1
|
Weinfurtner K, Tischfield D, McClung G, Crainic J, Gordan J, Jiao J, Furth EE, Li W, Tuzneen Supan E, Nadolski GJ, Hunt SJ, Kaplan DE, Gade TPF. Human GM-CSF/IL-3 enhance tumor immune infiltration in humanized HCC patient-derived xenografts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.05.561117. [PMID: 39554038 PMCID: PMC11565794 DOI: 10.1101/2023.10.05.561117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background & Aims Responses to immunotherapies in hepatocellular carcinoma (HCC) are suboptimal with no biomarkers to guide patient selection. "Humanized" mice represent promising models to address this deficiency but are limited by variable chimerism and underdeveloped myeloid compartments. We hypothesized that expression of human GM-CSF and IL-3 increases tumor immune cell infiltration, especially myeloid-derived cells, in humanized HCC patient-derived xenografts (PDXs). Material and Methods NOG (NOD/Shi- scid /IL-2R null ) and NOG-EXL (huGM-CSF/huIL-3 NOG) mice conditioned with Busulfan underwent i.v. injection of human CD34+ cells. HCC PDX tumors were then implanted subcutaneously (SQ) or orthotopically (OT). Following serial blood sampling, mice were euthanized at defined tumor sizes. Tumor, blood, liver, and spleen were analyzed by flow cytometry and immunohistochemistry. Results Humanized NOG-EXL mice demonstrated earlier and increased human chimerism compared to humanized NOG mice (82.1% vs 43.8%, p<0.0001) with increased proportion of human monocytes (3.2% vs 1.1%, p=0.001) and neutrophils (0.8% vs 0.3%, p=0.02) in circulation. HCC tumors in humanized NOG-EXL mice had increased human immune cell infiltration (57.6% vs 30.2%, p=0.04), noting increased regulatory T cells (14.6% vs 6.8%, p=0.04), CD4+ PD-1 expression (84.7% vs 32.0%, p<0.01), macrophages (1.2% vs 0.6%, p=0.02), and neutrophils (0.5% vs 0.1%, p<0.0001). No differences were observed in tumor engraftment or growth latency in SQ tumors, but OT tumors required implantation at two rather than four weeks post-humanization for successful engraftment. Finally, utilizing adult bone marrow instead of fetal livers enabled partial HLA-matching to HCC tumors but required more CD34+ cells. Conclusions Human GM-CSF and IL-3 expression in humanized mice resulted in features more closely approximating the immune microenvironment of human disease, providing a promising model for investigating critical questions in immunotherapy for HCC. Impact and Implications This study introduces a unique mouse model at a critical point in the evolution of treatment paradigms for patients with hepatocellular carcinoma (HCC). Immunotherapies have become first line treatment for advanced HCC; however, response rates remain low with no clear predictors of response to guide patient selection. In this context, animal models that recapitulate human disease are greatly needed. Leveraging xenograft tumors derived from patients with advanced HCCs and a commercially available immunodeficient mouse strain that expresses human GM-CSF and IL-3, we demonstrate a novel but accessible approach for modeling the HCC tumor microenvironment.
Collapse
|
2
|
Nakano K, Goto M, Fukuda S, Yanobu-Takanashi R, Yabe SG, Shimizu Y, Sakuma T, Yamamoto T, Shimoda M, Okochi H, Takahashi R, Okamura T. A Novel Immunodeficient Hyperglycemic Mouse Carrying the Ins1 Akita Mutation for Xenogeneic Islet Cell Transplantation. Transplantation 2024:00007890-990000000-00837. [PMID: 39104009 DOI: 10.1097/tp.0000000000005152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
BACKGROUND For patients who have difficulty controlling blood glucose even with insulin administration, xenogeneic islet cells, including human stem cell-derived pancreatic islets (hSC-islet) and porcine islets, have garnered attention as potential solutions to challenges associated with donor shortages. For the development of diabetes treatment modalities that use cell transplantation therapy, it is essential to evaluate the efficacy and safety of transplanted cells using experimental animals over the long term. METHODS We developed permanent diabetic immune-deficient mice by introducing the Akita (C96Y) mutation into the rodent-specific Insulin1 gene of NOD/Shi-scid IL2rγcnull (NOG) mice (Ins1C96Y/C96Y NOG). Their body weight, nonfasting blood glucose, and survival were measured from 4 wk of age. Insulin sensitivity was assessed via tolerance tests. To elucidate the utility of these mice in xenotransplantation experiments, we transplanted hSC-islet cells or porcine islets under the kidney capsules of these mice. RESULTS All male and female homozygous mice exhibited persistent severe hyperglycemia associated with β-cell depletion as early as 4 wk of age and exhibited normal insulin sensitivity. These mice could be stably engrafted with hSC-islets, and the mice that received porcine islet grafts promptly exhibited lowered blood glucose levels, maintaining blood glucose levels below the normal glucose range for at least 52 wk posttransplantation. CONCLUSIONS The Ins1C96Y/C96Y NOG mouse model provides an effective platform to assess both the efficacy and safety of long-term xenograft engraftment without the interference of their immune responses. This study is expected to contribute essential basic information for the clinical application of islet cell transplantation.
Collapse
Affiliation(s)
- Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Motohito Goto
- Animal Resource Technical Research Center, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Satsuki Fukuda
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Rieko Yanobu-Takanashi
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shigeharu G Yabe
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Masayuki Shimoda
- Department of Pancreatic Islet Cell Transplantation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Riichi Takahashi
- Animal Resource Technical Research Center, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Tokyo, Japan
| |
Collapse
|
3
|
Mikami H, Feng S, Matsuda Y, Ishii S, Naoi S, Azuma Y, Nagano H, Asanuma K, Kayukawa Y, Tsunenari T, Kamikawaji S, Iwabuchi R, Shinozuka J, Yamazaki M, Kuroi H, Ho SSW, Gan SW, Chichili P, Pang CL, Yeo CY, Shimizu S, Hironiwa N, Kinoshita Y, Shimizu Y, Sakamoto A, Muraoka M, Takahashi N, Kawa T, Shiraiwa H, Mimoto F, Kashima K, Kamata-Sakurai M, Ishikawa S, Aburatani H, Kitazawa T, Igawa T. Engineering CD3/CD137 Dual Specificity into a DLL3-Targeted T-Cell Engager Enhances T-Cell Infiltration and Efficacy against Small-Cell Lung Cancer. Cancer Immunol Res 2024; 12:719-730. [PMID: 38558120 DOI: 10.1158/2326-6066.cir-23-0638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/29/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Small-cell lung cancer (SCLC) is an aggressive cancer for which immune checkpoint inhibitors (ICI) have had only limited success. Bispecific T-cell engagers are promising therapeutic alternatives for ICI-resistant tumors, but not all patients with SCLC are responsive. Herein, to integrate CD137 costimulatory function into a T-cell engager format and thereby augment therapeutic efficacy, we generated a CD3/CD137 dual-specific Fab and engineered a DLL3-targeted trispecific antibody (DLL3 trispecific). The CD3/CD137 dual-specific Fab was generated to competitively bind to CD3 and CD137 to prevent DLL3-independent cross-linking of CD3 and CD137, which could lead to systemic T-cell activation. We demonstrated that DLL3 trispecific induced better tumor growth control and a marked increase in the number of intratumoral T cells compared with a conventional DLL3-targeted bispecific T-cell engager. These findings suggest that DLL3 trispecific can exert potent efficacy by inducing concurrent CD137 costimulation and provide a promising therapeutic option for SCLC.
Collapse
Affiliation(s)
- Hirofumi Mikami
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Shu Feng
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Yutaka Matsuda
- Project & Lifecycle Management Unit, Chugai Pharmaceutical, Chuo-ku, Tokyo, Japan
| | - Shinya Ishii
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Sotaro Naoi
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Yumiko Azuma
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Hiroaki Nagano
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Kentaro Asanuma
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Yoko Kayukawa
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Shogo Kamikawaji
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Ryutaro Iwabuchi
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Junko Shinozuka
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Masaki Yamazaki
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Haruka Kuroi
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Siok Wan Gan
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | | | - Chai Ling Pang
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Chiew Ying Yeo
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Shun Shimizu
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Naoka Hironiwa
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Yasuko Kinoshita
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Yuichiro Shimizu
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Akihisa Sakamoto
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Masaru Muraoka
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Tatsuya Kawa
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Futa Mimoto
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Kenji Kashima
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, Japan
| | | | - Tomoyuki Igawa
- Translational Research Division, Chugai Pharmaceutical, Chuo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Yang Y, Li J, Li D, Zhou W, Yan F, Wang W. Humanized mouse models: A valuable platform for preclinical evaluation of human cancer. Biotechnol Bioeng 2024; 121:835-852. [PMID: 38151887 DOI: 10.1002/bit.28618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/26/2023] [Indexed: 12/29/2023]
Abstract
Animal models are routinely employed to assess the treatments for human cancer. However, due to significant differences in genetic backgrounds, traditional animal models are unable to meet bioresearch needs. To overcome this restriction, researchers have generated and optimized immunodeficient mice, and then engrafted human genes, cells, tissues, or organs in mice so that the responses in the model mice could provide a more reliable reference for treatments. As a bridge connecting clinical application and basic research, humanized mice are increasingly used in the preclinical evaluation of cancer treatments, particularly after gene interleukin 2 receptor gamma mutant mice were generated. Human cancer models established in humanized mice support exploration of the mechanism of cancer occurrence and provide an efficient platform for drug screening. However, it is undeniable that the further application of humanized mice still faces multiple challenges. This review summarizes the construction approaches for humanized mice and their existing limitations. We also report the latest applications of humanized mice in preclinical evaluation for the treatment of cancer and point out directions for future optimization of these models.
Collapse
Affiliation(s)
- Yuening Yang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqian Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Weilin Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Feiyang Yan
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Herron ICT, Laws TR, Nelson M. Marmosets as models of infectious diseases. Front Cell Infect Microbiol 2024; 14:1340017. [PMID: 38465237 PMCID: PMC10921895 DOI: 10.3389/fcimb.2024.1340017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Animal models of infectious disease often serve a crucial purpose in obtaining licensure of therapeutics and medical countermeasures, particularly in situations where human trials are not feasible, i.e., for those diseases that occur infrequently in the human population. The common marmoset (Callithrix jacchus), a Neotropical new-world (platyrrhines) non-human primate, has gained increasing attention as an animal model for a number of diseases given its small size, availability and evolutionary proximity to humans. This review aims to (i) discuss the pros and cons of the common marmoset as an animal model by providing a brief snapshot of how marmosets are currently utilized in biomedical research, (ii) summarize and evaluate relevant aspects of the marmoset immune system to the study of infectious diseases, (iii) provide a historical backdrop, outlining the significance of infectious diseases and the importance of developing reliable animal models to test novel therapeutics, and (iv) provide a summary of infectious diseases for which a marmoset model exists, followed by an in-depth discussion of the marmoset models of two studied bacterial infectious diseases (tularemia and melioidosis) and one viral infectious disease (viral hepatitis C).
Collapse
Affiliation(s)
- Ian C. T. Herron
- CBR Division, Defence Science and Technology Laboratory (Dstl), Salisbury, United Kingdom
| | | | | |
Collapse
|
6
|
Her Y, Yun J, Son HY, Heo W, Kim JI, Moon HG. Potential Perturbations of Critical Cancer-regulatory Genes in Triple-Negative Breast Cancer Cells Within the Humanized Microenvironment of Patient-derived Xenograft Models. J Breast Cancer 2024; 27:37-53. [PMID: 38233337 PMCID: PMC10912577 DOI: 10.4048/jbc.2023.0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/29/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
PURPOSE In this study, we aimed to establish humanized patient-derived xenograft (PDX) models for triple-negative breast cancer (TNBC) using cord blood (CB) hematopoietic stem cells (HSCs). Additionally, we attempted to characterize the immune microenvironment of the humanized PDX model to understand the potential implications of altered tumor-immune interactions in the humanized PDX model on the behavior of TNBC cells. METHODS To establish a humanized mouse model, high-purity CD34+ HSCs from CB were transplanted into immunodeficient NOD scid γ mice. Peripheral and intratumoral immune cell compositions of humanized and non-humanized mice were compared. Additionally, RNA sequencing of the tumor tissues was performed to characterize the gene expression features associated with humanization. RESULTS After transplanting the CD34+ HSCs, CD45+ human immune cells appeared within five weeks. A humanized mouse model showed viable human immune cells in the peripheral blood, lymphoid organs, and in the tumor microenvironment. Humanized TNBC PDX models showed varying rates of tumor growth compared to that of non-humanized mice. RNA sequencing of the tumor tissue showed significant alterations in tumor tissues from the humanized models. tumor necrosis factor receptor superfamily member 11B (TNFRSF11B) is a shared downregulated gene in tumor tissues from humanized models. Silencing of TNFRSF11B in TNBC cell lines significantly reduced cell proliferation, migration, and invasion in vitro. Additionally, TNFRSF11B silenced cells showed decreased tumorigenicity and metastatic capacity in vivo. CONCLUSION Humanized PDX models successfully recreated tumor-immune interactions in TNBC. TNFRSF11B, a commonly downregulated gene in humanized PDX models, may play a key role in tumor growth and metastasis. Differential tumor growth rates and gene expression patterns highlighted the complexities of the immune response in the tumor microenvironment of humanized PDX models.
Collapse
Affiliation(s)
- Yujeong Her
- Interdisciplinary Graduate Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jihui Yun
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Youn Son
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Woohang Heo
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyeong-Gon Moon
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Takagi Y, Sudo K, Yamaguchi S, Urata S, Ohno T, Hirose S, Matsumoto K, Kuramoto T, Serikawa T, Yasuda J, Ikutani M, Nakae S. Characterization of novel, severely immunodeficient Prkdc Δex57/Δex57 mice. Biochem Biophys Res Commun 2023; 678:193-199. [PMID: 37651888 DOI: 10.1016/j.bbrc.2023.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Severely immunodeficient mice are useful for understanding the pathogenesis of certain tumors and for developing therapeutic agents for such tumors. In addition, engraftment of these mice with human hematopoietic cells can yield information that helps us understand the in vivo molecular mechanisms underlying actual human viral infections. In our present research, we discovered a novel, severely immunodeficient strain of mice having a mutation in exon 57 of the Prkdc gene (PrkdcΔex57/Δex57) in an inbred colony of B10.S/SgSlc mice. Those PrkdcΔex57/Δex57 mice showed thymic hypoplasia and lack of mature T cells and B cells in peripheral lymphoid tissues, resulting in very low levels of production of serum immunoglobulins. In addition, those mice were highly susceptible to influenza viruses due to the lack of acquired immune cells. On the other hand, since they had sufficient numbers of NK cells, they rejected tumor transplants, similarly to Prkdc+/+ mice. Next, we generated Foxn1nu/nuPrkdcΔex57/Δex57Il2rg-/- (NPG) mice on the BALB/cSlc background, which lack all lymphocytes such as T cells, B cells and innate lymphoid cells, including NK cells. As expected, these mice were able to undergo engraftment of human tumor cell lines. These findings suggest that PrkdcΔex57/Δex57 mice will be useful as a novel model of immunodeficiency, while NPG mice will be useful for xenografting of various malignancies.
Collapse
Affiliation(s)
| | - Katsuko Sudo
- Preclinical Research Center, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Sachiko Yamaguchi
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8528, Japan
| | - Shuzo Urata
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Tatsukuni Ohno
- Oral Health Science Center, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Sachiko Hirose
- Toin Human Science and Technology Center, Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, 225-8503, Japan
| | - Kiyoshi Matsumoto
- Division of Animal Research, Research Center for Advanced Science and Technology, Shinshu University, Nagano, 390-8621, Japan
| | - Takashi Kuramoto
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Kanagawa, 243-0034, Japan
| | - Tadao Serikawa
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Jiro Yasuda
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Masashi Ikutani
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8528, Japan.
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8528, Japan.
| |
Collapse
|
8
|
Läderach F, Zdimerova H, Rieble L, Schuhmachers P, Engelmann C, Valencia-Camargo AD, Kirchmeier D, Böni M, Münz C. MHC class II-deficient mice allow functional human CD4 + T-cell development. Eur J Immunol 2023; 53:e2250313. [PMID: 37118896 DOI: 10.1002/eji.202250313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 04/30/2023]
Abstract
Humanized mouse models have been developed to study cell-mediated immune responses to human pathogens in vivo. How immunocompetent human T cells are selected in a murine thymus in such humanized mice remains poorly explored. To gain insights into this mechanism, we investigated the differentiation of human immune compartments in mouse MHC class II-deficient immune-compromised mice (humanized Ab0 mice). We observed a strong reduction in human CD4+ T-cell development but despite this reduction Ab0 mice had no disadvantage during Epstein-Barr virus (EBV) infection. Viral loads were equally well controlled in humanized Ab0 mice compared to humanized NSG mice, and improved T-cell recognition of autologous EBV-transformed B cells was observed, especially with respect to cytotoxicity. MHC class II blocking experiments with CD4+ T cells from humanized Ab0 mice demonstrated MHC class II restriction of lymphoblastoid cell line recognition. These findings suggest that a small number of CD4+ T cells in humanized mice can be solely selected on human MHC class II molecules, presumably expressed by reconstituted human immune cells, leading to improved effector functions.
Collapse
Affiliation(s)
- Fabienne Läderach
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Hana Zdimerova
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Lisa Rieble
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Patrick Schuhmachers
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | | | - Daniel Kirchmeier
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Michelle Böni
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Nauman G, Danzl NM, Lee J, Borsotti C, Madley R, Fu J, Hölzl MA, Dahmani A, Dorronsoro Gonzalez A, Chavez É, Campbell SR, Yang S, Satwani P, Liu K, Sykes M. Defects in Long-Term APC Repopulation Ability of Adult Human Bone Marrow Hematopoietic Stem Cells (HSCs) Compared with Fetal Liver HSCs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1652-1663. [PMID: 35315788 PMCID: PMC8976823 DOI: 10.4049/jimmunol.2100966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/25/2022] [Indexed: 04/28/2023]
Abstract
Immunodeficient mice reconstituted with immune systems from patients, or personalized immune (PI) mice, are powerful tools for understanding human disease. Compared with immunodeficient mice transplanted with human fetal thymus tissue and fetal liver-derived CD34+ cells administered i.v. (Hu/Hu mice), PI mice, which are transplanted with human fetal thymus and adult bone marrow (aBM) CD34+ cells, demonstrate reduced levels of human reconstitution. We characterized APC and APC progenitor repopulation in human immune system mice and detected significant reductions in blood, bone marrow (BM), and splenic APC populations in PI compared with Hu/Hu mice. APC progenitors and hematopoietic stem cells (HSCs) were less abundant in aBM CD34+ cells compared with fetal liver-derived CD34+ cell preparations, and this reduction in APC progenitors was reflected in the BM of PI compared with Hu/Hu mice 14-20 wk posttransplant. The number of HSCs increased in PI mice compared with the originally infused BM cells and maintained functional repopulation potential, because BM from some PI mice 28 wk posttransplant generated human myeloid and lymphoid cells in secondary recipients. Moreover, long-term PI mouse BM contained functional T cell progenitors, evidenced by thymopoiesis in thymic organ cultures. Injection of aBM cells directly into the BM cavity, transgenic expression of hematopoietic cytokines, and coinfusion of human BM-derived mesenchymal stem cells synergized to enhance long-term B cell and monocyte levels in PI mice. These improvements allow a sustained time frame of 18-22 wk where APCs and T cells are present and greater flexibility for modeling immune disease pathogenesis and immunotherapies in PI mice.
Collapse
Affiliation(s)
- Grace Nauman
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Department of Microbiology and Immunology, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Nichole M Danzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Jaeyop Lee
- Department of Microbiology and Immunology, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Chiara Borsotti
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Rachel Madley
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Department of Microbiology and Immunology, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Markus A Hölzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Alexander Dahmani
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Akaitz Dorronsoro Gonzalez
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Éstefania Chavez
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Sean R Campbell
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Suxiao Yang
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Prakash Satwani
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Pediatrics, Columbia University Medical Center, Columbia University, New York, NY
| | - Kang Liu
- Department of Microbiology and Immunology, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT; and
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY;
- Department of Microbiology and Immunology, Columbia University Medical Center, Columbia University, New York, NY
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY
| |
Collapse
|
10
|
Borna S, Lee E, Sato Y, Bacchetta R. Towards gene therapy for IPEX syndrome. Eur J Immunol 2022; 52:705-716. [PMID: 35355253 PMCID: PMC9322407 DOI: 10.1002/eji.202149210] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/29/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022]
Abstract
Immune dysregulation polyendocrinopathy enteropathy X linked (IPEX) syndrome is an uncurable disease of the immune system, with immune dysregulation that is caused by mutations in FOXP3. Current treatment options, such as pharmacological immune suppression and allogeneic hematopoietic stem cell transplantation, have been beneficial but present limitations, and their life‐long consequences are ill‐defined. Other similar blood monogenic diseases have been successfully treated using gene transfer in autologous patient cells, thus providing an effective and less invasive therapeutic. Development of gene therapy for patients with IPEX is particularly challenging because successful strategies must restore the complex expression profile of the transcription factor FOXP3, ensuring it is tightly regulated and its cell subset‐specific roles are maintained. This review summarizes current efforts toward achieving gene therapy to treat immune dysregulation in IPEX patients.
Collapse
Affiliation(s)
- Simon Borna
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Esmond Lee
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yohei Sato
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
11
|
Zbinden A, Canté-Barrett K, Pike-Overzet K, Staal FJT. Stem Cell-Based Disease Models for Inborn Errors of Immunity. Cells 2021; 11:cells11010108. [PMID: 35011669 PMCID: PMC8750661 DOI: 10.3390/cells11010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
The intrinsic capacity of human hematopoietic stem cells (hHSCs) to reconstitute myeloid and lymphoid lineages combined with their self-renewal capacity hold enormous promises for gene therapy as a viable treatment option for a number of immune-mediated diseases, most prominently for inborn errors of immunity (IEI). The current development of such therapies relies on disease models, both in vitro and in vivo, which allow the study of human pathophysiology in great detail. Here, we discuss the current challenges with regards to developmental origin, heterogeneity and the subsequent implications for disease modeling. We review models based on induced pluripotent stem cell technology and those relaying on use of adult hHSCs. We critically review the advantages and limitations of current models for IEI both in vitro and in vivo. We conclude that existing and future stem cell-based models are necessary tools for developing next generation therapies for IEI.
Collapse
|
12
|
Rojas C, García MP, Polanco AF, González-Osuna L, Sierra-Cristancho A, Melgar-Rodríguez S, Cafferata EA, Vernal R. Humanized Mouse Models for the Study of Periodontitis: An Opportunity to Elucidate Unresolved Aspects of Its Immunopathogenesis and Analyze New Immunotherapeutic Strategies. Front Immunol 2021; 12:663328. [PMID: 34220811 PMCID: PMC8248545 DOI: 10.3389/fimmu.2021.663328] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Periodontitis is an oral inflammatory disease in which the polymicrobial synergy and dysbiosis of the subgingival microbiota trigger a deregulated host immune response, that leads to the breakdown of tooth-supporting tissues and finally tooth loss. Periodontitis is characterized by the increased pathogenic activity of T helper type 17 (Th17) lymphocytes and defective immunoregulation mediated by phenotypically unstable T regulatory (Treg), lymphocytes, incapable of resolving the bone-resorbing inflammatory milieu. In this context, the complexity of the immune response orchestrated against the microbial challenge during periodontitis has made the study of its pathogenesis and therapy difficult and limited. Indeed, the ethical limitations that accompany human studies can lead to an insufficient etiopathogenic understanding of the disease and consequently, biased treatment decision-making. Alternatively, animal models allow us to manage these difficulties and give us the opportunity to partially emulate the etiopathogenesis of periodontitis by inoculating periodontopathogenic bacteria or by placing bacteria-accumulating ligatures around the teeth; however, these models still have limited translational application in humans. Accordingly, humanized animal models are able to emulate human-like complex networks of immune responses by engrafting human cells or tissues into specific strains of immunodeficient mice. Their characteristics enable a viable time window for the study of the establishment of a specific human immune response pattern in an in vivo setting and could be exploited for a wider study of the etiopathogenesis and/or treatment of periodontitis. For instance, the antigen-specific response of human dendritic cells against the periodontopathogen Porphyromonas gingivalis favoring the Th17/Treg response has already been tested in humanized mice models. Hypothetically, the proper emulation of periodontal dysbiosis in a humanized animal could give insights into the subtle molecular characteristics of a human-like local and systemic immune response during periodontitis and support the design of novel immunotherapeutic strategies. Therefore, the aims of this review are: To elucidate how the microbiota-elicited immunopathogenesis of periodontitis can be potentially emulated in humanized mouse models, to highlight their advantages and limitations in comparison with the already available experimental periodontitis non-humanized animal models, and to discuss the potential translational application of using these models for periodontitis immunotherapeutics.
Collapse
Affiliation(s)
- Carolina Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Michelle P García
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alan F Polanco
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Luis González-Osuna
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alfredo Sierra-Cristancho
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Universidad Andres Bello, Santiago, Chile
| | - Samanta Melgar-Rodríguez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Emilio A Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Perú
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Waaijer SJ, Giesen D, Ishiguro T, Sano Y, Sugaya N, Schröder CP, de Vries EG, Lub-de Hooge MN. Preclinical PET imaging of bispecific antibody ERY974 targeting CD3 and glypican 3 reveals that tumor uptake correlates to T cell infiltrate. J Immunother Cancer 2021; 8:jitc-2020-000548. [PMID: 32217763 PMCID: PMC7206965 DOI: 10.1136/jitc-2020-000548] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Bispecific antibodies redirecting T cells to the tumor obtain increasing interest as potential cancer immunotherapy. ERY974, a full-length bispecific antibody targeting CD3ε on T cells and glypican 3 (GPC3) on tumors, has been in clinical development However, information on the influence of T cells on biodistribution of bispecific antibodies, like ERY974, is scarce. Here, we report the biodistribution and tumor targeting of zirconium-89 (89Zr) labeled ERY974 in mouse models using immuno-positron emission tomography (PET) imaging. METHODS To study both the role of GPC3 and CD3 on the biodistribution of [89Zr]Zr-N-suc-Df-ERY974, 89Zr-labeled control antibodies targeting CD3 and non-mammalian protein keyhole limpet hemocyanin (KLH) or KLH only were used. GPC3 dependent tumor targeting of [89Zr]Zr-N-suc-Df-ERY974 was tested in xenograft models with different levels of GPC3 expression. In addition, CD3 influence on biodistribution of [89Zr]Zr-N-suc-Df-ERY974 was evaluated by comparing biodistribution between tumor-bearing immunodeficient mice and mice reconstituted with human immune cells using microPET imaging and ex vivo biodistribution. Ex vivo autoradiography was used to study deep tissue distribution. RESULTS In tumor-bearing immunodeficient mice, [89Zr]Zr-N-suc-Df-ERY974 tumor uptake was GPC3 dependent and specific over [89Zr]Zr-N-suc-Df-KLH/CD3 and [89Zr]Zr-N-suc-Df-KLH/KLH. In mice engrafted with human immune cells, [89Zr]Zr-N-suc-Df-ERY974 specific tumor uptake was higher than in immunodeficient mice. Ex vivo autoradiography demonstrated a preferential distribution of [89Zr]Zr-N-suc-Df-ERY974 to T cell rich tumor tissue. Next to tumor, highest specific [89Zr]Zr-N-suc-Df-ERY974 uptake was observed in spleen and lymph nodes. CONCLUSION [89Zr]Zr-N-suc-Df-ERY974 can potentially be used to study ERY974 biodistribution in patients to support drug development.
Collapse
Affiliation(s)
- Stijn Jh Waaijer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Danique Giesen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Takahiro Ishiguro
- Research Division, Chugai Pharmaceuticals Co Ltd, Chuo-ku, Tokyo, Japan
| | - Yuji Sano
- Research Division, Chugai Pharmaceuticals Co Ltd, Chuo-ku, Tokyo, Japan
| | - Naofumi Sugaya
- Research Division, Chugai Pharmaceuticals Co Ltd, Chuo-ku, Tokyo, Japan
| | - Carolina P Schröder
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth Ge de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands .,Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Terahara K, Iwabuchi R, Tsunetsugu-Yokota Y. Perspectives on Non-BLT Humanized Mouse Models for Studying HIV Pathogenesis and Therapy. Viruses 2021; 13:v13050776. [PMID: 33924786 PMCID: PMC8145733 DOI: 10.3390/v13050776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
A variety of humanized mice, which are reconstituted only with human hematopoietic stem cells (HSC) or with fetal thymus and HSCs, have been developed and widely utilized as in vivo animal models of HIV-1 infection. The models represent some aspects of HIV-mediated pathogenesis in humans and are useful for the evaluation of therapeutic regimens. However, there are several limitations in these models, including their incomplete immune responses and poor distribution of human cells to the secondary lymphoid tissues. These limitations are common in many humanized mouse models and are critical issues that need to be addressed. As distinct defects exist in each model, we need to be cautious about the experimental design and interpretation of the outcomes obtained using humanized mice. Considering this point, we mainly characterize the current conventional humanized mouse reconstituted only with HSCs and describe past achievements in this area, as well as the potential contributions of the humanized mouse models for the study of HIV pathogenesis and therapy. We also discuss the use of various technologies to solve the current problems. Humanized mice will contribute not only to the pre-clinical evaluation of anti-HIV regimens, but also to a deeper understanding of basic aspects of HIV biology.
Collapse
Affiliation(s)
- Kazutaka Terahara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
| | - Ryutaro Iwabuchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan
| | - Yasuko Tsunetsugu-Yokota
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
- Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, Tokyo 144-8535, Japan
- Correspondence: or ; Tel.: +81-3-6424-2223
| |
Collapse
|
15
|
Genetic in vivo engineering of human T lymphocytes in mouse models. Nat Protoc 2021; 16:3210-3240. [PMID: 33846629 DOI: 10.1038/s41596-021-00510-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022]
Abstract
Receptor targeting of vector particles is a key technology to enable cell type-specific in vivo gene delivery. For example, T cells in humanized mouse models can be modified by lentiviral vectors (LVs) targeted to human T-cell markers to enable them to express chimeric antigen receptors (CARs). Here, we provide detailed protocols for the generation of CD4- and CD8-targeted LVs (which takes ~9 d in total). We also describe how to humanize immunodeficient mice with hematopoietic stem cells (which takes 12-16 weeks) and precondition (over 5 d) and administer the vector stocks. Conversion of the targeted cell type is monitored by PCR and flow cytometry of blood samples. A few weeks after administration, ~10% of the targeted T-cell subtype can be expected to have converted to CAR T cells. By closely following the protocol, sufficient vector stock for the genetic manipulation of 10-15 humanized mice is obtained. We also discuss how the protocol can be easily adapted to use LVs targeted to other types of receptors and/or for delivery of other genes of interest.
Collapse
|
16
|
Panaampon J, Sasamoto K, Kariya R, Okada S. Establishment of Nude Mice Lacking NK Cells and Their Application for Human Tumor Xenografts. Asian Pac J Cancer Prev 2021; 22:1069-1074. [PMID: 33906298 PMCID: PMC8325116 DOI: 10.31557/apjcp.2021.22.4.1069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 11/25/2022] Open
Abstract
Objective: Nude mice are used as a recipient for human tumor cell xenografts. However, the success rate of xenotransplantation is unsatisfactory due to high natural killer (NK) activity. To overcome this limitation, we established nude mice with no NK cells, and compared the transplantation efficiency with that in nude mice. Methods: BALB/c Nude Jak3-/- (Nude-J) mice were established by crossing BALB/c Nude mice and BALB/c Jak-3-/- mice. Hematopoietic malignant cell lines (BCBL-1 and Z138) were implanted subcutaneously to compare the tumorigenicity in Nude-J mice with Nude Rag-2/Jak3 double deficient (Nude RJ) mice and nude mice. Results: Nude-J mice showed complete loss of NK and T lymphocytes, whereas B lymphocytes remained. Both BCBL-1 and Z138 human lymphoid malignant cell lines formed almost the same sizes of subcutaneous tumors in Nude-J and Nude RJ mice, whereas they formed no or only small tumors in nude mice. Splenocytes from Nude-J mice showed no cytotoxic activity in vitro. Conclusion: Nude-J mice can be a valuable tool for human tumor cell transplantation studies.
Collapse
Affiliation(s)
- Jutatip Panaampon
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenichi Sasamoto
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
17
|
Abeynaike S, Paust S. Humanized Mice for the Evaluation of Novel HIV-1 Therapies. Front Immunol 2021; 12:636775. [PMID: 33868262 PMCID: PMC8047330 DOI: 10.3389/fimmu.2021.636775] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
With the discovery of antiretroviral therapy, HIV-1 infection has transitioned into a manageable but chronic illness, which requires lifelong treatment. Nevertheless, complete eradication of the virus has still eluded us. This is partly due to the virus’s ability to remain in a dormant state in tissue reservoirs, ‘hidden’ from the host’s immune system. Also, the high mutation rate of HIV-1 results in escape mutations in response to many therapeutics. Regardless, the development of novel cures for HIV-1 continues to move forward with a range of approaches from immunotherapy to gene editing. However, to evaluate in vivo pathogenesis and the efficacy and safety of therapeutic approaches, a suitable animal model is necessary. To this end, the humanized mouse was developed by McCune in 1988 and has continued to be improved on over the past 30 years. Here, we review the variety of humanized mouse models that have been utilized through the years and describe their specific contribution in translating HIV-1 cure strategies to the clinic.
Collapse
Affiliation(s)
- Shawn Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
18
|
Blümich S, Zdimerova H, Münz C, Kipar A, Pellegrini G. Human CD34 + Hematopoietic Stem Cell-Engrafted NSG Mice: Morphological and Immunophenotypic Features. Vet Pathol 2020; 58:161-180. [PMID: 32901581 DOI: 10.1177/0300985820948822] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunodeficient mice engrafted with human immune cells represent an innovative tool to improve translatability of animal models for the study of human diseases. Immunophenotyping in these mice focuses on engraftment rates and cellular differentiation in blood and secondary lymphoid organs, and is predominantly carried out by FACS (fluorescent activated cell sorting) analysis; information on the morphological aspects of engraftment and the prevalence of histologic lesions is limited. We histologically examined 3- to 6-month-old NSG mice, naïve or engrafted with CD34+ human hemopoietic stem cells (HSC), and employed a quantitative immunohistochemical approach to identify human and murine cell compartments, comparing the results with the FACS data. NSG mice mainly exhibited incidental findings in lungs, kidneys, testes, and adrenal glands. A 6-month-old NSG mouse had a mediastinal lymphoblastic lymphoma. The lymphoid organs of NSG mice lacked typical lymphoid tissue architecture but frequently exhibited small periarteriolar leukocyte clusters in the spleen. Mice engrafted with human HSC frequently showed nephropathy, ovarian atrophy, cataract, and abnormal retinal development, lesions considered secondary to irradiation. In addition, 20% exhibited multisystemic granulomatous inflammatory infiltrates, dominated by human macrophages and T cells, leading to the observed 7% mortality and morbidity. Immunophenotypic data revealed variable repopulation of lymphoid organs with hCD45+ human cells, which did not always parallel the engraftment levels measured via FACS. The study describes the most common pathological features in young NSG mice after human HSC engraftment. As some of these lesions contribute to morbidity, morphological assessment of the engraftment at tissue level might help improve immunophenotypic evaluations of this animal model.
Collapse
Affiliation(s)
- Sandra Blümich
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, 27217University of Zurich, Zurich, Switzerland
| | - Hana Zdimerova
- Viral Immunobiology, Institute of Experimental Immunology, 27217University of Zurich, Zurich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, 27217University of Zurich, Zurich, Switzerland
| | - Anja Kipar
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, 27217University of Zurich, Zurich, Switzerland
| | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, 27217University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Curran M, Mairesse M, Matas-Céspedes A, Bareham B, Pellegrini G, Liaunardy A, Powell E, Sargeant R, Cuomo E, Stebbings R, Betts CJ, Saeb-Parsy K. Recent Advancements and Applications of Human Immune System Mice in Preclinical Immuno-Oncology. Toxicol Pathol 2019; 48:302-316. [PMID: 31847725 DOI: 10.1177/0192623319886304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significant advances in immunotherapies have resulted in the increasing need of predictive preclinical models to improve immunotherapeutic drug development, treatment combination, and to prevent or minimize toxicity in clinical trials. Immunodeficient mice reconstituted with human immune system (HIS), termed humanized mice or HIS mice, permit detailed analysis of human immune biology, development, and function. Although this model constitutes a great translational model, some aspects need to be improved as the incomplete engraftment of immune cells, graft versus host disease and the lack of human cytokines and growth factors. In this review, we discuss current HIS platforms, their pathology, and recent advances in their development to improve the quality of human immune cell reconstitution. We also highlight new technologies that can be used to better understand these models and how improved characterization is needed for their application in immuno-oncology safety, efficacy, and new modalities therapy development.
Collapse
Affiliation(s)
- Michelle Curran
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Maelle Mairesse
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alba Matas-Céspedes
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Bethany Bareham
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Giovanni Pellegrini
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ardi Liaunardy
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Edward Powell
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Rebecca Sargeant
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Emanuela Cuomo
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Richard Stebbings
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Catherine J Betts
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
20
|
Increased Granulopoiesis in the Bone Marrow following Epstein-Barr Virus Infection. Sci Rep 2019; 9:13445. [PMID: 31530932 PMCID: PMC6748920 DOI: 10.1038/s41598-019-49937-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with several disorders. EBV is known to modulate the proliferation and survival of hematopoietic cells such as B cells and T cells in human. However, the effects of EBV on hematopoiesis itself have not been investigated. To study EBV infection in murine models, their hematopoiesis must be humanized, since EBV infection is limited only in primates. To engraft the human hematopoiesis, NOD/Shi-scid-IL2rγnull (NOG) mice were used. Usually, the hematopoiesis humanized mice reconstitute only lymphoid cells, but myeloid cells are not. However, we revealed human macrophages (hMφ) and their precursor monocytes were increased in peripheral tissues of EBV-infected mice. Furthermore, our previous report indicated Mφ accumulation in spleen was essential for development of EBV-positive tumors, suggesting that EBV modulates human hematopoiesis in order to thrive. Interestingly, we revealed a dramatic increase of immature granulocytes only in bone marrow of EBV-infected mice. In addition, GM-CSF, a cytokine that is essential for differentiation of the myeloid lineage, was significantly increased in EBV-infected mice. These results were also reproduced in patients with EBV-related disorders. We suggest that the hematopoietic alterations during EBV-infection might contribute immune suppression to the development and exacerbation of EBV-related disorders.
Collapse
|
21
|
Kim JY, Kang BM, Lee JS, Park HJ, Wi HJ, Yoon JS, Ahn C, Shin S, Kim KH, Jung KC, Kwon O. UVB-induced depletion of donor-derived dendritic cells prevents allograft rejection of immune-privileged hair follicles in humanized mice. Am J Transplant 2019; 19:1344-1355. [PMID: 30500995 DOI: 10.1111/ajt.15207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/25/2023]
Abstract
Dendritic cells (DCs) are key targets for immunity and tolerance induction; they present donor antigens to recipient T cells by donor- and recipient-derived pathways. Donor-derived DCs, which are critical during the acute posttransplant period, can be depleted in graft tissue by forced migration via ultraviolet B light (UVB) irradiation. Here, we investigated the tolerogenic potential of donor-derived DC depletion through in vivo and ex vivo UVB preirradiation (UV) combined with the injection of anti-CD154 antibody (Ab) into recipients in an MHC-mismatched hair follicle (HF) allograft model in humanized mice. Surprisingly, human HF allografts achieved long-term survival with newly growing pigmented hair shafts in both Ab-treated groups (Ab-only and UV plus Ab) and in the UV-only group, whereas the control mice rejected all HF allografts with no hair regrowth. Perifollicular human CD3+ T cell and MHC class II+ cell infiltration was significantly diminished in the presence of UV and/or Ab treatment. HF allografts in the UV-only group showed stable maintenance of the immune privilege in the HF epithelium without evidence of antigen-specific T cell tolerance, which is likely promoted by normal HFs in vivo. This immunomodulatory strategy targeting the donor tissue exhibited novel biological relevance for clinical allogeneic transplantation without generalized immunosuppression.
Collapse
Affiliation(s)
- Jin Yong Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Bo Mi Kang
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Ji Su Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Hi-Jung Park
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Pathology and Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hae Joo Wi
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Pathology and Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Seon Yoon
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Curie Ahn
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine; Transplantation Center, Seoul National University Hospital, Seoul, Korea
| | - Sue Shin
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Boramae Hospital, Seoul, Korea.,Seoul Metropolitan Government Public Cord Blood Bank, Seoul, Korea
| | - Kyu Han Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Kyeong Cheon Jung
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Pathology and Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
22
|
Schinnerling K, Rosas C, Soto L, Thomas R, Aguillón JC. Humanized Mouse Models of Rheumatoid Arthritis for Studies on Immunopathogenesis and Preclinical Testing of Cell-Based Therapies. Front Immunol 2019; 10:203. [PMID: 30837986 PMCID: PMC6389733 DOI: 10.3389/fimmu.2019.00203] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 01/12/2023] Open
Abstract
Rodent models of rheumatoid arthritis (RA) have been used over decades to study the immunopathogenesis of the disease and to explore intervention strategies. Nevertheless, mouse models of RA reach their limit when it comes to testing of new therapeutic approaches such as cell-based therapies. Differences between the human and the murine immune system make it difficult to draw reliable conclusions about the success of immunotherapies. To overcome this issue, humanized mouse models have been established that mimic components of the human immune system in mice. Two main strategies have been pursued for humanization: the introduction of human transgenes such as human leukocyte antigen molecules or specific T cell receptors, and the generation of mouse/human chimera by transferring human cells or tissues into immunodeficient mice. Recently, both approaches have been combined to achieve more sophisticated humanized models of autoimmune diseases. This review discusses limitations of conventional mouse models of RA-like disease and provides a closer look into studies in humanized mice exploring their usefulness and necessity as preclinical models for testing of cell-based therapies in autoimmune diseases such as RA.
Collapse
Affiliation(s)
- Katina Schinnerling
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Carlos Rosas
- Departamento de Ciencias Morfológicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Ranjeny Thomas
- Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
23
|
Barve A, Casson L, Krem M, Wunderlich M, Mulloy JC, Beverly LJ. Comparative utility of NRG and NRGS mice for the study of normal hematopoiesis, leukemogenesis, and therapeutic response. Exp Hematol 2018; 67:18-31. [PMID: 30125602 DOI: 10.1016/j.exphem.2018.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/25/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022]
Abstract
Cell-line-derived xenografts (CDXs) or patient-derived xenografts (PDXs) in immune-deficient mice have revolutionized our understanding of normal and malignant human hematopoiesis. Transgenic approaches further improved in vivo hematological research, allowing the development of human-cytokine-producing mice, which show superior human cell engraftment. The most popular mouse strains used in research, the NOG (NOD.Cg-Prkdcscid Il2rγtm1Sug/Jic) and the NSG (NOD/SCID-IL2Rγ-/-, NOD.Cg-PrkdcscidIl2rγtm1Wjl/SzJ) mouse, and their human-cytokine-producing (interleukin-3, granulocyte-macrophage colony-stimulating factor, and stem cell factor) counterparts (huNOG and NSGS), rely partly on a mutation in the DNA repair protein PRKDC, causing a severe combined immune deficiency (SCID) phenotype and rendering the mice less tolerant to DNA-damaging therapeutics, thereby limiting their usefulness in the investigation of novel acute myeloid leukemia (AML) therapeutics. NRG (NOD/RAG1/2-/-IL2Rγ-/-) mice show equivalent immune ablation through a defective recombination activation gene (RAG), leaving DNA damage repair intact, and human-cytokine-producing NRGS (NRG-SGM3) mice were generated, improving myeloid engraftment. Our findings indicate that unconditioned NRG and NRGS mice can harbor established AML CDXs and can tolerate aggressive induction chemotherapy at higher doses than NSG mice without overt toxicity. However, unconditioned NRGS mice developed less clinically relevant disease, with CDXs forming solid tumors throughout the body, whereas unconditioned NRG mice were incapable of efficiently supporting PDX or human hematopoietic stem cell engraftment. These findings emphasize the contextually dependent utility of each of these powerful new strains in the study of normal and malignant human hematopoiesis. Therefore, the choice of mouse strain cannot be random, but must be based on the experimental outcomes and questions to be addressed.
Collapse
Affiliation(s)
- Aditya Barve
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Lavona Casson
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Maxwell Krem
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Mark Wunderlich
- Department of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James C Mulloy
- Department of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Levi J Beverly
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
24
|
LIU Y, CHEN Q, YANG X, TANG Q, YAO K, XU Y. [Generation of a new strain of NOD/SCID/IL2Rγ -/- mice with targeted disruption of Prkdc and IL2Rγ genes using CRISPR/Cas9 system]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:639-646. [PMID: 29997084 PMCID: PMC6765701 DOI: 10.3969/j.issn.1673-4254.2018.06.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE The NOD/SCID/IL2Rγ-/- (NSG) mouse strain is the most widely used immunodeficient strain for xenograft transplantation. However, the existing SCID mutation is a spontaneous mutation of the Prkdc gene, which leads to leaky T cell developmental block and difficulty in genotyping. It is therefore important to develop a new strain of NSG mice with targeted disruption of Prkdc and IL2Rγ genes. METHODS Targeted disruption of Prkdc and IL2Rγ genes was achieved using the CRISPR/ Cas9 system. By intercrossing the knockout and NOD mice, we obtained a novel strain of NOD/SCID/IL2Rγ-/- (NSG) mice, denoted as cNSG (Chinese NSG) mice. RESULTS In addition to the NOD mutation, cNSG mice exhibited a complete absence of T cells, B cells and NK cells. cNSG mice allowed more efficient engraftment of human cancer cells than the commonly used immunodeficient nude mice. CONCLUSION cNSG mice will provide an important xenotransplantation model for biomedical research.
Collapse
Affiliation(s)
- Yachen LIU
- />Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China南方医科大学肿瘤研究所,广东 广州 510515
| | - Qu CHEN
- />Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China南方医科大学肿瘤研究所,广东 广州 510515
| | - Xinglong YANG
- />Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China南方医科大学肿瘤研究所,广东 广州 510515
| | - Qingshuang TANG
- />Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China南方医科大学肿瘤研究所,广东 广州 510515
| | - Kaitai YAO
- />Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China南方医科大学肿瘤研究所,广东 广州 510515
| | - Yang XU
- />Guangdong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China南方医科大学肿瘤研究所,广东 广州 510515
| |
Collapse
|
25
|
Abstract
Immunoglobulin E-mediated food allergy is rapidly developing into a global health problem. Publicly available therapeutic intervention strategies are currently restricted to allergen avoidance and emergency treatments. To gain a better understanding of the disease pathophysiology so that new therapies can be developed, major research efforts have been put into studying food allergy in mice. Animal models should reflect the human pathology as closely as possible to allow for a rapid translation of basic science observations to the bedside. In this regard, experimental models of food allergy provide significant challenges for research because of discrepancies between the presentation of disease in humans and mice. The goal of this review is to give a summary of commonly used murine disease models and to discuss how they relate to the human condition. We will focus on epicutaneous sensitization models, on mouse strains that sensitize spontaneously to food as seen in humans, and on models in humanized animals. In summary, expanding the research toolbox of experimental food allergy provides an important step toward closing gaps in our understanding of the derailing immune mechanism that underlies the human disease. The availability of additional experimental models will provide exciting opportunities to discover new intervention points for the treatment of food allergies. (Cell Mol Gastroenterol Hepatol 2018;x:x).
Collapse
Key Words
- Allergen Challenge
- Allergen Sensitization
- Anaphylaxis
- EPIT, epicutaneous immunotherapy
- Epictutaneous Sensitization
- FCER1A, high-affinity immunoglobulin epsilon receptor subunit alpha
- FCERIA
- FcεRI, high-affinity immunoglobulin E receptor
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HSC, hematopoietic stem cell
- Humanized Model
- IL, interleukin
- Ig, immunoglobulin
- IgE
- LCT, long chain triglycerides
- MCPT, mouse mast cell protease
- MCT, medium chain triglycerides
- Murine Models of Food Allergy
- OIT, oral immunotherapy
- PBMC, peripheral blood mononuclear cell
- Spontaneous Sensitization
- TSLP, thymic stromal lymphopoietin
- Th, T helper
- Treg, regulatory T cell
- WASP, Wiskott–Aldrich syndrome protein
Collapse
|
26
|
Role of exosomes as a proinflammatory mediator in the development of EBV-associated lymphoma. Blood 2018; 131:2552-2567. [PMID: 29685921 DOI: 10.1182/blood-2017-07-794529] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/05/2018] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) causes various diseases in the elderly, including B-cell lymphoma such as Hodgkin's lymphoma and diffuse large B-cell lymphoma. Here, we show that EBV acts in trans on noninfected macrophages in the tumor through exosome secretion and augments the development of lymphomas. In a humanized mouse model, the different formation of lymphoproliferative disease (LPD) between 2 EBV strains (Akata and B95-8) was evident. Furthermore, injection of Akata-derived exosomes affected LPD severity, possibly through the regulation of macrophage phenotype in vivo. Exosomes collected from Akata-lymphoblastoid cell lines reportedly contain EBV-derived noncoding RNAs such as BamHI fragment A rightward transcript (BART) micro-RNAs (miRNAs) and EBV-encoded RNA. We focused on the exosome-mediated delivery of BART miRNAs. In vitro, BART miRNAs could induce the immune regulatory phenotype in macrophages characterized by the gene expressions of interleukin 10, tumor necrosis factor-α, and arginase 1, suggesting the immune regulatory role of BART miRNAs. The expression level of an EBV-encoded miRNA was strongly linked to the clinical outcomes in elderly patients with diffuse large B-cell lymphoma. These results implicate BART miRNAs as 1 of the factors regulating the severity of lymphoproliferative disease and as a diagnostic marker for EBV+ B-cell lymphoma.
Collapse
|
27
|
Kametani Y, Shiina T, Suzuki R, Sasaki E, Habu S. Comparative immunity of antigen recognition, differentiation, and other functional molecules: similarities and differences among common marmosets, humans, and mice. Exp Anim 2018; 67:301-312. [PMID: 29415910 PMCID: PMC6083031 DOI: 10.1538/expanim.17-0150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The common marmoset (CM; Callithrix jacchus) is a small New World monkey
with a high rate of pregnancy and is maintained in closed colonies as an experimental
animal species. Although CMs are used for immunological research, such as studies of
autoimmune disease and infectious disease, their immunological characteristics are less
defined than those of other nonhuman primates. We and others have analyzed antigen
recognition-related molecules, the development of hematopoietic stem cells (HSCs), and the
molecules involved in the immune response. CMs systemically express Caja-G, a major
histocompatibility complex class I molecule, and the ortholog of HLA-G, a suppressive
nonclassical HLA class I molecule. HSCs express CD117, while CD34 is not essential for
multipotency. CD117+ cells developed into all hematopoietic cell lineages, but compared
with human HSCs, B cells did not extensively develop when HSCs were transplanted into an
immunodeficient mouse. Although autoimmune models have been successfully established,
sensitization of CMs with some bacteria induced a low protective immunity. In CMs, B cells
were observed in the periphery, but IgG levels were very low compared with those in humans
and mice. This evidence suggests that CM immunity is partially suppressed systemically.
Such immune regulation might benefit pregnancy in CMs, which normally deliver dizygotic
twins, the placentae of which are fused and the immune cells of which are mixed. In this
review, we describe the CM immune system and discuss the possibility of using CMs as a
model of human immunity.
Collapse
Affiliation(s)
- Yoshie Kametani
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Takashi Shiina
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, 18-1 Sakuradai, Minami-ku, Sagamihara-shi, Kanagawa 252-0392, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals,3-25-12 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Sonoko Habu
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
28
|
Human PBMC-transferred murine MHC class I/II-deficient NOG mice enable long-term evaluation of human immune responses. Cell Mol Immunol 2017; 15:953-962. [PMID: 29151581 PMCID: PMC6207709 DOI: 10.1038/cmi.2017.106] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/21/2022] Open
Abstract
Immunodeficient mice engrafted with human peripheral blood cells are promising tools for in vivo analysis of human patient individual immune responses. However, when human peripheral blood mononuclear cells (PBMCs) are transferred into NOG (NOD/Shi-scid, IL-2rgnull) mice, severe graft versus host disease (GVHD) hinders long term detailed analysis. Administration of human PBMCs into newly developed murine MHC class I- and class II-deficient NOG (NOG-dKO; NOG- Iab, B2m-double-knockout) mice showed sufficient engraftment of human immune cells with little sign of GVHD. Immunization with influenza vaccine resulted in an increase in influenza-specific human IgG Ab, indicating induction of antigen-specific B cells in the NOG-dKO mice. Immunization with human dendritic cells pulsed with HLA-A2 restricted cytomegalovirus peptide induced specific cytotoxic T cells, indicating the induction of antigen-specific T cells in the NOG-dKO mice. Adoptive cell therapies (ACTs) using melanoma antigen recognized by T cells (MART-1)-specific TCR-transduced activated T cells showed strong tumor growth inhibition in NOG-dKO mice without any sign of GVHD accompanied by preferential expansion of the transferred MART-1-specific T cells. ACTs using cultured human melanoma infiltrating T cells also showed anti-tumor effects against autologous melanoma cells in NOG-dKO mice, in which changes in human cancer phenotypes by immune intervention, such as increased CD271 expression, could be evaluated. Therefore, NOG-dKO mice are useful tools for more detailed analysis of both the induction and effector phases of T-cell and B-cell responses for a longer period than regular NOG mice.
Collapse
|
29
|
Yasuda M, Ogura T, Goto T, Yagoto M, Kamai Y, Shimomura C, Hayashimoto N, Kiyokawa Y, Shinohara H, Takahashi R, Kawai K. Incidence of spontaneous lymphomas in non-experimental NOD/Shi-scid, IL-2Rγ null (NOG) mice. Exp Anim 2017; 66:425-435. [PMID: 28679969 PMCID: PMC5682355 DOI: 10.1538/expanim.17-0034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Severely immunodeficient NOD/Shi-scid, IL-2Rγnull (NOG) mice provide an in vivo model for human cell/tissue transplantation studies. NOG mice were established by combining interleukin-2 receptor-γ chain knockout mice and NOD/Shi-scid mice. They exhibit a high incidence of thymic lymphomas and immunoglobulin (Ig) leakiness. In this study, we assessed the incidence of malignant lymphomas and the occurrence of leakiness in 2,184 non-experimental NOG retired breeder mice aged 16-40 weeks. We established that the total incidence of lymphomas was only 0.60% (13/2,184). Most lymphomas (10/13) occurred in female mice by the age of around 25 weeks. No mice developed Ig leakiness. All lymphomas were derived from the thymus, and consisted mainly of CD3-positive and CD45R-negative lymphoblastic-like cells. Therefore, based on the absence of Ig leakiness and a very low incidence of lymphomas, including thymic lymphomas, NOG mice may be useful in regeneration medicine for xenotransplantation of human embryonic stem (ES) cells or induced pluripotent stem (iPS) cells, and in transplantation experiments involving tumor cells.
Collapse
Affiliation(s)
- Masahiko Yasuda
- Pathology Analysis Center, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Tomoyuki Ogura
- Animal Resources Center, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Takayuki Goto
- Technical Service Department, CLEA Japan, Inc., 4839-23 Kitayama, Fujinomiya, Shizuoka 418-0112, Japan
| | - Mika Yagoto
- Pathology Analysis Center, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Yoko Kamai
- Pathology Analysis Center, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Chie Shimomura
- Technical Service Department, CLEA Japan, Inc., 4839-23 Kitayama, Fujinomiya, Shizuoka 418-0112, Japan
| | - Nobuhito Hayashimoto
- ICLAS Monitoring Center, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Yukito Kiyokawa
- Technical Service Department, CLEA Japan, Inc., 4839-23 Kitayama, Fujinomiya, Shizuoka 418-0112, Japan
| | - Hideki Shinohara
- Technical Service Department, CLEA Japan, Inc., 4839-23 Kitayama, Fujinomiya, Shizuoka 418-0112, Japan
| | - Riichi Takahashi
- Animal Resources Center, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Kenji Kawai
- Pathology Analysis Center, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| |
Collapse
|
30
|
Puchalapalli M, Zeng X, Mu L, Anderson A, Hix Glickman L, Zhang M, Sayyad MR, Mosticone Wangensteen S, Clevenger CV, Koblinski JE. NSG Mice Provide a Better Spontaneous Model of Breast Cancer Metastasis than Athymic (Nude) Mice. PLoS One 2016; 11:e0163521. [PMID: 27662655 PMCID: PMC5035017 DOI: 10.1371/journal.pone.0163521] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 09/09/2016] [Indexed: 11/18/2022] Open
Abstract
Metastasis is the most common cause of mortality in breast cancer patients worldwide. To identify improved mouse models for breast cancer growth and spontaneous metastasis, we examined growth and metastasis of both estrogen receptor positive (T47D) and negative (MDA-MB-231, SUM1315, and CN34BrM) human breast cancer cells in nude and NSG mice. Both primary tumor growth and spontaneous metastases were increased in NSG mice compared to nude mice. In addition, a pattern of metastasis similar to that observed in human breast cancer patients (metastases to the lungs, liver, bones, brain, and lymph nodes) was found in NSG mice. Furthermore, there was an increase in the metastatic burden in NSG compared to nude mice that were injected with MDA-MB-231 breast cancer cells in an intracardiac experimental metastasis model. This data demonstrates that NSG mice provide a better model for studying human breast cancer metastasis compared to the current nude mouse model.
Collapse
Affiliation(s)
- Madhavi Puchalapalli
- Department of Pathology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, Illinois, United States of America
| | - Xianke Zeng
- Department of Pathology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, Illinois, United States of America
| | - Liang Mu
- Department of Pathology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, Illinois, United States of America
| | - Aubree Anderson
- Department of Pathology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, Illinois, United States of America
| | - Laura Hix Glickman
- Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, Illinois, United States of America
| | - Ming Zhang
- Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, Illinois, United States of America
| | - Megan R. Sayyad
- Department of Pathology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sierra Mosticone Wangensteen
- Department of Pathology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Charles V. Clevenger
- Department of Pathology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, Illinois, United States of America
| | - Jennifer E. Koblinski
- Department of Pathology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
31
|
Wunderlich M, Stockman C, Devarajan M, Ravishankar N, Sexton C, Kumar AR, Mizukawa B, Mulloy JC. A xenograft model of macrophage activation syndrome amenable to anti-CD33 and anti-IL-6R treatment. JCI Insight 2016; 1:e88181. [PMID: 27699249 DOI: 10.1172/jci.insight.88181] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transgenic expression of key myelosupportive human cytokines in immune-deficient mice corrects for the lack of cross-species activities of stem cell factor (SCF), IL-3, and GM-CSF. When engrafted with human umbilical cord blood (UCB), these triple-transgenic mice produce BM and spleen grafts with much higher myeloid composition, relative to nontransgenic controls. Shortly after engraftment with UCB, these mice develop a severe, fatal macrophage activation syndrome (MAS) characterized by a progressive drop in rbc numbers, increased reticulocyte counts, decreased rbc half-life, progressive cytopenias, and evidence of chronic inflammation, including elevated human IL-6. The BM becomes strikingly hypocellular, and spleens are significantly enlarged with evidence of extramedullary hematopoiesis and activated macrophages engaged in hemophagocytosis. This manifestation of MAS does not respond to lymphocyte-suppressive therapies such as steroids, i.v. immunoglobulin, or antibody-mediated ablation of human B and T cells, demonstrating a lymphocyte-independent mechanism of action. In contrast, elimination of human myeloid cells using gemtuzumab ozogamicin (anti-CD33) completely reversed the disease. Additionally, the IL-6R antibody tocilizumab delayed progression and prolonged lifespan. This new model of MAS provides an opportunity for investigation of the mechanisms driving this disease and for the testing of directed therapies in a humanized mouse.
Collapse
Affiliation(s)
| | | | | | | | | | - Ashish R Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | | | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology and
| |
Collapse
|
32
|
Morton JJ, Bird G, Refaeli Y, Jimeno A. Humanized Mouse Xenograft Models: Narrowing the Tumor-Microenvironment Gap. Cancer Res 2016; 76:6153-6158. [PMID: 27587540 DOI: 10.1158/0008-5472.can-16-1260] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022]
Abstract
Cancer research has long been hampered by the limitations of the current model systems. Both cultured cells and mouse xenografts grow in an environment highly dissimilar to that of their originating tumor, frequently resulting in promising treatments that are ultimately clinically ineffective. The development of highly immunodeficient mouse strains into which human immune systems can be engrafted can help bridge this gap. Humanized mice (HM) allow researchers to examine xenograft growth in the context of a human immune system and resultant tumor microenvironment, and recent studies have highlighted the increased similarities in attendant tumor structure, metastasis, and signaling to those features in cancer patients. This setting also facilitates the examination of investigational cancer therapies, including new immunotherapies. This review discusses recent advancements in the generation and application of HM models, their promise in cancer research, and their potential in generating clinically relevant treatments. This review also focuses on current efforts to improve HM models by engineering mouse strains expressing human cytokines or HLA proteins and implanting human bone, liver, and thymus tissue to facilitate immune cell maturation and trafficking. Finally, we discuss how these improvements may help direct future HM model cancer studies. Cancer Res; 76(21); 6153-8. ©2016 AACR.
Collapse
Affiliation(s)
- J Jason Morton
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Gregory Bird
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado
| | - Yosef Refaeli
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado.,Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado. .,Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
33
|
Bissig-Choisat B, Kettlun-Leyton C, Legras XD, Zorman B, Barzi M, Chen LL, Amin MD, Huang YH, Pautler RG, Hampton OA, Prakash MM, Yang D, Borowiak M, Muzny D, Doddapaneni HV, Hu J, Shi Y, Gaber MW, Hicks MJ, Thompson PA, Lu Y, Mills GB, Finegold M, Goss JA, Parsons DW, Vasudevan SA, Sumazin P, López-Terrada D, Bissig KD. Novel patient-derived xenograft and cell line models for therapeutic testing of pediatric liver cancer. J Hepatol 2016; 65:325-33. [PMID: 27117591 PMCID: PMC5668139 DOI: 10.1016/j.jhep.2016.04.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Pediatric liver cancer is a rare but serious disease whose incidence is rising, and for which the therapeutic options are limited. Development of more targeted, less toxic therapies is hindered by the lack of an experimental animal model that captures the heterogeneity and metastatic capability of these tumors. METHODS Here we established an orthotopic engraftment technique to model a series of patient-derived tumor xenograft (PDTX) from pediatric liver cancers of all major histologic subtypes: hepatoblastoma, hepatocellular cancer and hepatocellular malignant neoplasm. We utilized standard (immuno) staining methods for histological characterization, RNA sequencing for gene expression profiling and genome sequencing for identification of druggable targets. We also adapted stem cell culturing techniques to derive two new pediatric cancer cell lines from the xenografted mice. RESULTS The patient-derived tumor xenografts recapitulated the histologic, genetic, and biological characteristics-including the metastatic behavior-of the corresponding primary tumors. Furthermore, the gene expression profiles of the two new liver cancer cell lines closely resemble those of the primary tumors. Targeted therapy of PDTX from an aggressive hepatocellular malignant neoplasm with the MEK1 inhibitor trametinib and pan-class I PI3 kinase inhibitor NVP-BKM120 resulted in significant growth inhibition, thus confirming this PDTX model as a valuable tool to study tumor biology and patient-specific therapeutic responses. CONCLUSIONS The novel metastatic xenograft model and the isogenic xenograft-derived cell lines described in this study provide reliable tools for developing mutation- and patient-specific therapies for pediatric liver cancer. LAY SUMMARY Pediatric liver cancer is a rare but serious disease and no experimental animal model currently captures the complexity and metastatic capability of these tumors. We have established a novel animal model using human tumor tissue that recapitulates the genetic and biological characteristics of this cancer. We demonstrate that our patient-derived animal model, as well as two new cell lines, are useful tools for experimental therapies.
Collapse
Affiliation(s)
- Beatrice Bissig-Choisat
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Claudia Kettlun-Leyton
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Xavier D. Legras
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Barry Zorman
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mercedes Barzi
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Leon L. Chen
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mansi D. Amin
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yung-Hsin Huang
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Robia G. Pautler
- Small Animal Imaging Facility, Texas Children’s Hospital, Houston, TX, USA,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Oliver A. Hampton
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Masand M. Prakash
- Department of Pediatric Radiology, Texas Children’s Hospital, Houston, TX, USA
| | - Diane Yang
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA,Graduate Program Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Malgorzata Borowiak
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA,Graduate Program Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA,McNair Medical Institute, Houston, USA
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Jianhong Hu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Yan Shi
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation and Division of Hepatobiliary Surgery, Baylor College of Medicine, Houston, TX, USA,Department of Surgery, Texas Children’s Hospital, Houston, TX, USA
| | - M. Waleed Gaber
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,Small Animal Imaging Facility, Texas Children’s Hospital, Houston, TX, USA,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - M. John Hicks
- Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | | | - Yiling Lu
- Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B. Mills
- Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Milton Finegold
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA,Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - John A. Goss
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation and Division of Hepatobiliary Surgery, Baylor College of Medicine, Houston, TX, USA,Department of Surgery, Texas Children’s Hospital, Houston, TX, USA
| | - D. Williams Parsons
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Sanjeev A. Vasudevan
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA,Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation and Division of Hepatobiliary Surgery, Baylor College of Medicine, Houston, TX, USA,Department of Surgery, Texas Children’s Hospital, Houston, TX, USA
| | - Pavel Sumazin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Dolores López-Terrada
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA,Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Karl-Dimiter Bissig
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA; Graduate Program Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
34
|
Chen T, Wang F, Wu M, Wang ZZ. Development of hematopoietic stem and progenitor cells from human pluripotent stem cells. J Cell Biochem 2016; 116:1179-89. [PMID: 25740540 DOI: 10.1002/jcb.25097] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 01/04/2023]
Abstract
Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), provide a new cell source for regenerative medicine, disease modeling, drug discovery, and preclinical toxicity screening. Understanding of the onset and the sequential process of hematopoietic cells from differentiated hPSCs will enable the achievement of personalized medicine and provide an in vitro platform for studying of human hematopoietic development and disease. During embryogenesis, hemogenic endothelial cells, a specified subset of endothelial cells in embryonic endothelium, are the primary source of multipotent hematopoietic stem cells. In this review, we discuss current status in the generation of multipotent hematopoietic stem and progenitor cells from hPSCs via hemogenic endothelial cells. We also review the achievements in direct reprogramming from non-hematopoietic cells to hematopoietic stem and progenitor cells. Further characterization of hematopoietic differentiation in hPSCs will improve our understanding of blood development and expedite the development of hPSC-derived blood products for therapeutic purpose.
Collapse
Affiliation(s)
- Tong Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fen Wang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengyao Wu
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zack Z Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| |
Collapse
|
35
|
Pineault N, Abu-Khader A. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp Hematol 2015; 43:498-513. [DOI: 10.1016/j.exphem.2015.04.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 11/24/2022]
|
36
|
Koboziev I, Jones-Hall Y, Valentine JF, Webb CR, Furr KL, Grisham MB. Use of Humanized Mice to Study the Pathogenesis of Autoimmune and Inflammatory Diseases. Inflamm Bowel Dis 2015; 21:1652-73. [PMID: 26035036 PMCID: PMC4466023 DOI: 10.1097/mib.0000000000000446] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Animal models of disease have been used extensively by the research community for the past several decades to better understand the pathogenesis of different diseases and assess the efficacy and toxicity of different therapeutic agents. Retrospective analyses of numerous preclinical intervention studies using mouse models of acute and chronic inflammatory diseases reveal a generalized failure to translate promising interventions or therapeutics into clinically effective treatments in patients. Although several possible reasons have been suggested to account for this generalized failure to translate therapeutic efficacy from the laboratory bench to the patient's bedside, it is becoming increasingly apparent that the mouse immune system is substantially different from the human. Indeed, it is well known that >80 major differences exist between mouse and human immunology; all of which contribute to significant differences in immune system development, activation, and responses to challenges in innate and adaptive immunity. This inconvenient reality has prompted investigators to attempt to humanize the mouse immune system to address important human-specific questions that are impossible to study in patients. The successful long-term engraftment of human hematolymphoid cells in mice would provide investigators with a relatively inexpensive small animal model to study clinically relevant mechanisms and facilitate the evaluation of human-specific therapies in vivo. The discovery that targeted mutation of the IL-2 receptor common gamma chain in lymphopenic mice allows for the long-term engraftment of functional human immune cells has advanced greatly our ability to humanize the mouse immune system. The objective of this review is to present a brief overview of the recent advances that have been made in the development and use of humanized mice with special emphasis on autoimmune and chronic inflammatory diseases. In addition, we discuss the use of these unique mouse models to define the human-specific immunopathological mechanisms responsible for the induction and perpetuation of chronic gut inflammation.
Collapse
Affiliation(s)
- Iurii Koboziev
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Yava Jones-Hall
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907-2027
| | - John F. Valentine
- Department of Internal Medicine, Gastroenterology, Hepatology and Nutrition, University of Utah, Salt Lake City, UT 84132-2410
| | - Cynthia Reinoso Webb
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Kathryn L. Furr
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| |
Collapse
|
37
|
Gotoh K, Kariya R, Matsuda K, Hattori S, Vaeteewoottacharn K, Okada S. A novel EGFP-expressing nude mice with complete loss of lymphocytes and NK cells to study tumor-host interactions. Biosci Trends 2015; 8:202-5. [PMID: 25224625 DOI: 10.5582/bst.2014.01049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Enhanced green fluorescent protein (EGFP) expressing Balb/c nude mice strain with Rag-2 and Jak3 double mutants (Nude-R/J-EGFP mice) was established to improve the take rate of human tumors and to distinguish tumor and host cells. EGFP was ubiquitously expressed in all organs including the brain, lung, liver, heart, kidney, spleen, and gastrointestinal tract in Nude-R/J-EGFP mice. The mice showed complete loss of T lymphocytes, B lymphocytes, and NK cells, indicating a higher take rate of human tumor xenograft. M213-mCherry, an mCherry expressing the cholangiocarcinoma cell line, was successfully detected and tumor vessels derived from the host were clearly identified with fluorescence imager. Thus, dual-color fluorescence imaging visualizes the tumor-host interaction by non-invasive in vivo fluorescent imaging in Nude-R/J-EGFP mice. These finding suggests that Nude-R/J-EGFP mice are becoming a powerful tool to investigate human tumor-host interactions.
Collapse
Affiliation(s)
- Kumiko Gotoh
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University
| | | | | | | | | | | |
Collapse
|
38
|
Shimada S, Nunomura S, Mori S, Suemizu H, Itoh T, Takabayashi S, Okada Y, Yahata T, Shiina T, Katoh H, Suzuki R, Tani K, Ando K, Yagita H, Habu S, Sasaki E, Kametani Y. Common marmoset CD117+ hematopoietic cells possess multipotency. Int Immunol 2015; 27:567-77. [PMID: 25977306 DOI: 10.1093/intimm/dxv031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/10/2015] [Indexed: 12/20/2022] Open
Abstract
Analysis of the hematopoiesis of non-human primates is important to clarify the evolution of primate-specific hematopoiesis and immune regulation. However, the engraftment and development of the primate hematopoietic system are well-documented only in humans and are not clear in non-human primates. Callithrix jacchus (common marmoset, CM) is a New World monkey with a high rate of pregnancy and small size that lives in closed colonies. As stem cell factor (SCF) is an essential molecule for hematopoietic stem cell development in mice and humans, we focused on CD117, the SCF receptor, and examined whether CD117-expressing cells possess the hematopoietic stem/progenitor cell characteristics of newborn marmoset-derived hematopoietic cells that can develop into T cells and B cells. When CD117(+) cell fractions of the bone marrow were transplanted into immunodeficient NOD (non-obese diabetic)/Shi-scid, common γc-null (NOG) mice, these cells engrafted efficiently in the bone marrow and spleens of the NOG mice. The CD117(+) cells developed into myeloid lineage cells, CD20(+) B cells and CD3(+) T cells, which could express CM cytokines in vivo. The development of B cells did not precede that of T cells. The development of CD8(+) T cells was dominant in NOG mice. The engraftment was comparable for both CD117(+)CD34(+) cells and CD117(+)CD34(-) cells. These results suggest that the CD117(+) cell fraction can differentiate into all three cell lineages, and the development of marmoset immunity in the xenogeneic environment follows diverse developmental pathways compared with human immunity.
Collapse
Affiliation(s)
- Shin Shimada
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Satoshi Nunomura
- Division of Molecular Cell Immunology, Advanced Medical Research Center, Nihon University Graduate School of Medical Science, Tokyo, Japan
| | - Shuya Mori
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan Department of Hematology, Tokai University School of Medicine, Isehara, Japan
| | | | - Toshio Itoh
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Shuji Takabayashi
- Experimental Animals Institute, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yoshinori Okada
- Support Center for Medical Research and Education, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Yahata
- Department of Hematology, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Hideki Katoh
- Experimental Animals Institute, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Sagamihara, Japan
| | - Kenzaburo Tani
- Division of Molecular and Clinical Genetics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Ando
- Support Center for Medical Research and Education, Tokai University School of Medicine, Isehara, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sonoko Habu
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Yoshie Kametani
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
39
|
Ohnuma K, Hatano R, Aune TM, Otsuka H, Iwata S, Dang NH, Yamada T, Morimoto C. Regulation of pulmonary graft-versus-host disease by IL-26+CD26+CD4 T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2015; 194:3697-712. [PMID: 25786689 DOI: 10.4049/jimmunol.1402785] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/16/2015] [Indexed: 12/31/2022]
Abstract
Obliterative bronchiolitis is a potentially life-threatening noninfectious pulmonary complication after allogeneic hematopoietic stem cell transplantation and the only pathognomonic manifestation of pulmonary chronic graft-versus-host disease (cGVHD). In the current study, we identified a novel effect of IL-26 on transplant-related obliterative bronchiolitis. Sublethally irradiated NOD/Shi-scidIL2rγ(null) mice transplanted with human umbilical cord blood (HuCB mice) gradually developed clinical signs of graft-versus-host disease (GVHD) such as loss of weight, ruffled fur, and alopecia. Histologically, lung of HuCB mice exhibited obliterative bronchiolitis with increased collagen deposition and predominant infiltration with human IL-26(+)CD26(+)CD4 T cells. Concomitantly, skin manifested fat loss and sclerosis of the reticular dermis in the presence of apoptosis of the basilar keratinocytes, whereas the liver exhibited portal fibrosis and cholestasis. Moreover, although IL-26 is absent from rodents, we showed that IL-26 increased collagen synthesis in fibroblasts and promoted lung fibrosis in a murine GVHD model using IL-26 transgenic mice. In vitro analysis demonstrated a significant increase in IL-26 production by HuCB CD4 T cells following CD26 costimulation, whereas Ig Fc domain fused with the N-terminal of caveolin-1 (Cav-Ig), the ligand for CD26, effectively inhibited production of IL-26. Administration of Cav-Ig before or after onset of GVHD impeded the development of clinical and histologic features of GVHD without interrupting engraftment of donor-derived human cells, with preservation of the graft-versus-leukemia effect. These results therefore provide proof of principle that cGVHD of the lungs is caused in part by IL-26(+)CD26(+)CD4 T cells, and that treatment with Cav-Ig could be beneficial for cGVHD prevention and therapy.
Collapse
Affiliation(s)
- Kei Ohnuma
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ryo Hatano
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Haruna Otsuka
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Satoshi Iwata
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Nam H Dang
- Division of Hematology and Oncology, University of Florida, Gainesville, FL 32610; and
| | - Taketo Yamada
- Department of Pathology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| |
Collapse
|
40
|
Liu Y, Wang Y, Gao Y, Forbes JA, Qayyum R, Becker L, Cheng L, Wang ZZ. Efficient generation of megakaryocytes from human induced pluripotent stem cells using food and drug administration-approved pharmacological reagents. Stem Cells Transl Med 2015; 4:309-19. [PMID: 25713465 DOI: 10.5966/sctm.2014-0183] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Megakaryocytes (MKs) are rare hematopoietic cells in the adult bone marrow and produce platelets that are critical to vascular hemostasis and wound healing. Ex vivo generation of MKs from human induced pluripotent stem cells (hiPSCs) provides a renewable cell source of platelets for treating thrombocytopenic patients and allows a better understanding of MK/platelet biology. The key requirements in this approach include developing a robust and consistent method to produce functional progeny cells, such as MKs from hiPSCs, and minimizing the risk and variation from the animal-derived products in cell cultures. In this study, we developed an efficient system to generate MKs from hiPSCs under a feeder-free and xeno-free condition, in which all animal-derived products were eliminated. Several crucial reagents were evaluated and replaced with Food and Drug Administration-approved pharmacological reagents, including romiplostim (Nplate, a thrombopoietin analog), oprelvekin (recombinant interleukin-11), and Plasbumin (human albumin). We used this method to induce MK generation from hiPSCs derived from 23 individuals in two steps: generation of CD34(+)CD45(+) hematopoietic progenitor cells (HPCs) for 14 days; and generation and expansion of CD41(+)CD42a(+) MKs from HPCs for an additional 5 days. After 19 days, we observed abundant CD41(+)CD42a(+) MKs that also expressed the MK markers CD42b and CD61 and displayed polyploidy (≥16% of derived cells with DNA contents >4N). Transcriptome analysis by RNA sequencing revealed that megakaryocytic-related genes were highly expressed. Additional maturation and investigation of hiPSC-derived MKs should provide insights into MK biology and lead to the generation of large numbers of platelets ex vivo.
Collapse
Affiliation(s)
- Yanfeng Liu
- Division of Hematology, Department of Medicine, Institute for Cell Engineering, Department of Chemical and Biomolecular Engineering, and Divisions of General Internal Medicine and Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ying Wang
- Division of Hematology, Department of Medicine, Institute for Cell Engineering, Department of Chemical and Biomolecular Engineering, and Divisions of General Internal Medicine and Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yongxing Gao
- Division of Hematology, Department of Medicine, Institute for Cell Engineering, Department of Chemical and Biomolecular Engineering, and Divisions of General Internal Medicine and Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica A Forbes
- Division of Hematology, Department of Medicine, Institute for Cell Engineering, Department of Chemical and Biomolecular Engineering, and Divisions of General Internal Medicine and Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rehan Qayyum
- Division of Hematology, Department of Medicine, Institute for Cell Engineering, Department of Chemical and Biomolecular Engineering, and Divisions of General Internal Medicine and Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lewis Becker
- Division of Hematology, Department of Medicine, Institute for Cell Engineering, Department of Chemical and Biomolecular Engineering, and Divisions of General Internal Medicine and Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Linzhao Cheng
- Division of Hematology, Department of Medicine, Institute for Cell Engineering, Department of Chemical and Biomolecular Engineering, and Divisions of General Internal Medicine and Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zack Z Wang
- Division of Hematology, Department of Medicine, Institute for Cell Engineering, Department of Chemical and Biomolecular Engineering, and Divisions of General Internal Medicine and Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Watanabe T, Kato A, Terashima H, Matsubara K, Chen YJ, Adachi K, Mizuno H, Suzuki M. The PFA-AMeX method achieves a good balance between the morphology of tissues and the quality of RNA content in DNA microarray analysis with laser-capture microdissection samples. J Toxicol Pathol 2015; 28:43-9. [PMID: 26023261 PMCID: PMC4337499 DOI: 10.1293/tox.2014-0045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/14/2014] [Indexed: 01/18/2023] Open
Abstract
Recently, large-scale gene expression profiling is often performed using RNA extracted from unfixed frozen or formalin-fixed paraffin embedded (FFPE) samples. However, both types of samples have drawbacks in terms of the morphological preservation and RNA quality. In the present study, we investigated 30 human prostate tissues using the PFA-AMeX method (fixation using paraformaldehyde (PFA) followed by embedding in paraffin by AMeX) with a DNA microarray combined with laser-capture microdissection. Morphologically, in contrast to the case of atypical adenomatous hyperplasia, loss of basal cells in prostate adenocarcinomas was as obvious in PFA-AMeX samples as in FFPE samples. As for quality, the loss of rRNA peaks 18S and 28S on the capillary electropherograms from both FFPE and PFA-AMeX samples showed that the RNA was degraded equally during processing. However, qRT-PCR with 3' and 5' primer sets designed against human beta-actin revealed that, although RNA degradation occurred in both methods, it occurred more mildly in the PFA-AMeX samples. In conclusion, the PFA-AMeX method is good with respect to morphology and RNA quality, which makes it a promising tool for DNA microarrays combined with laser-capture microdissection, and if the appropriate RNA quality criteria are used, the capture of credible GeneChip data is well over 80% efficient, at least in human prostate specimens.
Collapse
Affiliation(s)
- Takeshi Watanabe
- Chugai Research Institute for Medical Science Inc., 1-135 Komakado, Gotemba-shi, Shizuoka 412-8513, Japan
| | - Atsuhiko Kato
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka 412-8513, Japan
| | - Hiromichi Terashima
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka 412-8513, Japan
| | - Koichi Matsubara
- PharmaLogicals Research, Pte. Ltd., 11 Biopolis Way, #05-08/09 Helios, 138667, Singapore
- Chugai Pharmabody Research Pte. Ltd., 3 Biopolis Drive, #04-11 to 17 Synapse, 138623, Singapore
| | - Yu Jau Chen
- PharmaLogicals Research, Pte. Ltd., 11 Biopolis Way, #05-08/09 Helios, 138667, Singapore
- Chugai Pharmabody Research Pte. Ltd., 3 Biopolis Drive, #04-11 to 17 Synapse, 138623, Singapore
| | - Kenji Adachi
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka 412-8513, Japan
| | - Hideaki Mizuno
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka 412-8513, Japan
| | - Masami Suzuki
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka 412-8513, Japan
| |
Collapse
|
42
|
Establishment of a humanized APL model via the transplantation of PML-RARA-transduced human common myeloid progenitors into immunodeficient mice. PLoS One 2014; 9:e111082. [PMID: 25369030 PMCID: PMC4219701 DOI: 10.1371/journal.pone.0111082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 09/24/2014] [Indexed: 11/19/2022] Open
Abstract
Recent advances in cancer biology have revealed that many malignancies possess a hierarchal system, and leukemic stem cells (LSC) or leukemia-initiating cells (LIC) appear to be obligatory for disease progression. Acute promyelocytic leukemia (APL), a subtype of acute myeloid leukemia characterized by the formation of a PML-RARα fusion protein, leads to the accumulation of abnormal promyelocytes. In order to understand the precise mechanisms involved in human APL leukemogenesis, we established a humanized in vivo APL model involving retroviral transduction of PML-RARA into CD34+ hematopoietic cells from human cord blood and transplantation of these cells into immunodeficient mice. The leukemia well recapitulated human APL, consisting of leukemic cells with abundant azurophilic abnormal granules in the cytoplasm, which expressed CD13, CD33 and CD117, but not HLA-DR and CD34, were clustered in the same category as human APL samples in the gene expression analysis, and demonstrated sensitivity to ATRA. As seen in human APL, the induced APL cells showed a low transplantation efficiency in the secondary recipients, which was also exhibited in the transplantations that were carried out using the sorted CD34− fraction. In order to analyze the mechanisms underlying APL initiation and development, fractionated human cord blood was transduced with PML-RARA. Common myeloid progenitors (CMP) from CD34+/CD38+ cells developed APL. These findings demonstrate that CMP are a target fraction for PML-RARA in APL, whereas the resultant CD34− APL cells may share the ability to maintain the tumor.
Collapse
|
43
|
Suzuki S, Suzuki M, Nakai M, Sembon S, Fuchimoto D, Onishi A. Transcriptional and histological analyses of the thymic developmental process in the fetal pig. Exp Anim 2014; 63:215-25. [PMID: 24770647 PMCID: PMC4160976 DOI: 10.1538/expanim.63.215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The humanized pig model, in which human cells or tissues can be functionally maintained
in pigs, can be an invaluable tool for human medical research. Although the recent
development of immunodeficient pigs has opened the door for the development of such a
model, the efficient engraftment and differentiation of human cells may be difficult to
achieve. The transplantation of human cells into fetal pigs, whose immune system is
immature, will ameliorate this problem. Therefore, we examined the development of porcine
fetal thymus, which is critical for the establishment of the immune system. We first
analyzed the levels of mRNA expression of genes that are relevant to the function of
thymic epithelial cells or thymocytes in whole thymi from 35 to 85 days of gestation (DG)
and at 2 days postpartum (DP) by quantitative RT-PCR. In addition, immunohistochemical
analyses of thymic epithelial cells from DG35 to DG55 and DP2 were performed. These
analyses showed that the thymic cortex was formed as early as DG35, and thymic medulla
gradually developed from DG45 to DG55. These findings suggested that, at least before
DG45, the thymus do not differentiate to form fully functional T cells.
Collapse
Affiliation(s)
- Shunichi Suzuki
- Transgenic Pig Research Unit, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba,Ibaraki 305-0901, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Ito R, Takahashi T, Katano I, Kawai K, Kamisako T, Ogura T, Ida-Tanaka M, Suemizu H, Nunomura S, Ra C, Mori A, Aiso S, Ito M. Establishment of a human allergy model using human IL-3/GM-CSF-transgenic NOG mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:2890-9. [PMID: 23956433 DOI: 10.4049/jimmunol.1203543] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of animal models that mimic human allergic responses is crucial to study the pathophysiology of disease and to generate new therapeutic methodologies. Humanized mice reconstituted with human immune systems are essential to study human immune reactions in vivo and are expected to be useful for studying human allergies. However, application of this technology to the study of human allergies has been limited, largely because of the poor development of human myeloid cells, especially granulocytes and mast cells, which are responsible for mediating allergic diseases, in conventional humanized mice. In this study, we developed a novel transgenic (Tg) strain, NOD/Shi-scid-IL2rγ(null) (NOG), bearing human IL-3 and GM-CSF genes (NOG IL-3/GM-Tg). In this strain, a large number of human myeloid cells of various lineages developed after transplantation of human CD34⁺ hematopoietic stem cells. Notably, mature basophils and mast cells expressing FcεRI were markedly increased. These humanized NOG IL-3/GM-Tg mice developed passive cutaneous anaphylaxis reactions when administered anti-4-hydroxy-3-nitrophenylacetyl IgE Abs and 4-hydroxy-3-nitrophenylacetyl. More importantly, a combination of serum from Japanese cedar pollinosis patients and cedar pollen extract also elicited strong passive cutaneous anaphylaxis responses in mice. Thus, to our knowledge, our NOG IL-3/GM-Tg mice are the first humanized mouse model to enable the study of human allergic responses in vivo and are excellent tools for preclinical studies of allergic diseases.
Collapse
Affiliation(s)
- Ryoji Ito
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Brehm MA, Powers AC, Shultz LD, Greiner DL. Advancing animal models of human type 1 diabetes by engraftment of functional human tissues in immunodeficient mice. Cold Spring Harb Perspect Med 2013; 2:a007757. [PMID: 22553498 DOI: 10.1101/cshperspect.a007757] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite decades of studying rodent models of type 1 diabetes (T1D), no therapy capable of preventing or curing T1D has successfully been translated from rodents to humans. This inability to translate otherwise promising therapies to clinical settings likely resides, to a major degree, from significant species-specific differences between rodent and human immune systems as well as species-related variances in islets in terms of their cellular composition, function, and gene expression. Indeed, taken collectively, these differences underscore the need to define interactions between the human immune system with human β cells. Immunodeficient mice engrafted with human immune systems and human β cells represent an interesting and promising opportunity to study these components in vivo. To meet this need, years of effort have been extended to develop mice depleted of undesirable components while at the same time, allowing the introduction of constituents necessary to recapitulate physiological settings as near as possible to human T1D. With this, these so-called "humanized mice" are currently being used as a preclinical bridge to facilitate identification and translation of novel discoveries to clinical settings.
Collapse
Affiliation(s)
- Michael A Brehm
- University of Massachusetts Medical School, Program in Molecular Medicine, Worcester, Massachusetts, USA
| | | | | | | |
Collapse
|
46
|
Aspord C, Yu CI, Banchereau J, Palucka AK. Humanized mice for the development and testing of human vaccines. Expert Opin Drug Discov 2013; 2:949-60. [PMID: 23484815 DOI: 10.1517/17460441.2.7.949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mouse models of human disease form a link between genetics and biology. However, mice and humans differ in many aspects of immune system biology. These differences might explain, in part, why many successful preclinical immunotherapy studies in mice turn out to be unsuccessful when used in clinical trials in humans. Pioneering studies in the late 1980s demonstrated the reconstitution of human lympho-hematopoietic cells in immunodeficient mice. Since this time, immunodeficient mice are being tested as hosts for human hematopoietic organs or cells in an effort to create an in vivo model of the complete human immune system. Such Humouse models could permit us to generate and test novel human vaccines.
Collapse
Affiliation(s)
- Caroline Aspord
- Baylor Institute for Immunology Research and Baylor NIAID Cooperative Center for Translational Research on Human Immunology and Biodefense, Dallas, TX75204, USA +1 214 820 7450 ; +1 214 820 4813 ;
| | | | | | | |
Collapse
|
47
|
Terahara K, Ishige M, Ikeno S, Mitsuki YY, Okada S, Kobayashi K, Tsunetsugu-Yokota Y. Expansion of activated memory CD4+ T cells affects infectivity of CCR5-tropic HIV-1 in humanized NOD/SCID/JAK3null mice. PLoS One 2013; 8:e53495. [PMID: 23301078 PMCID: PMC3534664 DOI: 10.1371/journal.pone.0053495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/29/2012] [Indexed: 12/18/2022] Open
Abstract
Humanized mice reconstituted with human hematopoietic cells have been developed as an experimental animal model for human immunodeficiency virus type 1 (HIV-1) infection. Myeloablative irradiation is usually performed to augment the engraftment of donor hematopoietic stem cells (HSCs) in recipient mice; however, some mouse strains are susceptible to irradiation, making longitudinal analysis difficult. We previously attempted to construct humanized NOD/SCID/JAK3null (hNOJ) mice, which were not irradiated prior to human HSC transplantation. We found that, over time, many of the reconstituted CD4+ T cells expanded with an activated effector memory phenotype. Therefore, the present study used hNOJ mice that were irradiated (hNOJ (IR+)) or not (hNOJ (IR−)) prior to human HSC transplantation to examine whether the development and cellularity of the reconstituted CD4+ T cells were influenced by the degree of chimerism, and whether they affected HIV-1 infectivity. Indeed, hNOJ (IR+) mice showed a greater degree of chimerism than hNOJ (IR−) mice. However, the conversion of CD4+ T cells to an activated effector memory phenotype, with a high percentage of cells showing Ki-67 expression, occurred in both hNOJ (IR+) and hNOJ (IR−) mice, probably as a result of lymphopenia-induced homeostatic expansion. Furthermore, when hNOJ (IR+) and hNOJ (IR−) mice, which were selected as naïve- and memory CD4+ T cell subset-rich groups, respectively, were infected with CCR5-tropic HIV-1 in vivo, virus replication (as assessed by the plasma viral load) was delayed; however, the titer subsequently reached a 1-log higher level in memory-rich hNOJ (IR−) mice than in naïve-rich hNOJ (IR+) mice, indicating that virus infectivity in hNOJ mice was affected by the different status of the reconstituted CD4+ T cells. Therefore, the hNOJ mouse model should be used selectively, i.e., according to the specific experimental objectives, to gain an appropriate understanding of HIV-1 infection/pathogenesis.
Collapse
Affiliation(s)
- Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Ishige
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Shota Ikeno
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
- Laboratory of Viral Infection II, Kitasato Institute for Life Science, Kitasato University, Tokyo, Japan
| | - Yu-ya Mitsuki
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Kazuo Kobayashi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | | |
Collapse
|
48
|
Systemic Human T Cell Developmental Processes in Humanized Mice Cotransplanted With Human Fetal Thymus/Liver Tissue and Hematopoietic Stem Cells. Transplantation 2012; 94:1095-102. [DOI: 10.1097/tp.0b013e318270f392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
49
|
Osteosclerosis and inhibition of human hematopoiesis in NOG mice expressing human Delta-like 1 in osteoblasts. Exp Hematol 2012; 40:953-963.e3. [DOI: 10.1016/j.exphem.2012.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 05/31/2012] [Accepted: 06/19/2012] [Indexed: 02/06/2023]
|
50
|
Scholbach J, Schulz A, Westphal F, Egger D, Wege AK, Patties I, Köberle M, Sack U, Lange F. Comparison of hematopoietic stem cells derived from fresh and cryopreserved whole cord blood in the generation of humanized mice. PLoS One 2012; 7:e46772. [PMID: 23071634 PMCID: PMC3469562 DOI: 10.1371/journal.pone.0046772] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/05/2012] [Indexed: 11/17/2022] Open
Abstract
To study the function and maturation of the human hematopoietic and immune system without endangering individuals, translational human-like animal models are needed. We compare the efficiency of CD34+ stem cells isolated from cryopreserved cord blood from a blood bank (CCB) and fresh cord blood (FCB) in generating highly engrafted humanized mice in NOD-SCID IL2Rγnull (NSG) rodents. Interestingly, the isolation of CD34+ cells from CCB results in a lower yield and purity compared to FCB. The purity of CD34+ isolation from CCB decreases with an increasing number of mononuclear cells that is not evident in FCB. Despite the lower yield and purity of CD34+ stem cell isolation from CCB compared to FCB, the overall reconstitution with human immune cells (CD45) and the differentiation of its subpopulations e.g., B cells, T cells or monocytes is comparable between both sources. In addition, independent of the cord blood origin, human B cells are able to produce high amounts of human IgM antibodies and human T cells are able to proliferate after stimulation with anti-CD3 antibodies. Nevertheless, T cells generated from FCB showed increased response to restimulation with anti-CD3. Our study reveals that the application of CCB samples for the engraftment of humanized mice does not result in less engraftment or a loss of differentiation and function of its subpopulations. Therefore, CCB is a reasonable alternative to FCB and allows the selection of specific genotypes (or any other criteria), which allows scientists to be independent from the daily changing birth rate.
Collapse
Affiliation(s)
- Johanna Scholbach
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|