1
|
Guan X, Fury H, Issuree PD, Atagozli T, McManimon EE, Shao P, Li Y, Chimenti M, Butler NS, Kaplan MH, Elliott DE, Blazar BR, Ince MN. The Impact of Cell-Intrinsic STAT6 Protein on Donor T Cell-Mediated Graft-Versus-Tumor Effect. Int J Mol Sci 2024; 26:280. [PMID: 39796136 PMCID: PMC11719522 DOI: 10.3390/ijms26010280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Bone marrow transplantation (BMT) is mainly performed to restore an anti-tumor immune response, called the graft-versus-tumor (GVT) effect, against leukemia, myeloma and lymphoma. This GVT reactivity is driven by donor T cells, and it can also cause lethal graft-versus-host disease (GVHD). We previously demonstrated that the colonization of mice with helminths preserves the GVT response while suppressing GVHD. As the T helper-2 (Th2) pathway is critical to helminthic immune regulation, we asked whether the genetic induction of Th2 signaling in donor T cells can restore helminthic immune regulation after BMT. Our studies utilized transgenic donor T lymphocytes that overexpress a constitutively active form of the Th2-associated transcription factor STAT6. Constitutively active STAT6 sustained the GVT response without causing severe acute GVHD, where transgenic T cells generated robust quantities of cytotoxic proteins important in GVT response, such as granzymes A and B, interferon-γ and Fas ligand, in addition to generating high quantities of Th2/regulatory cytokines. Bioinformatic analysis based on chromosome immune precipitation experiments indicated that STAT6 stimulates the expression of granzymes directly. Thus, in preserving the GVT response without causing GVHD mortality, our results indicate the therapeutic potential of restoring helminthic immune modulation by targeting STAT6 and STAT6-dependent T cell maturation.
Collapse
Affiliation(s)
- Xiaoqun Guan
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (X.G.); (H.F.); (T.A.); (E.E.M.); (Y.L.); (D.E.E.)
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Hope Fury
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (X.G.); (H.F.); (T.A.); (E.E.M.); (Y.L.); (D.E.E.)
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Priya D. Issuree
- Department of Internal Medicine, Division of Infectious Diseases, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Tyler Atagozli
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (X.G.); (H.F.); (T.A.); (E.E.M.); (Y.L.); (D.E.E.)
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Emory E. McManimon
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (X.G.); (H.F.); (T.A.); (E.E.M.); (Y.L.); (D.E.E.)
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Peng Shao
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.S.); (N.S.B.)
| | - Yue Li
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (X.G.); (H.F.); (T.A.); (E.E.M.); (Y.L.); (D.E.E.)
| | - Michael Chimenti
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA 52246, USA;
| | - Noah S. Butler
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.S.); (N.S.B.)
| | - Mark H. Kaplan
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - David E. Elliott
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (X.G.); (H.F.); (T.A.); (E.E.M.); (Y.L.); (D.E.E.)
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Bruce R. Blazar
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - M. Nedim Ince
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (X.G.); (H.F.); (T.A.); (E.E.M.); (Y.L.); (D.E.E.)
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
2
|
Keem MJ, Jo BG, Lee SH, Kim TY, Jung YS, Jeong EJ, Kim KH, Kim SN, Yang MH. Ameliorative effects of Wikstroemia trichotoma 95% EtOH extract on a mouse model of DNCB-induced atopic dermatitis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118398. [PMID: 38823660 DOI: 10.1016/j.jep.2024.118398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Wikstroemia has been extensively utilized in traditional Chinese medicine (TCM) for the management of conditions such as coughs, edema, arthritis, and bronchitis. Studies have indicated that the crude extracts of Wikstroemia exhibit anti-inflammatory, anti-allergy, anti-aging, skin psoriasis, anti-cancer, and antiviral properties. In addition, these extracts are known to contain bioactive substances, including flavonoids, coumarins, and lignans. However, few studies have investigated the anti-inflammatory or anti-allergic activities of Wikstroemia trichotoma (Thunb.) Makino against atopic dermatitis (AD). AIM OF THE STUDY The study aimed to explore the potential of a 95% ethanol extract of W. trichotoma (WTE) on the dysfunction of skin barrier and immune system, which are primary symptoms of AD, in 2,4-dinitrochlorobenzene (DNCB)-induced SKH-1 hairless mice and phorbol 12-myristate 13-acetate (PMA)/ionomycin or immunoglobulin E (IgE) + 2,4-dinitrophenylated bovine serum albumin (DNP-BSA) stimulated rat basophilic leukemia cell line (RBL-2H3). Furthermore, we sought to identify the chemical contents of WTE using high-performance liquid chromatography equipped with a photodiode array detector (HPLC-PDA). MATERIALS AND METHODS An in vitro study was conducted using RBL-2H3 cells stimulated with PMA/ionomycin or IgE + DNP-BSA to assess the inhibitory effects of WTE on mast cell degranulation and interleukin-4 (IL-4) mRNA expression levels. For the in vivo study, AD was induced in SKH-1 hairless mice by applying 1% DNCB to the dorsal skin daily for 7 days. Subsequently, 0.1% DNCB solution was applied on alternate days, and mice were orally administered WTE (at 30 or 100 mg/kg/day) dissolved in 0.5% carboxymethyl cellulose (CMC) daily for 2 weeks. Transepidermal water loss (TEWL), skin hydration, skin pH, and total serum IgE levels were measured. RESULTS In DNCB-stimulated SKH-1 hairless mice, WTE administration significantly improved AD symptoms and ameliorated dorsal skin inflammation. Oral administration of WTE led to a significant decrease in skin thickness, infiltration of mast cells, and level of total serum IgE, thus restoring skin barrier function in the DNCB-induced skin lesions. In addition, WTE inhibited β-hexosaminidase release and reduced IL-4 mRNA levels in RBL-2H3 cells. Chemical profile analysis of WTE confirmed the presence of three phenolic compounds, viz. chlorogenic acid, miconioside B, and matteucinol-7-O-β-apiofuranosyl (1 → 6)-β-glucopyranoside. CONCLUSIONS WTE ameliorates AD symptoms by modulating in the skin barrier and immune system dysfunction. This suggests that W. trichotoma extract may offer therapeutic benefits for managing AD.
Collapse
Affiliation(s)
- Min-Ji Keem
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| | - Beom-Geun Jo
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| | - Sang Heon Lee
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea.
| | - Tae-Young Kim
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| | - Young Suk Jung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| | - Eun-Ju Jeong
- Department of Green Bio Science, Gyeongsang National University, Jinju, 52725, Republic of Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Min Hye Yang
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
3
|
Tolomeo M, Cascio A. STAT4 and STAT6, their role in cellular and humoral immunity and in diverse human diseases. Int Rev Immunol 2024; 43:394-418. [PMID: 39188021 DOI: 10.1080/08830185.2024.2395274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/23/2023] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
Signal transducer and activator of transcription (STAT) 4 and STAT6 play a crucial role in immune cells by transducing signals from specific cytokine receptors, and inducing transcription of genes involved in cell-mediated and humoral immunity. These two different defense mechanisms against pathogens are regulated by two specific CD4+ T helper (Th) cells known as Th1 and Th2 cells. Many studies have shown that several diseases including cancer, inflammatory, autoimmune and allergic diseases are associated with a Th1/Th2 imbalance caused by increased or decreased expression/activity of STAT4 or STAT6 often due to genetic and epigenetic aberrances. An altered expression of STAT4 has been observed in different tumors and autoimmune diseases, while a dysregulation of STAT6 signaling pathway is frequently observed in allergic conditions, such as atopic dermatitis, allergic asthma, food allergy, and tumors such as Hodgkin and non-Hodgkin lymphomas. Recently, dysregulations of STAT4 and STAT6 expression have been observed in SARS-CoV2 and monkeypox infections, which are still public health emergencies in many countries. SARS-CoV-2 can induce an imbalance in Th1 and Th2 responses with a predominant activation of STAT6 in the cytosol and nuclei of pneumocytes that drives Th2 polarization and cytokine storm. In monkeypox infection the virus can promote an immune evasion by inducing a Th2 response that in turn inhibits the Th1 response essential for virus elimination. Furthermore, genetic variations of STAT4 that are associated with an increased risk of developing systemic lupus erythematosus seem to play a role in defense against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Infectious Diseases, A.O.U.P. Palermo, Palermo, Italy
| | - Antonio Cascio
- Department of Infectious Diseases, A.O.U.P. Palermo, Palermo, Italy
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, Palermo, Italy
| |
Collapse
|
4
|
Sharma M, Suratannon N, Leung D, Baris S, Takeuchi I, Samra S, Yanagi K, Rosa Duque JS, Benamar M, Del Bel KL, Momenilandi M, Béziat V, Casanova JL, van Hagen PM, Arai K, Nomura I, Kaname T, Chatchatee P, Morita H, Chatila TA, Lau YL, Turvey SE. Human germline gain-of-function in STAT6: from severe allergic disease to lymphoma and beyond. Trends Immunol 2024; 45:138-153. [PMID: 38238227 DOI: 10.1016/j.it.2023.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 02/12/2024]
Abstract
Signal transducer and activator of transcription (STAT)-6 is a transcription factor central to pro-allergic immune responses, although the function of human STAT6 at the whole-organism level has long remained unknown. Germline heterozygous gain-of-function (GOF) rare variants in STAT6 have been recently recognized to cause a broad and severe clinical phenotype of early-onset, multi-system allergic disease. Here, we provide an overview of the clinical presentation of STAT6-GOF disease, discussing how dysregulation of the STAT6 pathway causes severe allergic disease, and identifying possible targeted treatment approaches. Finally, we explore the mechanistic overlap between STAT6-GOF disease and other monogenic atopic disorders, and how this group of inborn errors of immunity (IEIs) powerfully inform our fundamental understanding of common human allergic disease.
Collapse
|
5
|
Lekki-Jóźwiak J, Bąska P. The Roles of Various Immune Cell Populations in Immune Response against Helminths. Int J Mol Sci 2023; 25:420. [PMID: 38203591 PMCID: PMC10778651 DOI: 10.3390/ijms25010420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Helminths are multicellular parasites that are a substantial problem for both human and veterinary medicine. According to estimates, 1.5 billion people suffer from their infection, resulting in decreased life quality and burdens for healthcare systems. On the other hand, these infections may alleviate autoimmune diseases and allergy symptoms. The immune system is programmed to combat infections; nevertheless, its effector mechanisms may result in immunopathologies and exacerbate clinical symptoms. This review summarizes the role of the immune response against worms, with an emphasis on the Th2 response, which is a hallmark of helminth infections. We characterize non-immune cells (enteric tuft cells-ETCs) responsible for detecting parasites, as well as the role of hematopoietic-derived cells (macrophages, basophils, eosinophils, neutrophils, innate lymphoid cells group 2-ILC2s, mast cells, T cells, and B cells) in initiating and sustaining the immune response, as well as the functions they play in granulomas. The aim of this paper is to review the existing knowledge regarding the immune response against helminths, to attempt to decipher the interactions between cells engaged in the response, and to indicate the gaps in the current knowledge.
Collapse
Affiliation(s)
- Janina Lekki-Jóźwiak
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
6
|
Catunda RQ, Ho KKY, Patel S, Roy CB, Alexiou M, Levin L, Ulrich BJ, Kaplan MH, Febbraio M. Loricrin and Cytokeratin Disorganisation in Severe Forms of Periodontitis. Int Dent J 2023; 73:862-872. [PMID: 37316411 PMCID: PMC10658443 DOI: 10.1016/j.identj.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
OBJECTIVE The aim of this research was to investigate the role of the cornified epithelium, the outermost layer of the oral mucosa, engineered to prevent water loss and microorganism invasion, in severe forms of periodontitis (stage III or IV, grade C). METHODS Porphyromonas gingivalis, a major periodontal disease pathogen, can affect cornified epithelial protein expression through chronic activation of signal transducer and activator of transcription 6 (Stat6). We used a mouse model, Stat6VT, that mimics this to determine the effects of barrier defect on P gingivalis-induced inflammation, bone loss, and cornified epithelial protein expression, and compared histologic and immunohistologic findings with tissues obtained from human controls and patients with stage III and IV, grade C disease. Alveolar bone loss in mice was assessed using micro-computerised tomography, and soft tissue morphology was qualitatively and semi-quantitatively assessed by histologic examination for several proteins, including loricrin, filaggrin, cytokeratin 1, cytokeratin 14, a proliferation marker, a pan-leukocyte marker, as well as morphologic signs of inflammation. Relative cytokine levels were measured in mouse plasma by cytokine array. RESULTS In the tissues from patients with periodontal disease, there were greater signs of inflammation (rete pegs, clear cells, inflammatory infiltrates) and a decrease and broadening of expression of loricrin and cytokeratin 1. Cytokeratin 14 expression was also broader and decreased in stage IV. P gingivalis-infected Stat6VT mice showed greater alveolar bone loss in 9 out of 16 examined sites, and similar patterns of disruption to human patients in expression of loricrin and cytokeratins 1 and 14. There were also increased numbers of leukocytes, decreased proliferation, and greater signs of inflammation compared with P gingivalis-infected control mice. CONCLUSIONS Our study provides evidence that changes in epithelial organisation can exacerbate the effects of P gingivalis infection, with similarities to the most severe forms of human periodontitis.
Collapse
Affiliation(s)
- Raisa Queiroz Catunda
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Ka-Yan Ho
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Srushti Patel
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher Bryant Roy
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Maria Alexiou
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Liran Levin
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Mark H Kaplan
- Department of Microbiology & Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Maria Febbraio
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
7
|
Wu D, Zhang X, Zimmerly KM, Wang R, Wang C, Hunter R, Wu X, Campen M, Liu M, Yang XO. Unfolded protein response factor ATF6 augments T helper cell responses and promotes mixed granulocytic airway inflammation. Mucosal Immunol 2023; 16:499-512. [PMID: 37209959 PMCID: PMC10530451 DOI: 10.1016/j.mucimm.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
The unfolded protein response (UPR) is associated with the risk of asthma, including treatment-refractory severe asthma. Recent studies demonstrated a pathogenic role of activating transcription factor 6a (ATF6a or ATF6), an essential UPR sensor, in airway structural cells. However, its role in T helper (TH) cells has not been well examined. In this study, we found that ATF6 was selectively induced by signal transducer and activator of transcription6 (STAT6) and STAT3 in TH2 and TH17 cells, respectively. ATF6 upregulated UPR genes and promoted the differentiation and cytokine secretion of TH2 and TH17 cells. T cell-specific Atf6-deficiency impaired TH2 and TH17 responses in vitro and in vivo and attenuated mixed granulocytic experimental asthma. ATF6 inhibitor Ceapin A7 suppressed the expression of ATF6 downstream genes and TH cell cytokines by both murine and human memory clusters of differentiation 4 (CD4)+ T cells. At the chronic stage of asthma, administration of Ceapin A7 lessened TH2 and TH17 responses, leading to alleviation of both airway neutrophilia and eosinophilia. Thus, our results demonstrate a critical role of ATF6 in TH2 and TH17 cell-driven mixed granulocytic airway disease, suggesting a novel option to combat steroid-resistant mixed and even T2-low endotypes of asthma by targeting ATF6.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, USA
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, USA
| | - Kourtney M Zimmerly
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, USA
| | - Ruoning Wang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, USA
| | - Chunqing Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, USA
| | - Russell Hunter
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Xiang Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, USA; Department of Parasitology, School of Basic Medical Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Matthew Campen
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, USA.
| | - Xuexian O Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, USA.
| |
Collapse
|
8
|
Baris S, Benamar M, Chen Q, Catak MC, Martínez-Blanco M, Wang M, Fong J, Massaad MJ, Sefer AP, Kara A, Babayeva R, Eltan SB, Yucelten AD, Bozkurtlar E, Cinel L, Karakoc-Aydiner E, Zheng Y, Wu H, Ozen A, Schmitz-Abe K, Chatila TA. Severe allergic dysregulation due to a gain of function mutation in the transcription factor STAT6. J Allergy Clin Immunol 2023; 152:182-194.e7. [PMID: 36758835 PMCID: PMC10330134 DOI: 10.1016/j.jaci.2023.01.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Inborn errors of immunity have been implicated in causing immune dysregulation, including allergic diseases. STAT6 is a key regulator of allergic responses. OBJECTIVES This study sought to characterize a novel gain-of-function STAT6 mutation identified in a child with severe allergic manifestations. METHODS Whole-exome and targeted gene sequencing, lymphocyte characterization, and molecular and functional analyses of mutated STAT6 were performed. RESULTS This study reports a child with a missense mutation in the DNA binding domain of STAT6 (c.1114G>A, p.E372K) who presented with severe atopic dermatitis, eosinophilia, and elevated IgE. Naive lymphocytes from the affected patient displayed increased TH2- and suppressed TH1- and TH17-cell responses. The mutation augmented both basal and cytokine-induced STAT6 phosphorylation without affecting dephosphorylation kinetics. Treatment with the Janus kinase 1/2 inhibitor ruxolitinib reversed STAT6 hyperresponsiveness to IL-4, normalized TH1 and TH17 cells, suppressed the eosinophilia, and improved the patient's atopic dermatitis. CONCLUSIONS This study identified a novel inborn error of immunity due to a STAT6 gain-of-function mutation that gave rise to severe allergic dysregulation. Janus kinase inhibitor therapy could represent an effective targeted treatment for this disorder.
Collapse
Affiliation(s)
- Safa Baris
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Mehmet Cihangir Catak
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Mónica Martínez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Muyun Wang
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Jason Fong
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Michel J Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon; Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Asena Pinar Sefer
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, Turkey
| | - Royala Babayeva
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Sevgi Bilgic Eltan
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayse Deniz Yucelten
- Department of Dermatology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Emine Bozkurtlar
- Department of Pathology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Leyla Cinel
- Department of Pathology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Yumei Zheng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Mass; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Mass
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Mass; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Mass
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Klaus Schmitz-Abe
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
9
|
Sharma M, Leung D, Momenilandi M, Jones LC, Pacillo L, James AE, Murrell JR, Delafontaine S, Maimaris J, Vaseghi-Shanjani M, Del Bel KL, Lu HY, Chua GT, Di Cesare S, Fornes O, Liu Z, Di Matteo G, Fu MP, Amodio D, Tam IYS, Chan GSW, Sharma AA, Dalmann J, van der Lee R, Blanchard-Rohner G, Lin S, Philippot Q, Richmond PA, Lee JJ, Matthews A, Seear M, Turvey AK, Philips RL, Brown-Whitehorn TF, Gray CJ, Izumi K, Treat JR, Wood KH, Lack J, Khleborodova A, Niemela JE, Yang X, Liang R, Kui L, Wong CSM, Poon GWK, Hoischen A, van der Made CI, Yang J, Chan KW, Rosa Duque JSD, Lee PPW, Ho MHK, Chung BHY, Le HTM, Yang W, Rohani P, Fouladvand A, Rokni-Zadeh H, Changi-Ashtiani M, Miryounesi M, Puel A, Shahrooei M, Finocchi A, Rossi P, Rivalta B, Cifaldi C, Novelli A, Passarelli C, Arasi S, Bullens D, Sauer K, Claeys T, Biggs CM, Morris EC, Rosenzweig SD, O’Shea JJ, Wasserman WW, Bedford HM, van Karnebeek CD, Palma P, Burns SO, Meyts I, Casanova JL, Lyons JJ, Parvaneh N, Nguyen ATV, Cancrini C, Heimall J, Ahmed H, McKinnon ML, Lau YL, Béziat V, Turvey SE. Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease. J Exp Med 2023; 220:e20221755. [PMID: 36884218 PMCID: PMC10037107 DOI: 10.1084/jem.20221755] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. We have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. The cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). All patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and TH2 skewing. Precision treatment with the anti-IL-4Rα antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. This study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder.
Collapse
Affiliation(s)
- Mehul Sharma
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Daniel Leung
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Lauren C.W. Jones
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Lucia Pacillo
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Alyssa E. James
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jill R. Murrell
- Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Selket Delafontaine
- Dept. of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Pediatric Immunodeficiencies Division, University Hospitals Leuven, Leuven, Belgium
| | - Jesmeen Maimaris
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Dept. of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Maryam Vaseghi-Shanjani
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Kate L. Del Bel
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Henry Y. Lu
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Dept. of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Gilbert T. Chua
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Allergy Centre, Union Hospital, Hong Kong, China
| | - Silvia Di Cesare
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Oriol Fornes
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Dept. of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Zhongyi Liu
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Gigliola Di Matteo
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Maggie P. Fu
- Dept. of Medical Genetics, The University of British Columbia, Vancouver, Canada
- Genome Science and Technology Program, Faculty of Science, The University of British Columbia, Vancouver, Canada
| | - Donato Amodio
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Issan Yee San Tam
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | - Joshua Dalmann
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Robin van der Lee
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Dept. of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Géraldine Blanchard-Rohner
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
- Unit of Immunology and Vaccinology, Division of General Pediatrics, Dept. of Woman, Child, and Adolescent Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Susan Lin
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Phillip A. Richmond
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica J. Lee
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, Canada
| | - Allison Matthews
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Dept. of Paediatrics, University of Toronto, Toronto, Canada
| | - Michael Seear
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Alexandra K. Turvey
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Rachael L. Philips
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Terri F. Brown-Whitehorn
- Dept. of Pediatrics, Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christopher J. Gray
- Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kosuke Izumi
- Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - James R. Treat
- Pediatrics, Division of Pediatric Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen H. Wood
- Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, MD, USA
| | - Asya Khleborodova
- NIAID Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, MD, USA
| | | | - Xingtian Yang
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Rui Liang
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Lin Kui
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Dept. of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Christina Sze Man Wong
- Dept. of Medicine, Divison of Dermatology, The University of Hong Kong, Hong Kong, China
| | - Grace Wing Kit Poon
- Dept. of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong, China
| | - Alexander Hoischen
- Dept. of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Jing Yang
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Koon Wing Chan
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Jaime Sou Da Rosa Duque
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Pamela Pui Wah Lee
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Marco Hok Kung Ho
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Virtus Medical, Hong Kong, China
| | - Brian Hon Yin Chung
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Huong Thi Minh Le
- Pediatric Center, Vinmec Times City International General Hospital, Hanoi, Vietnam
| | - Wanling Yang
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Pejman Rohani
- Pediatrics, Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children’s Medical Center, University of Medical Sciences, Tehran, Iran
| | - Ali Fouladvand
- Pediatrics, Allergy and Clinical Immunology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Hassan Rokni-Zadeh
- Dept. of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Mohammad Miryounesi
- Dept. of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Mohammad Shahrooei
- Microbiology and Immunology, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Andrea Finocchi
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Paolo Rossi
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- DPUO, Research Unit of Infectivology and Pediatrics Drugs Development, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Beatrice Rivalta
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Cristina Cifaldi
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Chiara Passarelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Stefania Arasi
- Allergy Unit, Area of Translational Research in Pediatric Specialities, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Dominique Bullens
- Dept. of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Pediatric Allergy Division, University Hospitals Leuven, Leuven, Belgium
| | - Kate Sauer
- Dept. of Pediatrics, Pediatric Pulmonology Division, AZ Sint-Jan Brugge, Brugge, Belgium
- Dept. of Pediatrics, Pediatric Pulmonology Division, University Hospitals Leuven, Leuven, Belgium
| | - Tania Claeys
- Dept. of Pediatrics, Pediatric Gastroenterology Division, AZ Sint-Jan Brugge, Brugge, Belgium
| | - Catherine M. Biggs
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Emma C. Morris
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Dept. of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | | | - John J. O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Wyeth W. Wasserman
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - H. Melanie Bedford
- Dept. of Paediatrics, University of Toronto, Toronto, Canada
- Genetics Program, North York General Hospital, Toronto, Canada
| | - Clara D.M. van Karnebeek
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Depts. of Pediatrics and Clinical Genetics, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Paolo Palma
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Siobhan O. Burns
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Dept. of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Isabelle Meyts
- Dept. of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Pediatric Immunodeficiencies Division, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jonathan J. Lyons
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nima Parvaneh
- Department of Pediatrics, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Anh Thi Van Nguyen
- Dept. of Immunology, Allergy and Rheumatology, Division of Primary Immunodeficiency, Vietnam National Children’s Hospital, Hanoi, Vietnam
| | - Caterina Cancrini
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Jennifer Heimall
- Dept. of Pediatrics, Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hanan Ahmed
- Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | | | - Yu Lung Lau
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Stuart E. Turvey
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| |
Collapse
|
10
|
Wang J, Pajulas A, Fu Y, Adom D, Zhang W, Nelson AS, Spandau DF, Kaplan MH. γδ T Cell‒Mediated Wound Healing Is Diminished by Allergic Skin Inflammation. J Invest Dermatol 2022; 142:2805-2816.e4. [PMID: 35378112 PMCID: PMC9509419 DOI: 10.1016/j.jid.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 11/24/2022]
Abstract
Atopic dermatitis results in profound changes in the function of the skin that include diminished barrier function and altered production of antimicrobial peptides. Our previous work in a model of allergic skin inflammation identified a defect in the wound healing process that was dependent on IL-4. In this report, we show that allergic skin inflammation results in a dramatic decrease in the presence of the Vγ3+ dendritic epidermal T-cell (DETC) population of γδ T cells in the skin. In mice that express an active signal transducer and activator of transcription 6 in T cells, DETCs are lost early in life. The loss of DETCs is entirely dependent on IL-4 and is recovered with a genetic deficiency of IL-4. Moreover, injection of IL-4 into wild-type mice results in acute loss of the DETC population. A similar loss of DETCs was observed in mice treated topically with MC903. Wounding of skin from Stat6VT-transgenic or MC903-treated mice resulted in decreased production of DETC-dependent cytokines in the skin, coincident with diminished wound closure. Importantly, intradermal injection of the DETC-produced cytokine fibroblast GF 7 rescued the rate of wound closure in mice with allergic skin inflammation. Together, these results suggest that the atopic environment diminishes prohealing T-cell populations in the skin, resulting in attenuated wound healing responses.
Collapse
Affiliation(s)
- Jocelyn Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Djamilatou Adom
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wenwu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew S Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dan F Spandau
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
11
|
Zhang W, Pajulas A, Kaplan MH. γδ T Cells in Skin Inflammation. Crit Rev Immunol 2022; 42:43-56. [PMID: 37075018 PMCID: PMC10439530 DOI: 10.1615/critrevimmunol.2022047288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gamma delta (γδ) T cells are a subset of T lymphocytes that express T cell receptor γ and 5 chains and display structural and functional heterogeneity. γδ T cells are typically of low abundance in the body and account for 1-5% of the blood lymphocytes and peripheral lymphoid tissues. As a bridge between innate and adaptive immunity, γδ T cells are uniquely poised to rapidly respond to stimulation and can regulate immune responses in peripheral tissues. The dendritic epidermal T cells in the skin epidermis can secrete growth factors to regulate skin homeostasis and re-epithelization and release inflammatory factors to mediate wound healing during skin inflammatory responses. Dermal γδ T cells can regulate the inflammatory process by producing interleukin-17 and other cytokines or chemokines. Here, we offer a review of the immune functions of γδ T cells, intending to understand their role in regulating skin barrier integrity and skin wound healing, which may be crucial for the development of novel therapeutics in skin diseases like atopic dermatitis and psoriasis.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| | - Abigail Pajulas
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| | - Mark H Kaplan
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| |
Collapse
|
12
|
Hutchinson A, Reales G, Willis T, Wallace C. Leveraging auxiliary data from arbitrary distributions to boost GWAS discovery with Flexible cFDR. PLoS Genet 2021; 17:e1009853. [PMID: 34669738 PMCID: PMC8559959 DOI: 10.1371/journal.pgen.1009853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/01/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified thousands of genetic variants that are associated with complex traits. However, a stringent significance threshold is required to identify robust genetic associations. Leveraging relevant auxiliary covariates has the potential to boost statistical power to exceed the significance threshold. Particularly, abundant pleiotropy and the non-random distribution of SNPs across various functional categories suggests that leveraging GWAS test statistics from related traits and/or functional genomic data may boost GWAS discovery. While type 1 error rate control has become standard in GWAS, control of the false discovery rate can be a more powerful approach. The conditional false discovery rate (cFDR) extends the standard FDR framework by conditioning on auxiliary data to call significant associations, but current implementations are restricted to auxiliary data satisfying specific parametric distributions, typically GWAS p-values for related traits. We relax these distributional assumptions, enabling an extension of the cFDR framework that supports auxiliary covariates from arbitrary continuous distributions ("Flexible cFDR"). Our method can be applied iteratively, thereby supporting multi-dimensional covariate data. Through simulations we show that Flexible cFDR increases sensitivity whilst controlling FDR after one or several iterations. We further demonstrate its practical potential through application to an asthma GWAS, leveraging various functional genomic data to find additional genetic associations for asthma, which we validate in the larger, independent, UK Biobank data resource.
Collapse
Affiliation(s)
- Anna Hutchinson
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Guillermo Reales
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Willis
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Chris Wallace
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Khan IM, Ulrich BJ, Nelson AS, Sehra S, Kansas GS, Kaplan MH. Selectin Dependence of Allergic Skin Inflammation Is Diminished by Maternal Atopy. Immunohorizons 2021; 5:703-710. [PMID: 34433625 PMCID: PMC8638165 DOI: 10.4049/immunohorizons.2100052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022] Open
Abstract
Allergic skin inflammation requires the influx of inflammatory cells into the skin. Extravasation of leukocytes into the skin requires interactions between endothelial selectins and their glycan ligands on the surface of leukocytes. Selectin-ligand formation requires the activity of several glycosyltransferases, including Fut7 In this report, we tested the importance of Fut7 for the development of allergic skin inflammation in the Stat6VT transgenic mouse model. We observed that Fut7 deficiency was protective but did not eliminate disease. Segregation of the data by gender of the parent that transmitted the Stat6VT transgene, but not by gender of the pups, which were analyzed for disease, revealed that the protective effects of Fut7 deficiency were significantly greater when dams were Stat6VT negative. In contrast, in mice from litters of Stat6VT+ dams, Fut7 deficiency resulted in only modest protection. These findings indicate that pups from atopic dams exhibit a greater propensity for allergic disease, similar to observations in humans, and that the effect of maternal atopy is due to enhanced selectin-independent mechanisms of leukocyte recruitment in their offspring. Together, these results demonstrate that Fut7 deficiency can be protective in a model of atopic dermatitis but that maternal atopy diminishes these protective effects, suggesting alternative pathways for leukocyte recruitment in the absence of Fut7 enzyme activity. These observations have implications for understanding how the environment in utero predisposes for the development of allergic disease.
Collapse
Affiliation(s)
- Ibrahim M Khan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Benjamin J Ulrich
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Andrew S Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN; and
| | - Sarita Sehra
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN; and
| | - Geoffrey S Kansas
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN;
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN; and
| |
Collapse
|
14
|
STAT6 Is Critical for the Induction of Regulatory T Cells In Vivo Controlling the Initial Steps of Colitis-Associated Cancer. Int J Mol Sci 2021; 22:ijms22084049. [PMID: 33919941 PMCID: PMC8070924 DOI: 10.3390/ijms22084049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 01/05/2023] Open
Abstract
Inflammation is the main driver of the tumor initiation and progression in colitis-associated colorectal cancer (CAC). Recent findings have indicated that the signal transducer and activator of transcription 6 (STAT6) plays a fundamental role in the early stages of CAC, and STAT6 knockout (STAT6−/−) mice are highly resistant to CAC development. Regulatory T (Treg) cells play a major role in coordinating immunomodulation in cancer; however, the role of STAT6 in the induction and function of Treg cells is poorly understood. To clarify the contribution of STAT6 to CAC, STAT6−/− and wild type (WT) mice were subjected to an AOM/DSS regimen, and the frequency of peripheral and local Treg cells was determined during the progression of CAC. When STAT6 was lacking, a remarkable reduction in tumor growth was observed, which was associated with decreased inflammation and an increased number of CD4+CD25+Foxp3+ cells in the colon, circulation, and spleen, including an over-expression of TGF-beta, IL-10, and Foxp3, compared to WT mice, during the early stages of CAC development. Conversely, WT mice showed an inverse frequency of Treg cells compared with STAT6−/− mice, which was followed by intestinal tumor formation. Increased mucosal inflammation, histological damage, and tumorigenesis were restored to levels observed in WT mice when an early inhibition/depletion of Treg cells was performed in STAT6−/− mice. Thus, with STAT6 deficiency, an increased number of Treg cells induce resistance against tumorigenesis, arresting tumor-promoting inflammation. We reported a direct role of STAT6 in the induction and function of Treg cells during CAC development and suggest that STAT6 is a potential target for the modulation of immune response in colitis and CAC.
Collapse
|
15
|
Metwali A, Winckler S, Urban JF, Kaplan MH, Ince MN, Elliott DE. Helminth-induced regulation of T-cell transfer colitis requires intact and regulated T cell Stat6 signaling in mice. Eur J Immunol 2020; 51:433-444. [PMID: 33067820 DOI: 10.1002/eji.201848072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 07/24/2020] [Indexed: 02/01/2023]
Abstract
Infection with parasitic worms (helminths) alters host immune responses and can inhibit pathogenic inflammation. Helminth infection promotes a strong Th2 and T regulatory response while suppressing Th1 and Th17 function. Th2 responses are largely dependent on transcriptional programs directed by Stat6-signaling. We examined the importance of intact T cell Stat6 signaling on helminth-induced suppression of murine colitis that results from T cell transfer into immune-deficient mice. Colonization with the intestinal nematode Heligmosomoides polygyrus bakeri resolves WT T cell transfer colitis. However, if the transferred T cells lack intact Stat6 then helminth exposure failed to attenuate colitis or suppress MLN T cell IFN-γ or IL17 production. Loss of Stat6 signaling resulted in decreased IL10 and increased IFN-γ co-expression by IL-17+ T cells. We also transferred T cells from mice with constitutive T cell expression of activated Stat6 (Stat6VT). These mice developed a severe eosinophilic colitis that also was not attenuated by helminth infection. These results show that T cell expression of intact but regulated Stat6 signaling is required for helminth infection-associated regulation of pathogenic intestinal inflammation.
Collapse
Affiliation(s)
- Ahmed Metwali
- Internal Medicine, Iowa City Veterans Administration Health Center, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Sarah Winckler
- Internal Medicine, Iowa City Veterans Administration Health Center, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Joseph F Urban
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, MD, USA
| | - Mark H Kaplan
- Department of Pediatrics, H.B. Wells Center for Pediatric Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M Nedim Ince
- Internal Medicine, Iowa City Veterans Administration Health Center, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - David E Elliott
- Internal Medicine, Iowa City Veterans Administration Health Center, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
16
|
STAT5 promotes accessibility and is required for BATF-mediated plasticity at the Il9 locus. Nat Commun 2020; 11:4882. [PMID: 32985505 PMCID: PMC7523001 DOI: 10.1038/s41467-020-18648-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/01/2020] [Indexed: 01/19/2023] Open
Abstract
T helper cell differentiation requires lineage-defining transcription factors and factors that have shared expression among multiple subsets. BATF is required for development of multiple Th subsets but functions in a lineage-specific manner. BATF is required for IL-9 production in Th9 cells but in contrast to its function as a pioneer factor in Th17 cells, BATF is neither sufficient nor required for accessibility at the Il9 locus. Here we show that STAT5 is the earliest factor binding and remodeling the Il9 locus to allow BATF binding in both mouse and human Th9 cultures. The ability of STAT5 to mediate accessibility for BATF is observed in other Th lineages and allows acquisition of the IL-9-secreting phenotype. STAT5 and BATF convert Th17 cells into cells that mediate IL-9-dependent effects in allergic airway inflammation and anti-tumor immunity. Thus, BATF requires the STAT5 signal to mediate plasticity at the Il9 locus. BATF is a transcription factor that is needed for IL-9 production by T helper 9 cells. Here the authors show that STAT5 is needed at the Il9 locus to enable BATF to function in this manner and that this interaction can reprogram other T helper subsets into IL-9 producing cells, thus regulating the immune response to disease.
Collapse
|
17
|
Haase P, Mokada-Gopal L, Radtke D, Voehringer D. Modulation of the humoral immune response by constitutively active STAT6 expression in murine B cells. Eur J Immunol 2019; 50:558-567. [PMID: 31803941 DOI: 10.1002/eji.201948313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/06/2019] [Accepted: 12/02/2019] [Indexed: 11/11/2022]
Abstract
The transcription factor STAT6 regulates gene expression in response to IL-4 and IL-13. To further investigate how activated STAT6 modulates B cells development and function in vivo, we characterized mice that express a constitutively active version specifically in B cells. CD19Cre_STAT6vt mice show spontaneous phosphorylation and nuclear translocation of STAT6 in B cells. About 80 genes were more than twofold up- or downregulated in splenic B cells from CD19Cre_STAT6vt as compared to control mice. B cell development, tissue localization, and populations of follicular and marginal zone B cells, B1 B cells, GC B cells, and plasma cells (PCs) appeared to be normal. However, the number of IgE+ and IgG1+ GC B cells and PCs as well as serum IgE and IgG1 levels were increased in CD19Cre_STAT6vt mice. Infection with Lymphocytic choriomeningitis virus associated with high levels of TNF and IFN-γ did not prevent the development of a significantly increased IgE and IgG1 response against the virus in CD19Cre_STAT6vt mice. These results suggest that prolonged STAT6 activation during chronic allergic inflammation may result in IgE responses during subsequent viral or bacterial infection that could further stimulate mast cell activation even in the absence of the initial allergic response.
Collapse
Affiliation(s)
- Paul Haase
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - Lavanya Mokada-Gopal
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - Daniel Radtke
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| |
Collapse
|
18
|
Inhibition of the IRE-1α/XBP-1 pathway prevents chronic GVHD and preserves the GVL effect in mice. Blood Adv 2019; 2:414-427. [PMID: 29483082 DOI: 10.1182/bloodadvances.2017009068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 02/02/2018] [Indexed: 01/07/2023] Open
Abstract
Hematopoietic stem cell transplantation (HCT) is a curative procedure for hematological malignancies, but chronic graft-versus-host disease (cGVHD) remains a major complication after allogeneic HCT. Because donor B cells are essential for cGVHD development and B cells are sensitive to endoplasmic reticulum (ER) stress, we hypothesized that the IRE-1α/XBP-1 pathway is required for B-cell activation and function and for the development of cGVHD. To test this hypothesis, we used conditional knock-out mice deficient of XBP-1 specifically in B cells. Recipients transplanted with donor grafts containing XBP-1-deficient B cells displayed reduced cGVHD compared with controls. Reduction of cGVHD correlated with impaired B-cell functions, including reduced production of anti-double-stranded DNA immunoglobulin G antibodies, CD86, Fas, and GL7 surface expression, and impaired T-cell responses, including reduced interferon-γ production and follicular helper T cells. In a bronchiolitis obliterans cGVHD model, recipients of transplants containing XBP-1-deficient B cells demonstrated improved pulmonary function correlated with reduced donor splenic follicular helper T cells and increased B cells compared with those of wild-type control donor grafts. We then tested if XBP-1 blockade via an IRE-1α inhibitor, B-I09, would attenuate cGVHD and preserve the graft-versus-leukemia (GVL) effect. In a cutaneous cGVHD model, we found that prophylactic administration of B-I09 reduced clinical features of cGVHD, which correlated with reductions in donor T-cell and dendritic cell skin infiltrates. Inhibition of the IRE-1α/XBP-1 pathway also preserved the GVL effect against chronic myelogenous leukemia mediated by allogeneic splenocytes. Collectively, the ER stress response mediated by the IRE-1α/XBP-1 axis is required for cGVHD development but dispensable for GVL activity.
Collapse
|
19
|
Li Y, Liu W, Guan X, Truscott J, Creemers JW, Chen HL, Pesu M, El Abiad RG, Karacay B, Urban JF, Elliott DE, Kaplan MH, Blazar BR, Ince MN. STAT6 and Furin Are Successive Triggers for the Production of TGF-β by T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:2612-2623. [PMID: 30266770 DOI: 10.4049/jimmunol.1700808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/03/2018] [Indexed: 01/11/2023]
Abstract
Production of TGF-β by T cells is key to various aspects of immune homeostasis, with defects in this process causing or aggravating immune-mediated disorders. The molecular mechanisms that lead to TGF-β generation by T cells remain largely unknown. To address this issue, we take advantage of the fact that intestinal helminths stimulate Th2 cells besides triggering TGF-β generation by T lymphocytes and regulate immune-mediated disorders. We show that the Th2 cell-inducing transcription factor STAT6 is necessary and sufficient for the expression of TGF-β propeptide in T cells. STAT6 is also necessary for several helminth-triggered events in mice, such as TGF-β-dependent suppression of alloreactive inflammation in graft-versus-host disease. Besides STAT6, helminth-induced secretion of active TGF-β requires cleavage of propeptide by the endopeptidase furin. Thus, for the immune regulatory pathway necessary for TGF-β production by T cells, our results support a two-step model, composed of STAT6 and furin.
Collapse
Affiliation(s)
- Yue Li
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Weiren Liu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Xiaqun Guan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Jamie Truscott
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - John W Creemers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, B-3000 Belgium
| | - Hung-Lin Chen
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Marko Pesu
- Immunoregulation, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, FI-33520 Tampere, Finland.,Department of Dermatology, Tampere University Hospital, FI-33520 Tampere, Finland
| | - Rami G El Abiad
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Bahri Karacay
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Joseph F Urban
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - David E Elliott
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Mark H Kaplan
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455; and
| | - M Nedim Ince
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; .,Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
20
|
DaSilva-Arnold SC, Thyagarajan A, Seymour LJ, Yi Q, Bradish JR, Al-Hassani M, Zhou H, Perdue NJ, Nemeth V, Krbanjevic A, Serezani APM, Olson MR, Spandau DF, Travers JB, Kaplan MH, Turner MJ. Phenotyping acute and chronic atopic dermatitis-like lesions in Stat6VT mice identifies a role for IL-33 in disease pathogenesis. Arch Dermatol Res 2018; 310:197-207. [PMID: 29368135 PMCID: PMC6198812 DOI: 10.1007/s00403-018-1807-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/18/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022]
Abstract
The Stat6VT mouse model of atopic dermatitis (AD) is induced by T-cell-specific expression of a constitutively active form of the protein signal transducer and activator of transcription 6 (STAT6). Although AD-like lesions are known to develop in Stat6VT mice, this study was designed to determine if these mice develop acute and chronic phases of disease similar to humans. To address this, AD-like lesions from Stat6VT mice were harvested at two different timepoints relative to their onset. Lesions harvested within 1 week after development were defined as acute lesions, and those present for 1 month or more were defined as chronic lesions. Acute and chronic AD-like lesions from Stat6VT mice exhibited histologic findings and cytokine expression patterns similar to acute and chronic AD lesions in humans. Further analysis revealed increased levels of interleukin (IL)-33 transcripts in AD-like lesions compared to Stat6VT nonlesional and wild-type skin controls. Immunofluorescence also revealed increased numbers of IL-33+ keratinocytes in Stat6VT lesional skin and localized IL-33+ keratinocytes to a keratin 5+ subset. Furthermore, AD-like disease was more severe in IL-33-deficient Stat6VT mice compared to IL-33-sufficient Stat6VT mice. These studies suggest that Stat6VT mice can serve as a model of acute and chronic AD and that IL-33 may attenuate inflammation in this system.
Collapse
Affiliation(s)
- Sonia C DaSilva-Arnold
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anita Thyagarajan
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Leroy J Seymour
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Qiaofang Yi
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Joshua R Bradish
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mohammed Al-Hassani
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hongming Zhou
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nikolajs J Perdue
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Val Nemeth
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Aleksandar Krbanjevic
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ana P M Serezani
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matthew R Olson
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dan F Spandau
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jeffrey B Travers
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
| | - Mark H Kaplan
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matthew J Turner
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
21
|
Kälin S, Becker M, Ott VB, Serr I, Hosp F, Mollah MMH, Keipert S, Lamp D, Rohner-Jeanrenaud F, Flynn VK, Scherm MG, Nascimento LFR, Gerlach K, Popp V, Dietzen S, Bopp T, Krishnamurthy P, Kaplan MH, Serrano M, Woods SC, Tripal P, Palmisano R, Jastroch M, Blüher M, Wolfrum C, Weigmann B, Ziegler AG, Mann M, Tschöp MH, Daniel C. A Stat6/Pten Axis Links Regulatory T Cells with Adipose Tissue Function. Cell Metab 2017; 26:475-492.e7. [PMID: 28877454 PMCID: PMC5627977 DOI: 10.1016/j.cmet.2017.08.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022]
Abstract
Obesity and type 2 diabetes are associated with metabolic defects and adipose tissue inflammation. Foxp3+ regulatory T cells (Tregs) control tissue homeostasis by counteracting local inflammation. However, if and how T cells interlink environmental influences with adipocyte function remains unknown. Here, we report that enhancing sympathetic tone by cold exposure, beta3-adrenergic receptor (ADRB3) stimulation or a short-term high-calorie diet enhances Treg induction in vitro and in vivo. CD4+ T cell proteomes revealed higher expression of Foxp3 regulatory networks in response to cold or ADRB3 stimulation in vivo reflecting Treg induction. Specifically, Ragulator-interacting protein C17orf59, which limits mTORC1 activity, was upregulated in CD4+ T cells by either ADRB3 stimulation or cold exposure, suggesting contribution to Treg induction. By loss- and gain-of-function studies, including Treg depletion and transfers in vivo, we demonstrated that a T cell-specific Stat6/Pten axis links cold exposure or ADRB3 stimulation with Foxp3+ Treg induction and adipose tissue function. Our findings offer a new mechanistic model in which tissue-specific Tregs maintain adipose tissue function.
Collapse
Affiliation(s)
- Stefanie Kälin
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München and Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 85748 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Maike Becker
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Institute for Diabetes Research, Research Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany
| | - Verena B Ott
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München and Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 85748 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany
| | - Isabelle Serr
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Institute for Diabetes Research, Research Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany
| | - Fabian Hosp
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Mohammad M H Mollah
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Institute for Diabetes Research, Research Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany
| | - Susanne Keipert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München and Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 85748 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Daniel Lamp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München and Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 85748 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Francoise Rohner-Jeanrenaud
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, Hypertension, and Nutrition, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Victoria K Flynn
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Institute for Diabetes Research, Research Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany
| | - Martin G Scherm
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Institute for Diabetes Research, Research Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany
| | - Lucas F R Nascimento
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Institute for Diabetes Research, Research Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany
| | - Katharina Gerlach
- Department of Medicine 1, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Vanessa Popp
- Department of Medicine 1, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Sarah Dietzen
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Tobias Bopp
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Purna Krishnamurthy
- Department of Pediatrics and HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H Kaplan
- Department of Pediatrics and HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Manuel Serrano
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Philipp Tripal
- OICE (Optical Imaging Centre Erlangen), University Erlangen, 91052 Erlangen, Germany
| | - Ralf Palmisano
- OICE (Optical Imaging Centre Erlangen), University Erlangen, 91052 Erlangen, Germany
| | - Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München and Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 85748 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Matthias Blüher
- Department of Medicine, Research Group Molecular Endocrinology, University of Leipzig, 04103 Leipzig, Germany
| | - Christian Wolfrum
- Swiss Federal Institute of Technology, Institute of Food Nutrition and Health, Laboratory of Translational Nutrition Biology, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Benno Weigmann
- Department of Medicine 1, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Anette-Gabriele Ziegler
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany; Klinikum rechts der Isar, Technische Universität München, 80333 Munich, Germany
| | - Matthias Mann
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München and Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 85748 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany.
| | - Carolin Daniel
- Institute for Diabetes Research, Research Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany.
| |
Collapse
|
22
|
Krishnamurthy P, Da-Silva-Arnold S, Turner MJ, Travers JB, Kaplan MH. Poly-ADP ribose polymerase-14 limits severity of allergic skin disease. Immunology 2017; 152:451-461. [PMID: 28653395 DOI: 10.1111/imm.12782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/02/2017] [Accepted: 06/21/2017] [Indexed: 12/31/2022] Open
Abstract
Poly-ADP ribose polymerase-14 (PARP14 or ARTD8) was initially identified as a transcriptional co-activator for signal transducer and activator of transcription 6 (Stat6), where the presence of interleukin-4 (IL-4) and activated Stat6 induces the enzymatic activity of PARP14 that promotes T helper type 2 differentiation and allergic airway disease. To further our understanding of PARP14 in allergic disease, we studied the function of PARP14 in allergic inflammation of skin using mice that express constitutively active Stat6 in T cells (Stat6VT) and develop spontaneous inflammation of the skin. We mated Stat6VT mice to Parp14-/- mice and observed that approximately 75% of the Stat6VT × Parp14-/- mice develop severe atopic dermatitis (AD)-like lesions, compared with about 50% of Stat6VT mice, and have increased morbidity compared with Stat6VT mice. Despite this, gene expression in the skin and the cellular infiltrates was only modestly altered by the absence of PARP14. In contrast, we saw significant changes in systemic T-cell cytokine production. Moreover, adoptive transfer experiments demonstrated that decreases in IL-4 production reflected a cell intrinsic role for PARP14 in Th2 cytokine control. Hence, our data suggest that although PARP14 has similar effects on T-cell cytokine production in several allergic disease models, the outcome of those effects is distinct, depending on the target organ of disease.
Collapse
Affiliation(s)
- Purna Krishnamurthy
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sonia Da-Silva-Arnold
- Department of Dermatology, and Roudebush Veterans' Administration Hospital, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew J Turner
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Dermatology, and Roudebush Veterans' Administration Hospital, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeffrey B Travers
- Department of Dermatology, and Roudebush Veterans' Administration Hospital, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pediatrics and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
23
|
Goswami R, Kaplan M. STAT Transcription Factors in T Cell Control of Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:123-180. [DOI: 10.1016/bs.ircmb.2016.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Serezani APM, Bozdogan G, Sehra S, Walsh D, Krishnamurthy P, Potchanant EAS, Nalepa G, Goenka S, Turner MJ, Spandau DF, Kaplan MH. IL-4 impairs wound healing potential in the skin by repressing fibronectin expression. J Allergy Clin Immunol 2017; 139:142-151.e5. [PMID: 27554818 PMCID: PMC5222746 DOI: 10.1016/j.jaci.2016.07.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 05/27/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is characterized by intense pruritis and is a common childhood inflammatory disease. Many factors are known to affect AD development, including the pleiotropic cytokine IL-4. Yet little is known regarding the direct effects of IL-4 on keratinocyte function. OBJECTIVE AND METHODS In this report RNA sequencing and functional assays were used to define the effect of the allergic environment on primary keratinocyte function and wound repair in mice. RESULTS Acute or chronic stimulation by IL-4 modified expression of more than 1000 genes expressed in human keratinocytes that are involved in a broad spectrum of nonoverlapping functions. Among the IL-4-induced changes, repression of fibronectin critically impaired the human keratinocyte wound response. Moreover, in mouse models of spontaneous and induced AD-like lesions, there was delayed re-epithelialization. Importantly, topical treatment with fibronectin restored the epidermal repair response. CONCLUSION Keratinocyte gene expression is critically shaped by IL-4, altering cell fate decisions, which are likely important for the clinical manifestations and pathology of allergic skin disease.
Collapse
Affiliation(s)
- Ana PM Serezani
- Department of Pediatrics, H.B. Wells Center for Pediatric Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gunseli Bozdogan
- Department of Pediatrics, H.B. Wells Center for Pediatric Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sarita Sehra
- Department of Pediatrics, H.B. Wells Center for Pediatric Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Daniel Walsh
- Department of Pediatrics, H.B. Wells Center for Pediatric Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Purna Krishnamurthy
- Department of Pediatrics, H.B. Wells Center for Pediatric Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elizabeth A Sierra Potchanant
- Department of Pediatrics, H.B. Wells Center for Pediatric Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Division of Pediatric Hematology-Oncology Bone Marrow Failure Program, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Grzegorz Nalepa
- Department of Pediatrics, H.B. Wells Center for Pediatric Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Division of Pediatric Hematology-Oncology Bone Marrow Failure Program, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shreevrat Goenka
- Department of Pediatrics, H.B. Wells Center for Pediatric Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthew J Turner
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dan F Spandau
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark H Kaplan
- Department of Pediatrics, H.B. Wells Center for Pediatric Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
25
|
Schwartz AM, Putlyaeva LV, Covich M, Klepikova AV, Akulich KA, Vorontsov IE, Korneev KV, Dmitriev SE, Polanovsky OL, Sidorenko SP, Kulakovskiy IV, Kuprash DV. Early B-cell factor 1 (EBF1) is critical for transcriptional control of SLAMF1 gene in human B cells. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:1259-68. [PMID: 27424222 DOI: 10.1016/j.bbagrm.2016.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/01/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Signaling lymphocytic activation molecule family member 1 (SLAMF1)/CD150 is a co-stimulatory receptor expressed on a variety of hematopoietic cells, in particular on mature lymphocytes activated by specific antigen, costimulation and cytokines. Changes in CD150 expression level have been reported in association with autoimmunity and with B-cell chronic lymphocytic leukemia. We characterized the core promoter for SLAMF1 gene in human B-cell lines and explored binding sites for a number of transcription factors involved in B cell differentiation and activation. Mutations of SP1, STAT6, IRF4, NF-kB, ELF1, TCF3, and SPI1/PU.1 sites resulted in significantly decreased promoter activity of varying magnitude, depending on the cell line tested. The most profound effect on the promoter strength was observed upon mutation of the binding site for Early B-cell factor 1 (EBF1). This mutation produced a 10-20 fold drop in promoter activity and pinpointed EBF1 as the master regulator of human SLAMF1 gene in B cells. We also identified three potent transcriptional enhancers in human SLAMF1 locus, each containing functional EBF1 binding sites. Thus, EBF1 interacts with specific binding sites located both in the promoter and in the enhancer regions of the SLAMF1 gene and is critical for its expression in human B cells.
Collapse
Affiliation(s)
- Anton M Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lidia V Putlyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Milica Covich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Klepikova
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya A Akulich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ilya E Vorontsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V Korneev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey E Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Oleg L Polanovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana P Sidorenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
26
|
Sehra S, Krishnamurthy P, Koh B, Zhou HM, Seymour L, Akhtar N, Travers JB, Turner MJ, Kaplan MH. Increased Th2 activity and diminished skin barrier function cooperate in allergic skin inflammation. Eur J Immunol 2016; 46:2609-2613. [PMID: 27510401 DOI: 10.1002/eji.201646421] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/30/2016] [Accepted: 08/08/2016] [Indexed: 12/31/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease induced by a complex interaction between susceptibility genes encoding skin barrier components and environmental allergen exposure that results in type 2 cytokine production. Although genetic lesions in either component can be risk factors for disease in patients, whether these pathways interact in the development of AD is not clear. To test this, we mated mice with T-cell specific expression of constitutively active Stat6 (Stat6VT) that spontaneously develop allergic skin inflammation with Flaky tail (Ft) mice that have mutations in Flg and Tmem79 genes that each affect skin barrier function. Our results demonstrate that over 90% of the Stat6VT transgenic mice carrying the Ft alleles (Stat6VTxFt-/- ) develop severe atopic dermatitis lesions by 3-5 months of age, compared with only 40% of Stat6VT mice that develop disease by 6-7 months of age. Further, histopathological analysis of skin tissues from Stat6VTxFt-/- mice revealed extensive thickening of the dermis with increased inflammatory infiltrates as compared with Stat6VT mice. Our study suggests that skin barrier defects and altered Th2 responses independently cooperate in the pathogenesis of allergic skin inflammation, similar to effects observed in patients with AD.
Collapse
Affiliation(s)
- Sarita Sehra
- Department of Pediatrics and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Purna Krishnamurthy
- Department of Pediatrics and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Byunghee Koh
- Department of Pediatrics and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hong-Ming Zhou
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lee Seymour
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nahid Akhtar
- Department of Pediatrics and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeffrey B Travers
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, USA
| | - Matthew J Turner
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark H Kaplan
- Department of Pediatrics and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
27
|
Krishnamurthy P, Kaplan MH. STAT6 and PARP Family Members in the Development of T Cell-dependent Allergic Inflammation. Immune Netw 2016; 16:201-10. [PMID: 27574499 PMCID: PMC5002446 DOI: 10.4110/in.2016.16.4.201] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/17/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022] Open
Abstract
Allergic inflammation requires the orchestration of altered gene expression in the target tissue and in the infiltrating immune cells. The transcription factor STAT6 is critical in activating cytokine gene expression and cytokine signaling both in the immune cells and in target tissue cells including airway epithelia, keratinocytes and esophageal epithelial cells. STAT6 is activated by the cytokines IL-4 and IL-13 to mediate the pathogenesis of allergic disorders such as asthma, atopic dermatitis, food allergy and eosinophilic esophagitis (EoE). In this review, we summarize the role of STAT6 in allergic diseases, its interaction with the co-factor PARP14 and the molecular mechanisms by which STAT6 and PARP14 regulate gene transcription.
Collapse
Affiliation(s)
- Purna Krishnamurthy
- Department of Pediatrics, Wells Center for Pediatric Research, Indianapolis, IN 46202, USA.; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H Kaplan
- Department of Pediatrics, Wells Center for Pediatric Research, Indianapolis, IN 46202, USA.; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
28
|
Sehra S, Serezani APM, Ocaña JA, Travers JB, Kaplan MH. Mast Cells Regulate Epidermal Barrier Function and the Development of Allergic Skin Inflammation. J Invest Dermatol 2016; 136:1429-1437. [PMID: 27021404 DOI: 10.1016/j.jid.2016.03.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/15/2016] [Accepted: 03/06/2016] [Indexed: 11/30/2022]
Abstract
Atopic dermatitis is a chronic inflammatory skin disease characterized by infiltration of eosinophils, T helper cells, and mast cells. The role of mast cells in atopic dermatitis is not completely understood. To define the effects of mast cells on skin biology, we observed that mast cells regulate the homeostatic expression of epidermal differentiation complex and other skin genes. Decreased epidermal differentiation complex gene expression in mice that genetically lack mast cells (Kit(W-sh/W-sh) mice) is associated with increased uptake of protein antigens painted on the skin by dendritic cells (DCs) compared with similarly treated wild-type mice, suggesting a protective role for mast cells in exposure to nominal environmental allergens. To test this further, we crossed Kit(W-sh/W-sh) mice with signal transducer and activator of transcription 6 (i.e., Stat6) VT transgenic mice that develop spontaneous atopic dermatitis-like disease that is dependent on T helper cell 2 cytokines and is associated with high serum concentrations of IgE. We observed that Stat6VT × Kit(W-sh/W-sh) mice developed more frequent and more severe allergic skin inflammation than Stat6VT transgenic mice that had mast cells. Together, these studies suggest that mast cells regulate epidermal barrier function and have a potential protective role in the development of atopic dermatitis-like disease.
Collapse
Affiliation(s)
- Sarita Sehra
- Department of Pediatrics and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ana P M Serezani
- Department of Pediatrics and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jesus A Ocaña
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio, USA
| | - Mark H Kaplan
- Department of Pediatrics and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
29
|
Glosson NL, Bruns HA, Kaplan MH. Wheezing and itching: The requirement for STAT proteins in allergic inflammation. JAKSTAT 2014; 1:3-12. [PMID: 24058746 PMCID: PMC3670132 DOI: 10.4161/jkst.19086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/16/2011] [Indexed: 12/16/2022] Open
Abstract
The development of allergic inflammation requires the orchestration of gene expression from the inflamed tissue and from the infiltrating immune cells. Since many of the cytokines that promote allergic inflammation signal through hematopoietin family receptors, the Signal Transducer and Activator of Transcription (STAT) family have obligate roles in pro-allergic cytokine-induced gene regulation in multiple cell types. In this review, we summarize work defining the contribution of each of the STAT family members to the development of allergic inflammation, using data from mouse models of allergic inflammation, studies on patient samples and correlations with single nucleotide polymorphisms in STAT genes.
Collapse
Affiliation(s)
- Nicole L Glosson
- Department of Pediatrics; Herman B. Wells Center for Pediatric Research; Department of Microbiology and Immunology; Indiana University School of Medicine; Indianapolis, IN USA
| | | | | |
Collapse
|
30
|
Turner MJ, DaSilva-Arnold S, Luo N, Hu X, West CC, Sun L, Hill C, Bradish J, Kaplan MH, Travers JB, Sun Y. STAT6-mediated keratitis and blepharitis: a novel murine model of ocular atopic dermatitis. Invest Ophthalmol Vis Sci 2014; 55:3803-8. [PMID: 24845637 DOI: 10.1167/iovs.13-13685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Atopic dermatitis (AD) is a common inflammatory disease that can affect the eye, resulting in ocular pathologies, including blepharitis, keratitis, and uveitis; however, the pathogenic mechanisms underlying the ocular manifestations of AD are not well understood. METHODS In the present study, we characterized the ocular pathologies that develop in the Stat6VT mouse model of AD. We examined the cytokine profile of the eyelid lesions, measured the behavioral response, and documented the treatment response to topical steroids. RESULTS Our results show that Stat6VT mice spontaneously developed blepharitis, keratitis, and uveitis similar to that observed in patients with AD. Histologic findings of allergic inflammation in affected eyelids in this model include the presence of a lymphocyte-predominant infiltrate and tissue eosinophilia in the dermis. Gene expression analysis of affected eyelid tissue by quantitative PCR revealed increased amounts of mRNAs for the Th2 cytokines IL-4, IL-5, and IL-13. In addition, increased eyelid scratching was seen in Stat6VT mice with blepharitis. Topical treatment with the corticosteroid clobetasol reduced eyelid inflammation, tissue eosinophilia, and Th2 cytokine expression. CONCLUSIONS The development of AD-like ocular pathologies in this model supports the idea that in humans, AD-associated disease of the eye may be driven by Th2-mediated inflammation and demonstrates that the Stat6VT mouse may be a useful system in which to further investigate pathogenesis of and treatment strategies for blepharitis and other ocular diseases that develop in association with AD.
Collapse
Affiliation(s)
- Matthew J Turner
- Department of Dermatology, Indiana University, Indianapolis, Indiana, United States Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, Unites States
| | - Sonia DaSilva-Arnold
- Department of Dermatology, Indiana University, Indianapolis, Indiana, United States
| | - Na Luo
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University, Indianapolis, Indiana, United States
| | - Xinyao Hu
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University, Indianapolis, Indiana, United States
| | - Callah C West
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University, Indianapolis, Indiana, United States
| | - Lou Sun
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University, Indianapolis, Indiana, United States
| | - Christopher Hill
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University, Indianapolis, Indiana, United States
| | - Joshua Bradish
- Department of Pathology, Indiana University, Indianapolis, Indiana, United States
| | - Mark H Kaplan
- Department of Pediatrics, Indiana University, Indianapolis, Indiana, United States
| | - Jeffrey B Travers
- Department of Dermatology, Indiana University, Indianapolis, Indiana, United States Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, Unites States
| | - Yang Sun
- Department of Dermatology, Indiana University, Indianapolis, Indiana, United States Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University, Indianapolis, Indiana, United States
| |
Collapse
|
31
|
Lee GR. Transcriptional regulation of T helper type 2 differentiation. Immunology 2014; 141:498-505. [PMID: 24245687 DOI: 10.1111/imm.12216] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 12/20/2022] Open
Abstract
Considerable progress has been made in recent years towards our understanding of the molecular mechanisms of transcriptional regulation of T helper type 2 (Th2) cell differentiation. Additional transcription factors and chromatin-modifying factors were identified and shown to promote Th2 cell differentiation and inhibit differentiation into other subsets. Analyses of mice lacking several cis-regulatory elements have yielded more insight into the regulatory mechanism of Th2 cytokine genes. Gene deletion studies of several chromatin modifiers confirmed their impact on CD4 T-cell differentiation. In addition, recent genome-wide analyses of transcription factor binding and chromatin status revealed unexpected roles of these factors in Th2-cell differentiation. In this review, these recent findings and their implication are summarized.
Collapse
Affiliation(s)
- Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul, Korea
| |
Collapse
|
32
|
Chen N, Wang X. Role of IL-9 and STATs in hematological malignancies (Review). Oncol Lett 2013; 7:602-610. [PMID: 24520283 PMCID: PMC3919939 DOI: 10.3892/ol.2013.1761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 12/09/2013] [Indexed: 02/03/2023] Open
Abstract
Although interleukin-9 (IL-9) exhibits pleiotropic functions in the immune system, it remains a well-known cytokine in hematological malignancies. Previous cell culture and animal model studies have revealed that the Janus kinase-signal transducer and activator of transcription signaling pathway, which may be activated by a number of cytokines including IL-9, is critical in hematological malignancies. The current review summarizes the characterization of the biological activities of IL-9, highlights the clearly defined roles of the cytokine, and outlines questions with regard to the functions of IL-9 that require further exploration and their downstream signaling proteins, signal transducers and activators of transcription.
Collapse
Affiliation(s)
- Na Chen
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China ; Department of Diagnostics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
33
|
Johnson DJ, Pao LI, Dhanji S, Murakami K, Ohashi PS, Neel BG. Shp1 regulates T cell homeostasis by limiting IL-4 signals. ACTA ACUST UNITED AC 2013; 210:1419-31. [PMID: 23797092 PMCID: PMC3698519 DOI: 10.1084/jem.20122239] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Absence of the phosphatase Shp1 in T cells does not affect the TCR signaling threshold but results in IL-4 sensitivity and memory phenotype cells. The protein-tyrosine phosphatase Shp1 is expressed ubiquitously in hematopoietic cells and is generally viewed as a negative regulatory molecule. Mutations in Ptpn6, which encodes Shp1, result in widespread inflammation and premature death, known as the motheaten (me) phenotype. Previous studies identified Shp1 as a negative regulator of TCR signaling, but the severe systemic inflammation in me mice may have confounded our understanding of Shp1 function in T cell biology. To define the T cell–intrinsic role of Shp1, we characterized mice with a T cell–specific Shp1 deletion (Shp1fl/fl CD4-cre). Surprisingly, thymocyte selection and peripheral TCR sensitivity were unaltered in the absence of Shp1. Instead, Shp1fl/fl CD4-cre mice had increased frequencies of memory phenotype T cells that expressed elevated levels of CD44. Activation of Shp1-deficient CD4+ T cells also resulted in skewing to the Th2 lineage and increased IL-4 production. After IL-4 stimulation of Shp1-deficient T cells, Stat 6 activation was sustained, leading to enhanced Th2 skewing. Accordingly, we observed elevated serum IgE in the steady state. Blocking or genetic deletion of IL-4 in the absence of Shp1 resulted in a marked reduction of the CD44hi population. Therefore, Shp1 is an essential negative regulator of IL-4 signaling in T lymphocytes.
Collapse
Affiliation(s)
- Dylan J Johnson
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Turner MJ, Dasilva-Arnold SC, Yi Q, Mehrotra P, Kaplan MH, Travers JB. Topical application of a vitamin D analogue exacerbates atopic dermatitis and induces the atopic dermatitis-like phenotype in Stat6VT mice. Pediatr Dermatol 2013; 30:574-8. [PMID: 23889122 PMCID: PMC3770906 DOI: 10.1111/pde.12187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calcipotriene is a topical vitamin D3 analogue approved for the treatment of plaque and scalp psoriasis. We report the case of a 2-year-old boy whose atopic dermatitis (AD) flared in response to application of calcipotriene 0.005% cream and solution for a mistaken diagnosis of plaque and scalp psoriasis. We investigated whether the patient's eruption was secondary to an allergic contact dermatitis. In the Stat6VT mouse model of AD we tested whether calcipotriene could induce the otherwise-spontaneous AD-like phenotype. Closed patch testing was done on the patient with calcipotriene solution and cream, moisturizing cream, and 51% isopropanol. Stat6VT and wild-type (WT) mice were treated for 7 days with calcipotriene solution or vehicle (isopropanol) applied to the right and left upper back skin, respectively, after which mice were followed longitudinally for 10 weeks. Biopsy specimens from prior treatment sites were then collected for histology and RNA isolation. RNA was analyzed for interleukin (IL-4) expression using quantitative polymerase chain reaction. Patch testing was negative. Stat6VT mice, in contrast to WT mice, developed a persistent eczematous dermatitis at sites of calcipotriene application. Clinical and histologic features and high IL-4 transcript levels were consistent with the spontaneous AD-like phenotype seen in Stat6VT mice. At sites of active disease, calcipotriene can worsen a flare of AD. In Stat6VT mice, calcipotriene can induce the AD-like phenotype.
Collapse
Affiliation(s)
- Matthew J Turner
- Department of Dermatology, Indiana University, Indianapolis, Indiana
| | | | | | | | | | | |
Collapse
|
35
|
The signaling suppressor CIS controls proallergic T cell development and allergic airway inflammation. Nat Immunol 2013; 14:732-40. [PMID: 23727894 DOI: 10.1038/ni.2633] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/30/2013] [Indexed: 12/12/2022]
Abstract
Transcription factors of the STAT family are critical in the cytokine-mediated functional differentiation of CD4(+) helper T cells. Signaling inhibitors of the SOCS family negatively regulate the activation of STAT proteins; however, their roles in the differentiation and function of helper T cells are not well understood. Here we found that the SOCS protein CIS, which was substantially induced by interleukin 4 (IL-4), negatively regulated the activation of STAT3, STAT5 and STAT6 in T cells. CIS-deficient mice spontaneously developed airway inflammation, and CIS deficiency in T cells led to greater susceptibility to experimental allergic asthma. CIS-deficient T cells showed enhanced differentiation into the TH2 and TH9 subsets of helper T cells. STAT5 and STAT6 regulated IL-9 expression by directly binding to the Il9 promoter. Our data thus demonstrate a critical role for CIS in controlling the proallergic generation of helper T cells.
Collapse
|
36
|
Byrne AM, Goleva E, Chouiali F, Kaplan MH, Hamid QA, Leung DY. Induction of GITRL expression in human keratinocytes by Th2 cytokines and TNF-α: implications for atopic dermatitis. Clin Exp Allergy 2012; 42:550-9. [PMID: 22417213 PMCID: PMC3306062 DOI: 10.1111/j.1365-2222.2012.03956.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Glucocorticoid-induced TNF receptor-related protein ligand (GITRL), a ligand for the T cell co-stimulatory molecule GITR, is expressed by keratinocytes and involved in chemokine production. The expression of GITRL in skin inflammation remains unknown. OBJECTIVES This study investigated cytokine regulation of keratinocyte GITRL expression. METHODS Glucocorticoid-induced TNF receptor expression was evaluated in cytokine-treated human epidermal keratinocytes (HEK)s, murine PAM 212 cell line, murine and human skin explants by real time PCR, flow cytometry and immunostaining. Functional responses to GITR fusion protein were examined by real time PCR and ELISA. GITRL expression in AD and psoriasis was studied by immunohistochemistry. RESULTS Skin biopsies from STAT6VT transgenic mice, which develop spontaneous atopic skin inflammation, were found by immunofluoresence, to have increased keratinocyte GITRL expression. Exposure to Th2 cytokines augmented GITRL mRNA expression in the murine PAM 212 keratinocytic cell line and murine skin explants. In contrast, GITRL mRNA and protein expression was only increased in HEKs and human skin explants in the presence of the combination of TNF-α and Th2 cytokines. A synergistic effect of Th2 cytokines and GITR fusion protein on production of CCL17, the Th2 chemokine, by murine keratinocytes was demonstrated. Immunohistochemical staining showed that acute AD lesions have increased expression of GITRL compared with normal skin, chronic AD lesions and psoriatic plaques. CONCLUSIONS AND CLINICAL RELEVANCE Our studies demonstrate that GITRL expression is augmented by Th2 cytokines and TNF-α in keratinocytes. Increased GITRL expression in acute AD skin lesions is shown. This observation suggests a link between cytokine-regulated keratinocyte GITRL expression and its role in inflammatory responses in AD.
Collapse
Affiliation(s)
- Aideen M. Byrne
- Department of Pediatrics, National Jewish Health,1400 Jackson Street Denver, CO 80206 USA
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health,1400 Jackson Street Denver, CO 80206 USA
- Department of Pediatrics, University of Colorado Denver, 13123 East 16 Avenue, Aurora, CO 80045 USA
| | - Fazila Chouiali
- Meakins-Christie Laboratories, McGill University, 3626 St. Urbain Street, Montréal, Québéc CANADA
| | - Mark H. Kaplan
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis, IN and Department of Microbiology and Immunology, Indiana University School of Medicine, 1044 West Walnut, Indianapolis, IN 46202 USA
| | - Qutayba A. Hamid
- Meakins-Christie Laboratories, McGill University, 3626 St. Urbain Street, Montréal, Québéc CANADA
| | - Donald Y.M. Leung
- Department of Pediatrics, National Jewish Health,1400 Jackson Street Denver, CO 80206 USA
- Department of Pediatrics, University of Colorado Denver, 13123 East 16 Avenue, Aurora, CO 80045 USA
| |
Collapse
|
37
|
DaSilva SC, Sahu RP, Konger RL, Perkins SM, Kaplan MH, Travers JB. Increased skin barrier disruption by sodium lauryl sulfate in mice expressing a constitutively active STAT6 in T cells. Arch Dermatol Res 2011; 304:65-71. [PMID: 21959772 DOI: 10.1007/s00403-011-1168-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/20/2011] [Accepted: 08/05/2011] [Indexed: 10/17/2022]
Abstract
Atopic dermatitis (AD) is a pruritic, chronic inflammatory skin disease that affects 10-20% of children and 1-3% of adults worldwide. Recent studies have indicated that the ability of Th2 cytokines, such as interleukin-4 (IL-4) to regulate skin barrier function may be a predisposing factor for AD development. The present studies examined the ability of increased Th2 activity to affect cutaneous barrier function in vivo and epidermal thickening. Mice that express a constitutively active Signal Transducer and Activator of Transcription 6 (STAT6VT) have increased Th2 cells and a predisposition to allergic inflammation were used in these studies, they demonstrate that topical treatment with the irritant sodium lauryl sulfate (SLS) caused increased transepidermal water loss and epidermal thickening in STAT6VT mice over similarly treated wild-type mice. The proliferation marker Ki-67 was increased in the epidermis of STAT6VT compared to the wild-type mice. However, these differences do not appear to be linked to the addition of an irritant as control-treated STAT6VT skin also exhibited elevated Ki-67 levels, suggesting that the increased epidermal thickness in SLS-treated STAT6VT mice is primarily driven by epidermal cell hypertrophy rather than an increase in cellular proliferation. Our results suggest that an environment with increased Th2 cytokines results in abnormal responses to topical irritants.
Collapse
Affiliation(s)
- Sonia C DaSilva
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, 46202, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Signal transducer and activator of transcription (STAT) proteins are critical mediators of cytokine signaling. Among the seven STAT proteins, STAT6 is activated by IL-4 and IL-13 and plays a predominant role in the immune system. However, there is increasing evidence that STAT6 may function in other tissues and organ systems. IL-4, IL-13, and STAT6 promote humoral immunity, clearance of helminthic parasites as well as the pathogenesis of allergic disorders like asthma, food allergies, and atopic dermatitis. In this review, we will describe our current understanding of the biological functions of STAT6 and summarize recent advances in understanding the molecular mechanisms by which STAT6 regulates transcription.
Collapse
Affiliation(s)
- Shreevrat Goenka
- HB Wells Center of Pediatric Research, Department of Pediatrics, Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, 46202, USA.
| | | |
Collapse
|
39
|
Howell MD, Gao P, Kim BE, Lesley LJ, Streib JE, Taylor PA, Zaccaro DJ, Boguniewicz M, Beck LA, Hanifin JM, Schneider LC, Hata TR, Gallo RL, Kaplan MH, Barnes KC, Leung DYM. The signal transducer and activator of transcription 6 gene (STAT6) increases the propensity of patients with atopic dermatitis toward disseminated viral skin infections. J Allergy Clin Immunol 2011; 128:1006-14. [PMID: 21762972 DOI: 10.1016/j.jaci.2011.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 01/10/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disease associated with increased susceptibility to recurrent skin infections. OBJECTIVE We sought to determine why a subset of patients with AD have an increased risk of disseminated viral skin infections. METHODS Human subjects with AD with a history of eczema herpeticum (EH) and various control groups were enrolled. Vaccinia virus (VV) expression was measured by means of PCR and immunofluorescent staining in skin biopsy specimens from each study group after incubation with VV. Transgenic mice with a constitutively active signal transducer and activator of transcription 6 gene (STAT6) were characterized for response to VV skin inoculation. Genotyping for 10 STAT6 single nucleotide polymorphisms (SNPs) was performed in a white patient sample (n = 444). RESULTS VV gene and protein expression were significantly increased in the skin of patients with EH compared with other subject groups after incubation with VV in vitro. Antibody neutralization of IL-4 and IL-13 resulted in lower VV replication in patients with a history of EH. Mice that expressed a constitutively active STAT6 gene compared with wild-type mice had increased mortality and satellite lesion formation after VV skin inoculation. Significant associations were observed between STAT6 SNPs and EH (rs3024975, rs841718, rs167769, and rs703817) and IFN-γ production. The strongest association was observed for a 2-SNP haplotype (patients with AD with a history of EH vs patients with AD without a history of EH, 24.9% vs 9.2%; P = 5.17 × 10(-6)). CONCLUSION The STAT6 gene increases viral replication in the skin of patients with AD with a history of EH. Further genetic association studies and functional investigations are warranted.
Collapse
Affiliation(s)
- Michael D Howell
- Department of Pediatrics, National Jewish Health, Denver, Colo 80206, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Genome-wide approaches reveal functional interleukin-4-inducible STAT6 binding to the vascular cell adhesion molecule 1 promoter. Mol Cell Biol 2011; 31:2196-209. [PMID: 21464207 DOI: 10.1128/mcb.01430-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Endothelial cell activation and dysfunction underlie many vascular disorders, including atherosclerosis and inflammation. Here, we show that interleukin-4 (IL-4) markedly induced vascular cell adhesion molecule 1 (VCAM-1), both in cultured endothelial cells and in the intact endothelium in mice. Combined treatment with IL-4 and tumor necrosis factor alpha (TNF-α) resulted in further, sustained induction of VCAM-1 expression. IL-4-mediated induction of VCAM-1 and secondary monocyte adhesion was predominantly regulated by the transcription factor STAT6. Genome-wide survey of IL-4-mediated STAT6 binding from sequential chromatin-immunoprecipitation with deep sequencing (chromatin immunoprecipitation sequencing [ChIP-seq]) in endothelial cells revealed regions of transient and sustained transcription factor binding. Through the combination of DNA microarrays and ChIP-seq at the same time points, the majority of IL-4-responsive genes were shown to be STAT6 dependent and associated with direct STAT6 binding to their promoter. IL-4-mediated stable binding of STAT6 led to sustained target gene expression. Moreover, our strategy led to the identification of a novel functionally important STAT6 binding site within 16 kb upstream of the VCAM-1 gene. Taken together, these findings support a critical role for STAT6 in mediating IL-4 signal transduction in endothelial cells. Identification of a novel IL-4-mediated VCAM-1 enhancer may provide a foundation for targeted therapy in vascular disease.
Collapse
|
41
|
Stritesky GL, Muthukrishnan R, Sehra S, Goswami R, Pham D, Travers J, Nguyen ET, Levy DE, Kaplan MH. The transcription factor STAT3 is required for T helper 2 cell development. Immunity 2011; 34:39-49. [PMID: 21215659 DOI: 10.1016/j.immuni.2010.12.013] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/18/2010] [Accepted: 11/04/2010] [Indexed: 12/18/2022]
Abstract
Signal transducer and activator of transcription (STAT) family members direct the differentiation of T helper cells, with specific STAT proteins promoting distinct effector subsets. STAT6 is required for the development of T helper 2 (Th2) cells, whereas STAT3 promotes differentiation of Th17 and follicular helper T cell subsets. We demonstrated that STAT3 was also activated during Th2 cell development and was required for the expression of Th2 cell-associated cytokines and transcription factors. STAT3 bound directly to Th2 cell-associated gene loci and was required for the ability of STAT6 to bind target genes. In vivo, STAT3 deficiency in T cells eliminated the allergic inflammation in mice sensitized and challenged with ovalbumin or transgenic for constitutively active STAT6. Thus, STAT3 cooperates with STAT6 in promoting Th2 cell development. These results demonstrate that differentiating T helper cells integrate multiple STAT protein signals during Th2 cell development.
Collapse
Affiliation(s)
- Gretta L Stritesky
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yao W, Chang J, Sehra S, Travers JB, Chang CH, Tepper RS, Kaplan MH. Altered cytokine production by dendritic cells from infants with atopic dermatitis. Clin Immunol 2010; 137:406-14. [PMID: 20880754 DOI: 10.1016/j.clim.2010.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 01/17/2023]
Abstract
Dendritic cells (DC) are potent initiators of immune responses, compared to other professional antigen-presenting cells, based on their ability to capture antigen, express high amounts of MHC and co-stimulatory molecules, and to secrete immunostimulatory cytokines. Altered functions of DC in atopic individuals have been observed, though it is not clear if this is a cause or a result of the development of allergic disease. In this report we demonstrate altered cytokine production by DC isolated from infants with atopic dermatitis but without a diagnosis of asthma, compared to infants with non-atopic dermatitis. Increased production of IL-6, IL-10 and IFNα from DC isolated from atopic infants is less apparent when DC from infants were examined 1 year later. An increase in the same cytokines was observed in neonatal mice that are genetically predisposed towards allergic inflammation. These results suggest that an atopic environment promotes altered cytokine production by DC from infants.
Collapse
Affiliation(s)
- Weiguo Yao
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Sehra S, Yao Y, Howell MD, Nguyen ET, Kansas GS, Leung DYM, Travers JB, Kaplan MH. IL-4 regulates skin homeostasis and the predisposition toward allergic skin inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:3186-90. [PMID: 20147633 PMCID: PMC2837507 DOI: 10.4049/jimmunol.0901860] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IL-4 promotes the development of Th2 cells and allergic inflammation. In atopic dermatitis lesions, IL-4 decreases the expression of multiple genes associated with innate defense, including genes in the epidermal differentiation complex (EDC) that regulate epidermal barrier function. However, it is not clear whether IL-4 also contributes to homeostatic control of EDC genes. In this report, we demonstrate that expression of EDC genes and barrier function is increased in the absence of endogenous IL-4. Mice that express a constitutively active Stat6 (Stat6VT) are prone to the development of allergic skin inflammation and have decreased expression of EDC genes. IL-4 deficiency protects Stat6VT transgenic mice from the development of allergic skin inflammation and decreased recovery time in barrier function following skin irritation, with a concomitant increase in EDC gene expression. These data suggest that IL-4 plays an important role in regulating epidermal homeostasis and innate barrier function.
Collapse
Affiliation(s)
- Sarita Sehra
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, IN 46202
- Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN 46202
| | - Yongxue Yao
- Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN 46202
- Department of Dermatology, Indiana University, School of Medicine, Indianapolis, IN 46202
| | | | - Evelyn T. Nguyen
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, IN 46202
- Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN 46202
| | - Geoffrey S. Kansas
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago IL 60611
| | | | - Jeffrey B. Travers
- Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN 46202
- Department of Dermatology, Indiana University, School of Medicine, Indianapolis, IN 46202
- L. Roudebush VA Medical Center, Indiana University, School of Medicine, Indianapolis, IN 46202
| | - Mark H. Kaplan
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, IN 46202
- Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
44
|
Crane ED, Stephenson N, Haffner C, Bruns HA. Active immune response protects Stat6VT transgenic mice from developing a lymphoproliferative disorder. Immunobiology 2009; 215:579-85. [PMID: 19822376 DOI: 10.1016/j.imbio.2009.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/02/2009] [Accepted: 09/03/2009] [Indexed: 11/18/2022]
Abstract
Stat6 is a transcription factor that regulates important cellular processes such as proliferation, differentiation, and survival through mediating IL-4 and IL-13 signaling. Importantly, increasing evidence indicates of a role for Stat6 in lymphoproliferative disorders. Mice expressing a constitutively active form of Stat6 (Stat6VT) primarily in T lymphocytes were generated, and it has been recently described that a small percentage (approximately 5%) of these mice develop a spontaneous lymphoproliferative disorder (LPD) resulting in dramatic splenomegaly and altered splenic cell populations. Here, we report that Stat6VT mice housed in a non-pathogen-free environment have an increased incidence (37%) of the LPD. Additionally, examination of the expression of Stat6-regulated genes known to have roles in tumorigenesis demonstrated that there appears to be no one genetic alteration common to lymphocytes from Stat6VT/LPD mice. Interestingly, however, uniform exposure to antigen via immunization resulted in complete abrogation of the LPD in Stat6VT mice.
Collapse
|
45
|
Rothstein TL, Guo B. Receptor crosstalk: reprogramming B cell receptor signalling to an alternate pathway results in expression and secretion of the autoimmunity-associated cytokine, osteopontin. J Intern Med 2009; 265:632-43. [PMID: 19493057 PMCID: PMC2774770 DOI: 10.1111/j.1365-2796.2009.02103.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Receptor crosstalk: reprogramming B cell receptor signalling to an alternate pathway results in expression and secretion of the autoimmunity-associated cytokine, osteopontin (Review). J Intern Med 2009; 265: 632-643.Intracellular signalling emanating from the B-cell antigen receptor is considered to follow a discrete course that requires participation by a set of mediators, grouped together as the signalosome, in order for downstream events to occur. Recent work indicates that this paradigm is true only for naïve B cells. Following engagement of the IL-4 receptor, a new, alternate pathway for B-cell receptor (BCR)-triggered intracellular signalling is established that bypasses the need for signalosome elements and operates in parallel with the classical, signalosome-dependent pathway. Reliance on Lyn and sensitivity to rottlerin by the former, but not the latter, distinguishes these two pathways. The advent of alternate pathway signalling leads to production and secretion by B cells of osteopontin (Opn). As Opn is a polyclonal B-cell activator that is strongly associated with a number of autoimmune diseases including lupus and rheumatoid arthritis, this novel finding is likely to be clinically relevant. Our results highlight the potential role of B-cell-derived Opn in immunity and autoimmunity and suggest that stress-related IL-4 expression might act to strengthen immunoglobulin secretion at the risk of autoantibody formation. Further, these results illustrate receptor crosstalk in the form of reprogramming, whereby engagement of one receptor (IL-4R) produces an effect that persists after the original ligand (IL-4) is removed and results in alteration of the pathway, and outcome, of signalling via a second receptor (BCR) following its activation.
Collapse
Affiliation(s)
- T L Rothstein
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| | | |
Collapse
|
46
|
Recurrent mutations of the STAT6 DNA binding domain in primary mediastinal B-cell lymphoma. Blood 2009; 114:1236-42. [PMID: 19423726 DOI: 10.1182/blood-2009-03-209759] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary mediastinal B-cell lymphoma (PMBL) is a separate entity of aggressive B-cell lymphoma, characterized by a constitutive activation of janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, also observed in Hodgkin lymphoma. Although many cancers exhibit constitutive JAK-STAT pathway activation, mutations of STAT genes have not been reported in neoplasms. Here, we show that MedB-1 PMBL-derived and L1236 Hodgkin-derived cell lines and 20 of 55 (36%) PMBL cases harbor heterozygous missense mutations in STAT6 DNA binding domain, whereas no mutation was found in 25 diffuse large B-cell lymphoma samples. In 3 cases, somatic origin was indicated by the absence of the mutations in the nontumoral tissue. The pattern of STAT6 mutations was different from the classical features of somatic hypermutations. The mutant STAT6 proteins showed a decreased DNA binding ability in transfected HEK cells, but no decrease in expression of STAT6 canonical target genes was observed in PMBL cases with a mutated STAT6 gene. Although the oncogenic properties of STAT6 mutant proteins remain to be determined, their recurrent selection in PMBL strongly argues for their involvement in the pathogenesis of this aggressive B-cell lymphoma.
Collapse
|
47
|
Sehra S, Bruns HA, Ahyi ANN, Nguyen ET, Schmidt NW, Michels EG, von Bülow GU, Kaplan MH. IL-4 is a critical determinant in the generation of allergic inflammation initiated by a constitutively active Stat6. THE JOURNAL OF IMMUNOLOGY 2008; 180:3551-9. [PMID: 18292582 DOI: 10.4049/jimmunol.180.5.3551] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IL-4 is required for the pathogenesis of atopic diseases and immune regulation. Stat6 is critical for IL-4-induced gene expression and Th cell differentiation. Recently, we have generated mice expressing a mutant Stat6 (Stat6VT) under control of the CD2 locus control region that is transcriptionally active independent of IL-4 stimulation. To determine whether active Stat6 in T cells is sufficient to alter immune regulation in vivo, we mated Stat6VT transgenic mice to IL-4-deficient mice. Stat6VT expression in IL-4-deficient lymphocytes was sufficient to alter lymphocyte homeostasis and promote Th2 differentiation in vitro. HyperTh2 levels in Stat6 transgenic mice correlated with an atopic phenotype that manifested as blepharitis and pulmonary inflammation with a high level of eosinophilic infiltration. In the absence of endogenous IL-4, Stat6VT transgenic mice were protected from allergic inflammation. Thus, in mice with hyperTh2 immune responses in vivo, IL-4 is a critical effector cytokine.
Collapse
Affiliation(s)
- Sarita Sehra
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Sasaki K, Zhao X, Pardee AD, Ueda R, Fujita M, Sehra S, Kaplan MH, Kane LP, Okada H, Storkus WJ. Stat6 signaling suppresses VLA-4 expression by CD8+ T cells and limits their ability to infiltrate tumor lesions in vivo. THE JOURNAL OF IMMUNOLOGY 2008; 181:104-8. [PMID: 18566374 DOI: 10.4049/jimmunol.181.1.104] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
VLA-4 plays a critical role in T cell trafficking into inflammatory sites. Our recent studies have suggested that VLA-4 expression on CD8+ T cells is negatively controlled by IL-4 and serves as a functionally distinguishing variable for why Type-1, but not Type-2, CD8+ T cells are able to traffic into tumors. In this study, using in vitro culture of murine CD8+ T cells under Type-1 and Type-2 cytokine conditions, we show that IL-4-mediated down-regulation of VLA-4 expression is completely abrogated in Stat6-deficient CD8+ T cells. Conversely, CD8+ T cells expressing a constitutively active mutant form Stat6 (Stat6VT) failed to express VLA-4 even in the absence of IL-4-stimulation. Notably, Type-2 CD8+ T cells developed from Stat6-/- but not wild-type mice were competent to migrate into tumor lesions in vivo. These results suggest that Stat6-signaling is necessary and sufficient to restrict CD8+ T cell expression of VLA-4 (by IL-4), thereby serving as a regulator for CD8+ T cell infiltration into tumors.
Collapse
Affiliation(s)
- Kotaro Sasaki
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
King SBS, Knorn AM, Ohnmacht C, Voehringer D. Accumulation of Effector CD4 T Cells during Type 2 Immune Responses Is Negatively Regulated by Stat6. THE JOURNAL OF IMMUNOLOGY 2008; 180:754-63. [DOI: 10.4049/jimmunol.180.2.754] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Kaplan MH, Sehra S, Chang HC, O'Malley JT, Mathur AN, Bruns HA. Constitutively active STAT6 predisposes toward a lymphoproliferative disorder. Blood 2007; 110:4367-9. [PMID: 17878403 PMCID: PMC2234780 DOI: 10.1182/blood-2007-06-098244] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Signal transducer and activator of transcription 6 (STAT6) is critical for IL-4 and IL-13 responses, and necessary for the normal development of Th2 cells. We previously generated mice that express a constitutively active STAT6 (STAT6VT) under control of the CD2 locus control region, which directs expression to the T-cell compartment. We now describe that a small proportion of these mice (~5%) develop a spontaneous lymphoproliferative disease (LPD) that results in dramatic splenomegaly. The cell populations observed in the LPD spleens can be divided into 2 categories, those that are composed of mixed lineage cells and those that are predominantly T cells with a phenotype similar to that in autoimmune lymphoproliferative syndrome (ALPS) patients. These data suggest that while active STAT6 is not a transforming factor, expression in T cells predisposes toward the development of lymphoproliferative disorders.
Collapse
Affiliation(s)
- Mark H Kaplan
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | | | | | | | |
Collapse
|