1
|
Humblin E, Korpas I, Prokhnevska N, Vaidya A, Lu J, van der Heide V, Filipescu D, Bobrowski T, Marks A, Park MD, Bernstein E, Brown BD, Lujambio A, Dominguez-Sola D, Rosenberg BR, Kamphorst AO. ICOS limits memory-like properties and function of exhausted PD-1 + CD8 T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.611518. [PMID: 39345453 PMCID: PMC11429760 DOI: 10.1101/2024.09.16.611518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
During persistent antigen stimulation, PD-1 + CD8 T cells are maintained by progenitor exhausted PD-1 + TCF-1 + CD8 T cells (Tpex). Tpex respond to PD-1 blockade, and regulation of Tpex differentiation into more functional Tex is of major interest for cancer immunotherapies. Tpex express high levels of Inducible Costimulator (ICOS), but the role of ICOS for PD-1 + CD8 T cell responses has not been addressed. In chronic infection, ICOS-deficiency increased both number and quality of virus-specific CD8 T cells, with accumulation of effector-like Tex due to enhanced survival. Mechanistically, loss of ICOS signaling potentiated FoxO1 activity and memory-like features of Tpex. In mice with established chronic infection, ICOS-Ligand blockade resulted in expansion of effector-like Tex and reduction in viral load. In a mouse model of hepatocellular carcinoma, ICOS inhibition improved cytokine production by tumor-specific PD-1 + CD8 T cells and delayed tumor growth. Overall, we show that ICOS limits CD8 T cell responses during chronic antigen exposure.
Collapse
|
2
|
Tili E, Otsu H, Commisso TL, Palamarchuk A, Balatti V, Michaille JJ, Nuovo GJ, Croce CM. MiR-155-targeted IcosL controls tumor rejection. Proc Natl Acad Sci U S A 2024; 121:e2408649121. [PMID: 38980909 PMCID: PMC11260163 DOI: 10.1073/pnas.2408649121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/08/2024] [Indexed: 07/11/2024] Open
Abstract
Elevated levels of miR-155 in solid and liquid malignancies correlate with aggressiveness of the disease. In this manuscript, we show that miR-155 targets transcripts encoding IcosL, the ligand for Inducible T-cell costimulator (Icos), thus impairing the ability of T cells to recognize and eliminate malignant cells. We specifically found that overexpression of miR-155 in B cells of Eµ-miR-155 mice causes loss of IcosL expression as they progress toward malignancy. Similarly, in mice where miR-155 expression is controlled by a Cre-Tet-OFF system, miR-155 induction led to malignant infiltrates lacking IcosL expression. Conversely, turning miR-155 OFF led to tumor regression and emergence of infiltrates composed of IcosL-positive B cells and Icos-positive T cells forming immunological synapses. Therefore, we next engineered malignant cells to express IcosL, in order to determine whether IcosL expression would increase tumor infiltration by cytotoxic T cells and reduce tumor progression. Indeed, overexpressing an IcosL-encoding cDNA in MC38 murine colon cancer cells before injection into syngeneic C57BL6 mice reduced tumor size and increased intratumor CD8+ T cell infiltration, that formed synapses with IcosL-expressing MC38 cells. Our results underscore the fact that by targeting IcosL transcripts, miR-155 impairs the infiltration of tumors by cytotoxic T cells, as well as the importance of IcosL on enhancing the immune response against malignant cells. These findings should lead to the development of more effective anticancer treatments based on maintaining, increasing, or restoring IcosL expression by malignant cells, along with impairing miR-155 activity.
Collapse
Affiliation(s)
- Esmerina Tili
- Department of Anesthesiology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH43210
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Hajime Otsu
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Teresa L. Commisso
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Alexey Palamarchuk
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Veronica Balatti
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Jean-Jacques Michaille
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | | | - Carlo M. Croce
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| |
Collapse
|
3
|
Dong Y, Hu X, Xie S, Song Y, He Y, Jin W, Ni Y, Wang Z, Ding L. ICOSLG-associated immunological landscape and diagnostic value in oral squamous cell carcinoma: a prospective cohort study. Front Cell Dev Biol 2023; 11:1257314. [PMID: 37842091 PMCID: PMC10569602 DOI: 10.3389/fcell.2023.1257314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Background: We previously reported that stroma cells regulate constitutive and inductive PD-L1 (B7-H1) expression and immune escape of oral squamous cell carcinoma. ICOSLG (B7-H2), belongs to the B7 protein family, also participates in regulating T cells activation for tissue homeostasis via binding to ICOS and inducing ICOS+ T cell differentiation as well as stimulate B-cell activation, while it appears to be abnormally expressed during carcinogenesis. Clarifying its heterogeneous clinical expression pattern and its immune landscape is a prerequisite for the maximum response rate of ICOSLG-based immunotherapy in a specific population. Methods: This retrospective study included OSCC tissue samples (n = 105) to analyze the spatial distribution of ICOSLG. Preoperative peripheral blood samples (n = 104) and independent tissue samples (n = 10) of OSCC were collected to analyze the changes of immunocytes (T cells, B cells, NK cells and macrophages) according to ICOSLG level in different cellular contents. Results: ICOSLG is ubiquitous in tumor cells (TCs), cancer-associated fibroblasts (CAFs) and tumor infiltrating lymphocytes (TILs). Patients with high ICOSLGTCs or TILs showed high TNM stage and lymph node metastasis, which predicted a decreased overall or metastasis-free survival. This sub-cohort was featured with diminished CD4+ T cells and increased Foxp3+ cells in invasive Frontier in situ, and increased absolute numbers of CD3+CD4+ and CD8+ T cells in peripheral blood. ICOSLG also positively correlated with other immune checkpoint molecules (PD-L1, CSF1R, CTLA4, IDO1, IL10, PD1). Conclusion: Tumor cell-derived ICOSLG could be an efficient marker of OSCC patient stratification for precision immunotherapy.
Collapse
Affiliation(s)
- Yuexin Dong
- Central Laboratory of Stomatology, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China
| | - Xinyang Hu
- Central Laboratory of Stomatology, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China
| | - Shixin Xie
- Central Laboratory of Stomatology, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory of Stomatology, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China
| | - Yijia He
- Central Laboratory of Stomatology, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China
| | - Wanyong Jin
- Central Laboratory of Stomatology, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China
| | - Yanhong Ni
- Central Laboratory of Stomatology, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China
| | - Zhiyong Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China
| | - Liang Ding
- Central Laboratory of Stomatology, Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Comprehensive characterization of B7 family members in NSCLC and identification of its regulatory network. Sci Rep 2023; 13:4311. [PMID: 36922519 PMCID: PMC10017798 DOI: 10.1038/s41598-022-26776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/20/2022] [Indexed: 03/17/2023] Open
Abstract
B7 family members act as co-stimulatory or co-inhibitory molecules in the adaptive immune system. Thisstudy aimed to investigate the dysregulation, prognostic value and regulatory network of B7 family members in non-small cell lung cancer (NSCLC). Data for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients were extracted from public databases. Patient prognosis was determined by Kaplan-Meier analysis. The downstream signaling pathways of B7 family were identified via GO and KEGG analysis. The key B7 related genes were selected by network, correlation and functional annotation analysis. Most B7 family members were dysregulated in LUAD and LUSC. The expression of B7-1/2/H3 and B7-H5 were significantly associated with overall survival in LUAD and LUSC, respectively. The major pathway affected by B7 family was the EGFR tyrosine kinase inhibitor resistance and ErbB signaling pathway. MAPK1, MAPK3 and MAP2K1 were pivotal B7 related genes in both LUAD and LUSC. This study reveals an overall dysregulation of B7 family members in NSCLC and highlights the potential of combination use of tyrosine kinase inhibitors or MEK/ERK inhibitors with B7 member blockade for NSCLC treatment.
Collapse
|
5
|
Wang J, Shi F, Shan A. Transcriptome profile and clinical characterization of ICOS expression in gliomas. Front Oncol 2022; 12:946967. [PMID: 36276141 PMCID: PMC9582985 DOI: 10.3389/fonc.2022.946967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Inducible co-stimulator (ICOS), an immune costimulatory molecule, has been found to play an essential role across various malignancies. This study investigated the transcriptome profile and clinical characterization of ICOS in gliomas. Clinical information and transcriptome data of 301 glioma samples were downloaded from the Chinese Glioma Genome Atlas (CGGA) dataset for analysis (CGGA301 cohort). Furthermore, the results were validated in 697 samples with RNAseq data from the TCGA glioma dataset and 325 gliomas with RNAseq data from the CGGA325 dataset. Immunohistochemistry was performed to evaluate ICOS protein expression across different WHO grades in a tissue microarray (TMA). In addition, single-cell sequencing data from CGGA and GSE 163108 datasets were used to analyze the ICOS expression across different cell types. Statistical analyses and figure production were performed with R-language. We found that ICOS was significantly upregulated in higher-grade, IDH wild type, and mesenchymal subtype of gliomas. Functional enrichment analyses revealed that ICOS was mainly involved in glioma-related immune response. Moreover, ICOS showed a robust correlation with other immune checkpoints, including the PD1/PD-L1/PD-L2 pathway, CTLA4, ICOSL (ICOS ligand), and IDO1. Subsequent Tumor Immune Dysfunction and Exclusion (TIDE) analysis revealed that GBM patients with higher ICOS expression seemed to be more sensitive to ICB therapy. Furthermore, based on seven clusters of metagenes, GSVA identified that ICOS was tightly associated with HCK, LCK, MHC-I, MHC-II, STAT1, and interferon, especially with LCK, suggesting a strong correlation between ICOS and T-cell activity in gliomas. In cell lineage analysis, Higher-ICOS gliomas tended to recruit dendritic cells, monocytes, and macrophages into the tumor microenvironment. Single-cell sequencing analysis indicated that ICOS was highly expressed by regulatory T cells (Tregs), especially in mature Tregs. Finally, patients with higher ICOS had shortened survival. ICOS was an independent prognosticator for glioma patients. In conclusion, higher ICOS is correlated with more malignancy of gliomas and is significantly associated with Treg activity among glioma-related immune responses. Moreover, ICOS could contribute as an independent prognostic factor for gliomas. Our study highlights the role of ICOS in glioma and may facilitate therapeutic strategies targeting ICOS for glioma.
Collapse
Affiliation(s)
- Jin Wang
- *Correspondence: Jin Wang, ; Fei Shi, ; Aijun Shan,
| | - Fei Shi
- *Correspondence: Jin Wang, ; Fei Shi, ; Aijun Shan,
| | - Aijun Shan
- *Correspondence: Jin Wang, ; Fei Shi, ; Aijun Shan,
| |
Collapse
|
6
|
Depierreux DM, Altenburg AF, Soday L, Fletcher-Etherington A, Antrobus R, Ferguson BJ, Weekes MP, Smith GL. Selective modulation of cell surface proteins during vaccinia infection: A resource for identifying viral immune evasion strategies. PLoS Pathog 2022; 18:e1010612. [PMID: 35727847 PMCID: PMC9307158 DOI: 10.1371/journal.ppat.1010612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/22/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
The interaction between immune cells and virus-infected targets involves multiple plasma membrane (PM) proteins. A systematic study of PM protein modulation by vaccinia virus (VACV), the paradigm of host regulation, has the potential to reveal not only novel viral immune evasion mechanisms, but also novel factors critical in host immunity. Here, >1000 PM proteins were quantified throughout VACV infection, revealing selective downregulation of known T and NK cell ligands including HLA-C, downregulation of cytokine receptors including IFNAR2, IL-6ST and IL-10RB, and rapid inhibition of expression of certain protocadherins and ephrins, candidate activating immune ligands. Downregulation of most PM proteins occurred via a proteasome-independent mechanism. Upregulated proteins included a decoy receptor for TRAIL. Twenty VACV-encoded PM proteins were identified, of which five were not recognised previously as such. Collectively, this dataset constitutes a valuable resource for future studies on antiviral immunity, host-pathogen interaction, poxvirus biology, vector-based vaccine design and oncolytic therapy. Vaccinia virus (VACV) is the vaccine used to eradicate smallpox and an excellent model for studying host-pathogen interactions. Many VACV-mediated immune evasion strategies are known, however how immune cells recognise VACV-infected cells is incompletely understood because of the complexity of surface proteins regulating such interactions. Here, a systematic study of proteins on the cell surface at different times during infection with VACV is presented. This shows not only the precise nature and kinetics of appearance of VACV proteins, but also the selective alteration of cellular surface proteins. The latter thereby identified potential novel immune evasion strategies and host proteins regulating immune activation. Comprehensive comparisons with published datasets provided further insight into mechanisms used to regulate surface protein expression. Such comparisons also identified proteins that are targeted by both VACV and human cytomegalovirus (HCMV), and which are therefore likely to represent host proteins regulating immune recognition and activation. Collectively, this work provides a valuable resource for studying viral immune evasion mechanisms and novel host proteins critical in host immunity.
Collapse
Affiliation(s)
| | | | - Lior Soday
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
| | | | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
| | | | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
- * E-mail: (MPW); (GLS)
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, United Kingdom
- * E-mail: (MPW); (GLS)
| |
Collapse
|
7
|
Kuske M, Haist M, Jung T, Grabbe S, Bros M. Immunomodulatory Properties of Immune Checkpoint Inhibitors-More than Boosting T-Cell Responses? Cancers (Basel) 2022; 14:1710. [PMID: 35406483 PMCID: PMC8996886 DOI: 10.3390/cancers14071710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
The approval of immune checkpoint inhibitors (ICI) that serve to enhance effector T-cell anti-tumor responses has strongly improved success rates in the treatment of metastatic melanoma and other tumor types. The currently approved ICI constitute monoclonal antibodies blocking cytotoxic T-lymphocyte-associated protein (CTLA)-4 and anti-programmed cell death (PD)-1. By this, the T-cell-inhibitory CTLA-4/CD80/86 and PD-1/PD-1L/2L signaling axes are inhibited. This leads to sustained effector T-cell activity and circumvents the immune evasion of tumor cells, which frequently upregulate PD-L1 expression and modulate immune checkpoint molecule expression on leukocytes. As a result, profound clinical responses are observed in 40-60% of metastatic melanoma patients. Despite the pivotal role of T effector cells for triggering anti-tumor immunity, mounting evidence indicates that ICI efficacy may also be attributable to other cell types than T effector cells. In particular, emerging research has shown that ICI also impacts innate immune cells, such as myeloid cells, natural killer cells and innate lymphoid cells, which may amplify tumoricidal functions beyond triggering T effector cells, and thus improves clinical efficacy. Effects of ICI on non-T cells may additionally explain, in part, the character and extent of adverse effects associated with treatment. Deeper knowledge of these effects is required to further develop ICI treatment in terms of responsiveness of patients to treatment, to overcome resistance to ICI and to alleviate adverse effects. In this review we give an overview into the currently known immunomodulatory effects of ICI treatment in immune cell types other than the T cell compartment.
Collapse
Affiliation(s)
| | | | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.K.); (M.H.); (T.J.); (S.G.)
| |
Collapse
|
8
|
Peng C, Huggins MA, Wanhainen KM, Knutson TP, Lu H, Georgiev H, Mittelsteadt KL, Jarjour NN, Wang H, Hogquist KA, Campbell DJ, Borges da Silva H, Jameson SC. Engagement of the costimulatory molecule ICOS in tissues promotes establishment of CD8 + tissue-resident memory T cells. Immunity 2022; 55:98-114.e5. [PMID: 34932944 PMCID: PMC8755622 DOI: 10.1016/j.immuni.2021.11.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 08/13/2021] [Accepted: 11/19/2021] [Indexed: 01/13/2023]
Abstract
Elevated gene expression of the costimulatory receptor Icos is a hallmark of CD8+ tissue-resident memory (Trm) T cells. Here, we examined the contribution of ICOS in Trm cell differentiation. Upon transfer into WT mice, Icos-/- CD8+ T cells exhibited defective Trm generation but produced recirculating memory populations normally. ICOS deficiency or ICOS-L blockade compromised establishment of CD8+ Trm cells but not their maintenance. ICOS ligation during CD8+ T cell priming did not determine Trm induction; rather, effector CD8+ T cells showed reduced Trm differentiation after seeding into Icosl-/- mice. IcosYF/YF CD8+ T cells were compromised in Trm generation, indicating a critical role for PI3K signaling. Modest transcriptional changes in the few Icos-/- Trm cells suggest that ICOS-PI3K signaling primarily enhances the efficiency of CD8+ T cell tissue residency. Thus, local ICOS signaling promotes production of Trm cells, providing insight into the contribution of costimulatory signals in the generation of tissue-resident populations.
Collapse
Affiliation(s)
- Changwei Peng
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew A. Huggins
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kelsey M. Wanhainen
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Todd P. Knutson
- Minnesota Supercomputing Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Hanbin Lu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hristo Georgiev
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA,Current address: Institute of immunology, Hannover Medical School, Hannover D-30625, Germany
| | - Kristen L. Mittelsteadt
- Benaroya Research Institute and Department of Immunology University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Nicholas N. Jarjour
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Haiguang Wang
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristin A. Hogquist
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel J. Campbell
- Benaroya Research Institute and Department of Immunology University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Henrique Borges da Silva
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA,Current address: Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Stephen C. Jameson
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA,Corresponding author and lead contact:
| |
Collapse
|
9
|
Bolandi N, Derakhshani A, Hemmat N, Baghbanzadeh A, Asadzadeh Z, Afrashteh Nour M, Brunetti O, Bernardini R, Silvestris N, Baradaran B. The Positive and Negative Immunoregulatory Role of B7 Family: Promising Novel Targets in Gastric Cancer Treatment. Int J Mol Sci 2021; 22:ijms221910719. [PMID: 34639059 PMCID: PMC8509619 DOI: 10.3390/ijms221910719] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer (GC), with a heterogeneous nature, is the third leading cause of death worldwide. Over the past few decades, stable reductions in the incidence of GC have been observed. However, due to the poor response to common treatments and late diagnosis, this cancer is still considered one of the lethal cancers. Emerging methods such as immunotherapy with immune checkpoint inhibitors (ICIs) have transformed the landscape of treatment for GC patients. There are presently eleven known members of the B7 family as immune checkpoint molecules: B7-1 (CD80), B7-2 (CD86), B7-H1 (PD-L1, CD274), B7-DC (PDCD1LG2, PD-L2, CD273), B7-H2 (B7RP1, ICOS-L, CD275), B7-H3 (CD276), B7-H4 (B7x, B7S1, Vtcn1), B7-H5 (VISTA, Gi24, DD1α, Dies1 SISP1), B7-H6 (NCR3LG1), B7-H7 (HHLA2), and Ig-like domain-containing receptor 2 (ILDR2). Interaction of the B7 family of immune-regulatory ligands with the corresponding receptors resulted in the induction and inhibition of T cell responses by sending co-stimulatory and co-inhibitory signals, respectively. Manipulation of the signals provided by the B7 family has significant potential in the management of GC.
Collapse
Affiliation(s)
- Nadia Bolandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95100 Catania, Italy;
| | - Nicola Silvestris
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, 70124 Bari, Italy
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| |
Collapse
|
10
|
Holst CB, Christensen IJ, Vitting-Seerup K, Skjøth-Rasmussen J, Hamerlik P, Poulsen HS, Johansen JS. Plasma IL-8 and ICOSLG as prognostic biomarkers in glioblastoma. Neurooncol Adv 2021; 3:vdab072. [PMID: 34286278 PMCID: PMC8284624 DOI: 10.1093/noajnl/vdab072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background CNS immune privilege has been challenged in recent years. Glioblastoma (GBM) immune dysfunction includes complex interactions with the immune system outside the CNS. The aim of this study was to determine diagnostic and prognostic potential of immune-related proteins in plasma in GBM and interrogate biomarker presence in the brain tumor microenvironment (TME). Methods One hundred and fifty-eight patients with glioma WHO grade II–IV were included. Plasma collected at surgery was screened for 92 proteins using proximity extension assay technology and related to clinical outcome. Secretion and expression of candidate prognostic biomarkers were subsequently analyzed in 8 GBM cell lines and public RNAseq data. Results Plasma levels of 20 out of 92 screened proteins were significantly different in patients with GBM compared to patients with astrocytoma WHO grade II–III. High plasma interleukin-8 (IL-8) (hazard ratio [HR] = 1.52; P = .0077) and low CD244 (HR = 0.36; P = .0004) were associated with short progression-free survival and high plasma IL-8 (HR = 1.40; P = .044) and low ICOS ligand (ICOSLG) (HR = 0.17; P = .0003) were associated with short overall survival (OS) in newly diagnosed patients with GBM. A similar trend was found for ICOSLG (HR = 0.34; P = .053) in recurrent GBM. IL-8 was mostly secreted and expressed by mesenchymal GBM cell lines and expressed by vascular cells and immune cells in the TME. This was also the case for ICOSLG, although less consistent, and with additional expression in tumor-associated oligodendrocytes. Conclusions High plasma IL-8 and low ICOSLG at surgery are associated with short OS in newly diagnosed GBM. Source of plasma ICOSLG may be found outside the TME.
Collapse
Affiliation(s)
- Camilla Bjørnbak Holst
- Department of Radiation Biology, Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Brain Tumor Biology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark.,Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Kristoffer Vitting-Seerup
- Brain Tumor Biology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark.,Bioinformatics Centre, Department of Biology, Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jane Skjøth-Rasmussen
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Petra Hamerlik
- Brain Tumor Biology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- Department of Radiation Biology, Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Julia Sidenius Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Zheng Z, Qiu X, Wu H, Chang L, Tang X, Zou L, Li J, Wu Y, Zhou J, Jiang S, Wan Y, Ni Q. TIPS: trajectory inference of pathway significance through pseudotime comparison for functional assessment of single-cell RNAseq data. Brief Bioinform 2021; 22:6255997. [PMID: 34370020 PMCID: PMC8425418 DOI: 10.1093/bib/bbab124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 01/18/2023] Open
Abstract
Recent advances in bioinformatics analyses have led to the development of novel tools enabling the capture and trajectory mapping of single-cell RNA sequencing (scRNAseq) data. However, there is a lack of methods to assess the contributions of biological pathways and transcription factors to an overall developmental trajectory mapped from scRNAseq data. In this manuscript, we present a simplified approach for trajectory inference of pathway significance (TIPS) that leverages existing knowledgebases of functional pathways and other gene lists to provide further mechanistic insights into a biological process. TIPS identifies key pathways which contribute to a process of interest, as well as the individual genes that best reflect these changes. TIPS also provides insight into the relative timing of pathway changes, as well as a suite of visualizations to enable simplified data interpretation of scRNAseq libraries generated using a wide range of techniques. The TIPS package can be run through either a web server or downloaded as a user-friendly GUI run in R, and may serve as a useful tool to help biologists perform deeper functional analyses and visualization of their single-cell data.
Collapse
Affiliation(s)
- Zihan Zheng
- Biowavelet Ltd., Chongqing, China.,Chongqing International Institute for Immunology, Chongqing, China
| | - Xin Qiu
- R&D Department, TCRCure Ltd., Chongqing, China
| | - Haiyang Wu
- R&D Department, TCRCure Ltd., Chongqing, China
| | - Ling Chang
- Department of Immunology, Army Medical University, Chongqing, China
| | - Xiangyu Tang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Liyun Zou
- Department of Immunology, Army Medical University, Chongqing, China
| | - Jingyi Li
- Chongqing International Institute for Immunology, Chongqing, China.,Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yuzhang Wu
- Department of Immunology, Army Medical University, Chongqing, China
| | | | - Shan Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Qingshan Ni
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| |
Collapse
|
12
|
Netherby-Winslow CS, Ayers KN, Lukacher AE. Balancing Inflammation and Central Nervous System Homeostasis: T Cell Receptor Signaling in Antiviral Brain T RM Formation and Function. Front Immunol 2021; 11:624144. [PMID: 33584727 PMCID: PMC7873445 DOI: 10.3389/fimmu.2020.624144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
Tissue-resident memory (TRM) CD8 T cells provide early frontline defense against regional pathogen reencounter. CD8 TRM are predominantly parked in nonlymphoid tissues and do not circulate. In addition to this anatomic difference, TRM are transcriptionally and phenotypically distinct from central-memory T cells (TCM) and effector-memory T cells (TEM). Moreover, TRM differ phenotypically, functionally, and transcriptionally across barrier tissues (e.g., gastrointestinal tract, respiratory tract, urogenital tract, and skin) and in non-barrier organs (e.g., brain, liver, kidney). In the brain, TRM are governed by a contextual milieu that balances TRM activation and preservation of essential post-mitotic neurons. Factors contributing to the development and maintenance of brain TRM, of which T cell receptor (TCR) signal strength and duration is a central determinant, vary depending on the infectious agent and modulation of TCR signaling by inhibitory markers that quell potentially pathogenic inflammation. This review will explore our current understanding of the context-dependent factors that drive the acquisition of brain (b)TRM phenotype and function, and discuss the contribution of TRM to promoting protective immune responses in situ while maintaining tissue homeostasis.
Collapse
Affiliation(s)
| | - Katelyn N Ayers
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, United States
| | - Aron E Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
13
|
Angulo G, Zeleznjak J, Martínez-Vicente P, Puñet-Ortiz J, Hengel H, Messerle M, Oxenius A, Jonjic S, Krmpotić A, Engel P, Angulo A. Cytomegalovirus restricts ICOSL expression on antigen-presenting cells disabling T cell co-stimulation and contributing to immune evasion. eLife 2021; 10:59350. [PMID: 33459589 PMCID: PMC7840182 DOI: 10.7554/elife.59350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Viral infections are controlled, and very often cleared, by activated T lymphocytes. The inducible co-stimulator (ICOS) mediates its functions by binding to its ligand ICOSL, enhancing T-cell activation and optimal germinal center (GC) formation. Here, we show that ICOSL is heavily downmodulated during infection of antigen-presenting cells by different herpesviruses. We found that, in murine cytomegalovirus (MCMV), the immunoevasin m138/fcr-1 physically interacts with ICOSL, impeding its maturation and promoting its lysosomal degradation. This viral protein counteracts T-cell responses, in an ICOS-dependent manner, and limits virus control during the acute MCMV infection. Additionally, we report that blockade of ICOSL in MCMV-infected mice critically regulates the production of MCMV-specific antibodies due to a reduction of T follicular helper and GC B cells. Altogether, these findings reveal a novel mechanism evolved by MCMV to counteract adaptive immune surveillance, and demonstrates a role of the ICOS:ICOSL axis in the host defense against herpesviruses.
Collapse
Affiliation(s)
- Guillem Angulo
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Jelena Zeleznjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Pablo Martínez-Vicente
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Joan Puñet-Ortiz
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Hartmut Hengel
- Institute of Virology, University Medical Center, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Stipan Jonjic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Astrid Krmpotić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
14
|
Iwata R, Hyoung Lee J, Hayashi M, Dianzani U, Ofune K, Maruyama M, Oe S, Ito T, Hashiba T, Yoshimura K, Nonaka M, Nakano Y, Norian L, Nakano I, Asai A. ICOSLG-mediated regulatory T-cell expansion and IL-10 production promote progression of glioblastoma. Neuro Oncol 2021; 22:333-344. [PMID: 31634400 DOI: 10.1093/neuonc/noz204] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Targeting immune checkpoint proteins has recently gained substantial attention due to the dramatic success of this strategy in clinical trials for some cancers. Inducible T-cell co-stimulator ligand (ICOSLG) is a member of the B7 family of immune regulatory ligands, expression of which in cancer is implicated in disease progression due to regulation of antitumor adaptive immunity. Although aberrant ICOSLG expression has been reported in glioma cells, the underlying mechanisms that promote glioblastoma (GBM) progression remain elusive. METHODS Here, we investigated a causal role for ICOSLG in GBM progression by analyzing ICOSLG expression in both human glioma tissues and patient-derived GBM sphere cells (GSCs). We further examined its immune modulatory effects and the underlying molecular mechanisms. RESULTS Bioinformatics analysis and GBM tissue microarray showed that upregulation of ICOSLG expression was associated with poor prognosis in patients with GBM. ICOSLG expression was upregulated preferentially in mesenchymal GSCs but not in proneural GSCs in a tumor necrosis factor-α/nuclear factor-kappaB-dependent manner. Furthermore, ICOSLG expression by mesenchymal GSCs promoted expansion of T cells that produced interleukin-10. Knockdown of the gene encoding ICOSLG markedly reduced GBM tumor growth in immune competent mice, with a concomitant downregulation of interleukin-10 levels in the tumor microenvironment. CONCLUSIONS Inhibition of the ICOSLG-inducible co-stimulator axis in GBM may provide a promising immunotherapeutic approach for suppressing a subset of GBM with an elevated mesenchymal signature.
Collapse
Affiliation(s)
- Ryoichi Iwata
- Department of Neurosurgery, Kansai Medical University, Hirakata, Japan
| | - Joo Hyoung Lee
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mikio Hayashi
- Department of Physiology, Kansai Medical University, Hirakata, Japan
| | - Umberto Dianzani
- Interdisciplinary Research Center of Autoimmune Diseases, Department of Health Sciences, "A. Avogadro" University of Eastern Piedmont, Novara, Italy
| | - Kohei Ofune
- Department of Neurosurgery, Kansai Medical University, Hirakata, Japan
| | - Masato Maruyama
- Department of Anatomy and Brain Science, Kansai Medical University, Hirakata, Japan
| | - Souichi Oe
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Japan
| | - Tomoki Ito
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Tetsuo Hashiba
- Department of Neurosurgery, Kansai Medical University, Hirakata, Japan
| | | | - Masahiro Nonaka
- Department of Neurosurgery, Kansai Medical University, Hirakata, Japan
| | - Yosuke Nakano
- Department of Anatomy and Brain Science, Kansai Medical University, Hirakata, Japan
| | - Lyse Norian
- Department of Nutrition Sciences, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ichiro Nakano
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Akio Asai
- Department of Neurosurgery, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
15
|
Jiang J, Ahuja S. Addressing Patient to Patient Variability for Autologous CAR T Therapies. J Pharm Sci 2021; 110:1871-1876. [PMID: 33340532 DOI: 10.1016/j.xphs.2020.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy clinical trials have had unprecedented success in the endeavors to cure cancer patients, particularly those having hematological cancers. As researchers learn more about the ways to make CAR T cells more effective to kill tumor cells, equally important will be understanding the differences between T cells from healthy donors and cancer patients and how these differences could affect ex vivo expansion of T cells during CAR T production. This undoubtedly could be a crucial factor in treating solid tumors, where CAR T cells are needed in significantly higher numbers. As the evidence for significant differences between the patients and healthy donors is compelling, an adaptable and robust production process should be designed to allow manufacture of the required CAR T cells for all cancer patients. Improving the fundamental understanding of the cellular metabolism and accompanying epigenetic and phenotypic changes during in vivo and ex vivo expansion of T cells will be just as important. Such discoveries will provide an invaluable tool box from which actionable knowledge could be drawn for designing an adaptable CAR T production process that is able to absorb the patient-to-patient variation.
Collapse
Affiliation(s)
- Jinlin Jiang
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD
| | - Sanjeev Ahuja
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD.
| |
Collapse
|
16
|
Amatore F, Ortonne N, Lopez M, Orlanducci F, Castellano R, Ingen-Housz-Oro S, De Croos A, Salvado C, Gorvel L, Goubard A, Collette Y, Bouabdallah R, Schiano JM, Bonnet N, Grob JJ, Gaulard P, Bagot M, Bensussan A, Berbis P, Olive D. ICOS is widely expressed in cutaneous T-cell lymphoma, and its targeting promotes potent killing of malignant cells. Blood Adv 2020; 4:5203-5214. [PMID: 33095875 PMCID: PMC7594390 DOI: 10.1182/bloodadvances.2020002395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
The treatment of advanced-stage cutaneous T-cell lymphoma (CTCL) remains an unmet medical need. Mogamulizumab, anti-KIR3DL2, and brentuximab vedotin (BV), an anti-CD30 antibody-drug conjugate (ADC) coupled with monomethyl-auristatin-E (MMAE), provided encouraging results, but new targeted therapies are needed. Inducible T-cell costimulator (ICOS), a T-cell costimulatory receptor, is a promising therapeutic target, not only because it is expressed by malignant T cells in CTCL but also because of its connection with the suppressive activity of regulatory T (Treg) cells. Immunohistochemical analysis revealed that ICOS was widely expressed by malignant cells in skin biopsy specimens from 52 patients with mycosis fungoides and Sézary syndrome (SS), as well as in involved node biopsy specimens from patients with SS. Furthermore, flow cytometry demonstrated its strong expression by circulating tumor cells in all our patients with SS. Percentages of ICOS+ Treg cells were significantly higher in patients with SS than in healthy donors. We then investigated the preclinical efficacy of anti-ICOS ADCs generated by coupling murine anti-ICOS monoclonal antibodies with MMAE and pyrrolobenzodiazepine. In 3 CTCL cell lines (Myla, MJ, and HUT78), we observed a significant dose-dependent decrease in cell viability in the presence of anti-ICOS ADCs. In addition, anti-ICOS-MMAE ADCs had an in vitro and in vivo efficacy superior to BV in a mouse xenograft model (MyLa). Finally, we assessed the efficacy of anti-ICOS ADCs in ICOS+ patient-derived xenografts from patients with SS and angioimmunoblastic T-cell lymphoma. Collectively, our findings provide the preliminary basis for a therapeutic trial.
Collapse
Affiliation(s)
- Florent Amatore
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Centre National de la Recherche Scientifique U7258, Aix Marseille Université, Institut Paoli-Calmettes, Marseille, France
- Department of Dermatology and Skin Cancers, Hôpital de la Timone, Aix Marseille Université, Marseille, France
- Department of Dermatology, Aix Marseille University, Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Marseille, France
| | | | - Marc Lopez
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Centre National de la Recherche Scientifique U7258, Aix Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Florence Orlanducci
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Centre National de la Recherche Scientifique U7258, Aix Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Rémy Castellano
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Centre National de la Recherche Scientifique U7258, Aix Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Saskia Ingen-Housz-Oro
- Department of Dermatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Henri-Mondor, Créteil, France
| | | | | | - Laurent Gorvel
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Centre National de la Recherche Scientifique U7258, Aix Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Armelle Goubard
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Centre National de la Recherche Scientifique U7258, Aix Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Yves Collette
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Centre National de la Recherche Scientifique U7258, Aix Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Réda Bouabdallah
- Department of Hematology, Institut Paoli-Calmettes, Marseille, France
| | - Jean-Marc Schiano
- Department of Hematology, Institut Paoli-Calmettes, Marseille, France
| | - Nathalie Bonnet
- Department of Dermatology, Aix Marseille University, Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Marseille, France
| | - Jean-Jacques Grob
- Department of Dermatology and Skin Cancers, Hôpital de la Timone, Aix Marseille Université, Marseille, France
| | | | - Martine Bagot
- Department of Dermatology, Saint-Louis Hospital, AP-HP, Paris University, INSERM U976, Paris, France; and
| | - Armand Bensussan
- Paris University, INSERM, UMR-976, Institut de Recherche Saint-Louis, Paris, France
| | - Philippe Berbis
- Department of Dermatology, Aix Marseille University, Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Marseille, France
| | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Centre National de la Recherche Scientifique U7258, Aix Marseille Université, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
17
|
Hanson A, Elpek K, Duong E, Shallberg L, Fan M, Johnson C, Wallace M, Mabry GR, Sazinsky S, Pepper L, Shu CJ, Sathyanarayanan S, Zuerndorfer S, Simpson T, Gostissa M, Briskin M, Law D, Michaelson J, Harvey CJ. ICOS agonism by JTX-2011 (vopratelimab) requires initial T cell priming and Fc cross-linking for optimal T cell activation and anti-tumor immunity in preclinical models. PLoS One 2020; 15:e0239595. [PMID: 32970735 PMCID: PMC7514066 DOI: 10.1371/journal.pone.0239595] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy checkpoint inhibitors, such as antibodies targeting PD-1 and CTLA-4, have demonstrated the potential of harnessing the immune system to treat cancer. However, despite encouraging results particularly with respect to survival, only a minority of patients benefit from these therapies. In clinical studies aimed at understanding changes in the immune system following immunotherapy treatment, ICOS (Inducible T cell CO-Stimulator) was shown to be significantly up-regulated on CD4+ T cells and this was associated with clinical activity, indicating that ICOS stimulatory activity may be beneficial in the treatment of solid tumors. In this report, we describe the generation of specific, species cross-reactive, agonist antibodies to ICOS, including the humanized clinical candidate, JTX-2011 (vopratelimab). Preclinical studies suggest that the ICOS stimulating antibodies require Fc receptor cross-linking for optimal agonistic activity. Notably, the ICOS antibodies do not exhibit superagonist properties but rather require T cell receptor (TCR)-mediated upregulation of ICOS for agonist activity. Treatment with the ICOS antibodies results in robust anti-tumor benefit and long-term protection in preclinical syngeneic mouse tumor models. Additional benefit is observed when the ICOS antibodies are administered in combination with anti-PD-1 and anti-CTLA-4 therapies. Based on the preclinical data, JTX-2011 is currently being developed in the clinical setting for the treatment of solid tumors.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- CHO Cells
- Cells, Cultured
- Cricetinae
- Cricetulus
- Cross-Priming
- Female
- Humans
- Immunotherapy/methods
- Inducible T-Cell Co-Stimulator Protein/immunology
- Jurkat Cells
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/therapy
- Receptors, Fc/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Amanda Hanson
- Preclinical Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Kutlu Elpek
- Preclinical Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Ellen Duong
- Preclinical Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Lindsey Shallberg
- Preclinical Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Martin Fan
- Preclinical Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Calvin Johnson
- Preclinical Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Matthew Wallace
- Protein Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - George R. Mabry
- Protein Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Stephen Sazinsky
- Protein Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Lauren Pepper
- Protein Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Chengyi J. Shu
- Translational Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Sriram Sathyanarayanan
- Translational Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Sarah Zuerndorfer
- Protein Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Tyler Simpson
- Preclinical Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Monica Gostissa
- Pharmacology, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Michael Briskin
- Research, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Deborah Law
- Research, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Jennifer Michaelson
- Preclinical Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Christopher J. Harvey
- Preclinical Sciences, Jounce Therapeutics, Inc., Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Corrao G, Marvaso G, Ferrara R, Lo Russo G, Gugliandolo SG, Piperno G, Spaggiari L, De Marinis F, Orecchia R, Garassino MC, Jereczek-Fossa BA. Stereotatic radiotherapy in metastatic non-small cell lung cancer: Combining immunotherapy and radiotherapy with a focus on liver metastases. Lung Cancer 2020; 142:70-79. [PMID: 32120227 DOI: 10.1016/j.lungcan.2020.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/17/2020] [Accepted: 02/22/2020] [Indexed: 01/19/2023]
Abstract
Presence of liver metastases correlates with worse survival and response to any treatments. This may be due to the microenvironment of liver which leads tumor to escape from Immune System. Stereotactic Body Radiation Therapy may help to sensitize Immune System and to improve the immunotherapy effect. Interest is being directed toward combining Immune-Checkpoint Inhibitors with radiotherapy to improve response to immunotherapy. However, the mechanisms by which radiation induces anti-tumor T-cells remain unclear. Preclinical studies founded radiotherapy enhances antitumor immune responses, increasing tumor antigen release, and inducing T-cell infiltration. Radiotherapy is under investigation for its ability to enhance responses to immunotherapy. Nevertheless, how to optimally deliver combination therapy regarding dose-fractionation and timing of radiotherapy is unknown. The aim of this review is to explore the role of Stereotactic Body Radiation Therapy in metastatic non-small cell lung cancer, focusing on patients with liver metastases, and the possible immunological implications combining immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- Giulia Corrao
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Giulia Marvaso
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.
| | - Roberto Ferrara
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - Giuseppe Lo Russo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - Simone Giovanni Gugliandolo
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Gaia Piperno
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Lorenzo Spaggiari
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy; Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Filippo De Marinis
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Orecchia
- Scientific Direction, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marina Chiara Garassino
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| |
Collapse
|
19
|
Canel M, Taggart D, Sims AH, Lonergan DW, Waizenegger IC, Serrels A. T-cell co-stimulation in combination with targeting FAK drives enhanced anti-tumor immunity. eLife 2020; 9:e48092. [PMID: 31959281 PMCID: PMC6974352 DOI: 10.7554/elife.48092] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
Focal Adhesion Kinase (FAK) inhibitors are currently undergoing clinical testing in combination with anti-PD-1 immune checkpoint inhibitors. However, which patients are most likely to benefit from FAK inhibitors, and what the optimal FAK/immunotherapy combinations are, is currently unknown. We identify that cancer cell expression of the T-cell co-stimulatory ligand CD80 sensitizes murine tumors to a FAK inhibitor and show that CD80 is expressed by human cancer cells originating from both solid epithelial cancers and some hematological malignancies in which FAK inhibitors have not been tested clinically. In the absence of CD80, we identify that targeting alternative T-cell co-stimulatory receptors, in particular OX-40 and 4-1BB in combination with FAK, can drive enhanced anti-tumor immunity and even complete regression of murine tumors. Our findings provide rationale supporting the clinical development of FAK inhibitors in combination with patient selection based on cancer cell CD80 expression, and alternatively with therapies targeting T-cell co-stimulatory pathways.
Collapse
Affiliation(s)
- Marta Canel
- Centre for Inflammation Research, Queen’s Medical Research InstituteUniversity of EdinburghEdinburghUnited Kingdom
| | - David Taggart
- Centre for Inflammation Research, Queen’s Medical Research InstituteUniversity of EdinburghEdinburghUnited Kingdom
| | - Andrew H Sims
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - David W Lonergan
- Centre for Inflammation Research, Queen’s Medical Research InstituteUniversity of EdinburghEdinburghUnited Kingdom
| | | | - Alan Serrels
- Centre for Inflammation Research, Queen’s Medical Research InstituteUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
20
|
The ICOSL Expression Predicts Better Prognosis for Nasopharyngeal Carcinoma via Enhancing Oncoimmunity. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9756732. [PMID: 31998801 PMCID: PMC6973197 DOI: 10.1155/2020/9756732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 11/23/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor with poor prognosis, high morbidity, and mortality. Currently, immunocheckpoint therapy has led to new treatment strategies for almost all cancers, including nasopharyngeal carcinoma. Inducible T-cell aggregation ligand (ICOSL) belongs to the b7-cd28 immunoglobulin superfamily, which is a ligand of ICOS, and also begins to draw attention for its potential usage in cancer treatment. Previous studies from our laboratory have suggested that ICOS expression in tumor-infiltrating lymphocytes is correlated with beneficial outcome, but little is known about the role of ICOSL in NPC. In the current study, ICOSL expression in NPC tumor sections was stained by immunohistochemistry (IHC), and both lymphatic metastasis and distant metastasis showed decreased expression, which was negatively correlated with TNM stage of nasopharyngeal carcinoma. Importantly, high ICOSL expression was significantly associated with overall survival (OS) in patients with NPC (n = 225, p < 0.001), and multivariate analysis confirmed that high ICOSL expression was an independent prognostic factor. Fresh nasopharyngeal carcinoma specimens were excised, and the specific expression of cytokines was analyzed by enzyme-linked immunosorbent assay (ELISA). The expression level of ICOSL is positively correlated with interferon-gamma (IFN-γ) concentration in tumor tissues, which is characteristic of T helper 1 (Th1) cells. Knocking down ICOSL by RNAi did not influence the proliferation, migration, and invasion ability of NPC cells. Conclusively, ICOSL expression is associated with increased survival rate in patients with nasopharyngeal carcinoma, which may be a clinical biomarker for prognosis of nasopharyngeal carcinoma.
Collapse
|
21
|
Hu Y, Zeng T, Xiao Z, Hu Q, Li Y, Tan X, Yue H, Wang W, Tan H, Zou J. Immunological role and underlying mechanisms of B7-H6 in tumorigenesis. Clin Chim Acta 2020; 502:191-198. [PMID: 31904350 DOI: 10.1016/j.cca.2019.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
B7 homolog 6 (B7-H6) has been identified as involved in tumorigenesis. Elucidating its role and potential mechanism of action is essential for understanding tumorigenesis and the potential development of an effective clinical strategy. Abnormal overexpression of B7-H6 in various types of tumors was reported to be linked with poor prognosis. B7-H6 suppresses the initiation of the "caspase cascade" and induces anti-apoptosis by STAT3 pathway activation to provoke tumorigenesis. B7-H6 facilitates tumor proliferation and cell cycle progression by regulating apoptosis suppressors. B7-H6 induces cellular cytotoxicity, secretion of TNF-α and IFN-γ and B7-H6-specific BiTE triggers T cells to accelerate tumorigenesis. B7-H6 induces abnormal immunological progression by HER2-scFv mediated ADCC and NKp30 immune escape to promote tumorigenesis. B7-H6 promotes tumorigenesis via apoptosis inhibition, proliferation and immunological progression. B7-H6 may a valuable potential biomarker and therapeutic strategy for diagnostics, prognostics and treatment in cancer.
Collapse
Affiliation(s)
- Yuxuan Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Zheng Xiao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Qihao Hu
- Cardiothoracic Surgery, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Yukun Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiongjin Tan
- The Second Department of Orthopaedic, 922 Hospital of PLA, Hengyang, Hunan 410011, PR China
| | - Haiyan Yue
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Department of Pathology, The Central Hospital of Shaoyang, Shaoyang, Hunan 422000, PR China
| | - Wensong Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Hui Tan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
22
|
High CD3 and ICOS and low TIM-3 expression predict favourable survival in resected oesophageal squamous cell carcinoma. Sci Rep 2019; 9:20197. [PMID: 31882943 PMCID: PMC6934772 DOI: 10.1038/s41598-019-56828-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
With the increasing oncological potential of immunotherapy, several immune checkpoint modulators are being investigated. The value of immune markers, including programmed cell death ligand-1, programmed cell death-1 (PD-1), inducible co-stimulator (ICOS), lymphocyte activation gene-3, T-cell immunoglobulin, and mucin-dominant containing-3 (TIM-3), is not well known. Using tissue microarrays of 396 patients who underwent surgery for oesophageal squamous cell carcinoma (ESCC), infiltrated T-cell subsets (CD3, CD8, and Foxp3) and checkpoint protein expression were scored. With a median follow-up of 24.8 months, CD3+ TIL subsets (50.0%) had longer median recurrence-free survival (RFS, 55.0 vs 21.4 months) and overall survival (OS, 77.7 vs 35.8 months). Patients with high ICOS expression (46.5%) had longer median RFS (53.9 vs 25.3 months) and OS (88.8 vs 36.9 months). For PD-1, RFS (hazard ratio [HR] 0.67) and OS (HR 0.66) were significantly longer in the high-expression group (45.2%). In the multivariate analysis, high TIM-3 expression (50.8%) had a significant relationship with shorter RFS (HR = 1.52) and OS (HR = 1.60). High CD3+ TIL and T-cell ICOS expression were associated with favourable prognosis, whereas high TIM-3 expression suggested a poor prognosis. Our findings may confer new insights to improve ESCC outcomes beyond the application of PD-1 blockade.
Collapse
|
23
|
Amatore F, Gorvel L, Olive D. Role of Inducible Co-Stimulator (ICOS) in cancer immunotherapy. Expert Opin Biol Ther 2019; 20:141-150. [PMID: 31738626 DOI: 10.1080/14712598.2020.1693540] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: The promotion of antitumor response by targeting co-stimulatory B7 superfamily members has become evident to create a new wave of cancer immunotherapy. Inducible Co-Stimulator (ICOS), which is expressed on activated T cells, gained interest in the translational medicine community.Areas covered: We performed an extensive literature review using the keywords 'ICOS' and 'cancer', and the Clinicaltrials.gov database for early phase clinical trials targeting ICOS. In this review, we highlight the dual role of ICOS in oncogenesis in different malignancies. We summarize the current state of knowledge about ICOS/ICOSL pathway targeting by immunotherapies.Expert opinion: Due to its multifaceted link with anti-tumor immunity, both antagonist and agonist antibodies might be of interest to target the ICOS/ICOSL pathway for tumor treatment. Indeed, ICOS activation might potentiate the effect of an inhibitory checkpoint blockade, while its neutralization could decrease the function of immunosuppressive Tregs and inhibit lymphoid tumor cells expressing Tfh markers.
Collapse
Affiliation(s)
- Florent Amatore
- Centre de recherche en Cancérologie de Marseille, INSERM U1068, CNRS U7258, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France
| | - Laurent Gorvel
- Centre de recherche en Cancérologie de Marseille, INSERM U1068, CNRS U7258, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France
| | - Daniel Olive
- Centre de recherche en Cancérologie de Marseille, INSERM U1068, CNRS U7258, Aix Marseille Université, Institut Paoli - Calmettes, Marseille, France
| |
Collapse
|
24
|
Roussel L, Landekic M, Golizeh M, Gavino C, Zhong MC, Chen J, Faubert D, Blanchet-Cohen A, Dansereau L, Parent MA, Marin S, Luo J, Le C, Ford BR, Langelier M, King IL, Divangahi M, Foulkes WD, Veillette A, Vinh DC. Loss of human ICOSL results in combined immunodeficiency. J Exp Med 2019; 215:3151-3164. [PMID: 30498080 PMCID: PMC6279397 DOI: 10.1084/jem.20180668] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/21/2018] [Accepted: 11/06/2018] [Indexed: 12/30/2022] Open
Abstract
Primary immunodeficiencies represent naturally occurring experimental models to decipher human immunobiology. We report a patient with combined immunodeficiency, marked by recurrent respiratory tract and DNA-based viral infections, hypogammaglobulinemia, and panlymphopenia. He also developed moderate neutropenia but without prototypical pyogenic infections. Using whole-exome sequencing, we identified a homozygous mutation in the inducible T cell costimulator ligand gene (ICOSLG; c.657C>G; p.N219K). Whereas WT ICOSL is expressed at the cell surface, the ICOSLN219K mutation abrogates surface localization: mutant protein is retained in the endoplasmic reticulum/Golgi apparatus, which is predicted to result from deleterious conformational and biochemical changes. ICOSLN219K diminished B cell costimulation of T cells, providing a compelling basis for the observed defect in antibody and memory B cell generation. Interestingly, ICOSLN219K also impaired migration of lymphocytes and neutrophils across endothelial cells, which normally express ICOSL. These defects likely contributed to the altered adaptive immunity and neutropenia observed in the patient, respectively. Our study identifies human ICOSLG deficiency as a novel cause of a combined immunodeficiency.
Collapse
Affiliation(s)
- Lucie Roussel
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Marija Landekic
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Makan Golizeh
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Christina Gavino
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Jun Chen
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Denis Faubert
- Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Alexis Blanchet-Cohen
- Bioinformatics, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Luc Dansereau
- Department of Internal Medicine, Hôpital de l'Archipel, Centre intégré de santé et de services sociaux des Îles, Les Îles-de-la-Madeleine, Québec, Canada
| | - Marc-Antoine Parent
- Department of Family Medicine, Centre intégé de santé et de services sociaux des Îles, Les Îles-de-la-Madeleine, Québec, Canada
| | - Sonia Marin
- Hôpital de l'Archipel, Centre intégré de santé et de services sociaux des Îles, Les Îles-de-la-Madeleine, Québec, Canada
| | - Julia Luo
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Catherine Le
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Brinley R Ford
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Mélanie Langelier
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Irah L King
- Meakins-Christie Laboratories, Research Institute-McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Research Institute-McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - William D Foulkes
- Department of Medical Genetics, Research Institute-McGill University Health Centre, Montréal, Québec, Canada.,Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Medicine, University of Montréal, Montréal, Québec, Canada
| | - Donald C Vinh
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada .,Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.,Department of Human Genetics, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
25
|
Shi LZ, Goswami S, Fu T, Guan B, Chen J, Xiong L, Zhang J, Ng Tang D, Zhang X, Vence L, Blando J, Allison JP, Collazo R, Gao J, Sharma P. Blockade of CTLA-4 and PD-1 Enhances Adoptive T-cell Therapy Efficacy in an ICOS-Mediated Manner. Cancer Immunol Res 2019; 7:1803-1812. [PMID: 31466995 DOI: 10.1158/2326-6066.cir-18-0873] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/02/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022]
Abstract
Adoptive transfer of tumor-reactive T cells (ACT) has led to modest clinical benefit in the treatment of solid tumors. Failures with this therapy are primarily due to inadequate infiltration and poor function of adoptively transferred cells in the tumor microenvironment. To improve the efficacy of ACT, we combined ACT with dual blockade of CTLA-4 and PD-1. Treatment with anti-CTLA-4 plus anti-PD-1 compared with monotherapy resulted in durable antitumor responses, enhanced effector function of ACT, utilizing PMEL-1 transgenic (Tg+) CD8+ T cells, and improved survival. Using PMEL-1ICOS-/- mice, we showed that deletion of the inducible T-cell costimulator (ICOS) receptor abolished the therapeutic benefits, with selective downregulation of Eomesodermin (Eomes), interferon gamma (IFNγ), and perforin. Higher expression of IFNγ and Eomes was noted in human ICOShi CD8+ T cells compared with ICOSlow counterparts. Together, our data provide direct evidence that ACT combined with immune-checkpoint therapy confers durable antitumor responses, which largely depended on CD8+ T-cell-intrinsic expression of ICOS. Our study provides a foundation of testing combinatorial therapy of ACT of CD8 T cells and dual blocking of CTLA-4 and PD-1 in patients with melanoma.
Collapse
Affiliation(s)
- Lewis Zhichang Shi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sangeeta Goswami
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tihui Fu
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Baoxiang Guan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianfeng Chen
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Liangwen Xiong
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jan Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Derek Ng Tang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xuejun Zhang
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luis Vence
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jorge Blando
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James P Allison
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Renata Collazo
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
26
|
Expression of costimulatory and inhibitory receptors in FoxP3 + regulatory T cells within the tumor microenvironment: Implications for combination immunotherapy approaches. Adv Cancer Res 2019; 144:193-261. [PMID: 31349899 DOI: 10.1016/bs.acr.2019.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The unprecedented success of immune checkpoint inhibitors has given rise to a rapidly growing number of immuno-oncology agents undergoing preclinical and clinical development and an exponential increase in possible combinations. Defining a clear rationale for combinations by identifying synergies between immunomodulatory pathways has therefore become a high priority. Immunosuppressive regulatory T cells (Tregs) within the tumor microenvironment (TME) represent a major roadblock to endogenous and therapeutic tumor immunity. However, Tregs are also essential for the maintenance of immunological self-tolerance, and share many molecular pathways with conventional T cells including cytotoxic T cells, the primary mediators of tumor immunity. Hence the inability to specifically target and neutralize Tregs within the TME of cancer patients without globally compromising self-tolerance poses a significant challenge. Here we review recent advances in the characterization of tumor-infiltrating Tregs with a focus on costimulatory and inhibitory receptors. We discuss receptor expression patterns, their functional role in Treg biology and mechanistic insights gained from targeting these receptors in preclinical models to evaluate their potential as clinical targets. We further outline a framework of parameters that could be used to refine the assessment of Tregs in cancer patients and increase their value as predictive biomarkers. Finally, we propose modalities to integrate our increasing knowledge on Treg phenotype and function for the rational design of checkpoint inhibitor-based combination therapies. Such combinations have great potential for synergy, as they could concomitantly enhance cytotoxic T cells and inhibit Tregs within the TME, thereby increasing the efficacy of current cancer immunotherapies.
Collapse
|
27
|
Wang B, Jiang H, Zhou T, Ma N, Liu W, Wang Y, Zuo L. Expression of ICOSL is associated with decreased survival in invasive breast cancer. PeerJ 2019; 7:e6903. [PMID: 31143539 PMCID: PMC6526018 DOI: 10.7717/peerj.6903] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022] Open
Abstract
Background Inducible co-stimulator (ICOS) is a CD28-related molecule exclusively expressed on activated T cells and plays a critical role in modulating the immune response in breast cancer. The blockage of ICOS pathway has been shown to inhibit the activity of Type 2 T helper cells, thus potentially protecting against cancer growth. The current study aims to investigate the correlation between inducible co-stimulator ligand (ICOSL) expression in tumor tissues and the prognoses of patients with invasive breast cancer. Methods Tumor samples from 562 Chinese patients with invasive breast carcinomas were collected between 2003 and 2010. The expression of ICOSL on breast tumor and adjacent non-cancerous tissue was determined via immunohistochemistry. The overall survival (OS) of patients with positive and negative ICOSL expression were described using Kaplan–Meier curves, respectively. Parametric correlation method was used to analyze the correlation between ICOSL expression and other clinicopathological parameters. ICOSL was selected as a dependent variable for multivariate analysis. Results Positive ICOSL expression was identified on the plasma membrane in both cytoplasm and the nucleus of breast cancer cells. Membrane-expressed ICOSL is determined as an independent prognostic factor for OS in breast cancer but without significantly correlating with other clinicopathologic parameters such as age, menopausal status, depth of invasion, lymph node metastasis status, histologic classification, etc. Conclusion Our study suggests that the up-regulated expression of ICOSL protein in breast tumor cells can be associated with poor prognoses in invasive breast carcinomas.
Collapse
Affiliation(s)
- Bin Wang
- Department of Oncology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Huayong Jiang
- Department of Radiation Oncology, The 7th Medical Center of PLA General Hospital, Beijing, China
| | - Tingyang Zhou
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH, USA.,Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH, USA
| | - Ning Ma
- Clinical Laboratory, 905th Hospital of PLA, Shanghai, China
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Pheonix, AZ, USA
| | - Yajie Wang
- Department of Oncology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH, USA.,Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH, USA.,College of Arts and Sciences, University of Maine Presque Isle Campus, ME, USA
| |
Collapse
|
28
|
Emmer A, Abobarin-Adeagbo A, Posa A, Jordan B, Delank KS, Staege MS, Surov A, Zierz S, Kornhuber ME. Myositis in Lewis rats induced by the superantigen Staphylococcal enterotoxin A. Mol Biol Rep 2019; 46:4085-4094. [DOI: 10.1007/s11033-019-04858-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022]
|
29
|
Mizuno R, Sugiura D, Shimizu K, Maruhashi T, Watada M, Okazaki IM, Okazaki T. PD-1 Primarily Targets TCR Signal in the Inhibition of Functional T Cell Activation. Front Immunol 2019; 10:630. [PMID: 31001256 PMCID: PMC6455061 DOI: 10.3389/fimmu.2019.00630] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/08/2019] [Indexed: 01/22/2023] Open
Abstract
Cancer-immunotherapy targeting programmed cell death 1 (PD-1) activates tumor-specific T cells and provides clinical benefits in various cancers. However, the molecular basis of PD-1 function is still enigmatic. Especially, it is unclear which signaling pathway PD-1 primarily targets. Besides, the capacity of PD-1 to inhibit the T cell receptor (TCR)-dependent activation of T cells in the presence of co-stimulation is also controversial. Here we used co-culture systems of T cells and antigen-presenting cells with targeted deletion and overexpression of co-receptors and ligands and examined the inhibitory potency of PD-1 against T cell activation upon TCR stimulation with CD28 and ICOS co-stimulation. As an unambiguous criterion of T cell activation, we used the acquisition of cytokine production capacity, which represents one of the most important functions of T cells. PD-1 inhibited functional T cell activation upon TCR stimulation in the absence as well as in the presence of CD28 co-stimulation, indicating that PD-1 can directly inhibit TCR signal. Notably, CD28 co-stimulation rather attenuated the efficiency of PD-1 in inhibiting TCR-dependent functional T cell activation. In addition, PD-1 inhibited TCR-dependent functional T cell activation with ICOS co-stimulation as efficiently as that with CD28 co-stimulation. Furthermore, we found that the maintenance of antigen-induced follicular helper T (TFH) cells that required ICOS co-stimulation was persistently restrained by PD-1 in vivo. These findings indicate that PD-1 primarily targets TCR signal in the inhibition of functional T cell activation. Thus, PD-1 functions as the rheostat of T cell activation rather than an inhibitor of a specific stimulatory co-receptor.
Collapse
Affiliation(s)
- Reina Mizuno
- Division of Immune Regulation, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Daisuke Sugiura
- Division of Immune Regulation, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Kenji Shimizu
- Division of Immune Regulation, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Takumi Maruhashi
- Division of Immune Regulation, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Mizuki Watada
- Division of Immune Regulation, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Il-Mi Okazaki
- Division of Immune Regulation, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Taku Okazaki
- Division of Immune Regulation, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
30
|
Daneshmandi S, Pourfathollah AA, Forouzandeh-Moghaddam M. Enhanced CD40 and ICOSL expression on dendritic cells surface improve anti-tumor immune responses; effectiveness of mRNA/chitosan nanoparticles. Immunopharmacol Immunotoxicol 2018; 40:375-386. [PMID: 30265161 DOI: 10.1080/08923973.2018.1510959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Objective: To improve dendritic cells (DCs) function, we targeted DCs to over express CD40 and inducible costimulator ligand (ICOSL) costimulatory molecules along with total messenger RNA (mRNA) of tumor cells to achieve a safe and effective system for treatment of tumor. Materials and methods: We generated CD40 and ICOSL mRNA in vitro and manipulated DCs using chitosan nanoparticles and also lipofectamine transfection system then examined in vitro and in vivo. Results: Mice bone marrow derived DCs pulsed with total tumor mRNA/CD40 mRNA or ICOSL mRNA showed higher expression of DCs maturation markers (CD40, ICOSL, CD86, and MHC-II) and accelerated secretion of pro-inflammatory cytokines. Co-culture of DCs with T cells enhanced proliferation of T cells and shift toward stronger Th1 cytokine responses especially in presence of CD40 over expressed DCs. Intra-tumor administration of manipulated DCs to 4T1 tumor mice model showed delay in growth of tumor volume, trend to increase in mice survival, and stronger anti-tumor cytokines production in splenocytes of mice model (with higher efficacy of mRNA/chitosan nanoparticle system). Conclusions: Hence, we suggest that targeting intra-tumor DCs to elicit expression of CD40 and ICOSL and present broad range of tumor antigens could yield effective anti-tumor responses. In this regard, CD40 molecule manipulation trigger stronger functions, while mRNA/chitosan nanoparticles system could provide a high potent tool for targeting strategies.
Collapse
Affiliation(s)
- Saeed Daneshmandi
- a Department of Immunology, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - Ali Akbar Pourfathollah
- a Department of Immunology, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | | |
Collapse
|
31
|
Jogdand GM, Sengupta S, Bhattacharya G, Singh SK, Barik PK, Devadas S. Inducible Costimulator Expressing T Cells Promote Parasitic Growth During Blood Stage Plasmodium berghei ANKA Infection. Front Immunol 2018; 9:1041. [PMID: 29892278 PMCID: PMC5985291 DOI: 10.3389/fimmu.2018.01041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022] Open
Abstract
The lethality of blood stage Plasmodium berghei ANKA (PbA) infection is associated with the expression of T-bet and production of cytokine IFN-γ. Expression of inducible costimulator (ICOS) and its downstream signaling has been shown to play a critical role in the T-bet expression and IFN-γ production. Although earlier studies have examined the role of ICOS in the control of acute blood-stage infection of Plasmodium chabaudi chabaudi AS (a non-lethal model of malaria infection), its significance in the lethal blood-stage of PbA infection remains unclear. Thus, to address the seminal role of ICOS in lethal blood-stage of PbA infection, we treated PbA-infected mice with anti-ICOS antibody and observed that these mice survived longer than their infected counterparts with significantly lower parasitemia. Anti-ICOS treatment notably depleted ICOS expressing CD4+ and CD8+ T cells with a concurrent reduction in plasma IFN-γ, which strongly indicated that ICOS expressing T cells are major IFN-γ producers. Interestingly, we observed that while ICOS expressing CD4+ and CD8+ T cells produced IFN-γ, ICOS-CD8+ T cells were also found to be producers of IFN-γ. However, we report that ICOS+CD8+ T cells were higher producers of IFN-γ than ICOS-CD8+ T cells. Moreover, correlation of ICOS expression with IFN-γ production in ICOS+IFN-γ+ T cell population (CD4+ and CD8+ T cells) suggested that ICOS and IFN-γ could positively regulate each other. Further, master transcription factor T-bet importantly involved in regulating IFN-γ production was also found to be expressed by ICOS expressing CD4+ and CD8+ T cells during PbA infection. As noted above with IFN-γ and ICOS, a positive correlation of expression of ICOS with the transcription factor T-bet suggested that both of them could regulate each other. Taken together, our results depicted the importance of ICOS expressing CD4+ and CD8+ T cells in malaria parasite growth and lethality through IFN-γ production and T-bet expression.
Collapse
Affiliation(s)
- Gajendra M Jogdand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Soumya Sengupta
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | | | | | | | - Satish Devadas
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
32
|
Abstract
The mouse model of West Nile virus (WNV), which is a leading cause of mosquito-borne encephalitis worldwide, has provided fundamental insights into the host and viral factors that regulate viral pathogenesis and infection outcome. In particular, CD8+ T cells are critical for controlling WNV replication and promoting protection against infection. Here, we present the characterization of a T cell receptor (TCR)-transgenic mouse with specificity for the immunodominant epitope in the WNV NS4B protein (here referred to as transgenic WNV-I mice). Using an adoptive-transfer model, we found that WNV-I CD8+ T cells behave similarly to endogenous CD8+ T cell responses, with an expansion phase in the periphery beginning around day 7 postinfection (p.i.) followed by a contraction phase through day 15 p.i. Through the use of in vivo intravascular immune cell staining, we determined the kinetics, expansion, and differentiation into effector and memory subsets of WNV-I CD8+ T cells within the spleen and brain. We found that red-pulp WNV-I CD8+ T cells were more effector-like than white-pulp WNV-I CD8+ T cells, which displayed increased differentiation into memory precursor cells. Within the central nervous system (CNS), we found that WNV-I CD8+ T cells were polyfunctional (gamma interferon [IFN-γ] and tumor necrosis factor alpha [TNF-α]), displayed tissue-resident characteristics (CD69+ and CD103+), persisted in the brain through day 15 p.i., and reduced the viral burden within the brain. The use of these TCR-transgenic WNV-I mice provides a new resource to dissect the immunological mechanisms of CD8+ T cell-mediated protection during WNV infection.IMPORTANCE West Nile Virus (WNV) is the leading cause of mosquito-borne encephalitis worldwide. There are currently no approved therapeutics or vaccines for use in humans to treat or prevent WNV infection. CD8+ T cells are critical for controlling WNV replication and protecting against infection. Here, we present a comprehensive characterization of a novel TCR-transgenic mouse with specificity for the immunodominant epitope in the WNV NS4B protein. In this study, we determine the kinetics, proliferation, differentiation into effector and memory subsets, homing, and clearance of WNV in the CNS. Our findings provide a new resource to dissect the immunological mechanisms of CD8+ T cell-mediated protection during WNV infection.
Collapse
|
33
|
Guedan S, Posey AD, Shaw C, Wing A, Da T, Patel PR, McGettigan SE, Casado-Medrano V, Kawalekar OU, Uribe-Herranz M, Song D, Melenhorst JJ, Lacey SF, Scholler J, Keith B, Young RM, June CH. Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight 2018; 3:96976. [PMID: 29321369 PMCID: PMC5821198 DOI: 10.1172/jci.insight.96976] [Citation(s) in RCA: 378] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
Successful tumor eradication by chimeric antigen receptor-expressing (CAR-expressing) T lymphocytes depends on CAR T cell persistence and effector function. We hypothesized that CD4+ and CD8+ T cells may exhibit distinct persistence and effector phenotypes, depending on the identity of specific intracellular signaling domains (ICDs) used to generate the CAR. First, we demonstrate that the ICOS ICD dramatically enhanced the in vivo persistence of CAR-expressing CD4+ T cells that, in turn, increased the persistence of CD8+ T cells expressing either CD28- or 4-1BB-based CARs. These data indicate that persistence of CD8+ T cells was highly dependent on a helper effect provided by the ICD used to redirect CD4+ T cells. Second, we discovered that combining ICOS and 4-1BB ICDs in a third-generation CAR displayed superior antitumor effects and increased persistence in vivo. Interestingly, we found that the membrane-proximal ICD displayed a dominant effect over the distal domain in third-generation CARs. The optimal antitumor and persistence benefits observed in third-generation ICOSBBz CAR T cells required the ICOS ICD to be positioned proximal to the cell membrane and linked to the ICOS transmembrane domain. Thus, CARs with ICOS and 4-1BB ICD demonstrate increased efficacy in solid tumor models over our current 4-1BB-based CAR and are promising therapeutics for clinical testing.
Collapse
Affiliation(s)
- Sonia Guedan
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine
| | - Avery D. Posey
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine
| | - Carolyn Shaw
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine
| | - Anna Wing
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine
| | - Tong Da
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine
| | - Prachi R. Patel
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine
| | - Shannon E. McGettigan
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine
| | | | - Omkar U. Kawalekar
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine
| | - Mireia Uribe-Herranz
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Decheng Song
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine
| | - J. Joseph Melenhorst
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine
| | - Simon F. Lacey
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine
| | - John Scholler
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine
| | - Brian Keith
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine
| | - Regina M. Young
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine
| | - Carl H. June
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine
| |
Collapse
|
34
|
Chaoul N, Tang A, Desrues B, Oberkampf M, Fayolle C, Ladant D, Sainz-Perez A, Leclerc C. Lack of MHC class II molecules favors CD8 + T-cell infiltration into tumors associated with an increased control of tumor growth. Oncoimmunology 2017; 7:e1404213. [PMID: 29399403 PMCID: PMC5790350 DOI: 10.1080/2162402x.2017.1404213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Regulatory T-cells (Tregs) are crucial for the maintenance of immune tolerance and homeostasis as well as for preventing autoimmune diseases, but their impact on the survival of cancer patients remains controversial. In the TC-1 mouse model of human papillomavirus (HPV)-related carcinoma, we have previously demonstrated that the therapeutic efficacy of the CyaA-E7-vaccine, targeting the HPV-E7 antigen, progressively declines with tumor growth, in correlation with increased intratumoral recruitment of Tregs. In the present study, we demonstrated that these TC-1 tumor-infiltrating Tregs were highly activated, with increased expression of immunosuppressive molecules. Both intratumoral effector CD4+ T-cells (Teffs) and Tregs expressed high levels of PD-1, but anti-PD-1 antibody treatment did not impact the growth of the TC-1 tumor nor restore the therapeutic effect of the CyaA-E7 vaccine. To analyze the mechanisms by which Tregs are recruited to the tumor site, we used MHC-II KO mice with drastically reduced numbers of CD4+ effector T-cells. We demonstrated that these mice still had significant numbers of Tregs in their lymphoid organs which were recruited to the tumor. In MHC-II KO mice, the growth of the TC-1 tumor was delayed in correlation with a strong increase in the intratumoral recruitment of CD8+ T-cells. In addition, in mice that spontaneously rejected their tumors, the infiltration of E7-specific CD8+ T-cells was significantly higher than in MHC-II KO mice with a growing tumor. These results demonstrate that tumor-specific CD8+ T-cells can be efficiently activated and recruited in the absence of MHC class II molecules and of CD4+ T-cell help.
Collapse
Affiliation(s)
- Nada Chaoul
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Alexandre Tang
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Belinda Desrues
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Marine Oberkampf
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Catherine Fayolle
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Daniel Ladant
- Département de biologie structurale et de chimie, Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, Paris, France.,CNRS, UMR 3528, Paris, France
| | - Alexander Sainz-Perez
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Claude Leclerc
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| |
Collapse
|
35
|
Tang C, Welsh JW, de Groot P, Massarelli E, Chang JY, Hess KR, Basu S, Curran MA, Cabanillas ME, Subbiah V, Fu S, Tsimberidou AM, Karp D, Gomez DR, Diab A, Komaki R, Heymach JV, Sharma P, Naing A, Hong DS. Ipilimumab with Stereotactic Ablative Radiation Therapy: Phase I Results and Immunologic Correlates from Peripheral T Cells. Clin Cancer Res 2016; 23:1388-1396. [PMID: 27649551 DOI: 10.1158/1078-0432.ccr-16-1432] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 12/19/2022]
Abstract
Purpose: Little prospective data are available on clinical outcomes and immune correlates from combination radiation and immunotherapy. We conducted a phase I trial (NCT02239900) testing stereotactic ablative radiotherapy (SABR) with ipilimumab.Experimental Design: SABR was given either concurrently (1 day after the first dose) or sequentially (1 week after the second dose) with ipilimumab (3 mg/kg every 3 weeks for 4 doses) to five treatment groups: concurrent 50 Gy (in 4 fractions) to liver; sequential 50 Gy (in 4 fractions) to liver; concurrent 50 Gy (in 4 fractions) to lung; sequential 50 Gy (in 4 fractions) to lung; and sequential 60 Gy (in 10 fractions) to lung or liver. MTD was determined with a 3 + 3 dose de-escalation design. Immune marker expression was assessed by flow cytometry.Results: Among 35 patients who initiated ipilimumab, 2 experienced dose-limiting toxicity and 12 (34%) grade 3 toxicity. Response outside the radiation field was assessable in 31 patients. Three patients (10%) exhibited partial response and 7 (23%) experienced clinical benefit (defined as partial response or stable disease lasting ≥6 months). Clinical benefit was associated with increases in peripheral CD8+ T cells, CD8+/CD4+ T-cell ratio, and proportion of CD8+ T cells expressing 4-1BB and PD1. Liver (vs. lung) irradiation produced greater T-cell activation, reflected as increases in the proportions of peripheral T cells expressing ICOS, GITR, and 4-1BB.Conclusions: Combining SABR and ipilimumab was safe with signs of efficacy, peripheral T-cell markers may predict clinical benefit, and systemic immune activation was greater after liver irradiation. Clin Cancer Res; 23(6); 1388-96. ©2016 AACR.
Collapse
Affiliation(s)
- Chad Tang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Patricia de Groot
- Department of Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Erminia Massarelli
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joe Y Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kenneth R Hess
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sreyashi Basu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria E Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivek Subbiah
- Department of Investigational Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Siqing Fu
- Department of Investigational Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Apostolia M Tsimberidou
- Department of Investigational Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Karp
- Department of Investigational Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel R Gomez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adi Diab
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ritsuko Komaki
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Padmanee Sharma
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aung Naing
- Department of Investigational Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S Hong
- Department of Investigational Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
36
|
Metzger TC, Long H, Potluri S, Pertel T, Bailey-Bucktrout SL, Lin JC, Fu T, Sharma P, Allison JP, Feldman RMR. ICOS Promotes the Function of CD4+ Effector T Cells during Anti-OX40-Mediated Tumor Rejection. Cancer Res 2016; 76:3684-9. [PMID: 27197182 DOI: 10.1158/0008-5472.can-15-3412] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/17/2016] [Indexed: 11/16/2022]
Abstract
ICOS is a T-cell coregulatory receptor that provides a costimulatory signal to T cells during antigen-mediated activation. Antitumor immunity can be improved by ICOS-targeting therapies, but their mechanism of action remains unclear. Here, we define the role of ICOS signaling in antitumor immunity using a blocking, nondepleting antibody against ICOS ligand (ICOS-L). ICOS signaling provided critical support for the effector function of CD4(+) Foxp3(-) T cells during anti-OX40-driven tumor immune responses. By itself, ICOS-L blockade reduced accumulation of intratumoral T regulatory cells (Treg), but it was insufficient to substantially inhibit tumor growth. Furthermore, it did not impede antitumor responses mediated by anti-4-1BB-driven CD8(+) T cells. We found that anti-OX40 efficacy, which is based on Treg depletion and to a large degree on CD4(+) effector T cell (Teff) responses, was impaired with ICOS-L blockade. In contrast, the provision of additional ICOS signaling through direct ICOS-L expression by tumor cells enhanced tumor rejection and survival when administered along with anti-OX40 therapy. Taken together, our results showed that ICOS signaling during antitumor responses acts on both Teff and Treg cells, which have opposing roles in promoting immune activation. Thus, effective therapies targeting the ICOS pathway should seek to promote ICOS signaling specifically in effector CD4(+) T cells by combining ICOS agonism and Treg depletion. Cancer Res; 76(13); 3684-9. ©2016 AACR.
Collapse
Affiliation(s)
- Todd C Metzger
- Rinat Laboratories, Pfizer Inc., South San Francisco, California.
| | - Hua Long
- Rinat Laboratories, Pfizer Inc., South San Francisco, California
| | - Shobha Potluri
- Rinat Laboratories, Pfizer Inc., South San Francisco, California
| | - Thomas Pertel
- Rinat Laboratories, Pfizer Inc., South San Francisco, California
| | | | - John C Lin
- Rinat Laboratories, Pfizer Inc., South San Francisco, California
| | - Tihui Fu
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Padmanee Sharma
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James P Allison
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Reid M R Feldman
- Rinat Laboratories, Pfizer Inc., South San Francisco, California.
| |
Collapse
|
37
|
Suzuki S, Ishida T, Yoshikawa K, Ueda R. Current status of immunotherapy. Jpn J Clin Oncol 2016; 46:191-203. [PMID: 26819277 DOI: 10.1093/jjco/hyv201] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/12/2015] [Indexed: 02/07/2023] Open
Abstract
The successful use of immune checkpoint inhibitors has been big breakthrough in the development of cancer immunotherapy. Anti-CTLA-4 monoclonal antibody, ipilimumab, is the first-approved immune checkpoint inhibitor and has shown durable objective responses for advanced melanoma beyond the effect of dacarbazine. Anti-PD-1 monoclonal antibodies, nivolumab and pembrolizumab, are other immune checkpoint inhibitors that have demonstrated more effective results than conventional drugs in clinical trials for a variety of advanced solid tumors including melanoma, non-small cell lung carcinoma and renal carcinoma. These studies have indicated that the enhancement of anti-cancer immunity by controlling the immune suppressive environment in cancer tissues is an important issue for the development of cancer immune-therapy. Accordingly, in recent years, the enthusiasm for research of cancer immunology has shifted to studies regarding the formation of the immune suppressive environment, immune suppression mechanisms in cancer tissues and the molecules and cells involved in these pathways. Novel findings from these studies might lead to the development of cancer immunotherapy based on control of the immune suppressive environment.
Collapse
Affiliation(s)
- Susumu Suzuki
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute
| | - Takashi Ishida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya
| | - Kazuhiro Yoshikawa
- Center for Advanced Medical Research, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute
| |
Collapse
|
38
|
Local triggering of the ICOS coreceptor by CD11c(+) myeloid cells drives organ inflammation in lupus. Immunity 2015; 42:552-65. [PMID: 25786178 DOI: 10.1016/j.immuni.2015.02.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 11/22/2014] [Accepted: 01/19/2015] [Indexed: 01/13/2023]
Abstract
The inducible T cell costimulator (ICOS) is a potent promoter of organ inflammation in murine lupus. ICOS stimulates T follicular helper cell differentiation in lymphoid tissue, suggesting that it might drive autoimmunity by enhancing autoantibody production. Yet the pathogenic relevance of this mechanism remains unclear. It is also unknown whether other ICOS-induced processes might contribute to lupus pathology. Here we show that selective ablation of ICOS ligand (ICOSL) in CD11c(+) cells, but not in B cells, dramatically ameliorates kidney and lung inflammation in lupus-prone MRL.Fas(lpr) mice. Autoantibody formation was largely unaffected by ICOSL deficiency in CD11c(+) cells. However, ICOSL display by CD11c(+) cells in inflamed organs had a nonredundant role in protecting invading T cells from apoptosis by elevating activity of the PI3K-Akt signaling pathway, thereby facilitating T cell accrual. These findings reveal a mechanism that locally sustains organ inflammation in lupus.
Collapse
|
39
|
Zhang J, Basher F, Wu JD. NKG2D Ligands in Tumor Immunity: Two Sides of a Coin. Front Immunol 2015; 6:97. [PMID: 25788898 PMCID: PMC4349182 DOI: 10.3389/fimmu.2015.00097] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/18/2015] [Indexed: 11/13/2022] Open
Abstract
The activating/co-stimulatory receptor NKG2D (natural-killer group 2, member D) is expressed on the surface of all human NK, NKT, CD8(+) T, and subsets of γδ(+) T cells. The significance of NKG2D function in tumor immunity has been well demonstrated in experimental animal models. However, the role of human NKG2D ligands in regulating tumor immunity and cancer prognosis had been controversial in the literature. In this review, we summarize the latest advancement, discuss the controversies, and present evidence that membrane-bound and soluble NKG2D ligands oppositely regulate tumor immunity. We also discuss new perspectives of targeting NKG2D ligands for cancer immunotherapy.
Collapse
Affiliation(s)
- Jinyu Zhang
- Department of Microbiology and Immunology, Medical University of South Carolina , Charleston, SC , USA
| | - Fahmin Basher
- Department of Microbiology and Immunology, Medical University of South Carolina , Charleston, SC , USA
| | - Jennifer D Wu
- Department of Microbiology and Immunology, Medical University of South Carolina , Charleston, SC , USA ; Cancer Immunology Program, Hollings Cancer Center , Charleston, SC , USA
| |
Collapse
|
40
|
Sakthivel P, Gereke M, Breithaupt A, Fuchs D, Gigliotti L, Gruber AD, Dianzani U, Bruder D. Attenuation of immune-mediated influenza pneumonia by targeting the inducible co-stimulator (ICOS) molecule on T cells. PLoS One 2014; 9:e100970. [PMID: 25029240 PMCID: PMC4100737 DOI: 10.1371/journal.pone.0100970] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/01/2014] [Indexed: 11/24/2022] Open
Abstract
Inducible Co-stimulator (ICOS) plays a critical role in mediating T cell differentiation and function and is considered a key player in balancing T effector and T regulatory (Treg) cell responses. Here we show that activation of the ICOS signalling pathway during acute influenza A virus (IAV) infection by application of an agonistic ICOS antibody reduced the frequency of CD8+ T cells in the respiratory tract of IAV infected animals and delayed pathogen elimination. In line with this, immune-mediated influenza pneumonia was significantly ameliorated in mice that received ICOS agonist as indicated by significantly reduced alveolar infiltrations and bronchointerstitial pneumonia, while at the same time virus-related pathology remained unaffected. Importantly, ICOS agonist treatment resulted in expansion of CD4+Foxp3+ Tregs in IAV infected mice, which was associated with elevated levels of the immunosuppressive cytokine IL-10 in the alveolar space. Together, our findings suggest a prominent role of ICOS signaling during acute IAV infection by increasing the Treg/CD8+ T cell ratio with beneficial outcome on immune-mediated pneumonia and underline the suitability of ICOS as potential therapeutic target for immune intervention in those infectious conditions characterized by strong immunopathology rather than virus-mediated cytopathic effects.
Collapse
Affiliation(s)
- Priya Sakthivel
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marcus Gereke
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, Magdeburg, Germany
| | - Angele Breithaupt
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University, Berlin, Germany
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Luca Gigliotti
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases, “A. Avogadro” University of Eastern Piedmont, Novara, Italy
| | - Achim D. Gruber
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University, Berlin, Germany
| | - Umberto Dianzani
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases, “A. Avogadro” University of Eastern Piedmont, Novara, Italy
| | - Dunja Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
41
|
Quandt D, Jasinski-Bergner S, Müller U, Schulze B, Seliger B. Synergistic effects of IL-4 and TNFα on the induction of B7-H1 in renal cell carcinoma cells inhibiting allogeneic T cell proliferation. J Transl Med 2014; 12:151. [PMID: 24885059 PMCID: PMC4079621 DOI: 10.1186/1479-5876-12-151] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/28/2014] [Indexed: 12/19/2022] Open
Abstract
Background The importance of B7-H molecules for the T cell/tumor communication and its impact on renal cell carcinoma (RCC) progression and prognosis has been recently described. Cytokine treatment of RCC has earlier been shown to be beneficial in preclinical settings, but its clinical implementation has not proven to be as effective. This might be partially explained by the yet incomplete picture of cellular alterations in tumor cells upon cytokine treatment investigated in detail in this study. Methods RCC tumor cell lines were treated with different cytokines alone or in combination. The constitutive and/or cytokine-induced expression of cytokine receptors signaling components and B7-H molecules in RCC cells were analysed by qPCR and flow cytometry. A mcherry reporter gene construct containing B7-H1 promoter was cloned and its activity was determined upon transfection in cytokine-stimulated cells. Cytokine pretreated tumor cells were co-cultured with allogeneic CD8+ T cells from healthy donors and T cell proliferation as well as cytokine secretion was determined. Results A heterogeneous, but constitutive B7-H1,-H2,-H3 and H4 expression was found on human RCC cell lines. IL-4 and TNFα treatment led to strong synergistic induction of B7-H1 in RCC cells, whereas B7-H2 was only increased by TNFα. In contrast, B7-H3 and B7-H4 expression were not altered by these cytokines. Treatment of RCC cells with TNFα and IL-4 was accompanied by an activation of signaling molecules like NF-κB, IκB and STAT6. The cytokine-mediated up-regulation of B7-H1 was due to transcriptional control as determined by an increased B7-H1 promoter activity in the presence of IL-4 and TNFα. Despite HLA class I and LFA-1 were also increased, the cytokine-mediated up-regulation of B7-H1 was more pronounced and caused an inhibition of allospecifc CD8+ T cell proliferation. Conclusion Thus, IL-4 and TNFα, which could be released by immune cells of the tumor microenvironment, are able to control the B7-H1 expression in RCC thereby altering T cell responses. These data are of importance for understanding the complex interplay of tumor cells with immune cells orchestrated by a number of different soluble and membrane bound mediators and for the implementation of check point antibodies directed against B7-H1.
Collapse
Affiliation(s)
| | | | | | | | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str, 2, Halle 06112, Germany.
| |
Collapse
|
42
|
Fan X, Quezada SA, Sepulveda MA, Sharma P, Allison JP. Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. ACTA ACUST UNITED AC 2014; 211:715-25. [PMID: 24687957 PMCID: PMC3978270 DOI: 10.1084/jem.20130590] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cytotoxic T lymphocyte antigen-4 (CTLA-4) blockade with a monoclonal antibody yields durable responses in a subset of cancer patients and has been approved by the FDA as a standard therapy for late-stage melanoma. We recently identified inducible co-stimulator (ICOS) as a crucial player in the antitumor effects of CTLA-4 blockade. We now show that concomitant CTLA-4 blockade and ICOS engagement by tumor cell vaccines engineered to express ICOS ligand enhanced antitumor immune responses in both quantity and quality and significantly improved rejection of established melanoma and prostate cancer in mice. This study provides strong support for the development of combinatorial therapies incorporating anti-CTLA-4 and ICOS engagement.
Collapse
Affiliation(s)
- Xiaozhou Fan
- Department of Immunology and 2 Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | | | | | | | | |
Collapse
|
43
|
Perchellet AL, Jasti S, Petroff MG. Maternal CD4⁺ and CD8⁺ T cell tolerance towards a fetal minor histocompatibility antigen in T cell receptor transgenic mice. Biol Reprod 2013; 89:102. [PMID: 24025737 DOI: 10.1095/biolreprod.113.110445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tolerance of the maternal immune system in pregnancy is important for successful pregnancy because the semiallogeneic fetus may be subject to antifetal responses. We examined maternal tolerance to the fetus using a murine system in which a model paternally inherited antigen, ovalbumin (OVA), is expressed exclusively in the fetus and placenta. By employing T cell receptor (TCR) transgenic mice specific for major histocompatibility complex class I- or class II-restricted epitopes of OVA (OT-I and OT-II) as mothers, we investigated the fate of fetus-specific CD8⁺ and CD4⁺ T cells, respectively, during gestation. Both OVA-specific CD8⁺ and CD4⁺ T cells displayed an activated phenotype in the peripheral lymphoid tissues of OVA-bred OT-I and OT-II mice, consistent with their encounter of fetal antigen. Whereas a small percentage of OVA-specific CD4⁺ T cells were deleted in the periphery and thymus of OVA-bred OT-II mice, with evidence of TCR downregulation in the remaining T cells, deletion and TCR downregulation were not observed in OVA-bred OT-I mice. Both CD4⁺ and CD8⁺ T cells upregulated inducible costimulator expression in response to the fetal antigen, but only CD4⁺ T cells consistently upregulated the inhibitory receptors programmed cell death 1 and cytotoxic T lymphocyte antigen-4. More regulatory T cells (Tregs) were present in pregnant OVA-bred than in WT-bred OT-II mice, revealing that Tregs expanded specifically in response to the fetal antigen. These data indicate that several mechanisms tolerize fetal antigen-specific maternal CD4⁺ T cells, whereas tolerance of fetal antigen-specific CD8⁺ T cells is less effective. The importance of these mechanisms is underscored by the finding that fetal loss occurs in OVA-bred OT-I but not OT-II mice.
Collapse
Affiliation(s)
- Antoine L Perchellet
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | | | | |
Collapse
|
44
|
Abstract
The fate of T lymphocytes revolves around a continuous stream of interactions between the T-cell receptor (TCR) and peptide-major histocompatibility complex (MHC) molecules. Beginning in the thymus and continuing into the periphery, these interactions, refined by accessory molecules, direct the expansion, differentiation, and function of T-cell subsets. The cellular context of T-cell engagement with antigen-presenting cells, either in lymphoid or non-lymphoid tissues, plays an important role in determining how these cells respond to antigen encounters. CD8(+) T cells are essential for clearance of a lymphocytic choriomeningitis virus (LCMV) infection, but the virus can present a number of unique challenges that antiviral T cells must overcome. Peripheral LCMV infection can lead to rapid cytolytic clearance or chronic viral persistence; central nervous system infection can result in T-cell-dependent fatal meningitis or an asymptomatic carrier state amenable to immunotherapeutic clearance. These diverse outcomes all depend on interactions that require TCR engagement of cognate peptide-MHC complexes. In this review, we explore the diversity in antiviral T-cell behaviors resulting from TCR engagement, beginning with an overview of the immunological synapse and progressing to regulators of TCR signaling that shape the delicate balance between immunopathology and viral clearance.
Collapse
Affiliation(s)
- E. Ashley Moseman
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Dorian B. McGavern
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
45
|
Chen J, Wang F, Cai Q, Shen S, Chen Y, Hao C, Sun J. A Novel Anti-human ICOSL Monoclonal Antibody that Enhances IgG Production of B Cells. Monoclon Antib Immunodiagn Immunother 2013; 32:125-31. [PMID: 23607348 DOI: 10.1089/mab.2012.0121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jie Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fengming Wang
- Testing Center, Center for Disease Prevention and Control, Changzhou, Jiangsu, China
- Institute of Medical Biotechnology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Qiuping Cai
- Renal Department of Internal Medicine, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu, China
| | - Shuang Shen
- Institute of Medical Biotechnology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chao Hao
- Testing Center, Center for Disease Prevention and Control, Changzhou, Jiangsu, China
| | - Jing Sun
- Institute of Medical Biotechnology, Medical College of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
46
|
Yao S, Zhu Y, Chen L. Advances in targeting cell surface signalling molecules for immune modulation. Nat Rev Drug Discov 2013; 12:130-46. [PMID: 23370250 PMCID: PMC3698571 DOI: 10.1038/nrd3877] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed a surge in the development of immunomodulatory approaches to combat a broad range of human diseases, including cancer, viral infections, autoimmunity and inflammation as well as in the prevention of transplant rejection. Immunomodulatory approaches mostly involve the use of monoclonal antibodies or recombinant fusion proteins that target cell surface signalling molecules on immune cells to drive immune responses towards the desired direction. Advances in our understanding of the human immune system, along with valuable lessons learned from the first generation of therapeutic biologics, are aiding the design of the next generation of immunomodulatory biologics with better therapeutic efficacy, minimized adverse effects and long-lasting clinical benefit. The recent encouraging results from antibodies targeting programmed cell death protein 1 (PD1) and B7 homolog 1 (B7H1; also known as PDL1) for the treatment of various advanced human cancers show that immunomodulatory therapy has come of age.
Collapse
Affiliation(s)
- Sheng Yao
- Department of Immunobiology and Yale Comprehensive Cancer Center, Yale University School of Medicine, 300 George Street, New Haven, Connecticut 06519, USA
| | | | | |
Collapse
|
47
|
Greaves P, Gribben JG. The role of B7 family molecules in hematologic malignancy. Blood 2013; 121:734-44. [PMID: 23223433 PMCID: PMC3563361 DOI: 10.1182/blood-2012-10-385591] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/19/2012] [Indexed: 02/07/2023] Open
Abstract
The B7 family consists of structurally related, cell-surface proteins that regulate immune responses by delivering costimulatory or coinhibitory signals through their ligands. Eight family members have been identified to date including CD80 (B7-1), CD86 (B7-2), CD274 (programmed cell death-1 ligand [PD-L1]), CD273 (programmed cell death-2 ligand [PD-L2]), CD275 (inducible costimulator ligand [ICOS-L]), CD276 (B7-H3), B7-H4, and B7-H6. B7 ligands are expressed on both lymphoid and nonlymphoid tissues. The importance of the B7 family in regulating immune responses is clear from their demonstrated role in the development of immunodeficiency and autoimmune diseases. Manipulation of the signals delivered by B7 ligands shows great potential in the treatment of cancers including leukemias and lymphomas and in regulating allogeneic T-cell responses after stem cell transplantation.
Collapse
Affiliation(s)
- Paul Greaves
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
48
|
Wang B, Ma N, Cheng H, Zhou H, Qiu H, Yang J, Wang J. Effects of ICOSLG expressed in mouse hematological neoplasm cell lines in the GVL reaction. Bone Marrow Transplant 2012; 48:124-8. [DOI: 10.1038/bmt.2012.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Involvement of Inducible Costimulator Ligand (ICOSL) Expression in Thyroid Tissue in Hyperthyroidism of Graves’ Disease Patients. J Clin Immunol 2012; 32:1253-61. [DOI: 10.1007/s10875-012-9711-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
|
50
|
Wang B, Cheng H, Wang L, Zhou H, Wang J. Expression of ICOSLG on Mouse Hematologic Neoplasm Cell Lines and Their Influence on Cytotoxicity in Allogeneic Mixed Lymphocyte Reactions. Leuk Lymphoma 2012; 53:674-80. [DOI: 10.3109/10428194.2011.625577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|