1
|
Copsel S, Wolf D, Komanduri KV, Levy RB. The promise of CD4 +FoxP3 + regulatory T-cell manipulation in vivo: applications for allogeneic hematopoietic stem cell transplantation. Haematologica 2019; 104:1309-1321. [PMID: 31221786 PMCID: PMC6601084 DOI: 10.3324/haematol.2018.198838] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
CD4+FoxP3+ regulatory T cells (Tregs) are a non-redundant population critical for the maintenance of self-tolerance. Over the past decade, the use of these cells for therapeutic purposes in transplantation and autoimmune disease has emerged based on their capacity to inhibit immune activation. Basic science discoveries have led to identifying key receptors on Tregs that can regulate their proliferation and function. Notably, the understanding that IL-2 signaling is crucial for Treg homeostasis promoted the hypothesis that in vivo IL-2 treatment could provide a strategy to control the compartment. The use of low-dose IL-2 in vivo was shown to selectively expand Tregs versus other immune cells. Interestingly, a number of other Treg cell surface proteins, including CD28, CD45, IL-33R and TNFRSF members, have been identified which can also induce activation and proliferation of this population. Pre-clinical studies have exploited these observations to prevent and treat mice developing autoimmune diseases and graft-versus-host disease post-allogeneic hematopoietic stem cell transplantation. These findings support the development of translational strategies to expand Tregs in patients. Excitingly, the use of low-dose IL-2 for patients suffering from graft-versus-host disease and autoimmune disease has demonstrated increased Treg levels together with beneficial outcomes. To date, promising pre-clinical and clinical studies have directly targeted Tregs and clearly established the ability to increase their levels and augment their function in vivo. Here we review the evolving field of in vivo Treg manipulation and its application to allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
| | | | - Krishna V Komanduri
- Department of Microbiology and Immunology.,Sylvester Comprehensive Cancer Center.,Division of Transplantation and Cellular Therapy, Department of Medicine
| | - Robert B Levy
- Department of Microbiology and Immunology .,Division of Transplantation and Cellular Therapy, Department of Medicine.,Department of Ophthalmology, Miller School of Medicine, University of Miami, FL, USA
| |
Collapse
|
2
|
Thangavelu G, Blazar BR. Achievement of Tolerance Induction to Prevent Acute Graft-vs.-Host Disease. Front Immunol 2019; 10:309. [PMID: 30906290 PMCID: PMC6419712 DOI: 10.3389/fimmu.2019.00309] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/06/2019] [Indexed: 01/04/2023] Open
Abstract
Acute graft-vs.-host disease (GVHD) limits the efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT), a main therapy to treat various hematological disorders. Despite rapid progress in understanding GVHD pathogenesis, broad immunosuppressive agents are most often used to prevent and remain the first line of therapy to treat GVHD. Strategies enhancing immune tolerance in allo-HSCT would permit reductions in immunosuppressant use and their associated undesirable side effects. In this review, we discuss the mechanisms responsible for GVHD and advancement in strategies to achieve immune balance and tolerance thereby avoiding GVHD and its complications.
Collapse
Affiliation(s)
- Govindarajan Thangavelu
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
During acute graft versus host disease CD28 deletion in donor CD8+, but not CD4+, T cells maintain antileukemia responses in mice. Eur J Immunol 2018; 48:2055-2067. [DOI: 10.1002/eji.201847669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/02/2018] [Accepted: 10/09/2018] [Indexed: 01/12/2023]
|
4
|
Reddy P, Ferrara JL. Graft-Versus-Host Disease and Graft-Versus-Leukemia Responses. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
5
|
Rahman MM, Badruzzaman ATM, Altaf Hossain FM, Husna A, Bari AM, Eo SK. The promise of 4-1BB (CD137) mediated immunomodulation and immunotherapy for viral diseases. Future Virol 2017. [DOI: 10.2217/fvl-2016-0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The T-cell surface receptor, 4-1BB (CD137), has been of increasing interest to immunologists as a co-stimulatory immune checkpoint molecule over the last two decades. Ligation of 4-1BB can activate signals in CD8+ T cells and NK cells, resulting in increased proinflammatory cytokine secretion, cytolytic function and antibody-dependent cell-mediated cytotoxicity. Targeting 4-1BB, using a 4-1BB ligand (4-1BBL) or agonistic monoclonal antibodies, has delivered a new strategy to fight against cancer, autoimmune diseases and viral infections. In this review, different aspects of 4-1BB mediated antiviral responses, the mechanistic basis of such responses and future directions are discussed.
Collapse
Affiliation(s)
- Md Masudur Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - ATM Badruzzaman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Ferdaus Mohd Altaf Hossain
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- College of Veterinary Medicine & Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Asmaul Husna
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Abusaleh Mahfuzul Bari
- Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Seong Kug Eo
- College of Veterinary Medicine & Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
6
|
Leigh ND, O'Neill RE, Du W, Chen C, Qiu J, Ashwell JD, McCarthy PL, Chen GL, Cao X. Host-Derived CD70 Suppresses Murine Graft-versus-Host Disease by Limiting Donor T Cell Expansion and Effector Function. THE JOURNAL OF IMMUNOLOGY 2017; 199:336-347. [PMID: 28550198 DOI: 10.4049/jimmunol.1502181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/01/2017] [Indexed: 11/19/2022]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment for hematologic and immunologic diseases. However, graft-versus-host disease (GVHD) may develop when donor-derived T cells recognize and damage genetically distinct normal host tissues. In addition to TCR signaling, costimulatory pathways are involved in T cell activation. CD27 is a TNFR family member expressed on T cells, and its ligand, CD70, is expressed on APCs. The CD27/CD70 costimulatory pathway was shown to be critical for T cell function and survival in viral infection models. However, the role of this pathway in allo-HCT is previously unknown. In this study, we have examined its contribution in GVHD pathogenesis. Surprisingly, Ab blockade of CD70 after allo-HCT significantly increases GVHD. Interestingly, whereas donor T cell- or bone marrow-derived CD70 plays no role in GVHD, host-derived CD70 inhibits GVHD as CD70-/- hosts show significantly increased GVHD. This is evidenced by reduced survival, more severe weight loss, and increased histopathologic damage compared with wild-type hosts. In addition, CD70-/- hosts have higher levels of proinflammatory cytokines TNF-α, IFN-γ, IL-2, and IL-17. Moreover, accumulation of donor CD4+ and CD8+ effector T cells is increased in CD70-/- versus wild-type hosts. Mechanistic analyses suggest that CD70 expressed by host hematopoietic cells is involved in the control of alloreactive T cell apoptosis and expansion. Together, our findings demonstrate that host CD70 serves as a unique negative regulator of allogeneic T cell response by contributing to donor T cell apoptosis and inhibiting expansion of donor effector T cells.
Collapse
Affiliation(s)
- Nicholas D Leigh
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Rachel E O'Neill
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Wei Du
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Chuan Chen
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Philip L McCarthy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - George L Chen
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Xuefang Cao
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| |
Collapse
|
7
|
Kean LS, Turka LA, Blazar BR. Advances in targeting co-inhibitory and co-stimulatory pathways in transplantation settings: the Yin to the Yang of cancer immunotherapy. Immunol Rev 2017; 276:192-212. [PMID: 28258702 PMCID: PMC5338458 DOI: 10.1111/imr.12523] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decade, the power of harnessing T-cell co-signaling pathways has become increasingly understood to have significant clinical importance. In cancer immunotherapy, the field has concentrated on two related modalities: First, targeting cancer antigens through highly activated chimeric antigen T cells (CAR-Ts) and second, re-animating endogenous quiescent T cells through checkpoint blockade. In each of these strategies, the therapeutic goal is to re-ignite T-cell immunity, in order to eradicate tumors. In transplantation, there is also great interest in targeting T-cell co-signaling, but with the opposite goal: in this field, we seek the Yin to cancer immunotherapy's Yang, and focus on manipulating T-cell co-signaling to induce tolerance rather than activation. In this review, we discuss the major T-cell signaling pathways that are being investigated for tolerance induction, detailing preclinical studies and the path to the clinic for many of these molecules. These include blockade of co-stimulation pathways and agonism of coinhibitory pathways, in order to achieve the delicate state of balance that is transplant tolerance: a state which guarantees lifelong transplant acceptance without ongoing immunosuppression, and with preservation of protective immune responses. In the context of the clinical translation of immune tolerance strategies, we discuss the significant challenge that is embodied by the fact that targeted pathway modulators may have opposing effects on tolerance based on their impact on effector vs regulatory T-cell biology. Achieving this delicate balance holds the key to the major challenge of transplantation: lifelong control of alloreactivity while maintaining an otherwise intact immune system.
Collapse
Affiliation(s)
- Leslie S Kean
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
- The Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Laurence A Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Immune Tolerance Network, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Zeiser R, Socié G, Blazar BR. Pathogenesis of acute graft-versus-host disease: from intestinal microbiota alterations to donor T cell activation. Br J Haematol 2016; 175:191-207. [PMID: 27619472 DOI: 10.1111/bjh.14295] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a major life-threatening complication of allogeneic haematopoietic cell transplantation (allo-HCT). Here we discuss the aGVHD pathophysiology initiated by multiple signals that cause alloreactive T-cell activation. The outcome of such donor T-cell activation is influenced by T-cell receptor-signal strength, anatomical location, co-stimulatory/co-inhibitory signals and differentiation stage (naive, effector/memory) of T-cells. Additionally, cross-priming of T cells to antigens expressed by pathogens can contribute to aGVHD-mediated tissue injury. In addition to the properties of donor T-cell activation, highly specialized tissue resident cell types, such as innate lymphoid cells, antigen-presenting cells, immune regulatory cells and various intestinal cell populations are critically involved in aGVHD pathogenesis. The role of the thymus and secondary lymphoid tissue injury, non-haematopoietic cells, intestinal microflora, cytokines, chemokines, microRNAs, metabolites and kinases in aGVHD pathophysiology will be highlighted. Acute GVHD pathogenic mechanisms will be connected to novel therapeutic approaches under development for, and tested in, the clinic.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Haematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Centre, Freiburg, Germany.
| | - Gerard Socié
- Haematology Stem cell transplant Unit, Saint Louis Hospital, APHP, Paris, France
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Villa NY, Rahman MM, McFadden G, Cogle CR. Therapeutics for Graft-versus-Host Disease: From Conventional Therapies to Novel Virotherapeutic Strategies. Viruses 2016; 8:85. [PMID: 27011200 PMCID: PMC4810275 DOI: 10.3390/v8030085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has a curative potential for many hematologic malignancies and blood diseases. However, the success of allo-HSCT is limited by graft-versus-host disease (GVHD), an immunological syndrome that involves inflammation and tissue damage mediated by donor lymphocytes. Despite immune suppression, GVHD is highly incident even after allo-HSCT using human leukocyte antigen (HLA)-matched donors. Therefore, alternative and more effective therapies are needed to prevent or control GVHD while preserving the beneficial graft-versus-cancer (GVC) effects against residual disease. Among novel therapeutics for GVHD, oncolytic viruses such as myxoma virus (MYXV) are receiving increased attention due to their dual role in controlling GVHD while preserving or augmenting GVC. This review focuses on the molecular basis of GVHD, as well as state-of-the-art advances in developing novel therapies to prevent or control GVHD while minimizing impact on GVC. Recent literature regarding conventional and the emerging therapies are summarized, with special emphasis on virotherapy to prevent GVHD. Recent advances using preclinical models with oncolytic viruses such as MYXV to ameliorate the deleterious consequences of GVHD, while maintaining or improving the anti-cancer benefits of GVC will be reviewed.
Collapse
Affiliation(s)
- Nancy Y Villa
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Masmudur M Rahman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | - Christopher R Cogle
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
10
|
Lee SC, Seo KW, Kim HJ, Kang SW, Choi HJ, Kim A, Kwon BS, Cho HR, Kwon B. Depletion of Alloreactive T-Cells by Anti-CD137-Saporin Immunotoxin. Cell Transplant 2015; 24:1167-81. [DOI: 10.3727/096368914x679327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Depletion of alloreactive T-lymphocytes from allogeneic bone marrow tansplants may prevent graft-versus-host disease (GVHD) without impairing donor cell engraftment, immunity, and the graft-versus-leukemia (GVL) effect. Alloreactive T-cells may be identified by their expression, upon activation, of CD137, a costimulatory receptor and putative surrogate marker for antigen-specific effector T-cells. In this context, we tested the use of anti-CD137-saporin immunotoxin to selectively deplete mouse and human alloreactive T-cells. Anti-CD137 antibodies were internalized by cells within 4 h of binding to the cell surface CD137, and anti-CD137-saporin immunotoxin effectively killed polyclonally activated T-cells or antigen-stimulated T-cells. Transfer of donor T-cells after allodepletion with anti-CD137-saporin immunotoxin failed to induce any evident expression of GVHD; however, a significant GVL effect was observed. Targeting of CD137 with an immunotoxin was also effective in killing polyclonally activated or alloreactive human T-cells. Our results indicate that anti-CD137-saporin immunotoxin may be used to deplete alloreactive T-cells prior to bone marrow transplantation and thereby prevent GVHD and the relapse of leukemia.
Collapse
Affiliation(s)
- Sang C. Lee
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
- Personalized Medicine System R&D Center, Bio-support Co., Ltd., Anyang, Republic of Korea
| | - Kwang W. Seo
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
- Department of Internal Medicine, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Hye J. Kim
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Sang W. Kang
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Hye-Jeong Choi
- Department of Pathology, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Ansuk Kim
- Department of Anesthesiology and Pain Medicine, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Byoung S. Kwon
- Division of Cell and Immunobiology and Research and Development Center for Cancer Therapeutics, National Cancer Center, Ulsan, Republic of Korea
| | - Hong R. Cho
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
- Department of Surgery, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Byungsuk Kwon
- Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
11
|
Park SJ, Lee JS, Kwon B, Cho HR. Integration of the Innate and Adaptive Immunity by CD137-CD137L Bidirectional Signals: Implications in Allograft Rejection. KOREAN JOURNAL OF TRANSPLANTATION 2014. [DOI: 10.4285/jkstn.2014.28.3.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Sang June Park
- Department of Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
| | - Jong Soo Lee
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
| | - Byungsuk Kwon
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
| | - Hong Rae Cho
- Department of Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
| |
Collapse
|
12
|
Abstract
Chronic graft-versus-host disease (GVHD) occurs in recipients of allogeneic hematopoietic stem cell transplantation with a high frequency. Preclinical animal chronic GVHD models outlined in this chapter allow for the delineation of events that occur during chronic GVHD development. The DBA/2 → (C56BL/6 × DBA/2)F1 (BDF1) model is characterized by systemic lupus erythematosus (SLE)-like phenotype. The B10.D2 → Balb/c model presents many features of autoimmune scleroderma. The former model is useful in defining how alloreactive donor CD4(+) T cells break B-cell tolerance, whereas the latter model is suitable for dissecting the pathogenesis of organ fibrosis. Our laboratory has demonstrated that injection of a single dose of strong CD137 agonists can prevent or cure chronic GVHD in these two models. In general, these models are particularly suited to screening the immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Juyang Kim
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, 680-749, Republic of Korea
| | | | | |
Collapse
|
13
|
Kwon B. Regulation of Inflammation by Bidirectional Signaling through CD137 and Its Ligand. Immune Netw 2012; 12:176-80. [PMID: 23213310 PMCID: PMC3509161 DOI: 10.4110/in.2012.12.5.176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/04/2012] [Accepted: 10/12/2012] [Indexed: 12/17/2022] Open
Abstract
Although the majority of research on CD137 has been directed to T cells, it is becoming clear that this molecule has distinct functions in other lineages of cells, including non-hematopoietic cells. In particular, emerging evidence suggests that the CD137-its ligand (CD137L) network involving immune cells and non-immune cells, directly or indirectly regulates inflammation in both positive and negative manners. Bidirectional signaling through both CD137 and CD137L is critical in the evolution of inflammation: 1) CD137L signaling plays an indispensible role in the activation and recruitment of neutrophils by inducing the production of proinflammatory cytokines and chemokines in hematopoietic and non-hematopoietic cells such as macrophages, endothelial cells and epithelial cells; 2) CD137 signaling in NK cells and T cells is required for their activation and can influence other cells participating in inflammation via either their production of proinflammatory cytokines or engagement of CD137L by their cell surface CD137: 3) CD137 signaling can suppress inflammation by controlling regulatory activities of dendritic cells and regulatory T cells. As recognition grows of the role of dysregulated CD137 or CD137L stimulation in inflammatory diseases, significant efforts will be needed to develop antagonists to CD137 or CD137L.
Collapse
Affiliation(s)
- Byungsuk Kwon
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| |
Collapse
|
14
|
Yeo YA, Martínez Gómez JM, Croxford JL, Gasser S, Ling EA, Schwarz H. CD137 ligand activated microglia induces oligodendrocyte apoptosis via reactive oxygen species. J Neuroinflammation 2012; 9:173. [PMID: 22799524 PMCID: PMC3420242 DOI: 10.1186/1742-2094-9-173] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/16/2012] [Indexed: 11/10/2022] Open
Abstract
CD137 (4-1BB, TNFRSF9), a member of the tumor necrosis factor (TNF) receptor family, is a potent T cell co-stimulatory molecule. CD137 ligand (CD137L) is expressed by antigen presenting cells (APC) as a transmembrane protein and transmits activating signals into APC. In this study we investigated the effects of CD137L signaling in microglia, the resident APC in the central nervous system. In vitro, the murine microglia cell lines BV-2 and N9, as well as primary murine microglia responded with activation as evidenced by adherence and secretion of proinflammatory cytokines, MMP-9, and soluble intercellular adhesion molecule (ICAM). CD137L signaling is also important for microglia activation in vivo, since CD137L-deficient mice exhibited profoundly less microglia activation during experimental autoimmune encephalomyelitis (EAE) which is a well-established murine model for neuroinflammation and human multiple sclerosis (MS). Also CD137 is expressed in the CNS of mice during EAE. Activated microglia has been reported to mediate the destruction of axonal myelin sheaths and cause the death of oligodendrocytes, the main pathogenic mechanisms in EAE and MS. Corresponding to the lower microglia activation there were also fewer apoptotic oligodendrocytes in the CNS of CD137L-deficient mice. In vitro co-culture confirmed that CD137L-activated microglia induces apoptosis in oligodendrocytes, and identified reactive oxygen species as the mechanism of apoptosis induction. These data demonstrate activating effects of CD137L signaling to microglia, and show for the first time that the CD137 receptor/ligand system may be a mediator of neuroinflammatory and neurodegenerative disease, by activating microglia which in turn kill oligodendrocytes.
Collapse
Affiliation(s)
- Yee Andy Yeo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive #14-02T, Singapore, 117599, Singapore
| | | | | | | | | | | |
Collapse
|
15
|
Behrendt AK, Meyer-Bahlburg A, Hansen G. CD137 deficiency does not affect development of airway inflammation or respiratory tolerance induction in murine models. Clin Exp Immunol 2012; 168:308-17. [PMID: 22519594 DOI: 10.1111/j.1365-2249.2012.04572.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The co-stimulatory molecule CD137 (4-1BB) plays a crucial role in the development and persistence of asthma, characterized by eosinophilic airway inflammation, mucus hypersecretion, airway hyperreactivity, increased T helper type 2 (Th2) cytokine production and serum immunoglobulin (Ig)E levels. We have shown previously that application of an agonistic CD137 monoclonal antibody (mAb) prevented and even reversed an already established asthma phenotype. In the current study we investigated whether deficiency of the CD137/CD137L pathway affects the development of allergic airway inflammation or the opposite immune reaction of respiratory tolerance. CD137⁻/⁻ and wild-type (WT) mice were sensitized and challenged with the model allergen ovalbumin (OVA) and analysed for the presence of allergic disease parameters (allergy protocol). Some animals were tolerized by mucosal application of OVA prior to transferring the animals to the allergy protocol to analyse the effect of CD137 loss on tolerance induction (tolerance protocol). Eosinophilic airway inflammation, mucus hypersecretion, Th2 cytokine production and elevated allergen-specific serum IgE levels were increased equally in CD137⁻/⁻ and WT mice. Induction of tolerance resulted in comparable protection from the development of an allergic phenotype in both mouse strains. In addition, no significant differences could be identified in CD4⁺, CD8⁺ and forkhead box protein 3 (FoxP3⁺) regulatory T cells, supporting the conclusion that CD137⁻/⁻ mice show equal Th2-mediated immune responses compared to WT mice. Taken together, CD137⁻/⁻ mice and WT mice develop the same phenotype in a murine model of Th2-mediated allergic airway inflammation and respiratory tolerance.
Collapse
Affiliation(s)
- A-K Behrendt
- Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
16
|
Kwon B. Intervention with costimulatory pathways as a therapeutic approach for graft-versus-host disease. Exp Mol Med 2011; 42:675-83. [PMID: 20820112 DOI: 10.3858/emm.2010.42.10.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Graft-versus-host disease (GVHD) is mediated by mature donor T cells contained in the hematopoietic stem cell graft. During the development of GVHD, signaling through a variety of costimulatory receptors plays an important role in allogeneic T cell responses. Even though delivery of costimulatory signals is a prerequisite for full activation of donor T cells in the phase of their interactions with host APCs, their involvement with GVHD might occur over multiple stages. Like many other aspects of GVHD, promise of therapeutic interventions with costimulatory pathways has been gleaned from preclinical models. In this review, I summarize some of the advances in roles of costimulatory molecules in GVHD pathophysiology and discuss preclinical approaches that warrant further exploration in the clinic, focusing on novel strategies to delete pathogenic T cells.
Collapse
Affiliation(s)
- Byungsuk Kwon
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea.
| |
Collapse
|
17
|
Choi S, Reddy P. HDAC inhibition and graft versus host disease. Mol Med 2011; 17:404-16. [PMID: 21298214 DOI: 10.2119/molmed.2011.00007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 01/07/2011] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors are currently used clinically as anticancer drugs. Recent data have demonstrated that some of these drugs have potent antiinflammatory or immunomodulatory effects at noncytotoxic doses. The immunomodulatory effects have shown potential for therapeutic benefit after allogeneic bone marrow transplantation in several experimental models of graft versus host disease (GVHD). These effects, at least in part, result from the ability of HDAC inhibitors (HDACi) to suppress the function of host antigen presenting cells such as dendritic cells (DC). HDACi reduce the dendritic cell (DC) responses, in part, by enhancing the expression of indoleamine 2,3-dioxygenase (IDO) in a signal transducer and activator of transcription-3 (STAT-3) dependent manner. They also alter the function of other immune cells such as T regulatory cells and natural killer (NK) cells, which also play important roles in the biology of GVHD. Based on these observations, a clinical trial has been launched to evaluate the impact of HDAC inhibitors on clinical GVHD. The experimental, mechanistic studies along with the brief preliminary observations from the ongoing clinical trial are discussed in this review.
Collapse
Affiliation(s)
- Sung Choi
- Department of Pediatrics, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48105, USA
| | | |
Collapse
|
18
|
T-cell costimulatory molecules in acute-graft-versus host disease: therapeutic implications. BONE MARROW RESEARCH 2010; 2011:976793. [PMID: 22046574 PMCID: PMC3195325 DOI: 10.1155/2011/976793] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 08/20/2010] [Indexed: 12/18/2022]
Abstract
Acute Graft-versus-host disease (GVHD) is a major complication after allogeneic hematopoietic stem cell transplantation. Although this process is thought to consist of several phases, T-cell activation plays a critical role in the pathogenesis of acute GVHD. To become efficient effectors, T-cells require additional costimulation after T-cell receptor signaling. A number of molecules are involved in costimulation of T-cells such as CD28, CD40L, CD30, OX40, 4-1BB, ICOS, and LIGHT. The system is regulated by inhibitory molecules, CTLA-4, and PD-1. There is experimental evidence that those molecules are implicated in the pathogenesis of GHVD. We describe how these molecules are involved in acute GVHD and how the blockade of costimulatory molecules may have potential implications for the treatment of patients with acute GVHD.
Collapse
|
19
|
Miller JS, Warren EH, van den Brink MRM, Ritz J, Shlomchik WD, Murphy WJ, Barrett AJ, Kolb HJ, Giralt S, Bishop MR, Blazar BR, Falkenburg JHF. NCI First International Workshop on The Biology, Prevention, and Treatment of Relapse After Allogeneic Hematopoietic Stem Cell Transplantation: Report from the Committee on the Biology Underlying Recurrence of Malignant Disease following Allogeneic HSCT: Graft-versus-Tumor/Leukemia Reaction. Biol Blood Marrow Transplant 2010; 16:565-86. [PMID: 20152921 DOI: 10.1016/j.bbmt.2010.02.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 02/05/2010] [Indexed: 01/06/2023]
Abstract
The success of allogeneic hematopoietic stem cell transplantation (HSCT) depends on the infusion of benign stem cells as well as lymphocytes capable of participating in a graft-versus-tumor/leukemia (GVL) reaction. Clinical proof of concept is derived from studies showing increased relapse after the infusion of lymphocyte depleted hematopoietic grafts as well as the therapeutic efficacy of donor lymphocyte infusions without chemotherapy to treat relapse in some diseases. Despite this knowledge, relapse after allogeneic HSCT is common with rates approaching 40% in those with high-risk disease. In this review, we cover the basic biology and potential application to exploit adaptive T cell responses, minor histocompatibility antigens, contraction and suppression mechanisms that hinder immune responses, adaptive B cell responses and innate NK cell responses, all orchestrated in a GVL reaction. Optimal strategies to precisely balance immune responses to favor GVL without harmful graft-versus-host disease (GVHD) are needed to protect against relapse, treat persistent disease and improve disease-free survival after HSCT.
Collapse
Affiliation(s)
- Jeffrey S Miller
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The use of allogeneic hematopoietic cell transplantation (HCT) has increased as new techniques have been developed for transplantation in patients who previously would not have been considered HCT candidates. However, its efficacy continued to be limited by the development of frequent and severe acute GVHD. The complex and intricate pathophysiology of acute GVHD is a consequence of interactions between the donor and host innate and adaptive immune responses. Multiple inflammatory molecules and cell types are implicated in the development of GVHD that can be categorized as: (1) triggers that initiate GVHD by therapy-induced tissue damage and the antigen disparities between host and graft tissue; (2) sensors that detect the triggers, that is, process and present alloantigens; (3) mediators such as T-cell subsets (naive, memory, regulatory, Th17 and natural killer T cells) and (4) the effectors and amplifiers that cause damage of the target organs. These multiple inflammatory molecules and cell types that are implicated in the development of GVHD have been described with models that use stepwise cascades. Herein, we provide a novel perspective on the immunobiology of acute GVHD and briefly discuss some of the outstanding questions and limitations of the model systems.
Collapse
|
21
|
Abstract
During the past decade, progress in basic immunology has been impressive. In parallel, whereas our understanding of the pathophysiology of acute graft-versus-host disease (GVHD) has greatly improved, so has our knowledge of the complexities of the immune system. Much of the immunobiology of acute GVHD has been gleaned from preclinical models and far less from correlations with clinical observations or therapeutic interventions. In this review, we summarize some of the major advances in GVHD pathophysiology, including the translation of these from the bench to the bedside, and discuss preclinical approaches that warrant further exploration in the clinic.
Collapse
|
22
|
Wang C, Lin GHY, McPherson AJ, Watts TH. Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol Rev 2009; 229:192-215. [PMID: 19426223 DOI: 10.1111/j.1600-065x.2009.00765.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SUMMARY The tumor necrosis factor receptor family member 4-1BB plays a key role in the survival of activated and memory CD8(+) T cells. Depending on the disease model, 4-1BB can participate at different stages and influence different aspects of the immune response, likely due to the differential expression of receptor and ligand relative to other costimulatory molecules. Studies comparing mild versus severe influenza infection of mice suggest that the immune system uses inducible receptors such as 4-1BB to prolong the immune response when pathogens take longer to clear. The expression of 4-1BB on diverse cell types, evidence for bidirectional as well as receptor-independent signaling by 4-1BBL, the unexpected hyperproliferation of 4-1BB-deficient T cells, and complex effects of agonistic anti-4-1BB therapy have revealed additional roles for the 4-1BB/4-1BBL receptor/ligand pair in the immune system. In this review, we discuss these diverse roles of 4-1BB and its ligand in the immune response, exploring possible mechanisms for the observed complexities and implications for therapeutic applications of 4-1BB/4-1BBL.
Collapse
Affiliation(s)
- Chao Wang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
23
|
Induction of lethal graft-versus-host disease by anti-CD137 monoclonal antibody in mice prone to chronic graft-versus-host disease. Biol Blood Marrow Transplant 2009; 15:306-14. [PMID: 19203721 DOI: 10.1016/j.bbmt.2008.11.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 11/30/2008] [Indexed: 11/23/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is an increasingly frequent complication of allogeneic stem cell transplantation. We previously showed that anti-CD137 monoclonal antibody (mAb) can cure advanced cGVHD by inducing activation-induced cell death of donor T cells. In this study, we examined whether administration of anti-CD137 mAb can prevent the development of cGVHD after bone marrow transplantation (BMT) in mice conditioned with total body irradiation (TBI). We used the B10.D2-->Balb/c (H-2(d)) minor histocompatibility antigen-mismatched model, which reflects clinical and pathological symptoms of human cGVHD. A single injection of anti-CD137 mAb was administered immediately after BMT. In contrast to the results obtained from the curing model of cGVHD, anti-CD137 given simultaneously with BMT resulted in lethal GVHD. Histopathologic evaluation revealed inflammation and damage of target organs from acute GVHD (aGVHD) in anti-CD137-treated mice. Anti-CD137-induced lethal aGVHD required host cells, as well as irradiation and mature donor T cells. Apparently, anti-CD137 mAb rapidly induced activation of donor T cells and sustained their activation status under the inflammatory condition triggered by irradiation. When given on day 12 after irradiation and BMT, anti-CD137 mAb could still exacerbate GVHD, but when given on day 30, it could not. Our data demonstrate that anti-CD137 mAb can amplify inflammation induced by host preconditioning, subsequently resulting in lethal aGVHD; thus, alleviating irradiation-induced toxicity is critical to allow the use of anti-CD137 mAb as GVHD prophylaxis.
Collapse
|
24
|
Li XC, Rothstein DM, Sayegh MH. Costimulatory pathways in transplantation: challenges and new developments. Immunol Rev 2009; 229:271-93. [DOI: 10.1111/j.1600-065x.2009.00781.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Lynch DH. The promise of 4-1BB (CD137)-mediated immunomodulation and the immunotherapy of cancer. Immunol Rev 2009; 222:277-86. [PMID: 18364008 DOI: 10.1111/j.1600-065x.2008.00621.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The continuing efforts in biomedical research to develop new therapies for cancer are entering an exciting new phase. Research over the past two to three decades has yielded a much more detailed understanding of the complexities of the cellular and molecular interactions involved in the generation and regulation of immune responses. We are also gaining insights into the mechanisms by which tumors evade or escape immune recognition and by which they become resistant to various existing chemotherapeutic and/or radiotherapeutic strategies. A clear conclusion that can be drawn from these studies is that effective treatments of cancer will become much more multifaceted and will include immunotherapeutic approaches. The identification and molecular cloning of genes encoding the receptors and ligands that play crucial roles in the generation and regulation of immune responses provides exciting new opportunities to induce and enhance effective endogenous immune responses to cancer. In this regard, the genes that comprise the tumor necrosis factor and tumor necrosis factor receptor superfamilies show particular promise. One receptor:ligand pair (4-1BB/CD137 and 4-1BBL/CD137L) is emerging as a target with important potential in its ability to enhance the generation of effective tumor-specific immune responses in situ. The results of the studies cited in this review highlight the potentials of 4-1BB-mediated immunotherapy.
Collapse
Affiliation(s)
- David H Lynch
- Bainbridge Biopharma Consulting, Bainbridge Island, WA, USA.
| |
Collapse
|
26
|
Wölfl M, Kuball J, Eyrich M, Schlegel PG, Greenberg PD. Use of CD137 to study the full repertoire of CD8+ T cells without the need to know epitope specificities. Cytometry A 2008; 73:1043-9. [PMID: 18561198 DOI: 10.1002/cyto.a.20594] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD137 (4-1BB) is a member of the TNFR-family with costimulatory function, triggering prosurvival signals in activated T-cells. Upregulation of CD137 upon stimulation allows identifying and isolating live, human antigen-specific CD8+ T-cells of all phenotypes, and therefore provides a comprehensive detection method. Furthermore responses against antigen mixtures can be easily detected, enabling antigen discovery in a stepwise deconvoluting approach. In this article, we will discuss various aspects of this methodology, including potential pitfalls as well as a variety of applications, as illustrated by examples from our laboratory.
Collapse
|
27
|
Toubai T, Sun Y, Reddy P. GVHD pathophysiology: is acute different from chronic? Best Pract Res Clin Haematol 2008; 21:101-17. [DOI: 10.1016/j.beha.2008.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Characterization of in vitro antimurine thymocyte globulin-induced regulatory T cells that inhibit graft-versus-host disease in vivo. Blood 2007; 111:1726-34. [PMID: 18025149 DOI: 10.1182/blood-2007-08-106526] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Antithymocyte/antilymphocyte globulins are polyclonal antihuman T-cell antibodies used clinically to treat acute transplant rejection. These reagents deplete T cells, but a rabbit antihuman thymocyte globulin has also been shown to induce regulatory T cells in vitro. To examine whether antithymocyte globulin-induced regulatory cells might be functional in vivo, we generated a corresponding rabbit antimurine thymocyte globulin (mATG) and tested its ability to induce regulatory cells in vitro and whether those cells can inhibit acute graft-versus-host disease (GVHD) in vivo upon adoptive transfer. In vitro, mATG induces a population of CD4(+)CD25(+) T cells that express several cell surface molecules representative of regulatory T cells. These cells do not express Foxp3 at either the protein or mRNA level, but do show suppressive function both in vitro and in vivo when adoptively transferred into a model of GVHD. These results demonstrate that in a murine system, antithymocyte globulin induces cells with suppressive activity that also function in vivo to protect against acute GVHD. Thus, in both murine and human systems, antithymocyte globulins not only deplete T cells, but also appear to generate regulatory cells. The in vitro generation of regulatory cells by anti-thymocyte globulins could provide ad-ditional therapeutic modalities for immune-mediated disease.
Collapse
|
29
|
Sun Y, Tawara I, Toubai T, Reddy P. Pathophysiology of acute graft-versus-host disease: recent advances. Transl Res 2007; 150:197-214. [PMID: 17900507 PMCID: PMC2084257 DOI: 10.1016/j.trsl.2007.06.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 05/30/2007] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many malignant and nonmalignant hematologic diseases. Donor T cells from the allografts are critical for the success of this effective therapy. Unfortunately these T cells not only recognize and attack the disease cells/tissues but also the other normal tissues of the recipient as "foreign" or "nonself" and cause severe, immune-mediated toxicity, graft-versus-host disease (GVHD). Several insights into the complex pathophysiology of GVHD have been gained from recent experimental observations, which show that acute GVHD is a consequence of interactions between both the donor and the host innate and adaptive immune systems. These insights have identified a role for a variety of cytokines, chemokines, novel T-cell subsets (naĩve, memory, regulatory, and NKT cells) and for non-T cells of both the donor and the host (antigen presenting cells, delta T cells, B cells, and NK cells) in modulating the induction, severity, and maintenance of acute GVHD. This review will focus on the immunobiology of experimental acute GVHD with an emphasis on the recent observations.
Collapse
Affiliation(s)
- Yaping Sun
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Isao Tawara
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Tomomi Toubai
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Pavan Reddy
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| |
Collapse
|
30
|
Welniak LA, Blazar BR, Murphy WJ. Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu Rev Immunol 2007; 25:139-70. [PMID: 17129175 DOI: 10.1146/annurev.immunol.25.022106.141606] [Citation(s) in RCA: 369] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) has evolved into an effective adoptive cellular immunotherapy for the treatment of a number of cancers. The immunobiology of allogeneic HSCT is unique in transplantation in that it involves potential immune recognition and attack between both donor and host. Much of the immunobiology of allogeneic HSCT has been gleaned from preclinical models and correlation with clinical observations. We review our current understanding of some of the issues that affect the success of this therapy, including host-versus-graft (HVG) reactions, graft-versus-host disease (GVHD), graft-versus-tumor (GVT) activity, and restoration of functional immunity to prevent transplant-related opportunistic infections. We also review new strategies to optimize the GVT and improve overall immune function while reducing GVHD and graft rejection.
Collapse
Affiliation(s)
- Lisbeth A Welniak
- Department of Microbiology and Immunology, University of Nevada, Reno, Nevada 89557, USA.
| | | | | |
Collapse
|
31
|
Fuse S, Bellfy S, Yagita H, Usherwood EJ. CD8+ T cell dysfunction and increase in murine gammaherpesvirus latent viral burden in the absence of 4-1BB ligand. THE JOURNAL OF IMMUNOLOGY 2007; 178:5227-36. [PMID: 17404306 PMCID: PMC4402709 DOI: 10.4049/jimmunol.178.8.5227] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Studies of costimulatory receptors belonging to the TNFR family have revealed their diverse roles in affecting different stages of the T cell response. The 4-1BB ligand (4-1BBL)/4-1BB pathway has emerged as a receptor-ligand pair that impacts not the initial priming, but later phases of the T cell response, such as sustaining clonal expansion and survival, maintaining memory CD8(+) T cells, and supporting secondary expansion upon Ag challenge. Although the role of this costimulatory pathway in CD8(+) T cell responses to acute viral infections has been well-studied, its role in controlling chronic viral infections in vivo is not known to date. Using the murine gammaherpesvirus-68 (MHV-68) model, we show that 4-1BBL-deficient mice lack control of MHV-68 during latency and show significantly increased latent viral loads. In contrast to acute influenza infection, the numbers of MHV-68-specific memory CD8(+) T cells were maintained during latency. However, the virus-specific CD8(+) T cells showed defects in function, including decreased cytolytic function and impaired secondary expansion. Thus, 4-1BBL deficiency significantly affects the function, but not the number, of virus-specific CD8(+) T cells during gammaherpesvirus latency, and its absence results in an increased viral burden. Our study suggests that the 4-1BB costimulatory pathway plays an important role in controlling chronic viral infections.
Collapse
Affiliation(s)
- Shinichiro Fuse
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756
| | - Sarah Bellfy
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Edward J. Usherwood
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756
- Address correspondence and reprint requests to Dr. Edward J. Usherwood, Department of Microbiology and Immunology, Dartmouth Medical School, 1 Medical Center Drive, Lebanon, NH 03756.
| |
Collapse
|
32
|
T cell costimulatory pathways in allograft rejection and tolerance: what's new? Curr Opin Organ Transplant 2007; 12:17-22. [PMID: 27792084 DOI: 10.1097/mot.0b013e328012b651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW The induction or maintenance of allograft tolerance remains an ongoing challenge. One approach to the development of tolerogenic strategies involves targeting T-cell costimulatory signals. The two most widely studied costimulatory pathways are the CD28/B7 and CD40/CD154 pathways, and blocking of both, either alone or in combination, has been shown to prolong allograft survival in rodents and primates. Recent work revealed that CD28-independent 'novel costimulatory' pathways exist, which can mediate allograft rejection. This review highlights new studies on the role of these pathways in allograft rejection and tolerance. RECENT FINDINGS NK cells, CD8 T cells, and memory-effector responses appear to be less dependent on CD28 and/or CD154 costimulation, and utilize these novel costimulatory pathways for activation. The novel signals differ in their ability to enhance or inhibit T-cell activation, in their temporal and spatial expression patterns, and in their relative importance within the hierarchy of costimulatory signals. Emerging data suggest that costimulatory molecules are expressed on parenchymal cells. SUMMARY A strategy to induce tolerance might involve targeting novel costimulatory signals particularly at the time point of maximal expression, and delivering negative signals, while inhibiting the positive signals that drive T-cell alloresponses.
Collapse
|
33
|
Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L. Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 2007; 7:95-106. [PMID: 17251916 DOI: 10.1038/nrc2051] [Citation(s) in RCA: 458] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing immune responses with immunostimulatory monoclonal antibodies (mAbs) directed to immune-receptor molecules is a new and exciting strategy in cancer therapy. This expanding class of agents functions on crucial receptors, either antagonizing those that suppress immune responses or activating others that amplify immune responses. Complications such as autoimmunity and systemic inflammation are problematic side effects associated with these agents. However, promising synergy has been observed in preclinical models using combinations of immunostimulatory antibodies and other immunotherapy strategies or conventional cancer therapies. Importantly, mAbs of this type have now entered clinical trials with encouraging initial results.
Collapse
Affiliation(s)
- Ignacio Melero
- Centro de Investigación Médica Aplicada (CIMA) and Clínica Universitaria, Universidad de Navarra, Pamplona, Spain.
| | | | | | | | | |
Collapse
|
34
|
Zhu Y, Zhu G, Luo L, Flies AS, Chen L. CD137 stimulation delivers an antigen-independent growth signal for T lymphocytes with memory phenotype. Blood 2007; 109:4882-9. [PMID: 17244673 PMCID: PMC1885532 DOI: 10.1182/blood-2006-10-043463] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CD137 has long been recognized as a costimulatory receptor for growth and functional maturation of recently activated T cells in the presence of T-cell receptor signal. In this report, we present the fact that, in the absence of MHC and antigen, triggering of CD137 by an agonist monoclonal antibody induces vigorous growth of both CD8(+) and CD4(+) T cells with memory phenotype, whereas it does not affect naive T cells. Moreover, T cells with memory phenotype accumulate progressively in transgenic mice overexpressing CD137 ligand. CD137-mediated proliferation of memory T cells is directly through CD137 on T cells and does not require IL-15 and IFN-gamma. Our results define a new role of CD137 signal in the growth of memory T cells.
Collapse
Affiliation(s)
- Yuwen Zhu
- Department of Dermatology, Johns Hopkins University School of Mediicne, 1550 Orleans Street, Baltimore, MD 21231, USA
| | | | | | | | | |
Collapse
|
35
|
Harrison JM, Bertram EM, Ramshaw IA. Exploiting 4-1BB Costimulation for Enhancing Antiviral Vaccination. Viral Immunol 2006; 19:593-601. [PMID: 17201654 DOI: 10.1089/vim.2006.19.593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
4-1BB, a member of the tumor necrosis factor receptor (TNFR) superfamily, is emerging as an important costimulatory molecule, particularly in the regulation of CD8(+) T cell responses. Costimulation through 4-1BB, such as by utilizing agonistic anti-4-1BB monoclonal antibodies, has been well studied in various tumor models. However, 4-1BB is also an important regulator of antiviral CD8(+) T cell responses. This review summarizes these findings and describes how 4-1BB is beginning to be exploited in terms of boosting antiviral vaccine responses.
Collapse
Affiliation(s)
- Jodie M Harrison
- Department of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | |
Collapse
|
36
|
Harrison JM, Bertram EM, Boyle DB, Coupar BEH, Ranasinghe C, Ramshaw IA. 4-1BBL coexpression enhances HIV-specific CD8 T cell memory in a poxvirus prime-boost vaccine. Vaccine 2006; 24:6867-74. [PMID: 17050052 DOI: 10.1016/j.vaccine.2006.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 06/06/2006] [Accepted: 06/09/2006] [Indexed: 02/02/2023]
Abstract
We have constructed a recombinant fowlpox virus expressing HIV antigens and the costimulatory molecule 4-1BBL. When included in the boost, but not the prime of a poxvirus prime-boost strategy, 4-1BBL significantly enhanced the anti-HIV T cell response generated to this vaccination in BALB/c mice, as detected by ex vivo IFNgamma ELISPOT responses, intracellular cytokine staining to HIV Gag antigens, and enumeration of Gag-reactive CD8 T cells. 4-1BBL however, is not capable of modulating the CD4 T cell response, nor the antibody response to this vaccination strategy. Enhancement of the T cell response by 4-1BBL continues into the memory phase, as detected 2 months post vaccination. This data is the first to show modulation of the immune response to a viral vaccine by coexpression of 4-1BBL and supports this strategy as an exciting approach for enhancement of T cell memory in prime-boost vaccines.
Collapse
Affiliation(s)
- Jodie M Harrison
- Department of Immunology and Genetics, The John Curtin School of Medical Research, Canberra City, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Paz Morante M, Briones J, Canto E, Sabzevari H, Martino R, Sierra J, Rodriguez-Sanchez JL, Vidal S. Activation-associated phenotype of CD3 T cells in acute graft-versus-host disease. Clin Exp Immunol 2006; 145:36-43. [PMID: 16792671 PMCID: PMC1942002 DOI: 10.1111/j.1365-2249.2006.03104.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
During the effector phase of graft-versus-host disease (GvHD) response, donor T cells play an essential role and they are believed to change the expression of activation and co-stimulatory markers associated with functional alloreactivity. We analysed the expression of CD25, CD69, HLA-DR, CD154 and CD134 on CD4+ and CD8+ T cells by flow cytometry during acute GvHD (aGvHD) in 24 patients receiving human leucocyte antigen (HLA)-identical stem cell transplants. Expression of these molecules in nine patients with stages I-IV aGvHD was compared with 15 patients without aGvHD (n = 15). Serial analysis showed that peripheral blood of aGvHD patients presented a significant increase of CD4+ CD25+ cells (P < 0.03), CD4+ CD69+ (P < 0.04) and CD4+ CD134+ cells (P < 0.01). Additionally, there was a significant increase in CD8+ cells expressing CD134 (P = 0.007) and CD154 (P = 0.02). After resolution of aGvHD, the increased expression of these molecules returned to values comparable to patients without aGvHD. Only two of the 15 patients without clinical signs of aGvHD presented activated T cells that could not be attributed to development of aGvHD. In summary, our data show that multiple activation molecules are preferentially up-regulated on CD4+ and CD8+ T cells from patients with aGvHD. These patients had a significant increase in the expression of the co-stimulatory molecules CD134 and CD154.
Collapse
Affiliation(s)
- M Paz Morante
- Department of Immunology, Hospital Sant Pau, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sun Y, Blink SE, Liu W, Lee Y, Chen B, Solway J, Weinstock J, Chen L, Fu YX. Inhibition of Th2-Mediated Allergic Airway Inflammatory Disease by CD137 Costimulation. THE JOURNAL OF IMMUNOLOGY 2006; 177:814-21. [PMID: 16818735 DOI: 10.4049/jimmunol.177.2.814] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The engagement of CD137 (4-1BB), an inducible T cell costimulatory receptor and member of the TNF receptor superfamily, by agonistic Abs can promote strong tumor and viral immunity mediated by CD8(+) T cells and stimulate IFN-gamma production. However, its role in Th2-mediated immune responses has not been well defined. To address this issue, we studied the function of CD137 engagement using an allergic airway disease model in which the mice were sensitized with inactivated Schistosoma mansoni eggs followed by S. mansoni egg Ag challenge directly in the airways and Th1/2 cytokine production was monitored. Interestingly, treatment of C57BL/6 mice with agonistic anti-CD137 (2A) during sensitization completely prevents allergic airway inflammation, as shown by a clear inhibition of T cell and eosinophil infiltration into the lung tissue and airways, accompanied by diminished Th2 cytokine production and reduced serum IgE levels, as well as a reduction of airway hyperresponsiveness. At various time points after immunization, restimulated splenocytes from 2A-treated mice displayed reduced proliferation and Th2 cytokine production. In accordance with this, agonistic Ab to CD137 can directly coinhibit Th2 responses in vitro although it costimulates Th1 responses. CD137-mediated suppression of Th2 response is independent of IFN-gamma and T regulatory cells. Our study has identified a novel pathway to inhibit Th2 responses in a CD137-dependent fashion.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antigens, CD/immunology
- Antigens, CD/physiology
- Antigens, Helminth/administration & dosage
- Bronchial Hyperreactivity/immunology
- Bronchial Hyperreactivity/pathology
- Bronchial Hyperreactivity/prevention & control
- Bronchoalveolar Lavage Fluid/immunology
- Cells, Cultured
- Down-Regulation/immunology
- Female
- GATA3 Transcription Factor/antagonists & inhibitors
- GATA3 Transcription Factor/biosynthesis
- GATA3 Transcription Factor/genetics
- Immunoglobulin E/biosynthesis
- Interferon-gamma/physiology
- Lung/immunology
- Lung/metabolism
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Receptors, Nerve Growth Factor/agonists
- Receptors, Nerve Growth Factor/immunology
- Receptors, Nerve Growth Factor/physiology
- Receptors, Tumor Necrosis Factor/agonists
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/physiology
- Schistosoma mansoni/immunology
- Schistosomiasis/immunology
- Schistosomiasis/pathology
- Schistosomiasis/prevention & control
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9
Collapse
Affiliation(s)
- Yonglian Sun
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hentschel N, Krusch M, Kiener PA, Kolb HJ, Salih HR, Schmetzer HM. Serum levels of sCD137 (4-1BB) ligand are prognostic factors for progression in acute myeloid leukemia but not in non-Hodgkin's lymphoma. Eur J Haematol 2006; 77:91-101. [PMID: 16800841 DOI: 10.1111/j.1600-0609.2006.00679.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CD178 (Fas/APO-1 ligand) and CD137 ligand (CD137L) have previously been described in sera of patients with various malignancies and play an important role in the pathogenesis of various diseases. Recently, we demonstrated that low levels of soluble (s) CD137L and high levels of sCD178 correlate significantly with a long progression free survival in patients with myelodysplastic syndrome (MDS). In this study, we correlated sCD137L and sCD178 levels in sera of 42 samples of patients with acute myeloid leukemia (AML) and 46 samples of patients with non-Hodgkin's lymphoma (NHL) with stages, subtypes, and the clinical course of the diseases and determined cut-off values with maximum probability for significant differentiation between cases with higher/lower probability for progress free survival. In contrast to patients with MDS, surprisingly no correlation between sCD178 levels and different subtypes and stages or with prognosis in AML or NHL were observed. Regarding sCD137L, NHL-patients displayed lower levels compared with AML. Statistically significant higher median levels of sCD137L are present in patients with undifferentiated AML (M1/M2, 1,470 pg/mL), poor cytogenetic risk (288 pg/mL) and higher levels of BM-blasts (186 pg/mL) compared with patients with monocytoid AML (M4/M5, 89 pg/mL), intermediate cytogenetic risk (59 pg/mL) and lower levels of BM-blasts (14 pg/mL) respectively. Furthermore, in AML patients sCD137L levels correlate significantly with the probabilities to achieve complete remission (CR), stay in CR or with progress of the disease. Taken together, our data demonstrate that sCD137L can be used as a prognostic factor not only in MDS but also in AML.
Collapse
MESH Headings
- 4-1BB Ligand
- Acute Disease
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Blast Crisis/blood
- Child, Preschool
- Disease Progression
- Disease-Free Survival
- Fas Ligand Protein
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Myeloid/blood
- Lymphoma, B-Cell/blood
- Lymphoma, Non-Hodgkin/blood
- Lymphoma, T-Cell/blood
- Male
- Membrane Glycoproteins/blood
- Middle Aged
- Neoplasm Proteins/blood
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/blood
- Prognosis
- Retrospective Studies
- Solubility
- Survival Analysis
- Tumor Necrosis Factors/blood
Collapse
Affiliation(s)
- N Hentschel
- Medical Department III, Klinikum Grosshadern, University of Munich, Munich, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Verdeil G, Puthier D, Nguyen C, Schmitt-Verhulst AM, Auphan-Anezin N. STAT5-mediated signals sustain a TCR-initiated gene expression program toward differentiation of CD8 T cell effectors. THE JOURNAL OF IMMUNOLOGY 2006; 176:4834-42. [PMID: 16585578 DOI: 10.4049/jimmunol.176.8.4834] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Poorly functional effector CD8 T cells are generated in some pathological situations, including responses to weakly antigenic tumors. To identify the molecular bases for such defective differentiation, we monitored gene expression in naive monoclonal CD8 T cells during responses to TCR ligands of different affinity. We further evaluated whether responses to weak Ags may be improved by addition of cytokines. Transient gene expression was observed for a cluster of genes in response to the weak TCR agonist. Strikingly, gene expression was stabilized by low dose IL-2. This IL-2-sustained gene cluster encoded notably transcripts for CD25, cytolytic effector molecules (granzyme B) and TNF-R family costimulatory molecules (glucocorticoid-induced TNF-R (GITR), OX40, and 4-1BB). IL-2-enhanced surface expression or function was also demonstrated in vivo for these genes. A constitutive active form of STAT5 mimicked the IL-2 effect by sustaining transcripts for the same gene cluster. Consistent with this, under conditions of low avidity TCR engagement and IL-2 treatment, endogenous STAT5 binding to 4-1BB and granzyme B promoters was demonstrated by chromatin immunoprecipitation. This study highlights those genes for which IL-2, via STAT5 activation, acts as a stabilizer of gene regulation initiated by TCR signals, contributing to the development of a complete CD8 T cell effector program.
Collapse
Affiliation(s)
- Grégory Verdeil
- Centre d'Immunologie de Marseille-Luminy, Centre National de la Recherche Scientifique-Institut National de la Santé et de la Recherche Médicale-Université de la Méditerranée, Marseille, France
| | | | | | | | | |
Collapse
|
41
|
Maerten P, Kwon BS, Shen C, De Hertogh G, Cadot P, Bullens DMA, Overbergh L, Mathieu C, Van Assche G, Geboes K, Rutgeerts P, Ceuppens JL. Involvement of 4-1BB (CD137)-4-1BBligand interaction in the modulation of CD4 T cell-mediated inflammatory colitis. Clin Exp Immunol 2006; 143:228-36. [PMID: 16412046 PMCID: PMC1809580 DOI: 10.1111/j.1365-2249.2005.02991.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
4-1BB ligand (4-1BBL) expressed on antigen-presenting cells interacts with 4-1BB on activated T cells (especially CD8+ cells) and co-stimulates the latter to secrete cytokines and to proliferate. The role of 4-1BB-4-1BBL interaction was studied here in a model of colitis based on naive CD4+ T cell transfer to SCID mice, a disease model in which CD8 cells do not take part. We found that CD4+ T cells from 4-1BB-deficient mice, after transfer in SCID mice, proliferated more rapidly compared to wild-type CD4+ T cells. Mice reconstituted with naive CD4+ T cells from 4-1BB-deficient mice developed colitis, however, with a mixed Th1/Th2 response, in contrast to the Th1-type response in mice reconstituted with wild-type naive CD4+ T cells. Importantly, this altered cytokine response did not temper colitis severity. Although it has been reported previously that 4-1BB co-stimulation may contribute to regulatory T cell functioning, we found that CD4+CD25+ regulatory T cells from 4-1BB-deficient mice were perfectly able to prevent naive CD4+ T cell-induced colitis. In conclusion, our data provide evidence that 4-1BB-4-1BBL interaction modulates the effector CD4+ T cell-driven immune response and cytokine production in experimental colitis without affecting regulatory T cell function.
Collapse
Affiliation(s)
- P Maerten
- Laboratory of Experimental Immunology, University Hospital, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fowler DH. Shared biology of GVHD and GVT effects: Potential methods of separation. Crit Rev Oncol Hematol 2006; 57:225-44. [PMID: 16207532 DOI: 10.1016/j.critrevonc.2005.07.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2005] [Revised: 06/30/2005] [Accepted: 07/15/2005] [Indexed: 01/14/2023] Open
Abstract
The difficult separation of clinical graft-versus-tumor (GVT) effects from graft-versus-host disease (GVHD) reflects their shared biology. Experimental approaches to mediate GVT effects while limiting GVHD include: (1) allograft T cell depletion followed by immune enhancement; (2) modulation of T cell dose or T cell subset composition; (3) donor lymphocyte infusion; (4) reduced-intensity host preparation; (5) modulation of Th1/Th2 and Tc1/Tc2 cell balance; (6) cytokine therapy or neutralization; (7) T regulatory cell therapy; (8) co-stimulatory pathway modulation; (9) chemokine pathway modulation; (10) induction of antigen-specific T cells; (11) alloreactive NK cell therapy; and (12) targeted pharmaceutical inhibition of proteosome, mammalian target of rapamycin, and histone deacetylase pathways. Clearly, a multitude of approaches exist that hold promise for separating GVT effects from GVHD. Future success in this endeavor will require a strong commitment towards translational research and continued advances in cell, vaccine, cytokine, monoclonal antibody, and targeted molecular therapy.
Collapse
Affiliation(s)
- Daniel H Fowler
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, CRC, 3-East Laboratories, 3-3330, Bethesda, MD 20892-MSC 1203, USA.
| |
Collapse
|
43
|
Lee J, Lee EN, Kim EY, Park HJ, Chang CY, Jung DY, Choi SY, Lee SK, Lee KW, Kwon GY, Joh JW, Kim SJ. Administration of agonistic anti-4-1BB monoclonal antibody leads to the amelioration of inflammatory bowel disease. Immunol Lett 2006; 101:210-6. [PMID: 16026855 DOI: 10.1016/j.imlet.2005.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/23/2005] [Accepted: 06/09/2005] [Indexed: 01/01/2023]
Abstract
4-1BB (CDw 137), a member of the tumor necrosis factor receptor (TNFR) superfamily, is a costimulatory receptor primarily expressed on activated T cells. It has been shown that the administration of agonistic anti-4-1BB monoclonal antibody (mAb) enhances tumor immunity and allogenic immune responses. Paradoxically, we found that the administration of anti-4-1BB mAb reduced the incidence and severity of inflammatory bowel disease. In this study, we investigated the effects of anti-4-1BB mAb in a murine intestinal inflammation model, which induced by the hapten reagent, 2,4,6-trinitrobenzene sulfonic acid (TNBS) and mimics immunologic characteristics of human Crohn's disease (CD). Colitis was induced by rectal administration of 2mg of TNBS in 35% ethanol using a vinyl catheter positioned 4cm from the anus. All mice were sacrificed 3 and 10 days after the TNBS administration. The disease activity index (DAI), histological changes of the colon and production of cytokines (IL-2, IL-4, IL-10 and IFN-gamma) were evaluated. The surface molecules of T cells in peripheral blood, spleen and mesenteric lymph nodes were analyzed by flow cytometry. When mice were treated with anti-4-1BB mAb, improvement in both wasting and histopathologic signs of colonic inflammation was observed. The increase a number of splenic CD4(+)CD25(+) T cells and decreased synthesis of the Th1 cytokine IL-2 also occurred. Interestingly, increased production of Th1 cytokine IFN-gamma and proportion of CD8(+) T cells were observed in mice treated with anti-4-1BB mAb in comparison to the colitic mice. These studies show, for the first time, that agonistic anti-4-1BB mAb can improve experimental colitis by reduction of IL-2 and augmentation of CD4(+)CD25(+) regulatory T cells. TNBS colitis is Th1-mediated and has similar histologic features and distribution of inflammation to CD. This study suggests that anti-4-1BB mAb therapy could be effective in the treatment of patients with CD.
Collapse
Affiliation(s)
- Jienny Lee
- Transplantation Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Kangnam-Ku, Seoul 135-710, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Vidric M, Suh WK, Dianzani U, Mak TW, Watts TH. Cooperation between 4-1BB and ICOS in the immune response to influenza virus revealed by studies of CD28/ICOS-deficient mice. THE JOURNAL OF IMMUNOLOGY 2006; 175:7288-96. [PMID: 16301634 DOI: 10.4049/jimmunol.175.11.7288] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CD28, ICOS, and 4-1BB each play distinct roles in the CD8 T cell response to influenza virus. CD28-/- mice are severely impaired in primary CD8 T cell expansion and fail to mount a secondary response to influenza. Influenza-specific CD8 T cells expand normally in ICOS-/- mice, with only a small and transient defect late in the primary response and an unimpaired secondary response. Conversely, 4-1BB/4-1BBL interaction is dispensable for the primary CD8 T cell response to influenza, but maintains CD8 T cell survival and controls the size of the secondary response. Previous results showed that a single dose of agonistic anti-4-1BB Ab at priming allowed partial restoration of primary CD8 T cell expansion and full recovery of the secondary CD8 T cell responses to influenza in CD28-/- mice. In this study we show that anti-4-1BB fails to correct the CD8 T cell defect in CD28-/-ICOS-/- mice, suggesting that ICOS partially compensates for CD28 in this model. In support of this hypothesis, we found that anti-4-1BB enhances ICOS expression on both T cell subsets and that anti-4-1BB and anti-ICOS can synergistically activate CD4 and CD8 T cells. Furthermore, ICOS and 4-1BB can cooperate to directly stimulate isolated CD28-/- CD8 T cells. These results reveal a novel interaction between the ICOS and 4-1BB costimulatory pathways as well as unexpected redundancy between CD28 and ICOS in primary CD8 T cell expansion. These findings have implications for costimulation of human T cell responses in diseases such as AIDS or rheumatoid arthritis, in which CD28- T cells accumulate.
Collapse
Affiliation(s)
- Mariana Vidric
- Department of Immunology, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
45
|
Abstract
A key factor driving the underlying pathyphysiology of "chronic rejection" in organ transplantation is a persistent T cell-mediated alloimmune response. Members of both the B7 family (including CD28 and CTLA4) and the tumor necrosis factor (TNF) family, in which the CD40-CD154 pathway is preeminent, play key roles in the T cell response following alloantigen presentation. "Positive" costimulatory molecules promote full T cell activation, whereas a subgroup of costimulatory molecules delivers "negative" costimulatory signals that function to downregulate alloimmune responses. Emerging experimental data point to key differences between the various positive and negative costimulatory molecules in terms of their temporal and spatial expression profiles, their effects of T and B cell subsets, and on their relative importance within the hierarchy of costimulatory signals delivered to the T cell. In this review, we address the role of costimulatory pathways in allograft rejection and tolerance. We will address in particular the potential of the novel costimulatory pathways as targets for tolerance induction in CD28-independent alloresponses, and we will review emerging data that suggests a key role for parenchymal expression of negative costimulatory molecules in the termination of pathogenic immune responses.
Collapse
Affiliation(s)
- Michael R Clarkson
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
46
|
Shiao SL, McNiff JM, Pober JS. Memory T Cells and Their Costimulators in Human Allograft Injury. THE JOURNAL OF IMMUNOLOGY 2005; 175:4886-96. [PMID: 16210590 DOI: 10.4049/jimmunol.175.8.4886] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Both CD4(+) and CD8(+) human memory but not naive T cells respond to allogeneic human dermal microvascular endothelial cells (HDMEC) in vitro by secreting cytokines and by proliferating. Several recently identified costimulators, namely, 4-1BB ligand, ICOS ligand, and OX40 ligand, are up-regulated on cultured HDMEC in response to TNF or coculture with allogeneic T cells. Blockade of these costimulators each partially reduces IFN-gamma and IL-2 secretion and proliferation of previously resting memory T cells. The effects of these costimulators are overlapping but not identical. Memory but not naive T cells are the principal effectors of microvascular injury in human skin allografts following adoptive transfer into immunodeficient mice. Furthermore, blocking 4-1BB ligand, ICOS ligand, or OX40 ligand in this model reduces human skin allograft injury and T cell effector molecule expression. These data demonstrate that human memory T cells respond to microvascular endothelial cells and can injure allografts in vivo without priming. Furthermore, several recently described costimulators contribute to these processes.
Collapse
Affiliation(s)
- Stephen L Shiao
- Section of Immunobiology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
47
|
Kufner S, Fleischer RP, Kroell T, Schmid C, Zitzelsberger H, Salih H, Valle FD, Treder W, Schmetzer HM. Serum-free generation and quantification of functionally active Leukemia-derived DC is possible from malignant blasts in acute myeloid leukemia and myelodysplastic syndromes. Cancer Immunol Immunother 2005; 54:953-70. [PMID: 15789235 PMCID: PMC11032985 DOI: 10.1007/s00262-004-0657-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 12/06/2004] [Indexed: 11/30/2022]
Abstract
Functional dendritic cells (DC) are professional antigen presenting cells (APC) and can be generated in vitro from leukemic cells from acute myeloid leukemia AML patients, giving rise to APC of leukemic origin presenting leukemic antigens (DC(leu)). We have already shown that DC can be successfully generated from AML and myeloplastic syndromes (MDS) cells in serum-free 'standard' medium (X-vivo + GM-CSF + IL-4 +TNFalpha + FL) in 10-14 days. In this study, we present that DC counts generated from mononuclear cells (MNC) varied between 20% (from 55 MDS samples), 34% (from 100 AML samples) and 25% (from 38 healthy MNC samples) medium. Between 53% and 58% of DC are mature CD83+ DC. DC harvests were highest in monocytoid FAB types (AML-M4/M5, MDS-CMML) and independent from cytogenetic risk groups, demonstrating that DC-based strategies can be applied for patients with all cytogenetic risk groups. Proof of the clonal derivation of DC generated was obtained in five AML and four MDS cases with a combined FISH/immunophenotype analysis (FISH-IPA): The clonal numerical chromosome aberrations of the diseases were regularly codetectable with DC markers; however, not with all clonal cells being convertible to leukemia-derived DC(leu) (on average, 53% of blasts in AML or MDS). To the contrary, not all DC generated carried the clonal aberration (on average, 51% of DC). In 41 AML and 13 MDS cases with a suitable antigen expression, we could confirm FISH-IPA data by Flow cytometry: although DC(leu) are regularly detectable, on average only 57% of blasts in AML and 64% of blasts in MDS were converted to DC(leu). After coculture with DC in mixed lymphocyte reactions (MLR), autologous T cells from AML and MDS patients proliferate and upregulate costimulatory receptors. The specific lysis of leukemic cells by autologous T cells could be demonstrated in three cases with AML in a Fluorolysis assay. In six cases with only few DC(leu) or few vital T cells available after the DC/MLR procedure, no lysis of allogeneic or autologous leukemic cells was seen, pointing to the crucial role of both partners in the lysis process. We conclude: (1) the generation of DC is regularly possible in AML and also in MDS under serum-free conditions. (2) Clonal/leukemia-derived DC(leu) can be regularly generated from MDS and AML-MNC; however, not with all blasts being converted to DC(leu) and not all DC generated carrying leukemic markers. We recommend to select DC(leu) for vaccinations or ex vivo T-cell activations to avoid contaminations with non-converted blasts and non-leukemia-derived DC and to improve the harvest of specific, anti-leukemic T cells. DC and DC-primed T cells could provide a practical strategy for the immunotherapy of AML and MDS.
Collapse
Affiliation(s)
- S. Kufner
- Medical Department III, Klinikum Grosshadern, University of Munich, Marchioninistr 15, 81377 Munich, Germany
| | - R. Pelka Fleischer
- Medical Department III, Klinikum Grosshadern, University of Munich, Marchioninistr 15, 81377 Munich, Germany
| | - T. Kroell
- Medical Department III, Klinikum Grosshadern, University of Munich, Marchioninistr 15, 81377 Munich, Germany
| | - C. Schmid
- Medical Department III, Klinikum Grosshadern, University of Munich, Marchioninistr 15, 81377 Munich, Germany
| | | | - H. Salih
- Medical Department, University of Tuebingen, Germany
| | | | - W. Treder
- Municipial Hospital Oldenburg, Germany
| | - H. M. Schmetzer
- Medical Department III, Klinikum Grosshadern, University of Munich, Marchioninistr 15, 81377 Munich, Germany
| |
Collapse
|
48
|
Blazar BR, Murphy WJ. Bone marrow transplantation and approaches to avoid graft-versus-host disease (GVHD). Philos Trans R Soc Lond B Biol Sci 2005; 360:1747-67. [PMID: 16147539 PMCID: PMC1569546 DOI: 10.1098/rstb.2005.1701] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Haematopoietic stem cell transplantation (HSCT) offers promise for the treatment of haematological and immune disorders, solid tumours, and as a tolerance inducing regimen for organ transplantation. Allogeneic HSCTs engraftment requires immunosuppression and the anti-tumour effects are dependent upon the immune effector cells that are contained within or generated from the donor graft. However, significant toxicities currently limit its efficacy. These problems include: (i) graft-versus-host disease (GVHD) in which donor T cells attack the recipient resulting in multi-organ attack and morbidity, (ii) a profound period of immune deficiency following HSCT, and (iii) donor graft rejection. Currently available methods to prevent or treat GVHD with systemic immunosuppression can lead to impaired immune recovery, increased opportunistic infections, and higher relapse rates. This review will provide an overview of GVHD pathophysiology and discuss the roles of various cells, pathways, and factors in the GVHD generation process and in the preservation of graft-versus-tumour effects. Variables that need to be taken into consideration in attempting to extrapolate preclinical results to the clinical paradigm will be highlighted.
Collapse
Affiliation(s)
- Bruce R Blazar
- Division of Blood and Marrow Transplantation, Cancer Center and Department of Pediatrics, MMC 109, University of Minnesota, Minneapolis, 55455, USA.
| | | |
Collapse
|
49
|
Cannons JL, Chamberlain G, Howson J, Smink LJ, Todd JA, Peterson LB, Wicker LS, Watts TH. Genetic and functional association of the immune signaling molecule 4-1BB (CD137/TNFRSF9) with type 1 diabetes. J Autoimmun 2005; 25:13-20. [PMID: 15998581 DOI: 10.1016/j.jaut.2005.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 04/01/2005] [Accepted: 04/29/2005] [Indexed: 10/25/2022]
Abstract
Idd9.3, a locus that determines susceptibility to the autoimmune disease type 1 diabetes (T1D) in the nonobese diabetic (NOD) mouse, has been mapped to the distal region of chromosome 4. In the current report we reduce the size of the Idd9.3 interval to 1.2Mb containing 15 genes, including one encoding the immune signaling molecule, 4-1BB, which shows amino acid variation between diabetes sensitive and resistant strains. 4-1BB, a member of the TNF receptor superfamily expressed by a variety of immune cells, mediates growth and survival signals for T cells. Functional analyses demonstrate that purified T cells from NOD congenic mice with the C57BL/10 (B10) allele at Idd9.3 produce more IL-2 and proliferate more vigorously in response to anti-CD3 plus immobilized 4-1BB ligand than T cells from NOD mice with the NOD allele at Idd9.3. In contrast, the response to anti-CD3 plus anti-CD28 costimulation was indistinguishable between the congenic strains, pinpointing the differences in NOD versus NOD.B10 Idd9.3 T cell responses to the 4-1BB costimulatory pathway. These data provide evidence in support of Idd9.3 as the locus encoding 4-1BB and suggest that the 4-1BB signaling pathway could have a primary function in the etiology of autoimmune disease.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/physiology
- Cell Line
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Female
- Humans
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Physical Chromosome Mapping
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/physiology
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9
Collapse
Affiliation(s)
- Jennifer L Cannons
- Department of Immunology, 1 King's College Circle, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wrzesinski C, Restifo NP. Less is more: lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based anti-tumor immunotherapy. Curr Opin Immunol 2005; 17:195-201. [PMID: 15766681 PMCID: PMC2254579 DOI: 10.1016/j.coi.2005.02.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Adoptive T-cell immunotherapy combined with non-myeloablative lymphodepletion has emerged as the most effective immunotherapy treatment for patients with metastatic melanoma (objective response rates of 50%). The mechanisms underlying this major advance in the field of immunotherapy include the elimination of regulatory elements and increased access to activating cytokines. This results in the activation of low-affinity T cells, enabling them to destroy tumors. We propose that a more complete depletion of the patient's immune system followed by transplantation with hematopoietic stem cells, which can be genetically modified, would be more effective in the treatment of metastatic cancer.
Collapse
Affiliation(s)
- Claudia Wrzesinski
- National Cancer Institute, National Institutes of health, Clinical Research Center, Room 3-5816, 10 Center Drive, Bethesda, MD 20892-1201, USA.
| | | |
Collapse
|