1
|
Helm J, Mereiter S, Oliveira T, Gattinger A, Markovitz DM, Penninger JM, Altmann F, Stadlmann J. Non-targeted N-glycome profiling reveals multiple layers of organ-specific diversity in mice. Nat Commun 2024; 15:9725. [PMID: 39521793 PMCID: PMC11550822 DOI: 10.1038/s41467-024-54134-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
N-glycosylation is one of the most common protein modifications in eukaryotes, with immense importance at the molecular, cellular, and organismal level. Accurate and reliable N-glycan analysis is essential to obtain a systems-wide understanding of fundamental biological processes. Due to the structural complexity of glycans, their analysis is still highly challenging. Here we make publicly available a consistent N-glycome dataset of 20 different mouse tissues and demonstrate a multimodal data analysis workflow that allows for unprecedented depth and coverage of N-glycome features. This highly scalable, LC-MS/MS data-driven method integrates the automated identification of N-glycan spectra, the application of non-targeted N-glycome profiling strategies and the isomer-sensitive analysis of glycan structures. Our delineation of critical sub-structural determinants and glycan isomers across the mouse N-glycome uncovered tissue-specific glycosylation patterns, the expression of non-canonical N-glycan structures and highlights multiple layers of N-glycome complexity that derive from organ-specific regulations of glycobiological pathways.
Collapse
Affiliation(s)
- Johannes Helm
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna, Austria
| | - Stefan Mereiter
- Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Tiago Oliveira
- Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Anna Gattinger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Softwarepark 11, Hagenberg, Austria
| | - David M Markovitz
- Division of Infectious Diseases, Department of Internal Medicine, and the Programs in Immunology, Cellular and Molecular Biology, and Cancer Biology, University of Michigan, Ann Arbor, MI, USA
| | - Josef M Penninger
- Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver Campus, 2350 Health Sciences Mall, Vancouver, BC, Canada
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Friedrich Altmann
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna, Austria
| | - Johannes Stadlmann
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna, Austria.
- BOKU Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna, Austria.
| |
Collapse
|
2
|
Berger S, Zeyn Y, Wagner E, Bros M. New insights for the development of efficient DNA vaccines. Microb Biotechnol 2024; 17:e70053. [PMID: 39545748 PMCID: PMC11565620 DOI: 10.1111/1751-7915.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Despite the great potential of DNA vaccines for a broad range of applications, ranging from prevention of infections, over treatment of autoimmune and allergic diseases to cancer immunotherapies, the implementation of such therapies for clinical treatment is far behind the expectations up to now. The main reason is the poor immunogenicity of DNA vaccines in humans. Consequently, the improvement of the performance of DNA vaccines in vivo is required. This mini-review provides an overview of the current state of DNA vaccines and the various strategies to enhance the immunogenic potential of DNA vaccines, including (i) the optimization of the DNA construct itself regarding size, nuclear transfer and transcriptional regulation; (ii) the use of appropriate adjuvants; and (iii) improved delivery, for example, by careful choice of the administration route, physical methods such as electroporation and nanomaterials that may allow cell type-specific targeting. Moreover, combining nanoformulated DNA vaccines with other immunotherapies and prime-boost strategies may help to enhance success of treatment.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Yanira Zeyn
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Matthias Bros
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| |
Collapse
|
3
|
Hollingsworth K, Di Maio A, Richards SJ, Vendeville JB, Wheatley DE, Council CE, Keenan T, Ledru H, Chidwick H, Huang K, Parmeggiani F, Marchesi A, Chai W, McBerney R, Kamiński TP, Balmforth MR, Tamasanu A, Finnigan JD, Young C, Warriner SL, Webb ME, Fascione MA, Flitsch S, Galan MC, Feizi T, Gibson MI, Liu Y, Turnbull WB, Linclau B. Synthesis and screening of a library of Lewis x deoxyfluoro-analogues reveals differential recognition by glycan-binding partners. Nat Commun 2024; 15:7925. [PMID: 39271664 PMCID: PMC11399408 DOI: 10.1038/s41467-024-51081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024] Open
Abstract
Glycan-mediated interactions play a crucial role in biology and medicine, influencing signalling, immune responses, and disease pathogenesis. However, the use of glycans in biosensing and diagnostics is limited by cross-reactivity, as certain glycan motifs can be recognised by multiple biologically distinct protein receptors. To address this specificity challenge, we report the enzymatic synthesis of a 150-member library of site-specifically fluorinated Lewisx analogues ('glycofluoroforms') using naturally occurring enzymes and fluorinated monosaccharides. Subsequent incorporation of a subset of these glycans into nanoparticles or a microarray revealed a striking spectrum of distinct binding intensities across different proteins that recognise Lewisx. Notably, we show that for two proteins with unique binding sites for Lewisx, glycofluoroforms exhibited enhanced binding to one protein, whilst reduced binding to the other, with selectivity governed by fluorination patterns. We finally showcase the potential diagnostic utility of this approach in glycofluoroform-mediated bacterial toxin detection by lateral flow.
Collapse
Affiliation(s)
- Kristian Hollingsworth
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Antonio Di Maio
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Sarah-Jane Richards
- Department of Chemistry, University of Warwick, Coventry, UK
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, UK
| | | | - David E Wheatley
- School of Chemistry, University of Southampton, Highfield, Southampton, UK
| | - Claire E Council
- School of Chemistry, University of Southampton, Highfield, Southampton, UK
| | - Tessa Keenan
- Department of Chemistry, University of York, Heslington, York, UK
| | - Hélène Ledru
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, UK
| | - Harriet Chidwick
- Department of Chemistry, University of York, Heslington, York, UK
| | - Kun Huang
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, UK
| | - Fabio Parmeggiani
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, UK
| | - Andrea Marchesi
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, UK
| | - Wengang Chai
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ryan McBerney
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Tomasz P Kamiński
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Matthew R Balmforth
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Alexandra Tamasanu
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - James D Finnigan
- Prozomix Limited, Haltwhistle Industrial Estate, Haltwhistle, Northumberland, UK
| | - Carl Young
- Prozomix Limited, Haltwhistle Industrial Estate, Haltwhistle, Northumberland, UK
| | - Stuart L Warriner
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Michael E Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | | | - Sabine Flitsch
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, UK
| | - M Carmen Galan
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, UK
| | - Ten Feizi
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, UK.
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Yan Liu
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| | - Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton, UK.
- Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Huang M, Liu J, Yuan Z, Xu Y, Guo Y, Yang S, Fei H. DC-SIGN of Largemouth Bass ( Micropterus salmoides) Mediates Immune Functions against Aeromonas hydrophila through Collaboration with the TLR Signaling Pathway. Int J Mol Sci 2024; 25:5013. [PMID: 38732232 PMCID: PMC11084180 DOI: 10.3390/ijms25095013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
C-type lectins in organisms play an important role in the process of innate immunity. In this study, a C-type lectin belonging to the DC-SIGN class of Micropterus salmoides was identified. MsDC-SIGN is classified as a type II transmembrane protein. The extracellular segment of MsDC-SIGN possesses a coiled-coil region and a carbohydrate recognition domain (CRD). The key amino acid motifs of the extracellular CRD of MsDC-SIGN in Ca2+-binding site 2 were EPN (Glu-Pro-Asn) and WYD (Trp-Tyr-Asp). MsDC-SIGN-CRD can bind to four pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), glucan, peptidoglycan (PGN), and mannan. Moreover, it can also bind to Gram-positive, Gram-negative bacteria, and fungi. Its CRD can agglutinate microbes and displays D-mannose and D-galactose binding specificity. MsDC-SIGN was distributed in seven tissues of the largemouth bass, among which the highest expression was observed in the liver, followed by the spleen and intestine. Additionally, MsDC-SIGN was present on the membrane of M. salmoides leukocytes, thereby augmenting the phagocytic activity against bacteria. In a subsequent investigation, the expression patterns of the MsDC-SIGN gene and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) exhibited an up-regulated expression response to the stimulation of Aeromonas hydrophila. Furthermore, through RNA interference of MsDC-SIGN, the expression level of the DC-SIGN signaling pathway-related gene (RAF1) and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) was decreased. Therefore, MsDC-SIGN plays a pivotal role in the immune defense against A. hydrophila by modulating the TLR signaling pathway.
Collapse
Affiliation(s)
- Mengmeng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jingwen Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
| | - Zhenzhen Yuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
| | - Youxing Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
| | - Yang Guo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
| | - Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Reis E Sousa C, Yamasaki S, Brown GD. Myeloid C-type lectin receptors in innate immune recognition. Immunity 2024; 57:700-717. [PMID: 38599166 DOI: 10.1016/j.immuni.2024.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
C-type lectin receptors (CLRs) expressed by myeloid cells constitute a versatile family of receptors that play a key role in innate immune recognition. Myeloid CLRs exhibit a remarkable ability to recognize an extensive array of ligands, from carbohydrates and beyond, and encompass pattern-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and markers of altered self. These receptors, classified into distinct subgroups, play pivotal roles in immune recognition and modulation of immune responses. Their intricate signaling pathways orchestrate a spectrum of cellular responses, influencing processes such as phagocytosis, cytokine production, and antigen presentation. Beyond their contributions to host defense in viral, bacterial, fungal, and parasitic infections, myeloid CLRs have been implicated in non-infectious diseases such as cancer, allergies, and autoimmunity. A nuanced understanding of myeloid CLR interactions with endogenous and microbial triggers is starting to uncover the context-dependent nature of their roles in innate immunity, with implications for therapeutic intervention.
Collapse
Affiliation(s)
- Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| | - Sho Yamasaki
- Molecular Immunology, Research Institute for Microbial Diseases, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan.
| | - Gordon D Brown
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
6
|
Stadlmann J, Helm J, Mereiter S, Oliveira T, Gattinger A, Markovitz D, Penninger J, Altmann F. Non-targeted isomer-sensitive N-glycome analysis reveals new layers of organ-specific diversity in mice. RESEARCH SQUARE 2024:rs.3.rs-4130712. [PMID: 38659835 PMCID: PMC11042426 DOI: 10.21203/rs.3.rs-4130712/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
N-glycosylation is one of the most common protein modifications in eukaryotes, with immense importance at the molecular, cellular, and organismal level. Accurate and reliable N-glycan analysis is essential to obtain a systems-wide understanding of fundamental biological processes. Due to the structural complexity of glycans, their analysis is still highly challenging. Here we make publicly available a consistent N-glycome dataset of 20 different mouse tissues and demonstrate a multimodal data analysis workflow that allows for unprecedented depth and coverage of N-glycome features. This highly scalable, LC-MS/MS data-driven method integrates the automated identification of N-glycan spectra, the application of non-targeted N-glycome profiling strategies and the isomer-sensitive analysis of glycan structures. Our delineation of critical sub-structural determinants and glycan isomers across the mouse N-glycome uncovered tissue-specific glycosylation patterns, the expression of non-canonical N-glycan structures and highlights multiple layers of N-glycome complexity that derive from organ-specific regulations of glycobiological pathways.
Collapse
Affiliation(s)
| | - Johannes Helm
- University of Natural Resources and Life Sciences Vienna
| | | | - Tiago Oliveira
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)
| | - Anna Gattinger
- Bioinformatics Research Group, University of Applied Sciences Upper Austria
| | | | | | | |
Collapse
|
7
|
Fan J, Zhu J, Xu H. Strategies of Helicobacter pylori in evading host innate and adaptive immunity: insights and prospects for therapeutic targeting. Front Cell Infect Microbiol 2024; 14:1342913. [PMID: 38469348 PMCID: PMC10925771 DOI: 10.3389/fcimb.2024.1342913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Helicobacter pylori (H. pylori) is the predominant pathogen causing chronic gastric mucosal infections globally. During the period from 2011 to 2022, the global prevalence of H. pylori infection was estimated at 43.1%, while in China, it was slightly higher at approximately 44.2%. Persistent colonization by H. pylori can lead to gastritis, peptic ulcers, and malignancies such as mucosa-associated lymphoid tissue (MALT) lymphomas and gastric adenocarcinomas. Despite eliciting robust immune responses from the host, H. pylori thrives in the gastric mucosa by modulating host immunity, particularly by altering the functions of innate and adaptive immune cells, and dampening inflammatory responses adverse to its survival, posing challenges to clinical management. The interaction between H. pylori and host immune defenses is intricate, involving evasion of host recognition by modifying surface molecules, manipulating macrophage functionality, and modulating T cell responses to evade immune surveillance. This review analyzes the immunopathogenic and immune evasion mechanisms of H. pylori, underscoring the importance of identifying new therapeutic targets and developing effective treatment strategies, and discusses how the development of vaccines against H. pylori offers new hope for eradicating such infections.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Malekian F, Shamsian A, Kodam SP, Ullah M. Exosome engineering for efficient and targeted drug delivery: Current status and future perspective. J Physiol 2023; 601:4853-4872. [PMID: 35570717 DOI: 10.1113/jp282799] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2023] Open
Abstract
Exosomes are membrane-bound vesicles that are released by most cells. They carry nucleic acids, cytokines, growth factors, proteins, lipids, and metabolites. They are responsible for inter- and intracellular communications and their role in drug delivery is well defined. Exosomes have great potential for therapeutic applications, but the clinical use is restricted because of limitations in standardized procedures for isolation, purification, and drug delivery. Bioengineering of exosomes could be one approach to achieve standardization and reproducible isolation for clinical use. Exosomes are important transporters for targeted drug delivery because of their small size, stable structure, non-immunogenicity, and non-toxic nature, as well as their ability to carry a wide variety of compounds. These features of exosomes can be enhanced further by bioengineering. In this review, possible exosome bioengineering approaches, their biomedical applications, and targeted drug delivery are discussed.
Collapse
Affiliation(s)
- Farzaneh Malekian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Alireza Shamsian
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sai Priyanka Kodam
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
9
|
Peng X, Ge Y, Li W, Lin X, Song H, Lin L, Zhao J, Gao Y, Wang J, Li J, Huang Y, Li Y, Li L. Targeting Lewis X oligosaccharide-modified liposomes encapsulated with house dust mite allergen Der f 2 to dendritic cells inhibits Th2 immune response. Eur J Pharm Sci 2023; 190:106570. [PMID: 37634600 DOI: 10.1016/j.ejps.2023.106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Allergen-specific immunotherapy (AIT) is the only curative treatment for allergic diseases. However, the long desensitization phase and potentially dangerous allergic side effects limit its broad application. Therefore, safer and more effective vaccines are required. Targeting dendritic cells (DCs) with novel allergen conjugates is a promising strategy for AIT. In this study, a novel vaccine with a DC-targeting effect for AIT was constructed. Liposomes were used as vehicles, and a targeted nanovaccine (Lex-lip-Der f 2) was constructed by loading the recombinant group 2 allergen of Dermatophagoides farinae (Der f 2) and conjugating with the DC-SIGN ligand Lewis X. The effect of the vaccine on DCs and T cell responses and the safety of the vaccine were investigated in vitro. The results showed that the Lex-lip-Der f 2 vaccine was spherical, with size of approximately 128 nm. The protein-loading capacity of the vaccine was 0.106 ± 0.001 mg per mg liposome and protein was gradually released from the liposomes during the first 12 h. Lex-lip-Der f 2 was taken up more efficiently by DCs than non-targeted liposomes or free Der f 2. Besides, Lex-lip-Der f 2 significantly inhibited the release of IL-4, IL-6, and TNF-a from DCs. Accordingly, Der f 2-lip loaded DCs significantly decreased IL-4 levels in autologous naïve CD4+T cells. Moreover, Lex-lip-Der f 2-treated basophils showed lower activation levels. These results suggest that DC-SIGN targeting mediated by Lewis X could inhibit the Th2 cell response and improve vaccine safety, and may be a novel vaccination strategy.
Collapse
Affiliation(s)
- Xia Peng
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China
| | - Yiqin Ge
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China; Department of Laboratory Medicine, Shanghai Chest Hospital Affiliated Shanghai Jiao Tong University, China
| | - Weize Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China
| | - Xiuke Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University
| | - Hua Song
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University
| | - Lihui Lin
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China
| | - Jinyan Zhao
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China
| | - Yanting Gao
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China
| | - Juan Wang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China
| | - Jia Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China
| | - Yuji Huang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China
| | - Yanning Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China.
| |
Collapse
|
10
|
Zhang X, Sun K, Tang C, Cen L, Li S, Zhu W, Liu P, Chen Y, Yu C, Li L. LECT2 modulates dendritic cell function after Helicobacter pylori infection via the CD209a receptor. J Gastroenterol Hepatol 2023; 38:625-633. [PMID: 36740832 DOI: 10.1111/jgh.16138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/06/2022] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND Helicobacter pylori, a gram-negative bacterium persisting on the gastric mucosa, is involved in the pathogenesis of a variety of gastric diseases. Leukocyte cell-derived chemotaxin 2 (LECT2) treatment increased the phagocytic capacity of lymphocytes and improved immune function in bacterial infection. Whether the immune cells infected with H. pylori are affected by LECT2 is unclear. METHODS Bone marrow-derived dendritic cells (BMDCs) from wild-type C57BL/6 mice, CD209a knockout mice, or LECT2 knockout mice were exposed to H. pylori at a multiplicity of infection of 10 for 24 h. The maturity of DCs and the cytokines secreted by DCs were analyzed by flow cytometry, western blot, and real-time PCR. The signaling pathway underlying CD209a activation after LECT2 treatment were also detected. RESULTS LECT2 treatment promoted H. pylori-induced BMDC maturation and produced a high level of anti-inflammatory cytokine (IL-10) but a low level of pro-inflammatory cytokine (IL-23p40). Moreover, LECT2-pretreated DCs shifted the development of pro-inflammatory Th1/Th17 cells to Treg cells. CD209a mediated LECT2-induced maturation and secretion of DC in H. pylori-primed BMDCs. LECT2 was further confirmed to induce the secretion of certain cytokines via CD209a-JNK/P38 MAPK pathway. CONCLUSION This study reveals that LECT2 modulated the functions of H. pylori-primed DCs in a CD209a-dependent manner, which might hinder the clearance of H. pylori and contribute to its colonization.
Collapse
Affiliation(s)
- Xiaofen Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Kefang Sun
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Chenxi Tang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Li Cen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Sha Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Wei Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Peihao Liu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Yishu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| | - Lan Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China
| |
Collapse
|
11
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Reyes EY, Shinohara ML. Host immune responses in the central nervous system during fungal infections. Immunol Rev 2022; 311:50-74. [PMID: 35672656 PMCID: PMC9489659 DOI: 10.1111/imr.13101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 12/19/2023]
Abstract
Fungal infections in the central nervous system (CNS) cause high morbidity and mortality. The frequency of CNS mycosis has increased over the last two decades as more individuals go through immunocompromised conditions for various reasons. Nevertheless, options for clinical interventions for CNS mycoses are still limited. Thus, there is an urgent need to understand the host-pathogen interaction mechanisms in CNS mycoses for developing novel treatments. Although the CNS has been regarded as an immune-privileged site, recent studies demonstrate the critical involvement of immune responses elicited by CNS-resident and CNS-infiltrated cells during fungal infections. In this review, we discuss mechanisms of fungal invasion in the CNS, fungal pathogen detection by CNS-resident cells (microglia, astrocytes, oligodendrocytes, neurons), roles of CNS-infiltrated leukocytes, and host immune responses. We consider that understanding host immune responses in the CNS is crucial for endeavors to develop treatments for CNS mycosis.
Collapse
Affiliation(s)
- Estefany Y. Reyes
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Mari L. Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27705, USA
| |
Collapse
|
13
|
Takeuchi H, Okamoto A. Helicobacter pylori Infection and Chronic Immune Thrombocytopenia. J Clin Med 2022; 11:jcm11164822. [PMID: 36013059 PMCID: PMC9410305 DOI: 10.3390/jcm11164822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Approximately half of the world’s population is infected with Helicobacter pylori, which causes gastric disease. Recent systematic reviews and meta-analyses have reported that H. pylori may also have extragastric manifestations such as hematologic diseases, including chronic immune thrombocytopenia (cITP). However, the molecular mechanisms by which H. pylori induces cITP remain unclear, and may involve the host immune response, bacterial strain diversity, and delivery of bacterial molecules to the host blood vessels. This review discusses the important pathophysiological mechanisms by which H. pylori potentially contributes to the development of cITP in infected patients.
Collapse
|
14
|
Potapova MV, Broyaka NA, Skvortsov KY, Konobeeva EV. Helicobacter pylori roles in haematology disease pathogenesis. СИБИРСКИЙ НАУЧНЫЙ МЕДИЦИНСКИЙ ЖУРНАЛ 2022; 42:18-35. [DOI: 10.18699/ssmj20220302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- M. V. Potapova
- Saratov State Medical University n.a. V.I. Razumovsky of Minzdrav of Russia
| | - N. A. Broyaka
- Saratov State Medical University n.a. V.I. Razumovsky of Minzdrav of Russia
| | | | - E. V. Konobeeva
- Saratov State Medical University n.a. V.I. Razumovsky of Minzdrav of Russia
| |
Collapse
|
15
|
Li M, Zhang R, Li J, Li J. The Role of C-Type Lectin Receptor Signaling in the Intestinal Microbiota-Inflammation-Cancer Axis. Front Immunol 2022; 13:894445. [PMID: 35619716 PMCID: PMC9127077 DOI: 10.3389/fimmu.2022.894445] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
As a subset of pattern recognition receptors (PRRs), C-type lectin-like receptors (CLRs) are mainly expressed by myeloid cells as both transmembrane and soluble forms. CLRs recognize not only pathogen associated molecular patterns (PAMPs), but also damage-associated molecular patterns (DAMPs) to promote innate immune responses and affect adaptive immune responses. Upon engagement by PAMPs or DAMPs, CLR signaling initiates various biological activities in vivo, such as cytokine secretion and immune cell recruitment. Recently, several CLRs have been implicated as contributory to the pathogenesis of intestinal inflammation, which represents a prominent risk factor for colorectal cancer (CRC). CLRs function as an interface among microbiota, intestinal epithelial barrier and immune system, so we firstly discussed the relationship between dysbiosis caused by microbiota alteration and inflammatory bowel disease (IBD), then focused on the role of CLRs signaling in pathogenesis of IBD (including Mincle, Dectin-3, Dectin-1, DCIR, DC-SIGN, LOX-1 and their downstream CARD9). Given that CLRs mediate intricate inflammatory signals and inflammation plays a significant role in tumorigenesis, we finally highlight the specific effects of CLRs on CRC, especially colitis-associated cancer (CAC), hoping to open new horizons on pathogenesis and therapeutics of IBD and CAC.
Collapse
Affiliation(s)
- Muhan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runfeng Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Advances in the Immunomodulatory Properties of Glycoantigens in Cancer. Cancers (Basel) 2022; 14:cancers14081854. [PMID: 35454762 PMCID: PMC9032556 DOI: 10.3390/cancers14081854] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022] Open
Abstract
Simple Summary This work reviews the role of aberrant glycosylation in cancer cells during tumour growth and spreading, as well as in immune evasion. The interaction of tumour-associated glycans with the immune system through C-type lectin receptors can favour immune escape but can also provide opportunities to develop novel tumour immunotherapy strategies. This work highlights the main findings in this area and spotlights the challenges that remain to be investigated. Abstract Aberrant glycosylation in tumour progression is currently a topic of main interest. Tumour-associated carbohydrate antigens (TACAs) are expressed in a wide variety of epithelial cancers, being both a diagnostic tool and a potential treatment target, as they have impact on patient outcome and disease progression. Glycans affect both tumour-cell biology properties as well as the antitumor immune response. It has been ascertained that TACAs affect cell migration, invasion and metastatic properties both when expressed by cancer cells or by their extracellular vesicles. On the other hand, tumour-associated glycans recognized by C-type lectin receptors in immune cells possess immunomodulatory properties which enable tumour growth and immune response evasion. Yet, much remains unknown, concerning mechanisms involved in deregulation of glycan synthesis and how this affects cell biology on a major level. This review summarises the main findings to date concerning how aberrant glycans influence tumour growth and immunity, their application in cancer treatment and spotlights of unanswered challenges remaining to be solved.
Collapse
|
17
|
Yang H, Hu B. Immunological Perspective: Helicobacter pylori Infection and Gastritis. Mediators Inflamm 2022; 2022:2944156. [PMID: 35300405 PMCID: PMC8923794 DOI: 10.1155/2022/2944156] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is a spiral-shaped gram-negative bacterium. Its infection is mainly transmitted via oral-oral and fecal-oral routes usually during early childhood. It can achieve persistent colonization by manipulating the host immune responses, which also causes mucosal damage and inflammation. H. pylori gastritis is an infectious disease and results in chronic gastritis of different severity in near all patients with infection. It may develop from acute/chronic inflammation, chronic atrophic gastritis, intestinal metaplasia, dysplasia, and intraepithelial neoplasia, eventually to gastric cancer. This review attempts to cover recent studies which provide important insights into how H. pylori causes chronic inflammation and what the characteristic is, which will immunologically explain H. pylori gastritis.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Ihtesham A, Maqbool S, Nadeem M, Bilawal Abbas Janjua M, Sundus O, Bakht Naqqash A, Inayat Mohamed W, Turab Haider S, Ahmad M, Ahmad Talha Mustafa M, Osama Mehboob H. Helicobacter pylori induced Immune Thrombocytopenic Purpura and perspective role of Helicobacter pylori eradication therapy for treating Immune Thrombocytopenic Purpura. AIMS Microbiol 2021; 7:284-303. [PMID: 34708173 PMCID: PMC8500795 DOI: 10.3934/microbiol.2021018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Immune thrombocytopenic purpura (ITP) is an autoimmune disease characterised by production of autoantibodies against platelet surface antigens. Recent studies have demonstrated a paramount association of ITP and Helicobacter pylori (H-pylori) infection with significant rise in platelet count following H-pylori eradication therapy. The H-pylori infection induced ITP is validated by many proposed mechanisms such as molecular mimicry due to production of autoantibodies against H-pylori surface virulent factors (CagA) and cross reactivity of these antibodies with platelet surface antigens (GP IIb/IIIa, GP Ib/IX, and GP Ia/IIa), phagocytic perturbation due to enhanced phagocytic activity of monocytes, enhanced dendritic cell numbers and response, platelets aggregation due to presence of anti- H-pylori IgG and von Willebrand factor (vWf) and finally host immune response against H-pylori virulent factors CagA and VacA leading to ITP. The effectiveness of H-pylori eradication therapy has also been demonstrated with platelet count being used as a predictive factor for assessment of treatment efficacy. Out of 201 patients 118 were responding to the triple therapy and remaining 83 patients were non-responders, showing the response rate of 58.7%. Out of 118 responders 69 patients were showing complete response (CR) and 49 were showing partial response (PR) to the H-pylori eradication therapy. However, more studies are required to elucidate this association and treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Omaima Sundus
- House officers Rawalpindi Medical University, Pakistan
| | | | | | | | - Muhmmad Ahmad
- House officers Services Institute of Medical Sciences, Pakistan
| | | | | |
Collapse
|
19
|
Willment JA. Fc-conjugated C-type lectin receptors: Tools for understanding host-pathogen interactions. Mol Microbiol 2021; 117:632-660. [PMID: 34709692 DOI: 10.1111/mmi.14837] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
The use of soluble fusion proteins of pattern recognition receptors (PRRs) used in the detection of exogenous and endogenous ligands has helped resolve the roles of PRRs in the innate immune response to pathogens, how they shape the adaptive immune response, and function in maintaining homeostasis. Using the immunoglobulin (Ig) crystallizable fragment (Fc) domain as a fusion partner, the PRR fusion proteins are soluble, stable, easily purified, have increased affinity due to the Fc homodimerization properties, and consequently have been used in a wide range of applications such as flow cytometry, screening of protein and glycan arrays, and immunofluorescent microscopy. This review will predominantly focus on the recognition of pathogens by the cell membrane-expressed glycan-binding proteins of the C-type lectin receptor (CLR) subgroup of PRRs. PRRs bind to conserved pathogen-associated molecular patterns (PAMPs), such as glycans, usually located within or on the outer surface of the pathogen. Significantly, many glycans structures are identical on both host and pathogen (e.g. the Lewis (Le) X glycan), allowing the use of Fc CLR fusion proteins with known endogenous and/or exogenous ligands as tools to identify pathogen structures that are able to interact with the immune system. Screens of highly purified pathogen-derived cell wall components have enabled identification of many unique PAMP structures recognized by CLRs. This review highlights studies using Fc CLR fusion proteins, with emphasis on the PAMPs found in fungi, bacteria, viruses, and parasites. The structure and unique features of the different CLR families is presented using examples from a broad range of microbes whenever possible.
Collapse
Affiliation(s)
- Janet A Willment
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
20
|
Chakroun K, Taouai M, Porkolab V, Luczkowiak J, Sommer R, Cheneau C, Mathiron D, Ben Maaouia MA, Pilard S, Abidi R, Mullié C, Fieschi F, Cragg PJ, Halary F, Delgado R, Benazza M. Low-Valent Calix[4]arene Glycoconjugates Based on Hydroxamic Acid Bearing Linkers as Potent Inhibitors in a Model of Ebola Virus Cis-Infection and HCMV-gB-Recombinant Glycoprotein Interaction with MDDC Cells by Blocking DC-SIGN. J Med Chem 2021; 64:14332-14343. [PMID: 34524803 DOI: 10.1021/acs.jmedchem.1c00818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to a variety of viral-glycoprotein receptors (e.g., heparan sulfate, Niemann-Pick C1, etc.), dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), from the C-type lectin receptor family, plays one of the most important pathogenic functions for a wide range of viruses (e.g., Ebola, human cytomegalovirus (HCMV), HIV-1, severe acute respiratory syndrome coronavirus 2, etc.) that invade host cells before replication; thus, its inhibition represents a relevant extracellular antiviral therapy. We report two novel p-tBu-calixarene glycoclusters 1 and 2, bearing tetrahydroxamic acid groups, which exhibit micromolar inhibition of soluble DC-SIGN binding and provide nanomolar IC50 inhibition of both DC-SIGN-dependent Jurkat cis-cell infection by viral particle pseudotyped with Ebola virus glycoprotein and the HCMV-gB-recombinant glycoprotein interaction with monocyte-derived dendritic cells expressing DC-SIGN. A unique cooperative involvement of sugar, linker, and calixarene core is likely behind the strong avidity of DC-SIGN for these low-valent systems. We claim herein new promising candidates for the rational development of a large spectrum of antiviral therapeutics.
Collapse
Affiliation(s)
- Khouloud Chakroun
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, Amiens, 80039 Cédex, France.,Faculté des Sciences de Bizerte, Laboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) Unité ≪Interactions Moléculaires Spécifiques≫, Université de Carthage Zarzouna-Bizerte, Zarzouna-Bizerte, Tennessee 7021, Tunisia
| | - Marwa Taouai
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, Amiens, 80039 Cédex, France.,Faculté des Sciences de Bizerte, Laboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) Unité ≪Interactions Moléculaires Spécifiques≫, Université de Carthage Zarzouna-Bizerte, Zarzouna-Bizerte, Tennessee 7021, Tunisia
| | - Vanessa Porkolab
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, GrenobleF-38044, France
| | - Joanna Luczkowiak
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Roman Sommer
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken66123, Germany
| | - Coraline Cheneau
- Nantes Université, Inserm, CHU Nantes, Center for Research in Transplantation and Immunology UMR1064, ITUN, Nantes44093, France
| | - David Mathiron
- UFR des Sciences Bâtiment Serres-Transfert Rue Dallery, Passage du sourire d'Avril, Amiens 80039 Cedex 1, France
| | - Mohamed Amine Ben Maaouia
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, Amiens, 80039 Cédex, France.,Faculté des Sciences de Bizerte, Laboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) Unité ≪Interactions Moléculaires Spécifiques≫, Université de Carthage Zarzouna-Bizerte, Zarzouna-Bizerte, Tennessee 7021, Tunisia
| | - Serge Pilard
- UFR des Sciences Bâtiment Serres-Transfert Rue Dallery, Passage du sourire d'Avril, Amiens 80039 Cedex 1, France
| | - Rym Abidi
- Faculté des Sciences de Bizerte, Laboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) Unité ≪Interactions Moléculaires Spécifiques≫, Université de Carthage Zarzouna-Bizerte, Zarzouna-Bizerte, Tennessee 7021, Tunisia
| | - Catherine Mullié
- Laboratoire AGIR-UR UPJV 4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens80037, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, GrenobleF-38044, France
| | - Peter J Cragg
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton BN2 4GJ, U.K
| | - Franck Halary
- Nantes Université, Inserm, CHU Nantes, Center for Research in Transplantation and Immunology UMR1064, ITUN, Nantes44093, France
| | - Rafael Delgado
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Mohammed Benazza
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, Amiens, 80039 Cédex, France
| |
Collapse
|
21
|
Lukácsi S, Farkas Z, Saskői É, Bajtay Z, Takács-Vellai K. Conserved and Distinct Elements of Phagocytosis in Human and C. elegans. Int J Mol Sci 2021; 22:ijms22168934. [PMID: 34445642 PMCID: PMC8396242 DOI: 10.3390/ijms22168934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Endocytosis provides the cellular nutrition and homeostasis of organisms, but pathogens often take advantage of this entry point to infect host cells. This is counteracted by phagocytosis that plays a key role in the protection against invading microbes both during the initial engulfment of pathogens and in the clearance of infected cells. Phagocytic cells balance two vital functions: preventing the accumulation of cell corpses to avoid pathological inflammation and autoimmunity, whilst maintaining host defence. In this review, we compare elements of phagocytosis in mammals and the nematode Caenorhabditis elegans. Initial recognition of infection requires different mechanisms. In mammals, pattern recognition receptors bind pathogens directly, whereas activation of the innate immune response in the nematode rather relies on the detection of cellular damage. In contrast, molecules involved in efferocytosis—the engulfment and elimination of dying cells and cell debris—are highly conserved between the two species. Therefore, C. elegans is a powerful model to research mechanisms of the phagocytic machinery. Finally, we show that both mammalian and worm studies help to understand how the two phagocytic functions are interconnected: emerging data suggest the activation of innate immunity as a consequence of defective apoptotic cell clearance.
Collapse
Affiliation(s)
- Szilvia Lukácsi
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (S.L.); (Z.B.)
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (Z.F.); (É.S.)
| | - Éva Saskői
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (Z.F.); (É.S.)
| | - Zsuzsa Bajtay
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (S.L.); (Z.B.)
- Department of Immunology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary
| | - Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter s. 1/C, 1117 Budapest, Hungary; (Z.F.); (É.S.)
- Correspondence:
| |
Collapse
|
22
|
Hoffmann D, Mereiter S, Jin Oh Y, Monteil V, Elder E, Zhu R, Canena D, Hain L, Laurent E, Grünwald-Gruber C, Klausberger M, Jonsson G, Kellner MJ, Novatchkova M, Ticevic M, Chabloz A, Wirnsberger G, Hagelkruys A, Altmann F, Mach L, Stadlmann J, Oostenbrink C, Mirazimi A, Hinterdorfer P, Penninger JM. Identification of lectin receptors for conserved SARS-CoV-2 glycosylation sites. EMBO J 2021; 40:e108375. [PMID: 34375000 PMCID: PMC8420505 DOI: 10.15252/embj.2021108375] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
New SARS‐CoV‐2 variants are continuously emerging with critical implications for therapies or vaccinations. The 22 N‐glycan sites of Spike remain highly conserved among SARS‐CoV‐2 variants, opening an avenue for robust therapeutic intervention. Here we used a comprehensive library of mammalian carbohydrate‐binding proteins (lectins) to probe critical sugar residues on the full‐length trimeric Spike and the receptor binding domain (RBD) of SARS‐CoV‐2. Two lectins, Clec4g and CD209c, were identified to strongly bind to Spike. Clec4g and CD209c binding to Spike was dissected and visualized in real time and at single‐molecule resolution using atomic force microscopy. 3D modelling showed that both lectins can bind to a glycan within the RBD‐ACE2 interface and thus interferes with Spike binding to cell surfaces. Importantly, Clec4g and CD209c significantly reduced SARS‐CoV‐2 infections. These data report the first extensive map and 3D structural modelling of lectin‐Spike interactions and uncovers candidate receptors involved in Spike binding and SARS‐CoV‐2 infections. The capacity of CLEC4G and mCD209c lectins to block SARS‐CoV‐2 viral entry holds promise for pan‐variant therapeutic interventions.
Collapse
Affiliation(s)
- David Hoffmann
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefan Mereiter
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Yoo Jin Oh
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Vanessa Monteil
- Department of Laboratory Medicine, Unit of Clinical Microbiology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | | | - Rong Zhu
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Daniel Canena
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Lisa Hain
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Elisabeth Laurent
- Department of Biotechnology and BOKU Core Facility Biomolecular & Cellular Analysis, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Miriam Klausberger
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gustav Jonsson
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Max J Kellner
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Maria Novatchkova
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Melita Ticevic
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Antoine Chabloz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | - Astrid Hagelkruys
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johannes Stadlmann
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.,Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Chris Oostenbrink
- Department for Material Sciences and Process Engineering, Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ali Mirazimi
- Department of Laboratory Medicine, Unit of Clinical Microbiology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden.,National Veterinary Institute, Uppsala, Sweden
| | | | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Anderluh M, Berti F, Bzducha‐Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic‐Cincovic M, Marradi M, Ozil M, Polito L, Reina‐Martin JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Emerging glyco-based strategies to steer immune responses. FEBS J 2021; 288:4746-4772. [PMID: 33752265 PMCID: PMC8453523 DOI: 10.1111/febs.15830] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Glycan structures are common posttranslational modifications of proteins, which serve multiple important structural roles (for instance in protein folding), but also are crucial participants in cell-cell communications and in the regulation of immune responses. Through the interaction with glycan-binding receptors, glycans are able to affect the activation status of antigen-presenting cells, leading either to induction of pro-inflammatory responses or to suppression of immunity and instigation of immune tolerance. This unique feature of glycans has attracted the interest and spurred collaborations of glyco-chemists and glyco-immunologists to develop glycan-based tools as potential therapeutic approaches in the fight against diseases such as cancer and autoimmune conditions. In this review, we highlight emerging advances in this field, and in particular, we discuss on how glycan-modified conjugates or glycoengineered cells can be employed as targeting devices to direct tumor antigens to lectin receptors on antigen-presenting cells, like dendritic cells. In addition, we address how glycan-based nanoparticles can act as delivery platforms to enhance immune responses. Finally, we discuss some of the latest developments in glycan-based therapies, including chimeric antigen receptor (CAR)-T cells to achieve targeting of tumor-associated glycan-specific epitopes, as well as the use of glycan moieties to suppress ongoing immune responses, especially in the context of autoimmunity.
Collapse
Affiliation(s)
- Marko Anderluh
- Chair of Pharmaceutical ChemistryFaculty of PharmacyUniversity of LjubljanaSlovenia
| | | | - Anna Bzducha‐Wróbel
- Department of Biotechnology and Food MicrobiologyWarsaw University of Life Sciences‐SGGWPoland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and ImmunologyCancer Center AmsterdamAmsterdam Infection and Immunity InstituteAmsterdam UMCVrije Universiteit AmsterdamNetherlands
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo)University of MilanItaly
| | - Federica Compostella
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Katarzyna Durlik
- Department of Microbiology and ParasitologyJan Kochanowski UniversityKielcePoland
| | - Xhenti Ferhati
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Rikard Holmdahl
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeSerbia
| | - Wieslaw Kaca
- Department of Microbiology and ParasitologyJan Kochanowski UniversityKielcePoland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo)University of MilanItaly
| | - Milena Marinovic‐Cincovic
- Vinča Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeSerbia
| | - Marco Marradi
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Musa Ozil
- Department of ChemistryFaculty of Arts and SciencesRecep Tayyip Erdogan University RizeTurkey
| | | | | | - Celso A. Reis
- I3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and ImmunologyInstituto de Ciências Biomédicas Abel SalazarUniversity of PortoPortugal
| | - Robert Sackstein
- Department of Translational Medicinethe Translational Glycobiology InstituteHerbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
| | - Alba Silipo
- Department of Chemical SciencesUniversity of Naples Federico IIComplesso Universitario Monte Sant’AngeloNapoliItaly
| | - Urban Švajger
- Blood Transfusion Center of SloveniaLjubljanaSlovenia
| | - Ondřej Vaněk
- Department of BiochemistryFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology LaboratoryJosep Carreras Leukaemia Research InstituteBadalonaSpain
| | - Barbara Richichi
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Sandra J. van Vliet
- Department of Molecular Cell Biology and ImmunologyCancer Center AmsterdamAmsterdam Infection and Immunity InstituteAmsterdam UMCVrije Universiteit AmsterdamNetherlands
| |
Collapse
|
24
|
Fittolani G, Shanina E, Guberman M, Seeberger PH, Rademacher C, Delbianco M. Automatisierte Glykan‐Assemblierung
19
F‐markierter Glykansonden ermöglicht Hochdurchsatz‐NMR‐Untersuchungen von Protein‐Glykan‐Interaktionen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Elena Shanina
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Mónica Guberman
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Derzeitige Adresse: Medicinal Chemistry Leibniz-Forschungsinstitut für Molekulare Pharmakologie Robert-Rössle Straße 10 13125 Berlin Deutschland
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Christoph Rademacher
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Derzeitige Adresse: Department of Pharmaceutical Chemistry University of Vienna Althanstraße 14 1080 Wien Österreich
- Derzeitige Adresse: Department of Microbiology, Immunobiology and Genetics Max F. Perutz Labs Campus Vienna Biocenter 5 1030 Wien Österreich
| | - Martina Delbianco
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
| |
Collapse
|
25
|
Fittolani G, Shanina E, Guberman M, Seeberger PH, Rademacher C, Delbianco M. Automated Glycan Assembly of 19 F-labeled Glycan Probes Enables High-Throughput NMR Studies of Protein-Glycan Interactions. Angew Chem Int Ed Engl 2021; 60:13302-13309. [PMID: 33784430 PMCID: PMC8252726 DOI: 10.1002/anie.202102690] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/19/2021] [Indexed: 12/23/2022]
Abstract
Protein-glycan interactions mediate important biological processes, including pathogen host invasion and cellular communication. Herein, we showcase an expedite approach that integrates automated glycan assembly (AGA) of 19 F-labeled probes and high-throughput NMR methods, enabling the study of protein-glycan interactions. Synthetic Lewis type 2 antigens were screened against seven glycan binding proteins (GBPs), including DC-SIGN and BambL, respectively involved in HIV-1 and lung infections in immunocompromised patients, confirming the preference for fucosylated glycans (Lex , H type 2, Ley ). Previously unknown glycan-lectin weak interactions were detected, and thermodynamic data were obtained. Enzymatic reactions were monitored in real-time, delivering kinetic parameters. These results demonstrate the utility of AGA combined with 19 F NMR for the discovery and characterization of glycan-protein interactions, opening up new perspectives for 19 F-labeled complex glycans.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Elena Shanina
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Mónica Guberman
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Current address: Medicinal ChemistryLeibniz-Forschungsinstitut für Molekulare PharmakologieRobert-Rössle Strasse 1013125BerlinGermany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Christoph Rademacher
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Current address: Department of Pharmaceutical ChemistryUniversity of ViennaAlthanstrasse 141080ViennaAustria
- Current address: Department of Microbiology, Immunobiology and GeneticsMax F. Perutz LabsCampus Vienna Biocenter 51030ViennaAustria
| | - Martina Delbianco
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
26
|
Hoyos P, Perona A, Juanes O, Rumbero Á, Hernáiz MJ. Synthesis of Glycodendrimers with Antiviral and Antibacterial Activity. Chemistry 2021; 27:7593-7624. [PMID: 33533096 DOI: 10.1002/chem.202005065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Indexed: 12/27/2022]
Abstract
Glycodendrimers are an important class of synthetic macromolecules that can be used to mimic many structural and functional features of cell-surface glycoconjugates. Their carbohydrate moieties perform key important functions in bacterial and viral infections, often regulated by carbohydrate-protein interactions. Several studies have shown that the molecular structure, valency and spatial organisation of carbohydrate epitopes in glycoconjugates are key factors in the specificity and avidity of carbohydrate-protein interactions. Choosing the right glycodendrimers almost always helps to interfere with such interactions and blocks bacterial or viral adhesion and entry into host cells as an effective strategy to inhibit bacterial or viral infections. Herein, the state of the art in the design and synthesis of glycodendrimers employed for the development of anti-adhesion therapy against bacterial and viral infections is described.
Collapse
Affiliation(s)
- Pilar Hoyos
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Almudena Perona
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Olga Juanes
- Organic Chemistry Department, Autónoma University of Madrid, Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Ángel Rumbero
- Organic Chemistry Department, Autónoma University of Madrid, Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - María J Hernáiz
- Chemistry in Pharmaceutical Sciences Department, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| |
Collapse
|
27
|
Identification of Important N-Linked Glycosylation Sites in the Hemagglutinin Protein and Their Functional Impact on DC-SIGN Mediated Avian Influenza H5N1 Infection. Int J Mol Sci 2021; 22:ijms22020743. [PMID: 33451024 PMCID: PMC7828482 DOI: 10.3390/ijms22020743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
DC-SIGN, a C-type lectin mainly expressed in dendritic cells (DCs), has been reported to mediate several viral infections. We previously reported that DC-SIGN mediated H5N1 influenza A virus (AIVs) infection, however, the important DC-SIGN interaction with N-glycosylation sites remain unknown. This study aims to identify the optimal DC-SIGN interacting N-glycosylation sites in HA proteins of H5N1-AIVs. Results from NetNGlyc program analyzed the H5 hemagglutinin sequences of isolates during 2004–2020, revealing that seven and two conserved N-glycosylation sites were detected in HA1 and HA2 domain, respectively. A lentivirus pseudotyped A/Vietnam/1203/04 H5N1 envelope (H5N1-PVs) was generated which displayed an abundance of HA5 proteins on the virions via immuno-electron microscope observation. Further, H5N1-PVs or reverse-genetics (H5N1-RG) strains carrying a serial N-glycosylated mutation was generated by site-directed mutagenesis assay. Human recombinant DC-SIGN (rDC-SIGN) coated ELISA showed that H5N1-PVs bound to DC-SIGN, however, mutation on the N27Q, N39Q, and N181Q significantly reduced this binding (p < 0.05). Infectivity and capture assay demonstrated that N27Q and N39Q mutations significantly ameliorated DC-SIGN mediated H5N1 infection. Furthermore, combined mutations (N27Q&N39Q) significantly waned the interaction on either H5N1-PVs or -RG infection in cis and in trans (p < 0.01). This study concludes that N27 and N39 are two essential N-glycosylation contributing to DC-SIGN mediating H5N1 infection.
Collapse
|
28
|
Xue Y, Li Q, Park CG, Klena JD, Anisimov AP, Sun Z, Wei X, Chen T. Proteus mirabilis Targets Atherosclerosis Plaques in Human Coronary Arteries via DC-SIGN (CD209). Front Immunol 2021; 11:579010. [PMID: 33488579 PMCID: PMC7820866 DOI: 10.3389/fimmu.2020.579010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Bacterial DNAs are constantly detected in atherosclerotic plaques (APs), suggesting that a combination of chronic infection and inflammation may have roles in AP formation. A series of studies suggested that certain Gram-negative bacteria were able to interact with dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin [DC-SIGN; cluster of differentiation (CD) 209] or langerin (CD207), thereby resulting in deposition of CD209s at infection sites. We wondered if Proteus mirabilis (a member of Proteobacteria family) could interact with APs through CD209/CD207. In this study, we first demonstrated that CD209/CD207 were also receptors for P. mirabilis that mediated adherence and phagocytosis by macrophages. P. mirabilis interacted with fresh and CD209s/CD207-expressing APs cut from human coronary arteries, rather than in healthy and smooth arteries. These interactions were inhibited by addition of a ligand-mimic oligosaccharide and the coverage of the ligand, as well as by anti-CD209 antibody. Finally, the hearts from an atherosclerotic mouse model contained higher numbers of P. mirabilis than that of control mice during infection-challenging. We therefore concluded that the P. mirabilis interacts with APs in human coronary arteries via CD209s/CD207. It may be possible to slow down the progress of atherosclerosis by blocking the interactions between CD209s/CD207 and certain atherosclerosis-involved bacteria with ligand-mimic oligosaccharides.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/metabolism
- Bacterial Adhesion/drug effects
- CHO Cells
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/metabolism
- Coronary Artery Disease/drug therapy
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/microbiology
- Coronary Artery Disease/pathology
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/microbiology
- Coronary Vessels/pathology
- Cricetulus
- Disease Models, Animal
- Female
- Host-Pathogen Interactions
- Humans
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/metabolism
- Ligands
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/microbiology
- Male
- Mannose-Binding Lectins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Middle Aged
- Oligosaccharides/pharmacology
- Plaque, Atherosclerotic
- Proteus mirabilis/growth & development
- Proteus mirabilis/metabolism
- RAW 264.7 Cells
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- Ying Xue
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiao Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chae Gyu Park
- Laboratory of Immunology, Brain Korea 21 FOUR Project for Medical Science, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - John D. Klena
- Division of Global Health Protection, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Andrey P. Anisimov
- Laboratory for Plague Microbiology, State Research Center for Applied Microbiology and Biotechnology, Especially Dangerous Infections Department, Obolensk, Russia
| | - Ziyong Sun
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Innate Immune Pattern Recognition Receptors of Mycobacterium tuberculosis: Nature and Consequences for Pathogenesis of Tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:179-215. [PMID: 34661896 DOI: 10.1007/978-3-030-67452-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Innate immunity against Mycobacterium tuberculosis is a critical early response to prevent the establishment of the infection. Despite recent advances in understanding the host-pathogen dialogue in the early stages of tuberculosis (TB), much has yet to be learnt. The nature and consequences of this dialogue ultimately determine the path of infection: namely, either early clearance of M. tuberculosis, or establishment of M. tuberculosis infection leading to active TB disease and/or latent TB infection. On the frontline in innate immunity are pattern recognition receptors (PRRs), with soluble factors (e.g. collectins and complement) and cell surface factors (e.g. Toll-like receptors and other C-type lectin receptors (Dectin 1/2, Nod-like receptors, DC-SIGN, Mincle, mannose receptor, and MCL) that play a central role in recognising M. tuberculosis and facilitating its clearance. However, in a 'double-edged sword' scenario, these factors can also be involved in enhancement of pathogenesis as well. Furthermore, innate immunity is also a critical bridge in establishing the subsequent adaptive immune response, which is also responsible for granuloma formation that cordons off M. tuberculosis infection, establishing latency and acting as a reservoir for bacterial persistence and dissemination of future disease. This chapter discusses the current understanding of pattern recognition of M. tuberculosis by innate immunity and the role this plays in the pathogenesis and protection against TB.
Collapse
|
30
|
Doelman W, Marqvorsen MHS, Chiodo F, Bruijns SCM, van der Marel GA, van Kooyk Y, van Kasteren SI, Araman C. Synthesis of Asparagine Derivatives Harboring a Lewis X Type DC-SIGN Ligand and Evaluation of their Impact on Immunomodulation in Multiple Sclerosis. Chemistry 2020; 27:2742-2752. [PMID: 33090600 PMCID: PMC7898482 DOI: 10.1002/chem.202004076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Indexed: 01/13/2023]
Abstract
The protein myelin oligodendrocyte glycoprotein (MOG) is a key component of myelin and an autoantigen in the disease multiple sclerosis (MS). Post‐translational N‐glycosylation of Asn31 of MOG seems to play a key role in modulating the immune response towards myelin. This is mediated by the interaction of Lewis‐type glycan structures in the N‐glycan of MOG with the DC‐SIGN receptor on dendritic cells (DCs). Here, we report the synthesis of an unnatural Lewis X (LeX)‐containing Fmoc‐SPPS‐compatible asparagine building block (SPPS=solid‐phase peptide synthesis), as well as asparagine building blocks containing two LeX‐derived oligosaccharides: LacNAc and Fucα1‐3GlcNAc. These building blocks were used for the glycosylation of the immunodominant portion of MOG (MOG31‐55) and analyzed with respect to their ability to bind to DC‐SIGN in different biological setups, as well as their ability to inhibit the citrullination‐induced aggregation of MOG31‐55. Finally, a cytokine secretion assay was carried out on human monocyte‐derived DCs, which showed the ability of the neoglycopeptide decorated with a single LeX to alter the balance of pro‐ and anti‐inflammatory cytokines, inducing a tolerogenic response.
Collapse
Affiliation(s)
- Ward Doelman
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Mikkel H S Marqvorsen
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC-Location Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Sven C M Bruijns
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC-Location Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC-Location Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Sander I van Kasteren
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Can Araman
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
31
|
Di Pietro S, Bordoni V, Iacopini D, Achilli S, Pineschi M, Thépaut M, Fieschi F, Crotti P, Di Bussolo V. New lipophilic glycomimetic DC-SIGN ligands: Stereoselective synthesis and SPR-based binding inhibition assays. Bioorg Chem 2020; 107:104566. [PMID: 33387733 DOI: 10.1016/j.bioorg.2020.104566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/30/2022]
Abstract
The design and synthesis of efficient ligands for DC-SIGN is a topic of high interest, because this C-type lectin has been implicated in the early stages of many infection processes. DC-SIGN membrane-protein presents four carbohydrate-binding domains (CRD) that specifically recognize mannose and fucose. Therefore, antagonists of minimal disaccharide epitope Manα(1,2)Man, represent potentially interesting antibacterial and antiviral agents. In the recent past, we were able to develop efficient antagonists, mimics of the natural moiety, characterized by the presence of a real d-carbamannose unit which confers greater stability to enzymatic breakdown than the corresponding natural disaccharide ligand. Herein, we present the challenging stereoselective synthesis of four new amino or azide glycomimetic DC-SIGN antagonists with attractive orthogonal lipophilic substituents in C(3), C(4) or C(6) positions of the real carba unit, which were expected to establish crucial interactions with lipophilic areas of DC-SIGN CRD. The activity of the new ligands was evaluated by SPR binding inhibition assays. The interesting results obtained, allow to acquire important information about the influence of the lipophilic substituents present in specific positions of the carba scaffold. Furthermore, C(6) benzyl C(4) tosylamide pseudodisaccharide displayed a good affinity for DC-SIGN with a more favorable IC50 value than those of the previously described real carba-analogues. This study provides valuable knowledge for the implementation of further structural modifications towards improved inhibitors.
Collapse
Affiliation(s)
- Sebastiano Di Pietro
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| | - Vittorio Bordoni
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Dalila Iacopini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56125 Pisa, Italy
| | - Silvia Achilli
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Mauro Pineschi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Paolo Crotti
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Valeria Di Bussolo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56125 Pisa, Italy.
| |
Collapse
|
32
|
Ojeda N, Salazar C, Cárdenas C, Marshall SH. Expression of DC-SIGN-like C-Type Lectin Receptors in Salmo salar. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103806. [PMID: 32739503 PMCID: PMC7392198 DOI: 10.1016/j.dci.2020.103806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 05/05/2023]
Abstract
C-Type Lectin Receptors (CTLR) are involved in the activation of innate and adaptative immune responses. Among these receptors, the Dendritic Cell-Specific ICAM-3-Grabbing nonintegrin (DC-SIGN/CD209) has become a hot topic due to its ability to bind and facilitate the infections processes of several pathogens. Although well characterized in mammals, little documentation exists about the receptor in salmonid fishes. Here, we report the sequence and expression analysis of eight DC-SIGN-like genes in Salmo salar. Each receptor displays structural similarities to DC-SIGN molecules described in mammals, including internalization motifs, a neck region with heptad repeats, and a Ca+2-dependent carbohydrate recognition domain. The receptors are expressed in multiple tissues of fish, and fish cell lines, with differential expression upon infection with viral and bacterial pathogens. The identification of DC-SIGN-like receptors in Salmo salar provides new information regarding the structure of the immune system of salmon, potential markers for cell subsets, as well as insights into DC-SIGN conservation across species.
Collapse
Affiliation(s)
- Nicolás Ojeda
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Carolina Salazar
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Constanza Cárdenas
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Sergio H Marshall
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile.
| |
Collapse
|
33
|
Valverde P, Martínez JD, Cañada FJ, Ardá A, Jiménez-Barbero J. Molecular Recognition in C-Type Lectins: The Cases of DC-SIGN, Langerin, MGL, and L-Sectin. Chembiochem 2020; 21:2999-3025. [PMID: 32426893 PMCID: PMC7276794 DOI: 10.1002/cbic.202000238] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Carbohydrates play a pivotal role in intercellular communication processes. In particular, glycan antigens are key for sustaining homeostasis, helping leukocytes to distinguish damaged tissues and invading pathogens from healthy tissues. From a structural perspective, this cross-talk is fairly complex, and multiple membrane proteins guide these recognition processes, including lectins and Toll-like receptors. Since the beginning of this century, lectins have become potential targets for therapeutics for controlling and/or avoiding the progression of pathologies derived from an incorrect immune outcome, including infectious processes, cancer, or autoimmune diseases. Therefore, a detailed knowledge of these receptors is mandatory for the development of specific treatments. In this review, we summarize the current knowledge about four key C-type lectins whose importance has been steadily growing in recent years, focusing in particular on how glycan recognition takes place at the molecular level, but also looking at recent progresses in the quest for therapeutics.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - J Daniel Martínez
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - F Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940, Leioa, Spain
| |
Collapse
|
34
|
Silva LM, Correia VG, Moreira ASP, Domingues MRM, Ferreira RM, Figueiredo C, Azevedo NF, Marcos-Pinto R, Carneiro F, Magalhães A, Reis CA, Feizi T, Ferreira JA, Coimbra MA, Palma AS. Helicobacter pylori lipopolysaccharide structural domains and their recognition by immune proteins revealed with carbohydrate microarrays. Carbohydr Polym 2020; 253:117350. [PMID: 33278960 DOI: 10.1016/j.carbpol.2020.117350] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 01/04/2023]
Abstract
The structural diversity of the lipopolysaccharides (LPSs) from Helicobacter pylori poses a challenge to establish accurate and strain-specific structure-function relationships in interactions with the host. Here, LPS structural domains from five clinical isolates were obtained and compared with the reference strain 26695. This was achieved combining information from structural analysis (GC-MS and ESI-MSn) with binding data after interrogation of a LPS-derived carbohydrate microarray with sequence-specific proteins. All LPSs expressed Lewisx/y and N-acetyllactosamine determinants. Ribans were also detected in LPSs from all clinical isolates, allowing their distinction from the 26695 LPS. There was evidence for 1,3-d-galactans and blood group H-type 2 sequences in two of the clinical isolates, the latter not yet described for H. pylori LPS. Furthermore, carbohydrate microarray analyses showed a strain-associated LPS recognition by the immune lectins DC-SIGN and galectin-3 and revealed distinctive LPS binding patterns by IgG antibodies in the serum from H. pylori-infected patients.
Collapse
Affiliation(s)
- Lisete M Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, W12 0NN, UK.
| | - Viviana G Correia
- UCIBIO, Department of Chemistry, School of Science and Technology, NOVA University of Lisbon, 2829-516 Lisbon, Portugal
| | - Ana S P Moreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Rosário M Domingues
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rui M Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-465 Porto, Portugal
| | - Céu Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-465 Porto, Portugal; Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Ricardo Marcos-Pinto
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal; Department of Gastroenterology, Centro Hospitalar do Porto, 4099-001 Porto, Portugal; Medical Faculty, Centre for Research in Health Technologies and Information Systems, 4200-450 Porto, Portugal
| | - Fátima Carneiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
| | - Ana Magalhães
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-465 Porto, Portugal
| | - Celso A Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-465 Porto, Portugal; Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Ten Feizi
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, W12 0NN, UK
| | - José A Ferreira
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal; Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072 Porto, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Angelina S Palma
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, W12 0NN, UK; UCIBIO, Department of Chemistry, School of Science and Technology, NOVA University of Lisbon, 2829-516 Lisbon, Portugal
| |
Collapse
|
35
|
Hager S, Fittler FJ, Wagner E, Bros M. Nucleic Acid-Based Approaches for Tumor Therapy. Cells 2020; 9:E2061. [PMID: 32917034 PMCID: PMC7564019 DOI: 10.3390/cells9092061] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Within the last decade, the introduction of checkpoint inhibitors proposed to boost the patients' anti-tumor immune response has proven the efficacy of immunotherapeutic approaches for tumor therapy. Furthermore, especially in the context of the development of biocompatible, cell type targeting nano-carriers, nucleic acid-based drugs aimed to initiate and to enhance anti-tumor responses have come of age. This review intends to provide a comprehensive overview of the current state of the therapeutic use of nucleic acids for cancer treatment on various levels, comprising (i) mRNA and DNA-based vaccines to be expressed by antigen presenting cells evoking sustained anti-tumor T cell responses, (ii) molecular adjuvants, (iii) strategies to inhibit/reprogram tumor-induced regulatory immune cells e.g., by RNA interference (RNAi), (iv) genetically tailored T cells and natural killer cells to directly recognize tumor antigens, and (v) killing of tumor cells, and reprograming of constituents of the tumor microenvironment by gene transfer and RNAi. Aside from further improvements of individual nucleic acid-based drugs, the major perspective for successful cancer therapy will be combination treatments employing conventional regimens as well as immunotherapeutics like checkpoint inhibitors and nucleic acid-based drugs, each acting on several levels to adequately counter-act tumor immune evasion.
Collapse
Affiliation(s)
- Simone Hager
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | | | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany;
| |
Collapse
|
36
|
Zhang X, Zhang B, Masoudi A, Wang X, Xue X, Li M, Xiao Q, Wang M, Liu J, Wang H. Comprehensive analysis of protein expression levels and phosphorylation levels in host skin in response to tick (Haemaphysalis longicornis) bite. J Proteomics 2020; 226:103898. [PMID: 32682108 DOI: 10.1016/j.jprot.2020.103898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 11/15/2022]
Abstract
Ticks are parasitic arthropods that suck blood from the surface of most vertebrates. They can transmit a variety of pathogens. The blood sucking of ticks causes varying degrees of damage to the skin of the host. Proteins related to immune regulation, vascular repair, and wound healing in mammalian skin respond to tick bites by regulating their expression and post-translational modifications to protect the skin from injury. Phosphorylation of proteins, as the most common post-translational modification of proteins, plays an important role in the rapid regulation of cell signal transduction, gene expression and cell cycle. To systematically explore the molecular regulatory mechanisms employed by mammalian skin to resist tick bites, larval, nymphal, and adult Haemaphysalis longicornis were used to bite the skin tissues of healthy rabbits in the present study. The quantitative proteomic technology data-independent acquisition was then carried out to investigate in depth the changes in protein expression and phosphorylation in rabbit skin after tick bite. The results showed that among the 4034 proteins and 1795 phosphorylated proteins identified, a total of 202 proteins and 435 phosphorylation sites were changed after H. longicornis bite. In order to provide convenience for sucking blood, active substances in the saliva of H. longicornis injected into the rabbit's skin can cause the expression level of trichohyalin and peptidyl arginine deiminase 3 in the skin of the host downregulate, which can make the host hair loss and regeneration disorders. At the same time, the active substances in saliva of the H. longicornis led to the phosphorylation of microtubule actin cross-linking factor 1 in the host's skin and further inactivation, so as to delay the healing of the host wound. In response to tick bites, the host skin promotes coagulation through high expression of fibrinogen and fibronectin, and vascular repair through high expression of integrin linked kinase and tenascin C, as well as accelerated phosphorylation of the phosphorylated protein Nck adaptor protein 1, and wound healing through high expression of ezrin and integrin. The upregulation of proteins such as coronin, NADPH oxidase, calnexin, and calreticulin and phosphorylation level of IL-4R in the host skin after the H. longicornis bite indicated that the immune response was playing an important defensive role in response to tick bites. Meanwhile, we found that the upregulated two lectins, mannose receptor C-type 1 and DC-SIGN, may serve as molecular makers to identify and monitor whether the skin is bitten by ticks. SIGNIFICANCE: Haemaphysalis longicornis are parasitic arthropods that suck blood from the surface of most vertebrates. They can transmit a variety of pathogens and are harmful to humans and livestock. The present study is the first quantitative proteomic study on protein expression levels in the rabbit skin after infection by H. longicornis. It is also the first quantitative phosphoproteomic study in the host skin infected by ticks. In this study, we found that tick bites cause the host hair loss and regeneration disorders. For resisting tick bite, the host activates the immune response and initiates vascular repair and wound-healing systems. In addition, some phosphorylated proteins promote host immunity and vascular repair. These results can help us further understand the defence mechanism of the host against tick bites, provide a basis for the development of an anti-tick vaccine, the development of anti-tick drugs, and the diagnosis of tick-borne diseases.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Baowen Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Abolfazl Masoudi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Xiaoshuang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Xiaomin Xue
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Mengxue Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Qi Xiao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Minjing Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Hui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| |
Collapse
|
37
|
Zhang T, van Die I, Tefsen B, van Vliet SJ, Laan LC, Zhang J, Ten Dijke P, Wuhrer M, Belo AI. Differential O- and Glycosphingolipid Glycosylation in Human Pancreatic Adenocarcinoma Cells With Opposite Morphology and Metastatic Behavior. Front Oncol 2020; 10:732. [PMID: 32582529 PMCID: PMC7280451 DOI: 10.3389/fonc.2020.00732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/16/2020] [Indexed: 01/15/2023] Open
Abstract
Changes in the glycosylation profile of cancer cells have been strongly associated with cancer progression. To increase our insights into the role of glycosylation in human pancreatic ductal adenocarcinoma (PDAC), we performed a study on O-glycans and glycosphingolipid (GSL) glycans of the PDAC cell lines Pa-Tu-8988T (PaTu-T) and Pa-Tu-8988S (PaTu-S). These cell lines are derived from the same patient, but show an almost opposite phenotype, morphology and capacity to metastasize, and may thus provide an attractive model to study the role of glycosylation in progression of PDAC. Gene-array analysis revealed that 24% of the glycosylation-related genes showed a ≥ 1.5-fold difference in expression level between the two cell lines. Subsequent validation of the data by porous graphitized carbon nano-liquid chromatography coupled to a tandem ion trap mass spectrometry and flow cytometry established major differences in O-glycans and GSL-glycans between the cell lines, including lower levels of T and sialylated Tn (sTn) antigens, neoexpression of globosides (Gb3 and Gb4), and higher levels of gangliosides in the mesenchymal-like PaTu-T cells compared to the epithelial-like PaTu-S. In addition, PaTu-S cells demonstrated a significantly higher binding of the immune-lectins macrophage galactose-type lectin and galectin-4 compared to PaTu-T. In summary, our data provide a comprehensive and differential glycan profile of two PDAC cell lines with disparate phenotypes and metastatic behavior. This will allow approaches to modulate and monitor the glycosylation of these PDAC cell lines, which opens up avenues to study the biology and metastatic behavior of PDAC.
Collapse
Affiliation(s)
- Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Boris Tefsen
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lisa C Laan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jing Zhang
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Ana I Belo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
38
|
Njiri OA, Zhang X, Zhang Y, Wu B, Jiang L, Li Q, Liu W, Chen T. CD209 C-Type Lectins Promote Host Invasion, Dissemination, and Infection of Toxoplasma gondii. Front Immunol 2020; 11:656. [PMID: 32391004 PMCID: PMC7190871 DOI: 10.3389/fimmu.2020.00656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/23/2020] [Indexed: 01/24/2023] Open
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis and a major opportunistic parasite associated with AIDS, is able to invade host cells of animals and humans. Studies suggested that the ability of host invasion by the tachyzoite, the infectious form of T. gondii, is essential for the pathogenicity to promote its dissemination to other parts of animal hosts. However, the detailed molecular mechanisms for host invasion and dissemination of the parasites are not clear. On the other hand, viruses and bacteria are able to interact with and hijack DC-SIGN (CD209) C-type lectin on antigen presenting cells (APCs), such as dendritic cells and macrophages as the Trojan horses to promote host dissemination. In this study, we showed that invasion of T. gondii into host cells was enhanced by this parasite-CD209 interaction that were inhibited by ligand mimicking-oligosaccharides and the anti-CD209 antibody. Furthermore, covering the exposures of DC-SIGN by these oligosaccharides reduced parasite burden, host spreading and mortality associated with T. gondii infection. These results suggested that interaction of T. gondii to APCs expressing DC-SIGN might promote host dissemination and infection. Can the blockage of this interaction with Mannan and/or anti-CD209 antibody be developed as a prevention or treatment method for T. gondii infection?
Collapse
Affiliation(s)
- Olivia Adhiambo Njiri
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.,Department of Biological Sciences, Faculty of Science, Engineering and Technology, Chuka University, Chuka, Kenya
| | - Xiaoyan Zhang
- Division of Parasitology, Department of Pathogen Biology, School of Basic Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingmiao Zhang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Bicong Wu
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Lingyu Jiang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qiao Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Wenqi Liu
- Division of Parasitology, Department of Pathogen Biology, School of Basic Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| |
Collapse
|
39
|
Baldin AV, Savvateeva LV, Bazhin AV, Zamyatnin AA. Dendritic Cells in Anticancer Vaccination: Rationale for Ex Vivo Loading or In Vivo Targeting. Cancers (Basel) 2020; 12:cancers12030590. [PMID: 32150821 PMCID: PMC7139354 DOI: 10.3390/cancers12030590] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) have shown great potential as a component or target in the landscape of cancer immunotherapy. Different in vivo and ex vivo strategies of DC vaccine generation with different outcomes have been proposed. Numerous clinical trials have demonstrated their efficacy and safety in cancer patients. However, there is no consensus regarding which DC-based vaccine generation method is preferable. A problem of result comparison between trials in which different DC-loading or -targeting approaches have been applied remains. The employment of different DC generation and maturation methods, antigens and administration routes from trial to trial also limits the objective comparison of DC vaccines. In the present review, we discuss different methods of DC vaccine generation. We conclude that standardized trial designs, treatment settings and outcome assessment criteria will help to determine which DC vaccine generation approach should be applied in certain cancer cases. This will result in a reduction in alternatives in the selection of preferable DC-based vaccine tactics in patient. Moreover, it has become clear that the application of a DC vaccine alone is not sufficient and combination immunotherapy with recent advances, such as immune checkpoint inhibitors, should be employed to achieve a better clinical response and outcome.
Collapse
Affiliation(s)
- Alexey V. Baldin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
| | - Lyudmila V. Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, 81377 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
- Belozersky Institute of Physico-Chemical Biology, Department of Cell Signaling, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +74-956-229-843
| |
Collapse
|
40
|
Meghil MM, Cutler CW. Oral Microbes and Mucosal Dendritic Cells, "Spark and Flame" of Local and Distant Inflammatory Diseases. Int J Mol Sci 2020; 21:E1643. [PMID: 32121251 PMCID: PMC7084622 DOI: 10.3390/ijms21051643] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
Mucosal health and disease is mediated by a complex interplay between the microbiota ("spark") and the inflammatory response ("flame"). Pathobionts, a specific class of microbes, exemplified by the oral microbe Porphyromonas gingivalis, live mostly "under the radar" in their human hosts, in a cooperative relationship with the indigenous microbiota. Dendritic cells (DCs), mucosal immune sentinels, often remain undisturbed by such microbes and do not alert adaptive immunity to danger. At a certain tipping point of inflammation, an "awakening" of pathobionts occurs, wherein their active growth and virulence are stimulated, leading to a dysbiosis. Pathobiont becomes pathogen, and commensal becomes accessory pathogen. The local inflammatory outcome is the Th17-mediated degenerative bone disease, periodontitis (PD). In systemic circulation of PD subjects, inflammatory DCs expand, carrying an oral microbiome and promoting Treg and Th17 responses. At distant peripheral sites, comorbid diseases including atherosclerosis, Alzheimer's disease, macular degeneration, chronic kidney disease, and others are reportedly induced. This review will review the immunobiology of DCs, examine the complex interplay of microbes and DCs in the pathogenesis of PD and its comorbid inflammatory diseases, and discuss the role of apoptosis and autophagy in this regard. Overall, the pathophysiological mechanisms of DC-mediated chronic inflammation and tissue destruction will be summarized.
Collapse
Affiliation(s)
| | - Christopher W. Cutler
- Department of Periodontics, The Dental College of Georgia at Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
41
|
Wei M, McKitrick TR, Mehta AY, Gao C, Jia N, McQuillan AM, Heimburg-Molinaro J, Sun L, Cummings RD. Novel Reversible Fluorescent Glycan Linker for Functional Glycomics. Bioconjug Chem 2019; 30:2897-2908. [PMID: 31600064 DOI: 10.1021/acs.bioconjchem.9b00613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To aid in generating complex and diverse natural glycan libraries for functional glycomics, more efficient and reliable methods are needed to derivatize glycans. Here we present our development of a reversible, cleavable bifunctional linker 3-(methoxyamino)propylamine (MAPA). As the fluorenylmethyloxycarbonate (Fmoc) version (F-MAPA), it is highly fluorescent and efficiently derivatizes free reducing glycans to generate closed-ring derivatives that preserve the structural integrity of glycans. A library of glycans were derivatized and used to generate a covalent glycan microarray using N-hydroxysuccinimide derivatization. The array was successfully interrogated by a variety of lectins and antibodies, demonstrating the importance of closed-ring chemistry. The glycan derivatization was also performed at large scale using milligram quantities of glycans and excess F-MAPA, and the reaction system was successfully recycled up to five times, without an apparent decrease in conjugation efficiency. The MAPA-glycan is also easy to link to protein to generate neoglycoproteins with equivalent glycan densities. Importantly, the MAPA linker can be reversibly cleaved to regenerate free reducing glycans for detailed structural analysis (catch-and-release), often critical for functional studies of undefined glycans from natural sources. The high conjugation efficiency, bright fluorescence, and reversible cleavage of the linker enable access to natural glycans for functional glycomics.
Collapse
Affiliation(s)
- Mohui Wei
- Department of Surgery, Beth Israel Deaconess Medical Center , Harvard Medical School , National Center for Functional Glycomics, CLS 11087-3 Blackfan Circle , Boston , Massachusetts 02115 , United States
| | - Tanya R McKitrick
- Department of Surgery, Beth Israel Deaconess Medical Center , Harvard Medical School , National Center for Functional Glycomics, CLS 11087-3 Blackfan Circle , Boston , Massachusetts 02115 , United States
| | - Akul Y Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center , Harvard Medical School , National Center for Functional Glycomics, CLS 11087-3 Blackfan Circle , Boston , Massachusetts 02115 , United States
| | - Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center , Harvard Medical School , National Center for Functional Glycomics, CLS 11087-3 Blackfan Circle , Boston , Massachusetts 02115 , United States
| | - Nan Jia
- Department of Surgery, Beth Israel Deaconess Medical Center , Harvard Medical School , National Center for Functional Glycomics, CLS 11087-3 Blackfan Circle , Boston , Massachusetts 02115 , United States
| | - Alyssa M McQuillan
- Department of Surgery, Beth Israel Deaconess Medical Center , Harvard Medical School , National Center for Functional Glycomics, CLS 11087-3 Blackfan Circle , Boston , Massachusetts 02115 , United States
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center , Harvard Medical School , National Center for Functional Glycomics, CLS 11087-3 Blackfan Circle , Boston , Massachusetts 02115 , United States
| | - Lijun Sun
- Department of Surgery, Beth Israel Deaconess Medical Center , Harvard Medical School , National Center for Functional Glycomics, CLS 11087-3 Blackfan Circle , Boston , Massachusetts 02115 , United States
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center , Harvard Medical School , National Center for Functional Glycomics, CLS 11087-3 Blackfan Circle , Boston , Massachusetts 02115 , United States
| |
Collapse
|
42
|
Glycan-Modified Apoptotic Melanoma-Derived Extracellular Vesicles as Antigen Source for Anti-Tumor Vaccination. Cancers (Basel) 2019; 11:cancers11091266. [PMID: 31466401 PMCID: PMC6769957 DOI: 10.3390/cancers11091266] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Tumors that lack T cell infiltration are less likely to respond to immune checkpoint inhibition and could benefit from cancer vaccination for the initiation of anti-tumor T cell responses. An attractive vaccine strategy is in vivo targeting of dendritic cells (DCs), key initiators of antigen-specific T cell responses. In this study we generated tumor-derived apoptotic extracellular vesicles (ApoEVs), which are potentially an abundant source of tumor-specific neo-antigens and other tumor-associated antigens (TAAs), and which can be manipulated to express DC-targeting ligands for efficient antigen delivery. Our data demonstrates that by specifically modifying the glycocalyx of tumor cells, high-mannose glycans can be expressed on their cell surface and on extracellular vesicles derived after the induction of apoptosis. High-mannose glycans are the natural ligands of dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), a dendritic cell associated C-type lectin receptor (CLR), which has the ability to efficiently internalize its cargo and direct it to both major histocompatibility complex (MHC)-I and MHC-II pathways for the induction of CD8+ and CD4+ T cell responses, respectively. Compared to unmodified ApoEVs, ApoEVs carrying DC-SIGN ligands are internalized to a higher extent, resulting in enhanced priming of tumor-specific CD8+ T cells. This approach thus presents a promising vaccination strategy in support of T cell-based immunotherapy of cancer.
Collapse
|
43
|
Dusoswa SA, Horrevorts SK, Ambrosini M, Kalay H, Paauw NJ, Nieuwland R, Pegtel MD, Würdinger T, Van Kooyk Y, Garcia-Vallejo JJ. Glycan modification of glioblastoma-derived extracellular vesicles enhances receptor-mediated targeting of dendritic cells. J Extracell Vesicles 2019; 8:1648995. [PMID: 31489145 PMCID: PMC6713149 DOI: 10.1080/20013078.2019.1648995] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma is the most prevalent and aggressive primary brain tumour for which total tumour lysate-pulsed dendritic cell vaccination is currently under clinical evaluation. Glioblastoma extracellular vesicles (EVs) may represent an enriched cell-free source of tumour-associated (neo-) antigens to pulse dendritic cells (DCs) for the initiation of an anti-tumour immune response. Capture and uptake of EVs by DCs could occur in a receptor-mediated and presumably glycan-dependent way, yet the glycan composition of glioblastoma EVs is unknown. Here, we set out to characterize the glycocalyx composition of glioblastoma EVs by lectin-binding ELISA and comprehensive immunogold transmission electron microscopy (immuno-TEM). The surface glycan profile of human glioblastoma cell line-derived EVs (50-200 nm) was dominated by α-2,3- and α-2,6 linked sialic acid-capped complex N-glycans and bi-antennary N-glycans. Since sialic acids can trigger immune inhibitory sialic acid-binding Ig-like lectin (Siglec) receptors, we screened for Siglec ligands on the EVs. Glioblastoma EVs showed significant binding to Siglec-9, which is highly expressed on DCs. Surprisingly, however, glioblastoma EVs lack glycans that could bind Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN, CD209), a receptor that mediates uptake and induction of CD4+ and CD8+ T cell activation. Therefore, we explored whether modification of the EV glycan surface could reduce immune inhibitory Siglec binding, while enhancing EV internalization by DCs in a DC-SIGN dependent manner. Desialylation with a pan-sialic acid hydrolase led to reduction of sialic acid expression on EVs. Moreover, insertion of a high-affinity ligand (LewisY) for DC-SIGN resulted in a four-fold increase of uptake by monocyte-derived DCs. In conclusion, we show that the glycocalyx composition of EVs is a key factor of efficient DC targeting and that modification of the EV glycocalyx potentiates EVs as anti-cancer vaccine.
Collapse
Affiliation(s)
- Sophie A. Dusoswa
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sophie K. Horrevorts
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martino Ambrosini
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nanne J. Paauw
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, and Vesicle Observation Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel D. Pegtel
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tom Würdinger
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Yvette Van Kooyk
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Juan J. Garcia-Vallejo
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Blanas A, Cornelissen LAM, Kotsias M, van der Horst JC, van de Vrugt HJ, Kalay H, Spencer DIR, Kozak RP, van Vliet SJ. Transcriptional activation of fucosyltransferase (FUT) genes using the CRISPR-dCas9-VPR technology reveals potent N-glycome alterations in colorectal cancer cells. Glycobiology 2019; 29:137-150. [PMID: 30476078 PMCID: PMC6330019 DOI: 10.1093/glycob/cwy096] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Aberrant fucosylation in cancer cells is considered as a signature of malignant cell transformation and it is associated with tumor progression, metastasis and resistance to chemotherapy. Specifically, in colorectal cancer cells, increased levels of the fucosylated Lewisx antigen are attributed to the deregulated expression of pertinent fucosyltransferases, like fucosyltransferase 4 (FUT4) and fucosyltransferase 9 (FUT9). However, the lack of experimental models closely mimicking cancer-specific regulation of fucosyltransferase gene expression has, so far, limited our knowledge regarding the substrate specificity of these enzymes and the impact of Lewisx synthesis on the glycome of colorectal cancer cells. Therefore, we sought to transcriptionally activate the Fut4 and Fut9 genes in the well-known murine colorectal cancer cell line, MC38, which lacks expression of the FUT4 and FUT9 enzymes. For this purpose, we utilized a physiologically relevant, guide RNA-based model of de novo gene expression, namely the CRISPR-dCas9-VPR system. Induction of the Fut4 and Fut9 genes in MC38 cells using CRISPR-dCas9-VPR resulted in specific neo-expression of functional Lewisx antigen on the cell surface. Interestingly, Lewisx was mainly carried by N-linked glycans in both MC38-FUT4 and MC38-FUT9 cells, despite pronounced differences in the biosynthetic properties and the expression stability of the induced enzymes. Moreover, Lewisx expression was found to influence core-fucosylation, sialylation, antennarity and the subtypes of N-glycans in the MC38-glycovariants. In conclusion, exploiting the CRISPR-dCas9-VPR system to augment glycosyltransferase expression is a promising method of transcriptional gene activation with broad application possibilities in glycobiology and oncology research.
Collapse
Affiliation(s)
- Athanasios Blanas
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, HZ Amsterdam, the Netherlands
| | - Lenneke A M Cornelissen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, HZ Amsterdam, the Netherlands
| | | | - Joost C van der Horst
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, HZ Amsterdam, the Netherlands
| | - Henri J van de Vrugt
- Amsterdam UMC, Vrije Universiteit Amsterdam, Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, HV Amsterdam, the Netherlands
| | - Hakan Kalay
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, HZ Amsterdam, the Netherlands
| | | | - Rad P Kozak
- Ludger Ltd, Culham Science Centre, Abingdon, United Kingdom
| | - Sandra J van Vliet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, HZ Amsterdam, the Netherlands
| |
Collapse
|
45
|
Use of Dendritic Cell Receptors as Targets for Enhancing Anti-Cancer Immune Responses. Cancers (Basel) 2019; 11:cancers11030418. [PMID: 30909630 PMCID: PMC6469018 DOI: 10.3390/cancers11030418] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
A successful anti-cancer vaccine construct depends on its ability to induce humoral and cellular immunity against a specific antigen. Targeting receptors of dendritic cells to promote the loading of cancer antigen through an antibody-mediated antigen uptake mechanism is a promising strategy in cancer immunotherapy. Researchers have been targeting different dendritic cell receptors such as Fc receptors (FcR), various C-type lectin-like receptors such as dendritic and thymic epithelial cell-205 (DEC-205), dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), and Dectin-1 to enhance the uptake process and subsequent presentation of antigen to T cells through major histocompatibility complex (MHC) molecules. In this review, we compare different subtypes of dendritic cells, current knowledge on some important receptors of dendritic cells, and recent articles on targeting those receptors for anti-cancer immune responses in mouse models.
Collapse
|
46
|
Figliuolo da Paz VR, Figueiredo-Vanzan D, dos Santos Pyrrho A. Interaction and involvement of cellular adhesion molecules in the pathogenesis of Schistosomiasis mansoni. Immunol Lett 2019; 206:11-18. [DOI: 10.1016/j.imlet.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022]
|
47
|
Niu J, Hu X, Ouyang W, Chen Y, Liu S, Han J, Liu L. Femtomolar Detection of Lipopolysaccharide in Injectables and Serum Samples Using Aptamer-Coupled Reduced Graphene Oxide in a Continuous Injection-Electrostacking Biochip. Anal Chem 2019; 91:2360-2367. [PMID: 30576605 DOI: 10.1021/acs.analchem.8b05106] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A method for microfluidic sample preconcentration to detect femtomolar level of lipopolysaccharide (LPS) is introduced, enabled by 6-carboxyfluorescein (6-FAM) labeled aptamer-LPS binding along with reduced graphene oxide (rGO). The free FAM-aptamers can be adsorbed onto the surface of rGO, resulting in fluorescence quenching of background signals. Conversely, the aptamer-LPS complex cannot be adsorbed by rGO, so the fluorescence is maintained and detected. When an electric field is applied across the microchannel with Nafion membrane in the chip, only the fluorescence of aptamer-LPS complex can be detected and stacked by continuous injection-electrostacking (CI-ES). The method shows a high selectivity (in the presence of pyrophosphate, FAD+, NAD+, AMP, ADP, ATP, phosphatidylcholine, LTA, and β-d-glucans which respond positively to LAL) to LPS and an extreme sensitivity with the limit of detection (LOD) at 7.9 fM (7.9 × 10-4 EU/mL) and 8.3 fM (8.3 × 10-4 EU/mL) for water sample and serum sample, respectively. As a practical application, this method can detect LPS in injections and serum samples of human and sepsis model mouse and quickly distinguish Gram-negative bacteria Escherichia coli ( E. coli) from Gram-positive bacteria Staphylococcus aureus ( S. aureus) and fungus Candida albicans ( C. albicans). More importantly, by changing the aptamers based on different targets, we can detect different analytes. Therefore, aptamer-coupled rGO in a CI-ES biochip is a universal, sensitive, and specific method. For TOC only.
Collapse
Affiliation(s)
- Junxin Niu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital , Southern Medical University , Guangzhou 510515 , China
| | - Wei Ouyang
- Department of Electrical Engineering and Computer Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Yue Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.,Department of Biological Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Lihong Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| |
Collapse
|
48
|
Hobernik D, Bros M. DNA Vaccines-How Far From Clinical Use? Int J Mol Sci 2018; 19:ijms19113605. [PMID: 30445702 PMCID: PMC6274812 DOI: 10.3390/ijms19113605] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Two decades ago successful transfection of antigen presenting cells (APC) in vivo was demonstrated which resulted in the induction of primary adaptive immune responses. Due to the good biocompatibility of plasmid DNA, their cost-efficient production and long shelf life, many researchers aimed to develop DNA vaccine-based immunotherapeutic strategies for treatment of infections and cancer, but also autoimmune diseases and allergies. This review aims to summarize our current knowledge on the course of action of DNA vaccines, and which factors are responsible for the poor immunogenicity in human so far. Important optimization steps that improve DNA transfection efficiency comprise the introduction of DNA-complexing nano-carriers aimed to prevent extracellular DNA degradation, enabling APC targeting, and enhanced endo/lysosomal escape of DNA. Attachment of virus-derived nuclear localization sequences facilitates nuclear entry of DNA. Improvements in DNA vaccine design include the use of APC-specific promotors for transcriptional targeting, the arrangement of multiple antigen sequences, the co-delivery of molecular adjuvants to prevent tolerance induction, and strategies to circumvent potential inhibitory effects of the vector backbone. Successful clinical use of DNA vaccines may require combined employment of all of these parameters, and combination treatment with additional drugs.
Collapse
Affiliation(s)
- Dominika Hobernik
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany.
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
49
|
Ferrandis Vila M, Trudeau MP, Hung YT, Zeng Z, Urriola PE, Shurson GC, Saqui-Salces M. Dietary fiber sources and non-starch polysaccharide-degrading enzymes modify mucin expression and the immune profile of the swine ileum. PLoS One 2018; 13:e0207196. [PMID: 30408134 PMCID: PMC6224153 DOI: 10.1371/journal.pone.0207196] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/27/2018] [Indexed: 12/15/2022] Open
Abstract
Due to their complex chemical and physical properties, the effects and mechanisms of action of natural sources of dietary fiber on the intestine are unclear. Pigs are commonly fed high-fiber diets to reduce production costs and non-starch polysaccharide (NSP)-degrading enzymes have been used to increase fiber digestibility. We evaluated the expression of mucin 2 (MUC2), presence of goblet cells, and ileal immune profile of pigs housed individually for 28 days and fed either a low fiber diet based on corn-soybean meal (CSB, n = 9), or two high fiber diets formulated adding 40% corn distillers' dried grains with solubles (DDGS, n = 9) or 30% wheat middlings (WM, n = 9) to CSB-based diet. Pigs were also fed those diets supplemented with a NSP enzymes mix (E) of xylanase, β-glucanase, mannanase, and galactosidase (n = 8, 10, and 9 for CSB+E, DDGS+E and WM+E, respectively). Feeding DDGS and WM diets increased ileal MUC2 expression compared with CSB diet, and this effect was reversed by the addition of enzymes. There were no differences in abundance of goblet cells among treatments. In general, enzyme supplementation increased gene expression and concentrations of IL-1β, and reduced the concentrations of IL-4, IL-17A and IL-11. The effects of diet-induced cytokines on modulating intestinal MUC2 were assessed in vitro by treating mouse and swine enteroids with 1 ng/ml of IL-4 and IL-1β. In accordance with previous studies, treatment with Il-4 induced Muc2 and expansion of goblet cells in mouse enteroids. However, swine enteroids did not change MUC2 expression or number of goblet cells when treated with IL-4 or IL-1β. Our results suggest that mucin and immune profile are regulated by diet in the swine intestine, but by mechanisms different to mouse, emphasizing the need for using appropriate models to study responses to dietary fiber in swine.
Collapse
Affiliation(s)
- Marta Ferrandis Vila
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Michaela P. Trudeau
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Yuan-Tai Hung
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Zhikai Zeng
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Pedro E. Urriola
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America
- Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Gerald C. Shurson
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Milena Saqui-Salces
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
50
|
Medve L, Achilli S, Serna S, Zuccotto F, Varga N, Thépaut M, Civera M, Vivès C, Fieschi F, Reichardt N, Bernardi A. On-Chip Screening of a Glycomimetic Library with C-Type Lectins Reveals Structural Features Responsible for Preferential Binding of Dectin-2 over DC-SIGN/R and Langerin. Chemistry 2018; 24:14448-14460. [PMID: 29975429 PMCID: PMC6220942 DOI: 10.1002/chem.201802577] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/03/2018] [Indexed: 12/11/2022]
Abstract
A library of mannose‐ and fucose‐based glycomimetics was synthesized and screened in a microarray format against a set of C‐type lectin receptors (CLRs) that included DC‐SIGN, DC‐SIGNR, langerin, and dectin‐2. Glycomimetic ligands able to interact with dectin‐2 were identified for the first time. Comparative analysis of binding profiles allowed their selectivity against other CLRs to be probed.
Collapse
Affiliation(s)
- Laura Medve
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Silvia Achilli
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Sonia Serna
- Glycotechnology laboratory, CIC biomaGUNE, Paseo Miramón 182, 20014, Donostia-San Sebastián, Spain
| | | | - Norbert Varga
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Michel Thépaut
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Monica Civera
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Corinne Vivès
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Niels Reichardt
- Glycotechnology laboratory, CIC biomaGUNE, Paseo Miramón 182, 20014, Donostia-San Sebastián, Spain.,CIBER-BBN, 20014, Donostia-San Sebastián, Spain
| | - Anna Bernardi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| |
Collapse
|