1
|
Asadi G, Feizollahi P, Rajabinejad M, Falahi S, Rezaei Varmaziar F, Faryadi E, Gorgin Karaji A, Salari F, Rezaiemanesh A. Comparison of the efficacy of combined budesonide and fexofenadine versus combined fluticasone propionate and fexofenadine on the expression of class-4 semaphorins and their receptors in the peripheral blood cells of patients with allergic rhinitis. Heliyon 2024; 10:e22924. [PMID: 38148815 PMCID: PMC10750067 DOI: 10.1016/j.heliyon.2023.e22924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Background Allergic rhinitis (AR) is a common immunoglobulin (Ig) E-mediated disease. This study aimed to evaluate the gene expression levels of class 4 semaphorins and their receptors in AR patients before and after treatment with budesonide and fexofenadine (B/F) compared to fluticasone propionate and fexofenadine (FP/F). Methods In this study, 29 AR patients (age 34.4 ± 1.2 years, 18 men and 11 women) were treated with B/F, and 24 AR patients (age 32.8 ± 1.9 years, 15 men and 9 women) were treated with FP/F for one month. Before and after treatment, peripheral blood samples were taken from patients. The expression levels of SEMA4A, SEMA4C, SEMA4D, Plexin-B2, and Plexin-D1 genes were measured using the qPCR method. In addition, the serum levels of IgE were measured using an enzyme-linked immunosorbent assay (ELISA). Results The expression levels of SEMA4A (P = 0.011), 4C (P = 0.017), Plexin-B2 (P = 0.0005), and Plexin-D1 (P = 0.008) remarkably increased in AR patients treated with B/F. Our results show a significant reduction in the gene expression levels of SEMA4A (P = 0.002), 4C (P = 0.014), 4D (P = 0.003), Plexin-B2 (P = 0.033), and Plexin-D1 (P = 0.035) after treatment with FP/F. The serum levels of IgE increased in FP/F treated group (P = 0.017) and conversely decreased in the treated group with B/F (P = 0.019). Moreover, the percentages of eosinophils were reduced in both FP/F and B/F groups (P = 0.015 and P = 0.0001, respectively). Conclusion In conclusion, concomitant use of fexofenadine and fluticasone propionate reduced SEMA4A, 4C, 4D, Plexin-B2, and Plexin-D1, while the SEMA4A, 4C, Plexin-B2, and Plexin-D1 gene expression levels were increased in the patient group treated with B/F.
Collapse
Affiliation(s)
- Gelayol Asadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Feizollahi
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Misagh Rajabinejad
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sara Falahi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Rezaei Varmaziar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Faryadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Naito M, Kumanogoh A. The role of semaphorins in allergic diseases. Allergol Int 2024; 73:31-39. [PMID: 37635021 DOI: 10.1016/j.alit.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023] Open
Abstract
Semaphorins were originally identified as guidance molecules in neural development. However, accumulating evidence indicates that 'immune semaphorins' are critically involved in regulating immune cell activation, differentiation, mobility and migration. Semaphorins are also intimately associated with the pathogenesis of allergic diseases including asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, and eosinophilic chronic rhinosinusitis. Interestingly, reflecting their function in positive or negative regulation of immune cells, levels of some semaphorins are increased while others are decreased in patients with allergic diseases. This review presents the pathogenic functions of immune semaphorins in allergic inflammation and discusses the potential use of these molecules as therapeutic targets for allergic diseases.
Collapse
Affiliation(s)
- Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Osaka, Japan; Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan.
| |
Collapse
|
3
|
Mraz V, Funch AB, Jee MH, Gadsbøll ASØ, Weber JF, Yeung K, Lohmann RKD, Hawkes A, Ødum N, Woetmann A, McKay D, Witherden D, Geisler C, Bonefeld CM. CD100 boosts the inflammatory response in the challenge phase of allergic contact dermatitis in mice. Contact Dermatitis 2023; 89:442-452. [PMID: 37700557 DOI: 10.1111/cod.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Allergic contact dermatitis (ACD) is an inflammatory disease with a complex pathophysiology in which epidermal-resident memory CD8+ T (TRM ) cells play a key role. The mechanisms involved in the activation of CD8+ TRM cells during allergic flare-up responses are not understood. METHODS The expression of CD100 and its ligand Plexin B2 on CD8+ TRM cells and keratinocytes before and after allergen exposure was determined by flow cytometry and RT-qPCR. The role of CD100 in the inflammatory response during the challenge phase of ACD was determined in a model of ACD in CD100 knockout and wild-type mice. RESULTS We show that CD8+ TRM cells express CD100 during homeostatic conditions and up-regulate it following re-exposure of allergen-experienced skin to the experimental contact allergen 1-fluoro-2,4-dinitrobenzene (DNFB). Furthermore, Plexin B2 is up-regulated on keratinocytes following exposure to some contact allergens. We show that loss of CD100 results in a reduced inflammatory response to DNFB with impaired production of IFNγ, IL-17A, CXCL1, CXCL2, CXCL5, and IL-1β and decreased recruitment of neutrophils to the epidermis. CONCLUSION Our study demonstrates that CD100 is expressed on CD8+ TRM cells and is required for full activation of CD8+ TRM cells and the flare-up response of ACD.
Collapse
Affiliation(s)
- Veronika Mraz
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Anders B Funch
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology and Allergy, National Allergy Research Center, Copenhagen University Hospital Gentofte, Hellerup, Denmark
| | - Mia H Jee
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Anne-Sofie Ø Gadsbøll
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Julie F Weber
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Kelvin Yeung
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology and Allergy, National Allergy Research Center, Copenhagen University Hospital Gentofte, Hellerup, Denmark
| | - Rebecca K D Lohmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Alana Hawkes
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Niels Ødum
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Dianne McKay
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Deborah Witherden
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Bonefeld
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Zhao HD, Sun JJ, Liu HL. Potential clinical biomarkers in monitoring the severity of Hantaan virus infection. Cytokine 2023; 170:156340. [PMID: 37607412 DOI: 10.1016/j.cyto.2023.156340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Hantavirus, which causes hemorrhagic fever with renal syndrome (HFRS) is almost prevalent worldwide. While Hantaan virus (HTNV) causes the most severe form of HFRS with typical clinical manifestations of thrombocytopenia, increased vascular permeability, and acute kidney injury. Although the knowledge of the pathogenesis of HFRS is still limited, immune dysfunction and pathological damage caused by disorders of immune regulation are proposed to play a vital role in the development of the disorder, and the endothelium is considered to be the primary target of hantaviruses. Here, we reviewed the production and function of multiple molecules, mainly focusing on their role in immune response, endothelium, vascular permeability regulation, and platelet and coagulation activation which are closely related to the pathogenesis of HTNV infection. meanwhile, the relationship between these molecules and characteristics of HTNV infection including the hospital duration, immune dysfunction, thrombocytopenia, leukocytosis, and acute kidney injury are also presented, to provide a novel insight into the potential role of these molecules as monitoring markers for HTNV infection.
Collapse
Affiliation(s)
- Han-Dong Zhao
- Central Laboratory of Virology, Shaanxi Provincial Hospital of Infectious Diseases, The Eighth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ju-Jun Sun
- Clinical Laboratory Center, XD Group Hospital, Xi'an 710077, China
| | - Hong-Li Liu
- Clinical Laboratory Center, Xi'an People's Hospital (Xi'an Fourth Hospital) Guang-Ren Hospital Affiliated to Xi'an Jiaotong University Health Science Center, Xi'an 710004, China.
| |
Collapse
|
5
|
Nakamura S, Ohuchida K, Hayashi M, Katayama N, Tsutsumi C, Yamada Y, Hisano K, Okuda S, Ohtsubo Y, Iwamoto C, Torata N, Mizuuchi Y, Shindo K, Nakata K, Moriyama T, Morisaki T, Oda Y, Nakamura M. Tertiary lymphoid structures correlate with enhancement of antitumor immunity in esophageal squamous cell carcinoma. Br J Cancer 2023; 129:1314-1326. [PMID: 37604932 PMCID: PMC10575855 DOI: 10.1038/s41416-023-02396-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) are associated with a favorable prognosis in several cancers. However, the correlation between TLSs and outcomes of esophageal squamous cell carcinoma (ESCC) and the impact of TLSs on the tumor immune microenvironment (TIME) remain unknown. METHODS We pathologically evaluated the significance of TLSs in ESCC focusing on TLS maturation using 180 ESCC specimens and performed single-cell RNA sequencing (scRNA-seq) using 14 ESCC tissues to investigate functional differences of immune cells according to TLS presence. RESULTS TLS+ cases had better recurrence-free-survival (RFS) (p < 0.0001) and overall survival (OS) (p = 0.0016) compared with TLS- cases. Additionally, mature TLS+ cases had better RFS and OS compared with immature TLS+ cases (p = 0.019 and p = 0.015) and TLS- cases (p < 0.0001 and p = 0.0002). The scRNA-seq showed that CD8+ T cells in TLS+ tumors expressed high levels of cytotoxic signatures and antigen-presentation of dendritic cells (DCs) was enhanced in TLS+ tumors. Immunohistochemistry showed that the densities of tumor-infiltrating CD8+ T cells and DCs were significantly higher in TLS+ tumors than those in TLS- tumors. CONCLUSIONS These data suggest the prognostic and functional significance of TLSs in ESCC and provides new insights into TLSs on the TIME.
Collapse
Affiliation(s)
- Shoichi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Masataka Hayashi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Katayama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikanori Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoko Hisano
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sho Okuda
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiki Ohtsubo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Hematology, Clinical Immunology and Infectious Diseases, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - Nobuhiro Torata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Mizuuchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taiki Moriyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Morisaki
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Thomas R, Yang X. Semaphorins in immune cell function, inflammatory and infectious diseases. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100060. [PMID: 37645659 PMCID: PMC10461194 DOI: 10.1016/j.crimmu.2023.100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 08/31/2023] Open
Abstract
The Semaphorin family is a group of proteins studied broadly for their functions in nervous systems. They consist of eight subfamilies ubiquitously expressed in vertebrates, invertebrates, and viruses and exist in membrane-bound or secreted forms. Emerging evidence indicates the relevance of semaphorins outside the nervous system, including angiogenesis, cardiogenesis, osteoclastogenesis, tumour progression, and, more recently, the immune system. This review provides a broad overview of current knowledge on the role of semaphorins in the immune system, particularly its involvement in inflammatory and infectious diseases, including chlamydial infections.
Collapse
Affiliation(s)
- Rony Thomas
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xi Yang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Bica C, Tirpe A, Nutu A, Ciocan C, Chira S, Gurzau ES, Braicu C, Berindan-Neagoe I. Emerging roles and mechanisms of semaphorins activity in cancer. Life Sci 2023; 318:121499. [PMID: 36775114 DOI: 10.1016/j.lfs.2023.121499] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Semaphorins are regulatory molecules that are linked to the modulation of several cancer processes, such as angiogenesis, cancer cell invasiveness and metastasis, tumor growth, as well as cancer cell survival. Semaphorin (SEMA) activity depends on the cancer histotypes and their particularities. In broad terms, the effects of SEMAs result from their interaction with specific receptors/co-receptors - Plexins, Neuropilins and Integrins - and the subsequent effects upon the downstream effectors (e.g. PI3K/AKT, MAPK/ERK). The present article serves as an integrative review work, discussing the broad implications of semaphorins in cancer, focusing on cell proliferation/survival, angiogenesis, invasion, metastasis, stemness, and chemo-resistance/response whilst highlighting their heterogeneity as a family. Herein, we emphasized that semaphorins are largely implicated in cancer progression, interacting with the tumor microenvironment components. Whilst some SEMAs (e.g. SEMA3A, SEMA3B) function widely as tumor suppressors, others (e.g. SEMA3C) act as pro-tumor semaphorins. The differences observed in terms of the biological structure of SEMAs and the particularities of each cancer histotypes require that each semaphorin be viewed as a unique entity, and its roles must be researched accordingly. A more in-depth and comprehensive view of the molecular mechanisms that promote and sustain the malignant behavior of cancer cells is of utmost importance.
Collapse
Affiliation(s)
- Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Eugen S Gurzau
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 7 Pandurilor Street, Cluj-Napoca, Romania; Environmental Health Center, 58 Busuiocului Street, 400240 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| |
Collapse
|
8
|
Murakami T, Takahata Y, Hata K, Ebina K, Hirose K, Ruengsinpinya L, Nakaminami Y, Etani Y, Kobayashi S, Maruyama T, Nakano H, Kaneko T, Toyosawa S, Asahara H, Nishimura R. Semaphorin 4D induces articular cartilage destruction and inflammation in joints by transcriptionally reprogramming chondrocytes. Sci Signal 2022; 15:eabl5304. [PMID: 36318619 DOI: 10.1126/scisignal.abl5304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Proinflammatory cytokines play critical roles in the pathogenesis of joint diseases. Using a mass spectrometry-based cloning approach, we identified Semaphorin 4D (Sema4D) as an inflammatory cytokine that directly promoted cartilage destruction. Sema4d-deficient mice showed less cartilage destruction than wild-type mice in a model of rheumatoid arthritis. Sema4D induced a proinflammatory response in mouse articular chondrocytes characterized by the induction of proteolytic enzymes that degrade cartilage, such as matrix metalloproteinases (MMPs) and aggrecanases. The activation of Mmp13 and Mmp3 expression in articular chondrocytes by Sema4D did not depend on RhoA, a GTPase that mediates Sema4D-induced cytoskeletal rearrangements. Instead, it required NF-κB signaling and Ras-MEK-Erk1/2 signaling downstream of the receptors Plexin-B2 and c-Met and depended on the transcription factors IκBζ and C/EBPδ. Genetic and pharmacological blockade of these Sema4D signaling pathways inhibited MMP induction in chondrocytes and cartilage destruction in femoral head organ culture. Our results reveal a mechanism by which Sema4D signaling promotes cartilage destruction.
Collapse
Affiliation(s)
- Tomohiko Murakami
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Yoshifumi Takahata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Kosuke Ebina
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Katsutoshi Hirose
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Lerdluck Ruengsinpinya
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Yuri Nakaminami
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Yuki Etani
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Sachi Kobayashi
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Takashi Maruyama
- Mucosal Immunology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20895, USA
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan
| | - Takehito Kaneko
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate 020-8551, Japan
| | - Satoru Toyosawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Shoda J, Tanaka S, Etori K, Hattori K, Kasuya T, Ikeda K, Maezawa Y, Suto A, Suzuki K, Nakamura J, Maezawa Y, Takemoto M, Betsholtz C, Yokote K, Ohtori S, Nakajima H. Semaphorin 3G exacerbates joint inflammation through the accumulation and proliferation of macrophages in the synovium. Arthritis Res Ther 2022; 24:134. [PMID: 35659346 PMCID: PMC9166515 DOI: 10.1186/s13075-022-02817-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Objectives Methotrexate (MTX) is an anchor drug for the treatment of rheumatoid arthritis (RA). However, the precise mechanisms by which MTX stalls RA progression and alleviates the ensuing disease effects remain unknown. The aim of the present study was to identify novel therapeutic target molecules, the expression patterns of which are affected by MTX in patients with RA. Methods CD4+ T cells from 28 treatment-naïve patients with RA before and 3 months after the initiation of MTX treatment were subjected to DNA microarray analyses. The expression levels of semaphorin 3G, a differentially expressed gene, and its receptor, neuropilin-2, were evaluated in the RA synovium and collagen-induced arthritis synovium. Collagen-induced arthritis and collagen antibody-induced arthritis were induced in semaphorin3G-deficient mice and control mice, and the clinical score, histological score, and serum cytokines were assessed. The migration and proliferation of semaphorin 3G-stimulated bone marrow-derived macrophages were analyzed in vitro. The effect of local semaphorin 3G administration on the clinical score and number of infiltrating macrophages during collagen antibody-induced arthritis was evaluated. Results Semaphorin 3G expression in CD4+ T cells was downregulated by MTX treatment in RA patients. It was determined that semaphorin 3G is expressed in RA but not in the osteoarthritis synovium; its receptor neuropilin-2 is primarily expressed on activated macrophages. Semaphorin3G deficiency ameliorated collagen-induced arthritis and collagen antibody-induced arthritis. Semaphorin 3G stimulation enhanced the migration and proliferation of bone marrow-derived macrophages. Local administration of semaphorin 3G deteriorated collagen antibody-induced arthritis and increased the number of infiltrating macrophages. Conclusions Upregulation of semaphorin 3G in the RA synovium is a novel mechanism that exacerbates joint inflammation, leading to further deterioration, through macrophage accumulation.
Collapse
Affiliation(s)
- Jumpei Shoda
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keishi Etori
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koto Hattori
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tadamichi Kasuya
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kei Ikeda
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuko Maezawa
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Junichi Nakamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology, and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Minoru Takemoto
- Department of Endocrinology, Hematology, and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare, Narita, Japan
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Uppsala, Sweden
| | - Koutaro Yokote
- Department of Endocrinology, Hematology, and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
10
|
Nakanishi Y, Kang S, Kumanogoh A. Crosstalk between axon guidance signaling and bone remodeling. Bone 2022; 157:116305. [PMID: 34973495 DOI: 10.1016/j.bone.2021.116305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 01/04/2023]
Abstract
The maintenance of skeletal integrity is tightly regulated by two cell types, bone forming osteoblasts and bone resorbing osteoclasts. Although the role of the nervous system in regulating osteoblasts and osteoclasts was identified over a decade ago, the molecular mechanism of skeletal-neural interactions in bone homeostasis has only been studied recently. In particular, the complex roles of axon guidance molecules, such as semaphorins and ephrins, in the bone have been studied extensively. In this review, we highlight the latest advances in determining the functions of semaphorins and ephrins in the establishment and maintenance of the skeletal system, with a focus on the functional interaction between the skeletal and nervous systems.
Collapse
Affiliation(s)
- Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita City, Osaka 565-0871, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita City, Osaka 565-0871, Japan
| | - Sujin Kang
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita City, Osaka 565-0871, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita City, Osaka 565-0871, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
11
|
McGraw JM, Witherden DA. γδ T cell costimulatory ligands in antitumor immunity. EXPLORATION OF IMMUNOLOGY 2022; 2:79-97. [PMID: 35480230 PMCID: PMC9041367 DOI: 10.37349/ei.2022.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Antitumor immunity relies on the ability of T cells to recognize and kill tumor targets. γδ T cells are a specialized subset of T cells that predominantly localizes to non-lymphoid tissue such as the skin, gut, and lung where they are actively involved in tumor immunosurveillance. γδ T cells respond to self-stress ligands that are increased on many tumor cells, and these interactions provide costimulatory signals that promote their activation and cytotoxicity. This review will cover costimulatory molecules that are known to be critical for the function of γδ T cells with a specific focus on mouse dendritic epidermal T cells (DETC). DETC are a prototypic tissue-resident γδ T cell population with known roles in antitumor immunity and are therefore useful for identifying mechanisms that may control activation of other γδ T cell subsets within non-lymphoid tissues. This review concludes with a brief discussion on how γδ T cell costimulatory molecules can be targeted for improved cancer immunotherapy.
Collapse
Affiliation(s)
- Joseph M. McGraw
- 1Department of Biology, Calibr at The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Deborah A. Witherden
- 2Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Danchenko IY, Baidina TV, Kuklina EM, Trushnikova TN, Nekrasova IV. [Relapsing-remitting multiple sclerosis: clinical and immunological aspects of the pathology on the example of molecules Sema4D and CD72]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:75-81. [PMID: 34387451 DOI: 10.17116/jnevro202112107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To study the expression of Sema4D (CD100), receptor CD72 and a role of Sema4D-CD72-dependent signal in the control of the functions of immunocompetent cells in relapsing-remitting multiple sclerosis (RRMS). MATERIAL AND METHODS We studied 76 patients, including 52 with RRMS (41 in remission and 11 in exacerbation), 35 women (67.3%) and 17 men (32.7%) aged 18-55 years, who did not receive disease-modifying drugs, and 24 healthy donors. A controlled clinical and immunological examination of patients with RRMS was carried out proving the involvement of the Sema4D molecule and its CD72 receptor in pathological reactions in this autoimmune disease. RESULTS AND CONCLUSION The use of SemaD as a target in the treatment of RRMS is scientifically substantiated. In case of a positive decision on the use of anti-Sema4D drugs, it will be necessary to take into account the effects of semaphorin not only in the central nervous system, but also in the immune system of patients with RRMS.
Collapse
Affiliation(s)
| | - T V Baidina
- Vagner Perm State Medical University, Perm, Russia
| | - E M Kuklina
- Institute of Ecology and Genetics of Microorganisms - Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | | | - I V Nekrasova
- Institute of Ecology and Genetics of Microorganisms - Ural Branch of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
13
|
The emerging roles of semaphorin4D/CD100 in immunological diseases. Biochem Soc Trans 2021; 48:2875-2890. [PMID: 33258873 DOI: 10.1042/bst20200821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 02/05/2023]
Abstract
In vertebrates, the semaphorin family of proteins is composed of 21 members that are divided into five subfamilies, i.e. classes 3 to 7. Semaphorins play crucial roles in regulating multiple biological processes, such as neural remodeling, tissue regeneration, cancer progression, and, especially, in immunological regulation. Semaphorin 4D (SEMA4D), also known as CD100, is an important member of the semaphorin family and was first characterized as a lymphocyte-specific marker. SEMA4D has diverse effects on immunologic processes, including immune cell proliferation, differentiation, activation, and migration, through binding to its specific membrane receptors CD72, PLXNB1, and PLXNB2. Furthermore, SEMA4D and its underlying signaling have been increasingly linked with several immunological diseases. This review focuses on the significant immunoregulatory role of SEMA4D and the associated underlying mechanisms, as well as the potential application of SEMA4D as a diagnostic marker and therapeutic target for the treatment of immunological diseases.
Collapse
|
14
|
Nakanishi Y, Kang S, Kumanogoh A. Neural guidance factors as hubs of immunometabolic crosstalk. Int Immunol 2021; 33:749-754. [PMID: 34174067 PMCID: PMC8633672 DOI: 10.1093/intimm/dxab035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 11/14/2022] Open
Abstract
Semaphorins were originally identified as axon-guidance molecules essential for neural development. In addition to their functions in the neural system, members of the semaphorin family have critical functions in many pathophysiological processes, including immune responses, bone homeostasis, cancer and metabolic disorders. In particular, several lines of evidence indicate that mammalian/mechanistic target of rapamycin (mTOR), a central regulator of cell metabolism, regulates the functions of semaphorins in various types of cells, revealing a novel link between semaphorins and cell metabolism. In this review, we discuss recent advances in the immunometabolic functions of semaphorins, with a particular focus on mTOR signaling.
Collapse
Affiliation(s)
- Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita City, Osaka 565-0871, Japan.,Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita City, Osaka 565-0871, Japan
| | - Sujin Kang
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita City, Osaka 565-0871, Japan.,Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Lu Q, Cai P, Yu Y, Liu Z, Chen G, Zeng Z. Sema4D correlates with tumour immune infiltration and is a prognostic biomarker in bladder cancer, renal clear cell carcinoma, melanoma and thymoma. Autoimmunity 2021; 54:294-302. [PMID: 33974462 DOI: 10.1080/08916934.2021.1925885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sema4D, a member of the immune semaphorin family, plays crucial roles in the immune regulation, bone resorption and nervous system. It is also involved in angiogenesis and tumour progression. However, systemic studies on the correlation between Sema4D expression and the immune infiltration or clinical outcomes in tumours are still limited. Here, we analysed the landscape of Sema4D expression and its prognostic value in the cancer genome atlas pan-cancer as well as the correlation between Sema4D and immune cell infiltration by Tumour Immune Estimation Resource and Gene Expression Profiling interactive analysis online tools. Results showed that a higher Sema4D expression was significantly correlated with a favourable overall survival in diverse solid tumours including bladder cancer (Hazards Ratio (HR)=0.68, p = .0095), kidney renal clear cell carcinoma (HR = 0.61, p = .0016), melanoma (HR = 0.58, p = 6.6e-05) and thymoma (HR = 0.1, p = .011). Interestingly, Sema4D expression has positive correlation with various tumour infiltrating immune cells and immune cell biomarkers in these tumours. These results suggest that Sema4D could be a prospective biomarker for calculating hazard ratio of tumour patients and their tumour immune infiltration levels.
Collapse
Affiliation(s)
- Qiongyu Lu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology of Jiangsu Province, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Ping Cai
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yan Yu
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ziting Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology of Jiangsu Province, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Guona Chen
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology of Jiangsu Province, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Zhao Zeng
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
16
|
Clark IC, Gutiérrez-Vázquez C, Wheeler MA, Li Z, Rothhammer V, Linnerbauer M, Sanmarco LM, Guo L, Blain M, Zandee SEJ, Chao CC, Batterman KV, Schwabenland M, Lotfy P, Tejeda-Velarde A, Hewson P, Manganeli Polonio C, Shultis MW, Salem Y, Tjon EC, Fonseca-Castro PH, Borucki DM, Alves de Lima K, Plasencia A, Abate AR, Rosene DL, Hodgetts KJ, Prinz M, Antel JP, Prat A, Quintana FJ. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 2021; 372:372/6540/eabf1230. [PMID: 33888612 DOI: 10.1126/science.abf1230] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/27/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
Cell-cell interactions control the physiology and pathology of the central nervous system (CNS). To study astrocyte cell interactions in vivo, we developed rabies barcode interaction detection followed by sequencing (RABID-seq), which combines barcoded viral tracing and single-cell RNA sequencing (scRNA-seq). Using RABID-seq, we identified axon guidance molecules as candidate mediators of microglia-astrocyte interactions that promote CNS pathology in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis (MS). In vivo cell-specific genetic perturbation EAE studies, in vitro systems, and the analysis of MS scRNA-seq datasets and CNS tissue established that Sema4D and Ephrin-B3 expressed in microglia control astrocyte responses via PlexinB2 and EphB3, respectively. Furthermore, a CNS-penetrant EphB3 inhibitor suppressed astrocyte and microglia proinflammatory responses and ameliorated EAE. In summary, RABID-seq identified microglia-astrocyte interactions and candidate therapeutic targets.
Collapse
Affiliation(s)
- Iain C Clark
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Bioengineering, University of California, Berkeley, California Institute for Quantitative Biosciences, Berkeley, CA 94720, USA
| | - Cristina Gutiérrez-Vázquez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mathias Linnerbauer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Liliana M Sanmarco
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lydia Guo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Manon Blain
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Stephanie E J Zandee
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Chun-Cheih Chao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Katelyn V Batterman
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marius Schwabenland
- Institute of Neuropathology, University of Freiburg, D-79106 Freiburg, Germany
| | - Peter Lotfy
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amalia Tejeda-Velarde
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Hewson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Carolina Manganeli Polonio
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael W Shultis
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yasmin Salem
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Emily C Tjon
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro H Fonseca-Castro
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Davis M Borucki
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kalil Alves de Lima
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Agustin Plasencia
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kevin J Hodgetts
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, D-79106 Freiburg, Germany.,Signaling Research Centres BIOSS and CIBSS, University of Freiburg, D-79106 Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
17
|
Abstract
Semaphorin 4D (Sema4D) is a classic member of the semaphorin family involved in axonal guidance processes. The key effects of Sema4D in neurons are mediated by high affinity plexin receptors and are associated with cytoskeleton rearrangement, leading to growth cone collapse or regulation of cell migration. Along with this, the semaphorin is widely represented in the immune system and has a pronounced immunoregulatory activity. The involvement of Sema4D in the control of immune cell migration was shown almost twenty years ago, in one of the first studies of semaphorin. The emergence of such work was quite predictable, since the most well-known effects of Sema4D outside the immune system were associated precisely with the control of cell motility. However, after identification of CD72 as a specific Sema4D receptor in the immune system, studies of the immunoregulatory activity of semaphorin focused on its CD72-dependent effects unrelated to cytoskeleton rearrangement, and this trend continues up to now. Nevertheless, a number of recent studies demonstrating the presence of plexin receptors for Sema4D in the immune system forces us to return to the question of whether this semaphorin can play its classic role of a guidance molecule in relation to immune cells too. The review discusses Sema4D involvement in the control of immune cell migration, as well as the mechanisms of these effects and their potential contribution to the development and function of immune system.
Collapse
Affiliation(s)
- Elena Kuklina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
18
|
The role of immune semaphorins in the pathogenesis of multiple sclerosis: Potential therapeutic targets. Int Immunopharmacol 2021; 95:107556. [PMID: 33756227 DOI: 10.1016/j.intimp.2021.107556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022]
Abstract
The immune and nervous systems possess a highly intricate network of synaptic connections, shared messenger molecules, and exquisite communication ways, allowing intercellular signal transduction. The semaphorins (Semas) were initially identified as axonal guidance molecules in the development of the nervous system but later were found to be implicated also in regulating the immune system, known in this case as the "immune Semas" or "immunoregulatory Semas". Increasingly, these molecules are involved in multiple aspects of both physiological and pathological immune responses and were recently indicated to take part in various immunological disorders, encompassing allergy, cancer, and autoimmunity. Semas transduce signals by connecting to their cognate receptors, namely, plexins and neuropilins. Some of them, like Sema-3F, have been found to function as the inducer of the remyelination process whereas some others, like Sema-3A and Sema-4D, act to inhibit this process, either directly or indirectly. Besides, Sema-4A is crucial to the differentiation of T helper type 1 (Th1) and Th17 cells that are potentially involved in the pathogenesis of multiple sclerosis (MS), an autoimmune disease of the central nervous system. This review aims to reveal the role of immune Semas in the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis, focusing on the therapeutic usages of these molecules to treat this neurodegenerative disease.
Collapse
|
19
|
Zhang DN, Liu Y, Li X, Gao Y, Xi FY, Li Y, Zhu GZ. Imbalance Between Soluble and Membrane-Bound CD100 Regulates Monocytes Activity in Hepatitis B Virus-Associated Acute-on-Chronic Liver Failure. Viral Immunol 2021; 34:273-283. [PMID: 33646067 DOI: 10.1089/vim.2020.0311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CD100 is an important immune semaphorin that is a secreted and membrane bound protein involved in infectious diseases. However, CD100 expression profile and the regulation to innate immune system in hepatitis B virus (HBV)-associated acute-on-chronic liver failure (ACLF) was not previously reported. The aim of this study was to investigate CD100 level and modulatory function of CD100 to CD14+ monocytes in HBV-ACLF patients. Plasma-soluble CD100 (sCD100) level and membrane-bound CD100 (mCD100) expression on peripheral CD14+ monocytes was analyzed in HBV-ACLF patients. CD14+ monocytes-induced cytotoxicity and CD14+ monocytes-mediated T cell activation in response to CD100 stimulation was also assessed in direct and indirect contact coculture culture systems. HBV-ACLF patients had lower plasma sCD100 and higher mCD100 level on CD14+ monocytes compared with asymptomatic HBV carriers, chronic hepatitis B patients, and controls. CD14+ monocytes from HBV-ACLF patients induced limited target Huh7.5 cell death and secreted less interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and granzyme B in both direct and indirect contact coculture systems compared with controls. Recombinant sCD100 not only enhanced CD14+ monocytes-mediated Huh7.5 cell death and granzyme B secretion, but it also elevated CD14+ monocytes-induced IFN-γ/interleukin-17 production by CD4+ T cells as well as IFN-γ/TNF-α secretion by CD8+ T cells in HBV-ACLF patients. The current data indicated that severe inflammation induced sCD100/mCD100 imbalance to inactivate CD14+ monocytes response, which might be beneficial for the survival of HBV-ACLF patients.
Collapse
Affiliation(s)
- Dong-Na Zhang
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Ye Liu
- Intensive Care Unit, 964th Hospital of PLA, Changchun, China
| | - Xue Li
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Ying Gao
- Department of Hematology, Shaanxi Provincial People's Hospital and the Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Feng-Yu Xi
- Department of Clinical Laboratory Medicine, and Shaanxi Provincial People's Hospital and the Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yu Li
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital and the Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Guang-Ze Zhu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
20
|
Song Y, Wang L, Zhang L, Huang D. The involvement of semaphorin 7A in tumorigenic and immunoinflammatory regulation. J Cell Physiol 2021; 236:6235-6248. [PMID: 33611799 DOI: 10.1002/jcp.30340] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/12/2021] [Accepted: 02/05/2021] [Indexed: 02/04/2023]
Abstract
Semaphorins, a large group of highly conserved proteins, consist of eight subfamilies that are widely expressed in vertebrates, invertebrates, and viruses and exist in membrane-bound or secreted forms. First described as axon guidance cues during neurogenesis, semaphorins also perform physiological functions in other organ systems, such as bone homeostasis, immune response, and tumor progression. Semaphorin 7A (SEMA7A), also known as CDw108, is an immune semaphorin that modulates diverse immunoinflammatory processes, including immune cell interactions, inflammatory infiltration, and cytokine production. In addition, SEMA7A regulates the proliferation, migration, invasion, lymph formation, and angiogenesis of multiple types of tumor cells, and these effects are mediated by the interaction of SEMA7A with two specific receptors, PLXNC1 and integrins. Thus, SEMA7A is intimately related to the pathogenesis of multiple autoimmune and inflammation-related diseases and tumors. This review focuses on the role of SEMA7A in the pathogenesis of autoimmune disorders, inflammatory diseases, and tumors, as well as the underlying mechanisms. Furthermore, strategies targeting SEMA7A as a potential predictive, diagnostic, and therapeutic agent for these diseases are also addressed.
Collapse
Affiliation(s)
- Yao Song
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lan Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Kuklina E, Nekrasova I, Glebezdina N. Signaling from membrane semaphorin 4D in T lymphocytes. Mol Immunol 2020; 129:56-62. [PMID: 32948333 DOI: 10.1016/j.molimm.2020.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022]
Abstract
Semaphorin 4D (Sema4D) is widely represented in the immune system in both membrane and soluble form, and controls immune processes through the specific receptors - these are generally accepted views. Here, an alternative way of Sema4D-dependent immunoregulation is presented, suggesting its functioning as a receptor. We have shown that activation of membrane Sema4D induces phosphorylation of Lck/ZAP-70 in intact T lymphocytes and enhances it in stimulated T cells. Since Sema4D is constitutively presented on the membrane of T lymphocytes, and classical Sema4D receptors are highly expressed by antigen-presenting cells, the membrane Sema4D can serve as an obligate costimulatory molecule in T lymphocyte priming or T-dependent B cell activation.
Collapse
Affiliation(s)
- Elena Kuklina
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081, Perm, Russia.
| | - Irina Nekrasova
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081, Perm, Russia
| | - Natalia Glebezdina
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081, Perm, Russia
| |
Collapse
|
22
|
Yang Y, Chen J, Tang M, Yi C, Gao W, Bai X, Li Z, Yang F. Low levels of CD72 and CD100 expression on circulating lymphocytes in immunosuppressive phase of sepsis is associated with mortality in septic patients. J Intensive Care 2020. [DOI: 10.1186/s40560-020-00486-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Background
Despite improvements in antimicrobial therapy and supportive care, sepsis is still a major public health issue. Recently, CD100 and its receptor in the immune system CD72 were shown to play a major role in immune regulation. The purpose of this study was to investigate the expression and clinical correlations of CD72 and CD100 on circulating lymphocytes of septic patients.
Methods
In total, 24 healthy controls and 54 septic patients were enrolled in this study. Considering the focus of the current study was on the immunosuppressive phase of sepsis, blood samples of patients were collected at days 3–4 after the onset of sepsis. The levels of CD72 and CD100 expression on circulating lymphocytes were measured by flow cytometry and serum IL-6, IL-10, and immunoglobulin M levels were determined by enzyme-linked immunosorbent assay.
Results
Our results showed that the levels of CD100 expression on T cells and CD72 expression on B cells were significantly lower in septic patients. Similarly, a significant decrease in the expression levels of CD72 and CD100 was observed in non-survivors compared with survivors. In addition, the reduction of immunoglobulin M levels and lymphocyte counts were correlated with the low CD72 and CD100 expression levels. Multivariate logistic regression analysis showed that the percentage of CD100+/CD8+ T cells and CD72+/CD19+ B cells were independent predictors of 28-day mortality in septic patients. Simultaneously, the receiver operating characteristic curve analysis showed that the combination of the percentage of CD100+/CD8+ T cells and sequential organ failure assessment score had the best predictive value of mortality risk.
Conclusions
Our study demonstrated that the decrease of the levels of CD72 and CD100 expression on circulating lymphocytes after 3–4 days of sepsis had a close correlation of the 28-day mortality of septic patients. Thus, CD72 and CD100 are promising biomarkers for assessing the prognosis of patients with sepsis.
Trial registration
Peripheral blood lymphocytes analysis detects CD72 and CD100 alteration in trauma patients; ChiCTR1900026367; Registered 4 October 2019; http://www.chictr.org.cn.
Collapse
|
23
|
Fard D, Tamagnone L. Semaphorins in health and disease. Cytokine Growth Factor Rev 2020; 57:55-63. [PMID: 32900601 DOI: 10.1016/j.cytogfr.2020.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 11/18/2022]
Abstract
Cell-cell communication is pivotal to guide embryo development, as well as to maintain adult tissues homeostasis and control immune response. Among extracellular factors responsible for this function, are the Semaphorins, a broad family of around 20 different molecular cues conserved in evolution and widely expressed in all tissues. The signaling cascades initiated by semaphorins depend on a family of conserved receptors, called Plexins, and on several additional molecules found in the receptor complexes. Moreover, multiple intracellular pathways have been described to act downstream of semaphorins, highlighting significant diversity in the signaling cascades controlled by this family. Notably, semaphorin expression is altered in many human diseases, such as immunopathologies, neurodegenerative diseases and cancer. This underscores the importance of semaphorins as regulatory factors in the tissue microenvironment and has prompted growing interest for assessing their potential relevance in medicine. This review article surveys the main contexts in which semaphorins have been found to regulate developing and healthy adult tissues, and the signaling cascades implicated in these functions. Vis a vis, we will highlight the main pathological processes in which semaphorins are thought to have a role thereof.
Collapse
Affiliation(s)
- Damon Fard
- University of Torino School of Medicine, Torino, Italy
| | - Luca Tamagnone
- Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| |
Collapse
|
24
|
Vandereyken M, James OJ, Swamy M. Mechanisms of activation of innate-like intraepithelial T lymphocytes. Mucosal Immunol 2020; 13:721-731. [PMID: 32415229 PMCID: PMC7434593 DOI: 10.1038/s41385-020-0294-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 02/04/2023]
Abstract
Intraepithelial T lymphocytes (T-IEL) contain subsets of innate-like T cells that evoke innate and adaptive immune responses to provide rapid protection at epithelial barrier sites. In the intestine, T-IEL express variable T cell antigen receptors (TCR), with unknown antigen specificities. Intriguingly, they also express multiple inhibitory receptors, many of which are normally found on exhausted or antigen-experienced T cells. This pattern suggests that T-IEL are antigen-experienced, yet it is not clear where, and in what context, T-IEL encounter TCR ligands. We review recent evidence indicating TCR antigens for intestinal innate-like T-IEL are found on thymic or intestinal epithelium, driving agonist selection of T-IEL. We explore the contributions of the TCR and various co-stimulatory and co-inhibitory receptors in activating T-IEL effector functions. The balance between inhibitory and activating signals may be key to keeping these highly cytotoxic, rapidly activated cells in check, and key to harnessing their immune surveillance potential.
Collapse
Affiliation(s)
- Maud Vandereyken
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Olivia J James
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Mahima Swamy
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
25
|
Wang HM, Zhang XH, Ye LQ, Zhang K, Yang NN, Geng S, Chen J, Zhao SX, Yang KL, Fan FF. Insufficient CD100 shedding contributes to suppression of CD8 + T-cell activity in non-small cell lung cancer. Immunology 2020; 160:209-219. [PMID: 32149403 DOI: 10.1111/imm.13189] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
CD100 is an immune semaphorin constitutively expressed on T-cells. Matrix metalloproteinase (MMP) is an important mediator of membrane-bound CD100 (mCD100) cleavage to generate soluble CD100 (sCD100), which has immunoregulatory activity in immune cell responses. The aim of the study was to investigate the level and role of sCD100 and mCD100 in modulating CD8+ T-cell function in non-small cell lung cancer (NSCLC). sCD100 and MMP-14 levels in the serum and bronchoalveolar lavage fluid (BALF), and mCD100 expression on peripheral and lung-resident CD8+ T-cells were analysed in NSCLC patients. The ability to induce sCD100 and the effect of MMP-14 on mCD100 shedding for the regulation of non-cytolytic and cytolytic functions of CD8+ T-cells were also analysed in direct and indirect contact co-culture systems. NSCLC patients had lower serum sCD100 and higher mCD100 levels on CD8+ T-cells compared with healthy controls. BALF from the tumour site also had decreased sCD100 and increased mCD100 on CD8+ T-cells compared with the non-tumour site. Recombinant CD100 stimulation enhanced non-cytolytic and cytolytic functions of CD8+ T-cells from NSCLC patients, whereas blockade of CD100 receptor CD72 attenuated CD8+ T-cell activity. NSCLC patients had lower MMP-14 in the serum and in BALF from the tumour site. Recombinant MMP-14 mediated mCD100 shedding from CD8+ T-cell membrane, and led to promotion of CD8+ T-cell response in NSCLC patients. Overall, decreased MMP-14 resulted in insufficient CD100 shedding, leading to suppression of peripheral and lung-resident CD8+ T-cell activity in NSCLC.
Collapse
Affiliation(s)
- Hong-Min Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Hong Zhang
- Department of Respiratory Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Li-Qun Ye
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning-Ning Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shen Geng
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shun-Xin Zhao
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kang-Li Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei-Fei Fan
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Rajabinejad M, Asadi G, Ranjbar S, Afshar Hezarkhani L, Salari F, Gorgin Karaji A, Rezaiemanesh A. Semaphorin 4A, 4C, and 4D: Function comparison in the autoimmunity, allergy, and cancer. Gene 2020; 746:144637. [PMID: 32244055 DOI: 10.1016/j.gene.2020.144637] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 01/02/2023]
Abstract
Semaphorins are a group of proteins that are divided into eight subclasses and identified by a conserved Sema domain on their carboxyl terminus. Sema4A, 4C, and 4D are the members of the fourth class of semaphorin family, which are known as membrane semaphorins; however, these molecules can be altered to soluble semaphorins by proteolytic cleavage. Semaphorins have various roles in the immune, nervous, and metabolic systems. In the immune system, these molecules contribute to the formation of cellular, humoral, and innate immune responses, such as inflammation, leukocyte migration, immunological synapse formation, and germinal center events. Given the diverse roles of semaphorins in the immune system, in this review, we have tried to give a comprehensive look at the role of these molecules in autoimmunity, allergy, and cancer. Sema4D and 4A seem to play a critical role in the pathogenesis of some autoimmune diseases, such as multiple sclerosis. In contrast, it has been shown that Sema4A and 4C have beneficial effects on allergies, and their absence can exacerbate the severity of the disease. In the case of cancer, an increase in all three of these molecules has been reported. Sema4D and 4C can contribute to tumor progression in human patients or experimental models, while the role of Sema4A has not yet been fully understood. In conclusion, semaphorins seem to be a favorable therapeutic target for autoimmune diseases and allergies. However, in cancer, studies have not yet been able to identify the exact role of semaphorins, and further studies are needed.
Collapse
Affiliation(s)
- Misagh Rajabinejad
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelayol Asadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Ranjbar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Afshar Hezarkhani
- Department of Neurology, Farabi Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
27
|
Iragavarapu-Charyulu V, Wojcikiewicz E, Urdaneta A. Semaphorins in Angiogenesis and Autoimmune Diseases: Therapeutic Targets? Front Immunol 2020; 11:346. [PMID: 32210960 PMCID: PMC7066498 DOI: 10.3389/fimmu.2020.00346] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/12/2020] [Indexed: 01/17/2023] Open
Abstract
The axonal guidance molecules, semaphorins, have been described to function both physiologically and pathologically outside of the nervous system. In this review, we focus on the vertebrate semaphorins found in classes 3 through 7 and their roles in vascular development and autoimmune diseases. Recent studies indicate that while some of these vertebrate semaphorins promote angiogenesis, others have an angiostatic function. Since some semaphorins are also expressed by different immune cells and are known to modulate immune responses, they have been implicated in autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. We conclude this review by addressing strategies targeting semaphorins as potential therapeutic agents for angiogenesis and autoimmune diseases.
Collapse
Affiliation(s)
| | - Ewa Wojcikiewicz
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Alexandra Urdaneta
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
28
|
Xiao C, Luo Y, Zhang C, Zhu Z, Yang L, Qiao H, Fu M, Wang G, Yao X, Li W. Negative regulation of dendritic cell activation in psoriasis mediated via CD100-plexin-B2. J Pathol 2020; 250:409-419. [PMID: 31943215 DOI: 10.1002/path.5383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/20/2019] [Accepted: 01/10/2020] [Indexed: 12/25/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease in which dendritic cells (DCs) play a pivotal role by inducing Th1/Th17 immune responses; however, the regulation of DC activation in psoriasis remains largely unknown. Previously we found that the level of soluble CD100 was increased in sera of psoriasis patients, and CD100 promoted the activation of inflammasome in keratinocytes. In the present study, CD100 knockout mice were utilized for generation of imiquimod (IMQ)-induced psoriatic dermatitis, with the result that skin inflammation in the early, but not late, phase of the psoriatic dermatitis was significantly exacerbated compared to that in wild-type controls. This was attributed mainly to the deficiency of CD100 in hematopoietic cells. Bone marrow-derived DCs, but not T cells or keratinocytes, from CD100 knockout mice produced significantly increased levels of IL-1β, IL-36, and IL-23 upon stimulation with IMQ in a plexin-B2-dependent manner. Moreover, the surface level of plexin-B2 on DCs of psoriasis patients was lower than that of healthy individuals, and CD100 attenuated IMQ-induced production of IL-1β and IL-36 from monocyte-derived DCs of psoriasis patients. Our results uncovered a negative regulatory mechanism for DCs activation in psoriasis, which was mediated via CD100-plexin-B2 in a cell type- and receptor-specific manner. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chunying Xiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yang Luo
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Chen Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Luting Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Xu Yao
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Wei Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China.,Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
29
|
Danchenko IY, Baidina TV, Kuklina EM, Trushnikova TN, Nekrasova IV. [Relapsing-remitting multiple sclerosis: clinical and immunological aspects of the pathology on the example Sema4D and CD72]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:63-71. [PMID: 31934990 DOI: 10.17116/jnevro20191191063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To explore the expression of Sema4D, CD72 receptor and a role of Sema4D-CD72 signal in the control of immunocompetent cell function in remitting-relapsing multiple sclerosis (RRMS). MATERIAL AND METHODS Fifty-two patients with RRMS diagnosis according to 2010 revised McDonald's criteria were studied. The control group included 24 healthy people. A flow cytometry method was used to measure the expression of semaphorin Sema4D by T-lymphocytes of peripheral blood, expression of CD72 receptor by B-lymphocytes, percentage of cells containing pro- and anti-inflammatory cytokines. The level of soluble Sema4D (sSema4D) was evaluated by ELISA. RESULTS The level of Sema4D expression on T-lymphocytes (Mean Fluorescence Intensity - MFI) prevailed in cell subpopulations in patients with RRMS compared with the control group. Characteristics of membrane and sSema4D correlate with clinical presentations of the autoimmune disease. An increase in sSema4D level during cell cultivation was identified in RRMS patients. The results show the involvement of Sema4D in the hyperactivation of B-cell-mediated immunity through CD72 receptor and induction of proinflammatory cytokine synthesis. CONCLUSION RRMS is associated with elevated expression of Sema4D in the immune system. Membrane and sSema4D involved in the pathological process in RRMS. The authors suggest several mechanisms of the involvement of semaphorin and its receptor in the pathogenesis of RRMS: the direct damage of nervous tissues by sSema4D penetrated through the blood brain barrier disrupted in RRMS or by membrane Sema4D due to the infiltration of the central nervous system by T-lymphocytes and hyperactivation of B-cell-mediated immunity.
Collapse
Affiliation(s)
| | - T V Baidina
- E.A. Vagner Perm State Medical University, Perm, Russia
| | - E M Kuklina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | | | - I V Nekrasova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
30
|
Tsuda T, Nishide M, Maeda Y, Hayama Y, Koyama S, Nojima S, Takamatsu H, Okuzaki D, Morita T, Nakatani T, Kato Y, Nakanishi Y, Futami Y, Suga Y, Naito Y, Konaka H, Satoh S, Naito M, Izumi M, Obata S, Nakatani A, Shikina T, Takeda K, Hayama M, Inohara H, Kumanogoh A. Pathological and therapeutic implications of eosinophil-derived semaphorin 4D in eosinophilic chronic rhinosinusitis. J Allergy Clin Immunol 2020; 145:843-854.e4. [PMID: 32035658 DOI: 10.1016/j.jaci.2019.12.893] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Eosinophilic chronic rhinosinusitis (ECRS) is a subtype of chronic rhinosinusitis. Clinical markers for ECRS disease activity and treatment strategies have not been sufficiently established. Although semaphorins are originally identified as neuronal guidance factors, it is becoming clear that they play key roles in immune regulation and inflammatory diseases. OBJECTIVE We sought to investigate the pathological functions and therapeutic potential of semaphorin 4D (SEMA4D) in ECRS. METHODS Serum soluble SEMA4D levels in patients with paranasal sinus diseases were measured by ELISA. The expression of SEMA4D in blood cells and nasal polyp tissues was assessed by flow cytometry and immunohistochemistry, respectively. Generation of soluble SEMA4D was evaluated in matrix metalloproteinase-treated eosinophils. Endothelial cells were stimulated with recombinant SEMA4D, followed by eosinophil transendothelial migration assays. Allergic chronic rhinosinusitis was induced in mice using Aspergillus protease with ovalbumin. The efficacy of treatment with anti-SEMA4D antibody was evaluated histologically and by nasal lavage fluid analysis. RESULTS Serum soluble SEMA4D levels were elevated in patients with ECRS and positively correlated with disease severity. Tissue-infiltrated eosinophils in nasal polyps from patients with ECRS stained strongly with anti-SEMA4D antibody. Cell surface expression of SEMA4D on eosinophils from patients with ECRS was reduced, which was due to matrix metalloproteinase-9-mediated cleavage of membrane SEMA4D. Soluble SEMA4D induced eosinophil transendothelial migration. Treatment with anti-SEMA4D antibody ameliorated eosinophilic infiltration in sinus tissues and nasal lavage fluid in the ECRS animal model. CONCLUSIONS Eosinophil-derived SEMA4D aggravates ECRS. Levels of serum SEMA4D reflect disease severity, and anti-SEMA4D antibody has therapeutic potential as a treatment for ECRS.
Collapse
Affiliation(s)
- Takeshi Tsuda
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan.
| | - Yohei Maeda
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Yoshitomo Hayama
- Department of Respiratory Medicine, Kinki Central Hospital, Itami City, Hyogo, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Satoshi Nojima
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan; Department of Pathology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Takeshi Nakatani
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Yu Futami
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Yasuhiko Suga
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Hachiro Konaka
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Shingo Satoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Mayuko Izumi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Sho Obata
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Ayaka Nakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Takashi Shikina
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Department of Otolaryngology, Ikeda Municipal Hospital, Ikeda City, Osaka, Japan
| | - Kazuya Takeda
- Department of Otolaryngology, Osaka City General Hospital, Osaka City, Osaka, Japan
| | - Masaki Hayama
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan; Institute for Open and Transdisciplinary Research Initiatives, Suita City, Osaka, Japan.
| |
Collapse
|
31
|
Yang S, Wang L, Pan W, Bayer W, Thoens C, Heim K, Dittmer U, Timm J, Wang Q, Yu Q, Luo J, Liu Y, Hofmann M, Thimme R, Zhang X, Chen H, Wang H, Feng X, Yang X, Lu Y, Lu M, Yang D, Liu J. MMP2/MMP9-mediated CD100 shedding is crucial for inducing intrahepatic anti-HBV CD8 T cell responses and HBV clearance. J Hepatol 2019; 71:685-698. [PMID: 31173811 DOI: 10.1016/j.jhep.2019.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/30/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS CD100 is constitutively expressed on T cells and can be cleaved from the cell surface by matrix metalloproteases (MMPs) to become soluble CD100 (sCD100). Both membrane-bound CD100 (mCD100) and sCD100 have important immune regulatory functions that promote immune cell activation and responses. This study investigated the expression and role of mCD100 and sCD100 in regulating antiviral immune responses during HBV infection. METHODS mCD100 expression on T cells, sCD100 levels in the serum, and MMP expression in the liver and serum were analysed in patients with chronic HBV (CHB) and in HBV-replicating mice. The ability of sCD100 to mediate antigen-presenting cell maturation, HBV-specific T cell activation, and HBV clearance were analysed in HBV-replicating mice and patients with CHB. RESULTS Patients with CHB had higher mCD100 expression on T cells and lower serum sCD100 levels compared with healthy controls. Therapeutic sCD100 treatment resulted in the activation of DCs and liver sinusoidal endothelial cells, enhanced HBV-specific CD8 T cell responses, and accelerated HBV clearance, whereas blockade of its receptor CD72 attenuated the intrahepatic anti-HBV CD8 T cell response. Together with MMP9, MMP2 mediated mCD100 shedding from the T cell surface. Patients with CHB had significantly lower serum MMP2 levels, which positively correlated with serum sCD100 levels, compared with healthy controls. Inhibition of MMP2/9 activity resulted in an attenuated anti-HBV T cell response and delayed HBV clearance in mice. CONCLUSIONS MMP2/9-mediated sCD100 release has an important role in regulating intrahepatic anti-HBV CD8 T cell responses, thus mediating subsequent viral clearance during HBV infection. LAY SUMMARY Chronic hepatitis B virus (HBV) infection is a major public health problem worldwide. The clearance of HBV relies largely on an effective T cell immune response, which usually becomes dysregulated in chronic HBV infection. Our study provides a new mechanism to elucidate HBV persistence and a new target for developing immunotherapy strategies in patients chronically infected with HBV.
Collapse
Affiliation(s)
- Shangqing Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lu Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Pan
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wibke Bayer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Christine Thoens
- Institute for Virology, Heinrich-Heine-University, University Hospital, Duesseldorf 40225, Germany
| | - Kathrin Heim
- Department of Medicine II, University Hospital Freiburg, Freiburg 79110, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Joerg Timm
- Institute for Virology, Heinrich-Heine-University, University Hospital, Duesseldorf 40225, Germany
| | - Qin Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qing Yu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinzhuo Luo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanan Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Maike Hofmann
- Department of Medicine II, University Hospital Freiburg, Freiburg 79110, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg, Freiburg 79110, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
| | - Xiaoyong Zhang
- Hepatology Unit and Key Laboratory for Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510551, China
| | - Hongtao Chen
- Department of Infectious Diseases, The Second Clinical Medical College, Jinan University, Shenzhen 510632, China
| | - Hua Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuemei Feng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuecheng Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yinping Lu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
32
|
|
33
|
Semaphorin Signaling in Cancer-Associated Inflammation. Int J Mol Sci 2019; 20:ijms20020377. [PMID: 30658382 PMCID: PMC6358995 DOI: 10.3390/ijms20020377] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/27/2022] Open
Abstract
The inflammatory and immune response elicited by the growth of cancer cells is a major element conditioning the tumor microenvironment, impinging on disease progression and patients’ prognosis. Semaphorin receptors are widely expressed in inflammatory cells, and their ligands are provided by tumor cells, featuring an intense signaling cross-talk at local and systemic levels. Moreover, diverse semaphorins control both cells of the innate and the antigen-specific immunity. Notably, semaphorin signals acting as inhibitors of anti-cancer immune response are often dysregulated in human tumors, and may represent potential therapeutic targets. In this mini-review, we provide a survey of the best known semaphorin regulators of inflammatory and immune cells, and discuss their functional impact in the tumor microenvironment.
Collapse
|
34
|
Okuno T, Ishikura T, Kinoshita M, Nakatsuji Y, Kumanogoh A, Mochizuki H. Semaphorin 4A as a biomarker of multiple sclerosis and neuromyelitis optica spectrum disorder. ACTA ACUST UNITED AC 2019. [DOI: 10.1111/cen3.12490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tatsusada Okuno
- Department of Neurology Osaka University Graduate School of Medicine Suita OsakaJapan
| | - Teruyuki Ishikura
- Department of Neurology Osaka University Graduate School of Medicine Suita OsakaJapan
| | - Makoto Kinoshita
- Department of Neurology Osaka University Graduate School of Medicine Suita OsakaJapan
| | - Yuji Nakatsuji
- Department of Neurology Toyama University Hospital Toyama Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Disease Osaka University Graduate School of Medicine Osaka Japan
| | - Hideki Mochizuki
- Department of Neurology Osaka University Graduate School of Medicine Suita OsakaJapan
| |
Collapse
|
35
|
Ha YJ, Han DW, Kim JH, Chung SW, Kang EH, Song YW, Lee YJ. Circulating Semaphorin 4D as a Marker for Predicting Radiographic Progression in Patients with Rheumatoid Arthritis. DISEASE MARKERS 2018; 2018:2318386. [PMID: 30538782 PMCID: PMC6261241 DOI: 10.1155/2018/2318386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022]
Abstract
Semaphorin 3A (Sema3A) and semaphorin 4D (Sema4D) are molecules which regulate immune responses as well as bone remodeling process. The aim of this study was to evaluate the serum levels of Sema3A and Sema4D and to investigate their clinical significance in rheumatoid arthritis (RA). The serum levels of Sema3A and Sema4D were measured in 130 patients with RA and 65 sex- and age-matched healthy individuals. Circulating levels of biomarkers of RA-related inflammation and bone turnover such as tumor necrosis factor- (TNF-) α, interleukin- (IL-) 6, IL-22, IL-34, osteopontin, Dkk-1, and sclerostin were also measured. Disease activity was determined by the 28-joint disease activity score (DAS28), and radiographic joint damage was assessed by the modified Sharp van der Heijde score (SHS). The serum levels of Sema3A were significantly higher in patients with RA than those in healthy controls (p < 0.001), whereas serum4D levels did not differ between the two groups. The levels of Sema4D showed a positive correlation with C-reactive protein (p = 0.001) and IL-6 (p < 0.001) levels, whereas the levels of Sema3A showed a negative correlation with Dkk-1 (p = 0.007) and TNF-α (p = 0.001). Even though Sema3A and Sema4D levels were comparable between RA patients with DAS28> 3.2 and with DAS28 ≤ 3.2, RA patients with radiographic progression (ΔSHS change/year ≥ 1) had significantly higher baseline levels of Sema4D than those without progression (p = 0.029). Additionally, when RA patients were divided into 3 groups using tertiles of Sema4D levels, the percentage of progressors was significantly increased (p = 0.045). In multivariate logistic regression analysis, serum Sema4D levels were an independent risk factor for radiographic progression. Our results suggest that the baseline levels of Sema4D might be a useful marker to identify RA patients with subsequent radiographic progression and that Sema4D may be an active mediator involved in RA-induced joint damage.
Collapse
Affiliation(s)
- You-Jung Ha
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Dong Woo Han
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Hyoun Kim
- Division of Rheumatology, Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Sang Wan Chung
- Division of Rheumatology, Department of Internal Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Eun Ha Kang
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yeong Wook Song
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Medical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yun Jong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Translational Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Talker SC, Baumann A, Barut GT, Keller I, Bruggmann R, Summerfield A. Precise Delineation and Transcriptional Characterization of Bovine Blood Dendritic-Cell and Monocyte Subsets. Front Immunol 2018; 9:2505. [PMID: 30425716 PMCID: PMC6218925 DOI: 10.3389/fimmu.2018.02505] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
A clear-cut delineation of bovine bona fide dendritic cells (DC) from monocytes has proved challenging, given the high phenotypic and functional plasticity of these innate immune cells and the marked phenotypic differences between species. Here, we demonstrate that, based on expression of Flt3, CD172a, CD13, and CD4, a precise identification of bovine blood conventional DC type 1 and 2 (cDC1, cDC2), plasmacytoid DC (pDC), and monocytes is possible with cDC1 being Flt3+CD172adimCD13+CD4−, cDC2 being Flt3+CD172a+CD13−CD4−, pDC being Flt3+CD172adimCD13−CD4+, and monocytes being Flt3−CD172ahighCD13−CD4−. The phenotype of these subsets was characterized in further detail, and a subset-specific differential expression of CD2, CD5, CD11b, CD11c, CD14, CD16, CD26, CD62L, CD71, CD163, and CD205 was found. Subset identity was confirmed by transcriptomic analysis and subset-specific transcription of conserved key genes. We also sorted monocyte subsets based on their differential expression of CD14 and CD16. Classical monocytes (CD14+CD16−) clustered clearly apart from the two CD16+ monocyte subsets probably representing intermediate and non-classical monocytes described in human. The transcriptomic data also revealed differential gene transcription for molecules involved in antigen presentation, pathogen sensing, and migration, and therefore gives insights into functional differences between bovine DC and monocyte subsets. The identification of cell-type- and subset-specific gene transcription will assist in the quest for “marker molecules” that—when targeted by flow cytometry—will greatly facilitate research on bovine DC and monocytes. Overall, species comparisons will elucidate basic principles of DC and monocyte biology and will help to translate experimental findings from one species to another.
Collapse
Affiliation(s)
- Stephanie C Talker
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Arnaud Baumann
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G Tuba Barut
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Lotfi R, Yari K. The Role of Semaphorins and their Receptors in the Immune System and their Relation to Multiple Sclerosis. ACTA ACUST UNITED AC 2018. [DOI: 10.29252/shefa.6.4.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
38
|
Correa-Rocha R, Lopez-Abente J, Gutierrez C, Pérez-Fernández VA, Prieto-Sánchez A, Moreno-Guillen S, Muñoz-Fernández MÁ, Pion M. CD72/CD100 and PD-1/PD-L1 markers are increased on T and B cells in HIV-1+ viremic individuals, and CD72/CD100 axis is correlated with T-cell exhaustion. PLoS One 2018; 13:e0203419. [PMID: 30161254 PMCID: PMC6117071 DOI: 10.1371/journal.pone.0203419] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022] Open
Abstract
In our work, we analyzed the role of the CD100/CD72 and PD-1/PD-L1 axes in immune response dysfunction in human immunodeficiency virus (HIV)-1 infection in which high expressions of PD-1 and PD-L1 were associated with an immunosuppressive state via limitation of the HIV-1-specific T-cell responses. CD100 was demonstrated to play a relevant role in immune responses in various pathological processes and may be responsible for immune dysregulation during HIV-1 infection. We investigated the function of CD72/CD100, and PD-1/PDL-1 axes on T and B cells in HIV-infected individuals and in healthy individuals. We analyzed the frequencies and fluorescence intensities of these four markers on CD4+, CD8+ T and B cells. Marker expressions were increased during active HIV-1 infection. CD100 frequency on T cells was positively associated with the expression of PD-1 and PD-L1 on T cells from HIV-infected treatment-naïve individuals. In addition, the frequency of CD72-expressing T cells was associated with interferon gamma (IFN-γ) production in HIV-infected treatment-naïve individuals. Our data suggest that the CD72/CD100 and PD-1/PD-L1 axes may jointly participate in dysregulation of immunity during HIV-1 infection and could partially explain the immune systems' hyper-activation and exhaustion.
Collapse
Affiliation(s)
- Rafael Correa-Rocha
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Jacobo Lopez-Abente
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Carolina Gutierrez
- Department of Infectious Diseases, Hospital Ramón y Cajal, Alcalá de Henares University, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Verónica Astrid Pérez-Fernández
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Adrián Prieto-Sánchez
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Santiago Moreno-Guillen
- Department of Infectious Diseases, Hospital Ramón y Cajal, Alcalá de Henares University, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María-Ángeles Muñoz-Fernández
- Immuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Marjorie Pion
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
- Immuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain
| |
Collapse
|
39
|
Galuppo MK, de Rezende E, Forti FL, Cortez M, Cruz MC, Teixeira AA, Giordano RJ, Stolf BS. CD100/Sema4D Increases Macrophage Infection by Leishmania (Leishmania) amazonensis in a CD72 Dependent Manner. Front Microbiol 2018; 9:1177. [PMID: 29922261 PMCID: PMC5996280 DOI: 10.3389/fmicb.2018.01177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 05/15/2018] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is caused by trypanosomatid protozoa of the genus Leishmania, which infect preferentially macrophages. The disease affects 12 million people worldwide, who may present cutaneous, mucocutaneous or visceral forms. Several factors influence the form and severity of the disease, and the main ones are the Leishmania species and the host immune response. CD100 is a membrane bound protein that can also be shed. It was first identified in T lymphocytes and latter shown to be induced in macrophages by inflammatory stimuli. The soluble CD100 (sCD100) reduces migration and expression of inflammatory cytokines in human monocytes and dendritic cells, as well as the intake of oxidized low-density lipoprotein (oxLDL) by human macrophages. Considering the importance of macrophages in Leishmania infection and the potential role of sCD100 in the modulation of macrophage phagocytosis and activation, we analyzed the expression and distribution of CD100 in murine macrophages and the effects of sCD100 on macrophage infection by Leishmania (Leishmania) amazonensis. Here we show that CD100 expression in murine macrophages increases after infection with Leishmania. sCD100 augments infection and phagocytosis of Leishmania (L.) amazonensis promastigotes by macrophages, an effect dependent on macrophage CD72 receptor. Besides, sCD100 enhances phagocytosis of zymosan particles and infection by Trypanosoma cruzi.
Collapse
Affiliation(s)
- Mariana K Galuppo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eloiza de Rezende
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fabio L Forti
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Mauro Cortez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mario C Cruz
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andre A Teixeira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ricardo J Giordano
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Beatriz S Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Wang F, Liu B, Yu Z, Wang T, Song Y, Zhuang R, Wu Y, Su Y, Guo S. Effects of CD100 promote wound healing in diabetic mice. J Mol Histol 2018; 49:277-287. [PMID: 29637382 DOI: 10.1007/s10735-018-9767-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/12/2018] [Indexed: 12/21/2022]
Abstract
Diabetes is a condition that causes delayed wound healing and results in chronic wounds. CD100 has been reported to promote and induce potent and obvious angiogenesis both in vivo and in vitro studies, the absence of which are a main cause of the diabetic chronic wound. In the present study, we investigated the effects of application of soluble CD100 on wound healing in diabetic mice. Four 5-mm full-thickness dermal wounds were made on each male db/db mouse. 12 mice from CD100 group were subcutaneously injected with 250 ng of CD100 (50 µl) per wound, in addition, 12 mice were injected with the same volume phosphate-balanced solution as the control. The animals were treated every other day until the wounds healed completely. Images were obtained to calculate the area ratio of the original area. HE and Masson's trichrome staining were used for histological examination. Collagen remodeling, angiogenesis and wound bed inflammation were evaluated by immunohistochemical staining and western blot. We demonstrated that CD100 had distinct functions during the wound healing process. Histological and western blotting analysis showed a more organized epithelium and dermis, more collagen fibers, higher angiogenesis and lower inflammation in the CD100 group than in the PBS group. These findings suggest that CD100 may accelerate wound healing in diabetic mice by promoting angiogenesis in the wound and by reducing the inflammatory response.
Collapse
Affiliation(s)
- Fang Wang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China.,Department of Medical Cosmetology, The First Affiliated Hospital of Xian Medical University, No. 48 Fenggao West Road, Xi'an, 710000, Shaanxi, China
| | - Bei Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China.,Department of Medical Technology, Xian Medical University, No. 1 Xinwang Road, Xi'an, 71000, Shaanxi, China
| | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Tong Wang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Yajuan Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Ran Zhuang
- Department of Transplantation Immunology Laboratory of Basic Medical College, The Fourth Military Medical University, No. 127 Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yonghong Wu
- Department of Medical Technology, Xian Medical University, No. 1 Xinwang Road, Xi'an, 71000, Shaanxi, China
| | - Yingjun Su
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| | - Shuzhong Guo
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
41
|
Abstract
Several neuronal guidance proteins, known as semaphorin molecules, function in the immune system. This dual tissue performance has led to them being defined as "neuroimmune semaphorins". They have been shown to regulate T cell activation by serving as costimulatory molecules. Similar to classical costimulatory molecules, neuroimmune semaphorins are either constitutively or inducibly expressed on immune cells. In contrast to the classical costimulatory molecule function, the action of neuroimmune semaphorins requires the presence of two signals, the first one provided by TCR/MHC engagement, and the second one provided by B7/CD28 interaction. Thus, neuroimmune semaphorins serve as a "signal three" for immune cell activation and regulate the overall intensity of immune response. The current knowledge on their structures, multiple receptors, specific cell/tissue/organ expression, and distinct functions in different diseases are summarized and discussed in this review.
Collapse
Affiliation(s)
- Svetlana P Chapoval
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.
- Program in Oncology at the Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
- SemaPlex LLC, Ellicott City, MD, USA.
| |
Collapse
|
42
|
Abstract
Semaphorins are extracellular signaling proteins that are essential for the development and maintenance of many organs and tissues. The more than 20-member semaphorin protein family includes secreted, transmembrane and cell surface-attached proteins with diverse structures, each characterized by a single cysteine-rich extracellular sema domain, the defining feature of the family. Early studies revealed that semaphorins function as axon guidance molecules, but it is now understood that semaphorins are key regulators of morphology and motility in many different cell types including those that make up the nervous, cardiovascular, immune, endocrine, hepatic, renal, reproductive, respiratory and musculoskeletal systems, as well as in cancer cells. Semaphorin signaling occurs predominantly through Plexin receptors and results in changes to the cytoskeletal and adhesive machinery that regulate cellular morphology. While much remains to be learned about the mechanisms underlying the effects of semaphorins, exciting work has begun to reveal how semaphorin signaling is fine-tuned through different receptor complexes and other mechanisms to achieve specific outcomes in various cellular contexts and physiological systems. These and future studies will lead to a more complete understanding of semaphorin-mediated development and to a greater understanding of how these proteins function in human disease.
Collapse
Affiliation(s)
- Laura Taylor Alto
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
43
|
Yan H, Wu L, Shih C, Hou S, Shi J, Mao T, Chen W, Melvin B, Rigby RJ, Chen Y, Jiang H, Friedel RH, Vinuesa CG, Qi H. Plexin B2 and Semaphorin 4C Guide T Cell Recruitment and Function in the Germinal Center. Cell Rep 2018; 19:995-1007. [PMID: 28467912 DOI: 10.1016/j.celrep.2017.04.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/20/2017] [Accepted: 04/06/2017] [Indexed: 01/05/2023] Open
Abstract
Follicular T helper (TFH) cells orchestrate the germinal center (GC) response locally. TFH localization in GCs is controlled by chemo-guidance cues and antigen-specific adhesion. Here. we define an antigen-independent, contact-dependent, adhesive guidance system for TFH cells. Unusual for amoeboid cell migration, the system is composed of transmembrane plexin B2 (PlxnB2) molecule, which is highly expressed by GC B cells, and its transmembrane binding partner semaphorin 4C (Sema4C), which is upregulated on TFH cells. Sema4C on TFH cells serves as a receptor to sense the GC-presented PlxnB2 cue and biases TFH migration inwards at the GC edge to promote GC access. The absence of PlxnB2 from the GC or Sema4C from TFH cells causes TFH accumulation along the GC border, impairs T-B cell interactions in the GC, and is associated with defective plasma cell production and affinity maturation. Therefore, Sema4C and PlxnB2 regulate GC TFH recruitment and function and optimize antibody responses.
Collapse
Affiliation(s)
- Hu Yan
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Longyan Wu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Changming Shih
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shiyue Hou
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jingwen Shi
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianyang Mao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenbin Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bhavani Melvin
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Robert J Rigby
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Yingjia Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haochen Jiang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Roland H Friedel
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
44
|
Nishide M, Kumanogoh A. The role of semaphorins in immune responses and autoimmune rheumatic diseases. Nat Rev Rheumatol 2017; 14:19-31. [DOI: 10.1038/nrrheum.2017.201] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
He Y, Guo Y, Fan C, Lei Y, Zhou Y, Zhang M, Ye C, Ji G, Ma L, Lian J, Moorman JP, Yao ZQ, Wang J, Hao C, Zhang Y, Jia Z. Interferon-α-Enhanced CD100/Plexin-B1/B2 Interactions Promote Natural Killer Cell Functions in Patients with Chronic Hepatitis C Virus Infection. Front Immunol 2017; 8:1435. [PMID: 29163508 PMCID: PMC5676449 DOI: 10.3389/fimmu.2017.01435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/16/2017] [Indexed: 12/12/2022] Open
Abstract
Background CD100, also known as Sema4D, is an immune semaphorin constitutively expressed on natural killer (NK) cells and T cells. As an immune activation molecule, CD100 has important immunoregulatory effects on NK functions by enhancing the interactions between NK cells and target cells. The aim of this study was to investigate whether hepatitis C virus (HCV) infection affects CD100 expression, and whether interferon-α treatment enhances NK killing activity to facilitate HCV clearance via CD100. Methods Expression of CD100 on NK cells was evaluated by flow cytometry in patients with chronic HCV infection, with or without pegylated interferon-α-based therapy. NK cell cytotoxicity and interferon (IFN)-γ production were measured by flow cytometry upon culturing the NK cells with K562 and Huh7.5 or HCV JFH-1-infected Huh7.5 cells. Results The frequency of CD100+ NK cells in HCV-infected individuals was slightly suppressed compared to healthy subjects. IFN-α treatment could significantly upregulate CD100 expression, which was confirmed by in vitro studies using peripheral blood mononuclear cells cocultured with HCV-expressing Huh7.5 cells or IFN-α. Importantly, the expression of CD100 on NK cells from HCV patients was inversely associated with the HCV-RNA levels in the early phase of IFN-α therapy, and the IFN-α upregulated CD100 led to an enhanced NK killing activity through ligations with its receptors plexin-B1/B2 on target cells. Conclusion These results implied a novel mechanism by which IFN-α enhanced CD100/Plexin-B1/B2 interaction plays an important role in promoting NK functions in patients with chronic hepatitis C.
Collapse
Affiliation(s)
- Yu He
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yonghong Guo
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Chao Fan
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yingfeng Lei
- Department of Microbiology, The Fourth Military Medical University, Xi'an, China
| | - Yun Zhou
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingjie Zhang
- HANK Biological Engineering Research Institute, Shenzhen, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Guangxi Ji
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Li Ma
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianqi Lian
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jonathan P Moorman
- Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, Center of Excellence in Inflammation, Infectious Diseases, and Immunity, East Tennessee State University, Johnson City, TN, United States
| | - Zhi Q Yao
- Department of Internal Medicine, Division of Infectious Diseases, James H. Quillen College of Medicine, Center of Excellence in Inflammation, Infectious Diseases, and Immunity, East Tennessee State University, Johnson City, TN, United States
| | - Jiuping Wang
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunqiu Hao
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying Zhang
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhansheng Jia
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
46
|
Vadasz Z, Elbirt D, Radian S, Bezalel-Rosenberg S, Mahlab-Guri K, Toubi E, Asher I, Sthoeger Z. Low levels of the immunoregulator Semaphorin 4D (CD100) in sera of HIV patients. Clin Immunol 2017; 191:88-93. [PMID: 28917721 DOI: 10.1016/j.clim.2017.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Semaphorin-4D (CD100), generated by CD4/CD8 T-cells and its receptor on B cells - CD72, play a role in immune regulation. Both have soluble forms - sCD100/sCD72. METHODS sCD100 and sCD72 levels were determined by ELISA (MyBioSource, USA). RESULTS 28 chronic HIV patients and 50 matched healthy volunteers participated in our study. Before treatment, CD4 T-cells counts were 267 ± 216 cells/mcl and viral load (VL) was 586,675 ± 1897,431 copies/ml. Two years following HAART, CD4 T-cells counts rose to 475 ± 264 cells/mcl and VL dropped to 2050 ± 10,539 copies/ml. CD8 T-cells counts were stable. sCD72 levels prior (4.13 ± 2.03 ng/ml) and following HAART (3.53 ± 2.01 ng/ml) were similar to control levels (4.51 ± 2.66 ng/ml). sCD100 levels before (40.47 ± 31.4 ng/ml) and following HAART (37.68 ± 29.44 ng/ml) were significantly lower compared to controls (99.67 ± 36.72 ng/ml) despite the significant increase in CD4 T-cells counts. CONCLUSIONS The permanent low levels of the immunoregulator sCD100 suggest a role for CD100 in the immune dysfunction and T cells exhaustion of HIV.
Collapse
Affiliation(s)
- Z Vadasz
- Allergy and Clinical Immunology Unit, Bnei-Zion Medical Center, Haifa, Israel
| | - D Elbirt
- Department of Medicine B, Allergy, Clinical Immunology and AIDS Center, Kaplan Medical Center, Rehovot, Israel
| | - S Radian
- Department of Medicine B, Allergy, Clinical Immunology and AIDS Center, Kaplan Medical Center, Rehovot, Israel
| | - S Bezalel-Rosenberg
- Department of Medicine B, Allergy, Clinical Immunology and AIDS Center, Kaplan Medical Center, Rehovot, Israel
| | - K Mahlab-Guri
- Department of Medicine B, Allergy, Clinical Immunology and AIDS Center, Kaplan Medical Center, Rehovot, Israel
| | - E Toubi
- Allergy and Clinical Immunology Unit, Bnei-Zion Medical Center, Haifa, Israel
| | - I Asher
- Department of Medicine B, Allergy, Clinical Immunology and AIDS Center, Kaplan Medical Center, Rehovot, Israel
| | - Z Sthoeger
- Department of Medicine B, Allergy, Clinical Immunology and AIDS Center, Kaplan Medical Center, Rehovot, Israel.
| |
Collapse
|
47
|
Kuklina ЕМ, Nekrasova IV, Valieva YV. Involvement of Semaphorin (Sema4D) in T-Dependent Activation of B Cells. Bull Exp Biol Med 2017; 163:447-450. [PMID: 28853092 DOI: 10.1007/s10517-017-3825-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 11/29/2022]
Abstract
The involvement of endogenous semaphorin (Sema4D) into the key stage of T-dependent differentiation of B cells, formation of plasmoblasts, was demonstrated in vitro in T/B cell co-culture under conditions of polyclonal activation of T cells. The effect of semaphorin was not associated with activation of high-affinity Sema4D receptor plexin B1, but involves lowaffinity receptor CD72. These data indicate that Sema4D-dependent signal regulates not only the initial stage of B-cell activation, proliferative response to the antigen, but also further differentiation of B cells into plasma cells.
Collapse
Affiliation(s)
- Е М Kuklina
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences, Perm, Russia.
| | - I V Nekrasova
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - Yu V Valieva
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
48
|
Jiang X, Björkström NK, Melum E. Intact CD100-CD72 Interaction Necessary for TCR-Induced T Cell Proliferation. Front Immunol 2017; 8:765. [PMID: 28713384 PMCID: PMC5491939 DOI: 10.3389/fimmu.2017.00765] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/16/2017] [Indexed: 12/02/2022] Open
Abstract
Targeting CD100 by antibody blockade is a potential therapeutic strategy for cancers, but the functional effects on T cells following blockade of this immune activating molecule are rarely considered. Indeed, CD100 is highly expressed in T cells and anti-CD100 antibodies play a role during T cell proliferation; however, the outcome varies from different studies and the underlying mechanism is still unclear. To address this, monoclonal antibody clones directed against CD100 were evaluated. In their soluble form, four of these antibodies significantly reduced the expansion of T cells in the presence of bead-bound anti-CD3/CD28, either in total peripheral blood mononuclear cell or purified T cell culture systems. Similar inhibition was seen when blocking CD100–CD72 interaction by soluble anti-CD72 instead of anti-CD100 antibodies. Conversely, restoring the interaction by CD72-Fc eliminated the soluble anti-CD100-induced inhibitory effect. Taken together, these results reveal that T cell proliferation is regulated by CD100 via interaction with CD72. They further establish an in vitro system to evaluate the inhibitory effect of anti-CD100 antibodies on T cells, to which attention should be paid in clinical trials in order to avoid potential side effects.
Collapse
Affiliation(s)
- Xiaojun Jiang
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Espen Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
49
|
Kuklina EM, Nekrasova IV. New aspects of the Seam4D-dependent control of lymphocyte activation. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2017; 473:84-88. [PMID: 28508207 DOI: 10.1134/s0012496617020028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 06/07/2023]
Abstract
Novel targets for action of the class IV semaphorin Seam4D have been identified in the immune system. The low-affinity CD72 receptor for Seam4D was detected not only on B lymphocytes, but also in a proportion of T cells, whereas the high-affinity semaphorin receptor, plexin B1, originally considered to belong to non-immune cells, proved to be in a great proportion of intact T and B cells. Seam4D is constitutively expressed in B cells, which, along with T cells, can serve as a source of both membrane and soluble semaphorin. The results obtained make significant adjustments in understanding of Seam4D effects in lymphoid cells.
Collapse
Affiliation(s)
- E M Kuklina
- Institute of Ecology and Genetics of Microorganisms, Ural Division, Russian Academy of Sciences, Perm, Russia.
| | - I V Nekrasova
- Institute of Ecology and Genetics of Microorganisms, Ural Division, Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
50
|
Li BJ, He Y, Zhang Y, Guo YH, Zhou Y, Zhang PX, Wang W, Zhao JR, Li JG, Zuo WZ, Fan C, Jia ZS. Interferon-α-induced CD100 on naïve CD8 + T cells enhances antiviral responses to hepatitis C infection through CD72 signal transduction. J Int Med Res 2017; 45:89-100. [PMID: 28222623 PMCID: PMC5536608 DOI: 10.1177/0300060516676136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objectives We investigated the effects of CD100 on naïve CD8+ T cells during hepatitis C virus (HCV) infection after interferon-α (IFN-α) therapy to clarify the mechanism underlying the effect of IFN-α in enhancing the antiviral response. Methods The CD100 molecules on subsets of CD8+ T cells were analysed with flow cytometry. The effects of CD100-overexpressing naïve CD8+ T cells were determined with ELISAs and an MTT cytotoxicity assay. The role of CD100-CD72 signal transduction was analysed with a neutralization and transwell assays. Results HCV infection reduced CD100 expression on CD8+ T cells, whereas IFN-α treatment significantly increased CD100 expression on naïve CD8+ T cells. The increased CD100 interacted with the CD72 receptor and enhanced PBMC cytokine secretion (IFN-γ and tumour necrosis factor-α) and cytotoxicity. Conclusions IFN-α-induced CD100 on naïve CD8+ T cells promotes PBMC cytokine secretion and cytotoxicity through CD100-CD72 signalling during HCV infection.
Collapse
Affiliation(s)
- Bing Jie Li
- 2 First Affiliated Hospital, School of Medicine, Shihezi University, Xinjiang, China
| | - Yu He
- 1 Department of Infectious Diseases and Center of Liver Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Ying Zhang
- 1 Department of Infectious Diseases and Center of Liver Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yong Hong Guo
- 1 Department of Infectious Diseases and Center of Liver Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yun Zhou
- 1 Department of Infectious Diseases and Center of Liver Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Pei Xin Zhang
- 1 Department of Infectious Diseases and Center of Liver Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Wei Wang
- 1 Department of Infectious Diseases and Center of Liver Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Jie Ru Zhao
- 1 Department of Infectious Diseases and Center of Liver Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Jin Ge Li
- 1 Department of Infectious Diseases and Center of Liver Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Wei Ze Zuo
- 2 First Affiliated Hospital, School of Medicine, Shihezi University, Xinjiang, China
| | - Chao Fan
- 1 Department of Infectious Diseases and Center of Liver Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Zhan Sheng Jia
- 1 Department of Infectious Diseases and Center of Liver Diseases, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|