airways hyperresponsiveness, which is dependent on IL-13, IL-25, and type 2 innate lymphoid cells (ILC2s). Infection of immature mice fails to induce lung IFN-γ expression, in contrast to mature 8-week-old mice with a robust IFN-γ response, consistent with the notion that deficient IFN-γ production in immature mice permits RV-induced type 2 immune responses. We therefore examined the effects of intranasal IFN-γ administration on RV-induced ILC2 expansion and IL-13 expression in 6-day-old BALB/c and IL-13 reporter mice. Airway responses were assessed by histology, immunofluorescence microscopy, quantitative polymerase chain reaction, ELISA, and flow cytometry. Lung ILC2s were also treated with IFN-γ ex vivo. We found that, compared with untreated RV-infected immature mice, IFN-γ treatment attenuated RV-induced IL-13 and Muc5ac mRNA expression and mucous metaplasia. IFN-γ also reduced ILC2 expansion and the percentage of IL-13-secreting ILC2s. IFN-γ had no effect on the mRNA or protein expression of IL-25, IL-33, or thymic stromal lymphoprotein. Finally, IFN-γ treatment of sorted ILC2s reduced IL-5, IL-13, IL-17RB, ST2, and GATA-3 mRNA expression. We conclude that, in immature mice, IFN-γ inhibits ILC2 expansion and IL-13 expression in vivo and ex vivo, thereby attenuating RV-induced mucous metaplasia. These findings demonstrate the antagonistic function of IFN-γ on ILC2 expansion and gene expression, the absence of which may contribute to the development of an asthma-like phenotype after early-life RV infection.
Collapse
Affiliation(s)
- Mingyuan Han
- Departments of 1 Pediatrics and Communicable Diseases, and
| | - Jun Young Hong
- 2 Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Suraj Jaipalli
- Departments of 1 Pediatrics and Communicable Diseases, and
| | - Charu Rajput
- Departments of 1 Pediatrics and Communicable Diseases, and
| | - Jing Lei
- Departments of 1 Pediatrics and Communicable Diseases, and
| | - Joanna L Hinde
- Departments of 1 Pediatrics and Communicable Diseases, and
| | - Qiang Chen
- Departments of 1 Pediatrics and Communicable Diseases, and
| | | | | | - Marc B Hershenson
- Departments of 1 Pediatrics and Communicable Diseases, and.,2 Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
34
|
dela Peña-Ponce MG, Rodriguez-Nieves J, Bernhardt J, Tuck R, Choudhary N, Mengual M, Mollan KR, Hudgens MG, Peter-Wohl S, De Paris K. Increasing JAK/STAT Signaling Function of Infant CD4 + T Cells during the First Year of Life. Front Pediatr 2017; 5:15. [PMID: 28271056 PMCID: PMC5318443 DOI: 10.3389/fped.2017.00015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/20/2017] [Indexed: 12/17/2022] Open
Abstract
Most infant deaths occur in the first year of life. Yet, our knowledge of immune development during this period is scarce and derived from cord blood (CB) only. To more effectively combat pediatric diseases, a deeper understanding of the kinetics and the factors that regulate the maturation of immune functions in early life is needed. Increased disease susceptibility of infants is generally attributed to T helper 2-biased immune responses. The differentiation of CD4+ T cells along a specific T helper cell lineage is dependent on the pathogen type, and on costimulatory and cytokine signals provided by antigen-presenting cells. Cytokines also regulate many other aspects of the host immune response. Therefore, toward the goal of increasing our knowledge of early immune development, we defined the temporal development of the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling function of CD4+ T cells using cross-sectional blood samples from healthy infants ages 0 (birth) to 14 months. We specifically focused on cytokines important in T cell differentiation (IFN-γ, IL-12, and IL-4) or in T cell survival and expansion (IL-2 and IL-7) in infant CD4+ T cells. Independent of the cytokine tested, JAK/STAT signaling in infant compared to adult CD4+ T cells was impaired at birth, but increased during the first year, with the most pronounced changes occurring in the first 6 months. The relative change in JAK/STAT signaling of infant CD4+ T cells with age was distinct for each cytokine tested. Thus, while about 60% of CB CD4+ T cells could efficiently activate STAT6 in response to IL-4, less than 5% of CB CD4+ T cells were able to activate the JAK/STAT pathway in response to IFN-γ, IL-12 or IL-2. By 4-6 months of age, the activation of the cytokine-specific STAT molecules was comparable to adults in response to IL-4 and IFN-γ, while IL-2- and IL-12-induced STAT activation remained below adult levels even at 1 year. These results suggest that common developmental and cytokine-specific factors regulate the maturation of the JAK/STAT signaling function in CD4+ T cells during the first year of life.
Collapse
Affiliation(s)
- Myra Grace dela Peña-Ponce
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jennifer Rodriguez-Nieves
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Janice Bernhardt
- Division of Neonatal Perinatal Medicine, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ryan Tuck
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Neelima Choudhary
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Michael Mengual
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Katie R. Mollan
- Lineberger Cancer Center, Center for AIDS Research, University of North Carolina, Chapel Hill, NC, USA
| | - Michael G. Hudgens
- Gillings School of Global Public Health, Center for AIDS Research, University of North Carolina, Chapel Hill, NC, USA
| | - Sigal Peter-Wohl
- Division of Neonatal Perinatal Medicine, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
35
|
Perinatal Activation of the Interleukin-33 Pathway Promotes Type 2 Immunity in the Developing Lung. Immunity 2016; 45:1285-1298. [DOI: 10.1016/j.immuni.2016.10.031] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/03/2016] [Accepted: 10/27/2016] [Indexed: 11/19/2022]
|
36
|
Gupta V, Ramesh V. Understanding cutaneous tuberculosis in children. Int J Dermatol 2016; 56:242-244. [DOI: 10.1111/ijd.13441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 07/11/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Vishal Gupta
- Department of Dermatology and Venereology; All India Institute of Medical Sciences; New Delhi India
| | - V. Ramesh
- Department of Dermatology; Safdurjung Hospital; Vardhman Mahavir Medical College; New Delhi India
| |
Collapse
|
37
|
Rosales-Martinez D, Gutierrez-Xicotencatl L, Badillo-Godinez O, Lopez-Guerrero D, Santana-Calderon A, Cortez-Gomez R, Ramirez-Pliego O, Esquivel-Guadarrama F. Rotavirus activates dendritic cells derived from umbilical cord blood monocytes. Microb Pathog 2016; 99:162-172. [DOI: 10.1016/j.micpath.2016.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/05/2016] [Accepted: 08/18/2016] [Indexed: 11/30/2022]
|
38
|
Odorizzi PM, Feeney ME. Impact of In Utero Exposure to Malaria on Fetal T Cell Immunity. Trends Mol Med 2016; 22:877-888. [PMID: 27614925 DOI: 10.1016/j.molmed.2016.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 01/10/2023]
Abstract
Pregnancy-associated malaria, including placental malaria, causes significant morbidity and mortality worldwide. Recently, it has been suggested that in utero exposure of the fetus to malaria antigens may negatively impact the developing immune system and result in tolerance to malaria. Here, we review our current knowledge of fetal immunity to malaria, focusing on the dynamic interactions between maternal malaria infection, placental development, and the fetal immune system. A better understanding of the long-term impact of in utero malaria exposure on the development of natural immunity to malaria, immune responses to other childhood pathogens, and vaccine immunogenicity is urgently needed. This may guide the implementation of novel chemoprevention strategies during pregnancy and facilitate the push toward malaria vaccines.
Collapse
Affiliation(s)
- Pamela M Odorizzi
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Margaret E Feeney
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
39
|
Kativhu CL, Libraty DH. A Model to Explain How the Bacille Calmette Guérin (BCG) Vaccine Drives Interleukin-12 Production in Neonates. PLoS One 2016; 11:e0162148. [PMID: 27571272 PMCID: PMC5003384 DOI: 10.1371/journal.pone.0162148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/17/2016] [Indexed: 11/18/2022] Open
Abstract
The Bacille Calmette Guérin (BCG) vaccine is the only routine vaccination at birth that effectively induces neonatal T-helper 1 (Th1)-polarized immune responses. The primary cytokine that drives CD4+ T-cell Th1 differentiation is interleukin (IL)-12 p70, a heterodimeric cytokine composed of the IL-12 p35 and IL-12 p40 subunits. We therefore examined the mechanisms involved in BCG vaccine stimulation of IL-12 p35 and p40 production from human umbilical cord (neonatal) cells. We found that BCG bacilli did not upregulate IL-12 p35 mRNA production, but upregulated IL-12 p40 mRNA production in a Toll-like receptor (TLR)2-dependent manner, in human neonatal monocyte-derived dendritic cells (mdDCs). The combination of TLR2 signaling, Type I interferon (IFN), and Type II IFN induced maximal levels of IL-12 p35 and p40 mRNA production in human neonatal mdDCs. The cell-free supernatants of reconstituted BCG vaccine vials contained extracellular mycobacterial (BCG) DNA which could induce IFN-α (Type I IFN) production in human neonatal plasmacytoid dendritic cells (pDCs). BCG bacilli also stimulated human neonatal CD16lo natural killer (NK) cells to produce IFN-γ (Type II IFN) in a TLR2-dependent manner. We have therefore proposed a model where BCG vaccine could stimulate the combination of neonatal conventional DCs (cDCs), pDCs, and CD16lo NK cells to produce optimal neonatal IL-12 p35 and p40 (IL-12 p70) production and subsequent CD4+ T-cell Th1 polarization. An adjuvant that emulates the mechanism by which the BCG vaccine stimulates neonatal IL-12 p35 and p40 production could improve vaccine strategies at birth for protection against intracellular pathogens and toxins.
Collapse
Affiliation(s)
- Chido Loveness Kativhu
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Daniel H. Libraty
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
40
|
Holbrook BC, D'Agostino RB, Parks GD, Alexander-Miller MA. Adjuvanting an inactivated influenza vaccine with flagellin improves the function and quantity of the long-term antibody response in a nonhuman primate neonate model. Vaccine 2016; 34:4712-4717. [PMID: 27516064 DOI: 10.1016/j.vaccine.2016.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/25/2016] [Accepted: 08/02/2016] [Indexed: 01/07/2023]
Abstract
Young infants are at significantly increased risk of developing severe disease following infection with influenza virus. At present there is no approved vaccine for individuals below the age of six months given previous studies showing a failure of these individuals to efficiently seroconvert. Given the major impact of influenza on infant health, it is critical that we develop vaccines that will be safe and effective in this population. Using a nonhuman primate (NHP) model, we have evaluated the ability of an inactivated influenza virus vaccine adjuvanted with flagellin to result in long term immune responses in neonates. To evaluate this critical attribute, neonate NHP were vaccinated and boosted with inactivated influenza virus in combination with either flagellin or a mutant inactive flagellin control. Our studies show that inclusion of flagellin resulted in a significant increase (5-fold, p=0.04) in influenza virus-specific IgG antibody at 6months post-vaccination. In addition, the antibody present at this late time was of higher affinity (2.4-fold, p=0.02). Finally a greater percentage of infants had detectable neutralizing antibody. These results support the use of flagellin in neonates as an adjuvant that promotes long-lived, high affinity antibody responses.
Collapse
Affiliation(s)
- Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ralph B D'Agostino
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Griffith D Parks
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
41
|
Torres D, Köhler A, Delbauve S, Caminschi I, Lahoud MH, Shortman K, Flamand V. IL-12p40/IL-10 Producing preCD8α/Clec9A+ Dendritic Cells Are Induced in Neonates upon Listeria monocytogenes Infection. PLoS Pathog 2016; 12:e1005561. [PMID: 27074026 PMCID: PMC4830566 DOI: 10.1371/journal.ppat.1005561] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/18/2016] [Indexed: 11/19/2022] Open
Abstract
Infection by Listeria monocytogenes (Lm) causes serious sepsis and meningitis leading to mortality in neonates. This work explored the ability of CD11chigh lineage DCs to induce CD8+ T-cell immune protection against Lm in mice before 7 days of life, a period symbolized by the absence of murine IL-12p70-producing CD11chighCD8α+ dendritic cells (DCs). We characterized a dominant functional Batf3-dependent precursor of CD11chigh DCs that is Clec9A+CD205+CD24+ but CD8α- at 3 days of life. After Lm-OVA infection, these pre-DCs that cross-present Ag display the unique ability to produce high levels of IL-12p40 (not IL-12p70 nor IL-23), which enhances OVA-specific CD8+ T cell response, and regulatory IL-10 that limits OVA-specific CD8+ T cell response. Targeting these neonatal pre-DCs for the first time with a single treatment of anti-Clec9A-OVA antibody in combination with a DC activating agent such as poly(I:C) increased the protection against later exposure to the Lm-OVA strain. Poly(I:C) was shown to induce IL-12p40 production, but not IL-10 by neonatal pre-DCs. In conclusion, we identified a new biologically active precursor of Clec9A+ CD8α- DCs, endowed with regulatory properties in early life that represents a valuable target to augment memory responses to vaccines. Lm is a gram-positive food-borne pathogen that is the ethiological agent of listeriosis, a worldwide disease reported most frequently in developed countries. It can cause spontaneous septic abortions, fatal meningitis or encephalitis in immunocompromised and pregnant individuals. The murine model of systemic Lm infection has been demonstrated as a useful model to understand host resistance to intracellular pathogens. Neonates are highly susceptible to infections such as Lm, and display low responses to vaccines requiring IFN-γ producing T cells. In the present study, we characterized in murine neonates a precursor of conventional dendritic cells that is able to produce IL-12p40 and IL-10 cytokines and to modulate the development of the adaptive immune response, more particularly the CD8+ T cell response upon exposure to Lm. By targeting Lm-associated antigens to these conventional dendritic cell precursors in neonates, we succeeded to confer a partial protection to a lethal dose of Lm at the adult stage. Our study provides new insights into our understanding of the innate immune response to infections in early life and will help to design new vaccine strategies in newborns.
Collapse
Affiliation(s)
- David Torres
- Institut d’Immunologie Médicale, Université Libre de Bruxelles, Gosselies, Belgium
| | - Arnaud Köhler
- Institut d’Immunologie Médicale, Université Libre de Bruxelles, Gosselies, Belgium
| | - Sandrine Delbauve
- Institut d’Immunologie Médicale, Université Libre de Bruxelles, Gosselies, Belgium
| | - Irina Caminschi
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Mireille H. Lahoud
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Department of Immunology, Monash University, Melbourne, Australia
| | - Ken Shortman
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Véronique Flamand
- Institut d’Immunologie Médicale, Université Libre de Bruxelles, Gosselies, Belgium
- * E-mail:
| |
Collapse
|
42
|
Kumar SKM, Bhat BV. Distinct mechanisms of the newborn innate immunity. Immunol Lett 2016; 173:42-54. [PMID: 26994839 DOI: 10.1016/j.imlet.2016.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/23/2022]
Abstract
The ontogeny of immunity during early life is of high importance as it shapes the immune system for the entire course of life. The microbiome and the environment contribute to the development of immunity in newborns. As immune responses in newborns are predominantly less experienced they are increasingly susceptible to infections. Though the immune cells in newborns are in 'naïve' state, they have been shown to mount adult-like responses in several circumstances. The innate immunity plays a vital role in providing protection during the neonatal period. Various stimulants have been shown to enhance the potential and functioning of the innate immune cells in newborns. They are biased against the production of pro-inflammatory cytokines and this makes them susceptible to wide variety of intracellular pathogens. The adaptive immunity requires prior antigenic experience which is very limited in newborns. This review discusses in detail the characteristics of innate immunity in newborns and the underlying developmental and functional mechanisms involved in the immune response. A better understanding of the immunological milieu in newborns could help the medical fraternity to find novel methods for prevention and treatment of infection in newborns.
Collapse
Affiliation(s)
- S Kingsley Manoj Kumar
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry 605006, India.
| | - B Vishnu Bhat
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry 605006, India.
| |
Collapse
|
43
|
Fairchild PJ, Leishman A, Sachamitr P, Telfer C, Hackett S, Davies TJ. Dendritic cells and pluripotency: unlikely allies in the pursuit of immunotherapy. Regen Med 2016; 10:275-86. [PMID: 25933237 DOI: 10.2217/rme.15.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
As the fulcrum on which the balance between the opposing forces of tolerance and immunity has been shown to pivot, dendritic cells (DC) hold significant promise for immune intervention in a variety of disease states. Here we discuss how the directed differentiation of human pluripotent stem cells may address many of the current obstacles to the use of monocyte-derived DC in immunotherapy, providing a novel source of previously inaccessible DC subsets and opportunities for their scale-up, quality control and genetic modification. Indeed, given that it is the immunological legacy DC leave behind that is of therapeutic value, rather than their persistence per se, we propose that immunotherapy should serve as an early target for the clinical application of pluripotent stem cells.
Collapse
Affiliation(s)
- Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | | | | | | | | |
Collapse
|
44
|
Gollwitzer ES, Marsland BJ. Impact of Early-Life Exposures on Immune Maturation and Susceptibility to Disease. Trends Immunol 2015; 36:684-696. [DOI: 10.1016/j.it.2015.09.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 12/16/2022]
|
45
|
Honda-Okubo Y, Ong CH, Petrovsky N. Advax delta inulin adjuvant overcomes immune immaturity in neonatal mice thereby allowing single-dose influenza vaccine protection. Vaccine 2015; 33:4892-900. [PMID: 26232344 PMCID: PMC4562881 DOI: 10.1016/j.vaccine.2015.07.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/10/2015] [Accepted: 07/17/2015] [Indexed: 01/16/2023]
Abstract
A single dose of Advax-adjuvanted influenza vaccine in 7-day-old pups protected against lethal influenza infection. Advax adjuvant enhanced both B-cell and T-cell memory in neonates. Influenza protection in Advax-immunized neonates was dependent on memory B-cells. Advax adjuvant confirmed to be safe and well tolerated in neonates.
Neonates are at high risk for influenza morbidity and mortality due to immune immaturity and lack of priming by prior influenza virus exposure. Inactivated influenza vaccines are ineffective in infants under six months and to provide protection in older children generally require two doses given a month apart. This leaves few options for rapid protection of infants, e.g. during an influenza pandemic. We investigated whether Advax™, a novel polysaccharide adjuvant based on delta inulin microparticles could help overcome neonatal immune hypo-responsiveness. We first tested whether it was possible to use Advax to obtain single-dose vaccine protection of neonatal pups against lethal influenza infection. Inactivated influenza A/H1N1 vaccine (iH1N1) combined with Advax™ adjuvant administered as a single subcutaneous immunization to 7-day-old mouse pups significantly enhanced serum influenza-specific IgM, IgG1, IgG2a and IgG2b levels and was associated with a 3–4 fold increase in the frequency of splenic influenza-specific IgM and IgG antibody secreting cells. Pups immunized with Advax had significantly higher splenocyte influenza-stimulated IFN-γ, IL-2, IL-4, and IL-10 production by CBA and a 3–10 fold higher frequency of IFN-γ, IL-2, IL-4 or IL-17 secreting T cells by ELISPOT. Immunization with iH1N1 + Advax induced robust protection of pups against virus challenge 3 weeks later, whereas pups immunized with iH1N1 antigen alone had no protection. Protection by Advax-adjuvanted iH1N1 was dependent on memory B cells rather than memory T cells, with no protection in neonatal μMT mice that are B-cell deficient. Hence, Advax adjuvant overcame neonatal immune hypo-responsiveness and enabled single-dose protection of pups against otherwise lethal influenza infection, thereby supporting ongoing development of Advax™ as a neonatal vaccine adjuvant.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., Bedford Park, Australia; Flinders Medical Centre, Adelaide 5042, Australia
| | - Chun Hao Ong
- Vaxine Pty Ltd., Bedford Park, Australia; Flinders Medical Centre, Adelaide 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Australia; Flinders Medical Centre, Adelaide 5042, Australia; Department of Endocrinology, Flinders University, Adelaide 5042, Australia.
| |
Collapse
|
46
|
Lissner MM, Thomas BJ, Wee K, Tong AJ, Kollmann TR, Smale ST. Age-Related Gene Expression Differences in Monocytes from Human Neonates, Young Adults, and Older Adults. PLoS One 2015; 10:e0132061. [PMID: 26147648 PMCID: PMC4493075 DOI: 10.1371/journal.pone.0132061] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/09/2015] [Indexed: 11/18/2022] Open
Abstract
A variety of age-related differences in the innate and adaptive immune systems have been proposed to contribute to the increased susceptibility to infection of human neonates and older adults. The emergence of RNA sequencing (RNA-seq) provides an opportunity to obtain an unbiased, comprehensive, and quantitative view of gene expression differences in defined cell types from different age groups. An examination of ex vivo human monocyte responses to lipopolysaccharide stimulation or Listeria monocytogenes infection by RNA-seq revealed extensive similarities between neonates, young adults, and older adults, with an unexpectedly small number of genes exhibiting statistically significant age-dependent differences. By examining the differentially induced genes in the context of transcription factor binding motifs and RNA-seq data sets from mutant mouse strains, a previously described deficiency in interferon response factor-3 activity could be implicated in most of the differences between newborns and young adults. Contrary to these observations, older adults exhibited elevated expression of inflammatory genes at baseline, yet the responses following stimulation correlated more closely with those observed in younger adults. Notably, major differences in the expression of constitutively expressed genes were not observed, suggesting that the age-related differences are driven by environmental influences rather than cell-autonomous differences in monocyte development.
Collapse
Affiliation(s)
- Michelle M. Lissner
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Brandon J. Thomas
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kathleen Wee
- Division of Infectious and Immunological Diseases, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ann-Jay Tong
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tobias R. Kollmann
- Division of Infectious and Immunological Diseases, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail: (TRK); (STS)
| | - Stephen T. Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (TRK); (STS)
| |
Collapse
|
47
|
Huygens A, Lecomte S, Tackoen M, Olislagers V, Delmarcelle Y, Burny W, Van Rysselberge M, Liesnard C, Larsen M, Appay V, Donner C, Marchant A. Functional Exhaustion Limits CD4+and CD8+T-Cell Responses to Congenital Cytomegalovirus Infection. J Infect Dis 2015; 212:484-94. [DOI: 10.1093/infdis/jiv071] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/27/2015] [Indexed: 11/13/2022] Open
|
48
|
Hanley PJ, Bollard CM, Brunstein CG. Adoptive immunotherapy with the use of regulatory T cells and virus-specific T cells derived from cord blood. Cytotherapy 2015; 17:749-755. [PMID: 25632003 DOI: 10.1016/j.jcyt.2014.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 01/05/2023]
Abstract
Cord blood transplantation, an alternative to traditional stem cell transplants (bone marrow or peripheral blood stem cell transplantation), is an attractive option for patients lacking suitable stem cell transplant donors. Cord blood units have also proven to be a valuable donor source for the development of cellular therapeutics. Virus-specific T cells and regulatory T cells are two cord blood-derived products that have shown promise in early-phase clinical trials to prevent and/or treat viral infections and graft-versus-host disease, respectively. We describe how current strategies that use cord blood-derived regulatory T cells and virus-specific T cells have been developed to improve outcomes for cord blood transplant recipients.
Collapse
Affiliation(s)
- Patrick J Hanley
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Medical Center and The George Washington University, Washington, DC, USA; Center for Cancer and Immunology Research, Children's National Medical Center and The George Washington University, Washington, DC, USA; Division of Blood and Marrow Transplantation, Children's National Medical Center and The George Washington University, Washington, DC, USA; Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center and The George Washington University, Washington, DC, USA.
| | - Catherine M Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Medical Center and The George Washington University, Washington, DC, USA; Center for Cancer and Immunology Research, Children's National Medical Center and The George Washington University, Washington, DC, USA; Division of Blood and Marrow Transplantation, Children's National Medical Center and The George Washington University, Washington, DC, USA; Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center and The George Washington University, Washington, DC, USA
| | - Claudio G Brunstein
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
49
|
|
50
|
Pham VQ, Nguyen ST, Van Pham P. Production of functional dendritic cells from mouse bone marrow. BIOMEDICAL RESEARCH AND THERAPY 2014. [DOI: 10.7603/s40730-014-0020-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|