1
|
Santacroce L, Topi S, Charitos IA, Lovero R, Luperto P, Palmirotta R, Jirillo E. Current Views about the Inflammatory Damage Triggered by Bacterial Superantigens and Experimental Attempts to Neutralize Superantigen-Mediated Toxic Effects with Natural and Biological Products. PATHOPHYSIOLOGY 2024; 31:18-31. [PMID: 38251046 PMCID: PMC10801599 DOI: 10.3390/pathophysiology31010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Superantigens, i.e., staphylococcal enterotoxins and toxic shock syndrome toxin-1, interact with T cells in a different manner in comparison to conventional antigens. In fact, they activate a larger contingent of T lymphocytes, binding outside the peptide-binding groove of the major histocompatibility complex class II. Involvement of many T cells by superantigens leads to a massive release of pro-inflammatory cytokines, such as interleukin (IL)-1, IL-2, IL-6, tumor necrosis factor-alpha and interferon-gamma. Such a storm of mediators has been shown to account for tissue damage, multiorgan failure and shock. Besides conventional drugs and biotherapeutics, experiments with natural and biological products have been undertaken to attenuate the toxic effects exerted by superantigens. In this review, emphasis will be placed on polyphenols, probiotics, beta-glucans and antimicrobial peptides. In fact, these substances share a common functional denominator, since they skew the immune response toward an anti-inflammatory profile, thus mitigating the cytokine wave evoked by superantigens. However, clinical applications of these products are still scarce, and more trials are needed to validate their usefulness in humans.
Collapse
Affiliation(s)
- Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Skender Topi
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania
| | - Ioannis Alexandros Charitos
- Division of Pneumology and Respiratory Rehabilitation, Maugeri Clinical Scientific Research Institutes (IRCCS) of Pavia—Scientific Institute of Bari, 70124 Bari, Italy
| | - Roberto Lovero
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy
| | | | - Raffaele Palmirotta
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Emilio Jirillo
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| |
Collapse
|
2
|
Angelats E, Santamaria P. Lineage origin and transcriptional control of autoantigen-specific T-regulatory type 1 cells. Front Immunol 2023; 14:1267697. [PMID: 37818381 PMCID: PMC10560755 DOI: 10.3389/fimmu.2023.1267697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
T Regulatory type-1 (TR1) cells represent an immunosuppressive T cell subset, discovered over 25 years ago, that produces high levels of interleukin-10 (IL-10) but, unlike its FoxP3+ T regulatory (Treg) cell counterpart, does not express FoxP3 or CD25. Experimental evidence generated over the last few years has exposed a promising role for TR1 cells as targets of therapeutic intervention in immune-mediated diseases. The discovery of cell surface markers capable of distinguishing these cells from related T cell types and the application of next generation sequencing techniques to defining their transcriptional make-up have enabled a more accurate description of this T cell population. However, the developmental biology of TR1 cells has long remained elusive, in particular the identity of the cell type(s) giving rise to bona fide TR1 cells in vivo. Here, we review the fundamental phenotypic, transcriptional and functional properties of this T cell subset, and summarize recent lines of evidence shedding light into its ontogeny.
Collapse
Affiliation(s)
- Edgar Angelats
- Pathogenesis and Treatment of Autoimmunity Group, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Pathogenesis and Treatment of Autoimmunity Group, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Erratum: Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2023; 13:1125497. [PMID: 36761160 PMCID: PMC9903213 DOI: 10.3389/fimmu.2022.1125497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023] Open
Abstract
[This corrects the article .].
Collapse
|
4
|
Freeborn RA, Strubbe S, Roncarolo MG. Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2022; 13:1032575. [PMID: 36389662 PMCID: PMC9650496 DOI: 10.3389/fimmu.2022.1032575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 09/02/2023] Open
Abstract
Type 1 regulatory T (Tr1) cells, in addition to other regulatory cells, contribute to immunological tolerance to prevent autoimmunity and excessive inflammation. Tr1 cells arise in the periphery upon antigen stimulation in the presence of tolerogenic antigen presenting cells and secrete large amounts of the immunosuppressive cytokine IL-10. The protective role of Tr1 cells in autoimmune diseases and inflammatory bowel disease has been well established, and this led to the exploration of this population as a potential cell therapy. On the other hand, the role of Tr1 cells in infectious disease is not well characterized, thus raising concern that these tolerogenic cells may cause general immune suppression which would prevent pathogen clearance. In this review, we summarize current literature surrounding Tr1-mediated tolerance and its role in health and disease settings including autoimmunity, inflammatory bowel disease, and infectious diseases.
Collapse
Affiliation(s)
- Robert A. Freeborn
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Steven Strubbe
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, United States
- Center for Definitive and Curative Medicine (CDCM), Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
5
|
Solé P, Santamaria P. Re-Programming Autoreactive T Cells Into T-Regulatory Type 1 Cells for the Treatment of Autoimmunity. Front Immunol 2021; 12:684240. [PMID: 34335585 PMCID: PMC8320845 DOI: 10.3389/fimmu.2021.684240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
Systemic delivery of peptide-major histocompatibility complex (pMHC) class II-based nanomedicines can re-program cognate autoantigen-experienced CD4+ T cells into disease-suppressing T-regulatory type 1 (TR1)-like cells. In turn, these TR1-like cells trigger the formation of complex regulatory cell networks that can effectively suppress organ-specific autoimmunity without impairing normal immunity. In this review, we summarize our current understanding of the transcriptional, phenotypic and functional make up of TR1-like cells as described in the literature. The true identity and direct precursors of these cells remain unclear, in particular whether TR1-like cells comprise a single terminally-differentiated lymphocyte population with distinct transcriptional and epigenetic features, or a collection of phenotypically different subsets sharing key regulatory properties. We propose that detailed transcriptional and epigenetic characterization of homogeneous pools of TR1-like cells will unravel this conundrum.
Collapse
Affiliation(s)
- Patricia Solé
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Gao SX, Sun C, Zhu YT, Zhao JB, Sun J, Zhou P, Jiang HY, Fan YA, Wei L, Zhang T, Guan JC. Exposure of pregnant rats to staphylococcal enterotoxin B increases offspring splenic Treg number and function via decreasing FoxP3 methylation. Immunobiology 2021; 226:152060. [PMID: 33529803 DOI: 10.1016/j.imbio.2021.152060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 12/30/2022]
Abstract
Staphylococcus aureus is an infectious pathogen that is relatively common, but that can cause severe disease in pregnant women and their fetus. We previously demonstrated that exposing pregnant rats to staphylococcal enterotoxin B (SEB) altered splenic CD4/CD8 T cell frequencies in their offspring. Whether prenatal SEB exposure impacts Tregs in these offspring, however, remains to be determined. As such, in this study, we intravenously injected pregnant rats with 15 μg of SEB on gestational day 16. Splenic tissue was then harvested from 1-, 3-, and 5-day-old neonatal rats and analyzed via flow cytometry to assess Treg numbers. In addition, FoxP3 expression levels were assessed via qPCR and western blotting, while FoxP3 methylation status was evaluated via methyl-DNA immunoprecipitation qPCR. Immunosuppression assays were additionally used to gauge Treg suppressive functionality. We found that exposing pregnant rats to SEB resulted in a significant increase in Treg numbers, FoxP3 expression, and Treg suppressive capacity in the spleens of both neonatal and adult offspring. In addition, total T cell, CD4+T cell, and non-Treg CD4+ T cell numbers were elevated in the spleens of offspring following prenatal SEB exposure. We additionally determined that SEB exposure resulted in a significant reduction in FoxP3 DNA methylation. Together, our results indicate that prenatal SEB exposure can markedly enhance offspring splenic Treg numbers and functionality at least in part by decreasing FoxP3 methylation.
Collapse
Affiliation(s)
- Shu-Xian Gao
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Chao Sun
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Yu-Ting Zhu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Jia-Bao Zhao
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Jing Sun
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Ping Zhou
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Hao-Yuan Jiang
- An Under Graduate Student Majored Clinical Medicine, Bengbu Medical College, Anhui 233030, PR China
| | - Ying-Ao Fan
- An Under Graduate Student Majored Clinical Medicine, Bengbu Medical College, Anhui 233030, PR China
| | - Li Wei
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Tao Zhang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Jun-Chang Guan
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China; Department of Microbiology, Bengbu Medical College, Bengbu, Anhui 233030, PR China.
| |
Collapse
|
7
|
Zhou P, Chen J, Li HH, Sun J, Gao SX, Zheng QW, Wei L, Jiang CY, Guan JC. Exposure of pregnant rats to staphylococcal enterotoxin B attenuates the response of increased Tregs to re-exposure to SEB in the thymus of adult offspring. Microb Pathog 2020; 145:104225. [PMID: 32353581 DOI: 10.1016/j.micpath.2020.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022]
Abstract
Regulatory T cells (Tregs) play an essential role during homeostasis and tolerance of the immune system. Based on our previous study that exposure of pregnant rats to staphylococcal enterotoxin B (SEB) can alter the percentage of CD4/CD8 subsets in the thymus of the offspring, in this study, we focus on the influence of exposure of pregnant rats to SEB on number, function and response of Tregs in the thymus of the offspring. Pregnant rats at gestational day of 16 were intravenously injected with 15 μg SEB and the thymuses of the neonatal and adult offspring were harvested for this study. We found that exposure of pregnant rats to SEB could significantly increase the absolute number of Tregs and the FoxP3 expression level in the thymus of not only neonatal but also adult offspring. Re-exposure of adult offspring to SEB remarkably reduced the suppressive capacity of Tregs to CD4+ T cells and the expression levels of TGF-β and IL-10 in the thymus, but had no effect on production of IL-4 and IFN-γ. Furthermore, it also notedly decreased the absolute number of Tregs and the FoxP3 expression level. These data suggest that prenatal exposure of pregnant rats to SEB attenuates the response of increased Tregs to re-exposure to SEB in the thymus of adult offspring.
Collapse
Affiliation(s)
- Ping Zhou
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Department of Microbiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Jie Chen
- Department of Cardiology, Jiande Branch, Second Affiliated Hospital, Zhejiang University School of Medicine, Jiande, 311600, PR China
| | - Hui-Hui Li
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Jing Sun
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Shu-Xian Gao
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Department of Microbiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Qing-Wei Zheng
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Li Wei
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Cheng-Yi Jiang
- Department of Otolaryngology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233033, PR China
| | - Jun-Chang Guan
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Department of Microbiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China.
| |
Collapse
|
8
|
Gao SX, Sun J, Li HH, Chen J, Kashif MR, Zhou P, Wei L, Zheng QW, Wu LG, Guan JC. Prenatal exposure of staphylococcal enterotoxin B attenuates the development and function of blood regulatory T cells to repeated staphylococcal enterotoxin B exposure in adult offspring rats. J Med Microbiol 2020; 69:591-599. [PMID: 32043953 PMCID: PMC7440678 DOI: 10.1099/jmm.0.001152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/09/2020] [Indexed: 01/12/2023] Open
Abstract
Introduction. Staphylococcal enterotoxin B (SEB) is an extensively studied super-antigen. A previous study by us suggested that SEB exposure during pregnancy could alter the percentage of CD4+ and CD8+ T cells in the peripheral blood of neonatal offspring rats.Aim. It is unknown whether SEB exposure during pregnancy can influence the development of regulatory T cells (Tregs) in the peripheral blood of neonatal offspring rats.Methodology. Pregnant rats at gestational day 16 were intravenously injected with 15 µg SEB. Peripheral blood was acquired from neonatal offspring rats on days 1, 3 and 5 after delivery and from adult offspring rats for determination of Treg number by cytometry, cytokines by ELISA, and FoxP3 expression by real-time PCR and western blot.Results. SEB given to pregnant rats significantly increased the absolute number of Tregs and the expression levels of FoxP3, IL-10 and TGF-β (P<0.05, P<0.01) in the peripheral blood of not only neonatal but also adult offspring rats. Furthermore, repeated SEB exposure in adult offspring rats significantly decreased the absolute number of Tregs (P<0.01), and the expression levels of FoxP3, IL-10 and TGF-β (P<0.05, P<0.01) in their peripheral blood.Conclusion. Prenatal SEB exposure attenuates the development and function of Tregs to repeated SEB exposure in the peripheral blood of adult offspring rats.
Collapse
Affiliation(s)
- Shu-xian Gao
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
- Department of Microbiology, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Jing Sun
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Hui-hui Li
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Jie Chen
- Department of Cardiology, Jiande Branch, Second Affiliated Hospital, Zhejian University School of Medicine, Jiande 311600, PR China
| | - Mohsin Raza Kashif
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Ping Zhou
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
- Department of Microbiology, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Li Wei
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Qing-wei Zheng
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Li-gao Wu
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Jun-chang Guan
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
- Department of Microbiology, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| |
Collapse
|
9
|
Sähr A, Förmer S, Hildebrand D, Heeg K. T-cell activation or tolerization: the Yin and Yang of bacterial superantigens. Front Microbiol 2015; 6:1153. [PMID: 26539181 PMCID: PMC4611159 DOI: 10.3389/fmicb.2015.01153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022] Open
Abstract
Bacterial superantigens (SAg) are exotoxins from pathogens which interact with innate and adaptive immune cells. The paradox that SAgs cause activation and inactivation/anergy of T-cells was soon recognized. The structural and molecular events following SAg binding to antigen presenting cells (APCs) followed by crosslinking of T-cell receptors were characterized in detail. Activation, cytokine burst and T-cell anergy have been described in vitro and in vivo. Later it became clear that SAg-induced T-cell anergy is in part caused by SAg-dependent activation of T-regulatory cells (Tregs). Although the main focus of analyses was laid on T-cells, it was also shown that SAg binding to MHC class II molecules on APCs induces a signal, which leads to activation and secretion of pro-inflammatory cytokines. Accordingly APCs are mandatory for T-cell activation. So far it is not known, whether APCs play a role during SAg-triggered activation of Tregs. We therefore tested whether in SAg (Streptococcal pyrogenic exotoxin A) -treated APCs an anti-inflammatory program is triggered in addition. We show here that not only the anti-inflammatory cytokine IL-10 and the co-inhibitory surface molecule PD-L1 (CD274) but also inhibitory effector systems like indoleamine 2,3-dioxygenase (IDO) or intracellular negative feedback loops (suppressor of cytokine signaling molecules, SOCS) are induced by SAgs. Moreover, cyclosporine A completely prevented induction of this program. We therefore propose that APCs triggered by SAgs play a key role in T-cell activation as well as inactivation and induction of Treg cells.
Collapse
Affiliation(s)
- Aline Sähr
- Medical Microbiology and Hygiene, Department of Infectious Diseases, University Hospital Heidelberg Heidelberg, Germany
| | - Sandra Förmer
- Medical Microbiology and Hygiene, Department of Infectious Diseases, University Hospital Heidelberg Heidelberg, Germany
| | - Dagmar Hildebrand
- Medical Microbiology and Hygiene, Department of Infectious Diseases, University Hospital Heidelberg Heidelberg, Germany
| | - Klaus Heeg
- Medical Microbiology and Hygiene, Department of Infectious Diseases, University Hospital Heidelberg Heidelberg, Germany
| |
Collapse
|
10
|
Principato M, Qian BF. Staphylococcal enterotoxins in the etiopathogenesis of mucosal autoimmunity within the gastrointestinal tract. Toxins (Basel) 2014; 6:1471-89. [PMID: 24776983 PMCID: PMC4052247 DOI: 10.3390/toxins6051471] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 01/22/2023] Open
Abstract
The staphylococcal enterotoxins (SEs) are the products of Staphylococcus aureus and are recognized as the causative agents of classical food poisoning in humans following the consumption of contaminated food. While illness evoked by ingestion of the SE or its producer organism in tainted food are often self-limited, our current understanding regarding the evolution of S. aureus provokes the utmost concern. The organism and its associated toxins, has been implicated in a wide variety of disease states including infections of the skin, heart, sinuses, inflammatory gastrointestinal disease, toxic shock, and Sudden Infant Death Syndrome. The intricate relationship between the various subsets of immunocompetent T cells and accessory cells and the ingested material found within the gastrointestinal tract present daunting challenges to the maintenance of immunologic homeostasis. Dysregulation of the intricate balances within this environment has the potential for extreme consequences within the host, some of which are long-lived. The focus of this review is to evaluate the relevance of staphylococcal enterotoxin in the context of mucosal immunity, and the underlying mechanisms that contribute to the pathogenesis of gastrointestinal autoimmune disease.
Collapse
Affiliation(s)
- MaryAnn Principato
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA.
| | - Bi-Feng Qian
- Commissioner's Fellowship Program, Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA.
| |
Collapse
|
11
|
Neonatal mucosal immune stimulation by microbial superantigen improves the tolerogenic capacity of CD103(+) dendritic cells. PLoS One 2013; 8:e75594. [PMID: 24086582 PMCID: PMC3785493 DOI: 10.1371/journal.pone.0075594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/19/2013] [Indexed: 01/22/2023] Open
Abstract
Food allergy represents failure to develop tolerance to dietary proteins. Food allergy has increased in prevalence in parallel with decreased exposure to microbes during infancy. In mice, neonatal peroral exposure to the strongly T cell stimulating superantigen staphylococcal enterotoxin A (SEA), enhances the capacity to develop oral tolerance to a novel antigen encountered in adult life. A population of antigen-presenting cells in the gut, the CD103(+) dendritic cells (DCs), is thought to be involved in oral tolerance development, as they convert naïve T cells into FoxP3(+) regulatory T cells (Treg). This function depends on their capacity to convert vitamin A to retinoic acid, carried out by the retinal aldehyde dehydrogenase (RALDH) enzyme. Here, newborn mice were treated with superantigen and DC function and tolerogenic capacity was examined at six weeks of age. We observed that, in mice fed superantigen neonatally, the CD11c(+) DCs had increased expression of RALDH and in vitro more efficiently induced expression Foxp3 expression to stimulated T cells. Further, these mice showed an accumulation of FoxP3(+) T cells in the small intestinal lamina propria and had a more Ag-specific FoxP3(+) T cells after oral tolerance induction in vivo. Moreover, the improved oral tolerance, as shown by increased protection from food allergy, was eradicated if the Vitamin A metabolism was inhibited. These observations contribute to the understanding of how a strong immune stimulation during the neonatal period influences the maturation of the immune system and suggests that such stimulation may reduce the risk of later allergy development.
Collapse
|
12
|
Lundell AC, Björnsson V, Ljung A, Ceder M, Johansen S, Lindhagen G, Törnhage CJ, Adlerberth I, Wold AE, Rudin A. Infant B cell memory differentiation and early gut bacterial colonization. THE JOURNAL OF IMMUNOLOGY 2012; 188:4315-22. [PMID: 22490441 DOI: 10.4049/jimmunol.1103223] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Germ-free animal models have demonstrated that commensal bacterial colonization of the intestine induces B cell differentiation and activation. Whether colonization with particular bacterial species or groups is associated with B cell development during early childhood is not known. In a prospective newborn/infant cohort including 65 Swedish children, we examined the numbers and proportions of CD20(+), CD5(+), and CD27(+) B cells in blood samples obtained at several time points during the first 3 y of life using flow cytometry. Fecal samples were collected and cultured quantitatively for major facultative and anaerobic bacteria at 1, 2, 4, and 8 wk of life. We found that the numbers of CD20(+) B cells and CD5(+)CD20(+) B cells reached their highest levels at 4 mo, whereas CD20(+) B cells expressing the memory marker CD27 were most numerous at 18 and 36 mo of age. Using multivariate analysis, we show that early colonization with Escherichia coli and bifidobacteria were associated with higher numbers of CD20(+) B cells that expressed the memory marker CD27 at 4 and 18 mo of age. In contrast, we were unable to demonstrate any relation between bacterial colonization pattern and numbers of CD20(+) or CD5(+)CD20(+) B cells. These results suggest that the intestinal bacterial colonization pattern may affect the B cell maturation also in humans, and that an early gut microbiota including E. coli and bifidobacteria might promote this maturation.
Collapse
Affiliation(s)
- Anna-Carin Lundell
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, 405 30 Göteborg, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Herman S, Krenbek D, Klimas M, Bonelli M, Steiner CW, Pietschmann P, Smolen JS, Scheinecker C. Regulatory T cells form stable and long-lasting cell cluster with myeloid dendritic cells (DC). Int Immunol 2012; 24:417-26. [PMID: 22366044 DOI: 10.1093/intimm/dxs039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Regulatory T cells (Treg) with the capacity to suppress T-cell proliferation exert various effects on T cell function. In addition, Treg have been shown to modulate the phenotype and function of antigen-presenting cells (APC) including dendritic cells (DC), B cells and monocytes/macrophages. However, the specific mechanism(s) of how Treg affect APC have not been entirely identified so far. In this study, we analyzed the interaction of human Treg and effector T cells (Teff) with peripheral blood myeloid and monocyte-derived dendritic cells in vitro. A strong tendency for cell cluster formation between Treg and DC was observed, which was dependent on the adhesion molecules ICAM-1, LFA-3 and ICAM-3. In addition, Treg were found to express higher levels of LFA-1, LFA-2, LFA-3 and ICAM-3 both before and after activation with anti-CD3 antibodies. Using in vitro live cell imaging, we were further able to show that Treg-DC cell clusters, in contrast to Teff-DC clusters, were stable and long lasting. Co-cultures of DC with Treg diminished the up-regulation of activation induced costimulatory molecule expression on DC, and further reduced the production of tumor necrosis factor alpha and stimulated the production of IL-4. In summary, our data indicate that Treg-DC cluster formation might enable Treg to modulate phenotypic and functional characteristics of DC and help to constrain Teff activation.
Collapse
Affiliation(s)
- Sonja Herman
- Division of Rheumatology, Center of Physiology, Pathophysiology and Immunology, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Miron N, Miron MM. Staphylococcal enterotoxin A: a candidate for the amplification of physiological immunoregulatory responses in the gut. Microbiol Immunol 2011; 54:769-77. [PMID: 21091986 DOI: 10.1111/j.1348-0421.2010.00280.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcal enterotoxin A (SEA) is one of the bacterial products tested for modulation of unwanted immune responses. Of all the staphylococcal enterotoxins, SEA is the most potent stimulator of T cells. When administered orally, SEA acts as a superantigen (SA), producing unspecific stimulation of intra-epithelial lymphocytes (IELs) in the intestinal mucosa. This stimulation results in amplification of the normal local immunologic responses, which are mainly regulatory. This amplification is based on increased local production of IFN-γ by IELs, which acts on the nearby enterocytes. As a result, the enterocytes produce large amounts of tolerosomes, cellular corpuscles which detach themselves from the basal poles of the enterocytes and contain antigenic peptides that are conditioned to be interpreted as tolerogenic by the gut immune system. Tolerosomes are physiologically produced as a response to dietary peptides; it is already known that enterocytes posses the molecular mechanisms for processing peptides in a similar manner to lymphocytes. The fate of tolerosomes is not precisely known, but it seems that they merge with intestinal dendritic cells, conveying to them the information that orally administered peptides must be interpreted as tolerogens. SEA can stimulate this mechanism, thus favoring the development of tolerance to peptides/proteins administered subsequently via the oral route. This characteristic of SEA might be useful in therapy for regulating immune responses. The present paper reviews the current status of research regarding the impact of SEA on the enteric immune system and its potential use in the treatment of allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Nicolae Miron
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj, Romania.
| | | |
Collapse
|
15
|
Abstract
FOXP3, a member of the forkhead family of transcriptional regulatory proteins, is expressed predominantly in CD4(+)CD25(+) regulatory T cells. These cells are vital for maintaining peripheral tolerance. A lack of FOXP3 results in severe lymphoproliferative disease and autoimmunity in both mouse and humans, which is the result of an absence of CD4(+)CD25(+)FOXP3(+) regulatory cells. This review discusses the role that this protein plays in the commitment and function of regulatory T cells and its characteristics of FOXP3. We then discuss how, in humans, the induction of FOXP3 in nonregulatory CD4(+) T cells can result in the generation of regulatory T cells in the periphery. A finding that has implications on both how autoimmunity is regulated in vivo as well an impact on the development of therapeutic interventions for the treatment of autoimmunity.
Collapse
Affiliation(s)
- Steven F Ziegler
- Benaroya Research Institute, Immunology Program, Seattle, WA 98101, USA.
| | | |
Collapse
|
16
|
Tanriver Y, Martín-Fontecha A, Ratnasothy K, Lombardi G, Lechler R. Superantigen-Activated Regulatory T Cells Inhibit the Migration of Innate Immune Cells and the Differentiation of Naive T Cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:2946-56. [DOI: 10.4049/jimmunol.0803953] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Workman CJ, Szymczak-Workman AL, Collison LW, Pillai MR, Vignali DAA. The development and function of regulatory T cells. Cell Mol Life Sci 2009; 66:2603-22. [PMID: 19390784 PMCID: PMC2715449 DOI: 10.1007/s00018-009-0026-2] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/17/2009] [Accepted: 03/27/2009] [Indexed: 12/14/2022]
Abstract
Regulatory T cells (Tregs) are a critical subset of T cells that mediate peripheral tolerance. There are two types of Tregs: natural Tregs, which develop in the thymus, and induced Tregs, which are derived from naive CD4(+) T cells in the periphery. Tregs utilize a variety of mechanisms to suppress the immune response. While Tregs are critical for the peripheral maintenance of potential autoreactive T cells, they can also be detrimental by preventing effective anti-tumor responses and sterilizing immunity against pathogens. In this review, we will discuss the development of natural and induced Tregs as well as the role of Tregs in a variety of disease settings and the mechanisms they utilize for suppression.
Collapse
Affiliation(s)
- Creg J. Workman
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678 USA
| | - Andrea L. Szymczak-Workman
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678 USA
| | - Lauren W. Collison
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678 USA
| | - Meenu R. Pillai
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678 USA
| | - Dario A. A. Vignali
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678 USA
| |
Collapse
|
18
|
Eroukhmanoff L, Oderup C, Ivars F. T-cell tolerance induced by repeated antigen stimulation: selective loss of Foxp3- conventional CD4 T cells and induction of CD4 T-cell anergy. Eur J Immunol 2009; 39:1078-87. [PMID: 19283777 DOI: 10.1002/eji.200838653] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Repeated immunization of mice with bacterial superantigens induces extensive deletion and anergy of reactive CD4 T cells. Here we report that the in vitro proliferation anergy of CD4 T cells from TCR transgenic mice immunized three times with staphylococcal enterotoxin B (SEB) (3 x SEB) is partially due to an increased frequency of Foxp3(+) CD4 T cells. Importantly, reduced number of conventional CD25(-) Foxp3(-) cells, rather than conversion of such cells to Foxp3(+) cells, was the cause of that increase and was also seen in mice repeatedly immunized with OVA (3 x OVA) and OVA-peptide (OVAp) (3 x OVAp). Cell-transfer experiments revealed profound but transient anergy of CD4 T cells isolated from 3 x OVAp and 3x SEB mice. However, the in vivo anergy was CD4 T-cell autonomous and independent of Foxp3(+) Treg. Finally, proliferation of transferred CD4 T cells was inhibited in repeatedly immunized mice but inhibition was lost when transfer was delayed, despite the maintenance of elevated frequency of Foxp3(+) cells. These data provide important implications for Foxp3(+) cell-mediated tolerance in situations of repeated antigen exposure such as human persistent infections.
Collapse
|
19
|
Easten KH, Harry RA, Purcell WM, McLeod JD. Nociceptin-induced modulation of human T cell function. Peptides 2009; 30:926-34. [PMID: 19428771 DOI: 10.1016/j.peptides.2009.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 01/21/2023]
Abstract
There is an accumulating evidence for the immunoregulatory role of the neuropeptide, nociceptin/orphanin FQ (N/OFQ) however its role on T cell function requires elucidation. This study has demonstrated an inhibitory role for N/OFQ on SEB-activated T cell function. N/OFQ decreases T cell proliferation, which is abrogated when the costimulatory receptors CD80 and CD86 are blocked. In addition, evidence suggests that the immunoregulatory cytokines TGF-beta, IFN-gamma and nitric oxide (NO) are involved in the N/OFQ effect. N/OFQ also, through involvement of IFN and NO, induces the expression of the immunosuppressive modulator indoleamine 2,3-dioxygenase (IDO), suggesting a central role for IDO in the N/OFQ effect on T cell proliferation. The data presented in this report indicate a multi-faceted mechanism of action used by N/OFQ to modulate T cell function.
Collapse
Affiliation(s)
- Kate H Easten
- Faculty of Health and Life Sciences, Centre for Research in Biomedicine, University of the West of England, Coldharbour lane, Frenchay, Bristol, UK
| | | | | | | |
Collapse
|
20
|
Trzonkowski P, Szaryńska M, Myśliwska J, Myśliwski A. Ex vivo expansion of CD4+CD25+T regulatory cells for immunosuppressive therapy. Cytometry A 2009; 75:175-88. [DOI: 10.1002/cyto.a.20659] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Lönnqvist A, Ostman S, Almqvist N, Hultkrantz S, Telemo E, Wold AE, Rask C. Neonatal exposure to staphylococcal superantigen improves induction of oral tolerance in a mouse model of airway allergy. Eur J Immunol 2009; 39:447-56. [PMID: 19130476 DOI: 10.1002/eji.200838418] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The hygiene hypothesis suggests that lack of microbial stimulation in early infancy may lead to allergy, but it has been difficult to identify particular protective microbial exposures. We have observed that infants colonised in the first week(s) of life with Staphylococcus aureus have lower risk of developing food allergy. As many S. aureus strains produce superantigens with T-cell stimulating properties, we here investigate whether neonatal mucosal exposure to superantigen could influence the capacity to develop oral tolerance and reduce sensitisation and allergy. BALB/c mice were exposed to staphylococcal enterotoxin A (SEA) as neonates and fed with OVA as adults, prior to sensitisation and i.n. OVA challenge. Our results show that SEA pre-treated mice are more efficiently tolerised by OVA feeding, as shown by lower lung-cell infiltration and antigen-specific IgE response in the SEA pre-treated mice, compared with sham-treated mice. This was not due to deletion or anergy of lymphocytes by SEA treatment, because the SEA pre-treated mice that were fed with PBS showed similar inflammatory response as the sham-treated PBS-fed mice. Our results suggest that strong T-cell activation in infancy conditions the mucosal immune system and promotes development of oral tolerance.
Collapse
Affiliation(s)
- Anna Lönnqvist
- Department of Clinical Bacteriology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
22
|
Schartner JM, Singh AM, Dahlberg PE, Nettenstrom L, Seroogy CM. Recurrent superantigen exposure in vivo leads to highly suppressive CD4+CD25+ and CD4+CD25- T cells with anergic and suppressive genetic signatures. Clin Exp Immunol 2008; 155:348-56. [PMID: 19040605 DOI: 10.1111/j.1365-2249.2008.03827.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Staphylococcal enterotoxin B (SEB) activates T cells via non-canonical signalling through the T cell receptor and is an established model for T cell unresponsiveness in vivo. In this study, we sought to characterize the suppressive qualities of SEB-exposed CD4(+) T cells and correlate this with genetic signatures of anergy and suppression. SEB-exposed CD25(+) and CD25(-)Vbeta8(+)CD4(+) T cells expressed forkhead box P3 (FoxP3) at levels comparable to naive CD25(+) T regulatory cells and were enriched after exposure in vivo. Gene related to anergy in lymphocytes (GRAIL), an anergy-related E3 ubiquitin ligase, was up-regulated in the SEB-exposed CD25(+) and CD25(-)FoxP3(+)Vbeta8(+)CD4(+) T cells and FoxP3(-)CD25(-)Vbeta8(+)CD4(+) T cells, suggesting that GRAIL may be important for dominant and recessive tolerance. The SEB-exposed FoxP3(+)GRAIL(+) T cells were highly suppressive and non-proliferative independent of CD25 expression level and via a glucocorticoid-induced tumour necrosis factor R-related protein-independent mechanism, whereas naive T regulatory cells were non-suppressive and partially proliferative with SEB activation in vitro. Lastly, adoptive transfer of conventional T cells revealed that induction of FoxP3(+) regulatory cells is not operational in this model system. These data provide a novel paradigm for chronic non-canonical T cell receptor engagement leading to highly suppressive FoxP3(+)GRAIL(+)CD4(+) T cells.
Collapse
Affiliation(s)
- J M Schartner
- Department of Pediatrics, University of Wisconsin, Madison, WI 53792-4108, USA
| | | | | | | | | |
Collapse
|
23
|
Oliveira V, Sawitzki B, Chapman S, Appelt C, Gebuhr I, Wieckiewicz J, Long E, Wood KJ. Anti-CD4-mediated selection of Treg in vitro - in vitro suppression does not predict in vivo capacity to prevent graft rejection. Eur J Immunol 2008; 38:1677-88. [PMID: 18465768 PMCID: PMC2988420 DOI: 10.1002/eji.200737562] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 01/28/2008] [Accepted: 03/17/2008] [Indexed: 12/31/2022]
Abstract
Regulatory T cells (Treg) have been shown to play a role in the prevention of autoimmune diseases and transplant rejection. Based on an established protocol known to generate alloantigen reactive Treg in vivo, we have developed a strategy for the in vitro selection of Treg. Stimulation of unfractionated CD4(+) T cells from naive CBA.Ca (H2(k)) mice with C57BL/10 (H2(b)) splenocytes in the presence of an anti-CD4 antibody, YTS 177, resulted in the selection of Treg able to inhibit proliferation of naive T cells. In vivo, the cells were able to prevent rejection of 80% C57BL/10 skin grafts when co-transferred to CBA.Rag(-/-) mice together with naive CD45RB(high)CD4(+) cells. Purification of CD62L(+)CD25(+)CD4(+) cells from the cultures enriched for cells with regulatory activity; as now 100% survival of C57BL/10 skin grafts was achieved. Furthermore, differentiation of Treg could be also achieved when using purified CD25(-)CD4(+) naive T cells as a starting population. Interestingly, further in vitro expansion resulted in a partial loss of CD4(+) cells expressing both CD62L and CD25 and abrogation of their regulatory activity in vivo. This study shows that alloantigen stimulation in the presence of anti-CD4 in vitro provides a simple and effective strategy to generate alloreactive Treg.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigen-Presenting Cells/immunology
- CD4 Antigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/transplantation
- Cell Proliferation/drug effects
- Coculture Techniques
- Forkhead Transcription Factors/analysis
- Graft Rejection/immunology
- Graft Rejection/prevention & control
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Immunosuppression Therapy/methods
- Interleukin-2 Receptor alpha Subunit/analysis
- L-Selectin/analysis
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Mice, Transgenic
- Receptors, CCR7/analysis
- Skin Transplantation/immunology
- Spleen/cytology
- Spleen/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/transplantation
Collapse
Affiliation(s)
- Vanessa Oliveira
- Transplantation Research Immunology Group, Nuffield Department of Surgery, University of Oxford, John Radcliffe HospitalOxford, UK
| | - Birgit Sawitzki
- Transplantation Research Immunology Group, Nuffield Department of Surgery, University of Oxford, John Radcliffe HospitalOxford, UK
- Institute of Medical ImmunologyCharité, Berlin, Germany
| | - Stephanie Chapman
- Transplantation Research Immunology Group, Nuffield Department of Surgery, University of Oxford, John Radcliffe HospitalOxford, UK
| | | | - Inga Gebuhr
- Institute of Medical ImmunologyCharité, Berlin, Germany
| | - Joanna Wieckiewicz
- Transplantation Research Immunology Group, Nuffield Department of Surgery, University of Oxford, John Radcliffe HospitalOxford, UK
| | - Elaine Long
- Transplantation Research Immunology Group, Nuffield Department of Surgery, University of Oxford, John Radcliffe HospitalOxford, UK
| | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgery, University of Oxford, John Radcliffe HospitalOxford, UK
| |
Collapse
|
24
|
Rynda A, Maddaloni M, Mierzejewska D, Ochoa-Repáraz J, Maślanka T, Crist K, Riccardi C, Barszczewska B, Fujihashi K, McGhee JR, Pascual DW. Low-dose tolerance is mediated by the microfold cell ligand, reovirus protein sigma1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:5187-200. [PMID: 18390700 PMCID: PMC2629740 DOI: 10.4049/jimmunol.180.8.5187] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mucosal tolerance induction generally requires multiple or large Ag doses. Because microfold (M) cells have been implicated as being important for mucosal tolerance induction and because reovirus attachment protein sigma1 (psigma1) is capable of binding M cells, we postulated that targeting a model Ag to M cells via psigma1 could induce a state of unresponsiveness. Accordingly, a genetic fusion between OVA and the M cell ligand, reovirus psigma1, termed OVA-psigma1, was developed to enhance tolerogen uptake. When applied nasally, not parenterally, as little as a single dose of OVA-psigma1 failed to induce OVA-specific Abs even in the presence of adjuvant. Moreover, the mice remained unresponsive to peripheral OVA challenge, unlike mice given multiple nasal OVA doses that rendered them responsive to OVA. The observed unresponsiveness to OVA-psigma1 could be adoptively transferred using cervical lymph node CD4(+) T cells, which failed to undergo proliferative or delayed-type hypersensitivity responses in recipients. To discern the cytokines responsible as a mechanism for this unresponsiveness, restimulation assays revealed increased production of regulatory cytokines, IL-4, IL-10, and TGF-beta1, with greatly reduced IL-17 and IFN-gamma. The induced IL-10 was derived predominantly from FoxP3(+)CD25(+)CD4(+) T cells. No FoxP3(+)CD25(+)CD4(+) T cells were induced in OVA-psigma1-dosed IL-10-deficient (IL-10(-/-)) mice, and despite showing increased TGF-beta1 synthesis, these mice were responsive to OVA. These data demonstrate the feasibility of using psigma1 as a mucosal delivery platform specifically for low-dose tolerance induction.
Collapse
Affiliation(s)
- Agnieszka Rynda
- Veterinary Molecular Biology, Montana State University, 960 Technology Blvd. Bozeman, MT 59718
| | - Massimo Maddaloni
- Veterinary Molecular Biology, Montana State University, 960 Technology Blvd. Bozeman, MT 59718
| | - Dagmara Mierzejewska
- Department of Food Chemistry, Institute of Food Research, Polish Academy of Science, Olsztyn, Poland
| | - Javier Ochoa-Repáraz
- Veterinary Molecular Biology, Montana State University, 960 Technology Blvd. Bozeman, MT 59718
| | - Tomasz Maślanka
- Veterinary Molecular Biology, Montana State University, 960 Technology Blvd. Bozeman, MT 59718
| | - Kathryn Crist
- Veterinary Molecular Biology, Montana State University, 960 Technology Blvd. Bozeman, MT 59718
| | - Carol Riccardi
- Veterinary Molecular Biology, Montana State University, 960 Technology Blvd. Bozeman, MT 59718
| | - Beata Barszczewska
- Veterinary Molecular Biology, Montana State University, 960 Technology Blvd. Bozeman, MT 59718
| | - Kohtaro Fujihashi
- Departments of Microbiology and Pediatric Dentistry, Immunobiology Vaccine Center, University of Alabama at Birmingham, Birmingham AL 35294
| | - Jerry R. McGhee
- Departments of Microbiology and Pediatric Dentistry, Immunobiology Vaccine Center, University of Alabama at Birmingham, Birmingham AL 35294
| | - David W. Pascual
- Veterinary Molecular Biology, Montana State University, 960 Technology Blvd. Bozeman, MT 59718
| |
Collapse
|
25
|
Plain KM, Boyd R, Verma ND, Robinson CM, Tran GT, Hodgkinson SJ, Hall BM. Transplant Tolerance Associated With a Th1 Response and Not Broken by IL-4, IL-5, and TGF-β Blockade or Th1 Cytokine Administration. Transplantation 2007; 83:764-73. [PMID: 17414711 DOI: 10.1097/01.tp.0000256326.11647.2e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Specific transplant tolerance is mediated by CD4 T cells that die unless supported by T-cell derived cytokines and donor antigen. This study examined the role of Th1 and Th2 cytokines in the maintenance of tolerance. METHODS Tolerance to fully allogeneic PVG cardiac allografts in DA rats was induced by short-term anti-CD3 monoclonal antibody therapy. Responses of tolerant cells to donor and third party antigen were assessed in vivo by examination of the infiltrate in the heart and application of skin grafts, and in vitro in mixed lymphocyte culture. Cell subsets were stained, induction of cytokine mRNA assayed by reverse-transcriptase polymerase chain reaction and the role of cytokines determined by treating with blocking monoclonal antibody to cytokines or cytokine administration. RESULTS Tolerated grafts had a T cell and macrophage infiltrate with increased mRNA for Th1 cytokines, interleukin (IL)-2, and interferon (IFN)-gamma but not Th2 cytokines. Peripheral lymphocytes proliferated in mixed lymphocyte culture and expressed Th1 cytokine mRNA. Tolerant hosts accepted PVG and rejected Lewis skin allografts and the lymph nodes draining both these grafts had similar induction of Th1 and Th2 cytokine mRNA. Treatment of tolerant rats with Th1 cytokines IL-2, IFN-gamma, and IL-12p70 or monoclonal antibody that blocked IL-4, IL-5, and transforming growth factor-beta did not prevent acceptance of PVG skin grafts. CONCLUSIONS These studies in a model of tolerance regulated by CD4CD25 T cells demonstrated there was no defect in Th1 responses. Tolerance was due to regulation that was not solely dependent on IL-4, IL-5, or transforming growth factor-beta and was not inactivated or overwhelmed by administration of Th1 cytokines, IL-2, IFN-gamma or IL-12p70.
Collapse
Affiliation(s)
- Karren M Plain
- Immune Tolerance Laboratory, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
26
|
Erhardt A, Biburger M, Papadopoulos T, Tiegs G. IL-10, regulatory T cells, and Kupffer cells mediate tolerance in concanavalin A-induced liver injury in mice. Hepatology 2007; 45:475-85. [PMID: 17256743 DOI: 10.1002/hep.21498] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED The liver appears to play an important role in immunological tolerance, for example, during allo-transplantation. We investigated tolerance mechanisms in the model of concanavalin A (ConA)-induced immune-mediated liver injury in mice. We found that a single injection of a sublethal ConA dose to C57BL/6 mice induced tolerance toward ConA-induced liver damage within 8 days. This tolerogenic state was characterized by suppression of the typical Th1 response in this model and increased IL-10 production. Tolerance induction was fully reversible in IL-10 -/- mice and after blockade of IL-10 responses by anti-IL10R antibody. Co-cultures of CD4+CD25+ regulatory T cells (T(reg)s) and CD4+CD25- responder cells revealed T(reg) from ConA-tolerant mice being more effective in suppressing polyclonal T cell responses than T(reg) from control mice. Moreover, T(reg) from tolerant but not from control mice were able to augment in vitro IL-10 expression. Depletion by anti-CD25 monoclonal antibody (MAb) indicated a functional role of T(reg)s in ConA tolerance in vivo. Cell depletion studies revealed T(reg)S and Kupffer cells (KC) to be crucial for IL-10 expression in ConA tolerance. Studies with CD1d -/- mice lacking natural killer T (NKT) cells disclosed these cells as irrelevant for the tolerogenic effect. Finally, cellular immune therapy with CD4+CD25+ cells prevented ConA-induced liver injury, with higher protection by Treg from ConA-tolerized mice. CONCLUSION The immunosuppressive cytokine IL-10 is crucial for tolerance induction in ConA hepatitis and is mainly expressed by CD4+CD25+ T(reg) and KC. Moreover, T(reg)s exhibit therapeutic potential against immune-mediated liver injury.
Collapse
Affiliation(s)
- Annette Erhardt
- Institute of Experimental and Clinical Pharmacology and Toxicology, University ofErlangen-Nuremberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | | | | | | |
Collapse
|
27
|
Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 2006; 212:28-50. [PMID: 16903904 DOI: 10.1111/j.0105-2896.2006.00420.x] [Citation(s) in RCA: 876] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin-10 (IL-10)-secreting T regulatory type 1 (Tr1) cells are defined by their specific cytokine production profile, which includes the secretion of high levels of IL-10 and transforming growth factor-beta(TGF-beta), and by their ability to suppress antigen-specific effector T-cell responses via a cytokine-dependent mechanism. In contrast to the naturally occurring CD4+ CD25+ T regulatory cells (Tregs) that emerge directly from the thymus, Tr1 cells are induced by antigen stimulation via an IL-10-dependent process in vitro and in vivo. Specialized IL-10-producing dendritic cells, such as those in an immature state or those modulated by tolerogenic stimuli, play a key role in this process. We propose to use the term Tr1 cells for all IL-10-producing T-cell populations that are induced by IL-10 and have regulatory activity. The full biological characterization of Tr1 cells has been hampered by the difficulty in generating these cells in vitro and by the lack of specific marker molecules. However, it is clear that Tr1 cells play a key role in regulating adaptive immune responses both in mice and in humans. Further work to delineate the specific molecular signature of Tr1 cells, to determine their relationship with CD4+ CD25+ Tregs, and to elucidate their respective role in maintaining peripheral tolerance is crucial to advance our knowledge on this Treg subset. Furthermore, results from clinical protocols using Tr1 cells to modulate immune responses in vivo in autoimmunity, transplantation, and chronic inflammatory diseases will undoubtedly prove the biological relevance of these cells in immunotolerance.
Collapse
Affiliation(s)
- Maria Grazia Roncarolo
- San Raffaele Telethon Institute for Gene therapy (HSR-TIGET), San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Oida T, Xu L, Weiner HL, Kitani A, Strober W. TGF-beta-mediated suppression by CD4+CD25+ T cells is facilitated by CTLA-4 signaling. THE JOURNAL OF IMMUNOLOGY 2006; 177:2331-9. [PMID: 16887994 DOI: 10.4049/jimmunol.177.4.2331] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CD4+CD25+ T cells play a pivotal role in immunological homeostasis by their capacity to exert immunosuppressive activity. However, the mechanism by which these cells function is still a subject for debate. We previously reported that surface (membrane) TGF-beta produced by CD4+CD25+ T cells was an effector molecule mediating suppressor function. We now support this finding by imaging surface TGF-beta on Foxp3+CD4+CD25+ T cells in confocal fluorescence microscopy. Then, using a TGF-beta-sensitive mink lung epithelial cell (luciferase) reporter system, we show that surface TGF-beta can be activated to signal upon cell-cell contact. Moreover, if such TGF-beta signaling is blocked in an in vitro assay of CD4+CD25+ T cell suppression by a specific inhibitor of TGF-betaRI, suppressor function is also blocked. Finally, we address the role of CTLA-4 in CD4+CD25+ T cell suppression, showing first that whereas anti-CTLA-4 does not block in vitro suppressor function, it does complement the blocking activity of anti-TGF-beta. We then show with confocal fluorescence microscopy that incubation of CD4+CD25+ T cells with anti-CTLA-4- and rB7-1/Fc-coated beads results in accumulation of TGF-beta at the cell-bead contact site. This suggests that CTLA-4 signaling facilitates TGF-beta-mediated suppression by intensifying the TGF-beta signal at the point of suppressor cell-target cell interaction.
Collapse
Affiliation(s)
- Takatoku Oida
- Mucosal Immunity Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
29
|
Oderup C, Cederbom L, Makowska A, Cilio CM, Ivars F. Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression. Immunology 2006; 118:240-9. [PMID: 16771859 PMCID: PMC1782280 DOI: 10.1111/j.1365-2567.2006.02362.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have previously demonstrated that CD4+ CD25+ natural regulatory T cells (Treg cells) induce down-modulation of CD80 and CD86 (B7) molecules on dendritic cells (DCs) in vitro. In this report we show that the extent of down-modulation is functionally significant because Treg-cell conditioned DCs induced poor T-cell proliferation responses. Further, we report that down-modulation was induced rapidly and was inhibited by blocking cytotoxic T lymphocyte antigen-4 (CTLA-4), which is constitutively expressed by the Treg cells. Even though Treg cells have previously been reported to kill antigen-presenting cells, the down-modulation was not due to selective killing of DCs expressing high level of the costimulatory molecules. We propose that Treg cells down-modulate B7-molecules on DCs in a CTLA-4-dependent way, thereby enhancing suppression of T-cell activity.
Collapse
Affiliation(s)
- Cecilia Oderup
- Immunology Unit, BMC I:13, Department of Experimental Medical Research, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
30
|
Abstract
Naturally occurring, CD4+ CD25+ regulatory T cells that are exported from the thymus early in life play an important role in controlling organ-specific autoimmune diseases, but they may not be critical for suppressing systemic autoimmunity in lupus. On the other hand, lupus-prone subjects appear to be deficient in generation of adaptive T-regulatory cells that can be induced by various means. We review autoantigen-specific therapeutic approaches that induce such regulatory T cells. Of particular interest are TGF-ss producing CD4+ CD25+ and CD8+ regulatory T cells that are induced by low dose tolerance therapy of lupus-prone mice with nucleosomal histone peptide epitopes, administered subcutaneously in subnanomolar doses. These regulatory T cells are not only efficient in suppressing autoantigen recognition and autoantibody production, but they also inhibit migration/accumulation of pathogenic autoimmune cells in the target organ, such as the kidneys of mice prone to develop lupus nephritis. We discuss why and under what conditions such therapeutic approaches would be beneficial in lupus patients and lupus-prone subjects.
Collapse
Affiliation(s)
- Hee-Kap Kang
- Division of Rheumatology, Departments of Medicine and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | |
Collapse
|
31
|
Houot R, Perrot I, Garcia E, Durand I, Lebecque S. Human CD4+CD25high regulatory T cells modulate myeloid but not plasmacytoid dendritic cells activation. THE JOURNAL OF IMMUNOLOGY 2006; 176:5293-8. [PMID: 16621995 DOI: 10.4049/jimmunol.176.9.5293] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human CD4(+)CD25(+) regulatory T cells (Treg) play an essential role in the prevention of autoimmune diseases. However, the mechanisms of immune suppression and the spectrum of cells they target in vivo remain incompletely defined. In particular, although Treg directly suppress conventional T cells in vitro, they have been shown to inhibit the Ag-presenting functions of macrophage- and monocyte-derived dendritic cells (DC). We have now studied the maturation of human blood-derived myeloid DC and plasmacytoid DC activated with TLR ligands in the presence of Treg. Preactivated Treg suppressed strongly TLR-triggered myeloid DC maturation, as judged by the blocking of costimulatory molecule up-regulation and the inhibition of proinflammatory cytokines secretion that resulted in poor Ag presentation capacity. Although IL-10 played a prominent role in inhibiting cytokines secretion, suppression of phenotypic maturation required cell-cell contact and was independent of TGF-beta and CTLA-4. In contrast, the acquisition of maturation markers and production of cytokines by plasmacytoid DC triggered with TLR ligands were insensitive to regulatory T cells. Therefore, human Treg may enlist myeloid, but not plasmacytoid DC for the initiation and the amplification of tolerance in vivo by restraining their maturation after TLR stimulation.
Collapse
Affiliation(s)
- Roch Houot
- Department of Hematology, Centre Hospitalier Lyon Sud, 69310 Pierre-Benité, France
| | | | | | | | | |
Collapse
|
32
|
Steiner D, Brunicki N, Blazar BR, Bachar-Lustig E, Reisner Y. Tolerance induction by third-party "off-the-shelf" CD4+CD25+ Treg cells. Exp Hematol 2006; 34:66-71. [PMID: 16413392 DOI: 10.1016/j.exphem.2005.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 10/10/2005] [Accepted: 10/25/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Recent reports have shown that donor or host CD4(+)CD25(+) Treg cells can be used to control GVHD or graft rejection following allogeneic BMT in mice. In the present study we investigated the potential of third-party Treg cells compared to donor-type cells to facilitate BM allografting. METHODS Graft rejection is assessed in a mouse model of T cell-mediated BM allograft rejection. Lethally irradiated C3H mice are transplanted at day 2 after irradiation with T cell-depleted Balb/Nude BM. Graft rejection is induced by purified host-type T cells infused one day prior to BMT. Cells tested for their facilitating activity are added to the T cell-depleted BM allograft. RESULTS Naïve or ex vivo-expanded third-party Treg cells can effectively enhance engraftment of T cell-depleted BM allografts, exhibiting reactivity in vitro and in vivo similar to that found for donor-type Treg cells. CONCLUSION The use of third-party Treg cells in contrast to donor-type cells could allow advanced preparation of a large bank of Treg cells (off-the-shelf), with all the appropriate quality controls required for cell therapy.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation/adverse effects
- Cell Survival/drug effects
- Disease Models, Animal
- Female
- Graft Rejection/immunology
- Graft vs Host Disease/immunology
- In Vitro Techniques
- Injections, Intravenous
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Nude
- Sirolimus/administration & dosage
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/radiation effects
- Transplantation Chimera
- Transplantation Immunology/immunology
- Transplantation Tolerance/drug effects
- Transplantation Tolerance/radiation effects
- Transplantation, Homologous/adverse effects
Collapse
Affiliation(s)
- David Steiner
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
33
|
Allan SE, Passerini L, Bacchetta R, Crellin N, Dai M, Orban PC, Ziegler SF, Roncarolo MG, Levings MK. The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. J Clin Invest 2005; 115:3276-84. [PMID: 16211090 PMCID: PMC1242190 DOI: 10.1172/jci24685] [Citation(s) in RCA: 349] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 07/26/2005] [Indexed: 01/21/2023] Open
Abstract
Little is known about the molecules that control the development and function of CD4+ CD25+ Tregs. Recently, it was shown that the transcription factor FOXP3 is necessary and sufficient for the generation of CD4+ CD25+ Tregs in mice. We investigated the capacity of FOXP3 to drive the generation of suppressive CD4+ CD25+ Tregs in humans. Surprisingly, although ectopic expression of FOXP3 in human CD4+ T cells resulted in induction of hyporesponsiveness and suppression of IL-2 production, it did not lead to acquisition of significant suppressor activity in vitro. Similarly, ectopic expression of FOXP3delta2, an isoform found in human CD4+ CD25+ Tregs that lacks exon 2, also failed to induce the development of suppressor T cells. Moreover, when FOXP3 and FOXP3delta2 were simultaneously overexpressed, although the expression of several Treg-associated cell surface markers was significantly increased, only a modest suppressive activity was induced. These data indicate that in humans, overexpression of FOXP3 alone or together with FOXP3delta2 is not an effective method to generate potent suppressor T cells in vitro and suggest that factors in addition to FOXP3 are required during the process of activation and/or differentiation for the development of bona fide Tregs.
Collapse
Affiliation(s)
- Sarah E Allan
- Department of Surgery, University of British Columbia, and Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wing K, Larsson P, Sandström K, Lundin SB, Suri-Payer E, Rudin A. CD4+ CD25+ FOXP3+ regulatory T cells from human thymus and cord blood suppress antigen-specific T cell responses. Immunology 2005; 115:516-25. [PMID: 16011520 PMCID: PMC1782183 DOI: 10.1111/j.1365-2567.2005.02186.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Activation of self-reactive T cells in healthy adults is prevented by the presence of autoantigen-specific CD4+CD25+ regulatory T cells (CD25+ Treg). To explore the functional development of autoantigen-reactive CD25+ Treg in humans we investigated if thymic CD25+ Treg from children aged 2 months to 11 years and cord blood CD25+ Treg are able to suppress proliferation and cytokine production induced by specific antigens. While CD4+CD25- thymocytes proliferated in response to myelin oligodendrocyte glycoprotein (MOG), tetanus toxoid and beta-lactoglobulin, suppression of proliferation was not detected after the addition of thymic CD25+ Treg. However, CD25+ Treg inhibited interferon (IFN)-gamma production induced by MOG, which indicates that MOG-reactive CD25+ Treg are present in the thymus. In contrast, cord blood CD25+ Treg suppressed both proliferation and cytokine production induced by MOG. Both cord blood and thymic CD25+ Treg expressed FOXP3 mRNA. However, FOXP3 expression was lower in cord blood than in thymic CD25+ T cells. Further characterization of cord blood CD25+ T cells revealed that FOXP3 was highly expressed by CD25+CD45RA+ cells while CD25+CD45RA- cells contained twofold less FOXP3, which may explain the lower expression level of FOXP3 in cord blood CD25+ T cells compared to thymic CD25+ T cells. In conclusion, our data demonstrate that low numbers of MOG-reactive functional CD25+ Treg are present in normal thymus, but that the suppressive ability of the cells is broader in cord blood. This suggests that the CD25+ Treg may be further matured in the periphery after being exported from the thymus.
Collapse
Affiliation(s)
- Kajsa Wing
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at Göteborg UniversityGöteborg, Sweden
| | - Pia Larsson
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at Göteborg UniversityGöteborg, Sweden
| | - Kerstin Sandström
- Department of Paediatric Anaesthesia and Intensive Care at The Queen Silvia Children's HospitalGöteborg, Sweden
| | - Samuel B Lundin
- Department of Medical Microbiology and Immunology at Göteborg UniversityGöteborg, Sweden
| | | | - Anna Rudin
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at Göteborg UniversityGöteborg, Sweden
| |
Collapse
|
35
|
Fritzsching B, Oberle N, Eberhardt N, Quick S, Haas J, Wildemann B, Krammer PH, Suri-Payer E. Cutting Edge: In Contrast to Effector T Cells, CD4+CD25+FoxP3+ Regulatory T Cells Are Highly Susceptible to CD95 Ligand- but Not to TCR-Mediated Cell Death. THE JOURNAL OF IMMUNOLOGY 2005; 175:32-6. [PMID: 15972628 DOI: 10.4049/jimmunol.175.1.32] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CD4(+)CD25(+)FoxP3(+) regulatory T cells (T(reg)) suppress T cell function and protect rodents from autoimmune disease. Regulation of T(reg) during an immune response is of major importance. Enhanced survival of T(reg) is beneficial in autoimmune disease, whereas increased depletion by apoptosis is advantageous in cancer. We show here that freshly isolated FACS-sorted T(reg) are highly sensitive toward CD95-mediated apoptosis, whereas other T cell populations are resistant to CD95-induced apoptosis shortly after isolation. In contrast, TCR restimulation of T(reg) in vitro revealed a reduced sensitivity toward activation-induced cell death compared with CD4(+)CD25(-) T cells. Thus, the apoptosis phenotype of T(reg) is unique in comparison to other T cells, and this might be further explored for novel therapeutic modulations of T(reg).
Collapse
Affiliation(s)
- Benedikt Fritzsching
- Tumor Immunology Program German Cancer Research Center, and Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Walker MR, Carson BD, Nepom GT, Ziegler SF, Buckner JH. De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25- cells. Proc Natl Acad Sci U S A 2005; 102:4103-8. [PMID: 15753318 PMCID: PMC554797 DOI: 10.1073/pnas.0407691102] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Indexed: 11/18/2022] Open
Abstract
Antigen-specificity is a hallmark of adaptive T cell-mediated immune responses. CD4+CD25+FOXP3+ regulatory T cells (T(R)) also require activation through the T cell receptor for function. Although these cells require antigen-specific activation, they are generally able to suppress bystander T cell responses once activated. This raises the possibility that antigen-specific T(R) may be useful therapeutically by localizing generalized suppressive activity to tissues expressing select target antigens. Here, we demonstrate that T(R) specific for particular peptide-MHC complexes can be generated from human CD4+CD25- T cells in vitro and isolated by using HLA class II tetramers. Influenza hemagglutinin epitopes were used to generate hemagglutinin-specific T(R), which required cognate antigen for activation but which subsequently suppressed noncognate bystander T cell responses as well. These findings have implications for the generation of therapeutic regulatory T cells in disease, and also suggest an important mechanism by which T cells may be regulated at the site of inflammation.
Collapse
Affiliation(s)
- Mindi R Walker
- Diabetes Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | | | | | | | | |
Collapse
|
37
|
Wahl SM, Chen W. Transforming growth factor-beta-induced regulatory T cells referee inflammatory and autoimmune diseases. Arthritis Res Ther 2005; 7:62-8. [PMID: 15743491 PMCID: PMC1065338 DOI: 10.1186/ar1504] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Naturally occurring CD4+CD25+ regulatory T cells mediate immune suppression to limit immunopathogenesis associated with chronic inflammation, persistent infections and autoimmune diseases. Their mode of suppression is contact-dependent, antigen-nonspecific and involves a nonredundant contribution from the cytokine transforming growth factor (TGF)-beta. Not only can TGF-beta mediate cell-cell suppression between the regulatory T cells and CD4+CD25- or CD8+ T cells, but new evidence also reveals its role in the conversion of CD4+CD25- T cells, together with TCR antigen stimulation, into the regulatory phenotype. Elemental to this conversion process is induction of expression of the forkhead transcription factor, Foxp3. This context-dependent coercion of naive CD4+ T cells into a powerful subset of regulatory cells provides a window into potential manipulation of these cells to orchestrate therapeutic intervention in diseases characterized by inadequate suppression, as well as a promising means of controlling pathologic situations in which excessive suppression dominates.
Collapse
MESH Headings
- Animals
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/therapy
- Asthma/therapy
- Autoimmune Diseases/immunology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Clonal Anergy
- Disease Models, Animal
- Forkhead Transcription Factors/biosynthesis
- Forkhead Transcription Factors/genetics
- Gene Expression Regulation
- Humans
- Immune Tolerance/immunology
- Immunotherapy, Adoptive
- Inflammation/immunology
- Lupus Erythematosus, Systemic/immunology
- Mice
- Mice, Knockout
- Receptors, Interleukin-2/analysis
- Signal Transduction/physiology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/transplantation
- Transforming Growth Factor beta/physiology
Collapse
Affiliation(s)
- Sharon M Wahl
- Cellular Immunology Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Disease, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
38
|
Abstract
Homeostasis in the immune system depends on a balance between the responses that control infection and tumour growth and the reciprocal responses that prevent inflammation and autoimmune diseases. It is now recognized that regulatory T cells have a crucial role in suppressing immune responses to self-antigens and in preventing autoimmune diseases. Evidence is also emerging that regulatory T cells control immune responses to bacteria, viruses, parasites and fungi. This article explores the possibility that regulatory T cells can be both beneficial to the host, through limiting the immunopathology associated with anti-pathogen immune responses, and beneficial to the pathogen, through subversion of the protective immune responses of the host.
Collapse
Affiliation(s)
- Kingston H G Mills
- Immune Regulation Research Group, Department of Biochemistry, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
39
|
Fu S, Zhang N, Yopp AC, Chen D, Mao M, Chen D, Zhang H, Ding Y, Bromberg JS. TGF-beta induces Foxp3 + T-regulatory cells from CD4 + CD25 - precursors. Am J Transplant 2004; 4:1614-27. [PMID: 15367216 DOI: 10.1111/j.1600-6143.2004.00566.x] [Citation(s) in RCA: 408] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CD4 + CD25 + regulatory T cells (Tregs) are potent suppressors, playing important roles in autoimmunity and transplantation tolerance. Understanding the signals necessary for the generation and expansion of Tregs is important for clinical cellular therapy, but only limited progress has been made. Recent reports suggest a role for TGF-beta in the generation of Tregs from CD4 + CD25 - precursors, but the mechanism remains unknown. Here, we demonstrate that TGF-beta2 triggers Foxp3 expression in CD4 + CD25 - precursors, and these Foxp3 + cells act like conventional Tregs. The generation of Foxp3 + Tregs requires stimulation of the T-cell receptor, the IL-2R and the TGF-beta receptor. More importantly, strong costimulation through CD28 prevents Foxp3 expression and suppressive function in an IL-4-dependent manner. Furthermore, TGF-beta-driven Tregs inhibit innate inflammatory responses to syngeneic transplanted pancreatic islets and enhance islet transplant survival. Thus, TGF-beta is a key regulator of the signaling pathways that initiate and maintain Foxp3 expression and suppressive function in CD4 + CD25 - precursors. TGF-beta and signaling through TGF-beta receptor, CD28 costimulation and IL-4 may be key components for the manipulation of Treg. The de novo generation of Foxp3 + cells from CD4 + cells has the potential to be used for treatment of autoimmune diseases and induction of transplant tolerance.
Collapse
Affiliation(s)
- Shuang Fu
- Carl C. Icahn Center for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Buckner JH, Ziegler SF. Regulating the immune system: the induction of regulatory T cells in the periphery. Arthritis Res Ther 2004; 6:215-22. [PMID: 15380036 PMCID: PMC546291 DOI: 10.1186/ar1226] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 07/19/2004] [Accepted: 07/21/2004] [Indexed: 12/25/2022] Open
Abstract
The immune system has evolved a variety of mechanisms to achieve and maintain tolerance both centrally and in the periphery. Central tolerance is achieved through negative selection of autoreactive T cells, while peripheral tolerance is achieved primarily via three mechanisms: activation-induced cell death, anergy, and the induction of regulatory T cells. Three forms of these regulatory T cells have been described: those that function via the production of the cytokine IL-10 (T regulatory 1 cells), transforming growth factor beta (Th3 cells), and a population of T cells that suppresses proliferation via a cell-contact-dependent mechanism (CD4+CD25+ TR cells). The present review focuses on the third form of peripheral tolerance - the induction of regulatory T cells. The review will address the induction of the three types of regulatory T cells, the mechanisms by which they suppress T-cell responses in the periphery, the role they play in immune homeostasis, and the potential these cells have as therapeutic agents in immune-mediated disease.
Collapse
Affiliation(s)
- Jane H Buckner
- Diabetes Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| |
Collapse
|
41
|
Tanchot C, Vasseur F, Pontoux C, Garcia C, Sarukhan A. Immune regulation by self-reactive T cells is antigen specific. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2004; 172:4285-91. [PMID: 15034042 DOI: 10.4049/jimmunol.172.7.4285] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immune regulation plays an important role in the establishment and maintenance of self-tolerance. Nevertheless, it has been difficult to conclude whether regulation is Ag specific because studies have focused on polyclonal populations of regulatory T cells. We have used in this study a murine transgenic model that generates self-reactive, regulatory T cells of known Ag specificity to determine their capacity to suppress naive T cells specific for other Ags. We show that these regulatory cells can regulate the responses of naive T cells with the same TCR specificity, but do not inhibit T cell proliferation or differentiation of naive T cells specific for other Ags. These results demonstrate that immune regulation may be more Ag specific than previously proposed.
Collapse
MESH Headings
- Animals
- Autoantigens/genetics
- Autoantigens/immunology
- Bystander Effect/genetics
- Bystander Effect/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Division/genetics
- Cell Division/immunology
- Cytokines/antagonists & inhibitors
- Cytokines/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Interphase/genetics
- Interphase/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Interleukin-2/biosynthesis
- Ribonucleoproteins/genetics
- Ribonucleoproteins/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Helper-Inducer/cytology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- SS-B Antigen
Collapse
Affiliation(s)
- Corinne Tanchot
- Institut National de la Santé et de la Recherche Médicale Unité 591, Centre Hospitalo-Universitaire Necker, Paris, France
| | | | | | | | | |
Collapse
|
42
|
Aandahl EM, Michaëlsson J, Moretto WJ, Hecht FM, Nixon DF. Human CD4+ CD25+ regulatory T cells control T-cell responses to human immunodeficiency virus and cytomegalovirus antigens. J Virol 2004; 78:2454-9. [PMID: 14963140 PMCID: PMC369239 DOI: 10.1128/jvi.78.5.2454-2459.2004] [Citation(s) in RCA: 371] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulatory T (T(R)) cells maintain tolerance to self-antigens and control immune responses to alloantigens after organ transplantation. Here, we show that CD4(+) CD25(+) human T(R) cells suppress virus-specific T-cell responses. Depletion of T(R) cells from peripheral blood mononuclear cells enhances T-cell responses to cytomegalovirus and human immunodeficiency virus antigens. We propose that chronic viral infections lead to induction of suppressive T(R) cells that inhibit the antiviral immune response.
Collapse
Affiliation(s)
- Einar M Aandahl
- Gladstone Institute of Virology and Immunology, University of California-San Francisco, San Francisco, California 94110, USA.
| | | | | | | | | |
Collapse
|
43
|
Prud'homme GJ. Altering immune tolerance therapeutically: the power of negative thinking. J Leukoc Biol 2003; 75:586-99. [PMID: 14657212 DOI: 10.1189/jlb.0803394] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The etiology of most human autoimmune diseases remains largely unknown. However, investigators have identified several negative regulatory mechanisms acting at the level of innate and/or adaptive immunity. Mutations resulting in a deficiency of some key regulatory molecules are associated with systemic or organ-specific inflammatory disorders, which often have a prominent autoimmune component. Genetic studies have implicated the negative regulator cytotoxic T-lymphocyte antigen 4 (CTLA-4) and other regulatory molecules in human autoimmune diseases. In addition to CTLA-4, key inhibitory molecules include programmed death 1 and B and T lymphocyte attenuator. Transforming growth factor beta1 and interleukin-10 also play major anti-inflammatory and regulatory roles. Tumor cells and infectious agents use negative regulatory pathways to escape immunity. The therapeutic blockage of negative signaling (particularly of CTLA-4) increases immunity against tumor antigens but also induces or aggravates autoimmune diseases. It appears that under normal conditions, the immune system is under strong "negative influences" that prevent autoimmunity and that release of this suppression results in disease. Regulation involves communication between the immune system and nonlymphoid tissues, and the latter can deliver inhibitory or stimulatory signals. Recent studies reveal that the generation of negative signals by selective engagement of inhibitory molecules is feasible and is likely to be of therapeutic benefit in autoimmune diseases and allograft rejection.
Collapse
Affiliation(s)
- Gérald J Prud'homme
- Department of Laboratory Medicine and Pathobiology, St Michael's Hospital, University of Toronto, Ontario, Canada.
| |
Collapse
|
44
|
Feunou P, Poulin L, Habran C, Le Moine A, Goldman M, Braun MY. CD4+CD25+ and CD4+CD25− T Cells Act Respectively as Inducer and Effector T Suppressor Cells in Superantigen-Induced Tolerance. THE JOURNAL OF IMMUNOLOGY 2003; 171:3475-84. [PMID: 14500643 DOI: 10.4049/jimmunol.171.7.3475] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The repeated injection of low doses of bacterial superantigens (SAg) is known to induce specific T cell unresponsiveness. We show in this study that the spleen of BALB/c mice receiving chronically, staphylococcal enterotoxin B (SEB) contains SEB-specific CD4(+) TCRBV8(+) T cells exerting an immune regulatory function on SEB-specific primary T cell responses. Suppression affects IL-2 and IFN-gamma secretion as well as proliferation of T cells. However, the suppressor cells differ from the natural CD4(+) T regulatory cells, described recently in human and mouse, because they do not express cell surface CD25. They are CD152 (CTLA-4)-negative and their regulatory activity is not associated with expression of the NF Foxp3. By contrast, after repeated SEB injection, CD4(+)CD25(+) splenocytes were heterogenous and contained both effector as well as regulatory cells. In vivo, CD4(+)CD25(-) T regulatory cells prevented SEB-induced death independently of CD4(+)CD25(+) T cells. Nevertheless, SEB-induced tolerance could not be achieved in thymectomized CD25(+) cell-depleted mice because repeated injection of SEB did not avert lethal toxic shock in these animals. Collectively, these data demonstrate that, whereas CD4(+)CD25(+) T regulatory cells are required for the induction of SAg-induced tolerance, CD4(+)CD25(-) T cells exert their regulatory activity at the maintenance stage of SAg-specific unresponsiveness.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Antigens, Differentiation/biosynthesis
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/microbiology
- CTLA-4 Antigen
- Cell Movement/immunology
- Cell Separation
- Clonal Anergy/immunology
- Dose-Response Relationship, Immunologic
- Down-Regulation/immunology
- Drug Administration Schedule
- Enterotoxins/administration & dosage
- Enterotoxins/immunology
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Female
- Injections, Intraperitoneal
- Lymphocyte Depletion
- Mice
- Mice, Inbred BALB C
- Receptors, Interleukin-2/biosynthesis
- Spleen/cytology
- Spleen/immunology
- Staphylococcus aureus/immunology
- Superantigens/administration & dosage
- Superantigens/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/microbiology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/microbiology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Pascal Feunou
- Laboratory of Experimental Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|