1
|
Hutcherson C, Luke B, Khader K, Dhaher YY. Unraveling the complex interplay of sex, endocrinology, and inflammation in post-Injury articular cartilage breakdown through in silico modeling. Sci Rep 2024; 14:28654. [PMID: 39562596 PMCID: PMC11576913 DOI: 10.1038/s41598-024-77730-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
The onset of degenerative joint diseases such as post-traumatic osteoarthritis (PTOA) are associated with joint injury, biomechanical changes, and synovial biochemical anomalies. Sex and reproductive endocrinology have been emerging as potential risk factors, with epidemiological evidence revealing that female's exhibit higher PTOA risk and poorer outcomes post-injury compared to males. Sex hormones, including estradiol, progesterone, and testosterone, have been shown to regulate inflammatory signaling in immune and synovial cells, yet their collective impact on injury-induced joint inflammation and catabolism is poorly understood. Using an in silico kinetic model, we investigated the effects of sex-specific endocrine states on post-injury mechanisms in the human synovial joint. Our model results reveal that heightened estradiol levels in pre-menopausal females during the peri-ovulatory phase increase interleukin (IL)-1β expression and suppress IL-10 expression within the synovium after a simulated injury. Conversely, elevated testosterone levels in males decrease post-injury IL-1β, tumor necrosis factor alpha (TNF)-α, and stromelysin (MMP)-3 expression while increasing IL-10 production compared to females. Gaining insight into the effects of sex hormones on injury-induced inflammation and cartilage degradation provides a basis for designing future experimental and clinical studies to explore their effects on the synovial system, with a particular focus on the female sex.
Collapse
Affiliation(s)
- C Hutcherson
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - B Luke
- Department of Mechanical Engineering, Valparaiso University, Valparaiso, IN, USA
| | - K Khader
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Y Y Dhaher
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern, Dallas, TX, USA.
- Department of Orthopaedic Surgery, University of Texas Southwestern, Dallas, TX, USA.
| |
Collapse
|
2
|
Acevedo-Monroy SE, Hernández-Chiñas U, Rocha-Ramírez LM, Medina-Contreras O, López-Díaz O, Ahumada-Cota RE, Martínez-Gómez D, Huerta-Yepez S, Tirado-Rodríguez AB, Molina-López J, Castro-Luna R, Martínez-Cristóbal L, Rojas-Castro FE, Chávez-Berrocal ME, Verdugo-Rodríguez A, Eslava-Campos CA. UNAM-HIMFG Bacterial Lysate Activates the Immune Response and Inhibits Colonization of Bladder of Balb/c Mice Infected with the Uropathogenic CFT073 Escherichia coli Strain. Int J Mol Sci 2024; 25:9876. [PMID: 39337365 PMCID: PMC11432767 DOI: 10.3390/ijms25189876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Urinary tract infections (UTIs) represent a clinical and epidemiological problem of worldwide impact that affects the economy and the emotional state of the patient. Control of the condition is complicated due to multidrug resistance of pathogens associated with the disease. Considering the difficulty in carrying out effective treatment with antimicrobials, it is necessary to propose alternatives that improve the clinical status of the patients. With this purpose, in a previous study, the safety and immunostimulant capacity of a polyvalent lysate designated UNAM-HIMFG prepared with different bacteria isolated during a prospective study of chronic urinary tract infection (CUTI) was evaluated. In this work, using an animal model, results are presented on the immunostimulant and protective activity of the polyvalent UNAM-HIMFG lysate to define its potential use in the control and treatment of CUTI. Female Balb/c mice were infected through the urethra with Escherichia coli CFT073 (UPEC O6:K2:H1) strain; urine samples were collected before the infection and every week for up to 60 days. Once the animals were colonized, sublingual doses of UNAM-HIMFG lysate were administrated. The colonization of the bladder and kidneys was evaluated by culture, and their alterations were assessed using histopathological analysis. On the other hand, the immunostimulant activity of the compound was analyzed by qPCR of spleen mRNA. Uninfected animals receiving UNAM-HIMFG lysate and infected animals administered with the physiological saline solution were used as controls. During this study, the clinical status and evolution of the animals were evaluated. At ninety-six hours after infection, the presence of CFT073 was identified in the urine of infected animals, and then, sublingual administration of UNAM-HIMFG lysate was started every week for 60 days. The urine culture of mice treated with UNAM-HIMFG lysate showed the presence of bacteria for three weeks post-treatment; in contrast, in the untreated animals, positive cultures were observed until the 60th day of this study. The histological analysis of bladder samples from untreated animals showed the presence of chronic inflammation and bacteria in the submucosa, while tissues from mice treated with UNAM-HIMFG lysate did not show alterations. The same analysis of kidney samples of the two groups (treated and untreated) did not present alterations. Immunostimulant activity assays of UNAM-HIMFG lysate showed overexpression of TNF-α and IL-10. Results suggest that the lysate activates the expression of cytokines that inhibit the growth of inoculated bacteria and control the inflammation responsible for tissue damage. In conclusion, UNAM-HIMFG lysate is effective for the treatment and control of CUTIs without the use of antimicrobials.
Collapse
Affiliation(s)
- Salvador Eduardo Acevedo-Monroy
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
- Laboratorio de Microbiología Molecular, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad #3000, Colonia, C.U., Coyoacán, Ciudad de México 04510, Mexico;
| | - Ulises Hernández-Chiñas
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública, División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Luz María Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico;
| | - Oscar Medina-Contreras
- Unidad de Investigación Epidemiológica en Endocrinología y Nutrición, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col. Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico;
| | - Osvaldo López-Díaz
- Laboratorio de Histopatología Veterinaria, Universidad Autónoma Metropolitana Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldía Coyoacán, Ciudad de México 04960, Mexico;
| | - Ricardo Ernesto Ahumada-Cota
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
| | - Daniel Martínez-Gómez
- Departamento de Producción Agrícola y Animal, Laboratorio de Microbiología Agropecuaria, Universidad Autónoma Metropolitana Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldía Coyoacán, Ciudad de México 04960, Mexico;
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico; (S.H.-Y.); (A.B.T.-R.)
| | - Ana Belén Tirado-Rodríguez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico; (S.H.-Y.); (A.B.T.-R.)
| | - José Molina-López
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública, División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Raúl Castro-Luna
- Bioterio, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico; (R.C.-L.); (L.M.-C.)
| | - Leonel Martínez-Cristóbal
- Bioterio, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico; (R.C.-L.); (L.M.-C.)
| | - Frida Elena Rojas-Castro
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
| | - María Elena Chávez-Berrocal
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública, División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Antonio Verdugo-Rodríguez
- Laboratorio de Microbiología Molecular, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad #3000, Colonia, C.U., Coyoacán, Ciudad de México 04510, Mexico;
| | - Carlos Alberto Eslava-Campos
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (R.E.A.-C.); (J.M.-L.); (F.E.R.-C.); (M.E.C.-B.)
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública, División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| |
Collapse
|
3
|
Acevedo-Monroy SE, Rocha-Ramírez LM, Martínez Gómez D, Basurto-Alcántara FJ, Medina-Contreras Ó, Hernández-Chiñas U, Quiñones-Peña MA, García-Sosa DI, Ramírez-Lezama J, Rodríguez-García JA, González-Villalobos E, Castro-Luna R, Martínez-Cristóbal L, Eslava-Campos CA. Polyvalent Bacterial Lysate with Potential Use to Treatment and Control of Recurrent Urinary Tract Infections. Int J Mol Sci 2024; 25:6157. [PMID: 38892345 PMCID: PMC11173243 DOI: 10.3390/ijms25116157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Overuse of antimicrobials has greatly contributed to the increase in the emergence of multidrug-resistant bacteria, a situation that hinders the control and treatment of infectious diseases. This is the case with urinary tract infections (UTIs), which represent a substantial percentage of worldwide public health problems, thus the need to look for alternatives for their control and treatment. Previous studies have shown the usefulness of autologous bacterial lysates as an alternative for the treatment and control of UTIs. However, a limitation is the high cost of producing individual immunogens. At the same time, an important aspect of vaccines is their immunogenic amplitude, which is the reason why they must be constituted of diverse antigenic components. In the case of UTIs, the etiology of the disease is associated with different bacteria, and even Escherichia coli, the main causal agent of the disease, is made up of several antigenic variants. In this work, we present results on the study of a bacterial lysate composed of 10 serotypes of Escherichia coli and by Klebsiella pneumoniae, Klebsiella aerogenes, Enterococcus faecalis, Proteus mirabilis, Citrobacter freundii, and Staphylococcus haemolyticus. The safety of the compound was tested on cells in culture and in an animal model, and its immunogenic capacity by analysing in vitro human and murine macrophages (cell line J774 A1). The results show that the polyvalent lysate did not cause damage to the cells in culture or alterations in the animal model used. The immunostimulatory activity assay showed that it activates the secretion of TNF-α and IL-6 in human macrophages and TNF-α in murine cells. The obtained results suggest that the polyvalent lysate evaluated can be an alternative for the treatment and control of chronic urinary tract infections, which will reduce the use of antimicrobials.
Collapse
Affiliation(s)
- Salvador Eduardo Acevedo-Monroy
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (U.H.-C.); (M.A.Q.-P.); (D.I.G.-S.); (J.A.R.-G.)
- Laboratorio de Microbiología Molecular Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad #3000, Colonia, C.U., Coyoacán, Ciudad de México 04510, Mexico
| | - Luz María Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez. Secretaría de Salud, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico;
| | - Daniel Martínez Gómez
- Departamento de Producción Agrícola y Animal, Laboratorio de Microbiología Agropecuaria, Universidad Autónoma Metropolitana Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, Alcaldía Coyoacán, C.P., Ciudad de México 04960, Mexico;
| | - Francisco Javier Basurto-Alcántara
- Laboratorio de Vacunología y Constatación, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad #3000, Colonia, C.U., Coyoacán, Ciudad de México 04510, Mexico;
| | - Óscar Medina-Contreras
- Unidad de Investigación Epidemiológica en Endocrinología y Nutrición, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col. Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico;
| | - Ulises Hernández-Chiñas
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (U.H.-C.); (M.A.Q.-P.); (D.I.G.-S.); (J.A.R.-G.)
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas; Departamento de Salud Pública, División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| | - María Alejandra Quiñones-Peña
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (U.H.-C.); (M.A.Q.-P.); (D.I.G.-S.); (J.A.R.-G.)
- Department of Health & Biomedical Science College of Health Professions, Biomedical Science, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Daniela Itzel García-Sosa
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (U.H.-C.); (M.A.Q.-P.); (D.I.G.-S.); (J.A.R.-G.)
| | - José Ramírez-Lezama
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - José Alejandro Rodríguez-García
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (U.H.-C.); (M.A.Q.-P.); (D.I.G.-S.); (J.A.R.-G.)
| | - Edgar González-Villalobos
- Laboratorio de Epidemiología Molecular, Departamento de Salud Pública División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad #3000, Colonia, C.U., Coyoacán, Ciudad de México 04510, Mexico;
| | - Raúl Castro-Luna
- Bioterio, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico; (R.C.-L.); (L.M.-C.)
| | - Leonel Martínez-Cristóbal
- Bioterio, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico; (R.C.-L.); (L.M.-C.)
| | - Carlos Alberto Eslava-Campos
- Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico or (S.E.A.-M.); (U.H.-C.); (M.A.Q.-P.); (D.I.G.-S.); (J.A.R.-G.)
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas; Departamento de Salud Pública, División de Investigación Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Márquez No. 162, Col Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| |
Collapse
|
4
|
Jans J, van Dun SCJ, Gorissen R, Pieterman RFA, Voskamp TS, Schoenmakers S, Taal HR, Unger WWJ. The monocyte-derived cytokine response in whole blood from preterm newborns against sepsis-related bacteria is similar to term newborns and adults. Front Immunol 2024; 15:1353039. [PMID: 38562936 PMCID: PMC10982322 DOI: 10.3389/fimmu.2024.1353039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/16/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Sepsis is characterized by a dysregulated innate immune response. It is a leading cause of morbidity and mortality in newborns, in particular for newborns that are born premature. Although previous literature indicate that the pro-inflammatory response may be impaired in preterm newborns, serum levels of monocyte-derived cytokines, such as TNF-α and IL-6, vary highly between newborns and can reach adult-like concentrations during sepsis. These contradictory observations and the severe consequences of neonatal sepsis in preterm newborns highlight the need for a better understanding of the pro-inflammatory cytokine response of preterm newborns to improve sepsis-related outcomes. Methods and results Using an in vitro model with multiple read outs at the transcriptional and protein level, we consistently showed that the monocyte-derived cytokine response induced by sepsis-related bacteria is comparable between preterm newborns, term newborns and adults. We substantiated these findings by employing recombinant Toll-like receptor (TLR) ligands and showed that the activation of specific immune pathways, including the expression of TLRs, is also similar between preterm newborns, term newborns and adults. Importantly, we showed that at birth the production of TNF-α and IL-6 is highly variable between individuals and independent of gestational age. Discussion These findings indicate that preterm newborns are equally capable of mounting a pro-inflammatory response against a broad range of bacterial pathogens that is comparable to term newborns and adults. Our results provide a better understanding of the pro-inflammatory response by preterm newborns and could guide the development of interventions that specifically modulate the pro-inflammatory response during sepsis in preterm newborns.
Collapse
Affiliation(s)
- Jop Jans
- Laboratory of Pediatrics, Department of Pediatrics, University Medical Center Rotterdam, Erasmus Medical Center - Sophia, Rotterdam, Netherlands
| | - Sven C. J. van Dun
- Laboratory of Pediatrics, Department of Pediatrics, University Medical Center Rotterdam, Erasmus Medical Center - Sophia, Rotterdam, Netherlands
| | - Renske Gorissen
- Laboratory of Pediatrics, Department of Pediatrics, University Medical Center Rotterdam, Erasmus Medical Center - Sophia, Rotterdam, Netherlands
| | - Roel F. A. Pieterman
- Laboratory of Pediatrics, Department of Pediatrics, University Medical Center Rotterdam, Erasmus Medical Center - Sophia, Rotterdam, Netherlands
| | - Tess S. Voskamp
- Laboratory of Pediatrics, Department of Pediatrics, University Medical Center Rotterdam, Erasmus Medical Center - Sophia, Rotterdam, Netherlands
| | - Sam Schoenmakers
- Department of Obstetrics and Gynaecology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Hendrik Robert Taal
- Department of Neonatal and Paediatric Intensive Care, Division of Neonatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Wendy W. J. Unger
- Laboratory of Pediatrics, Department of Pediatrics, University Medical Center Rotterdam, Erasmus Medical Center - Sophia, Rotterdam, Netherlands
| |
Collapse
|
5
|
Shrestha S, Hong CW. Extracellular Mechanisms of Neutrophils in Immune Cell Crosstalk. Immune Netw 2023; 23:e38. [PMID: 37970234 PMCID: PMC10643328 DOI: 10.4110/in.2023.23.e38] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 11/17/2023] Open
Abstract
Neutrophils are professional phagocytes that provide defense against invading pathogens through phagocytosis, degranulation, generation of ROS, and the formation of neutrophil extracellular traps (NETs). Although long been considered as short-lived effector cells with limited biosynthetic activity, recent studies have revealed that neutrophils actively communicate with other immune cells. Neutrophils employ various types of soluble mediators, including granules, cytokines, and chemokines, for crosstalk with immune cells. Additionally, ROS and NETs, major arsenals of neutrophils, are utilized for intercellular communication. Furthermore, extracellular vesicles play a crucial role as mediators of neutrophil crosstalk. In this review, we highlight the extracellular mechanisms of neutrophils and their roles in crosstalk with other cells.
Collapse
Affiliation(s)
- Sanjeeb Shrestha
- Department of Physiology, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Chang-Won Hong
- Department of Physiology, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
6
|
Chang CY, Armstrong D, Corry DB, Kheradmand F. Alveolar macrophages in lung cancer: opportunities challenges. Front Immunol 2023; 14:1268939. [PMID: 37822933 PMCID: PMC10562548 DOI: 10.3389/fimmu.2023.1268939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Alveolar macrophages (AMs) are critical components of the innate defense mechanism in the lung. Nestled tightly within the alveoli, AMs, derived from the yolk-sac or bone marrow, can phagocytose foreign particles, defend the host against pathogens, recycle surfactant, and promptly respond to inhaled noxious stimuli. The behavior of AMs is tightly dependent on the environmental cues whereby infection, chronic inflammation, and associated metabolic changes can repolarize their effector functions in the lungs. Several factors within the tumor microenvironment can re-educate AMs, resulting in tumor growth, and reducing immune checkpoint inhibitors (ICIs) efficacy in patients treated for non-small cell lung cancer (NSCLC). The plasticity of AMs and their critical function in altering tumor responses to ICIs make them a desirable target in lung cancer treatment. New strategies have been developed to target AMs in solid tumors reprograming their suppressive function and boosting the efficacy of ICIs. Here, we review the phenotypic and functional changes in AMs in response to sterile inflammation and in NSCLC that could be critical in tumor growth and metastasis. Opportunities in altering AMs' function include harnessing their potential function in trained immunity, a concept borrowed from memory response to infections, which could be explored therapeutically in managing lung cancer treatment.
Collapse
Affiliation(s)
- Cheng-Yen Chang
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Dominique Armstrong
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - David B. Corry
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, United States
| | - Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, United States
| |
Collapse
|
7
|
Voskamp AL, Tak T, Gerdes ML, Menafra R, Duijster E, Jochems SP, Kielbasa SM, Kormelink TG, Stam KA, van Hengel OR, de Jong NW, Hendriks RW, Kloet SL, Yazdanbakhsh M, de Jong EC, Gerth van Wijk R, Smits HH. Inflammatory and tolerogenic myeloid cells determine outcome following human allergen challenge. J Exp Med 2023; 220:e20221111. [PMID: 37428185 PMCID: PMC10333709 DOI: 10.1084/jem.20221111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/08/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Innate mononuclear phagocytic system (MPS) cells preserve mucosal immune homeostasis. We investigated their role at nasal mucosa following allergen challenge with house dust mite. We combined single-cell proteome and transcriptome profiling on nasal immune cells from nasal biopsies cells from 30 allergic rhinitis and 27 non-allergic subjects before and after repeated nasal allergen challenge. Biopsies of patients showed infiltrating inflammatory HLA-DRhi/CD14+ and CD16+ monocytes and proallergic transcriptional changes in resident CD1C+/CD1A+ conventional dendritic cells (cDC)2 following challenge. In contrast, non-allergic individuals displayed distinct innate MPS responses to allergen challenge: predominant infiltration of myeloid-derived suppressor cells (MDSC: HLA-DRlow/CD14+ monocytes) and cDC2 expressing inhibitory/tolerogenic transcripts. These divergent patterns were confirmed in ex vivo stimulated MPS nasal biopsy cells. Thus, we identified not only MPS cell clusters involved in airway allergic inflammation but also highlight novel roles for non-inflammatory innate MPS responses by MDSC to allergens in non-allergic individuals. Future therapies should address MDSC activity as treatment for inflammatory airway diseases.
Collapse
Affiliation(s)
- Astrid L. Voskamp
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Tamar Tak
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Maarten L. Gerdes
- Department of Ear, Nose and Throat, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Roberta Menafra
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, Netherlands
| | - Ellen Duijster
- Department of Internal Medicine, Section Allergology and Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Simon P. Jochems
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Szymon M. Kielbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Tom Groot Kormelink
- Department of Exp Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Koen A. Stam
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Nicolette W. de Jong
- Department of Internal Medicine, Section Allergology and Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Susan L. Kloet
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Esther C. de Jong
- Department of Exp Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Roy Gerth van Wijk
- Department of Internal Medicine, Section Allergology and Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
8
|
Grossi LC, Zaidan I, Souza JAM, Carvalho AFS, Sanches RCO, Cardoso C, Lara ES, Montuori-Andrade ACM, Bruscoli S, Marchetti MC, Riccardi C, Teixeira MM, Tavares LP, Vago JP, Sousa LP. GILZ Modulates the Recruitment of Monocytes/Macrophages Endowed with a Resolving Phenotype and Favors Resolution of Escherichia coli Infection. Cells 2023; 12:1403. [PMID: 37408237 DOI: 10.3390/cells12101403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Macrophages are important effectors of inflammation resolution that contribute to the elimination of pathogens and apoptotic cells and restoration of homeostasis. Pre-clinical studies have evidenced the anti-inflammatory and pro-resolving actions of GILZ (glucocorticoid-induced leucine zipper). Here, we evaluated the role of GILZ on the migration of mononuclear cells under nonphlogistic conditions and Escherichia coli-evoked peritonitis. TAT-GILZ (a cell-permeable GILZ-fusion protein) injection into the pleural cavity of mice induced monocyte/macrophage influx alongside increased CCL2, IL-10 and TGF-β levels. TAT-GILZ-recruited macrophages showed a regulatory phenotype, exhibiting increased expression of CD206 and YM1. During the resolving phase of E. coli-induced peritonitis, marked by an increased recruitment of mononuclear cells, lower numbers of these cells and CCL2 levels were found in the peritoneal cavity of GILZ-deficient mice (GILZ-/-) when compared to WT. In addition, GILZ-/- showed higher bacterial loads, lower apoptosis/efferocytosis counts and a lower number of macrophages with pro-resolving phenotypes. TAT-GILZ accelerated resolution of E. coli-evoked neutrophilic inflammation, which was associated with increased peritoneal numbers of monocytes/macrophages, enhanced apoptosis/efferocytosis counts and bacterial clearance through phagocytosis. Taken together, we provided evidence that GILZ modulates macrophage migration with a regulatory phenotype, inducing bacterial clearance and accelerating the resolution of peritonitis induced by E. coli.
Collapse
Affiliation(s)
- Laís C Grossi
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Isabella Zaidan
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Jéssica Amanda Marques Souza
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Antônio Felipe S Carvalho
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Hospital das Clínicas da Universidade Federal de Minas Gerais/Ebserh, Belo Horizonte 30130-100, Brazil
| | - Rodrigo C O Sanches
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Camila Cardoso
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Edvaldo S Lara
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Ana Clara M Montuori-Andrade
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy
| | - Maria Cristina Marchetti
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy
| | - Carlo Riccardi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy
| | - Mauro M Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Luciana P Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Juliana P Vago
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Lirlândia P Sousa
- Signaling in Inflammation Lab., Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
9
|
Sousa A, Rufino AT, Fernandes R, Malheiro A, Carvalho F, Fernandes E, Freitas M. Silver nanoparticles exert toxic effects in human monocytes and macrophages associated with the disruption of Δψm and release of pro-inflammatory cytokines. Arch Toxicol 2023; 97:405-420. [PMID: 36424514 DOI: 10.1007/s00204-022-03415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022]
Abstract
Silver nanoparticles (AgNP) are the most widely produced type of nanoparticles due to their antimicrobial and preservative properties. However, their systemic bioavailability may be considered a potential hazard. When AgNP reach the bloodstream, they interact with the immune cells, contributing to the onset and development of an inflammatory response. Monocytes and macrophages play a pivotal role in our defense system, but the interaction of AgNP with these cells is still not clear. Therefore, the main objective of this work was to assess the cytotoxic and pro-inflammatory effects induced by 5, 10, and 50 nm AgNP coated with polyvinylpyrrolidone (PVP) and citrate, in concentrations that could be attained in vivo (0-25 μg/mL), in human monocytes isolated from human blood and human macrophages derived from a monocytic cell line (THP-1). The effects of PVP and citrate-coated AgNP on cell viability, mitochondrial membrane potential, and cytokines release were evaluated. The results evidenced that AgNP exert strong harmful effects in both monocytes and macrophages, through the establishment of a strong pro-inflammatory response that culminates in cell death. The observed effects were dependent on the AgNP concentration, size and coating, being observed more pronounced cytotoxic effects with smaller PVP coated AgNP. The results showed that human monocytes seem to be more sensitive to AgNP exposure than human macrophages. Considering the increased daily use of AgNP, it is imperative to further explore the adverse outcomes and mechanistic pathways leading to AgNP-induced pro-inflammatory effects to deep insight into the molecular mechanism involved in this effect.
Collapse
Affiliation(s)
- Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, 4050-313, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, 4050-313, Porto, Portugal
| | - Rui Fernandes
- Histology and Electron Microscopy (HEMS), Instituto de Investigação e Inovação em Saúde i3S, Instituto de Biologia Molecular e Celular BMC, Universidade Do Porto, Porto, Portugal
| | - Ana Malheiro
- Histology and Electron Microscopy (HEMS), Instituto de Investigação e Inovação em Saúde i3S, Instituto de Biologia Molecular e Celular BMC, Universidade Do Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‑313, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, 4050-313, Porto, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, 4050-313, Porto, Portugal.
| |
Collapse
|
10
|
Pérez-Escobar J, Jimenez JV, Rodríguez-Aguilar EF, Servín-Rojas M, Ruiz-Manriquez J, Safar-Boueri L, Carrillo-Maravilla E, Navasa M, García-Juárez I. Immunotolerance in liver transplantation: a primer for the clinician. Ann Hepatol 2023; 28:100760. [PMID: 36179797 DOI: 10.1016/j.aohep.2022.100760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/08/2022] [Indexed: 02/04/2023]
Abstract
The use of immunosuppressive medications for solid organ transplantation is associated with cardiovascular, metabolic, and oncologic complications. On the other hand, the development of graft rejection is associated with increased mortality and graft dysfunction. Liver transplant recipients can withdraw from immunosuppression without developing graft injury while preserving an adequate antimicrobial response - a characteristic known as immunotolerance. Immunotolerance can be spontaneously or pharmacologically achieved. Contrary to the classic dogma, clinical studies have elucidated low rates of true spontaneous immunotolerance (no serologic or histological markers of immune injury) among liver transplant recipients. However, clinical, serologic, and tissue biomarkers can aid in selecting patients in whom immunosuppression can be safely withdrawn. For those who failed an immunosuppression withdrawal trial or are at high risk of rejection, pharmacological interventions for immunotolerance induction are under development. In this review, we provide an overview of the mechanisms of immunotolerance, the clinical studies investigating predictors and biomarkers of spontaneous immunotolerance, as well as the potential pharmacological interventions for inducing it.
Collapse
Affiliation(s)
- Juanita Pérez-Escobar
- Department of Hepatology and Liver Transplant, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jose Victor Jimenez
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Erika Faride Rodríguez-Aguilar
- Department of Hepatology and Liver Transplant, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Maximiliano Servín-Rojas
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jesus Ruiz-Manriquez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luisa Safar-Boueri
- Comprehensive Transplant Center, Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Eduardo Carrillo-Maravilla
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Miquel Navasa
- Liver Transplant Unit, Hepatology Service, Hospital Clínic de Barcelona, IDIBAPS, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Ignacio García-Juárez
- Department of Hepatology and Liver Transplant, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
11
|
Tao H, Xu Y, Zhang S. The Role of Macrophages and Alveolar Epithelial Cells in the Development of ARDS. Inflammation 2023; 46:47-55. [PMID: 36048270 PMCID: PMC9435414 DOI: 10.1007/s10753-022-01726-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
Acute lung injury (ALI) usually causes acute respiratory distress syndrome (ARDS), or even death in critical ill patients. Immune cell infiltration in inflamed lungs is an important hallmark of ARDS. Macrophages are a type of immune cell that participate in the entire pathogenic trajectory of ARDS and most prominently via their interactions with lung alveolar epithelial cells (AECs). In the early stage of ARDS, classically activated macrophages secrete pro-inflammatory cytokines to clearance of the pathogens which may damage alveolar AECs cell structure and result in cell death. Paradoxically, in late stage of ARDS, anti-inflammatory cytokines secreted by alternatively activated macrophages dampen the inflammation response and promote epithelial regeneration and alveolar structure remodeling. In this review, we discuss the important role of macrophages and AECs in the progression of ARDS.
Collapse
Affiliation(s)
- Huan Tao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China
| | - Younian Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China.
| | - Shihai Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China.
| |
Collapse
|
12
|
Niu P, Li L, Zhang Y, Su Z, Wang B, Liu H, Zhang S, Qiu S, Li Y. Immune regulation based on sex differences in ischemic stroke pathology. Front Immunol 2023; 14:1087815. [PMID: 36793730 PMCID: PMC9923235 DOI: 10.3389/fimmu.2023.1087815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/02/2023] [Indexed: 01/31/2023] Open
Abstract
Ischemic stroke is one of the world's leading causes of death and disability. It has been established that gender differences in stroke outcomes prevail, and the immune response after stroke is an important factor affecting patient outcomes. However, gender disparities lead to different immune metabolic tendencies closely related to immune regulation after stroke. The present review provides a comprehensive overview of the role and mechanism of immune regulation based on sex differences in ischemic stroke pathology.
Collapse
Affiliation(s)
- Pingping Niu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Liqin Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Yonggang Zhang
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Zhongzhou Su
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Binghao Wang
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - He Liu
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Shehong Zhang
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Sheng Qiu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Yuntao Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| |
Collapse
|
13
|
Cheng P, Wang X, Liu Q, Yang T, Qu H, Zhou H. Extracellular vesicles mediate biological information delivery: A double-edged sword in cardiac remodeling after myocardial infarction. Front Pharmacol 2023; 14:1067992. [PMID: 36909157 PMCID: PMC9992194 DOI: 10.3389/fphar.2023.1067992] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Acute myocardial infarction (AMI) is a severe ischemic disease with high morbidity and mortality worldwide. Maladaptive cardiac remodeling is a series of abnormalities in cardiac structure and function that occurs following myocardial infarction (MI). The pathophysiology of this process can be separated into two distinct phases: the initial inflammatory response, and the subsequent longer-term scar revision that includes the regression of inflammation, neovascularization, and fibrotic scar formation. Extracellular vesicles are nano-sized lipid bilayer vesicles released into the extracellular environment by eukaryotic cells, containing bioinformatic transmitters which are essential mediators of intercellular communication. EVs of different cellular origins play an essential role in cardiac remodeling after myocardial infarction. In this review, we first introduce the pathophysiology of post-infarction cardiac remodeling, as well as the biogenesis, classification, delivery, and functions of EVs. Then, we explore the dual role of these small molecule transmitters delivered by EVs in post-infarction cardiac remodeling, including the double-edged sword of pro-and anti-inflammation, and pro-and anti-fibrosis, which is significant for post-infarction cardiac repair. Finally, we discuss the pharmacological and engineered targeting of EVs for promoting heart repair after MI, thus revealing the potential value of targeted modulation of EVs and its use as a drug delivery vehicle in the therapeutic process of post-infarction cardiac remodeling.
Collapse
Affiliation(s)
- Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyan Qu
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Dolitzky A, Hazut I, Avlas S, Grisaru-Tal S, Itan M, Zaffran I, Levi-Schaffer F, Gerlic M, Munitz A. Differential regulation of Type 1 and Type 2 mouse eosinophil activation by apoptotic cells. Front Immunol 2022; 13:1041660. [PMID: 36389786 PMCID: PMC9662748 DOI: 10.3389/fimmu.2022.1041660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/07/2022] [Indexed: 08/18/2023] Open
Abstract
Eosinophils are multifunctional, evolutionary conserved leukocytes that are involved in a plethora of responses ranging from regulation of tissue homeostasis, host defense and cancer. Although eosinophils have been studied mostly in the context of Type 2 inflammatory responses, it is now evident that they participate in Type 1 inflammatory responses and can respond to Type 1 cytokines such as IFN-γ. Notably, both Type 1- and Type 2 inflammatory environments are characterized by tissue damage and cell death. Collectively, this raises the possibility that eosinophils can interact with apoptotic cells, which can alter eosinophil activation in the inflammatory milieu. Herein, we demonstrate that eosinophils can bind and engulf apoptotic cells. We further show that exposure of eosinophils to apoptotic cells induces marked transcriptional changes in eosinophils, which polarize eosinophils towards an anti-inflammatory phenotype that is associated with wound healing and cell migration. Using an unbiased RNA sequencing approach, we demonstrate that apoptotic cells suppress the inflammatory responses of eosinophils that were activated with IFN-γ + E. coli (e.g., Type 1 eosinophils) and augment IL-4-induced eosinophil activation (e.g., Type 2 eosinophils). These data contribute to the growing understanding regarding the heterogeneity of eosinophil activation patterns and highlight apoptotic cells as potential regulators of eosinophil polarization.
Collapse
Affiliation(s)
- Avishay Dolitzky
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Hazut
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shmulik Avlas
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Grisaru-Tal
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Itan
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Zaffran
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Abstract
In both acute and chronic diseases, functional differences in host immune responses arise from a multitude of intrinsic and extrinsic factors. Two of the most important factors affecting the immune response are biological sex and aging. Ischemic stroke is a debilitating disease that predominately affects older individuals. Epidemiological studies have shown that older women have poorer functional outcomes compared with men, in part due to the older age at which they experience their first stroke and the increased comorbidities seen with aging. The immune response also differs in men and women, which could lead to altered inflammatory events that contribute to sex differences in poststroke recovery. Intrinsic factors including host genetics and chromosomal sex play a crucial role both in shaping the host immune system and in the neuroimmune response to brain injury. Ischemic stroke leads to altered intracellular communication between astrocytes, neurons, and resident immune cells in the central nervous system. Increased production of cytokines and chemokines orchestrate the infiltration of peripheral immune cells and promote neuroinflammation. To maintain immunosurveillance, the host immune and central nervous system are highly regulated by a diverse population of immune cells which are strategically distributed within the neurovascular unit and become activated with injury. In this review, we provide a comprehensive overview of sex-specific host immune responses in ischemic stroke.
Collapse
Affiliation(s)
- Anik Banerjee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (A.B., L.D.M.).,UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston (A.B.)
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (A.B., L.D.M.)
| |
Collapse
|
16
|
Oliveira-Costa KM, Menezes GB, Paula Neto HA. Neutrophil accumulation within tissues: A damage x healing dichotomy. Biomed Pharmacother 2021; 145:112422. [PMID: 34781139 DOI: 10.1016/j.biopha.2021.112422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 02/09/2023] Open
Abstract
The abundance of neutrophils in human circulation, their fast mobilization from blood to tissues, along with their alleged short life-span led to the image of neutrophils as a homogeneous cell type designed to fight infections and die in the process. Additionally, their granule content and capacity to produce molecules with considerable cytotoxic potential, lead to the general belief that neutrophil activation inexorably results in side effect of extensive tissue injury. Neutrophil activation in fact causes tissue injury as an adverse effect, but it seems that this is restricted to particular pathological situations and more of an "exception to the rule". Here we review evidences arising especially from intravital microscopy studies that demonstrate neutrophils as cells endowed with sophisticated mechanisms and able to engage in complex interactions as to minimize damage and optimize their effector functions. Moreover, neutrophil infiltration may even contribute to tissue healing and repair which may altogether demand a reexamination of current anti-inflammatory therapies that have neutrophil migration and activation as a target.
Collapse
Affiliation(s)
- Karen Marques Oliveira-Costa
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Gustavo B Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Heitor A Paula Neto
- Laboratório de Alvos Moleculares, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Zhao L, Giannou AD, Xu Y, Shiri AM, Liebold I, Steglich B, Bedke T, Zhang T, Lücke J, Scognamiglio P, Kempski J, Woestemeier A, Chen J, Agalioti T, Zazara DE, Lindner D, Janning M, Hennigs JK, Jagirdar RM, Kotsiou OS, Zarogiannis SG, Kobayashi Y, Izbicki JR, Ghosh S, Rothlin CV, Bosurgi L, Huber S, Gagliani N. Efferocytosis fuels malignant pleural effusion through TIMP1. SCIENCE ADVANCES 2021; 7:7/33/eabd6734. [PMID: 34389533 PMCID: PMC8363144 DOI: 10.1126/sciadv.abd6734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 06/24/2021] [Indexed: 06/03/2023]
Abstract
Malignant pleural effusion (MPE) results from the capacity of several human cancers to metastasize to the pleural cavity. No effective treatments are currently available, reflecting our insufficient understanding of the basic mechanisms leading to MPE progression. Here, we found that efferocytosis through the receptor tyrosine kinases AXL and MERTK led to the production of interleukin-10 (IL-10) by four distinct pleural cavity macrophage (Mφ) subpopulations characterized by different metabolic states and cell chemotaxis properties. In turn, IL-10 acts on dendritic cells (DCs) inducing the production of tissue inhibitor of metalloproteinases 1 (TIMP1). Genetic ablation of Axl and Mertk in Mφs or IL-10 receptor in DCs or Timp1 substantially reduced MPE progression. Our results delineate an inflammatory cascade-from the clearance of apoptotic cells by Mφs, to production of IL-10, to induction of TIMP1 in DCs-that facilitates MPE progression. This inflammatory cascade offers a series of therapeutic targets for MPE.
Collapse
Affiliation(s)
- Lilan Zhao
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of General Thoracic Surgery, Fujian Provincial Hospital, Fujian Medical University, 350003 Fuzhou, People's Republic of China
| | - Anastasios D Giannou
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Yang Xu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Imke Liebold
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Babett Steglich
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tanja Bedke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tao Zhang
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jöran Lücke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Pasquale Scognamiglio
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jan Kempski
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anna Woestemeier
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jing Chen
- Department of Pharmacy, Dong Fang Hospital (900 Hospital of the Joint Logistics Team), School of Medicine, Xiamen University, 350025 Fuzhou, People's Republic of China
| | - Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dimitra E Zazara
- Center for Obstetrics and Pediatrics, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Diana Lindner
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 33 280, 69120 Heidelberg, Germany
| | - Melanie Janning
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim and Medical Faculty Mannheim, University of Heidelberg Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Jan K Hennigs
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Rajesh M Jagirdar
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Ourania S Kotsiou
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Yasushi Kobayashi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jacob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sourav Ghosh
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carla V Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lidia Bosurgi
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Protozoa Immunology, Bernard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
18
|
Nedeva C. Inflammation and Cell Death of the Innate and Adaptive Immune System during Sepsis. Biomolecules 2021; 11:1011. [PMID: 34356636 PMCID: PMC8301842 DOI: 10.3390/biom11071011] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Sepsis is a life-threatening medical condition that occurs when the host has an uncontrolled or abnormal immune response to overwhelming infection. It is now widely accepted that sepsis occurs in two concurrent phases, which consist of an initial immune activation phase followed by a chronic immunosuppressive phase, leading to immune cell death. Depending on the severity of the disease and the pathogen involved, the hosts immune system may not fully recover, leading to ongoing complications proceeding the initial infection. As such, sepsis remains one of the leading causes of morbidity and mortality world-wide, with treatment options limited to general treatment in intensive care units (ICU). Lack of specific treatments available for sepsis is mostly due to our limited knowledge of the immuno-physiology associated with the disease. This review will provide a comprehensive overview of the mechanisms and cell types involved in eliciting infection-induced immune activation from both the innate and adaptive immune system during sepsis. In addition, the mechanisms leading to immune cell death following hyperactivation of immune cells will be explored. The evaluation and better understanding of the cellular and systemic responses leading to disease onset could eventuate into the development of much needed therapies to combat this unrelenting disease.
Collapse
Affiliation(s)
- Christina Nedeva
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
19
|
Tur J, Pereira-Lopes S, Vico T, Marín EA, Muñoz JP, Hernández-Alvarez M, Cardona PJ, Zorzano A, Lloberas J, Celada A. Mitofusin 2 in Macrophages Links Mitochondrial ROS Production, Cytokine Release, Phagocytosis, Autophagy, and Bactericidal Activity. Cell Rep 2021; 32:108079. [PMID: 32846136 DOI: 10.1016/j.celrep.2020.108079] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 07/02/2020] [Accepted: 08/05/2020] [Indexed: 12/27/2022] Open
Abstract
Mitofusin 2 (Mfn2) plays a major role in mitochondrial fusion and in the maintenance of mitochondria-endoplasmic reticulum contact sites. Given that macrophages play a major role in inflammation, we studied the contribution of Mfn2 to the activity of these cells. Pro-inflammatory stimuli such as lipopolysaccharide (LPS) induced Mfn2 expression. The use of the Mfn2 and Mfn1 myeloid-conditional knockout (KO) mouse models reveals that Mfn2 but not Mfn1 is required for the adaptation of mitochondrial respiration to stress conditions and for the production of reactive oxygen species (ROS) upon pro-inflammatory activation. Mfn2 deficiency specifically impairs the production of pro-inflammatory cytokines and nitric oxide. In addition, the lack of Mfn2 but not Mfn1 is associated with dysfunctional autophagy, apoptosis, phagocytosis, and antigen processing. Mfn2floxed;CreLysM mice fail to be protected from Listeria, Mycobacterium tuberculosis, or LPS endotoxemia. These results reveal an unexpected contribution of Mfn2 to ROS production and inflammation in macrophages.
Collapse
Affiliation(s)
- Juan Tur
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Selma Pereira-Lopes
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Tania Vico
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Eros A Marín
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Juan P Muñoz
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Maribel Hernández-Alvarez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Pere-Joan Cardona
- Unitat de tuberculosi experimental, Institut Germans Trias i Pujol, Badalona, Spain
| | - Antonio Zorzano
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jorge Lloberas
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Antonio Celada
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
20
|
Heller RA, Seelig J, Crowell HL, Pilz M, Haubruck P, Sun Q, Schomburg L, Daniel V, Moghaddam A, Biglari B. Predicting neurological recovery after traumatic spinal cord injury by time-resolved analysis of monocyte subsets. Brain 2021; 144:3159-3174. [PMID: 34022039 DOI: 10.1093/brain/awab203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/14/2021] [Accepted: 04/15/2021] [Indexed: 11/13/2022] Open
Abstract
Monocytes and lymphocytes elicit crucial activities for the regenerative processes after various types of injury. The survival of neurons exposed to mechanical and oxidative stress after traumatic spinal cord injury (TSCI) depends on a multitude of factors. The current study sought to evaluate a correlation between remission after TSCI and dynamics of monocyte subsets in respect to the lymphocytes' responsive potential, cytokine expression, patterns of trace element concentration and clinical covariates. We examined prospectively 18 (3 female, 15 male) patients after TSCI. Blood samples were drawn at admission and 4 h, 9 h, 12 h, 1 and 3 days as well as 1 and 2 weeks and 1, 2 and 3 months after the trauma. Analysis of cytokines (CCL-2, IL-10, Enolase 2, CXCL-12, TGF- β1, TGF- β2) was performed using a multiplex cytokine panel. Plasma trace element concentrations of selenium, copper and zinc were determined by total reflection X-ray fluorescence analysis, Neopterin, selenoprotein P (SELENOP) and ceruloplasmin (CP) by enzyme-linked immunosorbent assay (ELISA) and selenium binding protein 1 (SELENBP1) by luminometric immunoassay (LIA). The responsive potential of lymphocytes was assessed via transformation tests. The monocyte subsets (classical, intermediate, and non-classical) and expression of CD14, CD16, CXCR4 and intracellular IL-10 were identified using a multi-colour flow cytometry analysis. The dynamics of the cluster of intermediate CD14-/CD16+/IL10+/CXCR4int monocytes differed significantly between patients with an absence of neurological remission (G0) from those with an improvement (G1) by 1 or 2 AIS steps (Kruskal-Wallis Test, p = 0.010, G0 < G1, AIS+: 1 < G1, AIS+: 2) in the first 24 h. These dynamics were associated inversely with an increase in Enolase and SELENBP1 14 d after the injury. In the elastic net regularised model, we identified an association between the increase of a subpopulation of intermediate CD14-/CD16+/IL10+/CXCR4int monocytes and exacerbated immune response within 24 h after the injury. These findings are reflected in the consistently elevated response to mitogen stimulation of the lymphocytes of patients with significant neurological remission. Early elevated concentrations of CD14-/CD16+/IL10+/CXCR4int monocytes were related to higher odds of CNS regeneration and enhanced neurological remission. The cluster-dynamics of CD14-/CD16+/IL10+/CXCR4int monocytes in the early-acute phase after the injury revealed a maximum of prognostic information regarding neurological remission (mean parameter estimate: 0.207; selection count: 818/1000 repetitions). We conclude that early dynamics in monocyte subsets allow a good prediction of recovery from TSCI.
Collapse
Affiliation(s)
- Raban Arved Heller
- Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany.,Department of Trauma and Reconstructive Surgery, Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, HTRG Heidelberg Trauma Research Group, Heidelberg University Hospital, 69118, Heidelberg, Germany.,Department of General Practice and Health Services Research, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Julian Seelig
- Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany
| | - Helena Lucia Crowell
- Department of Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland.,SIB Swiss Institute of Bioinformatics, University of Zurich, 8057, Zurich, Switzerland
| | - Maximilian Pilz
- Institute of Medical Biometry and Informatics, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Patrick Haubruck
- Department of Trauma and Reconstructive Surgery, Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, HTRG Heidelberg Trauma Research Group, Heidelberg University Hospital, 69118, Heidelberg, Germany.,Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, St Leonards, 2065, New South Wales, Australia
| | - Qian Sun
- Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany
| | - Volker Daniel
- Transplantation Immunology, Institute of Immunology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Arash Moghaddam
- Centre for Orthopaedics, Trauma Surgery and Sports Medicine, ATORG Aschaffenburg Trauma and Orthopaedic Research Group, Hospital Aschaffenburg-Alzenau, 63739, Aschaffenburg, Germany
| | - Bahram Biglari
- Department of Paraplegiology, BG Trauma Centre Ludwigshafen, 67071, Ludwigshafen, Germany
| |
Collapse
|
21
|
Chen F, Yao C, Feng Y, Yu Y, Guo H, Yan J, Chen J. The identification of neutrophils-mediated mechanisms and potential therapeutic targets for the management of sepsis-induced acute immunosuppression using bioinformatics. Medicine (Baltimore) 2021; 100:e24669. [PMID: 33761636 PMCID: PMC9282053 DOI: 10.1097/md.0000000000024669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/18/2021] [Indexed: 01/05/2023] Open
Abstract
Neutrophils have crucial roles in defensing against infection and adaptive immune responses. This study aimed to investigate the genetic mechanism in neutrophils in response to sepsis-induced immunosuppression.The GSE64457 dataset was downloaded from the Gene Expression Omnibus database and the neutrophil samples (D3-4 and D6-8 post sepsis shock) were assigned into two groups. The differentially expressed genes (DEGs) were identified. The Short Time-series Expression Miner (STEM) clustering analysis was conducted to select the consistently changed DEGs post sepsis shock. The overlapping genes between the DEGs and the deposited genes associated with immune, sepsis, and immunosuppression in the AmiGO2 and Comparative Toxicogenomics Database were screened out and used for the construction of the protein-protein interaction (PPI) network. The expression of several hub genes in sepsis patients was validated using the PCR analysis. The drugs targeting the hub genes and the therapy strategies for sepsis or immunosuppression were reviewed and used to construct the drug-gene-therapy-cell network to illustrate the potential therapeutic roles of the hub genes.A total of 357 overlapping DEGs between the two groups were identified and were used for the STEM clustering analysis, which generated four significant profiles with 195 upregulated (including annexin A1, ANXA1; matrix metallopeptidase 9, MMP9; and interleukin 15, IL-15) and 151 downregulated DEGs (including, AKT1, IFN-related genes, and HLA antigen genes). Then, a total of 34 of the 151 downregulated DEGs and 39 of the 195 upregulated DEGs were shared between the databases and above DEGs, respectively. The PPI network analysis identified a downregulated module including IFN-related genes. The deregulation of DEGs including AKT1 (down), IFN-inducible protein 6 (IFI6, down), IL-15 (up), and ANXA1 (up) was verified in the neutrophils from patients with sepsis-induced immunosuppression as compared with controls. Literature review focusing on the therapy showed that the upregulation of IL-15, IFN, and HLA antigens are the management targets. Besides, the AKT1 gene was targeted by gemcitabine.These findings provided additional clues for understanding the mechanisms of sepsis-induced immunosuppression. The drugs targeting AKT1 might provide now clues for the management strategy of immunosuppression with the intention to prevent neutrophil infiltration.
Collapse
Affiliation(s)
- Fang Chen
- Nursing Department, Zhejiang Hospital
| | - Chunyan Yao
- Institute of Health Food, Zhejiang Academy of Medical Sciences
| | - Yue Feng
- Radiology Department, Zhejiang Hospital
| | - Ying Yu
- Institute of Health Food, Zhejiang Academy of Medical Sciences
| | - Honggang Guo
- Zhejiang Experimental Animal Center, Zhejiang Academy of Medical Sciences
| | - Jing Yan
- Intensive Care Unit, Zhejiang Hospital
| | - Jin Chen
- General Practice Department, Zhejiang Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Adomati T, Cham LB, Hamdan TA, Bhat H, Duhan V, Li F, Ali M, Lang E, Huang A, Naser E, Khairnar V, Friedrich SK, Lang J, Friebus-Kardash J, Bergerhausen M, Schiller M, Machlah YM, Lang F, Häussinger D, Ferencik S, Hardt C, Lang PA, Lang KS. Dead Cells Induce Innate Anergy via Mertk after Acute Viral Infection. Cell Rep 2021; 30:3671-3681.e5. [PMID: 32187540 DOI: 10.1016/j.celrep.2020.02.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/13/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Infections can result in a temporarily restricted unresponsiveness of the innate immune response, thereby limiting pathogen control. Mechanisms of such unresponsiveness are well studied in lipopolysaccharide tolerance; however, whether mechanisms of tolerance limit innate immunity during virus infection remains unknown. Here, we find that infection with the highly cytopathic vesicular stomatitis virus (VSV) leads to innate anergy for several days. Innate anergy is associated with induction of apoptotic cells, which activates the Tyro3, Axl, and Mertk (TAM) receptor Mertk and induces high levels of interleukin-10 (IL-10) and transforming growth factor β (TGF-β). Lack of Mertk in Mertk-/- mice prevents induction of IL-10 and TGF-β, resulting in abrogation of innate anergy. Innate anergy is associated with enhanced VSV replication and poor survival after infection. Mechanistically, Mertk signaling upregulates suppressor of cytokine signaling 1 (SOCS1) and SOCS3. Dexamethasone treatment upregulates Mertk and enhances innate anergy in a Mertk-dependent manner. In conclusion, we identify Mertk as one major regulator of innate tolerance during infection with VSV.
Collapse
Affiliation(s)
- Tom Adomati
- Institute of Immunology, University of Duisburg-Essen, Essen, Germany.
| | - Lamin B Cham
- Institute of Immunology, University of Duisburg-Essen, Essen, Germany
| | - Thamer A Hamdan
- Institute of Immunology, University of Duisburg-Essen, Essen, Germany
| | - Hilal Bhat
- Institute of Immunology, University of Duisburg-Essen, Essen, Germany
| | - Vikas Duhan
- Institute of Immunology, University of Duisburg-Essen, Essen, Germany; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Fanghui Li
- Institute of Immunology, University of Duisburg-Essen, Essen, Germany
| | - Murtaza Ali
- Institute of Immunology, University of Duisburg-Essen, Essen, Germany
| | - Elisabeth Lang
- University Psychiatric Clinics Basel, Basel, Switzerland
| | - Anfei Huang
- Institute of Molecular Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Eyad Naser
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Vishal Khairnar
- Institute of Immunology, University of Duisburg-Essen, Essen, Germany; Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | | | - Judith Lang
- Institute of Immunology, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | - Florian Lang
- Department of Physiology I, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Düsseldorf, Germany
| | | | - Cornelia Hardt
- Institute of Immunology, University of Duisburg-Essen, Essen, Germany
| | - Philipp A Lang
- Institute of Molecular Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
23
|
Camba-Gómez M, Gualillo O, Conde-Aranda J. New Perspectives in the Study of Intestinal Inflammation: Focus on the Resolution of Inflammation. Int J Mol Sci 2021; 22:ijms22052605. [PMID: 33807591 PMCID: PMC7962019 DOI: 10.3390/ijms22052605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is an essential physiological process that is directed to the protection of the organism against invading pathogens or tissue trauma. Most of the existing knowledge related to inflammation is focused on the factors and mechanisms that drive the induction phase of this process. However, since the recognition that the resolution of the inflammation is an active and tightly regulated process, increasing evidence has shown the relevance of this process for the development of chronic inflammatory diseases, such as inflammatory bowel disease. For that reason, with this review, we aimed to summarize the most recent and interesting information related to the resolution process in the context of intestinal inflammation. We discussed the advances in the understanding of the pro-resolution at intestine level, as well as the new mediators with pro-resolutive actions that could be interesting from a therapeutic point of view.
Collapse
Affiliation(s)
- Miguel Camba-Gómez
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saúde) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain;
| | - Javier Conde-Aranda
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Correspondence: ; Tel.: +34-981-955-091
| |
Collapse
|
24
|
Nakamori Y, Park EJ, Shimaoka M. Immune Deregulation in Sepsis and Septic Shock: Reversing Immune Paralysis by Targeting PD-1/PD-L1 Pathway. Front Immunol 2021; 11:624279. [PMID: 33679715 PMCID: PMC7925640 DOI: 10.3389/fimmu.2020.624279] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Sepsis remains a major problem for human health worldwide, thereby manifesting high rates of morbidity and mortality. Sepsis, once understood as a monophasic sustained hyperinflammation, is currently recognized as a dysregulated host response to infection, with both hyperinflammation and immunoparalysis occurring simultaneously from the earliest stages of sepsis, involving multiple organ dysfunctions. Despite the recent progress in the understanding of the pathophysiology underlying sepsis, no specific treatment to restore immune dysregulation in sepsis has been validated in clinical trials. In recent years, treatment for immune checkpoints such as the programmed cell death protein 1/programmed death ligand (PD-1/PD-L) pathway in tumor-infiltrating T-lymphocytes has been successful in the field of cancer immune therapy. As immune-paralysis in sepsis involves exhausted T-lymphocytes, future clinical applications of checkpoint inhibitors for sepsis are expected. In addition, the functions of PD-1/PD-L on innate lymphoid cells and the role of exosomal forms of PD-L1 warrant further research. Looking back on the history of repeatedly failed clinical trials of immune modulatory therapies for sepsis, sepsis must be recognized as a difficult disease entity for performing clinical trials. A major obstacle that could prevent effective clinical trials of drug candidates is the disease complexity and heterogeneities; clinically diagnosed sepsis could contain multiple sepsis subgroups that suffer different levels of hyper-inflammation and immune-suppression in distinct organs. Thus, the selection of appropriate more homogenous sepsis subgroup is the key for testing the clinical efficacy of experimental therapies targeting specific pathways in either hyperinflammation and/or immunoparalysis. An emerging technology such as artificial intelligence (AI) may help to identify an immune paralysis subgroup who would best be treated by PD-1/PD-L1 pathway inhibitors.
Collapse
Affiliation(s)
- Yuki Nakamori
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Mie, Japan
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Mie, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
25
|
The Functional Heterogeneity of Neutrophil-Derived Extracellular Vesicles Reflects the Status of the Parent Cell. Cells 2020; 9:cells9122718. [PMID: 33353087 PMCID: PMC7766779 DOI: 10.3390/cells9122718] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
Similar to other cell types, neutrophilic granulocytes also release extracellular vesicles (EVs), mainly medium-sized microvesicles/microparticles. According to published data, authors have reached a consensus on the physical parameters (size, density) and chemical composition (surface proteins, proteomics) of neutrophil-derived EVs. In contrast, there is large diversity and even controversy in the reported functional properties. Part of the discrepancy may be ascribed to differences in the viability of the starting cells, in eliciting factors, in separation techniques and in storage conditions. However, the most recent data from our laboratory prove that the same population of neutrophils is able to generate EVs with different functional properties, transmitting pro-inflammatory or anti-inflammatory effects on neighboring cells. Previously we have shown that Mac-1 integrin is a key factor that switches anti-inflammatory EV generation into pro-inflammatory and antibacterial EV production. This paper reviews current knowledge on the functional alterations initiated by neutrophil-derived EVs, listing their effects according to the triggering agents and target cells. We summarize the presence of neutrophil-derived EVs in pathological processes and their perspectives in diagnostics and therapy. Finally, the functional heterogeneity of differently triggered EVs indicates that neutrophils are capable of producing a broad spectrum of EVs, depending on the environmental conditions prevailing at the time of EV genesis.
Collapse
|
26
|
Abstract
Brucellosis is a bacterial disease of domestic animals and humans. The pathogenic ability of Brucella organisms relies on their stealthy strategy and their capacity to replicate within host cells and to induce long-lasting infections. Brucella organisms barely induce neutrophil activation and survive within these leukocytes by resisting microbicidal mechanisms. Very few Brucella-infected neutrophils are found in the target organs, except for the bone marrow, early in infection. Still, Brucella induces a mild reactive oxygen species formation and, through its lipopolysaccharide, promotes the premature death of neutrophils, which release chemokines and express "eat me" signals. This effect drives the phagocytosis of infected neutrophils by mononuclear cells that become thoroughly susceptible to Brucella replication and vehicles for bacterial dispersion. The premature death of the infected neutrophils proceeds without NETosis, necrosis/oncosis, or classical apoptosis morphology. In the absence of neutrophils, the Th1 response exacerbates and promotes bacterial removal, indicating that Brucella-infected neutrophils dampen adaptive immunity. This modulatory effect opens a window for bacterial dispersion in host tissues before adaptive immunity becomes fully activated. However, the hyperactivation of immunity is not without a price, since neutropenic Brucella-infected animals develop cachexia in the early phases of the disease. The delay in the immunological response seems a sine qua non requirement for the development of long-lasting brucellosis. This property may be shared with other pathogenic alphaproteobacteria closely related to Brucella We propose a model in which Brucella-infected polymorphonuclear neutrophils (PMNs) function as "Trojan horse" vehicles for bacterial dispersal and as modulators of the Th1 adaptive immunity in infection.
Collapse
|
27
|
Kolonics F, Kajdácsi E, Farkas VJ, Veres DS, Khamari D, Kittel Á, Merchant ML, McLeish KR, Lőrincz ÁM, Ligeti E. Neutrophils produce proinflammatory or anti-inflammatory extracellular vesicles depending on the environmental conditions. J Leukoc Biol 2020; 109:793-806. [PMID: 32946637 PMCID: PMC8851677 DOI: 10.1002/jlb.3a0320-210r] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/30/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are important elements of intercellular communication. A plethora of different, occasionally even opposite, physiologic and pathologic effects have been attributed to these vesicles in the last decade. A direct comparison of individual observations is however hampered by the significant differences in the way of elicitation, collection, handling, and storage of the investigated vesicles. In the current work, we carried out a careful comparative study on 3, previously characterized types of EVs produced by neutrophilic granulocytes. We investigated in parallel the modulation of multiple blood-related cells and functions by medium-sized vesicles. We show that EVs released from resting neutrophils exert anti-inflammatory action by reducing production of reactive oxygen species (ROS) and cytokine release from neutrophils. In contrast, vesicles generated upon encounter of neutrophils with opsonized particles rather promote proinflammatory processes as they increase production of ROS and cytokine secretion from neutrophils and activate endothelial cells. EVs released from apoptosing cells were mainly active in promoting coagulation. We thus propose that EVs are “custom made,” acquiring selective capacities depending on environmental factors prevailing at the time of their biogenesis.
Collapse
Affiliation(s)
- Ferenc Kolonics
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Erika Kajdácsi
- Research Laboratory of the 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Veronika J Farkas
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Dániel S Veres
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Delaram Khamari
- Department of Genetics and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Ágnes Kittel
- Institute of Experimental Medicine, Eötvös Loránd Research Network (ELRN), Budapest, Hungary
| | - Michael L Merchant
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Kenneth R McLeish
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Ákos M Lőrincz
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Erzsébet Ligeti
- Department of Physiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
28
|
Sakamaki Y, Ozdemir J, Perez AD, Heidrick Z, Watson O, Tsuji M, Salmon C, Batta-Mpouma J, Azzun A, Lomonte V, Du Y, Stenken J, Woo-Kim J, Beyzavi MH. Maltotriose Conjugated Metal-Organic Frameworks for Selective Targeting and Photodynamic Therapy of Triple Negative Breast Cancer Cells and Tumor Associated Macrophages. ADVANCED THERAPEUTICS 2020; 3. [PMID: 33072859 DOI: 10.1002/adtp.202000029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we report a nano-MOF conjugated to maltotriose as a new DDS. MA-PCN-224-0.1Mn/0.9Zn showed its ability to target cancer and TAM. This novel MOF is an effective PDT agent and shows little dark toxicity, MA-PCN-224-0.1Mn/0.9Zn uptakes selectively into cancer cells. A well-suited size control methodology was used so that the nano-scaled MOFs may take advantage of the EPR effect. This development of a nano-scale MOF for PDT that is conjugated to a cancer targeting ligand represents a meaningful development for the use of MOFs as drug delivery systems.
Collapse
Affiliation(s)
- Yoshie Sakamaki
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - John Ozdemir
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Alda Diaz Perez
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Zachary Heidrick
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Olivia Watson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Miu Tsuji
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chirstopher Salmon
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Joseph Batta-Mpouma
- Department of Biological and Agricultural Engineering, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Anthony Azzun
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Valerie Lomonte
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Yuchun Du
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Julie Stenken
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jin Woo-Kim
- Department of Biological and Agricultural Engineering, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - M Hassan Beyzavi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
29
|
Gruber R. Osteoimmunology: Inflammatory osteolysis and regeneration of the alveolar bone. J Clin Periodontol 2019; 46 Suppl 21:52-69. [PMID: 30623453 DOI: 10.1111/jcpe.13056] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/09/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023]
Abstract
AIM Osteoimmunology covers the cellular and molecular mechanisms responsible for inflammatory osteolysis that culminates in the degradation of alveolar bone. Osteoimmunology also focuses on the interplay of immune cells with bone cells during bone remodelling and regeneration. The aim of this review was to provide insights into how osteoimmunology affects alveolar bone health and disease. METHOD This review is based on a narrative approach to assemble mouse models that provide insights into the cellular and molecular mechanisms causing inflammatory osteolysis and on the impact of immune cells on alveolar bone regeneration. RESULTS Mouse models have revealed the molecular pathways by which microbial and other factors activate immune cells that initiate an inflammatory response. The inflammation-induced alveolar bone loss occurs with the concomitant suppression of bone formation. Mouse models also showed that immune cells contribute to the resolution of inflammation and bone regeneration, even though studies with a focus on alveolar socket healing are rare. CONCLUSIONS Considering that osteoimmunology is evolutionarily conserved, osteolysis removes the cause of inflammation by provoking tooth loss. The impact of immune cells on bone regeneration is presumably a way to reinitiate the developmental mechanisms of intramembranous and endochondral bone formation.
Collapse
Affiliation(s)
- Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Evidence That the Anti-Inflammatory Effect of Rubiadin-1-methyl Ether Has an Immunomodulatory Context. Mediators Inflamm 2019; 2019:6474168. [PMID: 31780865 PMCID: PMC6874871 DOI: 10.1155/2019/6474168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background In spite of the latest therapeutic developments, no effective treatments for handling critical conditions such as acute lung injuries have yet been found. Such conditions, which may result from lung infections, sepsis, multiple trauma, or shock, represent a significant challenge in intensive care medicine. Seeking ways to better deal with this challenge, the scientific community has recently devoted much attention to small molecules derived from natural products with anti-inflammatory and immunomodulatory effects. Aims In this context, we investigated the anti-inflammatory effect of Rubiadin-1-methyl ether isolated from Pentas schimperi, using an in vitro model of RAW 264.7 macrophages induced by LPS and an in vivo model of acute lung injury (ALI) induced by LPS. Methods The macrophages were pretreated with the compound and induced by LPS (1 μg/mL). After 24 h, using the supernatant, we evaluated the cytotoxicity, NOx, and IL-6, IL-1β, and TNF-α levels, as well as the effect of the compound on macrophage apoptosis. Next, the compound was administered in mice with acute lung injury (ALI) induced by LPS (5 mg/kg), and the pro- and anti-inflammatory parameters were analyzed after 12 h using the bronchoalveolar lavage fluid (BALF). Results Rubiadin-1-methyl ether was able to inhibit the pro-inflammatory parameters studied in the in vitro assays (NOx, IL-6, and IL-1β) and, at the same time, increased the macrophage apoptosis rate. In the in vivo experiments, this compound was capable of decreasing leukocyte infiltration; fluid leakage; NOx; IL-6, IL-12p70, IFN-γ, TNF-α, and MCP-1 levels; and MPO activity. In addition, Rubiadin-1-methyl ether increased the IL-10 levels in the bronchoalveolar lavage fluid (BALF). Conclusions These findings support the evidence that Rubiadin-1-methyl ether has important anti-inflammatory activity, with evidence of an immunomodulatory effect.
Collapse
|
31
|
Tian X, Xie G, Xiao H, Ding F, Bao W, Zhang M. CXCR4 knockdown prevents inflammatory cytokine expression in macrophages by suppressing activation of MAPK and NF-κB signaling pathways. Cell Biosci 2019; 9:55. [PMID: 31304005 PMCID: PMC6607528 DOI: 10.1186/s13578-019-0315-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/20/2019] [Indexed: 01/06/2023] Open
Abstract
Background Recent evidence has shown that C-X-C chemokine receptor type 4 (CXCR4) plays a crucial role in acute lung injury (ALI). Macrophages are key factors in the pathogenesis of ALI. The aim of this study was to investigate the role of CXCR4 in macrophages after lipopolysaccharide (LPS) stimulation and confirm that CXCR4 knockdown can inhibit inflammatory cytokines by suppressing mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathway activation. Results In this study, we found that CXCR4 expression in lung tissue of ALI was significantly increased using immunofluorescence. We also found that the expression of CXCR4 in macrophages sorted from bronchoalveolar lavage fluid (BALF) of ALI was obviously upregulated through RT-qPCR. After CXCR4 knockdown using siRNA, we found that the expression of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) was obviously down regulated in macrophages. Additionally, the phosphorylation of p38, Erk, and p65 was significantly decreased after CXCR4 knockdown through western blotting. Conclusions Taken together, the present study suggests that CXCR4 knockdown may inhibit inflammatory cytokine expression in macrophages by suppressing MAPK and NF-κB signaling pathway activation. Therefore, CXCR4 knockdown may have potential clinical value in treating ALI.
Collapse
Affiliation(s)
- Xue Tian
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080 People's Republic of China
| | - Guogang Xie
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080 People's Republic of China
| | - Hui Xiao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080 People's Republic of China
| | - Fengming Ding
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080 People's Republic of China
| | - Wuping Bao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080 People's Republic of China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080 People's Republic of China
| |
Collapse
|
32
|
Sugimoto MA, Vago JP, Perretti M, Teixeira MM. Mediators of the Resolution of the Inflammatory Response. Trends Immunol 2019; 40:212-227. [DOI: 10.1016/j.it.2019.01.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
|
33
|
Szatmári-Tóth M, Ilmarinen T, Mikhailova A, Skottman H, Kauppinen A, Kaarniranta K, Kristóf E, Lytvynchuk L, Veréb Z, Fésüs L, Petrovski G. Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium-Role in Dead Cell Clearance and Inflammation. Int J Mol Sci 2019; 20:ijms20040926. [PMID: 30791639 PMCID: PMC6412543 DOI: 10.3390/ijms20040926] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 02/13/2019] [Indexed: 12/19/2022] Open
Abstract
Inefficient removal of dying retinal pigment epithelial (RPE) cells by professional phagocytes can result in debris formation and development of age-related macular degeneration (AMD). Chronic oxidative stress and inflammation play an important role in AMD pathogenesis. Only a few well-established in vitro phagocytosis assay models exist. We propose human embryonic stem cell-derived-RPE cells as a new model for studying RPE cell removal by professional phagocytes. The characteristics of human embryonic stem cells-derived RPE (hESC-RPE) are similar to native RPEs based on their gene and protein expression profile, integrity, and barrier properties or regarding drug transport. However, no data exist about RPE death modalities and how efficiently dying hESC-RPEs are taken upby macrophages, and whether this process triggers an inflammatory responses. This study demonstrates hESC-RPEs can be induced to undergo anoikis or autophagy-associated cell death due to extracellular matrix detachment or serum deprivation and hydrogen-peroxide co-treatment, respectively, similar to primary human RPEs. Dying hESC-RPEs are efficiently engulfed by macrophages which results in high amounts of IL-6 and IL-8 cytokine release. These findings suggest that the clearance of anoikic and autophagy-associated dying hESC-RPEs can be used as a new model for investigating AMD pathogenesis or for testing the in vivo potential of these cells in stem cell therapy.
Collapse
Affiliation(s)
- Mária Szatmári-Tóth
- Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, 4032 Debrecen, Hungary.
| | - Tanja Ilmarinen
- Tampere University, Faculty of Medicine and Health Technology, 33014 Tampere, Finland.
| | - Alexandra Mikhailova
- Tampere University, Faculty of Medicine and Health Technology, 33014 Tampere, Finland.
| | - Heli Skottman
- Tampere University, Faculty of Medicine and Health Technology, 33014 Tampere, Finland.
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland.
- Department of Ophthalmology, Kuopio University Hospital, 70029 Kuopio, Finland.
| | - Endre Kristóf
- Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, 4032 Debrecen, Hungary.
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus-Liebig-University Giessen, Eye Clinic, University Hospital Giessen and Marburg GmbH, Campus Giessen, 35390 Giessen, Germany.
| | - Zoltán Veréb
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, 4032 Debrecen, Hungary.
| | - Goran Petrovski
- Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, 4032 Debrecen, Hungary.
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.
| |
Collapse
|
34
|
Englert JA, Bobba C, Baron RM. Integrating molecular pathogenesis and clinical translation in sepsis-induced acute respiratory distress syndrome. JCI Insight 2019; 4:e124061. [PMID: 30674720 PMCID: PMC6413834 DOI: 10.1172/jci.insight.124061] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sepsis-induced acute respiratory distress syndrome (ARDS) has high morbidity and mortality and arises after lung infection or infection at extrapulmonary sites. An aberrant host response to infection leads to disruption of the pulmonary alveolar-capillary barrier, resulting in lung injury characterized by hypoxemia, inflammation, and noncardiogenic pulmonary edema. Despite increased understanding of the molecular biology underlying sepsis-induced ARDS, there are no targeted pharmacologic therapies for this devastating condition. Here, we review the molecular underpinnings of sepsis-induced ARDS with a focus on relevant clinical and translational studies that point toward novel therapeutic strategies.
Collapse
Affiliation(s)
- Joshua A. Englert
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Christopher Bobba
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Rebecca M. Baron
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Powell B, Szleifer I, Dhaher YY. In silico study of principal sex hormone effects on post-injury synovial inflammatory response. PLoS One 2018; 13:e0209582. [PMID: 30596697 PMCID: PMC6312367 DOI: 10.1371/journal.pone.0209582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/07/2018] [Indexed: 11/19/2022] Open
Abstract
Following an anterior cruciate ligament injury, premenopausal females tend to experience poorer outcomes than males, and sex hormones are thought to contribute to the disparity. Evidence seems to suggest that the sex hormones estrogen, progesterone, and testosterone may regulate the inflammation caused by macrophages, which invade the knee after an injury. While the individual effects of hormones on macrophage inflammation have been studied in vitro, their combined effects on post-injury inflammation in the knee have not been examined, even though both males and females have detectable levels of both estrogen and testosterone. In the present work, we developed an in silico kinetic model of the post-injury inflammatory response in the human knee joint and the hormonal influences that may shape that response. Our results indicate that post-injury, sex hormone concentrations observed in females may lead to a more pro-inflammatory, catabolic environment, while the sex hormone concentrations observed in males may lead to a more anti-inflammatory environment. These findings suggest that the female hormonal milieu may lead to increased catabolism, potentially worsening post-injury damage to the cartilage for females compared to males. The model developed herein may inform future in vitro and in vivo studies that seek to uncover the origins of sex differences in outcomes and may ultimately serve as a starting point for developing targeted therapies to prevent or reduce the cartilage damage that results from post-injury inflammation, particularly for females.
Collapse
Affiliation(s)
- Bethany Powell
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
- Department of Mechanical Engineering and Bioengineering, Valparaiso University, Valparaiso, IN, United States of America
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
- Department of Chemistry, Northwestern University, Evanston, IL, United States of America
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States of America
| | - Yasin Y. Dhaher
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail:
| |
Collapse
|
36
|
Phenotypic and functional changes of GM-CSF differentiated human macrophages following exposure to apoptotic neutrophils. Cell Immunol 2018; 331:93-99. [DOI: 10.1016/j.cellimm.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/28/2018] [Accepted: 06/06/2018] [Indexed: 01/12/2023]
|
37
|
David S, Kroner A, Greenhalgh AD, Zarruk JG, López-Vales R. Myeloid cell responses after spinal cord injury. J Neuroimmunol 2018; 321:97-108. [DOI: 10.1016/j.jneuroim.2018.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023]
|
38
|
Abstract
Cell death is a perpetual feature of tissue microenvironments; each day under homeostatic conditions, billions of cells die and must be swiftly cleared by phagocytes. However, cell death is not limited to this natural turnover-apoptotic cell death can be induced by infection, inflammation, or severe tissue injury. Phagocytosis of apoptotic cells is thus coupled to specific functions, from the induction of growth factors that can stimulate the replacement of dead cells to the promotion of tissue repair or tissue remodeling in the affected site. In this review, we outline the mechanisms by which phagocytes sense apoptotic cell death and discuss how phagocytosis is integrated with environmental cues to drive appropriate responses.
Collapse
Affiliation(s)
- Lidia Bosurgi
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Bernard-Nocht-Institut für Tropenmedizin, Hamburg, Germany
| | - Lindsey D Hughes
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA.,Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, USA
| | - Sourav Ghosh
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, USA.,Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
39
|
Abstract
When apoptotic cells are not cleared in an efficient and timely manner, they progress to secondary necrosis and lose their membrane integrity. This results in a leakage of immunostimulatory, danger associated molecular patterns (DAMPs), similar to accidental (or primary) necrosis. However, primary necrosis is a sudden event with an inadvertent release of almost unmodified DAMPs. Secondary necrotic cells, in contrast, have gone through various modifications during the process of apoptosis. Recent research revealed that the molecules released from the cytoplasm or exposed on the cell surface differ between primary necrosis, secondary necrosis, and regulated necrosis such as necroptosis. This review gives an overview of these differences and focusses their effects on the immune response. The implications to human physiology and diseases are manifold and will be discussed in the context of cancer, neurodegenerative disorders and autoimmunity.
Collapse
Affiliation(s)
- Monika Sachet
- Surgical Research Laboratories, Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ying Yu Liang
- Surgical Research Laboratories, Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rudolf Oehler
- Surgical Research Laboratories, Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
40
|
The Role of Macrophages in the Pathogenesis of ALI/ARDS. Mediators Inflamm 2018; 2018:1264913. [PMID: 29950923 PMCID: PMC5989173 DOI: 10.1155/2018/1264913] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
Despite development in the understanding of the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), the underlying mechanism still needs to be elucidated. Apart from leukocytes and endothelial cells, macrophages are also essential for the process of the inflammatory response in ALI/ARDS. Notably, macrophages play a dual role of proinflammation and anti-inflammation based on the microenvironment in different pathological stages. In the acute phase of ALI/ARDS, resident alveolar macrophages, typically expressing the alternatively activated phenotype (M2), shift into the classically activated phenotype (M1) and release various potent proinflammatory mediators. In the later phase, the M1 phenotype of activated resident and recruited macrophages shifts back to the M2 phenotype for eliminating apoptotic cells and participating in fibrosis. In this review, we summarize the main subsets of macrophages and the associated signaling pathways in three different pathological phases of ALI/ARDS. According to the current literature, regulating the function of macrophages and monocytes might be a promising therapeutic strategy against ALI/ARDS.
Collapse
|
41
|
Kuba A, Raida L. Graft versus Host Disease: From Basic Pathogenic Principles to DNA Damage Response and Cellular Senescence. Mediators Inflamm 2018; 2018:9451950. [PMID: 29785172 PMCID: PMC5896258 DOI: 10.1155/2018/9451950] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/12/2018] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
Graft versus host disease (GVHD), a severe immunogenic complication of allogeneic hematopoietic stem cell transplantation (HSCT), represents the most frequent cause of transplant-related mortality (TRM). Despite a huge progress in HSCT techniques and posttransplant care, GVHD remains a significant obstacle in successful HSCT outcome. This review presents a complex summary of GVHD pathogenesis with focus on references considering basic biological processes such as DNA damage response and cellular senescence.
Collapse
Affiliation(s)
- Adam Kuba
- Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Ludek Raida
- Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
42
|
Lumbroso D, Soboh S, Maimon A, Schif-Zuck S, Ariel A, Burstyn-Cohen T. Macrophage-Derived Protein S Facilitates Apoptotic Polymorphonuclear Cell Clearance by Resolution Phase Macrophages and Supports Their Reprogramming. Front Immunol 2018; 9:358. [PMID: 29545796 PMCID: PMC5837975 DOI: 10.3389/fimmu.2018.00358] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 02/08/2018] [Indexed: 01/07/2023] Open
Abstract
The complete resolution of inflammation requires the uptake of apoptotic polymorphonuclear cells (PMN) by local macrophages (efferocytosis) and the consequent reprogramming of the engulfing phagocytes to reparative and pro-resolving phenotypes. The tyrosine kinase receptors TYRO3, AXL, and MERTK (collectively named TAM) are fundamental mediators in regulating inflammatory responses and efferocytosis. Protein S (PROS1) is a ligand for all TAM receptors that mediates various aspects of their activity. However, the involvement of PROS1 in the resolution of inflammation is incompletely understood. Here, we report the upregulation of Pros1 in macrophages during the resolution of inflammation. Selective knockout of Pros1 in the myeloid lineage significantly downregulated macrophage pro-resolving properties. Hence, Pros1-deficient macrophages engulfed fewer apoptotic PMN remnants in vivo, and exogenous PROS1 rescued impaired efferocytosis ex vivo. Moreover, Pros1-deficient peritoneal macrophages secreted higher levels of the pro-inflammatory mediators TNFα and CCL3, while they secreted lower levels of the reparative/anti-inflammatory IL-10 following exposure to lipopolysaccharide in comparison to their WT counterparts. Moreover, Pros1-deficient macrophages expressed less of the anti-inflammatory/pro-resolving enzymes arginase-1 and 12/15-lipoxygenase and produced less of the specialized pro-resolving mediator resolvin D1. Altogether, our results suggest that macrophage-derived PROS1 is an important effector molecule in regulating the efferocytosis, maturation, and reprogramming of resolution phase macrophages, and imply that PROS1 could provide a new therapeutic target for inflammatory and fibrotic disorders.
Collapse
Affiliation(s)
- Delphine Lumbroso
- Faculty of Dental Medicine, Institute for Dental Sciences, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Biology, The Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Soaad Soboh
- Faculty of Dental Medicine, Institute for Dental Sciences, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Maimon
- Department of Biology, The Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Sagie Schif-Zuck
- Faculty of Dental Medicine, Institute for Dental Sciences, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amiram Ariel
- Faculty of Dental Medicine, Institute for Dental Sciences, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tal Burstyn-Cohen
- Department of Biology, The Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
43
|
Chang CF, Goods BA, Askenase MH, Hammond MD, Renfroe SC, Steinschneider AF, Landreneau MJ, Ai Y, Beatty HE, da Costa LHA, Mack M, Sheth KN, Greer DM, Huttner A, Coman D, Hyder F, Ghosh S, Rothlin CV, Love JC, Sansing LH. Erythrocyte efferocytosis modulates macrophages towards recovery after intracerebral hemorrhage. J Clin Invest 2018; 128:607-624. [PMID: 29251628 PMCID: PMC5785262 DOI: 10.1172/jci95612] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/07/2017] [Indexed: 02/03/2023] Open
Abstract
Macrophages are a source of both proinflammatory and restorative functions in damaged tissue through complex dynamic phenotypic changes. Here, we sought to determine whether monocyte-derived macrophages (MDMs) contribute to recovery after acute sterile brain injury. By profiling the transcriptional dynamics of MDMs in the murine brain after experimental intracerebral hemorrhage (ICH), we found robust phenotypic changes in the infiltrating MDMs over time and demonstrated that MDMs are essential for optimal hematoma clearance and neurological recovery. Next, we identified the mechanism by which the engulfment of erythrocytes with exposed phosphatidylserine directly modulated the phenotype of both murine and human MDMs. In mice, loss of receptor tyrosine kinases AXL and MERTK reduced efferocytosis of eryptotic erythrocytes and hematoma clearance, worsened neurological recovery, exacerbated iron deposition, and decreased alternative activation of macrophages after ICH. Patients with higher circulating soluble AXL had poor 1-year outcomes after ICH onset, suggesting that therapeutically augmenting efferocytosis may improve functional outcomes by both reducing tissue injury and promoting the development of reparative macrophage responses. Thus, our results identify the efferocytosis of eryptotic erythrocytes through AXL/MERTK as a critical mechanism modulating macrophage phenotype and contributing to recovery from ICH.
Collapse
Affiliation(s)
- Che-Feng Chang
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brittany A. Goods
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael H. Askenase
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Matthew D. Hammond
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Stephen C. Renfroe
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Margaret J. Landreneau
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Youxi Ai
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hannah E. Beatty
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Luís Henrique Angenendt da Costa
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Matthias Mack
- Department of Internal Medicine (Nephrology), University of Regensburg, Regensburg, Germany
| | - Kevin N. Sheth
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - David M. Greer
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Daniel Coman
- Department of Diagnostic Radiology and Biomedical Engineering
| | - Fahmeed Hyder
- Department of Diagnostic Radiology and Biomedical Engineering
| | - Sourav Ghosh
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology, and
| | - Carla V. Rothlin
- Department of Pharmacology, and
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - J. Christopher Love
- Chemical Engineering, Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
44
|
Hughes LD, Bosurgi L, Ghosh S, Rothlin CV. Chronicles of Cell Death Foretold: Specificities in the Mechanism of Disposal. Front Immunol 2017; 8:1743. [PMID: 29312294 PMCID: PMC5732325 DOI: 10.3389/fimmu.2017.01743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/23/2017] [Indexed: 12/19/2022] Open
Abstract
Massive turnover of cells occurs through apoptosis during the constant remodeling of our tissues at homeostasis, from the shedding of cells at exposed barrier surfaces to the elimination of autoreactive lymphocytes. However, a surge of apoptotic cells also accompanies tissue damage, infection, and inflammation. A salient feature of apoptosis in either scenario is the exposure of phosphatidylserine (PtdSer) on the outer leaflet of the plasma membrane. In response to this cue, a range of phagocytes are charged with the sizeable task of engulfing apoptotic bodies and disposing of the billions of cells that perish each day. The presence of apoptotic cells in the remarkably distinct immunological settings described above, therefore, raises the question of how phagocytes are able to coordinate appropriate responses to apoptotic cells—from their silent removal to the production of growth factors or tissue repair molecules—following such a ubiquitous signal as PtdSer exposure. Here, we consider several emergent properties of phagocytes and apoptotic cell clearance that may facilitate specification among this suite of potential responses.
Collapse
Affiliation(s)
- Lindsey D Hughes
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Lidia Bosurgi
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Bernard-Nocht-Institut für Tropenmedizin, Hamburg, Germany
| | - Sourav Ghosh
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
45
|
Magalhães LMD, Viana A, de Jesus AC, Chiari E, Galvão L, Gomes JA, Gollob KJ, Dutra WO. Distinct Trypanosoma cruzi isolates induce activation and apoptosis of human neutrophils. PLoS One 2017; 12:e0188083. [PMID: 29176759 PMCID: PMC5703490 DOI: 10.1371/journal.pone.0188083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022] Open
Abstract
Neutrophils are critical players in the first line of defense against pathogens and in the activation of subsequent cellular responses. We aimed to determine the effects of the interaction of Trypanosoma cruzi with human neutrophils, using isolates of the two major discrete type units (DTUs) associated with Chagas’ disease in Latin America (clone Col1.7G2 and Y strain, DTU I and II, respectively). Thus, we used CFSE-stained trypomastigotes to measure neutrophil-T. cruzi interaction, neutrophil activation, cytokine expression and death, after infection with Col1.7G2 and Y strain. Our results show that the frequency of CFSE+ neutrophils, indicative of interaction, and CFSE intensity on a cell-per-cell basis were similar when comparing Col1.7G2 and Y strains. Interaction with T. cruzi increased neutrophil activation, as measured by CD282, CD284, TNF and IL-12 expression, although at different levels between the two strains. No change in IL-10 expression was observed after interaction of neutrophils with either strain. We observed that exposure to Y and Col1.7G2 caused marked neutrophil death. This was specific to neutrophils, since interaction of either strain with monocytes did not cause death. Our further analysis showed that neutrophil death was a result of apoptosis, which was associated with an upregulation of TNF-receptor, TNF and FasLigand, but not of Fas. Induction of TNF-associated neutrophil apoptosis by the different T. cruzi isolates may act as an effective common mechanism to decrease the host’s immune response and favor parasite survival.
Collapse
Affiliation(s)
- Luísa M. D. Magalhães
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Agostinho Viana
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Augusto C. de Jesus
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Egler Chiari
- Laboratório de Biologia do Trypanosoma cruzi e doença de Chagas, Departamento de Parasitologia, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - Lúcia Galvão
- Laboratório de Biologia do Trypanosoma cruzi e doença de Chagas, Departamento de Parasitologia, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana A. Gomes
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kenneth J. Gollob
- Núcleo de Ensino e Pesquisa, Instituto Mario Pena, Belo Horizonte, Minas Gerais, Brazil
- BRISA Diagnósticos, Belo Horizonte, Minas Gerais, Brazil
- AC Camargo Cancer Center, International Center for Research, São Paulo, São Paulo, Brazil
- INCT-DT, Belo Horizonte, Minas Gerais, Brazil
| | - Walderez O. Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INCT-DT, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
46
|
Aleksandrov AP, Mirkov I, Zolotarevski L, Ninkov M, Mileusnic D, Kataranovski D, Kataranovski M. Oral warfarin intake affects skin inflammatory cytokine responses in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:93-98. [PMID: 28704755 DOI: 10.1016/j.etap.2017.06.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/15/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Warfarin is an anticoagulant used in prevention/prophylaxis of thromboembolism. Besides the effects on coagulation, non-hemorrhagic reactions have also been documented. Although cutaneous reactions were reported in some patients, the impact on skin immunity was not explored. In the present paper, the effect of 30-day oral warfarin intake on skin cytokine responses in rats was analyzed. Increased release of inflammatory cytokines (TNF, IL-1β and IL-10) was noted by skin explants from rats which received warfarin, but without effect on IL-6. No impact on epidermal cell cytokine secretion was seen, except a tendency of an increase of IL-6 response to stimulation with microbial product lipopolysaccharide (LPS). Topical application of contact allergen dinitrochlorobenzene (DNCB) resulted in slight (numerical solely) increase of TNF release by skin explants of warfarin-treated animals, while epidermal cells responded by increased secretion of all four cytokines examined. The data presented provide new information on the potential of oral warfarin to modulate skin innate immune activity.
Collapse
Affiliation(s)
- Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | | | - Marina Ninkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Dina Mileusnic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Dragan Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia; Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milena Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia; Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
47
|
Aswad M, Assi S, Schif-Zuck S, Ariel A. CCL5 Promotes Resolution-Phase Macrophage Reprogramming in Concert with the Atypical Chemokine Receptor D6 and Apoptotic Polymorphonuclear Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1393-1404. [PMID: 28674178 DOI: 10.4049/jimmunol.1502542] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/07/2017] [Indexed: 12/16/2023]
Abstract
The engulfment of apoptotic polymorphonuclear cells (PMN) during the resolution of inflammation leads to macrophage reprogramming culminating in reduced proinflammatory and increased anti-inflammatory mediator secretion. The atypical chemokine receptor D6/ACKR2 is expressed on apoptotic PMN and plays an important role in regulating macrophage properties during and after engulfment. In this study, we found that the inflammatory chemokine CCL5 is mostly retained (75%) during the resolution of zymosan A peritonitis in mice. Moreover, this chemokine is secreted by resolution-phase macrophages (2.5 ng/ml) and promotes their reprogramming in vivo in D6+/+ mice (2-fold increase in IL-10/IL-12 ratio) but not their D6-/- counterparts. In addition, CCL5 enhanced macrophage reprogramming ex vivo exclusively when bound to D6+/+ apoptotic PMN. Signaling through p38MAPK and JNK in reprogrammed macrophages was enhanced by CCL5-bound apoptotic PMN (3.6-4 fold) in a D6-dependent manner, and was essential for reprogramming. Thus, CCL5 exerts a novel proresolving role on macrophages when acting in concert with apoptotic PMN-expressed D6.
Collapse
Affiliation(s)
- Miran Aswad
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Simaan Assi
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Sagie Schif-Zuck
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Amiram Ariel
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; and
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
48
|
Abstract
The engulfment of apoptotic cells by phagocytes, a process referred to as efferocytosis, is essential for maintenance of normal tissue homeostasis and a prerequisite for the resolution of inflammation. Neutrophils are the predominant circulating white blood cell in humans, and contain an arsenal of toxic substances that kill and degrade microbes. Neutrophils are short-lived and spontaneously die by apoptosis. This review will highlight how the engulfment of apoptotic neutrophils by human phagocytes occurs, how heterogeneity of phagocyte populations influences efferocytosis signaling, and downstream consequences of efferocytosis. The efferocytosis of apoptotic neutrophils by macrophages promotes anti-inflammatory signaling, prevents neutrophil lysis, and dampens immune responses. Given the immunomodulatory properties of efferocytosis, understanding pathways that regulate and enhance efferocytosis could be harnessed to combat infection and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Mallary C Greenlee-Wacker
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Veterans Administration Medical Center, Iowa City, IA, USA
| |
Collapse
|
49
|
Salei N, Hellberg L, Köhl J, Laskay T. Enhanced survival of Leishmania major in neutrophil granulocytes in the presence of apoptotic cells. PLoS One 2017; 12:e0171850. [PMID: 28187163 PMCID: PMC5302790 DOI: 10.1371/journal.pone.0171850] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
Neutrophil granulocytes are the first leukocytes that encounter and phagocytose Leishmania major (L. major) parasites in the infected skin. The parasites can nonetheless survive within neutrophils. However, the mechanisms enabling the survival of Leishmania within neutrophils are still elusive. Previous findings indicated that human neutrophils can engulf apoptotic cells. Since apoptotic neutrophils are abundant in infected tissues, we hypothesized that the uptake of apoptotic cells results in diminished anti-leishmanial activity and, consequently, contributes to enhanced survival of the parasites at the site of infection. In the present study, we demonstrated that L. major-infected primary human neutrophils acquire enhanced capacity to engulf apoptotic cells. This was associated with increased expression of the complement receptors 1 and 3 involved in phagocytosis of apoptotic cells. Next, we showed that ingestion of apoptotic cells affects neutrophil antimicrobial functions. We observed that phagocytosis of apoptotic cells by neutrophils downregulates the phosphorylation of p38 MAPK and PKCδ, the kinases involved in activation of NADPH oxidase and hence reactive oxygen species (ROS) production. In line, uptake of apoptotic cells inhibits TNF- and L. major-induced ROS production by neutrophils. Importantly, we found that the survival of Leishmania in neutrophils is strongly enhanced in neutrophils exposed to apoptotic cells. Together, our findings reveal that apoptotic cells promote L. major survival within neutrophils by downregulating critical antimicrobial functions. This suggests that the induction of enhanced uptake of apoptotic cells represents a novel evasion mechanism of the parasites that facilitates their survival in neutrophil granulocytes.
Collapse
Affiliation(s)
- Natallia Salei
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Lars Hellberg
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- * E-mail:
| |
Collapse
|
50
|
Cakir FB, Berrak SG, Aydogan G, Tulunay A, Timur C, Canpolat C, Eksioglu Demiralp E. Effects of Malnutrition on Neutrophil/Mononuclear Cell Apoptotic Functions in Children with Acute Lymphoblastic Leukemia. Nutr Cancer 2017; 69:402-407. [PMID: 28107040 DOI: 10.1080/01635581.2017.1267778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Recent studies claim that apoptosis may explain immune dysfunction observed in malnutrition. OBJECTIVE The objective of this study was to determine the effect of malnutrition on apoptotic functions of phagocytic cells in acute lymphoblastic leukemia (ALL). MATERIALS AND METHODS Twenty-eight ALL patients (13 with malnutrition) and thirty controls were enrolled. Neutrophil and mononuclear cell apoptosis of ALL patients and the control group were studied on admission before chemotherapy and repeated at a minimum of three months after induction of chemotherapy or when the nutritional status of leukemic children improved. RESULTS The apoptotic functions of both ALL groups on admission were significantly lower than those of the control group. The apoptotic functions were lower in ALL patients with malnutrition than those in ALL patients without malnutrition, but this was not statistically significant. The repeated apoptotic functions of both ALL groups were increased to similar values with the control group. This increase was found to be statistically significant. CONCLUSIONS The apoptotic functions in ALL patients were not found to be affected by malnutrition. However, after dietary intervention, increased apoptotic functions in both ALL patient groups deserve mentioning. Dietary intervention should always be recommended as malnutrition or cachexia leads to multiple complications. Enhanced apoptosis might originate also from remission state of cancer.
Collapse
Affiliation(s)
- Fatma Betul Cakir
- a Bezmialem Vakif University , Pediatric Hematology-Oncology , Istanbul , Turkey
| | - Su Gülsün Berrak
- b The Children's Hospital at Montefiore , The Pediatric Hospital for Albert Einstein College of Medicine and Refuah Health Center , NewYork , NY , USA
| | - Gonul Aydogan
- c Istanbul Kanuni Sultan Suleyman Government Education and Research Hospital, Pediatric Hematology-Oncology , Istanbul , Turkey
| | - Aysin Tulunay
- d Marmara University Medical Center , Internal Medicine Hematology-Immunology Department , Istanbul , Turkey
| | - Cetin Timur
- e Istanbul Medeniyet University , Pediatric Hematology-Oncology , Istanbul , Turkey
| | - Cengiz Canpolat
- f Acibadem University School of Medicine , Pediatric Hematology-Oncology , Istanbul , Turkey
| | - Emel Eksioglu Demiralp
- d Marmara University Medical Center , Internal Medicine Hematology-Immunology Department , Istanbul , Turkey
| |
Collapse
|