1
|
Obeagu EI. Role of cytokines in immunomodulation during malaria clearance. Ann Med Surg (Lond) 2024; 86:2873-2882. [PMID: 38694310 PMCID: PMC11060309 DOI: 10.1097/ms9.0000000000002019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/22/2024] [Indexed: 05/04/2024] Open
Abstract
Malaria remains a significant global health challenge, demanding a deeper understanding of host immune responses for effective clearance of the parasitic infection. Cytokines, as crucial mediators of the immune system, orchestrate a complex interplay during the various stages of malaria infection. Throughout the course of the disease, an intricate balance of pro-inflammatory and anti-inflammatory cytokines dictate the immune response's outcome, influencing parasitic clearance and disease severity. During the initial stages, interleukins such as interleukin-12 (IL-12), interferon-gamma (IFN-γ), and tumour necrosis factor-alpha (TNF-α) play pivotal roles in activating innate immune cells, initiating the anti-parasitic response. Simultaneously, regulatory cytokines like interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β) modulate this immune activation, preventing excessive inflammation and tissue damage. As the infection progresses, a delicate shift occurs, characterized by a transition to adaptive immunity, guided by cytokines like interleukin-4 (IL-4), interleukin-5 (IL-5), and interleukin-13 (IL-13), promoting antibody production and T-cell responses. Notably, the resolution of malaria infection crucially relies on a fine-tuned balance of cytokine networks. Dysregulation or imbalances in these mediators often result in immune hyperactivation, contributing to severe manifestations and prolonged infection. Understanding the multi-faceted roles of cytokines in malaria clearance offers promising avenues for therapeutic interventions. Targeting cytokine pathways to restore immune equilibrium or bolster protective responses could potentially enhance treatment strategies and vaccine development. In conclusion, the pivotal role of cytokines in immunomodulation during malaria clearance underscores their significance as potential targets for therapeutic interventions, offering promising prospects in the global fight against this infectious disease.
Collapse
|
2
|
Naidoo L, Arumugam T, Ramsuran V. Host Genetic Impact on Infectious Diseases among Different Ethnic Groups. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2300181. [PMID: 38099246 PMCID: PMC10716055 DOI: 10.1002/ggn2.202300181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/11/2023] [Indexed: 12/17/2023]
Abstract
Infectious diseases such as malaria, tuberculosis (TB), human immunodeficiency virus (HIV), and the coronavirus disease of 2019 (COVID-19) are problematic globally, with high prevalence particularly in Africa, attributing to most of the death rates. There have been immense efforts toward developing effective preventative and therapeutic strategies for these pathogens globally, however, some remain uncured. Disease susceptibility and progression for malaria, TB, HIV, and COVID-19 vary among individuals and are attributed to precautionary measures, environment, host, and pathogen genetics. While studying individuals with similar attributes, it is suggested that host genetics contributes to most of an individual's susceptibility to disease. Several host genes are identified to associate with these pathogens. Interestingly, many of these genes and polymorphisms are common across diseases. This paper analyzes genes and genetic variations within host genes associated with HIV, TB, malaria, and COVID-19 among different ethnic groups. The differences in host-pathogen interaction among these groups, particularly of Caucasian and African descent, and which gene polymorphisms are prevalent in an African population that possesses protection or risk to disease are reviewed. The information in this review could potentially help develop personalized treatment that could effectively combat the high disease burden in Africa.
Collapse
Affiliation(s)
- Lisa Naidoo
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurban4041South Africa
| |
Collapse
|
3
|
Santiago VF, Dombrowski JG, Kawahara R, Rosa-Fernandes L, Mule SN, Murillo O, Santana TV, Coutinho JVP, Macedo-da-Silva J, Lazari LC, Peixoto EPM, Ramirez MI, Larsen MR, Marinho CRF, Palmisano G. Complement System Activation Is a Plasma Biomarker Signature during Malaria in Pregnancy. Genes (Basel) 2023; 14:1624. [PMID: 37628675 PMCID: PMC10454407 DOI: 10.3390/genes14081624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria in pregnancy (MiP) is a public health problem in malaria-endemic areas, contributing to detrimental outcomes for both mother and fetus. Primigravida and second-time mothers are most affected by severe anemia complications and babies with low birth weight compared to multigravida women. Infected erythrocytes (IE) reach the placenta, activating the immune response by placental monocyte infiltration and inflammation. However, specific markers of MiP result in poor outcomes, such as low birth weight, and intrauterine growth restriction for babies and maternal anemia in women infected with Plasmodium falciparum are limited. In this study, we identified the plasma proteome signature of a mouse model infected with Plasmodium berghei ANKA and pregnant women infected with Plasmodium falciparum infection using quantitative mass spectrometry-based proteomics. A total of 279 and 249 proteins were quantified in murine and human plasma samples, of which 28% and 30% were regulated proteins, respectively. Most of the regulated proteins in both organisms are involved in complement system activation during malaria in pregnancy. CBA anaphylatoxin assay confirmed the complement system activation by the increase in C3a and C4a anaphylatoxins in the infected plasma compared to non-infected plasma. Moreover, correlation analysis showed the association between complement system activation and reduced head circumference in newborns from Pf-infected mothers. The data obtained in this study highlight the correlation between the complement system and immune and newborn outcomes resulting from malaria in pregnancy.
Collapse
Affiliation(s)
- Veronica Feijoli Santiago
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jamille Gregorio Dombrowski
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Rebeca Kawahara
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Analytical Glycoimmunology Group, Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Simon Ngao Mule
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Oscar Murillo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Center Science at Tyler, Tyler, TX 75708, USA
| | - Thais Viggiani Santana
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Joao Victor Paccini Coutinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Janaina Macedo-da-Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Lucas Cardoso Lazari
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Erika Paula Machado Peixoto
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marcel Ivan Ramirez
- Cell Biology Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | | | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Analytical Glycoimmunology Group, Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| |
Collapse
|
4
|
Silva-Pedrosa R, Campos J, Fernandes AM, Silva M, Calçada C, Marote A, Martinho O, Veiga MI, Rodrigues LR, Salgado AJ, Ferreira PE. Cerebral Malaria Model Applying Human Brain Organoids. Cells 2023; 12:cells12070984. [PMID: 37048057 PMCID: PMC10093648 DOI: 10.3390/cells12070984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Neural injuries in cerebral malaria patients are a significant cause of morbidity and mortality. Nevertheless, a comprehensive research approach to study this issue is lacking, so herein we propose an in vitro system to study human cerebral malaria using cellular approaches. Our first goal was to establish a cellular system to identify the molecular alterations in human brain vasculature cells that resemble the blood-brain barrier (BBB) in cerebral malaria (CM). Through transcriptomic analysis, we characterized specific gene expression profiles in human brain microvascular endothelial cells (HBMEC) activated by the Plasmodium falciparum parasites. We also suggest potential new genes related to parasitic activation. Then, we studied its impact at brain level after Plasmodium falciparum endothelial activation to gain a deeper understanding of the physiological mechanisms underlying CM. For that, the impact of HBMEC-P. falciparum-activated secretomes was evaluated in human brain organoids. Our results support the reliability of in vitro cellular models developed to mimic CM in several aspects. These systems can be of extreme importance to investigate the factors (parasitological and host) influencing CM, contributing to a molecular understanding of pathogenesis, brain injury, and dysfunction.
Collapse
Affiliation(s)
- Rita Silva-Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Aline Marie Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Miguel Silva
- Department of Experimental Biology, Section of Microbiology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Carla Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ligia R Rodrigues
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
5
|
Cariaco Y, Durán-Rodriguez AT, Almeida MPO, Silva NM. CCR5 contributes to adverse outcomes during malaria in pregnancy. Cytokine 2023; 162:156110. [PMID: 36565608 DOI: 10.1016/j.cyto.2022.156110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/12/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
CCR5 is a chemokine receptor that mediates cell recruitment to sites of inflammation. It has been previously reported that the expression of CCR5 is increased in the placentas of women with malaria, a disease characterized by causing deliveries with low birth weight among other complications. CCR5 has been associated with pathology of protozoan infections during pregnancy but its role during malaria in pregnancy has not been elucidated. In the present work, we assessed the pregnancy outcome, placental structure, and levels of inflammatory markers of pregnant C57BL/6 and CCR5-/- mice infected or not with Plasmodium berghei NK65, with the purpose of determine the role of CCR5 in pregnancy associated malaria complications. We demonstrated that the expression of CCR5 mRNA increases in late pregnancy placentas of C57BL/6 when compared to uninfected controls. Infected pregnant C57BL/6 mice showed preterm birth, decreased fetal weight, placental inefficiency, and reduced placental vascular space. On the other hand, CCR5 deficiency led to increased levels of maternal parasitemia, reduced fetal weight and placental inefficiency compared to C57BL/6 mice. However, the infection did not cause additional changes in these parameters or in the incidence of preterm delivery in infected CCR5-/- mice in relation to C57BL/6 mice, showing that CCR5 may contribute to the adverse effects caused by infection during pregnancy. This improvement in pregnancy outcome, observed in infected CCR5-/- mice, was accompanied by lower placental levels of the inflammatory markers, such as TNF and NAG. Furthermore, it was observed that the placentas of CCR5-/- animals showed structural differences in relation to C57BL/6 mice, which could improve the efficiency of maternal-fetal exchanges, reflecting on fetal weight. Taken together, these results indicate that CCR5 expression contributes to the adverse outcomes caused by malaria in late pregnancy.
Collapse
Affiliation(s)
- Yusmaris Cariaco
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Andrea Tatiana Durán-Rodriguez
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Marcos Paulo Oliveira Almeida
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Neide Maria Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Naheda A, Aqeel S, Khan K, Khan W, Khan T. Immunohistopathological changes in the placenta of malaria-infected women in unstable transmission setting of Aligarh. Placenta 2022; 127:52-61. [PMID: 35970103 DOI: 10.1016/j.placenta.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION Pregnant women are more susceptible to malaria due to a combination of physiological and immunological changes. The infection may even affect the growth and survival of the foetus, which mainly occur when parasite enters the placenta. The sequestration of infected erythrocytes may trigger the host response, leading to placental inflammation and altered development, affecting the structure and nutrient transport of placenta. These factors collectively impair placental functions and affect foetal growth. METHODS Pregnant women with peripheral parasitaemia for P. falciparum and P. vivax (20 each) were included in the present study, along with 15 age-matched uninfected healthy pregnant women. Placentae were analysed for the presence of local parasitaemia along with pathological lesions caused due to the parasite. Immunohistochemical staining for CD20, CD45 and CD68 cells was performed for examining the specific leucocytes in the intervillous space of the placenta. RESULTS Of the 20 individuals with P. falciparum, only seven placentae showed parasitaemia, whereas individuals with P. vivax showed no placental infection. The pathological changes observed in the P. falciparum-infected placenta include syncytial knotting, excess fibrinoid deposition, syncytiotrophoblast necrosis, syncytial rupture, thickening of trophoblast basement membrane and increased collagen deposition. Immunohistochemical staining showed a significant increase in B cells (CD20), leucocytes (CD45) and monocytes and macrophages (CD68) in the P. falciparum-infected placenta (p < 0.0001). DISCUSSION The result implies that P. falciparum is responsible for pathological alterations in placenta, affecting the nutrient transport across placenta and foetal growth. The immune cells also migrate to the placenta and accumulate in the intervillous space to show humoral and cell-mediated immunity against the parasite.
Collapse
Affiliation(s)
- Ansari Naheda
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India.
| | - Sana Aqeel
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Khadija Khan
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Wajihullah Khan
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India.
| | - Tamkin Khan
- Department of Obstetrics & Gynaecology, Jawaharlal Nehru Medical College & Hospital, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
7
|
Barateiro A, Junior ARC, Epiphanio S, Marinho CRF. Homeostasis Maintenance in Plasmodium-Infected Placentas: Is There a Role for Placental Autophagy During Malaria in Pregnancy? Front Immunol 2022; 13:931034. [PMID: 35898514 PMCID: PMC9309427 DOI: 10.3389/fimmu.2022.931034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria represents a significant public health burden to populations living in developing countries. The disease takes a relevant toll on pregnant women, who are more prone to developing severe clinical manifestations. Inflammation triggered in response to P. falciparum sequestration inside the placenta leads to physiological and structural changes in the organ, reflecting locally disrupted homeostasis. Altogether, these events have been associated with poor gestational outcomes, such as intrauterine growth restriction and premature delivery, contributing to the parturition of thousands of African children with low birth weight. Despite significant advances in the field, the molecular mechanisms that govern these outcomes are still poorly understood. Herein, we discuss the idea of how some housekeeping molecular mechanisms, such as those related to autophagy, might be intertwined with the outcomes of malaria in pregnancy. We contextualize previous findings suggesting that placental autophagy is dysregulated in P. falciparum-infected pregnant women with complementary research describing the importance of autophagy in healthy pregnancies. Since the functional role of autophagy in pregnancy outcomes is still unclear, we hypothesize that autophagy might be essential for circumventing inflammation-induced stress in the placenta, acting as a cytoprotective mechanism that attempts to ensure local homeostasis and better gestational prognosis in women with malaria in pregnancy.
Collapse
Affiliation(s)
- André Barateiro
- Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | | | - Sabrina Epiphanio
- School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analysis, University of São Paulo, São Paulo, Brazil
| | - Claudio Romero Farias Marinho
- Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
- *Correspondence: Claudio Romero Farias Marinho,
| |
Collapse
|
8
|
Rojas-Pirela M, Medina L, Rojas MV, Liempi AI, Castillo C, Pérez-Pérez E, Guerrero-Muñoz J, Araneda S, Kemmerling U. Congenital Transmission of Apicomplexan Parasites: A Review. Front Microbiol 2021; 12:751648. [PMID: 34659187 PMCID: PMC8519608 DOI: 10.3389/fmicb.2021.751648] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Apicomplexans are a group of pathogenic protists that cause various diseases in humans and animals that cause economic losses worldwide. These unicellular eukaryotes are characterized by having a complex life cycle and the ability to evade the immune system of their host organism. Infections caused by some of these parasites affect millions of pregnant women worldwide, leading to various adverse maternal and fetal/placental effects. Unfortunately, the exact pathogenesis of congenital apicomplexan diseases is far from being understood, including the mechanisms of how they cross the placental barrier. In this review, we highlight important aspects of the diseases caused by species of Plasmodium, Babesia, Toxoplasma, and Neospora, their infection during pregnancy, emphasizing the possible role played by the placenta in the host-pathogen interaction.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Maria Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ana Isabel Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | | | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Araneda
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Facultad de Salud y Odontología, Universidad Diego Portales, Santiago, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Sarr D, Oliveira LJ, Russ BN, Owino SO, Middii JD, Mwalimu S, Ambasa L, Almutairi F, Vulule J, Rada B, Moore JM. Myeloperoxidase and Other Markers of Neutrophil Activation Associate With Malaria and Malaria/HIV Coinfection in the Human Placenta. Front Immunol 2021; 12:682668. [PMID: 34737733 PMCID: PMC8562302 DOI: 10.3389/fimmu.2021.682668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023] Open
Abstract
Introduction Placental malaria (PM) is characterized by accumulation of inflammatory leukocytes in the placenta, leading to poor pregnancy outcomes. Understanding of the underlying mechanisms remains incomplete. Neutrophils respond to malaria parasites by phagocytosis, generation of oxidants, and externalization of Neutrophil Extracellular Traps (NETs). NETs drive inflammation in malaria but evidence of NETosis in PM has not been reported. Neutrophil activity in the placenta has not been directly investigated in the context of PM and PM/HIV-co-infection. Methods Using peripheral and placental plasma samples and placental tissue collected from Kenyan women at risk for malaria and HIV infections, we assessed granulocyte levels across all gravidities and markers of neutrophil activation, including NET formation, in primi- and secundigravid women, by ELISA, western blot, immunohistochemistry and immunofluorescence. Results Reduced peripheral blood granulocyte numbers are observed with PM and PM/HIV co-infection in association with increasing parasite density and placental leukocyte hemozoin accumulation. In contrast, placental granulocyte levels are unchanged across infection groups, resulting in enhanced placental: peripheral count ratios with PM. Within individuals, PM- women have reduced granulocyte counts in placental relative to peripheral blood; in contrast, PM stabilizes these relative counts, with HIV coinfection tending to elevate placental counts relative to the periphery. In placental blood, indicators of neutrophil activation, myeloperoxidase (MPO) and proteinase 3 (PRTN3), are significantly elevated with PM and, more profoundly, with PM/HIV co-infection, in association with placental parasite density and hemozoin-bearing leukocyte accumulation. Another neutrophil marker, matrix metalloproteinase (MMP9), together with MPO and PRTN3, is elevated with self-reported fever. None of these factors, including the neutrophil chemoattractant, CXCL8, differs in relation to infant birth weight or gestational age. CXCL8 and MPO levels in the peripheral blood do not differ with infection status nor associate with birth outcomes. Indicators of NETosis in the placental plasma do not vary with infection, and while structures consistent with NETs are observed in placental tissue, the results do not support an association with PM. Conclusions Granulocyte levels are differentially regulated in the peripheral and placental blood in the presence and absence of PM. PM, both with and without pre-existing HIV infection, enhances neutrophil activation in the placenta. The impact of local neutrophil activation on placental function and maternal and fetal health remains unclear. Additional investigations exploring how neutrophil activation and NETosis participate in the pathogenesis of malaria in pregnant women are needed.
Collapse
Affiliation(s)
- Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Lilian J. Oliveira
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Brittany N. Russ
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Simon O. Owino
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
- Vector Biology and Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya
- University of Georgia/Kenya Medical Research Institute Placental Malaria Study, Siaya District Hospital, Siaya, Kenya
- Faculty of Science, Department of Zoology, Maseno University, Maseno, Kenya
| | - Joab D. Middii
- Vector Biology and Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya
- University of Georgia/Kenya Medical Research Institute Placental Malaria Study, Siaya District Hospital, Siaya, Kenya
- Kisumu Specialists Hospital Laboratory, Kisumu, Kenya
| | - Stephen Mwalimu
- Vector Biology and Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya
- University of Georgia/Kenya Medical Research Institute Placental Malaria Study, Siaya District Hospital, Siaya, Kenya
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Linda Ambasa
- Vector Biology and Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya
- University of Georgia/Kenya Medical Research Institute Placental Malaria Study, Siaya District Hospital, Siaya, Kenya
- #1 Heartsaved Adult Family Care, Marysville, WA, United States
| | - Faris Almutairi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | - John Vulule
- Vector Biology and Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Julie M. Moore
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
- Vector Biology and Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya
- University of Georgia/Kenya Medical Research Institute Placental Malaria Study, Siaya District Hospital, Siaya, Kenya
| |
Collapse
|
10
|
Sirisabhabhorn K, Chaijaroenkul W, Na-Bangchang K. Genetic Diversity of Human Host Genes Involved in Immune Response and the Binding of Malaria Parasite in Patients Residing along the Thai-Myanmar border. Trop Med Infect Dis 2021; 6:tropicalmed6040174. [PMID: 34698295 PMCID: PMC8544681 DOI: 10.3390/tropicalmed6040174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/05/2022] Open
Abstract
Polymorphisms of the genes encoding proteins involved in immune functions and the binding of malaria parasites to human host cells have been the focus of research in recent years, aiming to understand malaria pathogenesis and case severity and to exploit this knowledge to assert control over malaria. This study investigated the genetic diversity of the human host genes encoding proteins that are involved in immune functions and malaria parasite binding, i.e., MCP1 (−2518), TGFβ1 (−509), TNFα (−308), IL4 (VNTR), IL6 (−174), IL10 (−3575), TLR4 (299), CD36 (−188), and ICAM1 (469) in patients with mono-infection of Plasmodium falciparum and Plasmodium vivax infections in the multidrug-resistant areas along the Thai-Myanmar border. The association between gene polymorphisms and parasite density was also investigated. Genomic DNA (gDNA) of P. falciparum and P. vivax were extracted from whole blood and dried blood spot (DBS). Gene amplification and genotyping were performed by PCR and PCR-RFLP analysis, respectively. Of these samples, 178 and 209 samples were, respectively, mono-infection with P. falciparum and P. vivax. The ratio of P. falciparum: P. vivax was 46%:54%. Results showed marked variation in the frequency distribution and patterns of the genotypes and gene alleles of the nine immune response genes or human host genes. The SNPs of TGFβ1, IL10 and ICAM1, were significantly associated with P. falciparum, but not P. vivax parasite density. TGFβ1, IL10 and ICAM1, may play more significant roles in modulating P. falciparum than P. vivax parasitemia. The prevalence of the genotypes and gene alleles of these genes, including their association with parasite density, may vary depending on patient ethnicity and endemic areas. Information obtained from each endemic area is essential for treatment strategies and the development of vaccines for malaria prophylaxis in specific areas.
Collapse
Affiliation(s)
- Kridsada Sirisabhabhorn
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathumthani 12121, Thailand; (K.S.); (W.C.)
| | - Wanna Chaijaroenkul
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathumthani 12121, Thailand; (K.S.); (W.C.)
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University (Rangsit Campus), Pathumthani 12121, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathumthani 12121, Thailand; (K.S.); (W.C.)
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University (Rangsit Campus), Pathumthani 12121, Thailand
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Pathumthani 12121, Thailand
- Correspondence: or ; Tel.: +662-564-4440-79 (ext. 1803); Fax: +662-564-4398
| |
Collapse
|
11
|
Dombrowski JG, Barateiro A, Peixoto EPM, Barros ABCDS, de Souza RM, Clark TG, Campino S, Wrenger C, Wunderlich G, Palmisano G, Epiphanio S, Gonçalves LA, Marinho CRF. Adverse pregnancy outcomes are associated with Plasmodium vivax malaria in a prospective cohort of women from the Brazilian Amazon. PLoS Negl Trop Dis 2021; 15:e0009390. [PMID: 33914739 PMCID: PMC8112668 DOI: 10.1371/journal.pntd.0009390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/11/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Malaria in Brazil represents one of the highest percentages of Latin America cases, where approximately 84% of infections are attributed to Plasmodium (P.) vivax. Despite the high incidence, many aspects of gestational malaria resulting from P. vivax infections remain poorly studied. As such, we aimed to evaluate the consequences of P. vivax infections during gestation on the health of mothers and their neonates in an endemic area of the Amazon. METHODS AND FINDINGS We have conducted an observational cohort study in Brazilian Amazon between January 2013 and April 2015. 600 pregnant women were enrolled and followed until delivery. After applying exclusion criteria, 329 mother-child pairs were included in the analysis. Clinical data regarding maternal infection, newborn's anthropometric measures, placental histopathological characteristics, and angiogenic and inflammatory factors were evaluated. The presence of plasma IgG against the P. vivax (Pv) MSP119 protein was used as marker of exposure and possible associations with pregnancy outcomes were analyzed. Multivariate logistic regression analysis revealed that P. vivax infections during the first trimester of pregnancy are associated with adverse gestational outcomes such as premature birth (adjusted odds ratio [aOR] 8.12, 95% confidence interval [95%CI] 2.69-24.54, p < 0.0001) and reduced head circumference (aOR 3.58, 95%CI 1.29-9.97, p = 0.01). Histopathology analysis showed marked differences between placentas from P. vivax-infected and non-infected pregnant women, especially regarding placental monocytes infiltrate. Placental levels of vasomodulatory factors such as angiopoietin-2 (ANG-2) and complement proteins such as C5a were also altered at delivery. Plasma levels of anti-PvMSP119 IgG in infected pregnant women were shown to be a reliable exposure marker; yet, with no association with improved pregnancy outcomes. CONCLUSIONS This study indicates that P. vivax malaria during the first trimester of pregnancy represents a higher likelihood of subsequent poor pregnancy outcomes associated with marked placental histologic modification and angiogenic/inflammatory imbalance. Additionally, our findings support the idea that antibodies against PvMSP119 are not protective against poor pregnancy outcomes induced by P. vivax infections.
Collapse
Affiliation(s)
| | - André Barateiro
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Taane Gregory Clark
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Susana Campino
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gerhard Wunderlich
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sabrina Epiphanio
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lígia Antunes Gonçalves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
12
|
Chua CLL, Hasang W, Rogerson SJ, Teo A. Poor Birth Outcomes in Malaria in Pregnancy: Recent Insights Into Mechanisms and Prevention Approaches. Front Immunol 2021; 12:621382. [PMID: 33790894 PMCID: PMC8005559 DOI: 10.3389/fimmu.2021.621382] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
Pregnant women in malaria-endemic regions are susceptible to malaria in pregnancy, which has adverse consequences on birth outcomes, including having small for gestational age and preterm babies. These babies are likely to have low birthweights, which predisposes to infant mortality and lifelong morbidities. During malaria in pregnancy, Plasmodium falciparum-infected erythrocytes express a unique variant surface antigen, VAR2CSA, that mediates sequestration in the placenta. This process may initiate a range of host responses that contribute to placental inflammation and dysregulated placental development, which affects placental vasculogenesis, angiogenesis and nutrient transport. Collectively, these result in the impairment of placental functions, affecting fetal development. In this review, we provide an overview of malaria in pregnancy and the different pathological pathways leading to malaria in pregnancy-associated low birthweight. We also discuss current prevention and management strategies for malaria in pregnancy, and some potential therapeutic interventions that may improve birth outcomes. Lastly, we outline some priorities for future research that could bring us one step closer to reducing this health burden.
Collapse
Affiliation(s)
| | - Wina Hasang
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Teo
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
13
|
Brady CA, Williams C, Sharps MC, Shelleh A, Batra G, Heazell AEP, Crocker IP. Chronic histiocytic intervillositis: A breakdown in immune tolerance comparable to allograft rejection? Am J Reprod Immunol 2021; 85:e13373. [PMID: 33155353 PMCID: PMC7988544 DOI: 10.1111/aji.13373] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/14/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic histiocytic intervillositis (CHI) is a pregnancy disorder characterized by infiltration of maternal macrophages into the intervillous space of the human placenta, often with accompanying perivillous fibrin deposition. CHI is associated strongly with foetal growth restriction and increased risk of miscarriage and stillbirth. Although rare, affecting 6 in every 10 000 pregnancies beyond 12 weeks' gestation, the rate of recurrence is high at 25%-100%. To date, diagnosis of CHI can only be made post-delivery upon examination of the placenta due to a lack of diagnostic biomarkers, and criteria vary across publications. No treatment options have shown proven efficacy, and CHI remains a serious obstetric conundrum. Although its underlying aetiology is unclear, due to the presence of maternal macrophages and the reported increased incidence in women with autoimmune disease, CHI is hypothesized to be an inappropriate immune response to the semi-allogeneic foetus. Given this lack of understanding, treatment approaches remain experimental with limited rationale. However, there is recent evidence that immunosuppression and antithrombotic therapies may be effective in preventing recurrence of associated adverse pregnancy outcomes. With similarities noted between the pathological features of CHI and acute rejection of solid organ transplants, further investigation of this hypothesis may provide a basis for tackling CHI and other immune-related placental conditions. This review will explore parallels between CHI and allograft rejection and identify areas requiring further confirmation and exploitation of this comparison.
Collapse
Affiliation(s)
- Chloe A. Brady
- Tommy's Maternal and Fetal Health Research CentreSt. Mary’s HospitalThe University of ManchesterManchesterUK
| | - Charlotte Williams
- Tommy's Maternal and Fetal Health Research CentreSt. Mary’s HospitalThe University of ManchesterManchesterUK
- University of ExeterExeterUK
| | - Megan C. Sharps
- Tommy's Maternal and Fetal Health Research CentreSt. Mary’s HospitalThe University of ManchesterManchesterUK
| | - Amena Shelleh
- St Mary’s HospitalManchester University NHS Foundation TrustManchesterUK
| | - Gauri Batra
- Paediatric HistopathologyCentral Manchester University Hospitals NHS Foundation TrustManchesterUK
| | - Alexander E. P. Heazell
- Tommy's Maternal and Fetal Health Research CentreSt. Mary’s HospitalThe University of ManchesterManchesterUK
- St Mary’s HospitalManchester University NHS Foundation TrustManchesterUK
| | - Ian P. Crocker
- Tommy's Maternal and Fetal Health Research CentreSt. Mary’s HospitalThe University of ManchesterManchesterUK
| |
Collapse
|
14
|
Tomlinson A, Semblat JP, Gamain B, Chêne A. VAR2CSA-Mediated Host Defense Evasion of Plasmodium falciparum Infected Erythrocytes in Placental Malaria. Front Immunol 2021; 11:624126. [PMID: 33633743 PMCID: PMC7900151 DOI: 10.3389/fimmu.2020.624126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 12/04/2022] Open
Abstract
Over 30 million women living in P. falciparum endemic areas are at risk of developing malaria during pregnancy every year. Placental malaria is characterized by massive accumulation of infected erythrocytes in the intervillous space of the placenta, accompanied by infiltration of immune cells, particularly monocytes. The consequent local inflammation and the obstruction of the maternofetal exchanges can lead to severe clinical outcomes for both mother and child. Even if protection against the disease can gradually be acquired following successive pregnancies, the malaria parasite has developed a large panel of evasion mechanisms to escape from host defense mechanisms and manipulate the immune system to its advantage. Infected erythrocytes isolated from placentas of women suffering from placental malaria present a unique phenotype and express the pregnancy-specific variant VAR2CSA of the Plasmodium falciparum Erythrocyte Membrane Protein (PfEMP1) family at their surface. The polymorphic VAR2CSA protein is able to mediate the interaction of infected erythrocytes with a variety of host cells including placental syncytiotrophoblasts and leukocytes but also with components of the immune system such as non-specific IgM. This review summarizes the described VAR2CSA-mediated host defense evasion mechanisms employed by the parasite during placental malaria to ensure its survival and persistence.
Collapse
Affiliation(s)
- Alice Tomlinson
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Jean-Philippe Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Benoît Gamain
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Arnaud Chêne
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
15
|
Harp KO, Botchway F, Dei-Adomakoh Y, Wilson MD, Hood JL, Adjei AA, Stiles JK, Driss A. Hemoglobin Genotypes Modulate Inflammatory Response to Plasmodium Infection. Front Immunol 2020; 11:593546. [PMID: 33424841 PMCID: PMC7786007 DOI: 10.3389/fimmu.2020.593546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022] Open
Abstract
In 2018, 228 million cases and 405,000 malaria-associated deaths were reported worldwide with a majority being in Africa. A wide range of factors, including parasitemia, host immunity, inflammatory responses to infection, and host hemoglobin genotype, mediate the severity of malaria. Among the hemoglobinopathies, hemoglobin S (HbS) is caused by a single amino acid substitution of Glutamic Acid replaced by Valine at the sixth position of the beta-globin chain (E6V). Hemoglobin C (HbC) on the other hand, involves a single amino acid substitution of Glutamic Acid by a Lysine (E6K), which has received the most attention. These substitutions alter the stability of Hb leading to wide-ranging hematological disorders. The homozygous state of hemoglobin S (HbSS) results in sickle cell anemia (SCA) whereas the heterozygous state (HbAS) results in sickle cell trait (SCT). Both mutations are reported to mediate the reduction in the severity and fatality of Plasmodium falciparum malaria. The mechanism underlying this protection is poorly understood. Since both malaria and sickle cell disease (SCD) are associated with the destruction of erythrocytes and widespread systemic inflammation, identifying which inflammatory factor(s) mediate susceptibility of individuals with different hemoglobin genotypes to Plasmodium infection could result in the discovery of new predictive markers and interventions against malaria or SCD severity. We hypothesized that hemoglobin genotypes modulate the inflammatory response to Plasmodium infection. We conducted a cross-sectional study in Ghana, West Africa, between 2014 and 2019 to ascertain the relationships between blood inflammatory cytokines, Plasmodium infection, and hemoglobin genotype. A total of 923 volunteers were enrolled in the study. A total of 74, age and sex-matched subjects were identified with various genotypes including HbAS, HbAC, HbSS, HbSC, HbCC, or HbAA. Complete blood counts and serum inflammatory cytokine expression levels were assessed. The results indicate that differential expression of CXCL10, TNF-α, CCL2, IL-8, and IL-6 were tightly linked to hemoglobin genotype and severity of Plasmodium infection and that these cytokine levels may be predictive for susceptibility to severe malaria or SCD severity.
Collapse
Affiliation(s)
- Keri Oxendine Harp
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Felix Botchway
- Department of Pathology, Korle-Bu Teaching Hospital, University of Ghana Medical School, Accra, Ghana
| | | | - Michael D Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joshua L Hood
- Department of Pharmacology and Toxicology & the James Graham Brown Cancer Center & the Hepatobiology and Toxicology COBRE, University of Louisville, School of Medicine, Louisville, KY, United States
| | - Andrew A Adjei
- Department of Pathology, Korle-Bu Teaching Hospital, University of Ghana Medical School, Accra, Ghana
| | - Jonathan K Stiles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Adel Driss
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
16
|
Mezouar S, Katsogiannou M, Ben Amara A, Bretelle F, Mege JL. Placental macrophages: Origin, heterogeneity, function and role in pregnancy-associated infections. Placenta 2020; 103:94-103. [PMID: 33120051 PMCID: PMC7568513 DOI: 10.1016/j.placenta.2020.10.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
Placental macrophages are a heterogenous population of immune cells present throughout pregnancy. They are essential for maintenance of the homeostatic placenta environment and host defense against infections. The characterization of placental macrophages as well as their activation have been limited for a long time by the lack of convenient tools. The emergence of unbiased methods makes it possible to reappraise the study of placental macrophages. In this review, we discuss the diversity and the functions of placental macrophages to better understand their dysfunctions during placental infections.
Collapse
Affiliation(s)
- Soraya Mezouar
- Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France; IHU - Mediterranean Infection, Marseille, France.
| | - Maria Katsogiannou
- Hôpital Saint Joseph, Department of Obstetrics and Gynecology, FR-13008, Marseille, France
| | - Amira Ben Amara
- Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France; IHU - Mediterranean Infection, Marseille, France
| | - Florence Bretelle
- Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France; IHU - Mediterranean Infection, Marseille, France; AP-HM, Gynecology Department, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France; IHU - Mediterranean Infection, Marseille, France; AP-HM, UF Immunology, Marseille, France.
| |
Collapse
|
17
|
Jabbarzare M, Njie M, Jaworowski A, Umbers AJ, Ome-Kaius M, Hasang W, Randall LM, Kalionis B, Rogerson SJ. Innate immune responses to malaria-infected erythrocytes in pregnant women: Effects of gravidity, malaria infection, and geographic location. PLoS One 2020; 15:e0236375. [PMID: 32726331 PMCID: PMC7390391 DOI: 10.1371/journal.pone.0236375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/02/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Malaria in pregnancy causes maternal, fetal and neonatal morbidity and mortality, and maternal innate immune responses are implicated in pathogenesis of these complications. The effects of malaria exposure and obstetric and demographic factors on the early maternal immune response are poorly understood. METHODS Peripheral blood mononuclear cell responses to Plasmodium falciparum-infected erythrocytes and phytohemagglutinin were compared between pregnant women from Papua New Guinea (malaria-exposed) with and without current malaria infection and from Australia (unexposed). Elicited levels of inflammatory cytokines at 48 h and 24 h (interferon γ, IFN-γ only) and the cellular sources of IFN-γ were analysed. RESULTS Among Papua New Guinean women, microscopic malaria at enrolment did not alter peripheral blood mononuclear cell responses. Compared to samples from Australia, cells from Papua New Guinean women secreted more inflammatory cytokines tumor necrosis factor-α, interleukin 1β, interleukin 6 and IFN-γ; p<0.001 for all assays, and more natural killer cells produced IFN-γ in response to infected erythrocytes and phytohemagglutinin. In both populations, cytokine responses were not affected by gravidity, except that in the Papua New Guinean cohort multigravid women had higher IFN-γ secretion at 24 h (p = 0.029) and an increased proportion of IFN-γ+ Vδ2 γδ T cells (p = 0.003). Cytokine levels elicited by a pregnancy malaria-specific CSA binding parasite line, CS2, were broadly similar to those elicited by CD36-binding line P6A1. CONCLUSIONS Geographic location and, to some extent, gravidity influence maternal innate immunity to malaria.
Collapse
MESH Headings
- Adolescent
- Adult
- Australia/epidemiology
- CD36 Antigens/genetics
- Erythrocytes/immunology
- Erythrocytes/parasitology
- Erythrocytes/pathology
- Female
- Gravidity/immunology
- Humans
- Immunity, Innate/genetics
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interleukin-6/genetics
- Killer Cells, Natural/immunology
- Killer Cells, Natural/parasitology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/parasitology
- Leukocytes, Mononuclear/pathology
- Malaria, Falciparum/epidemiology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Middle Aged
- Papua New Guinea/epidemiology
- Plasmodium falciparum/immunology
- Plasmodium falciparum/pathogenicity
- Pregnancy
- Pregnancy Complications, Parasitic/immunology
- Pregnancy Complications, Parasitic/parasitology
- Pregnancy Complications, Parasitic/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/parasitology
- Young Adult
Collapse
Affiliation(s)
- Marzieh Jabbarzare
- Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, Australia
- * E-mail:
| | - Madi Njie
- Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Anthony Jaworowski
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Alexandra J. Umbers
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Maria Ome-Kaius
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Wina Hasang
- Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Louise M. Randall
- Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women’s Hospital Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
| | - Stephen J. Rogerson
- Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, Australia
| |
Collapse
|
18
|
Thompson JM, Eick SM, Dailey C, Dale AP, Mehta M, Nair A, Cordero JF, Welton M. Relationship Between Pregnancy-Associated Malaria and Adverse Pregnancy Outcomes: a Systematic Review and Meta-Analysis. J Trop Pediatr 2020; 66:327-338. [PMID: 31598714 DOI: 10.1093/tropej/fmz068] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Pregnancy-associated malaria (PAM) has been associated with adverse pregnancy outcomes like preterm birth (PTB) and low birthweight (LBW), which are among the leading causes of infant mortality globally. Rates of PTB and LBW are high in countries with a high burden of malaria. PAM may be a contributing factor to PTB and LBW, but is not well understood. METHODS We conducted a systematic review and meta-analysis of studies examining the relationship between PAM and PTB or LBW using PubMed. The title and abstract of all studies were screened by two reviewers, and the full text of selected studies was reviewed to ensure they met inclusion criteria. Information regarding study characteristics and of PTB and LBW births among women with and without PAM was abstracted for included studies. RESULTS Our search terms yielded 2237 articles, of which 18 met our final inclusion criteria. Eight studies examined associations between PAM and PTB, and 10 examined associations between PAM and LBW (population size ranging from 35 to 9956 women). The overall risk of LBW was 63% higher among women with PAM compared with women without PAM (95% CI = 1.48-1.80) and the risk of PTB was 23% higher among women with PAM compared with women without PAM (95% CI = 1.07-1.41). CONCLUSIONS These results indicate that infection with PAM is associated with PTB and LBW. Further understanding of the pathogenesis of disease and the immunologic changes that occur during pregnancy is essential for reducing the disproportional effects this disease has on this vulnerable population.
Collapse
Affiliation(s)
- Julie M Thompson
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, 30605 Athens, GA, USA.,College of Veterinary Medicine, University of Georgia, 30602 Athens, GA, USA
| | - Stephanie M Eick
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Services, University of California, San Francisco, 94158 San Francisco, CA, USA
| | - Cody Dailey
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, 30605 Athens, GA, USA.,Odum School of Ecology, University of Georgia, 30602 Athens, GA, USA
| | - Ariella P Dale
- Colorado Department of Public Health & Environment, 80246 Denver, CO, USA
| | - Mansi Mehta
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, 30605 Athens, GA, USA
| | - Anjali Nair
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, 30605 Athens, GA, USA
| | - José F Cordero
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, 30605 Athens, GA, USA
| | - Michael Welton
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, 30605 Athens, GA, USA
| |
Collapse
|
19
|
Cytokine signatures of Plasmodium vivax infection during pregnancy and delivery outcomes. PLoS Negl Trop Dis 2020; 14:e0008155. [PMID: 32365058 PMCID: PMC7224570 DOI: 10.1371/journal.pntd.0008155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/14/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
Plasmodium vivax malaria is a neglected disease, particularly during pregnancy. Severe vivax malaria is associated with inflammatory responses but in pregnancy immune alterations make it uncertain as to what cytokine signatures predominate, and how the type and quantity of blood immune mediators influence delivery outcomes. We measured the plasma concentrations of a set of thirty-one biomarkers, comprising cytokines, chemokines and growth factors, in 987 plasma samples from a cohort of 572 pregnant women from five malaria-endemic tropical countries and related these concentrations to delivery outcomes (birth weight and hemoglobin levels) and malaria infection. Samples were collected at recruitment (first antenatal visit) and at delivery (periphery, cord and placenta). At recruitment, we found that P. vivax–infected pregnant women had higher plasma concentrations of proinflammatory (IL-6, IL-1β, CCL4, CCL2, CXCL10) and TH1-related cytokines (mainly IL-12) than uninfected women. This biomarker signature was essentially lost at delivery and was not associated with birth weight nor hemoglobin levels. Antiinflammatory cytokines (IL-10) were positively associated with infection and poor delivery outcomes. CCL11 was the only biomarker to show a negative association with P. vivax infection and its concentration at recruitment was positively associated with hemoglobin levels at delivery. Birth weight was negatively associated with peripheral IL-4 levels at delivery. Our multi-biomarker multicenter study is the first comprehensive one to characterize the immunological signature of P. vivax infection in pregnancy thus far. In conclusion, data show that while TH1 and pro-inflammatory responses are dominant during P. vivax infection in pregnancy, antiinflammatory cytokines may compensate excessive inflammation avoiding poor delivery outcomes, and skewness toward a TH2 response may trigger worse delivery outcomes. CCL11, a chemokine largely neglected in the field of malaria, emerges as an important marker of exposure or mediator in this condition. Cytokine and growth factor plasma concentrations were evaluated in women from five countries endemic for malaria vivax, at different moments and blood compartments during pregnancy. P. vivax infection during pregnancy was associated with a pro-inflammatory and TH1 response, together with an antiinflammatory response. Nevertheless, at delivery most associations between cytokines and infection were lost. Of note, CCL11/eotaxin, a chemokine not generally analyzed in malaria studies, presented a lower concentration in P. vivax-infected women and a protective association with hemoglobin levels at delivery. Moreover, IL-4 levels had a negative association with birth weight. Data suggest that a compensated inflammatory/antiinflammatory response in P. vivax infection during pregnancy might avoid poor delivery outcomes, while a predominance of TH2 responses may be detrimental for birth weight. Further research is warranted to unravel the role of CCL11 in malaria infection or exposure.
Collapse
|
20
|
De Niz M, Carvalho T, Penha-Gonçalves C, Agop-Nersesian C. Intravital imaging of host-parasite interactions in organs of the thoracic and abdominopelvic cavities. Cell Microbiol 2020; 22:e13201. [PMID: 32149435 DOI: 10.1111/cmi.13201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
Abstract
Infections with protozoan and helminthic parasites affect multiple organs in the mammalian host. Imaging pathogens in their natural environment takes a more holistic view on biomedical aspects of parasitic infections. Here, we focus on selected organs of the thoracic and abdominopelvic cavities most commonly affected by parasites. Parasitic infections of these organs are often associated with severe medical complications or have health implications beyond the infected individual. Intravital imaging has provided a more dynamic picture of the host-parasite interplay and contributed not only to our understanding of the various disease pathologies, but has also provided fundamental insight into the biology of the parasites.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tânia Carvalho
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | | |
Collapse
|
21
|
Gbedande K, Carpio VH, Stephens R. Using two phases of the CD4 T cell response to blood-stage murine malaria to understand regulation of systemic immunity and placental pathology in Plasmodium falciparum infection. Immunol Rev 2020; 293:88-114. [PMID: 31903675 PMCID: PMC7540220 DOI: 10.1111/imr.12835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Plasmodium falciparum infection and malaria remain a risk for millions of children and pregnant women. Here, we seek to integrate knowledge of mouse and human T helper cell (Th) responses to blood-stage Plasmodium infection to understand their contribution to protection and pathology. Although there is no complete Th subset differentiation, the adaptive response occurs in two phases in non-lethal rodent Plasmodium infection, coordinated by Th cells. In short, cellular immune responses limit the peak of parasitemia during the first phase; in the second phase, humoral immunity from T cell-dependent germinal centers is critical for complete clearance of rapidly changing parasite. A strong IFN-γ response kills parasite, but an excess of TNF compared with regulatory cytokines (IL-10, TGF-β) can cause immunopathology. This common pathway for pathology is associated with anemia, cerebral malaria, and placental malaria. These two phases can be used to both understand how the host responds to rapidly growing parasite and how it attempts to control immunopathology and variation. This dual nature of T cell immunity to Plasmodium is discussed, with particular reference to the protective nature of the continuous generation of effector T cells, and the unique contribution of effector memory T cells.
Collapse
Affiliation(s)
- Komi Gbedande
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Victor H Carpio
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Robin Stephens
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
22
|
Dobbs KR, Crabtree JN, Dent AE. Innate immunity to malaria-The role of monocytes. Immunol Rev 2020; 293:8-24. [PMID: 31840836 PMCID: PMC6986449 DOI: 10.1111/imr.12830] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Monocytes are innate immune cells essential for host protection against malaria. Upon activation, monocytes function to help reduce parasite burden through phagocytosis, cytokine production, and antigen presentation. However, monocytes have also been implicated in the pathogenesis of severe disease through production of damaging inflammatory cytokines, resulting in systemic inflammation and vascular dysfunction. Understanding the molecular pathways influencing the balance between protection and pathology is critical. In this review, we discuss recent data regarding the role of monocytes in human malaria, including studies of innate sensing of the parasite, immunometabolism, and innate immune training. Knowledge gained from these studies may guide rational development of novel antimalarial therapies and inform vaccine development.
Collapse
Affiliation(s)
- Katherine R. Dobbs
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
- Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Juliet N. Crabtree
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Arlene E. Dent
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
- Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| |
Collapse
|
23
|
Lima FA, Barateiro A, Dombrowski JG, de Souza RM, Costa DDS, Murillo O, Epiphanio S, Gonçalves LA, Marinho CRF. Plasmodium falciparum infection dysregulates placental autophagy. PLoS One 2019; 14:e0226117. [PMID: 31805150 PMCID: PMC6894763 DOI: 10.1371/journal.pone.0226117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/18/2019] [Indexed: 11/18/2022] Open
Abstract
Plasmodium (P.) falciparum malaria during pregnancy has been frequently associated with severe consequences such as maternal anemia, abortion, premature birth, and reduced birth weight. Placental damage promotes disruption of the local homeostasis; though, the mechanisms underlying these events are still to be elucidated. Autophagy is a fundamental homeostatic mechanism in the natural course of pregnancy by which cells self-recycle in order to survive in stressful environments. Placentas from non-infected and P. falciparum-infected women during pregnancy were selected from a previous prospective cohort study conducted in the Brazilian Amazon (Acre, Brazil). Newborns from infected women experienced reduced birth weight (P = 0.0098) and placental immunopathology markers such as monocyte infiltrate (P < 0.0001) and IL-10 production (P = 0.0122). The placentas were evaluated for autophagy-related molecules. As a result, we observed reduced mRNA levels of ULK1 (P = 0.0255), BECN1 (P = 0.0019), and MAP1LC3B (P = 0.0086) genes in placentas from P. falciparum-infected, which was more striking in those diagnosed with placental malaria. Despite the protein levels of these genes followed the same pattern, the observed reduction was not statistically significant in placentas from P. falciparum-infected women. Nevertheless, our data suggest that chronic placental immunopathology due to P. falciparum infection leads to autophagy dysregulation, which might impair local homeostasis during malaria in pregnancy that may result in poor pregnancy outcomes.
Collapse
Affiliation(s)
- Flávia Afonso Lima
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - André Barateiro
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Douglas de Sousa Costa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Oscar Murillo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sabrina Epiphanio
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lígia Antunes Gonçalves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
24
|
Barateiro A, Pereira MLM, Epiphanio S, Marinho CRF. Contribution of Murine Models to the Study of Malaria During Pregnancy. Front Microbiol 2019; 10:1369. [PMID: 31275284 PMCID: PMC6594417 DOI: 10.3389/fmicb.2019.01369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/31/2019] [Indexed: 01/26/2023] Open
Abstract
Annually, many pregnancies occur in areas of Plasmodium spp. transmission, particularly in underdeveloped countries with widespread poverty. Estimations have suggested that several million women are at risk of developing malaria during pregnancy. In particular cases, systemic infection caused by Plasmodium spp. may extend to the placenta, dysregulating local homeostasis and promoting the onset of placental malaria; these processes are often associated with increased maternal and fetal mortality, intrauterine growth restriction, preterm delivery, and reduced birth weight. The endeavor to understand and characterize the mechanisms underlying disease onset and placental pathology face several ethical and logistical obstacles due to explicit difficulties in assessing human gestation and biological material. Consequently, the advent of murine experimental models for the study of malaria during pregnancy has substantially contributed to our understanding of this complex pathology. Herein, we summarize research conducted during recent decades using murine models of malaria during pregnancy and highlight the most relevant findings, as well as discuss similarities to humans and the translational capacity of achieved results.
Collapse
Affiliation(s)
- André Barateiro
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcelo L M Pereira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Institute of Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Sabrina Epiphanio
- Department of Clinical Analysis and Toxicology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Pandya Y, Penha-Gonçalves C. Maternal-Fetal Conflict During Infection: Lessons From a Mouse Model of Placental Malaria. Front Microbiol 2019; 10:1126. [PMID: 31178840 PMCID: PMC6542978 DOI: 10.3389/fmicb.2019.01126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Infections that reach the placenta via maternal blood can target the fetal-placental barrier and are associated with reduced birth weight, increased stillbirth, miscarriage and perinatal mortality. Malaria during pregnancy can lead to infection of the placental tissue and to adverse effects on the unborn child even if the parasite is successfully cleared, indicating that placental sufficiency is significantly compromised. Human samples and animal models of placental malaria have been used to unravel mechanisms contributing to this insufficiency and have implicated molecular pathways related to inflammation, innate immunity and nutrient transport. Remarkably, fetal TLR4 was found to take part in placental responses that protect the fetus, in contrast to maternal TLR4 responses that presumably preserve the mother‘s health but result in reduced fetal viability. We propose that this conflict of fetal and maternal responses is a determinant of the clinical outcomes of placental malaria and that fetally derived trophoblasts are on the front lines of this conflict.
Collapse
Affiliation(s)
- Yash Pandya
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
26
|
Seitz J, Morales-Prieto DM, Favaro RR, Schneider H, Markert UR. Molecular Principles of Intrauterine Growth Restriction in Plasmodium Falciparum Infection. Front Endocrinol (Lausanne) 2019; 10:98. [PMID: 30930847 PMCID: PMC6405475 DOI: 10.3389/fendo.2019.00098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Malaria in pregnancy still constitutes a particular medical challenge in tropical and subtropical regions. Of the five Plasmodium species that are pathogenic to humans, infection with Plasmodium falciparum leads to fulminant progression of the disease with massive impact on pregnancy. Severe anemia of the mother, miscarriage, stillbirth, preterm delivery and intrauterine growth restriction (IUGR) with reduced birth weight are frequent complications that lead to more than 10,000 maternal and 200,000 perinatal deaths annually in sub-Saharan Africa alone. P. falciparum can adhere to the placenta via the expression of the surface antigen VAR2CSA, which leads to sequestration of infected erythrocytes in the intervillous space. This process induces a placental inflammation with involvement of immune cells and humoral factors. Especially, monocytes get activated and change the release of soluble mediators, including a variety of cytokines. This proinflammatory environment contributes to disorders of angiogenesis, blood flow, autophagy, and nutrient transport in the placenta and erythropoiesis. Collectively, they impair placental functions and, consequently, fetal growth. The discovery that women in endemic regions develop a certain immunity against VAR2CSA-expressing parasites with increasing number of pregnancies has redefined the understanding of malaria in pregnancy and offers strategies for the development of vaccines. The following review gives an overview of molecular processes in P. falciparum infection in pregnancy which may be involved in the development of IUGR.
Collapse
Affiliation(s)
- Johanna Seitz
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | | | - Rodolfo R. Favaro
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Henning Schneider
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Udo Rudolf Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| |
Collapse
|
27
|
Kawahara R, Rosa-Fernandes L, Dos Santos AF, Bandeira CL, Dombrowski JG, Souza RM, Da Fonseca MP, Festuccia WT, Labriola L, Larsen MR, Marinho CRF, Palmisano G. Integrated Proteomics Reveals Apoptosis-related Mechanisms Associated with Placental Malaria. Mol Cell Proteomics 2019; 18:182-199. [PMID: 30242111 PMCID: PMC6356084 DOI: 10.1074/mcp.ra118.000907] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/15/2018] [Indexed: 12/27/2022] Open
Abstract
Malaria in pregnancy is a public health concern in malaria-endemic areas. Accumulation of maternal immune cells in the placenta and increased levels of inflammatory cytokines caused by sequestration of Plasmodium falciparum-infected erythrocytes have been associated to poor neonatal outcomes, including low birth weight because of fetal growth restriction. Little is known about the molecular changes occurring in a P. falciparum-infected placenta that has developed placental malaria during pregnancy but had the parasites cleared by pharmacological treatment (past infection). We conducted an integrated proteome, phosphoproteome and glycoproteome analysis in past P. falciparum-infected placentas aiming to find molecular changes associated with placental malaria. A total of 2946 proteins, 1733 N-linked glycosites and 4100 phosphosites were identified and quantified in this study, disclosing overrepresented processes related to oxidative stress, protein folding and regulation of apoptosis in past-infected placentas Moreover, AKT and ERK signaling pathways activation, together with clinical data, were further correlated to an increased apoptosis in past-infected placentas. This study showed apoptosis-related mechanisms associated with placental malaria that can be further explored as therapeutic target against adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Rebeca Kawahara
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Livia Rosa-Fernandes
- Department of Biochemistry and Molecular biology, University of Southern Denmark, Odense, Denmark
| | | | - Carla Letícia Bandeira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Jamille G Dombrowski
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Rodrigo M Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | | | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Leticia Labriola
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Brazil
| | - Martin R Larsen
- Department of Biochemistry and Molecular biology, University of Southern Denmark, Odense, Denmark
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil;.
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil;.
| |
Collapse
|
28
|
Kumarathasan P, Williams G, Bielecki A, Blais E, Hemmings DG, Smith G, von Dadelszen P, Fisher M, Arbuckle TE, Fraser WD, Vincent R. Characterization of maternal plasma biomarkers associated with delivery of small and large for gestational age infants in the MIREC study cohort. PLoS One 2018; 13:e0204863. [PMID: 30383759 PMCID: PMC6211634 DOI: 10.1371/journal.pone.0204863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022] Open
Abstract
Objective Neonatal morbidity and mortality can be influenced by maternal health status. Information on maternal and fetal biomarkers of adverse health outcomes is limited. This work aims at identifying maternal biomarkers associated with low and high birth weight for gestational age groups. Design and settings Population-based prospective cohort study of the potential adverse health effects of exposure to environmental contaminants on pregnancy and infant health. Methods Third trimester maternal plasma samples (n = 1588) from a pregnancy cohort (Maternal-Infant Research on Environmental Chemicals Study, MIREC) were analyzed for changes in a target spectrum of biomarkers of vascular health (e.g., matrix metalloproteinases MMPs, vascular endothelial cell growth factor VEGF), inflammation (e.g. cellular adhesion molecules CAMs, cytokines, chemokines) by affinity-based multiplex protein array analyses. Multivariate logistic regression analyses were done to examine associations between target plasma biomarkers, maternal-infant characteristics, and birth weight outcomes assessed as small for gestational age (SGA) ≤10th percentile and large for gestational age (LGA) ≥90th percentile groups. Results and outcomes Our results revealed that maternal plasma biomarkers monocyte chemoattractant protein-1 MCP-1 (p<0.05, +ve) and VEGF (p<0.05, -ve) along with parity = 1 (p<0.01, -ve) and gestational hypertension (p<0.05, +ve) were associated with SGA births. Meanwhile, LGA was associated with maternal plasma VEGF (p<0.05, +ve) and MMP-9 (p<0.05, -ve) and gestational hypertension (p<0.01, +ve), pre-pregnancy body mass index (p<0.01, +ve), parity (p<0.05, +ve) and education (p<0.05, -ve). Conclusions Third trimester maternal plasma biomarkers in combination with maternal health and socioeconomic characteristics can be useful in predicting SGA and LGA outcomes. Maternal vascular health and inflammatory status may contribute to both SGA and LGA births through distinct molecular mechanisms.
Collapse
Affiliation(s)
- Premkumari Kumarathasan
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Science, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| | - Gabriela Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Agnieszka Bielecki
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Erica Blais
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Denise G. Hemmings
- Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Graeme Smith
- Obstetrics and Gynecology, Queen’s University, Kingston, Ontario, Canada
| | | | - Mandy Fisher
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Tye E. Arbuckle
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - William D. Fraser
- Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Renaud Vincent
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Fried M, Kurtis JD, Swihart B, Pond-Tor S, Barry A, Sidibe Y, Gaoussou S, Traore M, Keita S, Mahamar A, Attaher O, Dembele AB, Cisse KB, Diarra BS, Kanoute MB, Dicko A, Duffy PE. Systemic Inflammatory Response to Malaria During Pregnancy Is Associated With Pregnancy Loss and Preterm Delivery. Clin Infect Dis 2018; 65:1729-1735. [PMID: 29020221 DOI: 10.1093/cid/cix623] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023] Open
Abstract
Background Pregnancy malaria (PM) is associated with a proinflammatory immune response characterized by increased levels of cytokines and chemokines such as tumor necrosis factor-α, interferon-γ, interleukin 10 (IL-10), and CXCL9. These changes are associated with poor outcomes including low birthweight delivery and maternal anemia. However, it is unknown if inflammatory pathways during malaria are related to pregnancy loss and preterm delivery (PTD). Methods Cytokine and chemokine levels were measured in maternal peripheral blood at enrollment, gestational week 30-32, and delivery, and in placental blood, of 638 women during a longitudinal cohort study in Ouelessebougou, Mali. Plasmodium falciparum infection was assessed by blood smear microscopy at all visits. Results PM was associated with increased levels of cytokines and chemokines including IL-10 and CXCL9. In a competing risks model adjusted for known covariates, high CXCL9 levels measured in the peripheral blood during pregnancy were associated with increased risk of pregnancy loss and PTD. At delivery, high IL-10 levels in maternal blood were associated with an increase in pregnancy loss, and increased IL-1β levels in placental blood were associated with pregnancy loss and PTD. Conclusions PM is associated with increased proinflammatory cytokine and chemokine levels in placental and maternal peripheral blood. Systemic inflammatory responses to malaria during pregnancy predict increased risk of pregnancy loss and PTD. Clinical Trials Registration NCT01168271.
Collapse
Affiliation(s)
- Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Jonathan D Kurtis
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence
| | - Bruce Swihart
- Biostatistics Research Branch, NIAID, NIH, Rockville, Maryland
| | - Sunthorn Pond-Tor
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence
| | - Amadou Barry
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Youssoufa Sidibe
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Santara Gaoussou
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Moussa Traore
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Sekouba Keita
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Almahamoudou Mahamar
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Oumar Attaher
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Adama B Dembele
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Kadidia B Cisse
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Bacary S Diarra
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Moussa B Kanoute
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Alassane Dicko
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
30
|
Dobaño C, Berthoud T, Manaca MN, Nhabomba A, Guinovart C, Aguilar R, Barbosa A, Groves P, Rodríguez MH, Jimenez A, Quimice LM, Aponte JJ, Ordi J, Doolan DL, Mayor A, Alonso PL. High production of pro-inflammatory cytokines by maternal blood mononuclear cells is associated with reduced maternal malaria but increased cord blood infection. Malar J 2018; 17:177. [PMID: 29743113 PMCID: PMC5944101 DOI: 10.1186/s12936-018-2317-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022] Open
Abstract
Background Increased susceptibility to malaria during pregnancy is not completely understood. Cellular immune responses mediate both pathology and immunity but the effector responses involved in these processes have not been fully characterized. Maternal and fetal cytokine and chemokine responses to malaria at delivery, and their association with pregnancy and childhood outcomes, were investigated in 174 samples from a mother and child cohort from Mozambique. Peripheral and cord mononuclear cells were stimulated with Plasmodium falciparum lysate and secretion of IL-12p70, IFN-γ, IL-2, IL-10, IL-8, IL-6, IL-4, IL-5, IL-1β, TNF, TNF-β was quantified in culture supernatants by multiplex flow cytometry while cellular mRNA expression of IFN-γ, TNF, IL-2, IL-4, IL-6, IL-10 and IL-13 was measured by quantitative PCR. Results Higher concentrations of IL-6 and IL-1β were associated with a reduced risk of P. falciparum infection in pregnant women (p < 0.049). Pro-inflammatory cytokines IL-6, IL-1β and TNF strongly correlated among themselves (ρ > 0.5, p < 0.001). Higher production of IL-1β was significantly associated with congenital malaria (p < 0.046) and excessive TNF was associated with peripheral infection and placental lesions (p < 0.044). Conclusions Complex network of immuno-pathological cytokine mechanisms in the placental and utero environments showed a potential trade-off between positive and negative effects on mother and newborn susceptibility to infection. Electronic supplementary material The online version of this article (10.1186/s12936-018-2317-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carlota Dobaño
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain. .,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
| | - Tamara Berthoud
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | | | - Augusto Nhabomba
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Caterina Guinovart
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Arnoldo Barbosa
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Penny Groves
- Queensland Institute of Medical Research, Brisbane, Australia
| | - Mauricio H Rodríguez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Alfons Jimenez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Lazaro M Quimice
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - John J Aponte
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Jaume Ordi
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | - Denise L Doolan
- Queensland Institute of Medical Research, Brisbane, Australia
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pedro L Alonso
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| |
Collapse
|
31
|
Fetal and Maternal Innate Immunity Receptors Have Opposing Effects on the Severity of Experimental Malaria in Pregnancy: Beneficial Roles for Fetus-Derived Toll-Like Receptor 4 and Type I Interferon Receptor 1. Infect Immun 2018; 86:IAI.00708-17. [PMID: 29440369 PMCID: PMC5913849 DOI: 10.1128/iai.00708-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/07/2018] [Indexed: 12/13/2022] Open
Abstract
Malaria in pregnancy (MiP) is a distinctive clinical form of Plasmodium infection and is a cause of placental insufficiency leading to poor pregnancy outcomes. Maternal innate immunity responses play a decisive role in the development of placental inflammation, but the action of fetus-derived factors in MiP outcomes has been overlooked. We investigated the role of the Tlr4 and Ifnar1 genes, taking advantage of heterogenic mating strategies to dissect the effects mediated by maternally and fetally derived Toll-like receptor 4 (TLR4) or type I interferon receptor 1 (IFNAR1). Using a mouse infection system displaying severe MiP outcomes, we found that the expressions of TLR4 and IFNAR1 in the maternal compartment take part in deleterious MiP outcomes, but their fetal counterparts patently counteract these effects. We uncovered that fetal TLR4 contributes to the in vitro uptake of infected erythrocytes by trophoblasts and to the innate immune response in the placenta, offering robust protection of fetus viability, but had no sensible impact on the placental parasite burden. In contrast, we observed that the expression of IFNAR1 in the fetal compartment was associated with a reduced placental parasite burden but had little beneficial effect on fetus outcomes. Furthermore, the downregulation of Ifnar1 expression in infected placentas and in trophoblasts exposed to infected erythrocytes indicated that the interferon-IFNAR1 pathway is involved in the trophoblast response to infection. This work unravels that maternal and fetal counterparts of innate immune pathways drive opposing responses in murine placental malaria and implicates the activation of innate receptors in fetal trophoblast cells in the control of placental infection and in the protection of the fetus.
Collapse
|
32
|
Helegbe GK, Huy NT, Yanagi T, Shuaibu MN, Kikuchi M, Cherif MS, Hirayama K. Elevated IL-17 levels in semi-immune anaemic mice infected with Plasmodium berghei ANKA. Malar J 2018; 17:169. [PMID: 29665817 PMCID: PMC5905139 DOI: 10.1186/s12936-018-2257-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/03/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alterations in inflammatory cytokines and genetic background of the host contribute to the outcome of malaria infection. Despite the promising protective role of IL-17 in infections, little attention is given to further understand its importance in the pathogenesis of severe malaria anaemia in chronic/endemic situations. The objective of this study, therefore, was to evaluate IL-17 levels in anaemic condition and its association with host genetic factors. METHODS Two mice strains (Balb/c and CBA) were crossed to get the F1 progeny, and were (F1, Balb/c, CBA) taken through 6 cycles of Plasmodium berghei (ANKA strain) infection and chloroquine/pyrimethamine treatment to generate semi-immune status. Cytokine levels and kinetics of antibody production, CD4+CD25+T regulatory cells were evaluated by bead-based multiplex assay kit, ELISA and FACs, respectively. RESULTS High survival with high Hb loss at significantly low parasitaemia was observed in Balb/c and F1. Furthermore, IgG levels were two times higher in Balb/c, F1 than CBA. While CD4+CD25+ Treg cells were lower in CBA; IL-4, IFN-γ, IL-12α and IL-17 were significantly higher (p < 0.05) in Balb/c, F1. CONCLUSIONS In conclusion, elevated IL-17 levels together with high IL-4, IL-12α and IFN-γ levels may be a marker of protection, and the mechanism may be controlled by host factor (s). Further studies of F2 between the F1 and Balb/c will be informative in evaluating if these genes are segregated or further apart.
Collapse
Affiliation(s)
- Gideon Kofi Helegbe
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, University for Development Studies, Tamale, Ghana.,West Africa Center for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Nguyen Tien Huy
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Tetsuo Yanagi
- National Bio-Resource Center (NBRC), NEKKEN, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Mohammed Nasir Shuaibu
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Mihoko Kikuchi
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Mahamoud Sama Cherif
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,National Bio-Resource Center (NBRC), NEKKEN, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
33
|
Manirakiza A, Serdouma E, Ngbalé RN, Moussa S, Gondjé S, Degana RM, Bata GGB, Moyen JM, Delmont J, Grésenguet G, Sepou A. A brief review on features of falciparum malaria during pregnancy. J Public Health Afr 2017; 8:668. [PMID: 29456824 PMCID: PMC5812306 DOI: 10.4081/jphia.2017.668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 11/22/2022] Open
Abstract
Malaria in pregnancy is a serious public health problem in tropical areas. Frequently, the placenta is infected by accumulation of Plasmodium falciparum-infected erythrocytes in the intervillous space. Falciparum malaria acts during pregnancy by a range of mechanisms, and chronic or repeated infection and co-infections have insidious effects. The susceptibility of pregnant women to malaria is due to both immunological and humoral changes. Until a malaria vaccine becomes available, the deleterious effects of malaria in pregnancy can be avoided by protection against infection and prompt treatment with safe, effective antimalarial agents; however, concurrent infections such as with HIV and helminths during pregnancy are jeopardizing malaria control in sub-Saharan Africa.
Collapse
Affiliation(s)
| | | | | | - Sandrine Moussa
- Pasteur Institute of Bangui, Bangui, Central African Republic
| | - Samuel Gondjé
- Ministry of Public Health, Population and AIDS Control, Bangui, Central African Republic
| | - Rock Mbetid Degana
- Ministry of Public Health, Population and AIDS Control, Bangui, Central African Republic
| | | | - Jean Methode Moyen
- Ministry of Public Health, Population and AIDS Control, Bangui, Central African Republic
| | - Jean Delmont
- Center for Training and Research in Tropical Medicine and Health, Faculty of Medicine North, Marseille, France
| | | | | |
Collapse
|
34
|
Dimasuay KG, Gong L, Rosario F, McBryde E, Spelman T, Glazier J, Rogerson SJ, Beeson JG, Jansson T, Devenish RJ, Boeuf P. Impaired placental autophagy in placental malaria. PLoS One 2017; 12:e0187291. [PMID: 29125872 PMCID: PMC5681252 DOI: 10.1371/journal.pone.0187291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 10/17/2017] [Indexed: 12/18/2022] Open
Abstract
Background Placental malaria is a major cause of low birthweight, principally due to impaired fetal growth. Intervillositis, a local inflammatory response to placental malaria, is central to the pathogenesis of poor fetal growth as it impairs transplacental amino acid transport. Given the link between inflammation and autophagy, we investigated whether placental malaria-associated intervillositis increased placental autophagy as a potential mechanism in impaired fetal growth. Methods We examined placental biopsies collected after delivery from uninfected women (n = 17) and from women with Plasmodium falciparum infection with (n = 14) and without (n = 7) intervillositis. Western blotting and immunofluorescence staining coupled with advanced image analysis were used to quantify the expression of autophagic markers (LC3-II, LC3-I, Rab7, ATG4B and p62) and the density of autophagosomes (LC3-positive puncta) and lysosomes (LAMP1-positive puncta). Results Placental malaria with intervillositis was associated with higher LC3-II:LC3-I ratio, suggesting increased autophagosome formation. We found higher density of autophagosomes and lysosomes in the syncytiotrophoblast of malaria-infected placentas with intervillositis. However, there appear to be no biologically relevant increase in LC3B/LAMP1 colocalization and expression of Rab7, a molecule involved in autophagosome/lysosome fusion, was lower in placental malaria with intervillositis, indicating a block in the later stage of autophagy. ATG4B and p62 expression showed no significant difference across histological groups suggesting normal autophagosome maturation and loading of cargo proteins into autophagosomes. The density of autophagosomes and lysosomes in the syncytiotrophoblast was negatively correlated with placental amino acid uptake. Conclusions Placental malaria-associated intervillositis is associated with dysregulated autophagy that may impair transplacental amino acid transport, possibly contributing to poor fetal growth.
Collapse
Affiliation(s)
- Kris Genelyn Dimasuay
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Medicine at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Lan Gong
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Fredrick Rosario
- Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Emma McBryde
- Burnet Institute, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Tim Spelman
- Burnet Institute, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Jocelyn Glazier
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, St. Mary’s Hospital, Manchester, United Kingdom
| | - Stephen J. Rogerson
- Department of Medicine at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - James G. Beeson
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Medicine at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Thomas Jansson
- Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rodney J. Devenish
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Philippe Boeuf
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Medicine at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
35
|
Boström S, Schmiegelow C, Abu Abed U, Minja DTR, Lusingu J, Brinkmann V, Honkpehedji YJ, Loembe MM, Adegnika AA, Mordmüller B, Troye-Blomberg M, Amulic B. Neutrophil alterations in pregnancy-associated malaria and induction of neutrophil chemotaxis by Plasmodium falciparum. Parasite Immunol 2017; 39. [PMID: 28380252 DOI: 10.1111/pim.12433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/31/2017] [Indexed: 11/27/2022]
Abstract
Pregnancy-associated malaria (PAM) is a severe form of the disease caused by sequestration of Plasmodium falciparum-infected red blood cells (iRBCs) in the developing placenta. Pathogenesis of PAM is partially based on immunopathology, with frequent monocyte infiltration into the placenta. Neutrophils are abundant blood cells that are essential for immune defence but may also cause inflammatory pathology. Their role in PAM remains unclear. We analysed neutrophil alterations in the context of PAM to better understand their contribution to disease development. Pregnant women exposed to Plasmodium falciparum had decreased numbers of circulating neutrophils. Placental-like BeWo cells stimulated with malaria parasites produced the neutrophil chemoattractant IL-8 and recruited neutrophils in a trans-well assay. Finally, immunostaining of a PAM placenta confirmed neutrophil accumulation in the intervillous space. Our data indicate neutrophils may play a role in placental malaria and should be more closely examined as an etiological agent in the pathophysiology of disease.
Collapse
Affiliation(s)
- S Boström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - C Schmiegelow
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - U Abu Abed
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - D T R Minja
- National Institute for Medical Research, Tanga, Tanzania
| | - J Lusingu
- National Institute for Medical Research, Tanga, Tanzania
| | - V Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Y J Honkpehedji
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute of Tropical Medicine, University of Tübingen and German Center for Infection Research, partner site Tübingen, Tübingen, Germany
| | - M M Loembe
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute of Tropical Medicine, University of Tübingen and German Center for Infection Research, partner site Tübingen, Tübingen, Germany.,Département de Bactério-Virologie, Université des Sciences de la Santé, Libreville, Gabon
| | - A A Adegnika
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute of Tropical Medicine, University of Tübingen and German Center for Infection Research, partner site Tübingen, Tübingen, Germany
| | - B Mordmüller
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute of Tropical Medicine, University of Tübingen and German Center for Infection Research, partner site Tübingen, Tübingen, Germany
| | - M Troye-Blomberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - B Amulic
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
36
|
Abstract
One hundred and twenty-five million women in malaria-endemic areas become pregnant each year (see Dellicour et al. PLoS Med7: e1000221 [2010]) and require protection from infection to avoid disease and death for themselves and their offspring. Chloroquine prophylaxis was once a safe approach to prevention but has been abandoned because of drug-resistant parasites, and intermittent presumptive treatment with sulfadoxine-pyrimethamine, which is currently used to protect pregnant women throughout Africa, is rapidly losing its benefits for the same reason. No other drugs have yet been shown to be safe, tolerable, and effective as prevention for pregnant women, although monthly dihydroartemisinin-piperaquine has shown promise for reducing poor pregnancy outcomes. Insecticide-treated nets provide some benefits, such as reducing placental malaria and low birth weight. However, this leaves a heavy burden of maternal, fetal, and infant morbidity and mortality that could be avoided. Women naturally acquire resistance to Plasmodium falciparum over successive pregnancies as they acquire antibodies against parasitized red cells that bind chondroitin sulfate A in the placenta, suggesting that a vaccine is feasible. Pregnant women are an important reservoir of parasites in the community, and women of reproductive age must be included in any elimination effort, but several features of malaria during pregnancy will require special consideration during the implementation of elimination programs.
Collapse
Affiliation(s)
- Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Bethesda, MD 20892
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Bethesda, MD 20892
| |
Collapse
|
37
|
Endothelin-1 Treatment Induces an Experimental Cerebral Malaria-Like Syndrome in C57BL/6 Mice Infected with Plasmodium berghei NK65. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2957-2969. [PMID: 27640146 DOI: 10.1016/j.ajpath.2016.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 06/06/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022]
Abstract
Plasmodium berghei ANKA infection of C57BL/6 mice is a widely used model of experimental cerebral malaria (ECM). By contrast, the nonneurotropic P. berghei NK65 (PbN) causes severe malarial disease in C57BL/6 mice but does not cause ECM. Previous studies suggest that endothelin-1 (ET-1) contributes to the pathogenesis of ECM. In this study, we characterize the role of ET-1 on ECM vascular dysfunction. Mice infected with 106 PbN-parasitized red blood cells were treated with either ET-1 or saline from 2 to 8 days postinfection (dpi). Plasmodium berghei ANKA-infected mice served as the positive control. ET-1-treated PbN-infected mice exhibited neurological signs, hypothermia, and behavioral alterations characteristic of ECM, dying 4 to 8 dpi. Parasitemia was not affected by ET-1 treatment. Saline-treated PbN-infected mice did not display ECM, surviving until 12 dpi. ET-1-treated PbN-infected mice displayed leukocyte adhesion to the vascular endothelia and petechial hemorrhages throughout the brain at 6 dpi. Intravital microscopic images demonstrated significant brain arteriolar vessel constriction, decreased functional capillary density, and increased blood-brain barrier permeability. These alterations were not present in either ET-1-treated uninfected or saline-treated PbN-infected mice. In summary, ET-1 treatment of PbN-infected mice induced an ECM-like syndrome, causing brain vasoconstriction, adherence of activated leukocytes in the cerebral microvasculature, and blood-brain barrier leakage, indicating that ET-1 is involved in the genesis of brain microvascular alterations that are the hallmark of ECM.
Collapse
|
38
|
Heterologous Infection of Pregnant Mice Induces Low Birth Weight and Modifies Offspring Susceptibility to Malaria. PLoS One 2016; 11:e0160120. [PMID: 27467392 PMCID: PMC4965193 DOI: 10.1371/journal.pone.0160120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/12/2016] [Indexed: 11/20/2022] Open
Abstract
Pregnancy malaria (PM) is associated with poor pregnancy outcomes, and can arise due to relapse, recrudescence or a re-infection with heterologous parasites. We have used the Plasmodium chabaudi model of pregnancy malaria in C57BL/6 mice to examine recrudescence and heterologous infection using CB and AS parasite strains. After an initial course of patent parasitemia and first recrudescence, CB but not AS parasites were observed to recrudesce again in most animals that became pregnant. Pregnancy exacerbated heterologous CB infection of AS-experienced mice, leading to mortality and impaired post-natal growth of pups. Parasites were detected in placental blood without evidence of sequestration, unlike P. falciparum but similar to other malaria species that infect pregnant women. Inflammatory cytokine levels were elevated in pregnant females during malaria, and associated with intensity of infection and with poor outcomes. Pups born to dams during heterologous infection were more resistant to malaria infections at 6–7 weeks of age, compared to pups born to malaria-experienced but uninfected dams or to malaria-naïve dams. In summary, our mouse model reproduces several features of human PM, including recrudescences, heterologous infections, poor pregnancy outcomes associated with inflammatory cytokines, and modulation of offspring susceptibility to malaria. This model should be further studied to explore mechanisms underlying PM pathogenesis.
Collapse
|
39
|
Tassi Yunga S, Thévenon AD, Leke RGF, Taylor DW. Soluble Tumor Necrosis Factor-α Receptor 2 in Urine Is a Potential Biomarker for Noninvasive Diagnosis of Malaria During Pregnancy. Open Forum Infect Dis 2016; 3:ofw084. [PMID: 27419160 PMCID: PMC4943558 DOI: 10.1093/ofid/ofw084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/20/2016] [Indexed: 11/26/2022] Open
Abstract
Background. During pregnancy, the placenta is inaccessible for diagnosis of placental malaria (PM), but soluble tumor necrosis factor-α receptors (sTNFR) are elevated in the plasma of women with PM. Methods. In this study, sTNFR-1 and sTNFR-2 were quantified in urine of pregnant and nonpregnant Cameroonian women who were positive or negative for malaria by blood-smear microscopy. Results. We found that levels of both sTNFR in urine were higher in pregnant compared with nonpregnant women, but malaria-positive pregnant women excreted substantially more sTNFR-1 (P = .005) and sTNFR-2 (P < .001) than malaria-negative pregnant women. The amount of sTNFR-1(rs = 0.784, P < .001) and sTNFR-2 (rs = 0.816, P < .001) in urine correlated with parasitemia, even in afebrile pregnant women. Urine sTNFR-2 predicted maternal malaria with an area under curve of 0.892 (95% confidence interval, .787–.898). At cutoff concentrations of 9.8 ng and 13.6 ng of sTNFR-2 per mL urine, the sensitivity/specificity were 82.6%/87.0% and 78.3%/95.7%, respectively. Conclusions. The sTNFR-2 in noninvasive urine samples may be useful for diagnosis of malaria during pregnancy.
Collapse
Affiliation(s)
- Samuel Tassi Yunga
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu; The Biotechnology Center, University of Yaoundé 1, Cameroon
| | - Audrey Davidson Thévenon
- Department of Tropical Medicine, Medical Microbiology and Pharmacology , John A. Burns School of Medicine, University of Hawaii at Manoa , Honolulu
| | | | - Diane Wallace Taylor
- Department of Tropical Medicine, Medical Microbiology and Pharmacology , John A. Burns School of Medicine, University of Hawaii at Manoa , Honolulu
| |
Collapse
|
40
|
Dimasuay KG, Boeuf P, Powell TL, Jansson T. Placental Responses to Changes in the Maternal Environment Determine Fetal Growth. Front Physiol 2016; 7:12. [PMID: 26858656 PMCID: PMC4731498 DOI: 10.3389/fphys.2016.00012] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022] Open
Abstract
Placental responses to maternal perturbations are complex and remain poorly understood. Altered maternal environment during pregnancy such as hypoxia, stress, obesity, diabetes, toxins, altered nutrition, inflammation, and reduced utero-placental blood flow may influence fetal development, which can predispose to diseases later in life. The placenta being a metabolically active tissue responds to these perturbations by regulating the fetal supply of nutrients and oxygen and secretion of hormones into the maternal and fetal circulation. We have proposed that placental nutrient sensing integrates maternal and fetal nutritional cues with information from intrinsic nutrient sensing signaling pathways to balance fetal demand with the ability of the mother to support pregnancy by regulating maternal physiology, placental growth, and placental nutrient transport. Emerging evidence suggests that the nutrient-sensing signaling pathway mechanistic target of rapamycin (mTOR) plays a central role in this process. Thus, placental nutrient sensing plays a critical role in modulating maternal-fetal resource allocation, thereby affecting fetal growth and the life-long health of the fetus.
Collapse
Affiliation(s)
- Kris Genelyn Dimasuay
- Department of Medicine, The University of MelbourneMelbourne, VIC, Australia
- Centre for Biomedical Research, Burnet InstituteMelbourne, VIC, Australia
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Philippe Boeuf
- Department of Medicine, The University of MelbourneMelbourne, VIC, Australia
- Centre for Biomedical Research, Burnet InstituteMelbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne HospitalMelbourne, VIC, Australia
| | - Theresa L. Powell
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical CampusAurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical CampusAurora, CO, USA
| |
Collapse
|
41
|
Deroost K, Pham TT, Opdenakker G, Van den Steen PE. The immunological balance between host and parasite in malaria. FEMS Microbiol Rev 2015; 40:208-57. [PMID: 26657789 DOI: 10.1093/femsre/fuv046] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Coevolution of humans and malaria parasites has generated an intricate balance between the immune system of the host and virulence factors of the parasite, equilibrating maximal parasite transmission with limited host damage. Focusing on the blood stage of the disease, we discuss how the balance between anti-parasite immunity versus immunomodulatory and evasion mechanisms of the parasite may result in parasite clearance or chronic infection without major symptoms, whereas imbalances characterized by excessive parasite growth, exaggerated immune reactions or a combination of both cause severe pathology and death, which is detrimental for both parasite and host. A thorough understanding of the immunological balance of malaria and its relation to other physiological balances in the body is of crucial importance for developing effective interventions to reduce malaria-related morbidity and to diminish fatal outcomes due to severe complications. Therefore, we discuss in this review the detailed mechanisms of anti-malarial immunity, parasite virulence factors including immune evasion mechanisms and pathogenesis. Furthermore, we propose a comprehensive classification of malaria complications according to the different types of imbalances.
Collapse
Affiliation(s)
- Katrien Deroost
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium The Francis Crick Institute, Mill Hill Laboratory, London, NW71AA, UK
| | - Thao-Thy Pham
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
42
|
Ruizendaal E, van Leeuwen E, Mens PF. Peripheral and placental biomarkers in women with placental malaria: a systematic review. Biomark Med 2015; 9:217-39. [PMID: 25731209 DOI: 10.2217/bmm.14.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Placental malaria (PM) causes significant morbidity in mothers and infants. Diagnosis of PM during pregnancy is however problematic due to placental sequestration of parasites. Host biomarkers may therefore be used as a diagnostic method. In this systematic review most studies focused on inflammatory markers. A trend was observed for increased IL-10 and TNF-α in PM positives. These markers are however unspecific, thus a combination of multiple biomarkers involved in different pathophysiological pathways of PM is indicated. Of interest are inflammatory markers (TNF-R2, CXCL-13), markers of lipid metabolism (APO-B), angiogenesis (sFlt-1) and hormones (estradiol). As the majority of published studies tested biomarker levels only at delivery, more longitudinal cohort studies will be necessary to detect biomarkers during pregnancy that can predict PM.
Collapse
Affiliation(s)
- Esmée Ruizendaal
- KIT Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, The Netherlands
| | | | | |
Collapse
|
43
|
Syncytiotrophoblast Functions and Fetal Growth Restriction during Placental Malaria: Updates and Implication for Future Interventions. BIOMED RESEARCH INTERNATIONAL 2015; 2015:451735. [PMID: 26587536 PMCID: PMC4637467 DOI: 10.1155/2015/451735] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/08/2015] [Accepted: 10/04/2015] [Indexed: 01/06/2023]
Abstract
Syncytiotrophoblast lines the intervillous space of the placenta and plays important roles in fetus growth throughout gestation. However, perturbations at the maternal-fetal interface during placental malaria may possibly alter the physiological functions of syncytiotrophoblast and therefore growth and development of the embryo in utero. An understanding of the influence of placental malaria on syncytiotrophoblast function is paramount in developing novel interventions for the control of placental pathology associated with placental malaria. In this review, we discuss how malaria changes syncytiotrophoblast function as evidenced from human, animal, and in vitro studies and, further, how dysregulation of syncytiotrophoblast function may impact fetal growth in utero. We also formulate a hypothesis, stemming from epidemiological observations, that nutrition may override pathogenesis of placental malaria-associated-fetal growth restriction. We therefore recommend studies on nutrition-based-interventional approaches for high placental malaria-risk women in endemic areas. More investigations on the role of nutrition on placental malaria pathogenesis are needed.
Collapse
|
44
|
Differential roles of inflammation and apoptosis in initiation of mid-gestational abortion in malaria-infected C57BL/6 and A/J mice. Placenta 2015; 36:738-49. [PMID: 25956987 DOI: 10.1016/j.placenta.2015.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/26/2015] [Accepted: 04/14/2015] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Plasmodium chabaudi AS-infection in pregnant A/J and C57BL/6J mice results in mid-gestational pregnancy loss. Although associated with increased systemic and placental pro-inflammatory responses and coagulopathy, the molecular mechanisms that underlie poor pregnancy outcomes in these mice are not yet fully understood. This study investigates the relationships between inflammation, apoptosis and malaria-induced pregnancy loss. METHODS Infection with P. chabaudi AS in early murine pregnancy and term human placental tissues from an endemic setting were assessed by histology, immunohistochemistry, TUNEL staining, real-time PCR, flow cytometry, western blot, and ELISA. RESULTS Quantitative PCR reveals accumulation of lymphocytes and monocytes and upregulation of chemokines that attract these cell types in malaria-exposed mid-gestational A/J conceptuses. Monocyte accumulation is confirmed by flow cytometry and placental immunohistochemistry. Concurrent with initiation of malaria-induced abortion, markers of apoptosis are evident in the junctional zone, but not the labyrinth, of A/J placentae. In contrast, mid-gestation conceptuses in infected C57BL/6J lack evidence for monocyte accumulation, exhibiting low or no in situ placental staining despite trophoblast immunoreactivity for the monokine, CCL2. Additionally, placental apoptosis is not consistently observed, and when evident, appears after malaria-induced abortion typically initiates. Similarly, trophoblast apoptosis in term human placental malaria is not observed. Of those studied, a sole common feature of malaria-induced abortion in A/J and C57BL/6J mice is elevation of plasma tumor necrosis factor. DISCUSSION Consistent with our previous observations, tumor necrosis factor is likely to be a central driver of malaria-induced pregnancy loss in both strains, but likely operates through mechanisms distinct from placental apoptosis in C57BL/6J mice.
Collapse
|
45
|
Chua CLL, Robinson LJ, Baiwog F, Stanisic DI, Hamilton JA, Brown GV, Rogerson SJ, Boeuf P. High numbers of circulating pigmented polymorphonuclear neutrophils as a prognostic marker for decreased birth weight during malaria in pregnancy. Int J Parasitol 2014; 45:107-11. [PMID: 25555554 DOI: 10.1016/j.ijpara.2014.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 11/25/2022]
Abstract
During gestational malaria, Plasmodium falciparum-infected erythrocytes can sequester within the placenta, contributing to poor pregnancy outcomes, especially low birth weight. In children and non-pregnant adults, pigmented leukocytes may serve as markers of sequestered parasite burden and predict clinical outcomes. Here, we investigated circulating pigmented leukocyte numbers as predictors of clinical outcomes in pregnant women presenting with malaria at enrolment. The number of circulating pigmented neutrophils at enrolment negatively correlated with birth weight (Rho=-25, P=.04), suggesting these cells may have a pathogenic role in, and could serve as prognostic markers for, malaria-associated low birth weight.
Collapse
Affiliation(s)
- Caroline Lin Lin Chua
- Department of Medicine, The Doherty Institute, The University of Melbourne, Australia
| | - Leanne J Robinson
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Papua New Guinea; Infection and Immunity Division, Walter and Eliza Hall Institute, Australia; Department of Medical Biology, The University of Melbourne, Australia
| | - Francesca Baiwog
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Papua New Guinea
| | - Danielle I Stanisic
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Papua New Guinea; Infection and Immunity Division, Walter and Eliza Hall Institute, Australia; Department of Medical Biology, The University of Melbourne, Australia
| | - John A Hamilton
- Department of Medicine, The Doherty Institute, The University of Melbourne, Australia
| | - Graham V Brown
- Department of Medicine, The Doherty Institute, The University of Melbourne, Australia; The Nossal Institute for Global Health, The University of Melbourne, Australia
| | - Stephen J Rogerson
- Department of Medicine, The Doherty Institute, The University of Melbourne, Australia; Victorian Infectious Diseases Service, The Doherty Institute, Australia
| | - Philippe Boeuf
- Department of Medicine, The Doherty Institute, The University of Melbourne, Australia; Victorian Infectious Diseases Service, The Doherty Institute, Australia.
| |
Collapse
|
46
|
Che JN, Nmorsi OPG, Nkot BP, Isaac C, Okonkwo BC. Chemokines responses to Plasmodium falciparum malaria and co-infections among rural Cameroonians. Parasitol Int 2014; 64:139-44. [PMID: 25462711 DOI: 10.1016/j.parint.2014.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/10/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
Malaria remains the major cause of disease morbidity and mortality in sub-Saharan Africa with complex immune responses associated with disease outcomes. Symptoms associated with severe malaria have generally shown chemokine upregulation but little is known of responses to uncomplicated malaria. Eight villages in central Cameroon of 1045 volunteers were screened. Among these, malaria-positive individuals with some healthy controls were selected for chemokine analysis using Enzyme-Linked Immunosorbent Assay (ELISA) kits. Depressed serum levels of CXCL5 and raised CCL28 were observed in malarial positives when compared with healthy controls. The mean concentration of CXCL11 was higher in symptomatic than asymptomatic group, while CCL28 was lower in symptomatic individuals. Lower chemokine levels were associated with symptoms of uncomplicated malaria except for CXCL11 which was upregulated among fever-positive group. The mean CXCL5 level was higher in malaria sole infection than co-infections with HIV and Loa loa. Also, there was a raised mean level of malaria+HIV co-infection for CXCL9. This study hypothesises a situation where depressed chemokines in the face of clinical presentations could indicate an attempt by the immune system in preventing a progression process from uncomplicated to complicated outcomes with CXCL11 being identified as possible biomarker for malarial fever.
Collapse
Affiliation(s)
- Jane Nchangnwi Che
- Tropical Disease Research Unit, Department of Zoology, Ambrose Alli University, Ekpoma, Nigeria; Centre for the Diagnosis and Control of Tropical Disease, Nkolbisson, Yaounde, Cameroon
| | | | - Baleguel Pierre Nkot
- Centre for the Diagnosis and Control of Tropical Disease, Nkolbisson, Yaounde, Cameroon
| | - Clement Isaac
- Tropical Disease Research Unit, Department of Zoology, Ambrose Alli University, Ekpoma, Nigeria.
| | | |
Collapse
|
47
|
|
48
|
Skorokhod OA, Barrera V, Heller R, Carta F, Turrini F, Arese P, Schwarzer E. Malarial pigment hemozoin impairs chemotactic motility and transendothelial migration of monocytes via 4-hydroxynonenal. Free Radic Biol Med 2014; 75:210-21. [PMID: 25017964 DOI: 10.1016/j.freeradbiomed.2014.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/25/2014] [Accepted: 07/03/2014] [Indexed: 12/24/2022]
Abstract
Natural hemozoin, nHZ, is avidly phagocytosed in vivo and in vitro by human monocytes. The persistence of the undigested β-hematin core of nHZ in the phagocyte lysosome for long periods of time modifies several cellular immune functions. Here we show that nHZ phagocytosis by human primary monocytes severely impaired their chemotactic motility toward MCP-1, TNF, and FMLP, by approximately 80% each, and their diapedesis across a confluent human umbilical vein endothelial cell layer toward MCP-1 by 45±5%. No inhibition was observed with latex-fed or unfed monocytes. Microscopic inspection revealed polarization defects in nHZ-fed monocytes due to irregular actin polymerization. Phagocytosed nHZ catalyzes the peroxidation of polyunsaturated fatty acids and generation of the highly reactive derivative 4-hydroxynonenal (4-HNE). Similar to nHZ phagocytosis, the exposure of monocytes to in vivo-compatible 4-HNE concentrations inhibited cell motility in both the presence and the absence of chemotactic stimuli, suggesting severe impairment of cytoskeleton dynamics. Consequently, 4-HNE conjugates with the cytoskeleton proteins β-actin and coronin-1A were immunochemically identified in nHZ-fed monocytes and mass spectrometrically localized in domains of protein-protein interactions involved in cytoskeleton reorganization and cell motility. The molecular and functional modifications of actin and coronin by nHZ/4-HNE may also explain impaired phagocytosis, another motility-dependent process previously described in nHZ-fed monocytes. Further studies will show whether impaired monocyte motility may contribute to the immunodepression and the frequent occurrence of secondary infections observed in malaria patients.
Collapse
Affiliation(s)
| | | | - Regine Heller
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Friedrich Schiller University of Jena, 07745 Jena, Germany
| | | | - Franco Turrini
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Paolo Arese
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Evelin Schwarzer
- Department of Oncology, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
49
|
Penha-Gonçalves C, Gozzelino R, de Moraes LV. Iron overload in Plasmodium berghei-infected placenta as a pathogenesis mechanism of fetal death. Front Pharmacol 2014; 5:155. [PMID: 25071574 PMCID: PMC4077027 DOI: 10.3389/fphar.2014.00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/12/2014] [Indexed: 11/17/2022] Open
Abstract
Plasmodium infection during gestation may lead to severe clinical manifestations including abortion, stillbirth, intrauterine growth retardation, and low birth weight. Mechanisms underlying such poor pregnancy outcomes are still unclear. In the animal model of severe placental malaria (PM), in utero fetal death frequently occurs and mothers often succumb to infection before or immediately after delivery. Plasmodium berghei-infected erythrocytes (IEs) continuously accumulate in the placenta, where they are then phagocytosed by fetal-derived placental cells, namely trophoblasts. Inside the phagosomes, disruption of IEs leads to the release of non-hemoglobin bound heme, which is subsequently catabolized by heme oxygenase-1 into carbon monoxide, biliverdin, and labile iron. Fine-tuned regulatory mechanisms operate to maintain iron homeostasis, preventing the deleterious effect of iron-induced oxidative stress. Our preliminary results demonstrate that iron overload in trophoblasts of P. berghei-infected placenta is associated with fetal death. Placentas which supported normally developing embryos showed no iron accumulation within the trophoblasts. Placentas from dead fetuses showed massive iron accumulation, which was associated with parasitic burden. Here we present preliminary data suggesting that disruption of iron homeostasis in trophoblasts during the course of PM is a consequence of heme accumulation after intense IE engulfment. We propose that iron overload in placenta is a pathogenic component of PM, contributing to fetal death. The mechanism through which it operates still needs to be elucidated.
Collapse
|
50
|
Placental cytokine and chemokine profiles reflect pregnancy outcomes in women exposed to Plasmodium falciparum infection. Infect Immun 2014; 82:3783-9. [PMID: 24958713 DOI: 10.1128/iai.01922-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pregnancy-associated malaria (PAM) can lead to severe complications for both mother and baby. Certain placental cytokine/chemokine profiles have been shown to reflect poor pregnancy outcomes, including maternal anemia and low birth weight. In intervillous plasma samples from 400 Beninese women living in an area where Plasmodium falciparum is endemic, we quantified 16 cytokines/chemokines. We assessed their profiles in groups with PAM, with maternal anemia, with preterm births, or with a low birth weight for gestational age. Repeated ultrasound measurements ensured that prematurity and low birth weight were highly accurate. Preliminary analyses revealed trends for lower cytokine/chemokine concentrations in placental plasma associated both with babies with low birth weight for gestational age and with P. falciparum infection during pregnancy, while, as a function of the latter, the concentration of gamma interferon (IFN-γ)-inducible protein 10 (IP-10) was higher. Multivariate analyses showed that (i) higher placental plasma interleukin-10 (IL-10) levels were associated with P. falciparum infections and (ii) independently of P. falciparum infections, lower concentrations of both IFN-γ and IL-5 were associated with low birth weight for gestational age. Our data further strengthen the idea that IL-10 and IP-10 could be useful diagnostic markers of P. falciparum infection during pregnancy. The concentrations of cytokines/chemokines in placental plasma may represent previously unrecognized markers of poor fetal growth.
Collapse
|