1
|
Quan J, Xie D, Li Z, Yu X, Liang Z, Chen Y, Wu L, Huang D, Lin L, Fan L. Luteolin alleviates airway remodeling in asthma by inhibiting the epithelial-mesenchymal transition via β-catenin regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156090. [PMID: 39393303 DOI: 10.1016/j.phymed.2024.156090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Asthma is a prevalent long-term inflammatory condition that causes airway inflammation and remodeling. Increasing evidence indicates that epithelial-mesenchymal transition (EMT) holds a prominent implication in airway reconstruction in patients with asthma. Flavonoids obtained from Chinese Materia Medica (CMM), such as Luteolin (Lut), exhibit various beneficial effects in various asthma models. Lut has been shown to mitigate various asthma symptoms, including airway inflammation, hyperresponsiveness, bronchoconstriction, excessive mucus production, pulmonary autophagy, and neutrophilic asthma. However, whether flavonoids can suppress EMT-associated airway remodeling in asthma and the fundamental mechanisms involved remain unclear, with no studies specifically addressing Lut in this context. PURPOSE To evaluate the inhibition of airway remodeling in asthma by Lut and its potential mechanisms, while examining the significance of β-catenin in this process through cellular and animal studies. METHODS A BEAS-2B cell model stimulated by lipopolysaccharide (LPS) was established in vitro. Wound closure and Transwell assays were utilized to assess the cellular migratory ability. EMT- and fibrosis-related markers in LPS-stimulated cells were evaluated using RT-qPCR and western blotting. The status of the β-catenin/E-cadherin and β-catenin destruction complexes was evaluated using western blotting, immunofluorescence (IF) staining, and co-immunoprecipitation (Co-IP) analysis. The regulatory function of Lut in β-catenin-dependent EMT was further validated by β-catenin overexpression with adenovirus transduction and siRNA-mediated knockdown of β-catenin. Moreover, the counts of different types of bronchoalveolar lavage fluid (BALF) inflammatory cells from mice with asthma induced by ovalbumin (OVA) were evaluated in vivo using Congo red staining. Hematoxylin and eosin (H&E), Masson's trichrome, and periodic acid-Schiff (PAS) staining were used to evaluate collagen deposition, mucus production, and inflammation in murine lung tissues. Western blotting and immunohistochemistry (IHC) assays were used to assess EMT- and fibrosis-related markers in the lung tissues in vivo. RESULT Six naturally derived flavonoids, including Lut, attenuated cell migration and prevented EMT in LPS-treated BEAS-2B cells. Moreover, Lut suppressed TGF-β1, MMP-9, fibronectin (FN), and α-smooth muscle actin (α-SMA) levels in LPS-stimulated BEAS-2B cells. Additionally, Lut downregulated the levels of β-catenin by modulating the β-catenin/E-cadherin and β-catenin destruction complexes, highlighting the pivotal role of β-catenin in EMT inhibition by Lut in LPS-stimulated BEAS-2B cells. Furthermore, Lut suppressed airway inflammation and attenuated EMT-associated airway remodeling through β-catenin blockade in OVA-induced asthmatic mice. The bronchial wall thickness notably reduced from 37.24 ± 4.00 μm in the asthmatic model group to 30.06 ± 4.40 μm in the Lut low-dose group and 24.69 ± 2.87 μm in the Lut high-dose group. CONCLUSION According to our current understanding, this research is the first to reveal that Lut diminishes airway remodeling in asthma by inhibiting EMT via β-catenin regulation, thereby filling a research gap concerning Lut and flavonoids. These results provide a theoretical basis for treating asthma with anti-asthmatic CMM, as well as a candidate and complementary therapeutic approach to treat asthma.
Collapse
Affiliation(s)
- Jingyu Quan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Zihong Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xuhua Yu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Ziyao Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Yuanbin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Lei Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Donghui Huang
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, China.
| | - Lin Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Long Fan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| |
Collapse
|
2
|
Yu J, Yan B, Shen S, Wang Y, Li Y, Cao F, Xiong W, Piao Y, Hu C, Sun Y, Zhang L, Wang C. IgE directly affects eosinophil migration in chronic rhinosinusitis with nasal polyps through CCR3 and predicts the efficacy of omalizumab. J Allergy Clin Immunol 2024; 153:447-460.e9. [PMID: 37922997 DOI: 10.1016/j.jaci.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Whether IgE affects eosinophil migration in chronic rhinosinusitis with nasal polyps (CRSwNP) remains largely unclear. Moreover, our understanding of local IgE, eosinophils, and omalizumab efficacy in CRSwNP remains limited. OBJECTIVE We investigated whether IgE acts directly on eosinophils and determined its role in omalizumab therapy. METHODS Eosinophils and their surface receptors were detected by hematoxylin and eosin staining and flow cytometry. IgE and its receptors, eosinophil peroxidase (EPX), eosinophilic cationic protein, and CCR3 were detected by immunohistochemistry and immunofluorescence. Functional analyses were performed on blood eosinophils and polyp tissues. Logistic regression was performed to screen for risk factors. Receiver operating characteristic curve was generated to evaluate the accuracy. RESULTS Both FcεRI and CD23 were expressed on eosinophils. The expression of FcεRI and CD23 on eosinophil in nasal polyp tissue was higher than in peripheral blood (both P < .001). IgE and EPX colocalized in CRSwNP. IgE directly promoted eosinophil migration by upregulating CCR3 in CRSwNP but not in healthy controls. Omalizumab and lumiliximab were found to be effective in restraining this migration, indicating CD23 was involved in IgE-induced eosinophil migration. Both IgE+ and EPX+ cells were significantly reduced after omalizumab treatment in those who experienced response (IgE+ cells, P = .001; EPX+ cells, P = .016) but not in those with no response (IgE+ cells, P = .060; EPX+ cells, P = .151). Baseline IgE+ cell levels were higher in those with response compared to those without response (P = .024). The baseline local IgE+ cell count predicted omalizumab efficacy with an accuracy of 0.811. CONCLUSIONS IgE directly promotes eosinophil migration, and baseline local IgE+ cell counts are predictive of omalizumab efficacy in CRSwNP.
Collapse
Affiliation(s)
- Jiaqi Yu
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Shen Shen
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Feifei Cao
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Wei Xiong
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Yingshi Piao
- Department of Pathology, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Chen Hu
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Sun
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Eosinophils participate in modulation of liver immune response and tissue damage induced by Schistosoma mansoni infection in mice. Cytokine 2021; 149:155701. [PMID: 34741881 DOI: 10.1016/j.cyto.2021.155701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 01/18/2023]
Abstract
The severity of chronic schistosomiasis has been mainly associated with the intensity and extension of the inflammatory response induced by egg-secreted antigens in the host tissue, especially in the liver and intestine. During acute schistosomiasis, eosinophils account for approximately 50% of the cells that compose the liver granulomas; however, the role of this cell-type in the pathology of schistosomiasis remains controversial. In the current study, we compared the parasite burden and liver immunopathological changes during experimental schistosomiasis in wild-type (WT) BALB/c mice and BALB/c mice selectively deficient for the differentiation of eosinophils (ΔdblGATA). Our data demonstrated that the absence of eosinophil differentiation did not alter the S. mansoni load or the liver retention of parasite eggs; however, there were significant changes in the liver immune response profile and tissue damage. S. mansoni infection in ΔdblGATA mice resulted in significantly lower liver concentrations of IL-5, IL-13, IL-33, IL-17, IL-10, and TGF-β and higher concentrations of IFN-γ and TNF-α, as compared to WT mice. The changes in liver immune response observed in infected ΔdblGATA mice were accompanied by lower collagen deposition, but higher liver damage and larger granulomas. Moreover, the absence of eosinophils resulted in a higher mortality rate in mice infected with a high parasite load. Therefore, the data indicated that eosinophils participate in the establishment and/or amplification of liver Th-2 and regulatory response induced by S. mansoni, which is necessary for the balance between liver damage and fibrosis, which in turn is essential for modulating disease severity.
Collapse
|
4
|
IgE Antibodies against Cancer: Efficacy and Safety. Antibodies (Basel) 2020; 9:antib9040055. [PMID: 33081206 PMCID: PMC7709114 DOI: 10.3390/antib9040055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Immunoglobulin E (IgE) antibodies are well known for their role in allergic diseases and for contributions to antiparasitic immune responses. Properties of this antibody class that mediate powerful effector functions may be redirected for the treatment of solid tumours. This has led to the rise of a new class of therapeutic antibodies to complement the armamentarium of approved tumour targeting antibodies, which to date are all IgG class. The perceived risk of type I hypersensitivity reactions following administration of IgE has necessitated particular consideration in the development of these therapeutic agents. Here, we bring together the properties of IgE antibodies pivotal to the hypothesis for superior antitumour activity compared to IgG, observations of in vitro and in vivo efficacy and mechanisms of action, and a focus on the safety considerations for this novel class of therapeutic agent. These include in vitro studies of potential hypersensitivity, selection of and observations from appropriate in vivo animal models and possible implications of the high degree of glycosylation of IgE. We also discuss the use of ex vivo predictive and monitoring clinical tools, as well as the risk mitigation steps employed in, and the preliminary outcomes from, the first-in-human clinical trial of a candidate anticancer IgE therapeutic.
Collapse
|
5
|
Sutton BJ, Davies AM, Bax HJ, Karagiannis SN. IgE Antibodies: From Structure to Function and Clinical Translation. Antibodies (Basel) 2019; 8:E19. [PMID: 31544825 PMCID: PMC6640697 DOI: 10.3390/antib8010019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
Immunoglobulin E (IgE) antibodies are well known for their role in mediating allergic reactions, and their powerful effector functions activated through binding to Fc receptors FcεRI and FcεRII/CD23. Structural studies of IgE-Fc alone, and when bound to these receptors, surprisingly revealed not only an acutely bent Fc conformation, but also subtle allosteric communication between the two distant receptor-binding sites. The ability of IgE-Fc to undergo more extreme conformational changes emerged from structures of complexes with anti-IgE antibodies, including omalizumab, in clinical use for allergic disease; flexibility is clearly critical for IgE function, but may also be exploited by allosteric interference to inhibit IgE activity for therapeutic benefit. In contrast, the power of IgE may be harnessed to target cancer. Efforts to improve the effector functions of therapeutic antibodies for cancer have almost exclusively focussed on IgG1 and IgG4 subclasses, but IgE offers an extremely high affinity for FcεRI receptors on immune effector cells known to infiltrate solid tumours. Furthermore, while tumour-resident inhibitory Fc receptors can modulate the effector functions of IgG antibodies, no inhibitory IgE Fc receptors are known to exist. The development of tumour antigen-specific IgE antibodies may therefore provide an improved immune functional profile and enhanced anti-cancer efficacy. We describe proof-of-concept studies of IgE immunotherapies against solid tumours, including a range of in vitro and in vivo evaluations of efficacy and mechanisms of action, as well as ex vivo and in vivo safety studies. The first anti-cancer IgE antibody, MOv18, the clinical translation of which we discuss herein, has now reached clinical testing, offering great potential to direct this novel therapeutic modality against many other tumour-specific antigens. This review highlights how our understanding of IgE structure and function underpins these exciting clinical developments.
Collapse
Affiliation(s)
- Brian J Sutton
- King's College London, Randall Centre for Cell and Molecular Biophysics, London SE1 1UL, UK.
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.
| | - Anna M Davies
- King's College London, Randall Centre for Cell and Molecular Biophysics, London SE1 1UL, UK.
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.
| | - Heather J Bax
- King's College London, St John's Institute of Dermatology, London SE1 9RT, UK.
| | | |
Collapse
|
6
|
Robida PA, Puzzovio PG, Pahima H, Levi-Schaffer F, Bochner BS. Human eosinophils and mast cells: Birds of a feather flock together. Immunol Rev 2019; 282:151-167. [PMID: 29431215 DOI: 10.1111/imr.12638] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the origin of the phrase "birds of a feather flock together" is unclear, it has been in use for centuries and is typically employed to describe the phenomenon that people with similar tastes or interests tend to seek each other out and congregate together. In this review, we have co-opted this phrase to compare innate immune cells of related origin, the eosinophil and mast cell, because they very often accumulate together in tissue sites under both homeostatic and inflammatory conditions. To highlight overlapping yet distinct features, their hematopoietic development, cell surface phenotype, mediator release profiles and roles in diseases have been compared and contrasted. What emerges is a sense that these two cell types often interact with each other and their tissue environment to provide synergistic contributions to a variety of normal and pathologic immune responses.
Collapse
Affiliation(s)
- Piper A Robida
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadas Pahima
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
7
|
Lin L, Hwang BJ, Culton DA, Li N, Burette S, Koller BH, Messingham KA, Fairley JA, Lee JJ, Hall RP, An L, Diaz LA, Liu Z. Eosinophils Mediate Tissue Injury in the Autoimmune Skin Disease Bullous Pemphigoid. J Invest Dermatol 2018; 138:1032-1043. [PMID: 29246800 PMCID: PMC7531612 DOI: 10.1016/j.jid.2017.11.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 11/03/2017] [Accepted: 11/14/2017] [Indexed: 01/21/2023]
Abstract
Eosinophils are typically associated with unique inflammatory settings, including allergic inflammation and helminth infections. However, new information suggests that eosinophils contribute more broadly to inflammatory responses and participate in local immune regulation and the tissue remodeling/repair events linked with a variety of diseases. Eosinophilic infiltration has long been a histologic hallmark of bullous pemphigoid (BP), a subepidermal autoimmune blistering disease characterized by autoantibodies directed against basement membrane protein BP180. However, the exact role of eosinophils in disease pathogenesis remains largely unknown. We show here that eosinophils are necessary for IgE autoantibody-mediated BP blister formation in a humanized IgE receptor mouse model of BP. Disease severity is IgE dose dependent and correlates with the degree of eosinophil infiltration in the skin. Furthermore, IgE autoantibodies fail to induce BP in eosinophil-deficient mice, confirming that eosinophils are required for IgE-mediated tissue injury. Thus, eosinophils provide the cellular link between IgE autoantibodies and skin blistering in this murine model of BP. These findings suggest a role for eosinophils in autoimmune disease and have important implications for the treatment of BP and other antibody-mediated inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Lan Lin
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Bin-Jin Hwang
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Donna A Culton
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ning Li
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Susan Burette
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Beverly H Koller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Janet A Fairley
- Department of Dermatology, University of Iowa, Iowa City, Iowa, USA
| | - James J Lee
- Mayo Clinic Arizona, Department of Biochemistry and Molecular Biology, Scottsdale, Arizona, USA
| | - Russell P Hall
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Lijia An
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Luis A Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zhi Liu
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
8
|
Cinkajzlová A, Mráz M, Haluzík M. Lymphocytes and macrophages in adipose tissue in obesity: markers or makers of subclinical inflammation? PROTOPLASMA 2017; 254:1219-1232. [PMID: 28150048 DOI: 10.1007/s00709-017-1082-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 05/17/2023]
Abstract
Obesity is accompanied by the development of chronic low-grade inflammation in adipose tissue. The presence of chronic inflammatory response along with metabolically harmful factors released by adipose tissue into the circulation is associated with several metabolic complications of obesity such as type 2 diabetes mellitus or accelerated atherosclerosis. The present review is focused on macrophages and lymphocytes and their possible role in low-grade inflammation in fat. Both macrophages and lymphocytes respond to obesity-induced adipocyte hypertrophy by their migration into adipose tissue. After activation and differentiation, they contribute to the development of local inflammatory response and modulation of endocrine function of adipose tissue. Despite intensive research, the exact role of lymphocytes and macrophages within adipose tissue is only partially clarified and various data obtained by different approaches bring ambiguous information with respect to their polarization and cytokine production. Compared to immunocompetent cells, the role of adipocytes in the obesity-related adipose tissue inflammation is often underestimated despite their abundant production of factors with immunomodulatory actions such as cytokines or adipokines such as leptin, adiponektin, and others. In summary, conflicting evidence together with only partial correlation of in vitro findings with true in vivo situation due to great heterogeneity and molecular complexity of tissue environment calls for intensive research in this rapidly evolving and important area.
Collapse
Affiliation(s)
- Anna Cinkajzlová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
- Centre of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Miloš Mráz
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martin Haluzík
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic.
- Centre of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- Department of Obesitology, Institute of Endocrinology, Prague, Czech Republic.
| |
Collapse
|
9
|
Smith KM, Rahman RS, Spencer LA. Humoral Immunity Provides Resident Intestinal Eosinophils Access to Luminal Antigen via Eosinophil-Expressed Low-Affinity Fcγ Receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:3716-3724. [PMID: 27683752 PMCID: PMC5101126 DOI: 10.4049/jimmunol.1600412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/05/2016] [Indexed: 12/31/2022]
Abstract
Eosinophils are native to the healthy gastrointestinal tract and are associated with inflammatory diseases likely triggered by exposure to food allergens (e.g., food allergies and eosinophilic gastrointestinal disorders). In models of allergic respiratory diseases and in vitro studies, direct Ag engagement elicits eosinophil effector functions, including degranulation and Ag presentation. However, it was not known whether intestinal tissue eosinophils that are separated from luminal food Ags by a columnar epithelium might similarly engage food Ags. Using an intestinal ligated loop model in mice, in this study we determined that resident intestinal eosinophils acquire Ag from the lumen of Ag-sensitized but not naive mice in vivo. Ag acquisition was Ig-dependent; intestinal eosinophils were unable to acquire Ag in sensitized Ig-deficient mice, and passive immunization with immune serum or Ag-specific IgG was sufficient to enable intestinal eosinophils in otherwise naive mice to acquire Ag in vivo. Intestinal eosinophils expressed low-affinity IgG receptors, and the activating receptor FcγRIII was necessary for Ig-mediated acquisition of Ags by isolated intestinal eosinophils in vitro. Our combined data suggest that intestinal eosinophils acquire lumen-derived food Ags in sensitized mice via FcγRIII Ag focusing and that they may therefore participate in Ag-driven secondary immune responses to oral Ags.
Collapse
MESH Headings
- Adaptive Immunity
- Allergens/immunology
- Animals
- Antigen Presentation
- Antigens/immunology
- Cells, Cultured
- Eosinophils/immunology
- Hypersensitivity/immunology
- Immunity, Humoral
- Immunoglobulin E/immunology
- Immunoglobulin E/metabolism
- Intestine, Small/immunology
- Intestine, Small/surgery
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Animal
- Ovalbumin/immunology
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
Collapse
Affiliation(s)
- Kalmia M Smith
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Raiann S Rahman
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Lisa A Spencer
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
10
|
Gangwar RS, Landolina N, Arpinati L, Levi-Schaffer F. Mast cell and eosinophil surface receptors as targets for anti-allergic therapy. Pharmacol Ther 2016; 170:37-63. [PMID: 27773785 DOI: 10.1016/j.pharmthera.2016.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Roopesh Singh Gangwar
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Nadine Landolina
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Ludovica Arpinati
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
11
|
Tweyongyere R, Namanya H, Naniima P, Cose S, Tukahebwa EM, Elliott AM, Dunne DW, Wilson S. Human eosinophils modulate peripheral blood mononuclear cell response to Schistosoma mansoni adult worm antigen in vitro. Parasite Immunol 2016; 38:516-22. [PMID: 27169695 PMCID: PMC4973678 DOI: 10.1111/pim.12336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/22/2016] [Indexed: 12/30/2022]
Abstract
High numbers of eosinophils are observed in parasitic infections and allergic diseases, where they are proposed to be terminally differentiated effector cells that play beneficial role in host defence, or cause harmful inflammatory response. Eosinophils have been associated with killing of schistosomulae in vitro, but there is growing evidence that eosinophils can play additional immuno‐regulatory role. Here, we report results of a study that examines peripheral blood mononuclear cell (PBMC) cytokine responses to Schistosoma mansoni adult worm antigen (SWA) when stimulated alone or enriched with autologous eosinophils. Production of the Th‐2 type cytokines interleukin (IL)‐4, IL‐5 and IL‐13 was lower (P = 0·017, 0·018 and <0·001, respectively) in PBMC + eosinophil cultures than in PBMC‐only cultures stimulated with SWA. Substantial levels of IL‐13, IL‐10, interferon gamma and tumour necrosis factor alpha were recorded in cultures of eosinophils, but none of these cytokines showed significant association with the observed eosinophil‐induced drop in cytokine responses of PBMC. Transwell experiments suggested that the observed effect is due to soluble mediators that downmodulate production of Th‐2 type cytokines. This study shows that eosinophils may down‐modulate schistosome‐specific Th‐2 type cytokine responses in S. mansoni‐infected individuals. The mechanism of this immune modulation remains to be elucidated.
Collapse
Affiliation(s)
- R Tweyongyere
- Department of Veterinary Pharmacy Clinical & Comparative Medicine, Makerere University, Kampala, Uganda.,MRC/UVRI Research Unit on AIDS, Uganda Virus Research Institute, Entebbe, Uganda
| | - H Namanya
- Vector Control Division- Ministry of Health, Kampala, Uganda
| | - P Naniima
- MRC/UVRI Research Unit on AIDS, Uganda Virus Research Institute, Entebbe, Uganda
| | - S Cose
- MRC/UVRI Research Unit on AIDS, Uganda Virus Research Institute, Entebbe, Uganda.,London School of Hygiene & Tropical Medicine, London, UK
| | - E M Tukahebwa
- Vector Control Division- Ministry of Health, Kampala, Uganda
| | - A M Elliott
- MRC/UVRI Research Unit on AIDS, Uganda Virus Research Institute, Entebbe, Uganda.,London School of Hygiene & Tropical Medicine, London, UK
| | - D W Dunne
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - S Wilson
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Kanai T, Mikami Y, Hayashi A. A breakthrough in probiotics: Clostridium butyricum regulates gut homeostasis and anti-inflammatory response in inflammatory bowel disease. J Gastroenterol 2015; 50:928-39. [PMID: 25940150 DOI: 10.1007/s00535-015-1084-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/18/2015] [Indexed: 02/04/2023]
Abstract
Intestinal immune homeostasis is regulated by gut microbiota, including beneficial and pathogenic microorganisms. Imbalance in gut bacterial constituents provokes host proinflammatory responses causing diseases such as inflammatory bowel disease (IBD). The development of next-generation sequencing technology allows the identification of microbiota alterations in IBD. Several studies have shown reduced diversity in the gut microbiota of patients with IBD. Advances in gnotobiotic technology have made possible analysis of the role of specific bacterial strains in immune cells in the intestine. Using these techniques, we have shown that Clostridium butyricum as a probiotic induces interleukin-10-producing macrophages in inflamed mucosa via the Toll-like receptor 2/myeloid differentiation primary response gene 88 pathway to prevent acute experimental colitis. In this review, we focus on the new approaches for the role of specific bacterial strains in immunological responses, as well as the potential of bacterial therapy for IBD treatments.
Collapse
Affiliation(s)
- Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan,
| | | | | |
Collapse
|
13
|
Takeda K, Shiraishi Y, Ashino S, Han J, Jia Y, Wang M, Lee NA, Lee JJ, Gelfand EW. Eosinophils contribute to the resolution of lung-allergic responses following repeated allergen challenge. J Allergy Clin Immunol 2015; 135:451-60. [PMID: 25312762 PMCID: PMC4587899 DOI: 10.1016/j.jaci.2014.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Eosinophils accumulate at the site of allergic inflammation and are critical effector cells in allergic diseases. Recent studies have also suggested a role for eosinophils in the resolution of inflammation. OBJECTIVE To determine the role of eosinophils in the resolution phase of the response to repeated allergen challenge. METHODS Eosinophil-deficient (PHIL) and wild-type (WT) littermates were sensitized and challenged to ovalbumin (OVA) 7 or 11 times. Airway inflammation, airway hyperresponsiveness (AHR) to inhaled methacholine, bronchoalveolar lavage (BAL) cytokine levels, and lung histology were monitored. Intracellular cytokine levels in BAL leukocytes were analyzed by flow cytometry. Groups of OVA-sensitized PHIL mice received bone marrow from WT or IL-10(-/-) donors 30 days before the OVA challenge. RESULTS PHIL and WT mice developed similar levels of AHR and numbers of leukocytes and cytokine levels in BAL fluid after OVA sensitization and 7 airway challenges; no eosinophils were detected in the PHIL mice. Unlike WT mice, sensitized PHIL mice maintained AHR, lung inflammation, and increased levels of IL-4, IL-5, and IL-13 in BAL fluid after 11 challenges whereas IL-10 and TGF-β levels were decreased. Restoration of eosinophil numbers after injection of bone marrow from WT but not IL-10-deficient mice restored levels of IL-10 and TGF-β in BAL fluid as well as suppressed AHR and inflammation. Intracellular staining of BAL leukocytes revealed the capacity of eosinophils to produce IL-10. CONCLUSIONS After repeated allergen challenge, eosinophils appeared not essential for the development of AHR and lung inflammation but contributed to the resolution of AHR and inflammation by producing IL-10.
Collapse
Affiliation(s)
- Katsuyuki Takeda
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Yoshiki Shiraishi
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Shigeru Ashino
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Junyan Han
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Yi Jia
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Meiqin Wang
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Nancy A Lee
- Pulmonary Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - James J Lee
- Pulmonary Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo.
| |
Collapse
|
14
|
Abstract
Twenty years ago, the observation that mice genetically deficient in IL-10 spontaneously developed severe intestinal inflammation, revealed an essential role for IL-10 in the maintenance of intestinal homeostasis. In the intervening period much has been learned about the cellular and molecular factors that are involved in IL-10-mediated regulatory pathways. Elegant experiments with conditional cell-type specific knockout strains have illustrated that IL-10 acts on both myeloid cells and T cells within the intestine to suppress innate and adaptive inflammatory responses and enhance regulatory circuits. Although several distinct cellular sources of IL-10 have been identified in the gut, CD4(+) T cells are a crucial non-redundant source of IL-10 for the regulation of intestinal inflammation. Induction of IL-10 may represent an important means through which intestinal microbiota establishes mutually beneficial commensalism with mammalian hosts, but can be exploited by certain pathogens to facilitate infection. Recent genetic studies in humans have confirmed the essential role of IL-10 in preventing deleterious inflammation in the gut. A better understanding of the molecular pathways involved in IL-10 induction and function in the intestine may facilitate the development of novel therapies for inflammatory bowel disease (IBD).
Collapse
|
15
|
Messingham KN, Holahan HM, Frydman AS, Fullenkamp C, Srikantha R, Fairley JA. Human eosinophils express the high affinity IgE receptor, FcεRI, in bullous pemphigoid. PLoS One 2014; 9:e107725. [PMID: 25255430 PMCID: PMC4177878 DOI: 10.1371/journal.pone.0107725] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/17/2014] [Indexed: 01/21/2023] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disease mediated by autoantibodies targeting BP180 (type XVII collagen). Patient sera and tissues typically have IgG and IgE autoantibodies and elevated eosinophil numbers. Although the pathogenicity of the IgE autoantibodies is established in BP, their contribution to the disease process is not well understood. Our aims were two-fold: 1) To establish the clinical relationships between total and BP180-specific IgE, eosinophilia and other markers of disease activity; and 2) To determine if eosinophils from BP patients express the high affinity IgE receptor, FcεRI, as a potential mechanism of action for IgE in BP. Our analysis of 48 untreated BP patients revealed a correlation between BP180 IgG and both BP180 IgE and peripheral eosinophil count. Additionally, we established a correlation between total IgE concentration and both BP180 IgE levels and eosinophil count. When only sera from patients (n = 16) with total IgE ≥ 400 IU/ml were analyzed, BP180 IgG levels correlated with disease severity, BP230 IgG, total circulating IgE and BP180 IgE. Finally, peripheral eosinophil count correlated more strongly with levels of BP180 IgE then with BP180 IgG. Next, eosinophil FcεRI expression was investigated in the blood and skin using several methods. Peripheral eosinophils from BP patients expressed mRNA for all three chains (α, β and γ) of the FcεRI. Surface expression of the FcεRIα was confirmed on both peripheral and tissue eosinophils from most BP patients by immunostaining. Furthermore, using a proximity ligation assay, interaction of the α- and β-chains of the FcεRI was observed in some biopsy specimens, suggesting tissue expression of the trimeric receptor form in some patients. These studies provide clinical support for the relevance of IgE in BP disease and provide one mechanism of action of these antibodies, via binding to the FcεRI on eosinophils.
Collapse
Affiliation(s)
- Kelly N. Messingham
- Department of Dermatology, University of Iowa, Iowa City, Iowa, United States of America
| | - Heather M. Holahan
- Department of Dermatology, University of Iowa, Iowa City, Iowa, United States of America
| | - Alexandra S. Frydman
- Department of Dermatology, University of Iowa, Iowa City, Iowa, United States of America
| | - Colleen Fullenkamp
- Department of Dermatology, University of Iowa, Iowa City, Iowa, United States of America
| | - Rupasree Srikantha
- Department of Dermatology, University of Iowa, Iowa City, Iowa, United States of America
| | - Janet A. Fairley
- Department of Dermatology, University of Iowa, Iowa City, Iowa, United States of America
- Veterans Administration Medical Center, Iowa City, Iowa, United States of America
| |
Collapse
|
16
|
Geiger SM, Jardim-Botelho A, Williams W, Alexander N, Diemert DJ, Bethony JM. Serum CCL11 (eotaxin-1) and CCL17 (TARC) are serological indicators of multiple helminth infections and are driven by Schistosoma mansoni infection in humans. Trop Med Int Health 2013; 18:750-60. [PMID: 23496801 DOI: 10.1111/tmi.12095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To evaluate systemic serum cytokine and chemokine markers for inflammation and Th1/Th2 responses in relation to multiple helminth infections, parasite burden and/or nutritional status of individuals. METHODS In a longitudinal study, stool samples from 210 individuals from an area highly endemic for Ascaris lumbricoides, Necator americanus and Schistosoma mansoni were examined before and 12 months after clearance of parasites by chemotherapy. On both occasions, the presence of mono- or multiple infections and intensities of infection were compared with nutritional parameters and with serum cytokines or chemokines as markers for inflammatory, regulatory or Th1- or Th2-type immune responses. RESULTS Before treatment, we were not able to associate any altered nutritional parameters with increased inflammatory responses, and highest intensities of infection were found in eutrophic participants with multiple infections. In contrast, major changes in serum Th2-type chemokine levels were measured in individuals infected with intestinal helminths and/or S. mansoni, and resulted in significantly higher CCL11 and CCL17 concentrations, both before treatment and after reinfection. CONCLUSIONS The driving force for these elevated type 2 serum chemokine concentrations was an S. mansoni infection and faecal egg counts significantly correlated with serum IL-10 concentrations.
Collapse
Affiliation(s)
- Stefan M Geiger
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil.
| | | | | | | | | | | |
Collapse
|
17
|
Makepeace BL, Martin C, Turner JD, Specht S. Granulocytes in helminth infection -- who is calling the shots? Curr Med Chem 2012; 19:1567-86. [PMID: 22360486 PMCID: PMC3394172 DOI: 10.2174/092986712799828337] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/23/2011] [Accepted: 12/26/2011] [Indexed: 02/06/2023]
Abstract
Helminths are parasitic organisms that can be broadly described as “worms” due to their elongated body plan, but which otherwise differ in shape, development, migratory routes and the predilection site of the adults and larvae. They are divided into three major groups: trematodes (flukes), which are leaf-shaped, hermaphroditic (except for blood flukes) flatworms with oral and ventral suckers; cestodes (tapeworms), which are segmented, hermaphroditic flatworms that inhabit the intestinal lumen; and nematodes (roundworms), which are dioecious, cylindrical parasites that inhabit intestinal and peripheral tissue sites. Helminths exhibit a sublime co-evolution with the host´s immune system that has enabled them to successfully colonize almost all multicellular species present in every geographical environment, including over two billion humans. In the face of this challenge, the host immune system has evolved to strike a delicate balance between attempts to neutralize the infectious assault versus limitation of damage to host tissues. Among the most important cell types during helminthic invasion are granulocytes: eosinophils, neutrophils and basophils. Depending on the specific context, these leukocytes may have pivotal roles in host protection, immunopathology, or facilitation of helminth establishment. This review provides an overview of the function of granulocytes in helminthic infections.
Collapse
Affiliation(s)
- B L Makepeace
- Department of Infection Biology, Institute of Infection & Global Health, University of Liverpool, Liverpool L69 7ZJ, UK
| | | | | | | |
Collapse
|
18
|
Teo PZ, Utz PJ, Mollick JA. Using the allergic immune system to target cancer: activity of IgE antibodies specific for human CD20 and MUC1. Cancer Immunol Immunother 2012; 61:2295-309. [PMID: 22692757 DOI: 10.1007/s00262-012-1299-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/29/2012] [Indexed: 01/21/2023]
Abstract
Monoclonal antibodies are widely used in the treatment of many B cell lymphomas and certain solid tumors. All currently approved therapeutic monoclonal antibodies are of the immunoglobulin G (IgG) isotype. We hypothesized that tumor-specific monoclonal antibodies of the IgE isotype may serve as effective cancer therapeutics. To test this hypothesis, we produced mouse-human chimeric IgE antibodies specific for the human B cell antigen CD20 and the epithelial antigen MUC1. We demonstrate here that anti-hCD20 IgE antibodies have in vitro cytotoxic activity when used with purified allergic effector cells derived from umbilical cord blood. At an effector-tumor ratio of 2:1, mast cells and tumor-specific IgE induced a 2.5-fold increase in tumor cell death, as compared to control IgE. Similar results were observed when eosinophils were used as effector cells. In an in vivo murine model of breast carcinoma, administration of anti-hMUC1 IgE reduced the growth of MUC1(+) tumors by 25-30 % in hFcεRI transgenic mice. In contrast, local production of IgE and cytokines chemotactic for macrophages, eosinophils and mast cells led to complete tumor eradication. These results suggest that allergic effector cells activated by IgE and cell surface antigens have the capacity to induce tumor cell death in vitro and in vivo. The use of chimeric antibodies and hFcεRI transgenic mice will greatly enhance investigations in the nascent field of allergo-oncology.
Collapse
Affiliation(s)
- Pearline Zhaoying Teo
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
19
|
Nigro EA, Soprana E, Brini AT, Ambrosi A, Yenagi VA, Dombrowicz D, Siccardi AG, Vangelista L. An Antitumor Cellular Vaccine Based on a Mini-Membrane IgE. THE JOURNAL OF IMMUNOLOGY 2011; 188:103-10. [DOI: 10.4049/jimmunol.1101842] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Platzer B, Ruiter F, van der Mee J, Fiebiger E. Soluble IgE receptors--elements of the IgE network. Immunol Lett 2011; 141:36-44. [PMID: 21920387 DOI: 10.1016/j.imlet.2011.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/15/2011] [Accepted: 08/27/2011] [Indexed: 12/22/2022]
Abstract
Soluble isoforms of three human IgE Fc receptors, namely FcεRI, FcεRII, and galectin-3, can be found in serum. These soluble IgE receptors are a diverse family of proteins unified by the characteristic of interacting with IgE in the extracellular matrix. A truncated form of the alpha-chain of FcεRI, the high affinity IgE receptor, has recently been described as a soluble isoform (sFcεRI). Multiple soluble isoforms of CD23 (sCD23), the low affinity IgE receptor also known as FcεRII, are generated via different mechanisms of extracellular and intracellular proteolysis. The second low affinity IgE receptor, galectin-3, only exists as a secretory protein. We here discuss the physiological roles of these three soluble IgE receptors as elements of the human IgE network. Additionally, we review the potential and current use of sFcεRI, sCD23, and galectin-3 as biomarkers in human disease.
Collapse
Affiliation(s)
- Barbara Platzer
- Division of Gastroenterology and Nutrition, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States
| | | | | | | |
Collapse
|
21
|
Dattoli VCC, Freire SM, Mendonça LR, Santos PC, Meyer R, Alcantara-Neves NM. Toxocara canis infection is associated with eosinophilia and total IgE in blood donors from a large Brazilian centre. Trop Med Int Health 2011; 16:514-7. [DOI: 10.1111/j.1365-3156.2010.02719.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Kasten KR, Muenzer JT, Caldwell CC. Neutrophils are significant producers of IL-10 during sepsis. Biochem Biophys Res Commun 2010; 393:28-31. [PMID: 20097159 DOI: 10.1016/j.bbrc.2010.01.066] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 01/16/2010] [Indexed: 10/19/2022]
Abstract
Sepsis is a syndrome involving systemic inflammation as well as an infectious focus. Accordingly, the host immune response to sepsis involves complex leukocyte interplay that is incompletely understood. It is known that the immunoregulatory cytokine, IL-10, is rapidly expressed during the early stages of sepsis. In a murine model of sepsis, we sought to elucidate which leukocytes are early IL-10 producers. Using a novel IL-10 transcriptional reporter mouse, we observed that splenic leukocytes produced little IL-10. At the site of infection, peritoneal neutrophils produced the highest levels of IL-10 among leukocytes. Using cytokine antibody labeling, we further show that peritoneal neutrophils had high amounts of intracellular IL-10. We next depleted neutrophils and found a 40% decrease in peritoneal IL-10 levels. Altogether, this report demonstrates that among leukocytes, neutrophils are significant contributors of IL-10 at the site of infection during sepsis.
Collapse
Affiliation(s)
- Kevin R Kasten
- Division of Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0558, USA
| | | | | |
Collapse
|
23
|
Effect of omalizumab on peripheral blood eosinophilia in allergic asthma. Respir Med 2009; 104:188-96. [PMID: 19846286 DOI: 10.1016/j.rmed.2009.09.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 07/17/2009] [Accepted: 09/17/2009] [Indexed: 11/22/2022]
Abstract
Eosinophilia is an established marker of asthma-related inflammation. We assessed the effect of omalizumab on peripheral blood eosinophil counts using a pooled analysis of data from five randomized, double-blind, placebo-controlled studies in patients with moderate-to-severe persistent allergic asthma receiving moderate-to-high-dose inhaled corticosteroids (omalizumab, n=1136; placebo, n=1100). Relationships between omalizumab, peripheral blood eosinophils, serum free IgE concentrations and clinical outcomes were explored. Baseline mean eosinophil counts were similar in each treatment group. Post-treatment eosinophil counts were significantly reduced from baseline in the omalizumab group (p<0.0001) but were not significantly different in the placebo group. Greater reductions in eosinophil counts were observed in patients who had post-treatment free IgE levels <50ng/mL. Three studies included steroid-stable and steroid-reduction phases. At the end of each phase in these studies, a significantly greater reduction in eosinophil counts was achieved in the omalizumab group compared with the placebo group (p<0.0001). A consistent pattern of improved clinical outcomes/decreased eosinophils and worsened clinical outcomes/increased eosinophils was observed for both omalizumab and placebo treatment groups. The findings from our analysis of a large patient population are consistent with earlier reports of the inhibitory effect of omalizumab on eosinophils.
Collapse
|
24
|
The role of the high-affinity IgE receptor, FcepsilonRI, in eosinophilic gastrointestinal diseases. Immunol Allergy Clin North Am 2009; 29:159-70, xii. [PMID: 19141351 DOI: 10.1016/j.iac.2008.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Primary eosinophilic gastrointestinal diseases (EGIDs) are a heterogeneous group of diseases including eosinophilic esophagitis, eosinophilic gastritis, eosinophilic gastroenteritis, eosinophilic enteritis, and eosinophilic colitis. The unifying hallmark and diagnostic marker of EGIDs is an eosinophil-rich inflammatory infiltrate of the GI mucosa, in the absence of known causes for eosinophilia. The etiology of EGIDs is not yet fully understood. The pathogenesis however seems to involve a complex interplay of genetic predisposition, exposure to food- and environmental allergens and IgE-mediated activation of the immune system. Accumulating evidence relates EGIDs to the group of T-helper (Th) 2 mediated immune disorders, like IgE-mediated allergy. In this article we discuss a possible role of IgE-mediated immune-activation via the high affinity receptor for IgE, FcepsilonRI, in the pathogenesis of primary EGIDs. Beyond its defined role in type I allergic reactions, we here hypothesize that activation of tetrameric FcepsilonRI on mast cells and basophils as well as trimeric FcepsilonRI on human eosinophils and antigen presenting cells in the gastrointestinal mucosa is critically involved in the pathology of EGIDs. We also discuss how IgE-independent triggering of FcepsilonRI could be a mechanisms responsible for activation of the immune system in patients with EGID.
Collapse
|
25
|
Nigro EA, Brini AT, Soprana E, Ambrosi A, Dombrowicz D, Siccardi AG, Vangelista L. Antitumor IgE adjuvanticity: key role of Fc epsilon RI. THE JOURNAL OF IMMUNOLOGY 2009; 183:4530-6. [PMID: 19748979 DOI: 10.4049/jimmunol.0900842] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Working with C57BL/6 mouse tumor models, we had previously demonstrated that vaccination with IgE-coated tumor cells can protect against tumor challenge, an observation that supports the involvement of IgE in antitumor immunity. The adjuvant effect of IgE was shown to result from eosinophil-dependent priming of the T cell-mediated adaptive immune response. The protective effect is likely to be mediated by the interaction of tumor cell-bound IgE with receptors, which then trigger the release of mediators, recruitment of effector cells, cell killing and tumor Ag cross-priming. It was therefore of utmost importance to demonstrate the strict dependence of the protective effect on IgE receptor activation. First, the protective effect of IgE was confirmed in a BALB/c tumor model, in which IgE-loaded modified VV Ankara-infected tumor cells proved to be an effective cellular vaccine. However, the protective effect was lost in Fc(epsilon)RIalpha(-/-) (but not in CD23(-/-)) knockout mice, showing the IgE-Fc(epsilo)nRI interaction to be essential. Moreover, human IgE (not effective in BALB/c mice) had a protective effect in the humanized knockin mouse (Fc(epsilon)RIalpha(-/-) hFc(epsilon)RIalpha(+)). This finding suggests that the adjuvant effect of IgE could be exploited for human therapeutics.
Collapse
Affiliation(s)
- Elisa A Nigro
- Department of Biology and Genetics, University of Milan, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Madan R, Demircik F, Surianarayanan S, Allen JL, Divanovic S, Trompette A, Yogev N, Gu Y, Khodoun M, Hildeman D, Boespflug N, Fogolin MB, Gröbe L, Greweling M, Finkelman FD, Cardin R, Mohrs M, Müller W, Waisman A, Roers A, Karp CL. Nonredundant roles for B cell-derived IL-10 in immune counter-regulation. THE JOURNAL OF IMMUNOLOGY 2009; 183:2312-20. [PMID: 19620304 DOI: 10.4049/jimmunol.0900185] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IL-10 plays a central role in restraining the vigor of inflammatory responses, but the critical cellular sources of this counter-regulatory cytokine remain speculative in many disease models. Using a novel IL-10 transcriptional reporter mouse, we found an unexpected predominance of B cells (including plasma cells) among IL-10-expressing cells in peripheral lymphoid tissues at baseline and during diverse models of in vivo immunological challenge. Use of a novel B cell-specific IL-10 knockout mouse revealed that B cell-derived IL-10 nonredundantly decreases virus-specific CD8(+) T cell responses and plasma cell expansion during murine cytomegalovirus infection and modestly restrains immune activation after challenge with foreign Abs to IgD. In contrast, no role for B cell-derived IL-10 was evident during endotoxemia; however, although B cells dominated lymphoid tissue IL-10 production in this model, myeloid cells were dominant in blood and liver. These data suggest that B cells are an underappreciated source of counter-regulatory IL-10 production in lymphoid tissues, provide a clear rationale for testing the biological role of B cell-derived IL-10 in infectious and inflammatory disease, and underscore the utility of cell type-specific knockouts for mechanistic limning of immune counter-regulation.
Collapse
Affiliation(s)
- Rajat Madan
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Legrand F, Driss V, Woerly G, Loiseau S, Hermann E, Fournié JJ, Héliot L, Mattot V, Soncin F, Gougeon ML, Dombrowicz D, Capron M. A functional gammadeltaTCR/CD3 complex distinct from gammadeltaT cells is expressed by human eosinophils. PLoS One 2009; 4:e5926. [PMID: 19536290 PMCID: PMC2693924 DOI: 10.1371/journal.pone.0005926] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/13/2009] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Eosinophils are effector cells during parasitic infections and allergic responses. However, their contribution to innate immunity has been only recently unravelled. METHODOLOGY/PRINCIPAL FINDINGS Here we show that human eosinophils express CD3 and gammadelta T Cell Receptor (TCR) but not alphabeta TCR. Surface expression of gammadeltaTCR/CD3 is heterogeneous between eosinophil donors and inducible by mycobacterial ligands. Surface immunoprecipitation revealed expression of the full gammadeltaTCR/CD3 complex. Real-time PCR amplification for CD3, gamma and delta TCR constant regions transcripts showed a significantly lower expression in eosinophils than in gammadeltaT cells. Limited TCR rearrangements occur in eosinophils as shown by spectratyping analysis of CDR3 length profiles and in situ hybridization. Release by eosinophils of Reactive Oxygen Species, granule proteins, Eosinophil Peroxidase and Eosinophil-Derived Neurotoxin and cytokines (IFN-gamma and TNF-alpha) was observed following activation by gammadeltaTCR-specific agonists or by mycobacteria. These effects were inhibited by anti-gammadeltaTCR blocking antibodies and antagonists. Moreover, gammadeltaTCR/CD3 was involved in eosinophil cytotoxicity against tumor cells. CONCLUSIONS/SIGNIFICANCE Our results provide evidence that human eosinophils express a functional gammadeltaTCR/CD3 with similar, but not identical, characteristics to gammadeltaTCR from gammadeltaT cells. We propose that this receptor contributes to eosinophil innate responses against mycobacteria and tumors and may represent an additional link between lymphoid and myeloid lineages.
Collapse
Affiliation(s)
- Fanny Legrand
- Inserm U547, Lille, France
- Université Lille - Nord de France, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Virginie Driss
- Inserm U547, Lille, France
- Université Lille - Nord de France, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Gaëtane Woerly
- Inserm U547, Lille, France
- Université Lille - Nord de France, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Sylvie Loiseau
- Inserm U547, Lille, France
- Université Lille - Nord de France, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Emmanuel Hermann
- Inserm U547, Lille, France
- Université Lille - Nord de France, Lille, France
- Institut Pasteur de Lille, Lille, France
| | | | - Laurent Héliot
- Université Lille - Nord de France, Lille, France
- Institut Pasteur de Lille, Lille, France
- CNRS UMR8161, Institut de Biologie de Lille, Lille, France
| | - Virginie Mattot
- Université Lille - Nord de France, Lille, France
- Institut Pasteur de Lille, Lille, France
- CNRS UMR8161, Institut de Biologie de Lille, Lille, France
| | - Fabrice Soncin
- Université Lille - Nord de France, Lille, France
- Institut Pasteur de Lille, Lille, France
- CNRS UMR8161, Institut de Biologie de Lille, Lille, France
| | | | - David Dombrowicz
- Inserm U547, Lille, France
- Université Lille - Nord de France, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Monique Capron
- Inserm U547, Lille, France
- Université Lille - Nord de France, Lille, France
- Institut Pasteur de Lille, Lille, France
- * E-mail:
| |
Collapse
|
28
|
Hatano Y, Taniuchi S, Masuda M, Tsuji S, Ito T, Hasui M, Kobayashi Y, Kaneko K. Phagocytosis of heat-killed Staphylococcus aureus by eosinophils: comparison with neutrophils. APMIS 2009; 117:115-23. [PMID: 19239433 DOI: 10.1111/j.1600-0463.2008.00022.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Eosinophils are characterized by several functional properties, such as chemotaxis, adhesion, superoxide anion production, and degranulation. In this article, we have studied the role of bacterial ingestion by eosinophils in comparison with that by neutrophils. Eosinophils and neutrophils were purified by using the Percoll gradient method followed by selection with CD16-coated immunomagnetic beads and centrifugation through a Ficoll-Hypaque gradient combined with dextran sedimentation, respectively. Both cells were preincubated with anti-FcgammaRIIa mAb (CD32 mAb), anti-FcgammaRIIIb mAb (CD16 mAb), anti-CR3 (CD11b mAb), or anti-CR1 (CD35 mAb) before being examined for phagocytosis of opsonized heat-killed Staphylococcus aureus (S. aureus). Phagocytosis and production of hydrogen peroxide were simultaneously measured by flow cytometry using S. aureus labeled with propidium iodide and stained with 2',7'-dichlorofluorescein diacetate. Eosinophils showed significantly lower activity than neutrophils in both phagocytosis and hydrogen peroxide production. Phagocytosis by both cells was decreased by heat-inactivated serum. Phagocytosis by neutrophils was significantly inhibited by CD16 mAb and CD32 mAb, whereas that by eosinophils was only inhibited by CD35 mAb. Whereas the mechanism of phagocytosis by neutrophils was mediated by CD16 and CD32, that of eosinophils was modulated by complement receptor 1 (CD35).
Collapse
Affiliation(s)
- Yasuko Hatano
- Department of Pediatrics, Kansai Medical University, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Karagiannis SN, Bracher MG, Beavil RL, Beavil AJ, Hunt J, McCloskey N, Thompson RG, East N, Burke F, Sutton BJ, Dombrowicz D, Balkwill FR, Gould HJ. Role of IgE receptors in IgE antibody-dependent cytotoxicity and phagocytosis of ovarian tumor cells by human monocytic cells. Cancer Immunol Immunother 2008; 57:247-63. [PMID: 17657488 PMCID: PMC11030264 DOI: 10.1007/s00262-007-0371-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 07/07/2007] [Indexed: 11/29/2022]
Abstract
Antibodies directed against tumor-associated antigens are emerging as effective treatments for a number of cancers, although the mechanism(s) of action for some are unclear and still under investigation. We have previously examined a chimeric IgE antibody (MOv18 IgE), against the ovarian tumor-specific antigen, folate binding protein (FBP), and showed that it can direct human PBMC to kill ovarian cancer cells. We have developed a three-color flow cytometric assay to investigate the mechanism by which IgE receptors on U937 monocytes target and kill ovarian tumor cells. U937 monocytes express three IgE receptors, the high-affinity receptor, FcepsilonRI, the low-affinity receptor, CD23, and galectin-3, and mediate tumor cell killing in vitro by two mechanisms, cytotoxicity, and phagocytosis. Our results suggest that CD23 mediates phagocytosis, which is enhanced by upregulation of CD23 on U937 cells with IL-4, whereas FcepsilonRI mediates cytotoxicity. We show that effector : tumor cell bridging is associated with both activities. Galectin-3 does not appear to be involved in tumor cell killing. U937 cells and IgE exerted ovarian tumor cell killing in vivo in our xenograft model in nude mice. Harnessing IgE receptors to target tumor cells suggests the potential of tumor-specific IgE antibodies to activate effector cells in immunotherapy of ovarian cancer.
Collapse
Affiliation(s)
- Sophia N Karagiannis
- Randall Division of Cell and Molecular Biophysics, King's College London, Room 3.8, New Hunt's House, Guy's Campus, St Thomas's Street, London, SE1 1UL, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Eosinophils are multifunctional leukocytes classically described as being involved in helminth parasitic infections and allergic diseases. Previously restricted to an exclusive role in the release of cytotoxic mediators, they are now also considered to be immunoregulatory cells and potential effectors in innate immune responses. Eosinophils are mainly found in tissues, so specific procedures are needed for their isolation from venous blood and for functional assays. Murine models are very useful for the dissection of eosinophil physiology in vivo. But murine eosinophils significantly differ from human ones. A complete understanding of eosinophil biology therefore requires comparative study of eosinophils from different mammalian species. We summarize here the main experimental protocols used to study human, mouse, and rat eosinophil biology. We focus on technical improvements of existing methods that optimize purification and in vitro functional studies of eosinophils.
Collapse
|
31
|
Ackerman SJ, Bochner BS. Mechanisms of eosinophilia in the pathogenesis of hypereosinophilic disorders. Immunol Allergy Clin North Am 2007; 27:357-75. [PMID: 17868854 PMCID: PMC2064859 DOI: 10.1016/j.iac.2007.07.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The increased numbers of activated eosinophils in the blood and tissues that typically accompany hypereosinophilic disorders result from a variety of mechanisms. Exciting advances in translating discoveries achieved from mouse models and molecular strategies to the clinic have led to a flurry of new therapeutics specifically designed to target eosinophil-associated diseases. So far, this form of hypothesis testing in humans in vivo through pharmacology generally has supported the paradigms generated in vitro and in animal models, raising hopes that a spectrum of novel therapies soon may become available to help those who have eosinophil-associated diseases.
Collapse
Affiliation(s)
- Steven J. Ackerman
- Professor of Biochemistry, Molecular Genetics and Medicine, Department of Biochemistry and Molecular Genetics, The University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Bruce S. Bochner
- Professor or Medicine, Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
32
|
Karagiannis SN, Bracher MG, Hunt J, McCloskey N, Beavil RL, Beavil AJ, Fear DJ, Thompson RG, East N, Burke F, Moore RJ, Dombrowicz DD, Balkwill FR, Gould HJ. IgE-antibody-dependent immunotherapy of solid tumors: cytotoxic and phagocytic mechanisms of eradication of ovarian cancer cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:2832-43. [PMID: 17709497 DOI: 10.4049/jimmunol.179.5.2832] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abs have a paramount place in the treatment of certain, mainly lymphoid, malignancies, although tumors of nonhemopoietic origin have proved more refractory ones. We have previously shown that the efficacy of immunotherapy of solid tumors, in particular ovarian carcinoma, may be improved by the use of IgE Abs in place of the conventional IgG. An IgE Ab (MOv18 IgE) against an ovarian-tumor-specific Ag (folate binding protein), in combination with human PBMC, introduced into ovarian cancer xenograft-bearing mice, greatly exceeded the analogous IgG1 in promoting survival. In this study, we analyzed the mechanisms by which MOv18 IgE may exert its antitumor activities. Monocytes were essential IgE receptor-expressing effector cells that mediated the enhanced survival of tumor-bearing mice by MOv18 IgE and human PBMC. Monocytes mediated MOv18 IgE-dependent ovarian tumor cell killing in vitro by two distinct pathways, cytotoxicity and phagocytosis, acting respectively through the IgE receptors FcepsilonRI and CD23. We also show that human eosinophils were potent effector cells in MOv18 IgE Ab-dependent ovarian tumor cell cytotoxicity in vitro. These results demonstrate that IgE Abs can engage cell surface IgE receptors and activate effector cells against ovarian tumor cells. Our findings offer a framework for an improved immunotherapeutic strategy for combating solid tumors.
Collapse
Affiliation(s)
- Sophia N Karagiannis
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, Guy's Campus, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Previously believed to have an exclusive role in the release of cytotoxic mediators in the defense against helminthic infections, eosinophils are now considered key players in inflammatory reaction and regulation of immune response. Through activation of a large variety of membrane receptors and production of various pharmacologically active mediators, eosinophils may exert a detrimental role in tissues in which they have been recruited and may contribute to the perennization of inflammatory processes. The crucial role of eosinophils has been documented in several eosinophilic skin diseases, such as hypereosinophilic syndrome and bullous pemphigoid, and the literature provides strong evidence for their role in urticaria. The aim of this article is to discuss the mechanisms of specific tissue recruitment of eosinophils, the factors of eosinophil activation, and the contribution of these cells to inflammation and immunoregulation in urticaria. Recent advances in the knowledge of eosinophils will certainly help toward developing new strategies for the management of antihistamines resistant to urticaria.
Collapse
Affiliation(s)
- Delphine Staumont-Sallé
- Department of Dermatology, CHRU, Hospital Claude-Huriez, and Institut National de la Sante et de la Recherche Medicale, Unite 547, Institut Fédératif de Recherche 17, Institut Pasteur de Lille, Lille, France
| | | | | | | |
Collapse
|
34
|
Ganley-Leal LM, Mwinzi PN, Cetre-Sossah CB, Andove J, Hightower AW, Karanja DMS, Colley DG, Secor WE. Correlation between eosinophils and protection against reinfection with Schistosoma mansoni and the effect of human immunodeficiency virus type 1 coinfection in humans. Infect Immun 2006; 74:2169-76. [PMID: 16552047 PMCID: PMC1418888 DOI: 10.1128/iai.74.4.2169-2176.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Longitudinal investigations of an adult male population of Kenyan car washers who have heavy and quantifiable occupational exposure to Schistosoma mansoni cercariae revealed that some individuals develop resistance to reinfection while others remain highly susceptible. We sought to characterize immune correlates associated with host protection in this population. Previous studies have demonstrated an association of peripheral eosinophilia with resistance to reinfection with schistosomes. Thus, we investigated the relationship between the percentage of circulating eosinophils and the effect of human immunodeficiency virus type 1 (HIV-1) coinfection on the susceptibility of the car washers to reinfection with schistosomes. Elevated percentages of circulating eosinophils were associated with resistance to reinfection by S. mansoni in HIV-1-seronegative persons. In the HIV-1-seropositive cohort, low CD4+-T-cell counts were associated with a less intense eosinophilia. Moreover, eosinophils from the car washers expressed high levels of FcepsilonRI beta chain, a molecule important in immunoglobulin E (IgE)-mediated immunity. Levels of FcepsilonRI beta chain expression correlated with serum levels of total and antigen-specific IgE for HIV-1-negative car washers, but this was not the case for individuals coinfected with HIV-1. Overall, these data further implicate eosinophils as having a potential role in development of protective immunity against schistosomes and suggest that changes associated with HIV-1 coinfection increase susceptibility to reinfection.
Collapse
Affiliation(s)
- Lisa M Ganley-Leal
- Centers for Disease Control and Prevention, Division of Parasitic Diseases, 4770 Buford Hwy, N.E., Atlanta, GA 30341, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Long considered to be secondary cells characterized mainly by their ability to be recruited to inflammation sites, these cells are now known to release a wide array of cytotoxic mediators. Moreover they participate in immune response regulation by producing Th1 and Th2 cytokines as well as regulatory cytokines and chemokines. This review describes recent findings about their expression of surface molecules, eosinophil mediators, and the role of both in these novel eosinophil functions.
Collapse
Affiliation(s)
- Véronique Decot
- Unité de thérapie cellulaire et banque de tissus, CHU de Nancy, Vandoeuvre-les-Nancy
| | | |
Collapse
|
36
|
Spik I, Brénuchon C, Angéli V, Staumont D, Fleury S, Capron M, Trottein F, Dombrowicz D. Activation of the prostaglandin D2 receptor DP2/CRTH2 increases allergic inflammation in mouse. THE JOURNAL OF IMMUNOLOGY 2005; 174:3703-8. [PMID: 15749909 DOI: 10.4049/jimmunol.174.6.3703] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Allergic pathologies are often associated with IgE production, mast cell activation, and eosinophilia. PGD2 is the major eicosanoid, among several inflammatory mediators, released by mast cells. PGD2 binds to two membrane receptors, D prostanoid receptor (DP)1 and DP2, endowed with antagonistic properties. In humans, DP2 is preferentially expressed on type 2 lymphocytes, eosinophils, and basophils and mediates chemotaxis in vitro. Although not yet supported by in vivo studies, DP2 is thought to be important in the promotion of Th2-related inflammation. Herein, we demonstrate that mouse eosinophils express both DP1 and DP2 and that PGD2 exerts in vitro chemotactic effects on eosinophils through DP2 activation. Furthermore, 13,14-dihydro-15-keto-PGD2, a specific DP2 agonist not only increases eosinophil recruitment at inflammatory sites but also the pathology in two in vivo models of allergic inflammation: atopic dermatitis and allergic asthma. By contrast, DP1 activation tends to ameliorate the pathology in asthma. Taken together, these results support the hypothesis that DP2 might play a critical role in allergic diseases and underline the interest of DP2 antagonists in human therapy.
Collapse
MESH Headings
- Animals
- Asthma/etiology
- Asthma/metabolism
- Asthma/pathology
- Base Sequence
- Chemotaxis, Leukocyte/drug effects
- DNA/genetics
- Dermatitis, Atopic/etiology
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/pathology
- Eosinophilia/etiology
- Eosinophilia/metabolism
- Eosinophilia/pathology
- Eosinophils/drug effects
- Eosinophils/metabolism
- Female
- Gene Expression
- Humans
- Hypersensitivity/etiology
- Hypersensitivity/metabolism
- Hypersensitivity/pathology
- In Vitro Techniques
- Inflammation/etiology
- Inflammation/metabolism
- Inflammation/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Prostaglandin D2/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/metabolism
Collapse
Affiliation(s)
- Isabelle Spik
- Unité 547, Institut National de la Santé et de la Recherche Médicale, Institut Fédératif de Recherche 17, Institut Pasteur de Lille, Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Decot V, Woerly G, Loyens M, Loiseau S, Quatannens B, Capron M, Dombrowicz D. Heterogeneity of expression of IgA receptors by human, mouse, and rat eosinophils. THE JOURNAL OF IMMUNOLOGY 2005; 174:628-35. [PMID: 15634880 DOI: 10.4049/jimmunol.174.2.628] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IgA is the most abundant class of Abs at mucosal surfaces where eosinophils carry out many of their effector functions. Most of the known IgA-mediated functions require interactions with IgA receptors, six of which have been identified in humans. These include the IgA FcR FcalphaRI/CD89 and the receptor for the secretory component, already identified on human eosinophils, the polymeric IgR, the Fcalpha/muR, asialoglycoprotein (ASGP)-R, and transferrin (Tf)R/CD71. In rodents, the existence of IgA receptors on mouse and rat eosinophils remains unclear. We have compared the expression and function of IgA receptors by human, rat, and mouse eosinophils. Our results show that human eosinophils express functional polymeric IgR, ASGP-R, and TfR, in addition to CD89 and the receptor for the secretory component, and that IgA receptors are expressed by rodent eosinophils. Indeed, mouse eosinophils expressed only TfR, whereas rat eosinophils expressed ASGP-R and CD89 mRNA. These results provide a molecular basis for the differences observed between human, rat, and mouse regarding IgA-mediated immunity.
Collapse
MESH Headings
- Animals
- Asialoglycoprotein Receptor/biosynthesis
- Asialoglycoprotein Receptor/blood
- Cells, Cultured
- Eosinophils/immunology
- Eosinophils/metabolism
- Humans
- Immunoglobulin A/blood
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Protein Binding/immunology
- Rats
- Rats, Inbred BN
- Receptors, Fc/biosynthesis
- Receptors, Fc/blood
- Receptors, Polymeric Immunoglobulin/biosynthesis
- Receptors, Polymeric Immunoglobulin/blood
- Receptors, Transferrin/biosynthesis
- Receptors, Transferrin/blood
Collapse
Affiliation(s)
- Véronique Decot
- Institut National de la Santé et de la Recherche Médicale Unité 547-Institut Fédératif de Recherche 17, Institut Pasteur de Lille, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Hamada K, Yamada Y, Kamada Y, Ueki S, Yamaguchi K, Oyamada H, Fujita M, Usami A, Chiba T, Kanda A, Kayaba H, Chihara J. Prostaglandin D2 and Interleukin-5 Reduce Crth2 Surface Expression on Human Eosinophils. Allergol Int 2004. [DOI: 10.1111/j.1440-1592.2004.00323.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
39
|
Gould HJ, Sutton BJ, Beavil AJ, Beavil RL, McCloskey N, Coker HA, Fear D, Smurthwaite L. The biology of IGE and the basis of allergic disease. Annu Rev Immunol 2003; 21:579-628. [PMID: 12500981 DOI: 10.1146/annurev.immunol.21.120601.141103] [Citation(s) in RCA: 447] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Allergic individuals exposed to minute quantities of allergen experience an immediate response. Immediate hypersensitivity reflects the permanent sensitization of mucosal mast cells by allergen-specific IgE antibodies bound to their high-affinity receptors (FcepsilonRI). A combination of factors contributes to such long-lasting sensitization of the mast cells. They include the homing of mast cells to mucosal tissues, the local synthesis of IgE, the induction of FcepsilonRI expression on mast cells by IgE, the consequent downregulation of FcgammaR (through an insufficiency of the common gamma-chains), and the exceptionally slow dissociation of IgE from FcepsilonRI. To understand the mechanism of the immediate hypersensitivity phenomenon, we need explanations of why IgE antibodies are synthesized in preference to IgG in mucosal tissues and why the IgE is so tenaciously retained on mast cell-surface receptors. There is now compelling evidence that the microenvironment of mucosal tissues of allergic disease favors class switching to IgE; and the exceptionally high affinity of IgE for FcepsilonRI can now be interpreted in terms of the recently determined crystal structures of IgE-FcepsilonRI and IgG-FcgammaR complexes. The rate of local IgE synthesis can easily compensate for the rate of the antibody dissociation from its receptors on mucosal mast cells. Effective mechanisms ensure that allergic reactions are confined to mucosal tissues, thereby minimizing the risk of systemic anaphylaxis.
Collapse
MESH Headings
- Allergens
- Amino Acid Sequence
- Animals
- Antigen-Presenting Cells/immunology
- B-Lymphocytes/immunology
- Blood Platelets/immunology
- Crystallography, X-Ray
- Disease Models, Animal
- Eosinophils/immunology
- Humans
- Hypersensitivity/etiology
- Hypersensitivity/immunology
- Immunoglobulin Class Switching
- Immunoglobulin E/chemistry
- Immunoglobulin E/genetics
- Immunoglobulin E/metabolism
- Models, Molecular
- Monocytes/immunology
- Nuclear Magnetic Resonance, Biomolecular
- Receptors, IgE/chemistry
- Receptors, IgE/genetics
- Receptors, IgE/metabolism
- Receptors, IgG/chemistry
- Receptors, IgG/metabolism
- Schistosomiasis/immunology
- T-Lymphocytes, Helper-Inducer/immunology
Collapse
Affiliation(s)
- Hannah J Gould
- The Randall Centre, King's College London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Woerly G, Honda K, Loyens M, Papin JP, Auwerx J, Staels B, Capron M, Dombrowicz D. Peroxisome proliferator-activated receptors alpha and gamma down-regulate allergic inflammation and eosinophil activation. J Exp Med 2003; 198:411-21. [PMID: 12900517 PMCID: PMC2194090 DOI: 10.1084/jem.20021384] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Allergic asthma is characterized by airway hyperresponsiveness, eosinophilia, and mucus accumulation and is associated with increased IgE concentrations. We demonstrate here that peroxisome proliferator-activated receptors (PPARs), PPAR-alpha and PPAR-gamma, which have been shown recently to be involved in the regulation of various cell types within the immune system, decrease antigen-induced airway hyperresponsiveness, lung inflammation, eosinophilia, cytokine production, and GATA-3 expression as well as serum levels of antigen-specific IgE in a murine model of human asthma. In addition, we demonstrate that PPAR-alpha and -gamma are expressed in eosinophils and their activation inhibits in vitro chemotaxis and antibody-dependent cellular cytotoxicity. Thus, PPAR-alpha and -gamma (co)agonists might be of therapeutic interest for the regulation of allergic or inflammatory reactions by targeting both regulatory and effector cells involved in the immune response.
Collapse
Affiliation(s)
- Gaetane Woerly
- Institut National de la Santé et de la Recherche Médicale (INSERM), U547-IFR17, Institut Pasteur de Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Woerly G, Loiseau S, Loyens M, Schoch C, Capron M. Inhibitory effects of ketotifen on eotaxin-dependent activation of eosinophils: consequences for allergic eye diseases. Allergy 2003; 58:397-406. [PMID: 12752326 DOI: 10.1034/j.1398-9995.2003.00081.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The aim of this study was to investigate the effects of ketotifen on different parameters of human eosinophil functions, namely chemotaxis, oxidative metabolism and mediator release, induced after activation. METHODS Eosinophils from hypereosinophilic patients or normal donors were purified by Percoll gradient and the magnetic cell separation system. Chemotaxis was studied using the Boyden chamber technique using three potent chemoattractants: formyl-methionine-leucine-phenylalanine (fMLP), interleukin (IL)-5 and eotaxin. Oxidative metabolism was determined by a luminol-dependent chemiluminescence assay after activation with eotaxin or secretory immunoglobulin A (sIgA). The release of eosinophil cationic protein (ECP) and eosinophil derived neurotoxin (EDN) was measured by radioimmunoassay after activation with sIgA. RESULTS At pharmacologically active concentrations and in a dose-dependent manner, ketotifen significantly inhibited the chemotaxis of eosinophils to fMLP, IL-5 and eotaxin. The production of reactive oxygen species induced by eotaxin and sIgA was decreased by ketotifen, showing a more pronounced effect when cells were activated by eotaxin. Activation by sIgA resulted in ECP and EDN release, which was partially inhibited by ketotifen. CONCLUSIONS Through inhibition of chemotaxis, ketotifen might limit the number of eosinophils at the inflammation site during allergic reaction. Furthermore, inhibition by ketotifen of main inflammatory mediators release suggests a potential role of the drug in limiting the pathological potential of eosinophils.
Collapse
Affiliation(s)
- G Woerly
- Centre d'Immunologie et Biologie Parasitaire, Unité INSERM-IPL U547, Institut Pasteur, Lille, France
| | | | | | | | | |
Collapse
|
42
|
Woerly G, Lacy P, Younes AB, Roger N, Loiseau S, Moqbel R, Capron M. Human eosinophils express and release IL‐13 following CD28‐dependent activation. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.4.769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Gaetane Woerly
- Centre d’Immunologie et Biologie Parasitaire, Unité INSERM U547 and IFR17, Institut Pasteur, Lille, France
| | - Paige Lacy
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Canada; and
| | - Amena Ben Younes
- Centre d’Immunologie et Biologie Parasitaire, Unité INSERM U547 and IFR17, Institut Pasteur, Lille, France
| | - Nadine Roger
- Centre d’Immunologie et Biologie Parasitaire, Unité INSERM U547 and IFR17, Institut Pasteur, Lille, France
- Faculté de Pharmacie, Université de Lille 2, France
| | - Sylvie Loiseau
- Centre d’Immunologie et Biologie Parasitaire, Unité INSERM U547 and IFR17, Institut Pasteur, Lille, France
| | - Redwan Moqbel
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Canada; and
| | - Monique Capron
- Centre d’Immunologie et Biologie Parasitaire, Unité INSERM U547 and IFR17, Institut Pasteur, Lille, France
- Faculté de Pharmacie, Université de Lille 2, France
| |
Collapse
|
43
|
Yoshimura C, Yamaguchi M, Iikura M, Izumi S, Kudo K, Nagase H, Ishii A, Walls AF, Ra C, Iwata T, Igarashi T, Yamamoto K, Hirai K. Activation markers of human basophils: CD69 expression is strongly and preferentially induced by IL-3. J Allergy Clin Immunol 2002; 109:817-23. [PMID: 11994706 DOI: 10.1067/mai.2002.123532] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The biological functions of basophils are precisely regulated by various cytokines in vitro, but little is known about surface markers that are upregulated during the cytokine-mediated activation process. OBJECTIVE It has been well established that CD69, CD44, and CD54 represent "activation markers" for cytokine-mediated eosinophil activation. The objective of this study was to elucidate the expression and regulation of these molecules in human basophils in vitro as well as in vivo. METHODS Basophils were purified from venous blood by means of density gradient centrifugation followed by negative selection. Surface expression was analyzed by means of flow cytometry. We also studied the expression of CD69, CD44, and CD54 on basophils in bronchoalveolar lavage fluid and blood specimens from patients with asthma. RESULTS CD44 and CD54 were constitutively expressed on basophils and moderately upregulated by IL-3. On the other hand, CD69 expression was only weakly observed in freshly isolated basophils, but IL-3 induced extremely high levels of expression. Surface CD69 appeared rather slowly in comparison with CD63 and CD11b, and the induction of expression was completed within 24 hours. Basophil CD69 had no functional relevance, but it did have biological relevance. Whole blood basophils from asthmatic individuals expressed significantly higher levels of CD69 than did those from normal individuals. Furthermore, bronchoalveolar lavage fluid basophils showed higher levels of CD69 expression than did blood basophils from the same donors. CONCLUSION CD69 expression on basophils was preferentially and strongly upregulated by IL-3. CD69 on basophils might be useful as an in vitro as well as in vivo marker of activation of these cells by IL-3.
Collapse
Affiliation(s)
- Chitose Yoshimura
- Department of Allergy and Rheumatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
IgE receptors are implicated as important components of the immunological pathway in allergic and inflammatory diseases. Recent investigations have begun to unravel the structure, signal transduction and function of IgE receptors from different cell types in rodent and human systems. Studies of the mechanisms involved might provide opportunities for therapeutic intervention strategies in the treatment of allergic and hypersensitivity reactions.
Collapse
Affiliation(s)
- N Novak
- Department of Dermatology, Friedrich-Wilhelms-University of Bonn, D-53105, Bonn, Germany
| | | | | |
Collapse
|
45
|
Abstract
Recently, known eosinophil functions have been extended considerably: previously the cells were thought to have an exclusive role in the release of cytotoxic mediators; now they are known to have roles in antigen presentation and immunoregulation through the release of cytokines. Although questionable, animal models indicate a rather beneficial role of eosinophils in parasitic infections but a detrimental one, together with other cells, in allergy.
Collapse
Affiliation(s)
- D Dombrowicz
- Institut National de la Santé et de la Recherche Médicale (INSERM) U547, Institut Pasteur de Lille 1, Rue du Professeur Calmette BP245, 59019 Cedex, Lille, France
| | | |
Collapse
|