1
|
Cody JW, Ellis-Connell AL, O’Connor SL, Pienaar E. Mathematical modeling indicates that regulatory inhibition of CD8+ T cell cytotoxicity can limit efficacy of IL-15 immunotherapy in cases of high pre-treatment SIV viral load. PLoS Comput Biol 2023; 19:e1011425. [PMID: 37616311 PMCID: PMC10482305 DOI: 10.1371/journal.pcbi.1011425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/06/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Immunotherapeutic cytokines can activate immune cells against cancers and chronic infections. N-803 is an IL-15 superagonist that expands CD8+ T cells and increases their cytotoxicity. N-803 also temporarily reduced viral load in a limited subset of non-human primates infected with simian immunodeficiency virus (SIV), a model of HIV. However, viral suppression has not been observed in all SIV cohorts and may depend on pre-treatment viral load and the corresponding effects on CD8+ T cells. Starting from an existing mechanistic mathematical model of N-803 immunotherapy of SIV, we develop a model that includes activation of SIV-specific and non-SIV-specific CD8+ T cells by antigen, inflammation, and N-803. Also included is a regulatory counter-response that inhibits CD8+ T cell proliferation and function, representing the effects of immune checkpoint molecules and immunosuppressive cells. We simultaneously calibrate the model to two separate SIV cohorts. The first cohort had low viral loads prior to treatment (≈3-4 log viral RNA copy equivalents (CEQ)/mL), and N-803 treatment transiently suppressed viral load. The second had higher pre-treatment viral loads (≈5-7 log CEQ/mL) and saw no consistent virus suppression with N-803. The mathematical model can replicate the viral and CD8+ T cell dynamics of both cohorts based on different pre-treatment viral loads and different levels of regulatory inhibition of CD8+ T cells due to those viral loads (i.e. initial conditions of model). Our predictions are validated by additional data from these and other SIV cohorts. While both cohorts had high numbers of activated SIV-specific CD8+ T cells in simulations, viral suppression was precluded in the high viral load cohort due to elevated inhibition of cytotoxicity. Thus, we mathematically demonstrate how the pre-treatment viral load can influence immunotherapeutic efficacy, highlighting the in vivo conditions and combination therapies that could maximize efficacy and improve treatment outcomes.
Collapse
Affiliation(s)
- Jonathan W. Cody
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Amy L. Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
2
|
Khalili P, Vatankhah R. Studying the importance of regulatory T cells in chemoimmunotherapy mathematical modeling and proposing new approaches for developing a mathematical dynamic of cancer. J Theor Biol 2023; 563:111437. [PMID: 36804841 DOI: 10.1016/j.jtbi.2023.111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Studying the mathematical dynamics of cancer has gained the attention of bioengineers in the past three decades. Different kinds of modelling considering various aspects of treatment have been proposed. In this paper, the key role of Regulatory T cells is discussed and a model in ordinary differential equation (ODE) form is proposed by adding this state to the system dynamics considering chemoimmunotherapy treatment. Regulatory T cells are considered as one of the main tumor cells' tactics to deceive the body's immune system. The improved model is verified mathematically and biologically and fits all criteria in both fields. The results show that entering Regulatory T cells state on cancer mathematical modelling for simulating body cells for chemoimmunotherapy provides a way to identify critical cases more carefully, which a simplified model is unable to accomplish. This point emphasizes the fact that this state must be present in cancer modelling to anticipate immune response more accurately. The advanced system fixed points are obtained by the Newton method and bifurcation diagrams are derived and discussed. New features and remarks are proposed during the journey of developing more accurate models that have the best fit with laboratory data. The sensitivity chart of the model is illustrated and novel aspects of discussions are made with the aim of personalizing a model for a patient and identifying critical conditions based on the chart before any treatment begins. This point enables physicians to determine whether critical conditions have occurred for a patient in a specific treatment or not.
Collapse
Affiliation(s)
- Pariya Khalili
- School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Ramin Vatankhah
- School of Mechanical Engineering, Shiraz University, Shiraz, Iran.
| |
Collapse
|
3
|
DARANDIS N, NAZARI M. A NEW MATHEMATICAL MODELING AND SUB-OPTIMAL CHEMOTHERAPY OF CANCER. J BIOL SYST 2021. [DOI: 10.1142/s0218339021500133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development of more accurate cancer mathematical models leads to present more realistic treatment protocols, especially in model-based treatment protocol design. Hence, a cancer mathematical model is presented by considering tumor cells, immune cells, interleukins, macrophages polarization, and chemotherapy based on biological concepts. Both local and global sensitivity analyses are done to examine the effect of changing the parameters on the final tumor population. Then, the tumor-free equilibrium points of the system are derived, and their stabilities are studied. The main target of chemotherapy is to eliminate the tumor while limiting drug toxicity. The SDRE method is used to construct a sub-optimal control strategy by using the developed nonlinear cancer model. For simulation, three patients are considered: a young patient, an old patient, and a pregnant patient. These cases have different immune system strengths. Also, three initial tumor sizes are regarded for each case. So, different treatment strategies are suggested. Eradication of tumor cells in a finite duration with a desired amount of chemo-drug is shown in the simulation results. The results confirmed that the immune system’s ability plays an important role in treatment success. It is shown that there are different treatment protocols for different patients, and the SDRE method is more flexible and effective than the others.
Collapse
Affiliation(s)
- N. DARANDIS
- Faculty of Mechanical and Mechatronics Engineering, Shahrood, University of Technology, P. O. Box: 3619995161, Shahrood, Iran
| | - M. NAZARI
- Faculty of Mechanical and Mechatronics Engineering, Shahrood, University of Technology, P. O. Box: 3619995161, Shahrood, Iran
| |
Collapse
|
4
|
Cody JW, Ellis-Connell AL, O’Connor SL, Pienaar E. Mathematical modeling of N-803 treatment in SIV-infected non-human primates. PLoS Comput Biol 2021; 17:e1009204. [PMID: 34319980 PMCID: PMC8351941 DOI: 10.1371/journal.pcbi.1009204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 08/09/2021] [Accepted: 06/21/2021] [Indexed: 12/01/2022] Open
Abstract
Immunomodulatory drugs could contribute to a functional cure for Human Immunodeficiency Virus (HIV). Interleukin-15 (IL-15) promotes expansion and activation of CD8+ T cell and natural killer (NK) cell populations. In one study, an IL-15 superagonist, N-803, suppressed Simian Immunodeficiency Virus (SIV) in non-human primates (NHPs) who had received prior SIV vaccination. However, viral suppression attenuated with continued N-803 treatment, partially returning after long treatment interruption. While there is evidence of concurrent drug tolerance, immune regulation, and viral escape, the relative contributions of these mechanisms to the observed viral dynamics have not been quantified. Here, we utilize mathematical models of N-803 treatment in SIV-infected macaques to estimate contributions of these three key mechanisms to treatment outcomes: 1) drug tolerance, 2) immune regulation, and 3) viral escape. We calibrated our model to viral and lymphocyte responses from the above-mentioned NHP study. Our models track CD8+ T cell and NK cell populations with N-803-dependent proliferation and activation, as well as viral dynamics in response to these immune cell populations. We compared mathematical models with different combinations of the three key mechanisms based on Akaike Information Criterion and important qualitative features of the NHP data. Two minimal models were capable of reproducing the observed SIV response to N-803. In both models, immune regulation strongly reduced cytotoxic cell activation to enable viral rebound. Either long-term drug tolerance or viral escape (or some combination thereof) could account for changes to viral dynamics across long breaks in N-803 treatment. Theoretical explorations with the models showed that less-frequent N-803 dosing and concurrent immune regulation blockade (e.g. PD-L1 inhibition) may improve N-803 efficacy. However, N-803 may need to be combined with other immune therapies to countermand viral escape from the CD8+ T cell response. Our mechanistic model will inform such therapy design and guide future studies. Immune therapy may be a critical component in the functional cure for Human Immunodeficiency Virus (HIV). N-803 is an immunotherapeutic drug that activates antigen-specific CD8+ T cells of the immune system. These CD8+ T cells eliminate HIV-infected cells in order to limit the spread of infection in the body. In one study, N-803 reduced plasma viremia in macaques that were infected with Simian Immunodeficiency Virus, an analog of HIV. Here, we used mathematical models to analyze the data from this study to better understand the effects of N-803 therapy on the immune system. Our models indicated that inhibitory signals may be reversing the stimulatory effect of N-803. Results also suggested the possibilities that tolerance to N-803 could build up within the CD8+ T cells themselves and that the treatment may be selecting for virus strains that are not targeted by CD8+ T cells. Our models predict that N-803 therapy may be made more effective if the time between doses is increased or if inhibitory signals are blocked by an additional drug. Also, N-803 may need to be combined with other immune therapies to target virus that would otherwise evade CD8+ T cells.
Collapse
Affiliation(s)
- Jonathan W. Cody
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Amy L. Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
5
|
Tu HF, Ko CJ, Lee CT, Lee CF, Lan SW, Lin HH, Lin HY, Ku CC, Lee DY, Chen IC, Chuang YH, Del Caño-Ochoa F, Ramón-Maiques S, Ho CC, Lee MS, Chang GD. Afatinib Exerts Immunomodulatory Effects by Targeting the Pyrimidine Biosynthesis Enzyme CAD. Cancer Res 2021; 81:3270-3282. [PMID: 33771897 DOI: 10.1158/0008-5472.can-20-3436] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/24/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022]
Abstract
Current clinical trials of combined EGFR-tyrosine kinase inhibitors (TKI) and immune checkpoint blockade (ICB) therapies show no additional effect. This raises questions regarding whether EGFR-TKIs attenuate ICB-enhanced CD8+ T lymphocyte function. Here we show that the EGFR-TKI afatinib suppresses CD8+ T lymphocyte proliferation, and we identify CAD, a key enzyme of de novo pyrimidine biosynthesis, to be a novel afatinib target. Afatinib reduced tumor-infiltrating lymphocyte numbers in Lewis lung carcinoma (LLC)-bearing mice. Early afatinib treatment inhibited CD8+ T lymphocyte proliferation in patients with non-small cell lung cancer, but their proliferation unexpectedly rebounded following long-term treatment. This suggests a transient immunomodulatory effect of afatinib on CD8+ T lymphocytes. Sequential treatment of afatinib with anti-PD1 immunotherapy substantially enhanced therapeutic efficacy in MC38 and LLC-bearing mice, while simultaneous combination therapy showed only marginal improvement over each single treatment. These results suggest that afatinib can suppress CD8+ T lymphocyte proliferation by targeting CAD, proposing a timing window for combined therapy that may prevent the dampening of ICB efficacy by EGFR-TKIs. SIGNIFICANCE: This study elucidates a mechanism of afatinib-mediated immunosuppression and provides new insights into treatment timing for combined targeted therapy and immunotherapy. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3270/F1.large.jpg.
Collapse
Affiliation(s)
- Hsin-Fang Tu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Jung Ko
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ching-Tai Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Fan Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shao-Wei Lan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Hsien Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Ying Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Chi Ku
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Der-Yen Lee
- Graduate Institute of Integrated Medicine/Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - I-Chun Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Hui Chuang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Francisco Del Caño-Ochoa
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain.,Group 739, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-Instituto de Salud Carlos III, Valencia, Spain
| | - Santiago Ramón-Maiques
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain.,Group 739, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-Instituto de Salud Carlos III, Valencia, Spain
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ming-Shyue Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Geen-Dong Chang
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Yan L, Wang S. Shaping Polyclonal Responses via Antigen-Mediated Antibody Interference. iScience 2020; 23:101568. [PMID: 33083735 PMCID: PMC7530306 DOI: 10.1016/j.isci.2020.101568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 12/05/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) recognize conserved features of rapidly mutating pathogens and confer universal protection, but they emerge rarely in natural infection. Increasing evidence indicates that seemingly passive antibodies may interfere with natural selection of B cells. Yet, how such interference modulates polyclonal responses is unknown. Here we provide a framework for understanding the role of antibody interference—mediated by multi-epitope antigens—in shaping B cell clonal makeup and the fate of bnAb lineages. We find that, under heterogeneous interference, clones with different intrinsic fitness can collectively persist. Furthermore, antagonism among fit clones (specific for variable epitopes) promotes expansion of unfit clones (targeting conserved epitopes), at the cost of repertoire potency. This trade-off, however, can be alleviated by synergy toward the unfit. Our results provide a physical basis for antigen-mediated clonal interactions, stress system-level impacts of molecular synergy and antagonism, and offer principles to amplify naturally rare clones. Multi-epitope antigens mediate antibody interference that couples B cell lineages Trade-off exists between repertoire potency and persistence of broad lineages Antigen-mediated synergy toward intrinsically unfit clones alleviates the trade-off Amplifying rare clones by leveraging molecular interference structure
Collapse
Affiliation(s)
- Le Yan
- Chan Zuckerberg Biohub, 499 Illinois Street, San Francisco, CA 94158, USA
| | - Shenshen Wang
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Staats Pires A, Heng B, Tan VX, Latini A, Russo MA, Santarelli DM, Bailey D, Wynne K, O’Brien JA, Guillemin GJ, Austin PJ. Kynurenine, Tetrahydrobiopterin, and Cytokine Inflammatory Biomarkers in Individuals Affected by Diabetic Neuropathic Pain. Front Neurosci 2020; 14:890. [PMID: 32973438 PMCID: PMC7472959 DOI: 10.3389/fnins.2020.00890] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain is a common complication of diabetes with high morbidity and poor treatment outcomes. Accumulating evidence suggests the immune system is involved in the development of diabetic neuropathy, whilst neuro-immune interactions involving the kynurenine (KYN) and tetrahydrobiopterin (BH4) pathways have been linked to neuropathic pain pre-clinically and in several chronic pain conditions. Here, using a multiplex assay, we quantified serum levels of 14 cytokines in 21 participants with type 1 diabetes mellitus, 13 of which were classified as having neuropathic pain. In addition, using high performance liquid chromatography and gas chromatography-mass spectrometry, all major KYN and BH4 pathway metabolites were quantified in serum from the same cohort. Our results show increases in GM-CSF and IL-8, suggesting immune cell involvement. We demonstrated increases in two inflammatory biomarkers: neopterin and the KYN/TRP ratio, a marker of indoleamine 2,3-dioxygenase activity. Moreover, the KYN/TRP ratio positively correlated with pain intensity. Total kynurenine aminotransferase activity was also higher in the diabetic neuropathic pain group, indicating there may be increased production of the KYN metabolite, xanthurenic acid. Overall, this study supports the idea that inflammatory activation of the KYN and BH4 pathways occurs due to elevated inflammatory cytokines, which might be involved in the pathogenesis of neuropathic pain in type 1 diabetes mellitus. Further studies should be carried out to investigate the role of KYN and BH4 pathways, which could strengthen the case for therapeutically targeting them in neuropathic pain conditions.
Collapse
Affiliation(s)
- Ananda Staats Pires
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Benjamin Heng
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vanessa X. Tan
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Marc A. Russo
- Hunter Pain Clinic, Broadmeadow, NSW, Australia
- Genesis Research Services, Broadmeadow, NSW, Australia
| | | | | | - Katie Wynne
- Department of Diabetes and Endocrinology, John Hunter Hospital, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Jayden A. O’Brien
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Gilles J. Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Paul J. Austin
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Costa Del Amo P, Debebe B, Razavi-Mohseni M, Nakaoka S, Worth A, Wallace D, Beverley P, Macallan D, Asquith B. The Rules of Human T Cell Fate in vivo. Front Immunol 2020; 11:573. [PMID: 32322253 PMCID: PMC7156550 DOI: 10.3389/fimmu.2020.00573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/12/2020] [Indexed: 12/05/2022] Open
Abstract
The processes governing lymphocyte fate (division, differentiation, and death), are typically assumed to be independent of cell age. This assumption has been challenged by a series of elegant studies which clearly show that, for murine cells in vitro, lymphocyte fate is age-dependent and that younger cells (i.e., cells which have recently divided) are less likely to divide or die. Here we investigate whether the same rules determine human T cell fate in vivo. We combined data from in vivo stable isotope labeling in healthy humans with stochastic, agent-based mathematical modeling. We show firstly that the choice of model paradigm has a large impact on parameter estimates obtained using stable isotope labeling i.e., different models fitted to the same data can yield very different estimates of T cell lifespan. Secondly, we found no evidence in humans in vivo to support the model in which younger T cells are less likely to divide or die. This age-dependent model never provided the best description of isotope labeling; this was true for naïve and memory, CD4+ and CD8+ T cells. Furthermore, this age-dependent model also failed to predict an independent data set in which the link between division and death was explored using Annexin V and deuterated glucose. In contrast, the age-independent model provided the best description of both naïve and memory T cell dynamics and was also able to predict the independent dataset.
Collapse
Affiliation(s)
- Pedro Costa Del Amo
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Bisrat Debebe
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Milad Razavi-Mohseni
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Shinji Nakaoka
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Andrew Worth
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Diana Wallace
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Peter Beverley
- TB Research Centre, National Heart and Lung Research Institute, Imperial College London, London, United Kingdom
| | - Derek Macallan
- Institute for Infection and Immunity, St. George's Hospital, University of London, London, United Kingdom
| | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Braganza A, Annarapu GK, Shiva S. Blood-based bioenergetics: An emerging translational and clinical tool. Mol Aspects Med 2020; 71:100835. [PMID: 31864667 PMCID: PMC7031032 DOI: 10.1016/j.mam.2019.100835] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022]
Abstract
Accumulating studies demonstrate that mitochondrial genetics and function are central to determining the susceptibility to, and prognosis of numerous diseases across all organ systems. Despite this recognition, mitochondrial function remains poorly characterized in humans primarily due to the invasiveness of obtaining viable tissue for mitochondrial studies. Recent studies have begun to test the hypothesis that circulating blood cells, which can be obtained by minimally invasive methodology, can be utilized as a biomarker of systemic bioenergetic function in human populations. Here we present the available methodologies for assessing blood cell bioenergetics and review studies that have applied these techniques to healthy and disease populations. We focus on the validation of this methodology in healthy subjects, as well as studies testing whether blood cell bioenergetics are altered in disease, correlate with clinical parameters, and compare with other methodology for assessing human mitochondrial function. Finally, we present the challenges and goals for the development of this emerging approach into a tool for translational research and personalized medicine.
Collapse
Affiliation(s)
- Andrea Braganza
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Gowtham K Annarapu
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Sruti Shiva
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Department of Pharmacology & Chemical Biology, Pittsburgh, PA, USA; Center for Metabolism and Mitochondrial Medicine (C3M), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Effects of Regulatory T Cell Depletion on NK Cell Responses against Listeria monocytogenes in Feline Immunodeficiency Virus Infected Cats. Viruses 2019; 11:v11110984. [PMID: 31653122 PMCID: PMC6893779 DOI: 10.3390/v11110984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 01/19/2023] Open
Abstract
Regulatory T cells (Treg) are key players in the maintenance of peripheral tolerance, preventing autoimmune diseases and restraining chronic inflammatory diseases. Evidence suggests Treg cells and NK cells have important roles in feline immunodeficiency virus (FIV) pathogenesis; however, in vivo studies investigating the interplay between these two cell populations are lacking. We previously described innate immune defects in FIV-infected cats characterized by cytokine deficits and impaired natural killer cell (NK) and NK T cell (NKT) functions. In this study, we investigated whether in vivo Treg depletion by treatment with an anti-feline CD25 monoclonal antibody would improve the innate immune response against subcutaneous challenge with Listeria monocytogenes (Lm). Treg depletion resulted in an increased overall number of cells in Lm-draining lymph nodes and increased proliferation of NK and NKT cells in FIV-infected cats. Treg depletion did not normalize expression of perforin or granzyme A by NK and NKT cells, nor did Treg depletion result in improved clearance of Lm. Thus, despite the quantitative improvements in the NK and NKT cell responses to Lm, there was no functional improvement in the early control of Lm. CD1a+ dendritic cell percentages in the lymph nodes of FIV-infected cats were lower than in specific-pathogen-free control cats and failed to upregulate CD80 even when Treg were depleted. Taken together, Treg depletion failed to improve the innate immune response of FIV-infected cats against Lm and this may be due to dendritic cell dysfunction.
Collapse
|
11
|
Bozzano F, Perrone C, Moretta L, De Maria A. NK Cell Precursors in Human Bone Marrow in Health and Inflammation. Front Immunol 2019; 10:2045. [PMID: 31555276 PMCID: PMC6724745 DOI: 10.3389/fimmu.2019.02045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
NK cells are generated from hematopoietic stem cells (HSC) residing in the bone marrow (BM), similar to other blood cells. Development toward mature NK cells occurs largely outside the BM through travel of CD34+ and other progenitor intermediates toward secondary lymphoid organs. The BM harbors multipotent CD34+ common lymphoid progenitors (CLPs) that generate T, B, NK, and Dendritic Cells and are devoid of erythroid, myeloid, and megakaryocytic potential. Over recent years, there has been a quest for single-lineage progenitors predominantly with the objective of manipulation and intervention in mind, which has led to the identification of unipotent NK cell progenitors devoid of other lymphoid lineage potential. Research efforts for the study of lymphopoiesis have almost exclusively concentrated on healthy donor tissues and on repopulation/transplant models. This has led to the widely accepted assumption that lymphopoiesis during disease states reflects the findings of these models. However, compelling evidences in animal models show that inflammation plays a fundamental role in the regulation of HSC maturation and release in the BM niches through several mechanisms including modulation of the CXCL12-CXCR4 expression. Indeed, recent findings during systemic inflammation in patients provide evidence that a so-far overlooked CLP exists in the BM (Lin−CD34+DNAM-1brightCXCR4+) and that it overwhelmingly exits the BM during systemic inflammation. These “inflammatory” precursors have a developmental trajectory toward surprisingly functional NK and T cells as reviewed here and mirror the steady state maintenance of the NK cell pool by CD34+DNAM-1−CXCR4− precursors. Our understanding of NK cell precursor development may benefit from including a distinct “inflammatory” progenitor modeling of lymphoid precursors, allowing rapid deployment of specialized Lin−CD34+DNAM-1brightCXCR4+ -derived resources from the BM.
Collapse
Affiliation(s)
| | - Carola Perrone
- Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genoa, Italy
| | | | - Andrea De Maria
- Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genoa, Italy.,Clinica Malattie Infettive, Ospedale Policlinico S. Martino IRCCS, Genoa, Italy.,Dipartimento di Scienze Dell Salute, Università Degli Studi di Genova, Genoa, Italy
| |
Collapse
|
12
|
Grimm HP, Schick E, Hainzl D, Justies N, Yu L, Klein C, Husar E, Richter WF. PKPD Assessment of the Anti-CD20 Antibody Obinutuzumab in Cynomolgus Monkey is Feasible Despite Marked Anti-Drug Antibody Response in This Species. J Pharm Sci 2019; 108:3729-3736. [PMID: 31351865 DOI: 10.1016/j.xphs.2019.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022]
Abstract
The pharmacokinetics (PK) of the anti-CD20 monoclonal antibody obinutuzumab was assessed after single intravenous dosing to cynomolgus monkeys. In addition, the pharmacokinetic-pharmacodynamic (PKPD) relationship for B-cell depletion was characterized. The PKPD model was used to estimate the B-cell repopulation during the recovery phase of chronic toxicology studies, thereby supporting the study design, in particular planning the recovery phase duration. Marked immunogenicity against obinutuzumab was observed approximately 10 days after single dose, leading to an up to ∼30-fold increase in obinutuzumab clearance in the affected monkeys. Despite this accelerated clearance, the PK could be characterized, either by disregarding the clearance in noncompartmental PK analysis or by capturing it explicitly as an additional time-dependent clearance process in compartmental modeling. This latter step was crucial to model the PKPD of B-cells as an indirect response to obinutuzumab exposure, showing that-without immune response-the limiting factor is obinutuzumab elimination with concentrations below 0.02 μg/mL required for initiation of B-cell recovery. Overall, the results demonstrate that despite a marked anti-drug antibody response in the nonclinical animal species, the PK and PKPD of obinutuzumab could be characterized successfully by appropriately addressing the immune-modulated clearance pathway in data analysis and modeling.
Collapse
Affiliation(s)
- Hans Peter Grimm
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Eginhard Schick
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Dominik Hainzl
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Nicole Justies
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Li Yu
- Roche Innovation Center New York, F. Hoffmann-La Roche Ltd., New York, New York 10016
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Glycart AG, Zürich, Switzerland
| | - Elisabeth Husar
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Wolfgang F Richter
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
13
|
Fate mapping reveals the age structure of the peripheral T cell compartment. Proc Natl Acad Sci U S A 2019; 116:3974-3981. [PMID: 30765525 DOI: 10.1073/pnas.1811634116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence indicates that the immune system does not develop in a linear fashion, but rather as distinct developmental layers formed from sequential waves of hematopoietic stem cells, each giving rise to unique populations of immune cells at different stages of development. Although recent studies have indicated that conventional CD8+ T cells produced in early life persist into adulthood and exhibit distinct roles during infection, the developmental architecture of the peripheral T cell compartment remains undefined. In this study, we used a mouse model to permanently label CD8+ T cells produced during distinct windows of development and traced their history to generate fate maps of CD8+ T cells produced during different stages of life. We then used mathematical modeling to understand the age structure of the CD8+ T cell compartment across the lifespan. Interestingly, we found that survival rate of CD8+ T cells depends on both the age and developmental origin of the cells. Recently produced cells show an initial rapid decay rate, which slows with age of the animal at which the cells were produced. For cells produced at any age, the rate of decay also slows with the age of the cell. We derive a function to describe this and predict the "age distribution" of the CD8+ T cell pool for animals of any given age. These data provide a quantitative framework for understanding the ontogeny of the CD8+ T cell compartment and help to contextualize age-related changes in the CD8+ T cell response to infection.
Collapse
|
14
|
Modeling aging in HIV infection in nonhuman primates to address an emerging challenge of the post-ART era. Curr Opin Virol 2017; 25:66-75. [PMID: 28803049 DOI: 10.1016/j.coviro.2017.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 12/22/2022]
Abstract
The advent of antiretroviral therapy (ART) has dramatically improved both quality and length of life for subjects infected with human immunodeficiency virus (HIV), delaying or preventing progression to acquired immunodeficiency syndrome (AIDS). However, the virus induces aging-related changes to the immune system which confound treatment. Additionally, the normal physiologic events that occur during aging lead to deficiencies in immunity which not only exacerbate HIV pathogenesis but also trigger a variety of comorbidities. Here, the synergistic linkage between aging and HIV infection is examined in regard to the immunological and pathological mechanisms that drive both senescence and disease progression. The use of NHPs to investigate potential therapeutic strategies to control the deleterious consequences of aging with HIV infection is also reviewed.
Collapse
|
15
|
Reeves DB, Peterson CW, Kiem HP, Schiffer JT. Autologous Stem Cell Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human Immunodeficiency Virus Viremia. J Virol 2017; 91:e00095-17. [PMID: 28404854 PMCID: PMC5469274 DOI: 10.1128/jvi.00095-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient.IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the "Berlin patient" remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact of stem cell transplantation in a macaque simian/HIV (SHIV) system. Using a mechanistic mathematical model, we found that while primary infection generates an adaptive immune memory response, stem cell transplantation disrupts this learned immunity. The results have implications for HIV cure regimens based on stem cell transplantation.
Collapse
Affiliation(s)
- Daniel B Reeves
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Christopher W Peterson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Joshua T Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Hopkins AM, Moghaddami M, Foster DJR, Proudman SM, Upton RN, Wiese MD. Intracellular CD3+ T Lymphocyte Teriflunomide Concentration Is Poorly Correlated with and Has Greater Variability Than Unbound Plasma Teriflunomide Concentration. Drug Metab Dispos 2016; 45:8-16. [PMID: 27742727 DOI: 10.1124/dmd.116.071985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/13/2016] [Indexed: 01/12/2023] Open
Abstract
Leflunomide's active metabolite teriflunomide inhibits dihydro-oroate dehydrogenase, an enzyme essential to proliferation of T lymphocytes. As teriflunomide must reach the target site to have this effect, this study assessed the distribution of teriflunomide into T lymphocytes, as intracellular concentrations may be a superior response biomarker to plasma concentrations. CD3 MicroBeads (Miltenyi Biotec, Bergisch Gladbach, Germany) were used to extract CD3+ T cells from the peripheral blood of patients with rheumatoid arthritis who were taking a stable dose of leflunomide. Unbound plasma and intra-CD3+ T cell teriflunomide concentrations were quantified using liquid chromatography-mass spectrometry. Concentration (log transformed) and partition differences were assessed through paired Student t tests. Sixteen patients provided plasma steady-state teriflunomide samples, and eight provided a sample 6-12 weeks later. At time-point one, the geometric mean teriflunomide concentration (range) in CD3+ T cells was 18.12 μg/L (6.15-42.26 μg/L) compared with 69.75 μg/L (32.89-263.1 μg/L) unbound in plasma (P < 0.001). The mean partition coefficient (range) for unbound plasma teriflunomide into CD3+ T cells was 0.295 (0.092-0.632), which was significantly different from unity (P < 0.001). The median (range) change in teriflunomide concentration between the two time points was 14% (-10% to 40%) in unbound plasma and -29% (-69 to 138%) for CD3+ T cells. Because teriflunomide concentrations in CD3+ T cells were lower and displayed a higher intraindividual variability than the unbound plasma concentrations, its applicability as a therapeutic drug-monitoring marker may be limited.
Collapse
Affiliation(s)
- Ashley M Hopkins
- University of South Australia, Australian Centre for Pharmacometrics (A.M.H., D.J.R.F., R.N.U.) and Sansom Institute for Health Research (A.M.H., D.J.R.F., R.N.U., M.D.W), School of Pharmacy and Medical Sciences, Adelaide, South Australia, Australia; Arthritis Research Laboratory, Hanson Institute, SA Pathology, Adelaide, South Australia, Australia (M.M.); Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia (M.M., S.M.P.); and Rheumatology Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia (S.M.P.)
| | - Mahin Moghaddami
- University of South Australia, Australian Centre for Pharmacometrics (A.M.H., D.J.R.F., R.N.U.) and Sansom Institute for Health Research (A.M.H., D.J.R.F., R.N.U., M.D.W), School of Pharmacy and Medical Sciences, Adelaide, South Australia, Australia; Arthritis Research Laboratory, Hanson Institute, SA Pathology, Adelaide, South Australia, Australia (M.M.); Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia (M.M., S.M.P.); and Rheumatology Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia (S.M.P.)
| | - David J R Foster
- University of South Australia, Australian Centre for Pharmacometrics (A.M.H., D.J.R.F., R.N.U.) and Sansom Institute for Health Research (A.M.H., D.J.R.F., R.N.U., M.D.W), School of Pharmacy and Medical Sciences, Adelaide, South Australia, Australia; Arthritis Research Laboratory, Hanson Institute, SA Pathology, Adelaide, South Australia, Australia (M.M.); Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia (M.M., S.M.P.); and Rheumatology Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia (S.M.P.)
| | - Susanna M Proudman
- University of South Australia, Australian Centre for Pharmacometrics (A.M.H., D.J.R.F., R.N.U.) and Sansom Institute for Health Research (A.M.H., D.J.R.F., R.N.U., M.D.W), School of Pharmacy and Medical Sciences, Adelaide, South Australia, Australia; Arthritis Research Laboratory, Hanson Institute, SA Pathology, Adelaide, South Australia, Australia (M.M.); Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia (M.M., S.M.P.); and Rheumatology Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia (S.M.P.)
| | - Richard N Upton
- University of South Australia, Australian Centre for Pharmacometrics (A.M.H., D.J.R.F., R.N.U.) and Sansom Institute for Health Research (A.M.H., D.J.R.F., R.N.U., M.D.W), School of Pharmacy and Medical Sciences, Adelaide, South Australia, Australia; Arthritis Research Laboratory, Hanson Institute, SA Pathology, Adelaide, South Australia, Australia (M.M.); Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia (M.M., S.M.P.); and Rheumatology Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia (S.M.P.)
| | - Michael D Wiese
- University of South Australia, Australian Centre for Pharmacometrics (A.M.H., D.J.R.F., R.N.U.) and Sansom Institute for Health Research (A.M.H., D.J.R.F., R.N.U., M.D.W), School of Pharmacy and Medical Sciences, Adelaide, South Australia, Australia; Arthritis Research Laboratory, Hanson Institute, SA Pathology, Adelaide, South Australia, Australia (M.M.); Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia (M.M., S.M.P.); and Rheumatology Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia (S.M.P.)
| |
Collapse
|
17
|
Ortiz AM, Carnathan DG, Yu J, Sheehan KM, Kim P, Reynaldi A, Vanderford TH, Klatt NR, Brenchley JM, Davenport MP, Silvestri G. Analysis of the In Vivo Turnover of CD4+ T-Cell Subsets in Chronically SIV-Infected Sooty Mangabeys. PLoS One 2016; 11:e0156352. [PMID: 27227993 PMCID: PMC4881966 DOI: 10.1371/journal.pone.0156352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/11/2016] [Indexed: 11/24/2022] Open
Abstract
Aberrant turnover of memory CD4+ T-cells is central to Acquired Immunodeficiency Syndrome (AIDS) progression. Understanding the relationship between the turnover of CD4+ subsets and immunological homeostasis during simian immunodeficiency virus (SIV) infection in natural hosts may provide insight into mechanisms of immune regulation that may serve as models for therapeutic intervention in Human Immunodeficiency Virus (HIV)-infected persons. Sooty mangabeys (SMs) have naturally evolved with SIV to avoid AIDS progression while maintaining healthy peripheral CD4+ T-cell counts and thus represent a model by which therapeutic interventions for AIDS progression might be elucidated. To assess the relationship between the turnover of CD4+ subsets and immunological homeostasis during SIV infection in non-progressive hosts, we treated 6 SIV-uninfected and 9 SIV-infected SMs with 2’-bromo-5’-deoxyuridine (BrdU) for 14 days and longitudinally assessed CD4+ T-cell subset turnover by polychromatic flow cytometry. We observed that, in SIV-infected SMs, turnover of CD4+ T-cell naïve and central, transitional, and effector memory subsets is comparable to that in uninfected animals. Comparable turnover of CD4+ T-cell subsets irrespective of SIV-infection status likely contributes to the lack of aberrant immune activation and disease progression observed after infection in non-progressive hosts.
Collapse
Affiliation(s)
- Alexandra M. Ortiz
- Yerkes National Primate Research Center, and Emory Vaccine Center, Emory University, Atlanta, 30322, Georgia, United States of America
- Laboratory of Molecular Microbiology, National Institutes of Health, Bethesda, 20892, Maryland, United States of America
| | - Diane G. Carnathan
- Yerkes National Primate Research Center, and Emory Vaccine Center, Emory University, Atlanta, 30322, Georgia, United States of America
| | - Joana Yu
- Yerkes National Primate Research Center, and Emory Vaccine Center, Emory University, Atlanta, 30322, Georgia, United States of America
| | - Katherine M. Sheehan
- Yerkes National Primate Research Center, and Emory Vaccine Center, Emory University, Atlanta, 30322, Georgia, United States of America
| | - Peter Kim
- Complex Systems in Biology Group, Centre for Vascular Research, University of New South Wales, Sydney, 2052, Australia
| | - Arnold Reynaldi
- Complex Systems in Biology Group, Centre for Vascular Research, University of New South Wales, Sydney, 2052, Australia
| | - Thomas H. Vanderford
- Yerkes National Primate Research Center, and Emory Vaccine Center, Emory University, Atlanta, 30322, Georgia, United States of America
| | - Nichole R. Klatt
- Laboratory of Molecular Microbiology, National Institutes of Health, Bethesda, 20892, Maryland, United States of America
- Department of Pharmaceutics, University of Washington, Seattle, 98195, Washington, United States of America
| | - Jason M. Brenchley
- Laboratory of Molecular Microbiology, National Institutes of Health, Bethesda, 20892, Maryland, United States of America
| | - Miles P. Davenport
- Complex Systems in Biology Group, Centre for Vascular Research, University of New South Wales, Sydney, 2052, Australia
| | - Guido Silvestri
- Yerkes National Primate Research Center, and Emory Vaccine Center, Emory University, Atlanta, 30322, Georgia, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abstract
Mathematical and statistical methods enable multidisciplinary approaches that catalyse discovery. Together with experimental methods, they identify key hypotheses, define measurable observables and reconcile disparate results. We collect a representative sample of studies in T-cell biology that illustrate the benefits of modelling–experimental collaborations and that have proven valuable or even groundbreaking. We conclude that it is possible to find excellent examples of synergy between mathematical modelling and experiment in immunology, which have brought significant insight that would not be available without these collaborations, but that much remains to be discovered.
Collapse
Affiliation(s)
- Mario Castro
- Universidad Pontificia Comillas , E28015 Madrid , Spain
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics , University of Leeds , Leeds LS2 9JT , UK
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics , University of Leeds , Leeds LS2 9JT , UK
| | - Ruy M Ribeiro
- Los Alamos National Laboratory , Theoretical Biology and Biophysics , Los Alamos, NM 87545 , USA
| |
Collapse
|
19
|
Goyal S, Kim S, Chen ISY, Chou T. Mechanisms of blood homeostasis: lineage tracking and a neutral model of cell populations in rhesus macaques. BMC Biol 2015; 13:85. [PMID: 26486451 PMCID: PMC4615871 DOI: 10.1186/s12915-015-0191-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/12/2015] [Indexed: 12/19/2022] Open
Abstract
Background How a potentially diverse population of hematopoietic stem cells (HSCs) differentiates and proliferates to supply more than 1011 mature blood cells every day in humans remains a key biological question. We investigated this process by quantitatively analyzing the clonal structure of peripheral blood that is generated by a population of transplanted lentivirus-marked HSCs in myeloablated rhesus macaques. Each transplanted HSC generates a clonal lineage of cells in the peripheral blood that is then detected and quantified through deep sequencing of the viral vector integration sites (VIS) common within each lineage. This approach allowed us to observe, over a period of 4-12 years, hundreds of distinct clonal lineages. Results While the distinct clone sizes varied by three orders of magnitude, we found that collectively, they form a steady-state clone size-distribution with a distinctive shape. Steady-state solutions of our model show that the predicted clone size-distribution is sensitive to only two combinations of parameters. By fitting the measured clone size-distributions to our mechanistic model, we estimate both the effective HSC differentiation rate and the number of active HSCs. Conclusions Our concise mathematical model shows how slow HSC differentiation followed by fast progenitor growth can be responsible for the observed broad clone size-distribution. Although all cells are assumed to be statistically identical, analogous to a neutral theory for the different clone lineages, our mathematical approach captures the intrinsic variability in the times to HSC differentiation after transplantation. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0191-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sidhartha Goyal
- Department of Physics, University of Toronto, St George Campus, Toronto, Canada
| | - Sanggu Kim
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, USA
| | - Irvin S Y Chen
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, USA.,UCLA AIDS Institute and Department of Medicine, UCLA, Los Angeles, USA
| | - Tom Chou
- Departments of Biomathematics and Mathematics, UCLA, Los Angeles, USA.
| |
Collapse
|
20
|
Critical Role for the Adenosine Pathway in Controlling Simian Immunodeficiency Virus-Related Immune Activation and Inflammation in Gut Mucosal Tissues. J Virol 2015; 89:9616-30. [PMID: 26178986 DOI: 10.1128/jvi.01196-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/06/2015] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED The role of the adenosine (ADO) pathway in human immunodeficiency virus type 1/simian immunodeficiency virus (HIV-1/SIV) infection remains unclear. We compared SIVsab-induced changes of markers related to ADO production (CD39 and CD73) and breakdown (CD26 and adenosine deaminase) on T cells from blood, lymph nodes, and intestine collected from pigtailed macaques (PTMs) and African green monkeys (AGMs) that experience different SIVsab infection outcomes. We also measured ADO and inosine (INO) levels in tissues by mass spectrometry. Finally, we assessed the suppressive effect of ADO on proinflammatory cytokine production after T cell receptor stimulation. The baseline level of both CD39 and CD73 coexpression on regulatory T cells and ADO levels were higher in AGMs than in PTMs. Conversely, high INO levels associated with dramatic increases in CD26 expression and adenosine deaminase activity were observed in PTMs during chronic SIV infection. Immune activation and inflammation markers in the gut and periphery inversely correlated with ADO and directly correlated with INO. Ex vivo administration of ADO significantly suppressed proinflammatory cytokine production by T cells in both species. In conclusion, the opposite dynamics of ADO pathway-related markers and contrasting ADO/INO levels in species with divergent proinflammatory responses to SIV infection support a key role of ADO in controlling immune activation/inflammation in nonprogressive SIV infections. Changes in ADO levels predominately occurred in the gut, suggesting that the ADO pathway may be involved in sparing natural hosts of SIVs from developing SIV-related gut dysfunction. Focusing studies of the ADO pathway on mucosal sites of viral replication is warranted. IMPORTANCE The mechanisms responsible for the severe gut dysfunction characteristic of progressive HIV and SIV infection in humans and macaques are not completely elucidated. We report that ADO may play a key role in controlling immune activation/inflammation in nonprogressive SIV infections by limiting SIV-related gut inflammation. Conversely, in progressive SIV infection, significant degradation of ADO occurs, possibly due to an early increase of ADO deaminase complexing protein 2 (CD26) and adenosine deaminase. Our study supports therapeutic interventions to offset alterations of this pathway during progressive HIV/SIV infections. These potential approaches to control chronic immune activation and inflammation during pathogenic SIV infection may prevent HIV disease progression.
Collapse
|
21
|
Wodarz D. Modeling T cell responses to antigenic challenge. J Pharmacokinet Pharmacodyn 2014; 41:415-29. [PMID: 25269610 DOI: 10.1007/s10928-014-9387-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/17/2014] [Indexed: 01/12/2023]
Abstract
T cell responses are a crucial part of the adaptive immune system in the fight against infections. This article discusses the use of mathematical models for understanding the dynamics of cytotoxic T lymphocyte (CTL) responses against viral infections. Complementing experimental research, mathematical models have been very useful for exploring new hypotheses, interpreting experimental data, and for defining what needs to be measured to improve understanding. This review will start with minimally parameterized models of CTL responses, which have generated some valuable insights into basic dynamics and correlates of control. Subsequently, more biological complexity is incorporated into this modeling framework, examining different mechanisms of CTL expansion, different effector activities, and the influence of T cell help. Models and results are discussed in the context of data from specific infections.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolutionary Biology and Department of Mathematics, University of California, 321 Steinhaus Hall, Irvine, CA, 92617, USA,
| |
Collapse
|
22
|
Progressive proximal-to-distal reduction in expression of the tight junction complex in colonic epithelium of virally-suppressed HIV+ individuals. PLoS Pathog 2014; 10:e1004198. [PMID: 24968145 PMCID: PMC4072797 DOI: 10.1371/journal.ppat.1004198] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 05/06/2014] [Indexed: 01/11/2023] Open
Abstract
Effective antiretroviral therapy (ART) dramatically reduces AIDS-related complications, yet the life expectancy of long-term ART-treated HIV-infected patients remains shortened compared to that of uninfected controls, due to increased risk of non-AIDS related morbidities. Many propose that these complications result from translocated microbial products from the gut that stimulate systemic inflammation--a consequence of increased intestinal paracellular permeability that persists in this population. Concurrent intestinal immunodeficiency and structural barrier deterioration are postulated to drive microbial translocation, and direct evidence of intestinal epithelial breakdown has been reported in untreated pathogenic SIV infection of rhesus macaques. To assess and characterize the extent of epithelial cell damage in virally-suppressed HIV-infected patients, we analyzed intestinal biopsy tissues for changes in the epithelium at the cellular and molecular level. The intestinal epithelium in the HIV gut is grossly intact, exhibiting no decreases in the relative abundance and packing of intestinal epithelial cells. We found no evidence for structural and subcellular localization changes in intestinal epithelial tight junctions (TJ), but observed significant decreases in the colonic, but not terminal ileal, transcript levels of TJ components in the HIV+ cohort. This result is confirmed by a reduction in TJ proteins in the descending colon of HIV+ patients. In the HIV+ cohort, colonic TJ transcript levels progressively decreased along the proximal-to-distal axis. In contrast, expression levels of the same TJ transcripts stayed unchanged, or progressively increased, from the proximal-to-distal gut in the healthy controls. Non-TJ intestinal epithelial cell-specific mRNAs reveal differing patterns of HIV-associated transcriptional alteration, arguing for an overall change in intestinal epithelial transcriptional regulation in the HIV colon. These findings suggest that persistent intestinal epithelial dysregulation involving a reduction in TJ expression is a mechanism driving increases in colonic permeability and microbial translocation in the ART-treated HIV-infected patient, and a possible immunopathogenic factor for non-AIDS related complications.
Collapse
|
23
|
Miedema F, Hazenberg MD, Tesselaar K, van Baarle D, de Boer RJ, Borghans JAM. Immune activation and collateral damage in AIDS pathogenesis. Front Immunol 2013; 4:298. [PMID: 24133492 PMCID: PMC3783946 DOI: 10.3389/fimmu.2013.00298] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022] Open
Abstract
In the past decade, evidence has accumulated that human immunodeficiency virus (HIV)-induced chronic immune activation drives progression to AIDS. Studies among different monkey species have shown that the difference between pathological and non-pathological infection is determined by the response of the immune system to the virus, rather than its cytopathicity. Here we review the current understanding of the various mechanisms driving chronic immune activation in HIV infection, the cell types involved, its effects on HIV-specific immunity, and how persistent inflammation may cause AIDS and the wide spectrum of non-AIDS related pathology. We argue that therapeutic relief of inflammation may be beneficial to delay HIV-disease progression and to reduce non-AIDS related pathological side effects of HIV-induced chronic immune stimulation.
Collapse
Affiliation(s)
- Frank Miedema
- Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mette D. Hazenberg
- Department of Internal Medicine and Hematology, Academic Medical Center, Amsterdam, Netherlands
| | - Kiki Tesselaar
- Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Debbie van Baarle
- Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rob J. de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - José A. M. Borghans
- Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
24
|
Petrovas C, Yamamoto T, Price DA, Rao SS, Klatt NR, Brenchley JM, Douek DC, Gostick E, Angermann BR, Grossman Z, Macallan DC, Meier-Schellersheim M, Koup RA. High production rates sustain in vivo levels of PD-1high simian immunodeficiency virus-specific CD8 T cells in the face of rapid clearance. J Virol 2013; 87:9836-44. [PMID: 23824823 PMCID: PMC3754085 DOI: 10.1128/jvi.01001-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/26/2013] [Indexed: 12/18/2022] Open
Abstract
Programmed Death 1 (PD-1) expression by human/simian immunodeficiency virus (HIV/SIV)-specific CD8 T cells has been associated with defective cytokine production and reduced in vitro proliferation capacity. However, the cellular mechanisms that sustain PD-1(high) virus-specific CD8 T cell responses during chronic infection are unknown. Here, we show that the PD-1(high) phenotype is associated with accelerated in vivo CD8 T cell turnover in SIV-infected rhesus macaques, especially within the SIV-specific CD8 T cell pool. Mathematical modeling of 5-bromo-2' deoxyuridine (BrdU) labeling dynamics demonstrated a significantly increased generation rate of PD-1(high) compared to PD-1(low) CD8 T cells in all memory compartments. Simultaneous analysis of Ki67 and BrdU kinetics revealed a complex in vivo turnover profile whereby only a small fraction of PD-1(high) cells, but virtually all PD-1(low) cells, returned to rest after activation. Similar kinetics operated in both chronic and acute SIV infection. Our data suggest that the persistence of PD-1(high) SIV-specific CD8 T cells in chronic infection is maintained in vivo by a mechanism involving high production coupled with a high disappearance rate.
Collapse
Affiliation(s)
| | | | - David A. Price
- Human Immunology Section
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Srinivas S. Rao
- Laboratory of Animal Medicine, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nichole R. Klatt
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason M. Brenchley
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Emma Gostick
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Bastian R. Angermann
- Program in Systems Immunology and Infectious Disease Modeling, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Zvi Grossman
- Tel Aviv University School of Medicine, Tel Aviv, Israel
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Derek C. Macallan
- Infection and Immunity Research Centre, Division of Clinical Sciences, St. George's Hospital, University of London, London, United Kingdom
| | - Martin Meier-Schellersheim
- Program in Systems Immunology and Infectious Disease Modeling, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
25
|
De Boer RJ, Perelson AS. Quantifying T lymphocyte turnover. J Theor Biol 2013; 327:45-87. [PMID: 23313150 PMCID: PMC3640348 DOI: 10.1016/j.jtbi.2012.12.025] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/13/2012] [Accepted: 12/30/2012] [Indexed: 01/13/2023]
Abstract
Peripheral T cell populations are maintained by production of naive T cells in the thymus, clonal expansion of activated cells, cellular self-renewal (or homeostatic proliferation), and density dependent cell life spans. A variety of experimental techniques have been employed to quantify the relative contributions of these processes. In modern studies lymphocytes are typically labeled with 5-bromo-2'-deoxyuridine (BrdU), deuterium, or the fluorescent dye carboxy-fluorescein diacetate succinimidyl ester (CFSE), their division history has been studied by monitoring telomere shortening and the dilution of T cell receptor excision circles (TRECs) or the dye CFSE, and clonal expansion has been documented by recording changes in the population densities of antigen specific cells. Proper interpretation of such data in terms of the underlying rates of T cell production, division, and death has proven to be notoriously difficult and involves mathematical modeling. We review the various models that have been developed for each of these techniques, discuss which models seem most appropriate for what type of data, reveal open problems that require better models, and pinpoint how the assumptions underlying a mathematical model may influence the interpretation of data. Elaborating various successful cases where modeling has delivered new insights in T cell population dynamics, this review provides quantitative estimates of several processes involved in the maintenance of naive and memory, CD4(+) and CD8(+) T cell pools in mice and men.
Collapse
Affiliation(s)
- Rob J De Boer
- Theoretical Biology & Bioinformatics, Utrecht University, The Netherlands; Santa Fe Institute, Santa Fe, NM 87501, USA.
| | | |
Collapse
|
26
|
Divergent kinetics of proliferating T cell subsets in simian immunodeficiency virus (SIV) infection: SIV eliminates the "first responder" CD4+ T cells in primary infection. J Virol 2013; 87:7032-8. [PMID: 23596288 DOI: 10.1128/jvi.00027-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although increased lymphocyte turnover in chronic human immunodeficiency virus and simian immunodeficiency virus (SIV) infection has been reported in blood, there is little information on cell turnover in tissues, particularly in primary SIV infection. Here we examined the levels of proliferating T cell subsets in mucosal and peripheral lymphoid tissues of adult macaques throughout SIV infection. To specifically label cells in S-phase division, all animals were inoculated with bromodeoxyuridine 24 h prior to sampling. In healthy macaques, the highest levels of proliferating CD4(+) and CD8(+) T cells were in blood and, to a lesser extent, in spleen. Substantial percentages of proliferating cells were also found in intestinal tissues, including the jejunum, ileum, and colon, but very few proliferating cells were detected in lymph nodes (axillary and mesenteric). Moreover, essentially all proliferating T cells in uninfected animals coexpressed CD95 and many coexpressed CCR5 in the tissues examined. Confocal microscopy also demonstrated that proliferating cells were substantial viral target cells for SIV infection and viral replication. After acute SIV infection, percentages of proliferating CD4(+) and CD8(+) T cells were significantly higher in tissues of chronically infected macaques and macaques with AIDS than in those of the controls. Surprisingly, however, we found that proliferating CD4(+) T cells were selectively decreased in very early infection (8 to 10 days postinoculation [dpi]). In contrast, levels of proliferating CD8(+) T cells rapidly increased after SIV infection, peaked by 13 to 21 dpi, and thereafter remained significantly higher than those in the controls. Taken together, these findings suggest that SIV selectively infects and destroys dividing, nonspecific CD4(+) T cells in acute infection, resulting in homeostatic changes and perhaps continuing loss of replication capacity to respond to nonspecific and, later, SIV-specific antigens.
Collapse
|
27
|
Hong HS, Rajakumar PA, Billingsley JM, Reeves RK, Johnson RP. No monkey business: why studying NK cells in non-human primates pays off. Front Immunol 2013; 4:32. [PMID: 23423644 PMCID: PMC3575030 DOI: 10.3389/fimmu.2013.00032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/27/2013] [Indexed: 01/26/2023] Open
Abstract
Human NK (hNK) cells play a key role in mediating host immune responses against various infectious diseases. For practical reasons, the majority of the data on hNK cells has been generated using peripheral blood lymphocytes. In contrast, our knowledge of NK cells in human tissues is limited, and not much is known about developmental pathways of hNK cell subpopulations in vivo. Although research in mice has elucidated a number of fundamental features of NK cell biology, mouse, and hNK cells significantly differ in their subpopulations, functions, and receptor repertoires. Thus, there is a need for a model that is more closely related to humans and yet allows experimental manipulations. Non-human primate models offer numerous opportunities for the study of NK cells, including the study of the role of NK cells after solid organ and stem cell transplantation, as well as in acute viral infection. Macaque NK cells can be depleted in vivo or adoptively transferred in an autologous system. All of these studies are either difficult or unethical to carry out in humans. Here we highlight recent advances in rhesus NK cell research and their parallels in humans. Using high-throughput transcriptional profiling, we demonstrate that the human CD56bright and CD56dim NK cell subsets have phenotypically and functionally analogous counterparts in rhesus macaques. Thus, the use of non-human primate models offers the potential to substantially advance hNK cell research.
Collapse
Affiliation(s)
- Henoch S Hong
- Division of Immunology, New England Primate Research Center, Harvard Medical School Southborough, MA, USA
| | | | | | | | | |
Collapse
|
28
|
Nanda S, dePillis L, Radunskaya A. B cell chronic lymphocytic leukemia - A model with immune response. ACTA ACUST UNITED AC 2013. [DOI: 10.3934/dcdsb.2013.18.1053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
dePillis L, Caldwell T, Sarapata E, Williams H. Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment. ACTA ACUST UNITED AC 2013. [DOI: 10.3934/dcdsb.2013.18.915] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Ganusov VV, De Boer RJ. A mechanistic model for bromodeoxyuridine dilution naturally explains labelling data of self-renewing T cell populations. J R Soc Interface 2012; 10:20120617. [PMID: 23034350 DOI: 10.1098/rsif.2012.0617] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bromodeoxyuridine (BrdU) is widely used in immunology to detect cell division, and several mathematical models have been proposed to estimate proliferation and death rates of lymphocytes from BrdU labelling and de-labelling curves. One problem in interpreting BrdU data is explaining the de-labelling curves. Because shortly after label withdrawal, BrdU+ cells are expected to divide into BrdU+ daughter cells, one would expect a flat down-slope. As for many cell types, the fraction of BrdU+ cells decreases during de-labelling, previous mathematical models had to make debatable assumptions to be able to account for the data. We develop a mechanistic model tracking the number of divisions that each cell has undergone in the presence and absence of BrdU, and allow cells to accumulate and dilute their BrdU content. From the same mechanistic model, one can naturally derive expressions for the mean BrdU content (MBC) of all cells, or the MBC of the BrdU+ subset, which is related to the mean fluorescence intensity of BrdU that can be measured in experiments. The model is extended to include subpopulations with different rates of division and death (i.e. kinetic heterogeneity). We fit the extended model to previously published BrdU data from memory T lymphocytes in simian immunodeficiency virus-infected and uninfected macaques, and find that the model describes the data with at least the same quality as previous models. Because the same model predicts a modest decline in the MBC of BrdU+ cells, which is consistent with experimental observations, BrdU dilution seems a natural explanation for the observed down-slopes in self-renewing populations.
Collapse
Affiliation(s)
- Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA.
| | | |
Collapse
|
31
|
Wang B, Liang M, Yao Z, Vainshtein I, Lee R, Schneider A, Zusmanovich M, Jin F, O'Connor K, Donato-Weinstein B, Iciek L, Lavallee T, Roskos L. Pharmacokinetic and pharmacodynamic comparability study of moxetumomab pasudotox, an immunotoxin targeting CD22, in cynomolgus monkeys. J Pharm Sci 2012; 102:250-61. [PMID: 23090886 DOI: 10.1002/jps.23343] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/20/2012] [Accepted: 09/28/2012] [Indexed: 11/10/2022]
Abstract
Moxetumomab pasudotox is an immunotoxin currently being investigated in patients for the treatment of CD22-expressing B-cell malignancies. A single-cycle pharmacokinetic (PK)-pharmacodynamic (PD) study was conducted in cynomolgus monkeys for PK comparability assessment and population PK-PD modeling after major manufacturing process and site changes. Primates were randomized by body weight and baseline CD22 lymphocyte counts to receive intravenous administrations of 1 mg/kg moxetumomab pasudotox (n = 12/group) on Days 1, 3, and 5. PK and B-lymphocyte count data were modeled using a population approach. The 90% confidence intervals of the geometric mean ratios of PK exposure were within the 80%-125% range. The B lymphocytes were depleted to a similar extent, and the immunogenicity incidences were similar across the two groups. The B-cell depletion was described by a novel lifespan model in which moxetumomab pasudotox induced random destruction of B cells in each aging compartment. The endogenous de novo influx from bone marrow was subject to a negative feedback mechanism. The estimated B cell apparent lifespan was 51 days. Covariate analysis confirmed that the manufacturing change had no impact on PK or PD of moxetumomab pasudotox. Results from this study supported continued clinical investigation of moxetumomab pasudotox using the new material.
Collapse
Affiliation(s)
- Bing Wang
- Clinical Pharmacology & DMPK, MedImmune LLC, Hayward, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
De Boer RJ, Perelson AS, Ribeiro RM. Modelling deuterium labelling of lymphocytes with temporal and/or kinetic heterogeneity. J R Soc Interface 2012; 9:2191-200. [PMID: 22513720 PMCID: PMC3405764 DOI: 10.1098/rsif.2012.0149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 03/27/2012] [Indexed: 12/12/2022] Open
Abstract
To study the kinetics of lymphocytes, models have divided the cell population into subpopulations with different turnover rates. These have been called 'kinetic heterogeneity models' so as to distinguish them from 'temporal heterogeneity models', in which a cell population may have different turnover rates at different times, e.g. when resting versus when activated. We model labelling curves for temporally heterogeneous populations, and predict that they exhibit equal biphasic up- and downslopes. We show when cells divide only once upon activation, these slopes are dominated by the slowest exponent, yielding underestimates of the average turnover rate. When cells undergo more than one division, the labelling curves allow fitting of the two exponential slopes in the temporal heterogeneity model. The same data can also be described with a two-compartment kinetic heterogeneity model. In both instances, the average turnover rate is correctly estimated. Because both models assume a different cell biology but describe the data equally well, the parameters of either model have no simple biological interpretation, as each parameter could reflect a combination of parameters of another biological process. Thus, even if there are sufficient data to reliably estimate all exponentials, one can only accurately estimate an average turnover rate. We illustrate these issues by re-fitting labelling data from healthy and HIV-infected individuals.
Collapse
Affiliation(s)
- Rob J De Boer
- Department of Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands.
| | | | | |
Collapse
|
33
|
Simões RD, Howard KE, Dean GA. In vivo assessment of natural killer cell responses during chronic feline immunodeficiency virus infection. PLoS One 2012; 7:e37606. [PMID: 22701523 PMCID: PMC3365115 DOI: 10.1371/journal.pone.0037606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/26/2012] [Indexed: 01/03/2023] Open
Abstract
Accumulating evidence suggests that natural killer (NK) cells may have an important role in HIV-1 disease pathogenesis; however, in vivo studies are lacking. Feline immunodeficiency virus (FIV) infection of cats provides a valuable model to study NK cell function in vivo. The immune response against Listeria monocytogenes (Lm) is well characterized, allowing its use as an innate immune probe. We have previously shown that locally delivered IL-15 can improve Lm clearance in FIV-infected animals, and this correlated with an increase in NK cell number. In the present study, chronically FIV-infected and SPF-control cats were challenged with Lm by unilateral subcutaneous injection next to the footpad and then treated with 5-bromo-2′-deoxyuridine (BrdU). The Lm draining and contralateral control lymph nodes were evaluated for NK, NKT, CD4+ and CD8+ T cell number, proliferation, apoptosis, and NK cell function. Listeria monocytogenes burden was also assessed in both control and Lm draining lymph nodes. NK, NKT, CD4+ T and CD8+ T cells in the Lm-challenged lymph node of FIV-infected cats did not increase in number. In addition, after Lm challenge, NK cells from FIV-infected cats did not increase their proliferation rate, apoptosis was elevated, and perforin expression was not upregulated when compared to SPF-control cats. The failure of the NK cell response against Lm challenge in the draining lymph node of FIV-infected cats correlates with the delayed control and clearance of this opportunistic bacterial pathogen.
Collapse
Affiliation(s)
- Rita D. Simões
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Kristina E. Howard
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Gregg A. Dean
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
34
|
Folate-deficiency induced cell-specific changes in the distribution of lymphocytes and granulocytes in rats. Environ Health Prev Med 2012; 18:78-84. [PMID: 22644659 DOI: 10.1007/s12199-012-0286-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE Folate (vitamin B(9)) plays key roles in cell growth and proliferation through regulating the synthesis and stabilization of DNA and RNA, and its deficiency leads to lymphocytopenia and granulocytopenia. However, precisely how folate deficiency affects the distribution of a variety of white blood cell subsets, including the minor population of basophils, and the cell specificity of the effects remain unclear. Therefore, we examined the effects of a folate-deficient diet on the circulating number of lymphocyte subsets [T-lymphocytes, B-lymphocytes, and natural killer (NK) cells] and granulocyte subsets (neutrophils, eosinophils, and basophils) in rats. METHODS Rats were divided into two groups, with one receiving the folate-deficient diet (FAD group) and the other a control diet (CON group). All rats were pair-fed for 8 weeks. RESULTS Plasma folate level was dramatically lower in the FAD group than in the CON group, and the level of homocysteine in the plasma, a predictor of folate deficiency was significantly higher in the FAD group than in the CON group. The number of T-lymphocytes, B-lymphocytes, and NK cells was significantly lower in the FAD group than in the CON group by 0.73-, 0.49-, and 0.70-fold, respectively, indicating that B-lymphocytes are more sensitive to folate deficiency than the other lymphocyte subsets. As expected, the number of neutrophils and eosinophils was significantly lower in the FAD group than in the CON group. However, the number of basophils, the least common type of granulocyte, showed transiently an increasing tendency in the FAD group as compared with the CON group. CONCLUSION These results suggest that folate deficiency induces lymphocytopenia and granulocytopenia in a cell-specific manner.
Collapse
|
35
|
SIV infection of rhesus macaques results in dysfunctional T- and B-cell responses to neo and recall Leishmania major vaccination. Blood 2011; 118:5803-12. [PMID: 21960586 DOI: 10.1182/blood-2011-07-365874] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV infection is characterized by immune system dysregulation, including depletion of CD4+ T cells, immune activation, and abnormal B- and T-cell responses. However, the immunologic mechanisms underlying lymphocytic dysfunctionality and whether it is restricted to immune responses against neo antigens, recall antigens, or both is unclear. Here, we immunized SIV-infected and uninfected rhesus macaques to induce immune responses against neo and recall antigens using a Leishmania major polyprotein (MML) vaccine given with poly-ICLC adjuvant. We found that vaccinated SIVuninfected animals induced high frequencies of polyfunctional MML-specific CD4+ T cells. However, in SIV-infected animals, CD4+ T-cell functionality decreased after both neo (P = .0025) and recall (P = .0080) MML vaccination. Furthermore, after SIV infection, the frequency of MML-specific antibody-secreting classic memory B cells was decreased compared with vaccinated, SIV-uninfected animals. Specifically, antibody-secreting classic memory B cells that produced IgA in response to either neo (P = .0221) or recall (P = .0356) MML vaccinations were decreased. Furthermore, we found that T-follicular helper cells, which are essential for priming B cells, are preferentially infected with SIV. These data indicate that SIV infection results in dysfunctional T-cell responses to neo and recall vaccinations, and direct SIV infection of T-follicular helper cells, both of which probably contribute to deficient B-cell responses and, presumably, susceptibility to certain opportunistic infections.
Collapse
|
36
|
Das A, Veazey RS, Wang X, Lackner AA, Xu H, Pahar B. Simian immunodeficiency virus infection in rhesus macaques induces selective tissue specific B cell defects in double positive CD21+CD27+ memory B cells. Clin Immunol 2011; 140:223-8. [PMID: 21622026 PMCID: PMC3159701 DOI: 10.1016/j.clim.2011.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/06/2011] [Accepted: 04/29/2011] [Indexed: 01/22/2023]
Abstract
B cell dysfunction represents a central feature in HIV infection and pathogenesis. Our recent studies have shown that peripheral and lymphoid double positive CD21+CD27+ B cells were able to become activated and proliferate at higher rates than other B cell subpopulations. Increased proliferation of tonsillar memory B cells was identified compared to other tissues examined. Here, we demonstrate the decreased proliferation of tonsillar memory (CD21+CD27+) B cells during acute SIV infection also suggests that these cells may play an important role in SIV pathogenesis. Our findings demonstrate that SIV infection may induce selective defective responses in specific tissues, by suppressing memory B cell proliferation in tissues.
Collapse
Affiliation(s)
- Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Xiaolei Wang
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Andrew A. Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Huanbin Xu
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| |
Collapse
|
37
|
Srinivasula S, Lempicki RA, Adelsberger JW, Huang CY, Roark J, Lee PI, Rupert A, Stevens R, Sereti I, Lane HC, Di Mascio M, Kovacs JA. Differential effects of HIV viral load and CD4 count on proliferation of naive and memory CD4 and CD8 T lymphocytes. Blood 2011; 118:262-70. [PMID: 21562041 PMCID: PMC3138680 DOI: 10.1182/blood-2011-02-335174] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/24/2011] [Indexed: 11/20/2022] Open
Abstract
We previously showed that HIV infection leads to expansion of a rapidly proliferating pool (s(1)) of CD4 and CD8 T lymphocytes. In the current study, we used in vivo labeling with bromodeoxyuridine to characterize the kinetics of naive, memory, and activated (HLA-DR(+)/CD38(+)) subpopulations of CD4 and CD8 T lymphocytes, and to examine the relationship between kinetic parameters and baseline CD4 counts, HIV viral load, potential markers of microbial translocation, and cytokine levels. Activated cells showed the highest proliferation rates, followed by effector and central memory cells, with naive cells showing the lowest rates, for both CD4 and CD8 T cells. HIV viral load correlated with s(1) of CD4 and CD8 effector memory cells, as well as CD8 naive cells, whereas CD4 cell counts correlated inversely with naive CD4 s(1). Endotoxin levels showed a weak negative association with CD4 but not CD8 s(1). INF-γ and TNF-α were associated with s(1) for CD4 and CD8 cells, respectively. Thus, HIV is the primary driving force behind the activation and proliferation of most subsets of both CD4 and CD8 T lymphocytes, whereas naive CD4 cell proliferation likely represents a homeostatic response. Microbial translocation does not appear to play an important role in this proliferation.
Collapse
Affiliation(s)
- Sharat Srinivasula
- Biostatistics Research Branch, SAIC-Frederick Inc, NCI-Frederick, Frederick, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Germain RN, Meier-Schellersheim M, Nita-Lazar A, Fraser IDC. Systems biology in immunology: a computational modeling perspective. Annu Rev Immunol 2011; 29:527-85. [PMID: 21219182 DOI: 10.1146/annurev-immunol-030409-101317] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Systems biology is an emerging discipline that combines high-content, multiplexed measurements with informatic and computational modeling methods to better understand biological function at various scales. Here we present a detailed review of the methods used to create computational models and to conduct simulations of immune function. We provide descriptions of the key data-gathering techniques employed to generate the quantitative and qualitative data required for such modeling and simulation and summarize the progress to date in applying these tools and techniques to questions of immunological interest, including infectious disease. We include comments on what insights modeling can provide that complement information obtained from the more familiar experimental discovery methods used by most investigators and the reasons why quantitative methods are needed to eventually produce a better understanding of immune system operation in health and disease.
Collapse
Affiliation(s)
- Ronald N Germain
- Program in Systems Immunology and Infectious Disease Modeling, National Institute of Allergy and Infectious Disease, Laboratory of Immunology, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
39
|
Lutz CT, Karapetyan A, Al-Attar A, Shelton BJ, Holt KJ, Tucker JH, Presnell SR. Human NK cells proliferate and die in vivo more rapidly than T cells in healthy young and elderly adults. THE JOURNAL OF IMMUNOLOGY 2011; 186:4590-8. [PMID: 21402893 DOI: 10.4049/jimmunol.1002732] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
NK cells are essential for health, yet little is known about human NK turnover in vivo. In both young and elderly women, all NK subsets proliferated and died more rapidly than T cells. CD56(bright) NK cells proliferated rapidly but died relatively slowly, suggesting that proliferating CD56(bright) cells differentiate into CD56(dim) NK cells in vivo. The relationship between CD56(dim) and CD56(bright) proliferating cells indicates that proliferating CD56(dim) cells both self-renew and are derived from proliferating CD56(bright) NK cells. Our data suggest that some dying CD56(dim) cells become CD16(+)CD56(-) NK cells and that CD16(-)CD56(low) NK cells respond rapidly to cellular and cytokine stimulation. We propose a model in which all NK cell subsets are in dynamic flux. About half of CD56(dim) NK cells expressed CD57, which was weakly associated with low proliferation. Surprisingly, CD57 expression was associated with higher proliferation rates in both CD8(+) and CD8(-) T cells. Therefore, CD57 is not a reliable marker of senescent, nonproliferative T cells in vivo. NKG2A expression declined with age on both NK cells and T cells. Killer cell Ig-like receptor expression increased with age on T cells but not on NK cells. Although the percentage of CD56(bright) NK cells declined with age and the percentage of CD56(dim) NK cells increased with age, there were no significant age-related proliferation or apoptosis differences for these two populations or for total NK cells. In vivo human NK cell turnover is rapid in both young and elderly adults.
Collapse
Affiliation(s)
- Charles T Lutz
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Yu J, Karcher H, Feire AL, Lowe PJ. From target selection to the minimum acceptable biological effect level for human study: use of mechanism-based PK/PD modeling to design safe and efficacious biologics. AAPS JOURNAL 2011; 13:169-78. [PMID: 21336535 DOI: 10.1208/s12248-011-9256-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 01/31/2011] [Indexed: 11/30/2022]
Abstract
In this paper, two applications of mechanism-based modeling are presented with their utility from candidate selection to first-in-human dosage selection. The first example is for a monoclonal antibody against a cytomegalovirus glycoprotein complex, which involves an antibody binding model and a viral load model. The model was used as part of a feasibility analysis prior to antibody generation, setting the specifications for the affinity needed to achieve a desired level of clinical efficacy. The second example is a pharmacokinetic-pharmacodynamic model based on a single-dose pharmacology study in cynomolgus monkey using data on pharmacokinetics, receptor occupancy, and the dynamics of target cell depletion and recovery. The model was used to estimate the MABEL, here defined as the minimum acceptable biological effect level against which a dose is selected for a first-in-human study. From these applications, we demonstrate that mechanism-based PK/PD binding models are useful for predicting human response to biologics compounds. Especially, such models have the ability to integrate preclinical and clinical, in vitro and in vivo information and facilitate rational decision making during various stages of drug discovery and translational research.
Collapse
Affiliation(s)
- Jing Yu
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
Human immunodeficiency virus (HIV) infection is generally characterized by inefficient viral transmission; an acute phase of intense viral replication and dissemination to lymphoid tissues; a chronic, often asymptomatic phase of sustained immune activation and viral replication; and an advanced phase of marked depletion of CD4(+) T cells that leads to acquired immune deficiency syndrome. Major insight into HIV transmission and each phase of infection has been gained from studies on blood and tissue specimens obtained from HIV-infected individuals, as well as from animal and ex vivo models. Not only has the introduction of effective antiretroviral therapy greatly diminished the morbidity and mortality associated with HIV disease progression, it has also provided new avenues of research toward delineating the mechanisms of HIV-induced pathogenesis. Further advances in therapeutics and informative technologies, combined with a better understanding of the immunologic and virologic components of HIV disease, hold promise for new preventative and even curative strategies.
Collapse
Affiliation(s)
- Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
42
|
Bosinger SE, Li Q, Gordon SN, Klatt NR, Duan L, Xu L, Francella N, Sidahmed A, Smith AJ, Cramer EM, Zeng M, Masopust D, Carlis JV, Ran L, Vanderford TH, Paiardini M, Isett RB, Baldwin DA, Else JG, Staprans SI, Silvestri G, Haase AT, Kelvin DJ. Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys. J Clin Invest 2010; 119:3556-72. [PMID: 19959874 DOI: 10.1172/jci40115] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 10/19/2009] [Indexed: 01/07/2023] Open
Abstract
Natural SIV infection of sooty mangabeys (SMs) is nonprogressive despite chronic virus replication. Strikingly, it is characterized by low levels of immune activation, while pathogenic SIV infection of rhesus macaques (RMs) is associated with chronic immune activation. To elucidate the mechanisms underlying this intriguing phenotype, we used high-density oligonucleotide microarrays to longitudinally assess host gene expression in SIV-infected SMs and RMs. We found that acute SIV infection of SMs was consistently associated with a robust innate immune response, including widespread upregulation of IFN-stimulated genes (ISGs) in blood and lymph nodes. While SMs exhibited a rapid resolution of ISG expression and immune activation, both responses were observed chronically in RMs. Systems biology analysis indicated that expression of the lymphocyte inhibitory receptor LAG3, a marker of T cell exhaustion, correlated with immune activation in SIV-infected RMs but not SMs. Our findings suggest that active immune regulatory mechanisms, rather than intrinsically attenuated innate immune responses, underlie the low levels of immune activation characteristic of SMs chronically infected with SIV.
Collapse
Affiliation(s)
- Steven E Bosinger
- Department of Pathology and Laboratory Medicine, and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vaccari M, Franchini G. Memory T cells in Rhesus macaques. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 684:126-44. [PMID: 20795545 DOI: 10.1007/978-1-4419-6451-9_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Rhesus macaque (Macaca mulatta) is one of the best studied species of Old World monkeys. DNA sequencing of the entire Rhesus macaque genome, completed in 2007, has demonstrated that humans and macaques share about 93% of their nucleotide sequence. Rhesus macaques have been widely used for medical research including drug testing, neurology, behavioral and cognitive science, reproduction, xenotransplantation and genetics. Because of the Rhesus macaque's sensitivity to bacteria, parasites and viruses that cause similar disease in humans, these animals represent an excellent model to study infectious diseases. The recent pandemic of HIV and the discovery of SIV, a lentivirus genetically related to HIV Type 1 that causes AIDS in Rhesus macaques, have prompted the development of reagents that can be used to study innate and adaptive immune responses in macaques at the single cell level. This review will focus on the distribution of memory cells in the different immunologic compartments of Rhesus macaques. In addition, the strategies available to manipulate memory cells in Rhesus macaques to understand their trafficking and function will be discussed. Emphasis is placed on studies of memory cells in macaques infected with SIV because many studies are available. Lastly, we highlight the usefulness of the Rhesus macaque model in studies related to the aging of the immune system.
Collapse
Affiliation(s)
- Monica Vaccari
- Animal Models and Retroviral Vaccine Section, NCI, NIH, Building 41, Room D804, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
44
|
Preliminary in vivo efficacy studies of a recombinant rhesus anti-alpha(4)beta(7) monoclonal antibody. Cell Immunol 2009; 259:165-76. [PMID: 19616201 DOI: 10.1016/j.cellimm.2009.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 11/21/2022]
Abstract
Recent findings established that primary targets of HIV/SIV are lymphoid cells within the gastrointestinal (GI) tract. Focus has therefore shifted to T-cells expressing alpha(4)beta(7) integrin which facilitates trafficking to the GI tract via binding to MAdCAM-1. Approaches to better understand the role of alpha(4)beta(7)+ T-cells in HIV/SIV pathogenesis include their depletion or blockade of their synthesis, binding and/or homing capabilities in vivo. Such studies can ideally be conducted in rhesus macaques (RM), the non-human primate model of AIDS. Characterization of alpha(4)beta(7) expression on cell lineages in RM blood and GI tissues reveal low densities of expression by NK cells, B-cells, naïve and TEM (effector memory) T-cells. High densities were observed on TCM (central memory) T-cells. Intravenous administration of a single 50mg/kg dose of recombinant rhesus alpha(4)beta(7) antibody resulted in significant initial decline of alpha(4)beta(7)+ lymphocytes and sustained coating of the alpha(4)beta(7) receptor in both the periphery and GI tissues.
Collapse
|
45
|
The level of monocyte turnover predicts disease progression in the macaque model of AIDS. Blood 2009; 114:2917-25. [PMID: 19383966 DOI: 10.1182/blood-2009-02-204263] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It is widely accepted that destruction of CD4(+) T cells and viral load are the primary markers for immunodeficiency in HIV-1-infected humans and in simian immunodeficiency virus (SIV)-infected macaques. However, monocyte/macrophages are also important targets of HIV/SIV infection and a critical link between innate and adaptive immunity. We therefore examined whether changes in cells of the monocyte/macrophage lineage could be linked to the pathogenesis of AIDS in the rhesus macaque model. Here, we show that massive turnover of peripheral monocytes associated with death of tissue macrophages correlates with AIDS progression in macaques. More importantly, the level of monocyte turnover was not linked to the CD4(+) T-cell count and was a better predictive marker for AIDS progression than was viral load or lymphocyte activation. Our results show the importance of monocyte/macrophages in the pathogenesis of AIDS and suggest the dynamic changes of the monocyte/macrophages as a new marker for AIDS progression.
Collapse
|
46
|
Abstract
In recent years, intense research efforts have been dedicated to elucidating the pathogenic mechanisms of HIV-associated disease progression. In addition to the progressive depletion and dysfunction of CD4(+) T cells, HIV infection also leads to extensive defects in the humoral arm of the immune system. The lack of immune control of the virus in almost all infected individuals is a great impediment to the treatment of HIV-associated disease and to the development of a successful HIV vaccine. This Review focuses on advances in our understanding of the mechanisms of B-cell dysfunction in HIV-associated disease and discusses similarities with other diseases that are associated with B-cell dysfunction.
Collapse
Affiliation(s)
- Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
47
|
Pan X, Chen L, Liu S, Yang X, Gao JX, Lee RJ. Antitumor activity of G3139 lipid nanoparticles (LNPs). Mol Pharm 2009; 6:211-20. [PMID: 19072654 DOI: 10.1021/mp800146j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G3139, an antisense oligodeoxyribonucleotide (ODN) against Bcl-2, contains two CpG dinucleotides and has shown immunostimulatory activities in preclinical studies. It has been suggested that immunoactivation, rather than antisense activity, is primarily responsible for the therapeutic efficacy of G3139. Nanoparticle formulations naturally target phagocytic antigen presenting cells and therefore might enhance the immunological effects of G3139. In this study, a novel formulation of lipid nanoparticles (LNPs) encapsulating G3139 was synthesized and evaluated in mice bearing L1210 subcutaneous tumors. Intravenous injection of G3139-LNPs into mice led to increased serum levels of IL-6 and IFN-gamma, promoted proliferation of natural killer (NK) cells and dendritic cells (DCs), and triggered a strong antitumor immune response in mice. The observed effects were much greater than those induced by free G3139. Correspondingly, the G3139-LNPs more effectively inhibited tumor growth and induced complete tumor regression in some mice. In contrast, free G3139 was ineffective in tumor growth inhibition and did not prolong survival of the tumor-bearing mice. These results suggest that G3139-LNPs are a potential immunomodulatory agent and may have applications in cancer therapy.
Collapse
Affiliation(s)
- Xiaogang Pan
- Division of Pharmaceutics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
48
|
Cheng Y, Ghersi D, Calcagno C, Selin LK, Puzone R, Celada F. A discrete computer model of the immune system reveals competitive interactions between the humoral and cellular branch and between cross-reacting memory and naïve responses. Vaccine 2008; 27:833-45. [PMID: 19101600 DOI: 10.1016/j.vaccine.2008.11.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/18/2008] [Accepted: 11/22/2008] [Indexed: 01/28/2023]
Abstract
In an agent-based computer model, we simulate the formation and recall of anti-virus immunological memory. Specifically we try to predict what will happen, both to the response and to memory, when the second infecting virus is partly different from the first one, and when the cross-reactivity of the two branches of the immune system (IS), humoral and cellular, is asymmetrical, or "split". The simulations explore systematically epitope distances, and measure all changes in affinity, cellularity and efficiency in clearing the infection. Besides obvious cooperation, they reveal powerful competitions between the branches, and more intriguing, between cross-reacting and new responses when the latter suffer the competition by preformed cell-rich but inefficient clones, as memory, usually an asset, becomes a liability.
Collapse
Affiliation(s)
- Yiming Cheng
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
49
|
Intestinal double-positive CD4+CD8+ T cells of neonatal rhesus macaques are proliferating, activated memory cells and primary targets for SIVMAC251 infection. Blood 2008; 112:4981-90. [PMID: 18820133 DOI: 10.1182/blood-2008-05-160077] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Peripheral blood and thymic double-positive (DP) CD4(+)CD8(+) T cells from neonates have been described earlier, but the function and immunophenotypic characteristics of other tissue-derived DP T cells are not clearly understood. Here, we demonstrate the functional and immunophenotypic characteristics of DP cells in 6 different tissues, including thymus from normal neonatal rhesus macaques (Macaca mulatta) between 0 and 21 days of age. In general, intestinal DP T cells of neonates have higher percentages of memory markers (CD28(+)CD95(+)CD45RA(low)CD62L(low)) and proliferation compared with single-positive (SP) CD4(+) and CD8(+) T cells. In addition, percentages of DP T cells increase and CD62L expression decreases as animals mature, suggesting that DP cells mature and proliferate with maturity and/or antigen exposure. Consistent with this, intestinal DP T cells in neonates express higher levels of CCR5 and are the primary targets in simian immunodeficiency virus (SIV) infection. Finally, DP T cells produce higher levels of cytokine in response to mitogen stimulation compared with SP CD4(+) or CD8(+) T cells. Collectively, these findings demonstrate that intestinal DP T cells of neonates are proliferating, activated memory cells and are likely involved in regulating immune responses, in contrast to immature DP T cells in the thymus.
Collapse
|
50
|
Moir S, Fauci AS. Pathogenic mechanisms of B-lymphocyte dysfunction in HIV disease. J Allergy Clin Immunol 2008; 122:12-9; quiz 20-1. [PMID: 18547629 PMCID: PMC2708937 DOI: 10.1016/j.jaci.2008.04.034] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 04/24/2008] [Accepted: 04/25/2008] [Indexed: 01/19/2023]
Abstract
HIV disease is associated with abnormalities in all major lymphocyte populations, including B cells. Aberrancies in the B-cell compartment can be divided into 3 broad categories: changes that arise as a result of HIV-induced immune activation, changes that arise as a result of HIV-induced lymphopenia, and changes that arise independently of these 2 parameters. We review recent developments in all 3 categories of abnormalities and highlight how observations made in the early years of the HIV epidemic are better understood today in large part because of the advent of effective antiretroviral therapy. Insight into the mechanisms of B-cell dysfunction in HIV disease has also been achieved as a result of increased knowledge of the B-cell subpopulations as they exist in healthy individuals, compared with their abnormalities in HIV-infected individuals. A better understanding of the pathogenic mechanisms of B-cell abnormalities in HIV disease can potentially lead to new strategies for improving antibody responses against opportunistic pathogens that afflict HIV-infected individuals and against HIV itself, in the context of both HIV infection and an antibody-based HIV vaccine.
Collapse
Affiliation(s)
- Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|