1
|
Sousa N, Geiß C, Bindila L, Lieberwirth I, Kim E, Régnier-Vigouroux A. Targeting sphingolipid metabolism with the sphingosine kinase inhibitor SKI-II overcomes hypoxia-induced chemotherapy resistance in glioblastoma cells: effects on cell death, self-renewal, and invasion. BMC Cancer 2023; 23:762. [PMID: 37587449 PMCID: PMC10433583 DOI: 10.1186/s12885-023-11271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Glioblastoma patients commonly develop resistance to temozolomide chemotherapy. Hypoxia, which supports chemotherapy resistance, favors the expansion of glioblastoma stem cells (GSC), contributing to tumor relapse. Because of a deregulated sphingolipid metabolism, glioblastoma tissues contain high levels of the pro-survival sphingosine-1-phosphate and low levels of the pro-apoptotic ceramide. The latter can be metabolized to sphingosine-1-phosphate by sphingosine kinase (SK) 1 that is overexpressed in glioblastoma. The small molecule SKI-II inhibits SK and dihydroceramide desaturase 1, which converts dihydroceramide to ceramide. We previously reported that SKI-II combined with temozolomide induces caspase-dependent cell death, preceded by dihydrosphingolipids accumulation and autophagy in normoxia. In the present study, we investigated the effects of a low-dose combination of temozolomide and SKI-II under normoxia and hypoxia in glioblastoma cells and patient-derived GCSs. METHODS Drug synergism was analyzed with the Chou-Talalay Combination Index method. Dose-effect curves of each drug were determined with the Sulforhodamine B colorimetric assay. Cell death mechanisms and autophagy were analyzed by immunofluorescence, flow cytometry and western blot; sphingolipid metabolism alterations by mass spectrometry and gene expression analysis. GSCs self-renewal capacity was determined using extreme limiting dilution assays and invasion of glioblastoma cells using a 3D spheroid model. RESULTS Temozolomide resistance of glioblastoma cells was increased under hypoxia. However, combination of temozolomide (48 µM) with SKI-II (2.66 µM) synergistically inhibited glioblastoma cell growth and potentiated glioblastoma cell death relative to single treatments under hypoxia. This low-dose combination did not induce dihydrosphingolipids accumulation, but a decrease in ceramide and its metabolites. It induced oxidative and endoplasmic reticulum stress and triggered caspase-independent cell death. It impaired the self-renewal capacity of temozolomide-resistant GSCs, especially under hypoxia. Furthermore, it decreased invasion of glioblastoma cell spheroids. CONCLUSIONS This in vitro study provides novel insights on the links between sphingolipid metabolism and invasion, a hallmark of cancer, and cancer stem cells, key drivers of cancer. It demonstrates the therapeutic potential of approaches that combine modulation of sphingolipid metabolism with first-line agent temozolomide in overcoming tumor growth and relapse by reducing hypoxia-induced resistance to chemotherapy and by targeting both differentiated and stem glioblastoma cells.
Collapse
Affiliation(s)
- Nadia Sousa
- Institute of Developmental Biology & Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carsten Geiß
- Institute of Developmental Biology & Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Laura Bindila
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, Medical University Mainz, Mainz, Germany
| | | | - Ella Kim
- Department of Neurosurgery, Medical University of Mainz, Mainz, Germany
| | - Anne Régnier-Vigouroux
- Institute of Developmental Biology & Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
2
|
Sabry R, Williams M, LaMarre J, Favetta LA. Granulosa cells undergo BPA-induced apoptosis in a miR-21-independent manner. Exp Cell Res 2023; 427:113574. [PMID: 37004947 DOI: 10.1016/j.yexcr.2023.113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Bisphenol A (BPA) is a harmful endocrine disrupting compound that alters not only classical cellular mechanisms but also epigenetic mechanisms. Evidence suggests that BPA-induced changes in microRNA expression can explain, in part, the changes observed at both the molecular and cellular levels. BPA is toxic to granulosa cells (GCs) as it can activate apoptosis, which is known to contribute to increased follicular atresia. miR-21 is a crucial antiapoptotic regulator in GCs, yet the exact function in a BPA toxicity model remains unclear. BPA was found to induce bovine GC apoptosis through the activation of several intrinsic factors. BPA reduced live cells counts, increased late apoptosis/necrosis, increased apoptotic transcripts (BAX, BAD, BCL-2, CASP-9, HSP70), increased the BAX/Bcl-2 ratio and HSP70 at the protein level, and induced caspase-9 activity at 12 h post-exposure. miR-21 inhibition increased early apoptosis and, while it did not influence transcript levels or caspase-9 activity, it did elevate the BAX/Bcl-2 protein ratio and HSP70 in the same manner as BPA. Overall, this study shows that miR-21 plays a molecular role in regulating intrinsic mitochondrial apoptosis; however, miR-21 inhibition did not make the cells more sensitive to BPA. Therefore, apoptosis induced by BPA in bovine GCs is miR-21 independent.
Collapse
|
3
|
Pastorio C, Torres-Rusillo S, Ortega-Vidal J, Jiménez-López MC, Iañez I, Salido S, Santamaría M, Altarejos J, Molina IJ. (−)-Oleocanthal induces death preferentially in tumor hematopoietic cells through caspase dependent and independent mechanisms. Food Funct 2022; 13:11334-11341. [DOI: 10.1039/d2fo01222g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Olive oil is a key component of the highly cardiovascular protective Mediterranean diet.
Collapse
Affiliation(s)
- Chiara Pastorio
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research, University of Granada, Health Sciences Technology Park, 18016 Armilla, Granada, Spain
| | - Sara Torres-Rusillo
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research, University of Granada, Health Sciences Technology Park, 18016 Armilla, Granada, Spain
| | - Juan Ortega-Vidal
- Departament of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
| | - M. Carmen Jiménez-López
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research, University of Granada, Health Sciences Technology Park, 18016 Armilla, Granada, Spain
| | - Inmaculada Iañez
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research, University of Granada, Health Sciences Technology Park, 18016 Armilla, Granada, Spain
| | - Sofía Salido
- Departament of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
| | - Manuel Santamaría
- Department of Physiology, Cell Biology and Immunology, Faculty of Medicine, University of Córdoba, and Unidad de Inmunología y Alergología, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Joaquín Altarejos
- Departament of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
| | - Ignacio J. Molina
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research, University of Granada, Health Sciences Technology Park, 18016 Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
4
|
Gan XG, Xu HT, Wang ZH. Phosphatidylserine eversion regulated by phospholipid scramblase activated by TGF-β1/Smad signaling in the early stage of kidney stone formation. Urolithiasis 2021; 50:11-20. [PMID: 34860265 PMCID: PMC8784500 DOI: 10.1007/s00240-021-01292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/18/2021] [Indexed: 11/28/2022]
Abstract
The mechanism underlying phosphatidylserine eversion in renal tubule cells following calcium oxalate-mediated damage remains unclear; therefore, we investigated the effects of TGF-β1/Smad signaling on phosphatidylserine eversion in the renal tubule cell membrane during the early stage of kidney stone development. In a rat model of early stage of calcium oxalate stone formation, phosphatidylserine eversion on the renal tubular cell membrane was detected by flow cytometry, and the expression of TGF-β1 (transforming growth factor-β1), Smad7, and phospholipid scramblase in the renal tubular cell membrane was measured by western blotting. We observed that the TGF-β1/Smad signaling pathway increased phosphatidylserine eversion at the organism level. The results of in vitro studies demonstrated that oxalate exposure to renal tubule cells induced TGF-β1 expression, increasing phospholipid scramblase activity and phosphatidylserine eversion in the renal tubule cell membrane. These results indicate that TGF-β1 stimulates phosphatidylserine eversion by increasing the phospholipid scramblase activity in the renal tubule cell membrane during the early stage of kidney stone development. The results of this study form a basis for further detailed research on the development of therapeutic agents that specifically treat urolithiasis and exert fewer adverse effects.
Collapse
Affiliation(s)
- Xiu Guo Gan
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China.
| | - Hai Tao Xu
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Zhi Hao Wang
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Fernández G, Krapacher F, Ferreras S, Quassollo G, Mari MM, Pisano MV, Montemerlo A, Rubianes MD, Bregonzio C, Arias C, Paglini MG. Lack of Cdk5 activity is involved on Dopamine Transporter expression and function: Evidences from an animal model of Attention-Deficit Hyperactivity Disorder. Exp Neurol 2021; 346:113866. [PMID: 34537209 DOI: 10.1016/j.expneurol.2021.113866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022]
Abstract
Attention deficit/Hyperactivity disorder (ADHD) is one of the most diagnosed psychiatric disorders nowadays. The core symptoms of the condition include hyperactivity, impulsiveness and inattention. The main pharmacological treatment consists of psychostimulant drugs affecting Dopamine Transporter (DAT) function. We have previously shown that genetically modified mice lacking p35 protein (p35KO), which have reduced Cdk5 activity, present key hallmarks resembling those described in animal models useful for studying ADHD. The p35KO mouse displays spontaneous hyperactivity and shows a calming effect of methylphenidate or amphetamine treatment. Interestingly, dopaminergic neurotransmission is altered in these mice as they have an increased Dopamine (DA) content together with a low DA turnover. This led us to hypothesize that the lack of Cdk5 activity affects DAT expression and/or function in this animal model. In this study, we performed biochemical assays, cell-based approaches, quantitative fluorescence analysis and functional studies that allowed us to demonstrate that p35KO mice exhibit decreased DA uptake and reduced cell surface DAT expression levels in the striatum (STR). These findings are supported by in vitro observations in which the inhibition of Cdk5 activity in N2a cells induced a significant increase in constitutive DAT endocytosis with a concomitant increase in DAT localization to recycling endosomes. Taken together, these data provide evidences regarding the role of Cdk5/p35 in DAT expression and function, thus contributing to the knowledge of DA neurotransmission physiology and also providing therapeutic options for the treatment of DA pathologies such as ADHD.
Collapse
Affiliation(s)
- Guillermo Fernández
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Favio Krapacher
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Soledad Ferreras
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gonzalo Quassollo
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Macarena Mariel Mari
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Victoria Pisano
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Antonella Montemerlo
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Dolores Rubianes
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental Córdoba, IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Carlos Arias
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto de Investigaciones Psicológicas, IIPSI-CONICET, Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Gabriela Paglini
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
6
|
Abdulhussein D, Kanda M, Aamir A, Manzar H, Yap TE, Cordeiro MF. Apoptosis in health and diseases of the eye and brain. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:279-306. [PMID: 34090617 DOI: 10.1016/bs.apcsb.2021.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis is a form of programmed cell death (PCD) and enables the immunologically silent disposal of senescent or unwanted cells, causing minimal damage to the surrounding environment. Apoptosis can occur via intrinsic or extrinsic pathways that initiate a series of intracellular and extracellular signaling events. This ultimately leads to the clearance of the cell by phagocytes. This normal physiological mechanism may be accelerated in several diseases including those involving the eyes and brain, leading to loss of structure and function. This review presents the role of PCD in the health of the eyes and brain, and the evidence presented for its aberrant role in disease.
Collapse
Affiliation(s)
- Dalia Abdulhussein
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom
| | - Mumta Kanda
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, United Kingdom
| | - Abdullah Aamir
- Whipps Cross Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Haider Manzar
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom
| | - Timothy E Yap
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, United Kingdom; The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom
| | - M Francesca Cordeiro
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, United Kingdom; The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom; Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, United Kingdom.
| |
Collapse
|
7
|
Parvathaneni V, Goyal M, Kulkarni NS, Shukla SK, Gupta V. Nanotechnology Based Repositioning of an Anti-Viral Drug for Non-Small Cell Lung Cancer (NSCLC). Pharm Res 2020; 37:123. [DOI: 10.1007/s11095-020-02848-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
|
8
|
Tran JQ, Muench MO, Heitman JW, Jackman RP. Pathogen reduction with riboflavin and ultraviolet light induces a quasi-apoptotic state in blood leukocytes. Transfusion 2019; 59:3501-3510. [PMID: 31599981 PMCID: PMC7391079 DOI: 10.1111/trf.15516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Alloimmunization to platelet-rich plasma (PRP) transfusions can cause adverse reactions such as platelet refractoriness or transplant rejection. Pathogen reduction treatment with ultraviolet light and riboflavin (UV + R) of allogeneic PRP was shown to reduce allogeneic antibody responses and confer partial antigen-specific immune tolerance to subsequent transfusions in mice. Studies have shown that UV + R was effective at both rapidly killing donor white blood cells (WBCs) and reducing their ability to stimulate an allogeneic response in vitro. However, the manner in which UV + R induces WBC death and its associated role in the immune response to treated PRP is unknown. METHODS AND MATERIALS This study evaluates whether UV + R causes WBC apoptosis by examining phosphatidylserine exposure on the plasma membrane, membrane asymmetry, caspase activity, and chromatin condensation by flow cytometry. The immunogenicity of WBCs killed with UV + R versus apoptotic or necrotic pathways was also examined in vivo. RESULTS WBCs after UV + R exhibited early apoptotic-like characteristics including phosphatidylserine exposure on the outer leaflet of the plasma membrane and loss of membrane asymmetry, but unlike canonical apoptotic cells, caspase activity and chromatin condensation were not apparent. However, in vivo studies demonstrated, unlike untreated or necrotic WBCs, both apoptotic WBCs and UV + R-treated WBCs failed to prime alloantibody responses to subsequent untreated transfusions. CONCLUSION Overall, the mechanism of WBC death following UV + R treatment shares some membrane characteristics of early apoptosis but is distinct from classic apoptosis. Despite these differences, UV + R-treated and apoptotic WBCs both offer some protection from alloimmunization.
Collapse
Affiliation(s)
| | - Marcus O. Muench
- Vitalant Research Institute, San Francisco CA
- University of California, San Francisco, CA
| | | | - Rachael P. Jackman
- Vitalant Research Institute, San Francisco CA
- University of California, San Francisco, CA
| |
Collapse
|
9
|
Cytotoxic Effects of Rabbit Anti-thymocyte Globulin Preparations on Primary Human Thymic Epithelial Cells. Transplantation 2019; 103:2234-2244. [DOI: 10.1097/tp.0000000000002799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Shlomovitz I, Speir M, Gerlic M. Flipping the dogma - phosphatidylserine in non-apoptotic cell death. Cell Commun Signal 2019; 17:139. [PMID: 31665027 PMCID: PMC6819419 DOI: 10.1186/s12964-019-0437-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022] Open
Abstract
The exposure of phosphatidylserine (PS) on the outer plasma membrane has long been considered a unique feature of apoptotic cells. Together with other "eat me" signals, it enables the recognition and phagocytosis of dying cells (efferocytosis), helping to explain the immunologically-silent nature of apoptosis. Recently, however, PS exposure has also been reported in non-apoptotic forms of regulated inflammatory cell death, such as necroptosis, challenging previous dogma. In this review, we outline the evidence for PS exposure in non-apoptotic cells and extracellular vesicles (EVs), and discuss possible mechanisms based on our knowledge of apoptotic-PS exposure. In addition, we examine the outcomes of non-apoptotic PS exposure, including the reversibility of cell death, efferocytosis, and consequent inflammation. By examining PS biology, we challenge the established approach of distinguishing apoptosis from other cell death pathways by AnnexinV staining of PS externalization. Finally, we re-evaluate how PS exposure is thought to define apoptosis as an immunologically silent process distinct from other non-apoptotic and inflammatory cell death pathways. Ultimately, we suggest that a complete understanding of how regulated cell death processes affect the immune system is far from being fully elucidated.
Collapse
Affiliation(s)
- Inbar Shlomovitz
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168 Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800 Australia
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Jung GB, Huh JE, Lee HJ, Kim D, Lee GJ, Park HK, Lee JD. Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:5703-5718. [PMID: 30460157 PMCID: PMC6238932 DOI: 10.1364/boe.9.005703] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 05/08/2023]
Abstract
We demonstrated the apoptotic effect of bee venom (BV) on human MDA-MB-231 breast cancer cells using Raman spectroscopy and principal component analysis (PCA). Biochemical changes in cancer cells were monitored following BV treatment; the results for different concentrations and treatment durations differed markedly. Significantly decreased Raman vibrations for DNA and proteins were observed for cells treated with 3.0 µg/mL BV for 48 h compared with those of control cells. These results suggest denaturation and degradation of proteins and DNA fragmentation (all cell death-related processes). The Raman spectroscopy results agreed with those of atomic force microscopy and conventional biological tests such as viability, TUNEL, and western blot assays. Therefore, Raman spectroscopy, with PCA, provides a noninvasive, label-free tool for assessment of cellular changes on the anti-cancer effect of BV.
Collapse
Affiliation(s)
- Gyeong Bok Jung
- Department of Physics Education, Chosun University, Gwangju, 61452, South Korea
- These authors contributed equally to this work
| | - Jeong-Eun Huh
- East-west Bone & Joint Research Institute, Kyung Hee University, 149, Sangil-dong, Gangdong-gu, Seoul, South Korea
- These authors contributed equally to this work
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
| | - Dohyun Kim
- Department of Industrial and Management Engineering, Myongji University, Gyeonggi-do 17058, South Korea
| | - Gi-Ja Lee
- Department of Biomedical Engineering College of Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Hun-Kuk Park
- Department of Biomedical Engineering College of Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Jae-Dong Lee
- Department of Acupuncture and Moxibustion, College of Korean Medicine, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
| |
Collapse
|
12
|
Yang J, Dou Z, Peng X, Wang H, Shen T, Liu J, Li G, Gao Y. Transcriptomics and proteomics analyses of anti-cancer mechanisms of TR35-An active fraction from Xinjiang Bactrian camel milk in esophageal carcinoma cell. Clin Nutr 2018; 38:2349-2359. [PMID: 30420292 DOI: 10.1016/j.clnu.2018.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/11/2018] [Accepted: 10/18/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS The aim of the paper is to investigate the effect of the active fraction extracted from the Xinjiang Bactrian camel whey on the human cancer cells using an in vitro and in vivo model of human carcinoma of the esophagus. METHODS AND RESULTS Our results demonstrated that an antitumor active fraction, TR35, isolated from Xinjiang Bactrian camel milk could significantly inhibit Eca109 cell proliferation and induce its apoptosis (indicated by MTT assay, Annexin V-FITC Apoptosis Detection, and caspase-3 activity). Moreover, we found that TR35 could inhibit the growth of xenografted tumor in nude mice without loss in body weight. Furthermore, we used RNA-Seq and 2-DE combined Mass Spectrometry analysis to identify differentially expressed RNA and protein markers of apoptosis and necrosis. Compared with untreated Eca109 cells, a total of 405 differentially expressed genes and 55 differentially expressed proteins were identified in TR35 treated Eca109 cells. KEGG analysis uncovered signaling pathways closely associated with cancer inhibition that were enriched in the TR35-treated cells. CONCLUSIONS These results might implicate that downregulation of specific proteins identified in this study may be the cause of this tumor growth inhibition. This study sheds light on the potential therapeutic advantages based on the historical anti-cancer activities of camel milk.
Collapse
Affiliation(s)
- Jie Yang
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Zhihua Dou
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xi Peng
- School of Medicine, Nankai University, Tianjin, China
| | - Hongjuan Wang
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tong Shen
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jun Liu
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Guan Li
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yang Gao
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
13
|
Zargarian S, Shlomovitz I, Erlich Z, Hourizadeh A, Ofir-Birin Y, Croker BA, Regev-Rudzki N, Edry-Botzer L, Gerlic M. Phosphatidylserine externalization, "necroptotic bodies" release, and phagocytosis during necroptosis. PLoS Biol 2017. [PMID: 28650960 PMCID: PMC5501695 DOI: 10.1371/journal.pbio.2002711] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Necroptosis is a regulated, nonapoptotic form of cell death initiated by receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like (MLKL) proteins. It is considered to be a form of regulated necrosis, and, by lacking the “find me” and “eat me” signals that are a feature of apoptosis, necroptosis is considered to be inflammatory. One such “eat me” signal observed during apoptosis is the exposure of phosphatidylserine (PS) on the outer plasma membrane. Here, we demonstrate that necroptotic cells also expose PS after phosphorylated mixed lineage kinase-like (pMLKL) translocation to the membrane. Necroptotic cells that expose PS release extracellular vesicles containing proteins and pMLKL to their surroundings. Furthermore, inhibition of pMLKL after PS exposure can reverse the process of necroptosis and restore cell viability. Finally, externalization of PS by necroptotic cells drives recognition and phagocytosis, and this may limit the inflammatory response to this nonapoptotic form of cell death. The exposure of PS to the outer membrane and to extracellular vesicles is therefore a feature of necroptotic cell death and may serve to provide an immunologically-silent window by generating specific “find me” and “eat me” signals. Necroptosis, a recently discovered regulated form of cell death, is widely considered to be inflammatory due to the absence of specific “find me” and “eat me” signals prior to lytic death. Here, we demonstrate that necroptotic cells generate “find me” and “eat me” signals by exposure of phosphatidylserine on their outer plasma membrane. This was further associated with the release of extracellular vesicles (“necroptotic bodies”) that contain phosphatidylserine, pMLKL (a key necroptotic marker), as well as other proteins. These signals drive recognition and phagocytosis of necroptotic cells to modulate the immune response. The exposure of phosphatidylserine and release of “necroptotic bodies” indicate that apoptosis and necroptosis share some common biochemical and cellular features and highlight the need for new biomarkers to distinguish apoptotic and necroptotic cell death.
Collapse
Affiliation(s)
- Sefi Zargarian
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Shlomovitz
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ziv Erlich
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aria Hourizadeh
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yifat Ofir-Birin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ben A. Croker
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Liat Edry-Botzer
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
14
|
Zhang Z, Chai W, Xiong R, Zhou L, Huang Y. Printing-induced cell injury evaluation during laser printing of 3T3 mouse fibroblasts. Biofabrication 2017. [DOI: 10.1088/1758-5090/aa6ed9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Zhang Z, Chai W, Xiong R, Zhou L, Huang Y. Printing-induced cell injury evaluation during laser printing of 3T3 mouse fibroblasts. Biofabrication 2017. [DOI: 10.1088/1758-5090/aa6ed9/.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Zhang Z, Chai W, Xiong R, Zhou L, Huang Y. Printing-induced cell injury evaluation during laser printing of 3T3 mouse fibroblasts. Biofabrication 2017. [PMID: 28631624 DOI: 10.1088/1758-5090/aa6ed9/] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Three-dimensional bioprinting has emerged as a promising solution for the freeform fabrication of living cellular constructs, which can be used for tissue/organ transplantation and tissue models. During bioprinting, some living cells are unavoidably injured and may become necrotic or apoptotic cells. This study aims to investigate the printing-induced cell injury and evaluates injury types of post-printing cells using the annexin V/7-aminoactinomycin D and FAM-DEVD-FMK/propidium iodide assays during laser printing of NIH 3T3 mouse fibroblasts. As observed, the percentage of post-printing early apoptotic mouse fibroblasts increases with the incubation time, indicating that post-printing apoptotic mouse fibroblasts have different initiation lag times of apoptosis due to different levels of mechanical stress exerted during laser printing. Post-printing necrotic mouse fibroblasts can be detected immediately after printing, while post-printing early apoptotic mouse fibroblasts need time to develop into a late apoptotic stage. The minimum time needed for post-printing early apoptotic mouse fibroblasts to complete their apoptosis pathway and transition into late apoptotic mouse fibroblasts is from 4 h to 5 h post-printing. The resulting knowledge of the evolution of different apoptotic post-printing mouse fibroblasts will help better design future experiments to quantitatively determine, model, and mitigate the post-printing cell injury based on molecular signal pathway modeling.
Collapse
Affiliation(s)
- Zhengyi Zhang
- School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China. Dept. of Mechanical and Aerospace Engineering, Univ. of Florida, Gainesville, FL 32611, United States of America
| | | | | | | | | |
Collapse
|
17
|
Phosphatidylethanolamine targeting for cell death imaging in early treatment response evaluation and disease diagnosis. Apoptosis 2017. [DOI: 10.1007/s10495-017-1384-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Huppertz B, Kingdom JCP. Apoptosis in the Trophoblast—Role of Apoptosis in Placental Morphogenesis. ACTA ACUST UNITED AC 2016; 11:353-62. [PMID: 15350247 DOI: 10.1016/j.jsgi.2004.06.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Villous trophoblast is the epithelial cover of the placental villous tree and comes in direct contact with maternal blood. The turnover of villous trophoblast includes proliferation and differentiation of cytotrophoblast, syncytial fusion of cytotrophoblast with the overlying syncytiotrophoblast, differentiation in the syncytiotrophoblast, and finally extrusion of apoptotic material into the maternal circulation. In recent years, it has become clear that apoptosis is a normal constituent of trophoblast turnover and the release of apoptotic material does not lead to an inflammatory response of the mother. During preeclampsia there seems to be an altered balance between proliferation and apoptosis of villous trophoblast leading to a dysregulation of the release from the syncytiotrophoblast. The normal apoptotic release may be reduced in favor of a necrotic release. Since apoptosis is still ongoing in the syncytiotrophoblast, a necrotic release of intrasyncytial and partly apoptotic material lead us to call this type of release "aponecrotic shedding." In this situation, cell-free components such as G-actin and DNA freely floating in maternal blood may trigger damage to the maternal endothelium, thereby triggering preeclampsia. This review highlights the importance of the apoptosis cascade in permitting normal physiologic turnover of villous trophoblast. It will demonstrate the participation of initial stages of this cascade within the cytotrophoblast and of the execution stages within the syncytiotrophoblast. Moreover, this review presents hypotheses of how dysregulation of the apoptosis cascade may be linked to endothelial dysfunction of the maternal vasculature in preeclampsia.
Collapse
Affiliation(s)
- Berthold Huppertz
- Department of Anatomy II, University Hospital RWTH, Aachen, Germany.
| | | |
Collapse
|
19
|
Yang H, Ma Y, Chen G, Zhou H, Yamazaki T, Klein C, Pietrocola F, Vacchelli E, Souquere S, Sauvat A, Zitvogel L, Kepp O, Kroemer G. Contribution of RIP3 and MLKL to immunogenic cell death signaling in cancer chemotherapy. Oncoimmunology 2016; 5:e1149673. [PMID: 27471616 DOI: 10.1080/2162402x.2016.1149673] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy can reinstate anticancer immunosurveillance through inducing tumor immunogenic cell death (ICD). Here, we show that anthracyclines and oxaliplatin can trigger necroptosis in murine cancer cell lines expressing receptor-interacting serine-threonine kinase 3 (RIP3) and mixed lineage kinase domain-like (MLKL). Necroptotic cells featured biochemical hallmarks of ICD and stimulated anticancer immune responses in vivo. Chemotherapy normally killed Rip3 (-/-) and Mlkl (-/-) tumor cells and normally induced caspase-3 activation in such cells, yet was unable to reduce their growth in vivo. RIP3 or MLKL deficiency abolished the capacity of dying cancer cells to elicit an immune response. This could be attributed to reduced release of ATP and high mobility group box 1 (HMGB1) by RIP3 and MLKL-deficient cells. Measures designed to compensate for deficient ATP and HMGB1 signaling restored the chemotherapeutic response of Rip3 (-/-) and Mlkl (-/-) cancers. Altogether, these results suggest that RIP3 and MLKL can contribute to ICD signaling and tumor immunogenicity.
Collapse
Affiliation(s)
- Heng Yang
- Equipe 11 labellisée Ligue contre le Cancer, Center de Recherche des Cordeliers, Institut National de la Santé Et de la Recherche Medicale (INSERM) U 1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuting Ma
- Equipe 11 labellisée Ligue contre le Cancer, Center de Recherche des Cordeliers, Institut National de la Santé Et de la Recherche Medicale (INSERM) U 1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guo Chen
- Equipe 11 labellisée Ligue contre le Cancer, Center de Recherche des Cordeliers, Institut National de la Santé Et de la Recherche Medicale (INSERM) U 1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France
| | - Heng Zhou
- Equipe 11 labellisée Ligue contre le Cancer, Center de Recherche des Cordeliers, Institut National de la Santé Et de la Recherche Medicale (INSERM) U 1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France; University of Paris Sud XI, Kremlin Bicêtre, France
| | - Takahiro Yamazaki
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, GRCC, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507, GRCC, Villejuif, France
| | - Christophe Klein
- Cell Imaging and flow Cytometry platform (CICC), Center de Recherche des Cordeliers , Paris, France
| | - Federico Pietrocola
- Equipe 11 labellisée Ligue contre le Cancer, Center de Recherche des Cordeliers, Institut National de la Santé Et de la Recherche Medicale (INSERM) U 1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France
| | - Erika Vacchelli
- Equipe 11 labellisée Ligue contre le Cancer, Center de Recherche des Cordeliers, Institut National de la Santé Et de la Recherche Medicale (INSERM) U 1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France
| | - Sylvie Souquere
- Unités Mixtes de Recherche (UMR) 9196, GRCC , Villejuif, France
| | - Allan Sauvat
- Equipe 11 labellisée Ligue contre le Cancer, Center de Recherche des Cordeliers, Institut National de la Santé Et de la Recherche Medicale (INSERM) U 1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Laurence Zitvogel
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France; University of Paris Sud XI, Kremlin Bicêtre, France; INSERM, U1015, GRCC, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507, GRCC, Villejuif, France
| | - Oliver Kepp
- Equipe 11 labellisée Ligue contre le Cancer, Center de Recherche des Cordeliers, Institut National de la Santé Et de la Recherche Medicale (INSERM) U 1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Center de Recherche des Cordeliers, Institut National de la Santé Et de la Recherche Medicale (INSERM) U 1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Nabergoj D, Vrbek S, Zidar N, Tomašić T, Kikelj D, Mašič LP, Muller CD. Synthetic analogues of marine alkaloid clathrodin differently induce phosphatidylserine exposure in monocytic cancer cells then in cancer stem cell lines. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00163g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Activation of apoptosis in cancer cells could stop the development of several cancers.
Collapse
Affiliation(s)
- Dominik Nabergoj
- Faculty of Pharmacy
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
- Laboratoire d'Innovation Thérapeutique
| | - Sanja Vrbek
- Faculty of Pharmacy
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
- Laboratoire d'Innovation Thérapeutique
| | - Nace Zidar
- Faculty of Pharmacy
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
| | - Tihomir Tomašić
- Faculty of Pharmacy
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
| | - Danijel Kikelj
- Faculty of Pharmacy
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
| | | | - Christian D. Muller
- Laboratoire d'Innovation Thérapeutique
- UMR 7200
- Faculté de Pharmacie
- Université de Strasbourg
- Illkirch
| |
Collapse
|
21
|
Mier-Aguilar CA, Vega-Baray B, Burgueño-Bucio E, Lozano F, García-Zepeda EA, Raman C, Soldevila G. Functional requirement of tyrosine residue 429 within CD5 cytoplasmic domain for regulation of T cell activation and survival. Biochem Biophys Res Commun 2015; 466:381-7. [PMID: 26363459 DOI: 10.1016/j.bbrc.2015.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 09/05/2015] [Indexed: 11/15/2022]
Abstract
CD5 has been mainly described as a negative regulator of TCR and BCR signaling and recent evidence has shown an important role for this receptor in delivering pro-survival signals. However, the molecular mechanisms underlying these processes remain unresolved. TCR crosslinking leads to phosphorylation of three tyrosine residues within the cytoplasmic tail of CD5 (Y429, Y441 and Y463) leading to the recruitment of signaling molecules like PI3K, c-Cbl and RasGAP; nevertheless, the role of these residues in T cell survival has not yet been assessed. In this study, we show that alanine-scanning mutagenesis of such tyrosine residues, either singly or in combination, leads to an increased thymocyte cell death with or without α-CD3 stimulation. Remarkably, the T-cell death observed with each individual tyrosine mutant was Caspase 3-independent. Furthermore, Y429 mutation resulted in a hyper-phosphorylation of ERK suggesting that this tyrosine residue regulates cell survival through down modulation of TCR signaling. Mutation of Y441 or Y463 did not induce hyper-responsiveness to TCR activation, indicating that they promoted T-cell survival by a TCR signal-independent pathway. Our results show that three tyrosine-based domains within CD5 cytoplasmic tail promote T-cell survival through non-overlapping mechanisms. This study also reveals that Y429 domain of CD5, previously described as a "pseudo ITAM", is functionally an ITIM domain in T cells.
Collapse
Affiliation(s)
- Carlos A Mier-Aguilar
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF 04510, Mexico
| | - Benjamin Vega-Baray
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF 04510, Mexico
| | - Erica Burgueño-Bucio
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF 04510, Mexico
| | - Francisco Lozano
- Servei d'Immunologia, Hospital Clinic i Provincial de Barcelona, Institut d'Investigaciones Biomédiques August Pi i Sunyer (IDIBABS), Departament de Biologia Cel.lular, Immunologia i Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
| | - Eduardo A García-Zepeda
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF 04510, Mexico
| | - Chander Raman
- Division of Clinical Immunology and Rheumatology, Departments of Medicine, and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gloria Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF 04510, Mexico.
| |
Collapse
|
22
|
Nielsen JS, Larsson A, Ledet T, Turina M, Tønnesen E, Krog J. Rough-Form Lipopolysaccharide Increases Apoptosis in Human CD4⁺ and CD8⁺ T Lymphocytes. Scand J Immunol 2015; 75:193-202. [PMID: 21854408 DOI: 10.1111/j.1365-3083.2011.02613.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Immunosuppression induced by lymphocyte apoptosis is considered an important factor in the pathogenesis of sepsis and has been demonstrated in both animal models of lipopolysaccharide (LPS)-induced endotoxemia and septic patients. As rough-form LPS (R-LPS) has recently been shown to elicit a stronger immunological response than regular smooth-form LPS (S-LPS), we aimed to assess the apoptosis-inducing capabilities of R-LPS in different subsets of lymphocytes (CD4(+) T cells, CD8(+) T cell, B cells and NK cells). Using multicolour flow cytometry on human peripheral blood mononuclear cells, we found that R-LPS increased apoptosis in CD4(+) and CD8(+) T cells assessed by annexin V and propidium iodide (AV(+) PI(-)), compared with both S-LPS-stimulated and unstimulated cells. 7-Amino-actinomycin D and staining for intracellular active caspase-3, which are considered later signs of apoptosis, did not reveal the same results. Both forms appeared to inhibit apoptosis in B cells, but no LPS-form-specific effect was seen on B or NK cells. Our results indicate that R-LPS induces a stronger AV(+) PI(-)-assessed apoptotic response in T cells than S-LPS. Our findings emphasize the importance of T cell apoptosis in endotoxemia and advocates for control of LPS form in both endotoxemia research and clinical trials with Gram-negative infections.
Collapse
Affiliation(s)
- J S Nielsen
- Department of Anesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, DenmarkDepartment of Biochemical Pathology, Aarhus University Hospitals, Aarhus, DenmarkDepartment of Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, SwedenDepartment of Surgery, University of Zurich Hospital, Zurich, Switzerland
| | - A Larsson
- Department of Anesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, DenmarkDepartment of Biochemical Pathology, Aarhus University Hospitals, Aarhus, DenmarkDepartment of Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, SwedenDepartment of Surgery, University of Zurich Hospital, Zurich, Switzerland
| | - T Ledet
- Department of Anesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, DenmarkDepartment of Biochemical Pathology, Aarhus University Hospitals, Aarhus, DenmarkDepartment of Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, SwedenDepartment of Surgery, University of Zurich Hospital, Zurich, Switzerland
| | - M Turina
- Department of Anesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, DenmarkDepartment of Biochemical Pathology, Aarhus University Hospitals, Aarhus, DenmarkDepartment of Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, SwedenDepartment of Surgery, University of Zurich Hospital, Zurich, Switzerland
| | - E Tønnesen
- Department of Anesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, DenmarkDepartment of Biochemical Pathology, Aarhus University Hospitals, Aarhus, DenmarkDepartment of Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, SwedenDepartment of Surgery, University of Zurich Hospital, Zurich, Switzerland
| | - J Krog
- Department of Anesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, DenmarkDepartment of Biochemical Pathology, Aarhus University Hospitals, Aarhus, DenmarkDepartment of Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, SwedenDepartment of Surgery, University of Zurich Hospital, Zurich, Switzerland
| |
Collapse
|
23
|
Acevedo-Olvera LF, Diaz-Garcia H, Parra-Barrera A, Caceres-Perez AA, Gutierrez-Iglesias G, Rangel-Corona R, Caceres-Cortes JR. Inhibition of the Na+/H+ antiporter induces cell death in TF-1 erythroleukemia cells stimulated by the stem cell factor. Cytokine 2015; 75:142-50. [PMID: 26188365 DOI: 10.1016/j.cyto.2015.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 06/03/2015] [Accepted: 06/23/2015] [Indexed: 01/17/2023]
Abstract
Leukemia cells produce acidic metabolites due to their high metabolic condition. An alkaline pHi (intracellular pH) shift, caused by activation of the Na+/H+ exchange, is an important event in the mechanism of growth factor activity. However, the role of the Na(+)/H(+) exchanger in the survival of erythroleukemia TF-1 cells has not yet been studied in detail. The aim of this study was to identify the effects of 5-(N-ethyl-N-isopropyl) amiloride (EIPA), a highly specific blocker of the Na(+)/H(+) exchanger, on the survival of SCF-dependent TF-1 cells. The effects of EIPA on survival and mitochondrial membrane potential were studied when exposing wild type TF-1 cells and TF-1 cells expressing bcl-2 to EIPA for 48h. Ectopic expression of the bcl-2 gene maintained a mildly alkaline pH and prevented the simultaneous appearance of apoptosis and autophagy (typically displayed by TF-1 cells) in the presence of EIPA. Consistent with Stem Cell Factor (SCF) function, we found that this molecule rescued TF-1 cells during autophagy but not apoptosis, allowing these cells to subsequently respond to GM-CSF. Serum deprivation or SCF withdrawal induced cell death at 36h in TF-1 and TF-1 neo cells, whereas TF-1/bcl-2 cells tended to undergo apoptosis and show acidic vacuoles after 96h, pointing to a transient anti-apoptotic effect. The present study shows the suppressive effect of EIPA on the proliferation of leukemia cell line stimulated with SCF, apparently by decreasing the mitochondria membrane potential and averting alkalinization. Through the constitutive expression of bcl-2, TF-1 cells were survival factor independent. Proliferation in these cells was not affected by EIPA at the concentrations used against parental TF-1 cells, indicating that the inhibitory effect in SCF-stimulated cells can be attributed to specific blocking of the Na(+)/H(+) exchanger.
Collapse
Affiliation(s)
- Leonardo Fermin Acevedo-Olvera
- Laboratorio de Cáncer y Hematopoyesis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340, Mexico
| | - Hector Diaz-Garcia
- Laboratorio de Cáncer y Hematopoyesis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340, Mexico
| | - Alberto Parra-Barrera
- Laboratorio de Cáncer y Hematopoyesis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340, Mexico
| | - Alejandro Arturo Caceres-Perez
- Laboratorio de Cáncer y Hematopoyesis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340, Mexico
| | - Gisela Gutierrez-Iglesias
- Laboratorio de Cáncer y Hematopoyesis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340, Mexico
| | - Rosalva Rangel-Corona
- Laboratorio de Cáncer y Hematopoyesis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340, Mexico
| | - Julio Roberto Caceres-Cortes
- Laboratorio de Cáncer y Hematopoyesis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340, Mexico.
| |
Collapse
|
24
|
Fumonisin B₁ inhibits apoptosis in HepG2 cells by inducing Birc-8/ILP-2. Toxicol Lett 2015; 235:67-74. [PMID: 25800559 DOI: 10.1016/j.toxlet.2015.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/17/2022]
Abstract
Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium sp., a common contaminant of maize. FB1 inhibits sphingolipid biosynthesis, alters sphingosine/sphinganine ratios and modifies cell survival and cell death processes at varying propensities at both species- and tissue-specific level. We investigated the effect of FB1 on the apoptotic pathway in human hepatoma (HepG2) cells. We measured: (i) the level of cell proliferation and cell death mechanism of HepG2 cells (MTT assay, annexin V and propidium iodide staining, JC-1 assay, γH2AX and cleaved PARP and Hoechst staining); (ii) initiator and executioner caspase activity (luminometric enzyme activity assays); (iii) regulation of mRNA expression of pro- and anti- apoptotic molecules using an apoptosis array (qPCR) and (iv) levels of significantly altered apoptosis-related proteins (Western blotting) following a 24 h incubation. FB1 caused a dose-dependent decrease in cell viability with an inhibitory concentration for 50% of cell growth at 200 μM. FACS data showed FB1 induced a 2.5-fold increase in annexin V staining, however, caspase activity and mitochondrial depolarization was not significantly influenced. Cleaved PARP and γH2AX were significantly lower in treated cells with minimal DNA condensation and fragmentation observed with the Hoechst stain. BIRC-8/ILP-2 was most significantly up-regulated (8-fold; apoptosis array). ILP2 protein levels were elevated (2.3-fold) with a corresponding decrease in Smac/DIABLO protein levels (1.7-fold). Further analysis showed a dose-dependent increase in BIRC-8/ILP-2 mRNA and protein expression in HepG2 cells. We conclude that FB1 modulates apoptosis in a complex dose-dependent regulation of pro- and anti-apoptotic molecules.
Collapse
|
25
|
Hu QN, Baldwin TA. Differential roles for Bim and Nur77 in thymocyte clonal deletion induced by ubiquitous self-antigen. THE JOURNAL OF IMMUNOLOGY 2015; 194:2643-53. [PMID: 25687757 DOI: 10.4049/jimmunol.1400030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Negative selection, primarily mediated through clonal deletion of self-reactive thymocytes, is critical for establishing self-tolerance and preventing autoimmunity. Recent studies suggest that the molecular mechanisms of negative selection differ depending on the thymic compartment and developmental stage at which thymocytes are deleted. Using the physiological HY(cd4) TCR transgenic model of negative selection against ubiquitous self-antigen, we previously found that one of the principal mediators implicated in clonal deletion, Bim, is required for caspase-3 activation but is ultimately dispensable for negative selection. On the basis of these data, we hypothesized that Nur77, another molecule thought to be a key mediator of clonal deletion, could be responsible for Bim-independent deletion. Despite comparable Nur77 induction in thymocytes during negative selection, Bim deficiency resulted in an accumulation of high-affinity-signaled thymocytes as well as impairment in caspase-mediated and caspase-independent cell death. Although these data suggested that Bim may be required for Nur77-mediated cell death, we found that transgenic Nur77 expression was sufficient to induce apoptosis independently of Bim. However, transgenic Nur77-induced apoptosis was significantly inhibited in the context of TCR signaling, suggesting that endogenous Nur77 could be similarly regulated during negative selection. Although Nur77 deficiency alone did not alter positive or negative selection, combined deficiency in Bim and Nur77 impaired clonal deletion efficiency and significantly increased positive selection efficiency. Collectively, these data shed light on the different roles for Bim and Nur77 during ubiquitous Ag-mediated clonal deletion and highlight potential differences from their reported roles in tissue-restricted Ag-mediated clonal deletion.
Collapse
Affiliation(s)
- Qian Nancy Hu
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Troy A Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
26
|
Anandhan A, Rodriguez-Rocha H, Bohovych I, Griggs AM, Zavala-Flores L, Reyes-Reyes EM, Seravalli J, Stanciu LA, Lee J, Rochet JC, Khalimonchuk O, Franco R. Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways. Neurobiol Dis 2014; 81:76-92. [PMID: 25497688 DOI: 10.1016/j.nbd.2014.11.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/03/2014] [Accepted: 11/26/2014] [Indexed: 12/14/2022] Open
Abstract
Gene multiplications or point mutations in alpha (α)-synuclein are associated with familial and sporadic Parkinson's disease (PD). An increase in copper (Cu) levels has been reported in the cerebrospinal fluid and blood of PD patients, while occupational exposure to Cu has been suggested to augment the risk to develop PD. We aimed to elucidate the mechanisms by which α-synuclein and Cu regulate dopaminergic cell death. Short-term overexpression of wild type (WT) or mutant A53T α-synuclein had no toxic effect in human dopaminergic cells and primary midbrain cultures, but it exerted a synergistic effect on Cu-induced cell death. Cell death induced by Cu was potentiated by overexpression of the Cu transporter protein 1 (Ctr1) and depletion of intracellular glutathione (GSH) indicating that the toxic effects of Cu are linked to alterations in its intracellular homeostasis. Using the redox sensor roGFP, we demonstrated that Cu-induced oxidative stress was primarily localized in the cytosol and not in the mitochondria. However, α-synuclein overexpression had no effect on Cu-induced oxidative stress. WT or A53T α-synuclein overexpression exacerbated Cu toxicity in dopaminergic and yeast cells in the absence of α-synuclein aggregation. Cu increased autophagic flux and protein ubiquitination. Impairment of autophagy by overexpression of a dominant negative Atg5 form or inhibition of the ubiquitin/proteasome system (UPS) with MG132 enhanced Cu-induced cell death. However, only inhibition of the UPS stimulated the synergistic toxic effects of Cu and α-synuclein overexpression. Our results demonstrate that α-synuclein stimulates Cu toxicity in dopaminergic cells independent from its aggregation via modulation of protein degradation pathways.
Collapse
Affiliation(s)
- Annadurai Anandhan
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Humberto Rodriguez-Rocha
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Iryna Bohovych
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amy M Griggs
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Laura Zavala-Flores
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Javier Seravalli
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lia A Stanciu
- Weldon School of Biomedical Engineering and School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - Jaekwon Lee
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Oleh Khalimonchuk
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
27
|
Menale C, Piccolo MT, Favicchia I, Aruta MG, Baldi A, Nicolucci C, Barba V, Mita DG, Crispi S, Diano N. Efficacy of Piroxicam Plus Cisplatin-Loaded PLGA Nanoparticles in Inducing Apoptosis in Mesothelioma Cells. Pharm Res 2014; 32:362-74. [DOI: 10.1007/s11095-014-1467-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
|
28
|
Loison E, Poirier-Beaudouin B, Seffer V, Paoletti A, Abitbol V, Tartour E, Launay O, Gougeon ML. Suppression by thimerosal of ex-vivo CD4+ T cell response to influenza vaccine and induction of apoptosis in primary memory T cells. PLoS One 2014; 9:e92705. [PMID: 24690681 PMCID: PMC3972181 DOI: 10.1371/journal.pone.0092705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/24/2014] [Indexed: 11/18/2022] Open
Abstract
Thimerosal is a preservative used widely in vaccine formulations to prevent bacterial and fungal contamination in multidose vials of vaccine. Thimerosal was included in the multidose non-adjuvanted pandemic 2009 H1N1 vaccine Panenza. In the context of the analysis of the ex-vivo T cell responses directed against influenza vaccine, we discovered the in vitro toxicity Panenza, due to its content in thimerosal. Because thimerosal may skew the immune response to vaccines, we investigated in detail the ex-vivo effects of thimerosal on the fate and functions of T cells in response to TCR ligation. We report that ex-vivo exposure of quiescent or TCR-activated primary human T cells to thimerosal induced a dose-dependent apoptotic cell death associated with depolarization of mitochondrial membrane, generation of reactive oxygen species, cytochrome c release from the mitochondria and caspase-3 activation. Moreover, exposure to non-toxic concentrations of thimerosal induced cell cycle arrest in G0/G1 phase of TCR-activated T cells, and inhibition of the release of proinflammatory cytokines such as IFN gamma, IL-1 beta, TNF alpha, IL-2, as well as the chemokine MCP1. No shift towards Th2 or Th17 cells was detected. Overall these results underline the proapoptotic effect of thimerosal on primary human lymphocytes at concentrations 100 times less to those contained in the multidose vaccine, and they reveal the inhibitory effect of this preservative on T-cell proliferation and functions at nanomolar concentrations.
Collapse
Affiliation(s)
- Emily Loison
- Antiviral Immunity Biotherapy and Vaccine Unit, Institut Pasteur, Paris, France
| | | | - Valérie Seffer
- Antiviral Immunity Biotherapy and Vaccine Unit, Institut Pasteur, Paris, France
| | | | - Vered Abitbol
- Gastroenterology Department, Hôpital Cochin, AP-HP, Paris, France
| | - Eric Tartour
- Inserm U970, Université Paris Descartes, PARCC/HEGP, Paris, France
| | - Odile Launay
- Centre d’Investigation Clinique BT-505, Hôpital Cochin, AP-HP, Paris, France
| | - Marie-Lise Gougeon
- Antiviral Immunity Biotherapy and Vaccine Unit, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
29
|
Lopreiato R, Giacomello M, Carafoli E. The plasma membrane calcium pump: new ways to look at an old enzyme. J Biol Chem 2014; 289:10261-10268. [PMID: 24570005 DOI: 10.1074/jbc.o114.555565] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The three-dimensional structure of the PMCA pump has not been solved, but its basic mechanistic properties are known to repeat those of the other Ca(2+) pumps. However, the pump also has unique properties. They concern essentially its numerous regulatory mechanisms, the most important of which is the autoinhibition by its C-terminal tail. Other regulatory mechanisms involve protein kinases and the phospholipids of the membrane in which the pump is embedded. Permanent activation of the pump, e.g. by calmodulin, is physiologically as harmful to cells as its absence. The concept is now emerging that the global control of cell Ca(2+) may not be the main function of the pump; in some cell types, it could even be irrelevant. The main pump role would be the regulation of Ca(2+) in cell microdomains in which the pump co-segregates with partners that modulate the Ca(2+) message and transduce it to important cell functions.
Collapse
Affiliation(s)
| | - Marta Giacomello
- Venetian Institute of Molecular Medicine, University of Padova, 35129 Padova, Italy
| | - Ernesto Carafoli
- Venetian Institute of Molecular Medicine, University of Padova, 35129 Padova, Italy.
| |
Collapse
|
30
|
Thiyagarajan M, Anderson H, Gonzales XF. Induction of apoptosis in human myeloid leukemia cells by remote exposure of resistive barrier cold plasma. Biotechnol Bioeng 2013; 111:565-74. [PMID: 24022746 DOI: 10.1002/bit.25114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/23/2013] [Accepted: 09/03/2013] [Indexed: 12/31/2022]
Abstract
Cold atmospheric plasma (CAP), an ambient temperature ionized gas, is gaining extensive interest as a promising addition to anti-tumor therapy primarily due to the ability to generate and control delivery of electrons, ions, excited molecules, UV photons, and reactive species such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) to a specific site. The heterogeneous composition of CAP offers the opportunity to mediate several signaling pathways that regulate tumor cells. Consequently, the array of CAP generated products has limited the identification of the mechanisms of action on tumor cells. The aim of this work is to assess the cell death response of human myeloid leukemia cells by remote exposure to CAP generated RNS by utilizing a novel resistive barrier discharge system that primarily produces RNS. The effect of variable treatments of CAP generated RNS was tested in THP-1 cell (human monocytic leukemia cell line), a model for hematological malignancy. The number of viable cells was evaluated with erythrosine-B staining, while apoptosis and necrosis was assessed by endonuclease cleavage observed by agarose gel electrophoresis and detection of cells with the exclusionary dye propidium iodide and fluorescently labeled annexin-V by flow cytometry and fluorescent microscopy. Our observations indicate that treatment dosage levels of 45 s of exposure to CAP emitted RNS-induced apoptotic cell death and for higher dosage conditions of ≥50 s of exposure to CAP induced necrosis. Overall the results suggest that CAP emitted RNS play a significant role in the anti-tumor potential of CAP.
Collapse
Affiliation(s)
- Magesh Thiyagarajan
- Plasma Engineering Research Lab (PERL), Texas A&M University-Corpus Christi, EN 222D Engineering Building, 6300 Ocean Drive, Unit 5797, Corpus Christi, Texas, 78412.
| | | | | |
Collapse
|
31
|
El-Khattouti A, Selimovic D, Haikel Y, Hassan M. Crosstalk between apoptosis and autophagy: molecular mechanisms and therapeutic strategies in cancer. J Cell Death 2013; 6:37-55. [PMID: 25278778 PMCID: PMC4147769 DOI: 10.4137/jcd.s11034] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Both apoptosis and autophagy are highly conserved processes that besides their role in the maintenance of the organismal and cellular homeostasis serve as a main target of tumor therapeutics. Although their important roles in the modulation of tumor therapeutic strategies have been widely reported, the molecular actions of both apoptosis and autophagy are counteracted by cancer protective mechanisms. While apoptosis is a tightly regulated process that is implicated in the removal of damaged or unwanted cells, autophagy is a cellular catabolic pathway that is involved in lysosomal degradation and recycling of proteins and organelles, and thereby is considered an important survival/protective mechanism for cancer cells in response to metabolic stress or chemotherapy. Although the relationship between autophagy and cell death is very complicated and has not been characterized in detail, the molecular mechanisms that control this relationship are considered to be a relevant target for the development of a therapeutic strategy for tumor treatment. In this review, we focus on the molecular mechanisms of apoptosis, autophagy, and those of the crosstalk between apoptosis and autophagy in order to provide insight into the molecular mechanisms that may be essential for the balance between cell survival and death as well as their role as targets for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Denis Selimovic
- Institut National de la Santé et de la Recherche Médicale, U 977, 67000 Strasbourg, France. ; Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, U 977, 67000 Strasbourg, France. ; Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, U 977, 67000 Strasbourg, France. ; Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
32
|
Toledano Furman NE, Lupu-Haber Y, Bronshtein T, Kaneti L, Letko N, Weinstein E, Baruch L, Machluf M. Reconstructed stem cell nanoghosts: a natural tumor targeting platform. NANO LETTERS 2013; 13:3248-55. [PMID: 23786263 DOI: 10.1021/nl401376w] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The ultimate goal in cancer therapy is achieving selective targeting of cancer cells. We report a novel delivery platform, based on nanoghosts (NGs) produced from the membranes of mesenchymal stem cells (MSCs). Encompassing MSC surface molecules, the MSC-NGs retained MSC-specific in vitro and in vivo tumor targeting capabilities and were cleared from blood-filtering organs. MSC-NGs were found to be biocompatible. Systemic administration of drug loaded MSC-NGs demonstrated 80% inhibition of human prostate cancer.
Collapse
Affiliation(s)
- Naama E Toledano Furman
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology , Haifa 32000, Israel
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Behari M, Shrivastava M. Role of platelets in neurodegenerative diseases: a universal pathophysiology. Int J Neurosci 2013; 123:287-99. [PMID: 23301959 DOI: 10.3109/00207454.2012.751534] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Platelets play an important role in a variety of disorders, namely, cardiovascular, psychosomatic, psychiatric, thrombosis, HIV/AIDS in addition to various neurodegenerative diseases (NDDs). Recent evidence indicates that platelet react to diverse stressors, thereby offering an interesting vantage point for understanding their potential role in contemporary medical research. This review addresses the possible role of platelets as a systemic probe in various NDDs, such as amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, Alzheimer's disease, multiple sclerosis, etc. The current review based on published literature, describes a probable link between platelets and pathophysiology of various NDDs. It also discusses how platelets epitomize ultrastructural, morphological, biochemical and molecular changes, highlighting their emerging role as systemic tools in different NDDs.
Collapse
Affiliation(s)
- Madhuri Behari
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| | | |
Collapse
|
34
|
Nayak MK, Kulkarni PP, Dash D. Regulatory role of proteasome in determination of platelet life span. J Biol Chem 2013; 288:6826-34. [PMID: 23329846 DOI: 10.1074/jbc.m112.403154] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Limit of platelet life span (8-10 days) is determined by the activity of a putative "internal clock" composed of Bcl-2 family proteins, whereas the role of other molecular players in this process remains obscure. Here, we sought to establish a central role of proteasome in platelet life span regulation. Administration of mice with inhibitors of proteasome peptidase activity induced significant thrombocytopenia. This was associated with enhanced clearance of biotin-labeled platelets from circulation and reduction in average platelet half-life from 66 to 37 h. Cells pretreated in vitro with proteasome inhibitors exhibited augmented annexin V binding and a drop in mitochondrial transmembrane potential indicative of apoptotic cell death and decreased platelet life span. These cells were preferentially phagocytosed by monocyte-derived macrophages, thus linking proteasome activity with platelet survival. The decisive role of proteasome in this process was underscored from enhanced expression of conformationally active Bax in platelets with attenuated proteasome activity, which was consistent with pro-apoptotic phenotype of these cells. The present study establishes a critical role of proteasome in delimiting platelet life span ostensibly through constitutive elimination of the conformationally active Bax. These findings bear potential implications in clinical settings where proteasome peptidase activities are therapeutically targeted.
Collapse
Affiliation(s)
- Manasa K Nayak
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | | | | |
Collapse
|
35
|
Hojka-Osinska A, Ziolo E, Rapak A. Combined treatment with fenretinide and indomethacin induces AIF-mediated, non-classical cell death in human acute T-cell leukemia Jurkat cells. Biochem Biophys Res Commun 2012; 419:590-5. [DOI: 10.1016/j.bbrc.2012.02.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 11/30/2022]
|
36
|
Msaki A, Sánchez AM, Koh LF, Barré B, Rocha S, Perkins ND, Johnson RF. The role of RelA (p65) threonine 505 phosphorylation in the regulation of cell growth, survival, and migration. Mol Biol Cell 2011; 22:3032-40. [PMID: 21737676 PMCID: PMC3164452 DOI: 10.1091/mbc.e11-04-0280] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RelA (p65) phosphorylation at threonine 505 acts as a negative regulator of NF-κB function. In addition to its role in regulation of cell death, a role is demonstrated for T505 phosphorylation in regulating autophagy, proliferation, and migration. NOXA is also identified as a downstream, T505-dependent effector of RelA in cell death. The NF-κB family of transcription factors is a well-established regulator of the immune and inflammatory responses and also plays a key role in other cellular processes, including cell death, proliferation, and migration. Conserved residues in the trans-activation domain of RelA, which can be posttranslationally modified, regulate divergent NF-κB functions in response to different cellular stimuli. Using rela−/− mouse embryonic fibroblasts reconstituted with RelA, we find that mutation of the threonine 505 (T505) phospho site to alanine has wide-ranging effects on NF-κB function. These include previously described effects on chemotherapeutic drug-induced apoptosis, as well as new roles for this modification in autophagy, cell proliferation, and migration. This last effect was associated with alterations in the actin cytoskeleton and expression of cellular migration–associated genes such as WAVE3 and α-actinin 4. We also define a new component of cisplatin-induced, RelA T505–dependent apoptosis, involving induction of NOXA gene expression, an effect explained at least in part through induction of the p53 homologue, p73. Therefore, in contrast to other RelA phosphorylation events, which positively regulate NF-κB function, we identified RelA T505 phosphorylation as a negative regulator of its ability to induce diverse cellular processes such as apoptosis, autophagy, proliferation, and migration.
Collapse
Affiliation(s)
- Aichi Msaki
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
37
|
Argiris K, Panethymitaki C, Tavassoli M. Naturally occurring, tumor-specific, therapeutic proteins. Exp Biol Med (Maywood) 2011; 236:524-36. [PMID: 21521711 DOI: 10.1258/ebm.2011.011004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The emerging approach to cancer treatment known as targeted therapies offers hope in improving the treatment of therapy-resistant cancers. Recent understanding of the molecular pathogenesis of cancer has led to the development of targeted novel drugs such as monoclonal antibodies, small molecule inhibitors, mimetics, antisense and small interference RNA-based strategies, among others. These compounds act on specific targets that are believed to contribute to the development and progression of cancers and resistance of tumors to conventional therapies. Delivered individually or combined with chemo- and/or radiotherapy, such novel drugs have produced significant responses in certain types of cancer. Among the most successful novel compounds are those which target tyrosine kinases (imatinib, trastuzumab, sinutinib, cetuximab). However, these compounds can cause severe side-effects as they inhibit pathways such as epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor, which are also important for normal functions in non-transformed cells. Recently, a number of proteins have been identified which show a remarkable tumor-specific cytotoxic activity. This toxicity is independent of tumor type or specific genetic changes such as p53, pRB or EGFR aberrations. These tumor-specific killer proteins are either derived from common human and animal viruses such as E1A, E4ORF4 and VP3 (apoptin) or of cellular origin, such as TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) and MDA-7 (melanoma differentiation associated-7). This review aims to present a current overview of a selection of these proteins with preferential toxicity among cancer cells and will provide an insight into the possible mechanism of action, tumor specificity and their potential as novel tumor-specific cancer therapeutics.
Collapse
|
38
|
Shrivastava M, Vivekanandhan S, Pati U, Behari M, Das TK. Mitochondrial Perturbance and Execution of Apoptosis in Platelet Mitochondria of Patients With Amyotrophic Lateral Sclerosis. Int J Neurosci 2010; 121:149-58. [DOI: 10.3109/00207454.2010.537416] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Moritz TJ, Taylor DS, Krol DM, Fritch J, Chan JW. Detection of doxorubicin-induced apoptosis of leukemic T-lymphocytes by laser tweezers Raman spectroscopy. BIOMEDICAL OPTICS EXPRESS 2010; 1:1138-1147. [PMID: 21258536 PMCID: PMC3018077 DOI: 10.1364/boe.1.001138] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 05/07/2023]
Abstract
Laser tweezers Raman spectroscopy (LTRS) was used to acquire the Raman spectra of leukemic T lymphocytes exposed to the chemotherapy drug doxorubicin at different time points over 72 hours. Changes observed in the Raman spectra were dependent on drug exposure time and concentration. The sequence of spectral changes includes an intensity increase in lipid Raman peaks, followed by an intensity increase in DNA Raman peaks, and finally changes in DNA and protein (phenylalanine) Raman vibrations. These Raman signatures are consistent with vesicle formation, cell membrane blebbing, chromatin condensation, and the cytoplasm of dead cells during the different stages of drug-induced apoptosis. These results suggest the potential of LTRS as a real-time single cell tool for monitoring apoptosis, evaluating the efficacy of chemotherapeutic treatments, or pharmaceutical testing.
Collapse
Affiliation(s)
- Tobias J. Moritz
- NSF Center for Biophotonics Science and Technology, University of California, Davis, 2700 Stockton Blvd Suite 1400, Sacramento, CA 95817, USA
- Biophysics Graduate Group, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Douglas S. Taylor
- NSF Center for Biophotonics Science and Technology, University of California, Davis, 2700 Stockton Blvd Suite 1400, Sacramento, CA 95817, USA
- Department of Pediatrics, University of California Davis Medical Center, 2516 Stockton Blvd, Sacramento, CA 95817, USA
| | - Denise M. Krol
- Biophysics Graduate Group, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
- Department of Applied Science, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - John Fritch
- NSF Center for Biophotonics Science and Technology, University of California, Davis, 2700 Stockton Blvd Suite 1400, Sacramento, CA 95817, USA
| | - James W. Chan
- NSF Center for Biophotonics Science and Technology, University of California, Davis, 2700 Stockton Blvd Suite 1400, Sacramento, CA 95817, USA
| |
Collapse
|
40
|
Grime JMA, Khan MO. Decreased Osmotic Pressure via Interfacial Charge Clustering. J Phys Chem B 2010; 114:10049-56. [DOI: 10.1021/jp1007973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John M. A. Grime
- Department of Physical and Analytical Chemistry, Physical Chemistry, Uppsala University, Uppsala, Sweden
| | - Malek O. Khan
- Department of Physical and Analytical Chemistry, Physical Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
41
|
Apoptosis and non-inflammatory phagocytosis can be induced by mitochondrial damage without caspases. Cell Death Differ 2009; 17:821-32. [PMID: 19911005 DOI: 10.1038/cdd.2009.166] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A central issue regarding vertebrate apoptosis is whether caspase activity is essential, particularly for its crucial biological outcome: non-inflammatory clearance of the dying cell. Caspase-9 is required for the proteolytic cascade unleashed by the mitochondrial outer membrane permeabilization (MOMP) regulated by the Bcl-2 protein family. However, despite the severely blunted apoptosis in cells from Casp9(-/-) mice, some organs with copious apoptosis, such as the thymus, appear unaffected. To address this paradox, we investigated how caspase-9 loss affects apoptosis and clearance of mouse fibroblasts and thymocytes. Although Casp9(-/-) cells were initially refractory to apoptotic insults, they eventually succumbed to slower caspase-independent cell death. Furthermore, in gamma-irradiated mice, the dying Casp9(-/-) thymocytes were efficiently cleared, without apparent inflammation. Notably, MOMP proceeded normally, and the impaired mitochondrial function, revealed by diminished mitochondrial membrane potential (DeltaPsi(m)), committed cells to die, as judged by loss of clonogenicity. Upon the eventual full collapse of DeltaPsi(m), presumably reflecting failure of respiration, intact dying Casp9(-/-) cells unexpectedly exposed the prototypic 'eat-me' signal phosphatidylserine, which allowed their recognition and engulfment by phagocytes without overt inflammation. Hence, caspase-9-induced proteolysis accelerates apoptosis, but impaired mitochondrial integrity apparently triggers a default caspase-independent program of cell death and non-inflammatory clearance. Thus, caspases appear dispensable for some essential biological functions of apoptosis.
Collapse
|
42
|
Schwarznau A, Hanson MS, Sperger JM, Schram BR, Danobeitia JS, Greenwood KK, Vijayan A, Fernandez LA. IL-1beta receptor blockade protects islets against pro-inflammatory cytokine induced necrosis and apoptosis. J Cell Physiol 2009; 220:341-7. [PMID: 19334038 DOI: 10.1002/jcp.21770] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pro-inflammatory cytokines (PIC) impair islet viability and function by activating inflammatory pathways that induce both necrosis and apoptosis. The aim of this study was to utilize an in vitro rat islet model to evaluate the efficacy of a clinically approved IL-1 receptor antagonist (Anakinra) in blocking PIC induced islet impairment. Isolated rat islets were cultured for 48 h +/- PIC (IL-1beta, IFNgamma, and TNFalpha) and +/-IL-1ra then assayed for cellular integrity by flow cytometry, MAPK phosphorylation by proteome array, and gene expression by RT-PCR. Nitric oxide (NO) release into the culture media was measured by Griess reaction. Islet functional potency was tested by glucose stimulated insulin secretion (GSIS) and by transplantation into streptozotocin-induced diabetic NOD.scid mice. Rat islets cultured with PIC upregulated genes for NOS2a, COX2, IL6, IL1b, TNFa, and HMOX1. IL-1ra prevented the PIC induced upregulation of all of these genes except for TNFa. Inhibition of PIC induced iNOS by NG-monomethyl-L-arginine (NMMA) only blocked the increased expression of HMOX1. IL-1ra completely abrogated the effects of PIC with respect to NO production, necrosis, apoptosis, mitochondrial dysfunction, GSIS, and in vivo potency. IL-1ra was not effective at preventing the induction of necrosis or apoptosis by exogenous NO. These data demonstrate that Anakinra is an effective agent to inhibit the activation of IL-1beta dependent inflammatory pathways in cultured rat islets and support the extension of its application to human islets in vitro and potentially as a post transplant therapy.
Collapse
Affiliation(s)
- Alice Schwarznau
- Department of Surgery, Technical University of Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sasi N, Hwang M, Jaboin J, Csiki I, Lu B. Regulated cell death pathways: new twists in modulation of BCL2 family function. Mol Cancer Ther 2009; 8:1421-9. [PMID: 19509269 DOI: 10.1158/1535-7163.mct-08-0895] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A number of cell death pathways have been recognized. Though apoptosis and autophagy have been well characterized, programmed necrosis has recently received attention and may provide clinical alternatives to suppress resistant tumors. Necrosis is primarily characterized by large-scale permeabilization, swelling, and rupture of cell membranes and the release of pro-inflammatory cytokines. Traditionally, necrosis in cancer cells has been indicative of poor prognoses, as chronic inflammation was found to encourage tumor growth. Yet, many antitumor effects associated with necrosis have been discovered in certain settings, such as the formation of an effective antitumor immune response. In this way, finding ways to attenuate the pro-tumor effects of necrosis while engaging the antitumor pathways via drugs, radiation, and sensitization may prove valuable as a clinical focus for the future. We hypothesize that the use of Bcl-2 inhibitors may enhance necrotic death characterized by inflammation and antitumor immunity. In this article, we briefly review apoptosis and autophagy and reason how necrosis may be a suitable alternative therapeutic endpoint. We then highlight novel inhibitors of Bcl-2 that may provide clinical application of our hypothesis in the future.
Collapse
Affiliation(s)
- Nidhish Sasi
- Department of Radiation Oncology, Vanderbilt University, 1301 22nd Avenue South, The Vanderbilt Clinic, Nashville, TN 37232-5671, USA
| | | | | | | | | |
Collapse
|
44
|
PRELI is a mitochondrial regulator of human primary T-helper cell apoptosis, STAT6, and Th2-cell differentiation. Blood 2008; 113:1268-77. [PMID: 18945965 DOI: 10.1182/blood-2008-07-166553] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The identification of novel factors regulating human T helper (Th)-cell differentiation into functionally distinct Th1 and Th2 subsets is important for understanding the mechanisms behind human autoimmune and allergic diseases. We have identified a protein of relevant evolutionary and lymphoid interest (PRELI), a novel protein that induces oxidative stress and a mitochondrial apoptosis pathway in human primary Th cells. We also demonstrated that PRELI inhibits Th2-cell development and down-regulates signal transducer and activator of transcription 6 (STAT6), a key transcription factor driving Th2 differentiation. Our data suggest that calpain, an oxidative stress-induced cysteine protease, is involved in the PRELI-induced down-regulation of STAT6. Moreover, we observed that a strong T-cell receptor (TCR) stimulus induces expression of PRELI and inhibits Th2 development. Our results suggest that PRELI is involved in a mechanism wherein the strength of the TCR stimulus influences the polarization of Th cells. This study identifies PRELI as a novel factor influencing the human primary Th-cell death and differentiation.
Collapse
|
45
|
Quantitative image based apoptotic index measurement using multispectral imaging flow cytometry: a comparison with standard photometric methods. Apoptosis 2008; 13:1054-63. [DOI: 10.1007/s10495-008-0227-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Dror V, Kalynyak TB, Bychkivska Y, Frey MHZ, Tee M, Jeffrey KD, Nguyen V, Luciani DS, Johnson JD. Glucose and endoplasmic reticulum calcium channels regulate HIF-1beta via presenilin in pancreatic beta-cells. J Biol Chem 2008; 283:9909-16. [PMID: 18174159 DOI: 10.1074/jbc.m710601200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pancreatic beta-cell death is a critical event in type 1 diabetes, type 2 diabetes, and clinical islet transplantation. We have previously shown that prolonged block of ryanodine receptor (RyR)-gated release from intracellular Ca(2+) stores activates calpain-10-dependent apoptosis in beta-cells. In the present study, we further characterized intracellular Ca(2+) channel expression and function in human islets and the MIN6 beta-cell line. All three RyR isoforms were identified in human islets and MIN6 cells, and these endoplasmic reticulum channels were observed in close proximity to mitochondria. Blocking RyR channels, but not sarco/endoplasmic reticulum ATPase (SERCA) pumps, reduced the ATP/ADP ratio. Blocking Ca(2+) flux through RyR or inositol trisphosphate receptor channels, but not SERCA pumps, increased the expression of hypoxia-inducible factor (HIF-1beta). Moreover, inhibition of RyR or inositol trisphosphate receptor channels, but not SERCA pumps, increased the expression of presenilin-1. Both HIF-1beta and presenilin-1 expression were also induced by low glucose. Overexpression of presenilin-1 increased HIF-1beta, suggesting that HIF is downstream of presenilin. Our results provide the first evidence of a presenilin-HIF signaling network in beta-cells. We demonstrate that this pathway is controlled by Ca(2+) flux through intracellular channels, likely via changes in mitochondrial metabolism and ATP. These findings provide a mechanistic understanding of the signaling pathways activated when intracellular Ca(2+) homeostasis and metabolic activity are suppressed in diabetes and islet transplantation.
Collapse
Affiliation(s)
- Vardit Dror
- Laboratory of Molecular Signaling in Diabetes, Diabetes Research Group, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nakayama J, Ohtsuki M, Oda T. Caspase-independent cell death by Fas ligation in human thymus-derived T cell line, HPB-ALL cells. Microbiol Immunol 2007; 51:1029-37. [PMID: 17951993 DOI: 10.1111/j.1348-0421.2007.tb03987.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In HPB-ALL cells, a human thymus-derived T-cell line, Fas (CD95)-mediated cell death was inhibited by about only 50% as a result of treatment with an amount of benzyloxycarbonyl-Val-Ala-Asp-(O-methyl)-CH(2)F (zVAD-fmk) sufficient to block the caspase activity. Fas-mediated caspase-independent cell death was not observed in other lymphoblast cell lines or mouse activated splenocytes, but this type of cell death was observed in mouse and rat thymocytes, the same as for HPB-ALL cells. This suggests that Fas-mediated caspase-independent cell death is a common feature in thymocytes. The signaling pathway of caspase-independent cell death has not yet been fully elucidated. In HPB-ALL cells, DNA fragmentation, one of the features of apoptotic cells, did not occur in the caspase-independent cell death after Fas ligation. On the other hand, this type of cell death and the surface exposure of phosphatidylserine were recovered by pretreatment with geldanamycin, which brought about a decrease in receptor interacting protein (RIP) kinase expression. These results suggested that HPB-ALL cells have a caspase-independent RIP kinasedependent pathway for Fas ligation.
Collapse
Affiliation(s)
- Junichi Nakayama
- Biological Research Laboratories III, Daiichi-Sankyo Co., Ltd, Shinnagawa-ku, Tokyo 140-8710, Japan.
| | | | | |
Collapse
|
48
|
Abstract
The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. The ability to modulate the life or death of a cell is recognized for its immense therapeutic potential. Therefore, research continues to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that control cell cycle arrest and apoptosis. To that end, the field of apoptosis research has been moving forward at an alarmingly rapid rate. Although many of the key apoptotic proteins have been identified, the molecular mechanisms of action or inaction of these proteins remain to be elucidated. The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptosis in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptosis.
Collapse
Affiliation(s)
- Susan Elmore
- NIEHS, Laboratory of Experimental Pathology, Research Triangle Park, North Carolina 27709, USA.
| |
Collapse
|
49
|
Amsili S, Shlomai Z, Levitzki R, Krause S, Lochmuller H, Ben-Bassat H, Mitrani-Rosenbaum S. Characterization of hereditary inclusion body myopathy myoblasts: possible primary impairment of apoptotic events. Cell Death Differ 2007; 14:1916-24. [PMID: 17673919 DOI: 10.1038/sj.cdd.4402208] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hereditary inclusion body myopathy (HIBM) is a unique muscular disorder caused by mutations in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene. GNE encodes a bi-functional enzyme acting in the biosynthetic pathway of sialic acid. Since the underlying myopathological mechanism leading to the disease phenotype is poorly understood, we have established human myoblasts cultures, derived from HIBM satellite cells carrying the homozygous M712T mutation, and identified cellular and molecular characteristics of these cells. HIBM and control myoblasts showed similar heterogeneous patterns of proliferation and differentiation. Upon apoptosis induction, phosphatidylserine externalization was similar in HIBM and controls. In contrast, the active forms of caspase-3 and -9 were strongly enhanced in most HIBM cultures compared to controls, while pAkt, downregulated in controls, remained high in HIBM cells. These results could indicate impaired apoptotic signaling in HIBM cells. Since satellite cells enable partial regeneration of the post-mitotic muscle tissue, these altered processes could contribute to the muscle mass loss seen in patients. The identification of survival defects in HIBM affected muscle cells could disclose new functions for GNE in muscle cells.
Collapse
Affiliation(s)
- S Amsili
- Goldyne Savad Institute for Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
50
|
Imre G, Dunai Z, Petak I, Mihalik R. Cystein cathepsin and Hsp90 activities determine the balance between apoptotic and necrotic cell death pathways in caspase-compromised U937 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1546-57. [PMID: 17707089 DOI: 10.1016/j.bbamcr.2007.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 06/25/2007] [Accepted: 07/12/2007] [Indexed: 01/12/2023]
Abstract
Caspase-inhibited cells induced to die may exhibit the traits of either apoptosis or necrosis or both, simultaneously. However, mechanisms regulating the commitment to these distinct forms of cell death are barely identified. We found that staurosporine induced both apoptotic and necrotic traits in U937 cells exposed to the caspase inhibitor benzyloxycarbonyl-Val-Ala-DL-Asp(OMe)-fluoromethylketone. Morphology and flow cytometry revealed that individual cells exhibited either apoptotic or necrotic traits, but not the mixed phenotype. Inhibition of cathepsin activity by benzyloxycarbonyl-Phe-Ala-fluoromethylketone rendered caspase-compromised cells resistant to staurosporine-induced apoptosis, but switched the cell death form to necrosis. Inhibition of heat shock protein 90 kDa (Hsp90) chaperon activity by geldanamycin conferred resistance to necrosis in caspase-compromised cells but switched the cell death form to apoptosis. Combination of benzyloxycarbonyl-Phe-Ala-fluoromethylketone and geldanamycin halted the onset of both forms of cell death by saving mitochondrial trans-membrane potential and preventing acidic volume (lysosomes) loss. These effects of benzyloxycarbonyl-Phe-Ala-fluoromethylketone and/or geldanamycin on cell death were restricted to caspase-inhibited cells exposed to staurosporine but influenced neither only the staurosporine-provoked apoptosis nor hydrogen peroxide (H2O2)-generated necrosis. Our results demonstrate that the staurosporine-induced death pathway bifurcates in caspase-compromised cells and commitment to apoptotic or necrotic phenotypes depends on cathepsin protease or Hsp90 chaperon activities.
Collapse
Affiliation(s)
- Gergely Imre
- Department of I.st Pathology and Experimental Cancer Research, Semmelweis University, Budapest, 1085, Hungary
| | | | | | | |
Collapse
|