1
|
Kalkusova K, Taborska P, Stakheev D, Rataj M, Smite S, Darras E, Albo J, Bartunkova J, Vannucci L, Smrz D. Impaired Proliferation of CD8 + T Cells Stimulated with Monocyte-Derived Dendritic Cells Previously Matured with Thapsigargin-Stimulated LAD2 Human Mast Cells. J Immunol Res 2024; 2024:5537948. [PMID: 39056014 PMCID: PMC11272405 DOI: 10.1155/2024/5537948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/30/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
CD8+ T cells are essential for adaptive immunity against infection and tumors. Their ability to proliferate after stimulation is crucial to their functionality. Dendritic cells (DCs) are professional antigen-presenting cells that induce their proliferation. Here, we show that thapsigargin-induced LAD2 mast cell (MC) line-released products can impair the ability of monocyte-derived DCs to induce CD8+ T-cell proliferation and the generation of Th1 cytokine-producing T cells. We found that culture medium conditioned with LAD2 MCs previously stimulated with thapsigargin (thapsLAD2) induces maturation of DCs as determined by the maturation markers CD80, CD83, CD86, and HLA-DR. However, thapsLAD2-matured DCs produced no detectable TNFα or IL-12 during the maturation. In addition, although their surface expression of PD-L1 was comparable with the immature or TLR7/8-agonist (R848)-matured DCs, their TIM-3 expression was significantly higher than in immature DCs and even much higher than in R848-matured DCs. In addition, contrary to R848-matured DCs, the thapsLAD2-matured DCs only tended to induce enhanced proliferation of CD4+ T cells than immature DCs. For CD8+ T cells, this tendency was not even detected because thapsLAD2-matured and immature DCs comparably induced their proliferation, which contrasted with the significantly enhanced proliferation induced by R848-matured DCs. Furthermore, these differences were comparably recapitulated in the ability of the tested DCs to induce IFNγ- and IFNγ/TNFα-producing T cells. These findings show a novel mechanism of MC-mediated regulation of adaptive immune responses.
Collapse
Affiliation(s)
- Katerina Kalkusova
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Pavla Taborska
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Dmitry Stakheev
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Michal Rataj
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Sindija Smite
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Elea Darras
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Julia Albo
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Jirina Bartunkova
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Luca Vannucci
- Laboratory of ImmunotherapyInstitute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Smrz
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
- Laboratory of ImmunotherapyInstitute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Zaher KA, Alrahimi JS, Basingab FS, Aldahlawi AM. Newcastle Disease Virus Virotherapy: Unveiling Oncolytic Efficacy and Immunomodulation. Biomedicines 2024; 12:1497. [PMID: 39062070 PMCID: PMC11274839 DOI: 10.3390/biomedicines12071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
In virotherapy, cancer cells are eradicated via viral infection, replication, and dissemination (oncolysis). BACKGROUND This study aims to evaluate the oncolytic potential of Newcastle disease virus (NDV) against colon cancer and explore the immune response associated with its therapeutic effects. METHODS NDV was tested for its oncolytic potential in colon cancer cell lines using MTT assays and apoptosis assessments. Tumor-induced mice were treated with NDV, tumor cell lysate (TCL), or a combination of both. After the euthanasia of murine subjects, an assessment of oncolytic efficacy was performed through flow cytometry analysis of murine blood and tumor tissue, targeting CD83, CD86, CD8, and CD4. An ELISA was also performed to examine interferon-gamma levels, interleukin-4 levels, interleukin-12 levels, and interleukin-10 levels in serum and spleen homogenate. RESULTS Cell viability was low in HCT116 and HT-29, indicating a cytotoxic effect in the MTT assay. NDV+TCL recorded the highest rate of cell death (56.72%). NDV+TCL had accelerated cell death after 48 h, reaching 58.4%. The flow cytometry analysis of the blood and tumor of mice with induced tumor treated with combined treatment revealed elevated levels of CD83, CD86, CD8, and CD4 (76.3, 66.9, 83.7, and 14.4%, respectively). The ELISA levels of IFN-γ, IL-4, and IL-12 in serum and the spleen homogenate were elevated (107.6 ± 9.25 pg/mL). In contrast, the expression of IL-10 was significantly reduced (1 ± 0.79).
Collapse
Affiliation(s)
- Kawther A. Zaher
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jehan S. Alrahimi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatemah S. Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alia M. Aldahlawi
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Aldahlawi AM, Zaher KSA. Dendritic Cell-Based Immunity: Screening of Dendritic Cell Subsets in Breast Cancer-Bearing Mice. J Microsc Ultrastruct 2023; 11:150-160. [PMID: 38025181 PMCID: PMC10679829 DOI: 10.4103/jmau.jmau_85_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/19/2023] Open
Abstract
Background Breast cancer (BC) is the most devastating disease, particularly the lethal invasive form. It is the most underlying cause of death among women worldwide. The expansion of BC is controlled by a variety of alterations in the tumor cells themselves, in addition to the state of the immune system, which has a direct influence on the tumor microenvironment. Numerous receptors expressed by T-cells interact with ligands on antigen-presenting cells to provide activation signals results in mounting effector anti-tumor T-cell responses. On the other hand, there is a dearth of information about the actual interactions and reactions of T-cells and dendritic cells (DCs) all through the progression of tumor development. Aim Immune system response against BC was investigated through tumor induction in mice. The size and volume of the tumor were calculated. Moreover, the phenotypical profile of T-cells and DCs from lymph nodes (LN) and spleens of BC-bearing mice was investigated. In addition, the levels of Transforming growth factor-β, Interferon-gamma (IFN-γ), Interleukin IL-2, IL-10, IL-4, IL-12, and tumor necrosis factor (TNF)-α were determined. Materials and Methods MDA231 cells were utilized to induce BC in 30 white BALB/C mice, whereas the other 30 mice acted as healthy controls and were not treated with any cancer-causing agents. The impact of malignancy was evaluated using flow cytometry based on the marking surface molecules, as well as the titer of specific cytokines of the mice's LN culture using the ELISA method. These cytokines included transforming growth factor-β (TGF-β), IFN-γ, IL-2, IL -10, IL -4, IL -12, and TNF-α. Results The findings showed that the maturation of DCs was inhibited, followed by an accumulation of immature DCs. These immature DCs increase the release of TGF-β and cytokines like IL-10 and inhibit the release of IFN-γ and IL-12 in the culture supernatant of nodal lymph and spleen suspension of BC-bearing mice compared to control. In addition, there was a low expression of CD80 and CD86 on DCs, which indicates a low maturation process. Conclusion According to the findings, the tumor microenvironment may have been responsible for preventing the maturation of DCs. This, in turn, weakened the immune response and facilitated the ability of the tumor to proliferate. Furthermore, the tumor microenvironment increased the number of immature DCs by inhibiting their stimulation by overexpression of TGF-β-produced by regulatory T lymphocytes and stimulation of tumor cells. In addition, the tumor microenvironment stimulated the secretion of cytokines such as IL-10, and CD4 and decreased the secretion of IFN-γ-and IL-12 in tumor-induced mice cultured LN and spleen.
Collapse
Affiliation(s)
- Alia M Aldahlawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Kawther Sayed Ali Zaher
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| |
Collapse
|
4
|
Gupta S, Agrawal A. Dendritic cells in inborn errors of immunity. Front Immunol 2023; 14:1080129. [PMID: 36756122 PMCID: PMC9899832 DOI: 10.3389/fimmu.2023.1080129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Dendritic cells (DCs) are crucial cells for initiating and maintaining immune response. They play critical role in homeostasis, inflammation, and autoimmunity. A number of molecules regulate their functions including synapse formation, migration, immunity, and induction of tolerance. A number of IEI are characterized by mutations in genes encoding several of these molecules resulting in immunodeficiency, inflammation, and autoimmunity in IEI. Currently, there are 465 Inborn errors of immunity (IEI) that have been grouped in 10 different categories. However, comprehensive studies of DCs have been reported in only few IEI. Here we have reviewed biology of DCs in IEI classified according to recently published IUIS classification. We have reviewed DCs in selected IEI in each group category and discussed in depth changes in DCs where significant data are available regarding role of DCs in clinical and immunological manifestations. These include severe immunodeficiency diseases, antibody deficiencies, combined immunodeficiency with associated and syndromic features, especially disorders of synapse formation, and disorders of immune regulation.
Collapse
Affiliation(s)
- Sudhir Gupta
- Division of Basic and Clinical Immunology, University of California, Irvine, CA, United States
| | | |
Collapse
|
5
|
Harvey B, Fu X, Li L, Neupane KR, Anand N, Kolesar JM, Richards CI. Dendritic Cell Membrane-Derived Nanovesicles for Targeted T Cell Activation. ACS OMEGA 2022; 7:46222-46233. [PMID: 36570199 PMCID: PMC9773342 DOI: 10.1021/acsomega.2c04420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
T cells play an integral role in the generation of an effective immune response and are responsible for clearing foreign microbes that have bypassed innate immune system defenses and possess cognate antigens. The immune response can be directed toward a desired target through the selective priming and activation of T cells. Due to their ability to activate a T cell response, dendritic cells and endogenous vesicles from dendritic cells are being developed for cancer immunotherapy treatment. However, current platforms, such as exosomes and synthetic nanoparticles, are limited by their production methods and application constraints. Here, we engineer nanovesicles derived from dendritic cell membranes with similar properties as dendritic cell exosomes via nitrogen cavitation. These cell-derived nanovesicles are capable of activating antigen-specific T cells through direct and indirect mechanisms. Additionally, these nanovesicles can be produced in large yields, overcoming production constraints that limit clinical application of alternative immunomodulatory vesicle or nanoparticle-based methods. Thus, dendritic cell-derived nanovesicles generated by nitrogen cavitation show potential as an immunotherapy platform to stimulate and direct T cell response.
Collapse
Affiliation(s)
- Brock
T. Harvey
- Department
of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Xu Fu
- Light
Microscopy Facility, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Lan Li
- Department
of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Khaga R. Neupane
- Department
of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Namrata Anand
- Department
of Pharmacy and Practice, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jill M. Kolesar
- Department
of Pharmacy and Practice, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Christopher I. Richards
- Department
of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
6
|
Uzhviyuk SV, Bochkova MS, Timganova VP, Khramtsov PV, Shardina KY, Kropaneva MD, Nechaev AI, Raev MB, Zamorina SA. Interaction of Human Dendritic Cells with Graphene Oxide Nanoparticles In Vitro. Bull Exp Biol Med 2022; 172:664-670. [PMID: 35353288 DOI: 10.1007/s10517-022-05451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/25/2022]
Abstract
We studied the effect of graphene oxide nanoparticles on the differentiation of human dendritic cells and uptake of nanoparticles by these cells in vitro. The objects of the study were mononuclear cells from healthy donors induced into the phenotype of dendritic cells by cytokines (IL-6 and GM-CSF). We used graphene oxide nanoparticles of different sizes functionalized with linear or branched PEG (P-GO or bP-GO) in concentrations of 5 and 25 μg/ml. It was found that graphene oxide nanoparticles did not affect the viability and percentage of dendritic cells in the culture. However, P-GO nanoparticles (25 μg/ml) suppressed the expression of CD83 on the surface of dendritic cells in cultures, thereby suppressing cell differentiation. Dendritic cells internalized P-GO nanoparticles, particles in high concentration were more actively engulfed, but the size of the particles and the type of PEG did not affect the intensity of this process. In general, P-GO nanoparticles in a concentration of 25 μg/ml can regulate differentiation of dendritic cells by suppressing their maturation.
Collapse
Affiliation(s)
- S V Uzhviyuk
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Affiliated Branch of Perm' Federal Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia.
| | - M S Bochkova
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Affiliated Branch of Perm' Federal Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - V P Timganova
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Affiliated Branch of Perm' Federal Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - P V Khramtsov
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Affiliated Branch of Perm' Federal Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - K Yu Shardina
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Affiliated Branch of Perm' Federal Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - M D Kropaneva
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Affiliated Branch of Perm' Federal Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - A I Nechaev
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Affiliated Branch of Perm' Federal Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - M B Raev
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Affiliated Branch of Perm' Federal Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - S A Zamorina
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Affiliated Branch of Perm' Federal Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
7
|
Bošnjak B, Do KTH, Förster R, Hammerschmidt SI. Imaging dendritic cell functions. Immunol Rev 2021; 306:137-163. [PMID: 34859450 DOI: 10.1111/imr.13050] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) are crucial for the appropriate initiation of adaptive immune responses. During inflammation, DCs capture antigens, mature, and migrate to lymphoid tissues to present foreign material to naïve T cells. These cells get activated and differentiate either into pathogen-specific cytotoxic CD8+ T cells that destroy infected cells or into CD4+ T helper cells that, among other effector functions, orchestrate antibody production by B cells. DC-mediated antigen presentation is equally important in non-inflammatory conditions. Here, DCs mediate induction of tolerance by presenting self-antigens or harmless environmental antigens and induce differentiation of regulatory T cells or inactivation of self-reactive immune cells. Detailed insights into the biology of DCs are, therefore, crucial for the development of novel vaccines as well as the prevention of autoimmune diseases. As in many other life science areas, our understanding of DC biology would be extremely restricted without bioimaging, a compilation of methods that visualize biological processes. Spatiotemporal tracking of DCs relies on various imaging tools, which not only enable insights into their positioning and migration within tissues or entire organs but also allow visualization of subcellular and molecular processes. This review aims to provide an overview of the imaging toolbox and to provide examples of diverse imaging techniques used to obtain fundamental insights into DC biology.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155) Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Hannover, Germany
| | | |
Collapse
|
8
|
Antoniou K, Ender F, Vollbrandt T, Laumonnier Y, Rathmann F, Pasare C, Singh H, Köhl J. Allergen-Induced C5a/C5aR1 Axis Activation in Pulmonary CD11b + cDCs Promotes Pulmonary Tolerance through Downregulation of CD40. Cells 2020; 9:cells9020300. [PMID: 31991941 PMCID: PMC7072238 DOI: 10.3390/cells9020300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022] Open
Abstract
Activation of the C5/C5a/C5a receptor 1 (C5aR1) axis during allergen sensitization protects from maladaptive T cell activation. To explore the underlying regulatory mechanisms, we analyzed the impact of C5aR1 activation on pulmonary CD11b+ conventional dendritic cells (cDCs) in the context of house-dust-mite (HDM) exposure. BALB/c mice were intratracheally immunized with an HDM/ovalbumin (OVA) mixture. After 24 h, we detected two CD11b+ cDC populations that could be distinguished on the basis of C5aR1 expression. C5aR1− but not C5aR1+ cDCs strongly induced T cell proliferation of OVA-reactive transgenic CD4+ T cells after re-exposure to antigen in vitro. C5aR1− cDCs expressed higher levels of MHC-II and CD40 than their C5aR1+ counterparts, which correlated directly with a higher frequency of interactions with cognate CD4+ T cells. Priming of OVA-specific T cells by C5aR1+ cDCs could be markedly increased by in vitro blockade of C5aR1 and this was associated with increased CD40 expression. Simultaneous blockade of C5aR1 and CD40L on C5aR1+ cDCs decreased T cell proliferation. Finally, pulsing with OVA-induced C5 production and its cleavage into C5a by both populations of CD11b+ cDCs. Thus, we propose a model in which allergen-induced autocrine C5a generation and subsequent C5aR1 activation in pulmonary CD11b+ cDCs promotes tolerance towards aeroallergens through downregulation of CD40.
Collapse
Affiliation(s)
- Konstantina Antoniou
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; (K.A.); (F.E.); (Y.L.); (F.R.)
| | - Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; (K.A.); (F.E.); (Y.L.); (F.R.)
| | | | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; (K.A.); (F.E.); (Y.L.); (F.R.)
- Airway Research Center North, Member of the German Center for Lung Research (DZL), 23562 Lübeck, Germany
| | - Franziska Rathmann
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; (K.A.); (F.E.); (Y.L.); (F.R.)
| | - Chandrashekhar Pasare
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA (H.S.)
| | - Harinder Singh
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA (H.S.)
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; (K.A.); (F.E.); (Y.L.); (F.R.)
- Cell Analysis Core, University of Lübeck, 23562 Lübeck, Germany;
- Airway Research Center North, Member of the German Center for Lung Research (DZL), 23562 Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA (H.S.)
- Correspondence: ; Tel.: +49-451-500-51400
| |
Collapse
|
9
|
Amon L, Lehmann CHK, Baranska A, Schoen J, Heger L, Dudziak D. Transcriptional control of dendritic cell development and functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:55-151. [PMID: 31759434 DOI: 10.1016/bs.ircmb.2019.10.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) are major regulators of adaptive immunity, as they are not only capable to induce efficient immune responses, but are also crucial to maintain peripheral tolerance and thereby inhibit autoimmune reactions. DCs bridge the innate and the adaptive immune system by presenting peptides of self and foreign antigens as peptide MHC complexes to T cells. These properties render DCs as interesting target cells for immunomodulatory therapies in cancer, but also autoimmune diseases. Several subsets of DCs with special properties and functions have been described. Recent achievements in understanding transcriptional programs on single cell level, together with the generation of new murine models targeting specific DC subsets, advanced our current understanding of DC development and function. Thus, DCs arise from precursor cells in the bone marrow with distinct progenitor cell populations splitting the monocyte populations and macrophage populations from the DC lineage, which upon lineage commitment can be separated into conventional cDC1, cDC2, and plasmacytoid DCs (pDCs). The DC populations harbor intrinsic programs enabling them to react for specific pathogens in dependency on the DC subset, and thereby orchestrate T cell immune responses. Similarities, but also varieties, between human and murine DC subpopulations are challenging, and will require further investigation of human specimens under consideration of the influence of the tissue micromilieu and DC subset localization in the future.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Schoen
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
10
|
Takahashi T, Hsiao HM, Tanaka S, Li W, Higashikubo R, Scozzi D, Bharat A, Ritter JH, Krupnick AS, Gelman AE, Kreisel D. PD-1 expression on CD8 + T cells regulates their differentiation within lung allografts and is critical for tolerance induction. Am J Transplant 2018; 18:216-225. [PMID: 28730633 PMCID: PMC5739961 DOI: 10.1111/ajt.14437] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/18/2017] [Accepted: 07/11/2017] [Indexed: 01/25/2023]
Abstract
Immunological requirements for rejection and tolerance induction differ between various organs. While memory CD8+ T cells are considered a barrier to immunosuppression-mediated acceptance of most tissues and organs, tolerance induction after lung transplantation is critically dependent on central memory CD8+ T lymphocytes. Here we demonstrate that costimulation blockade-mediated tolerance after lung transplantation is dependent on programmed cell death 1 (PD-1) expression on CD8+ T cells. In the absence of PD-1 expression, CD8+ T cells form prolonged interactions with graft-infiltrating CD11c+ cells; their differentiation is skewed towards an effector memory phenotype and grafts are rejected acutely. These findings extend the notion that requirements for tolerance induction after lung transplantation differ from other organs. Thus, immunosuppressive strategies for lung transplant recipients need to be tailored based on the unique immunological properties of this organ.
Collapse
Affiliation(s)
- T Takahashi
- Department of Surgery, Washington University in St. Louis
| | - HM Hsiao
- Department of Surgery, Washington University in St. Louis
| | - S Tanaka
- Department of Surgery, Washington University in St. Louis
| | - W Li
- Department of Surgery, Washington University in St. Louis
| | - R Higashikubo
- Department of Surgery, Washington University in St. Louis
| | - D Scozzi
- Department of Surgery, Washington University in St. Louis
| | - A Bharat
- Department of Surgery, Northwestern University
| | - JH Ritter
- Department of Pathology & Immunology, Washington University in St. Louis
| | - AS Krupnick
- Department of Surgery, University of Virginia
| | - AE Gelman
- Department of Surgery, Washington University in St. Louis,Department of Pathology & Immunology, Washington University in St. Louis
| | - D Kreisel
- Department of Surgery, Washington University in St. Louis,Department of Pathology & Immunology, Washington University in St. Louis,Corresponding author: Daniel Kreisel, M.D., Ph.D., Professor of Surgery, Pathology & Immunology, Campus Box 8234, 660 South Euclid Avenue, Washington University School of Medicine, St. Louis, MO 63110, Tel: (314) 362-6021, Fax: (314) 367-8459,
| |
Collapse
|
11
|
Tan S, Chen D, Liu K, He M, Song H, Shi Y, Liu J, Zhang CWH, Qi J, Yan J, Gao S, Gao GF. Crystal clear: visualizing the intervention mechanism of the PD-1/PD-L1 interaction by two cancer therapeutic monoclonal antibodies. Protein Cell 2016; 7:866-877. [PMID: 27815822 PMCID: PMC5205664 DOI: 10.1007/s13238-016-0337-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022] Open
Abstract
Antibody-based PD-1/PD-L1 blockade therapies have taken center stage in immunotherapies for cancer, with multiple clinical successes. PD-1 signaling plays pivotal roles in tumor-driven T-cell dysfunction. In contrast to prior approaches to generate or boost tumor-specific T-cell responses, antibody-based PD-1/PD-L1 blockade targets tumor-induced T-cell defects and restores pre-existing T-cell function to modulate antitumor immunity. In this review, the fundamental knowledge on the expression regulations and inhibitory functions of PD-1 and the present understanding of antibody-based PD-1/PD-L1 blockade therapies are briefly summarized. We then focus on the recent breakthrough work concerning the structural basis of the PD-1/PD-Ls interaction and how therapeutic antibodies, pembrolizumab targeting PD-1 and avelumab targeting PD-L1, compete with the binding of PD-1/PD-L1 to interrupt the PD-1/PD-L1 interaction. We believe that this structural information will benefit the design and improvement of therapeutic antibodies targeting PD-1 signaling.
Collapse
Affiliation(s)
- Shuguang Tan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Danqing Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kefang Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
- College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mengnan He
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
- College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | | | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shan Gao
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China.
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Sarkar S, Sabhachandani P, Stroopinsky D, Palmer K, Cohen N, Rosenblatt J, Avigan D, Konry T. Dynamic analysis of immune and cancer cell interactions at single cell level in microfluidic droplets. BIOMICROFLUIDICS 2016; 10:054115. [PMID: 27795747 PMCID: PMC5065572 DOI: 10.1063/1.4964716] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/29/2016] [Indexed: 05/06/2023]
Abstract
Cell-cell communication mediates immune responses to physiological stimuli at local and systemic levels. Intercellular communication occurs via a direct contact between cells as well as by secretory contact-independent mechanisms. However, there are few existing methods that allow quantitative resolution of contact-dependent and independent cellular processes in a rapid, precisely controlled, and dynamic format. This study utilizes a high-throughput microfluidic droplet array platform to analyze cell-cell interaction and effector functions at single cell level. Controlled encapsulation of distinct heterotypic cell pairs was achieved in a single-step cell loading process. Dynamic analysis of dendritic cell (DC)-T cell interactions demonstrated marked heterogeneity in the type of contact and duration. Non-stimulated DCs and T cells interacted less frequently and more transiently while antigen and chemokine-loaded DCs and T cells depicted highly stable interactions in addition to transient and sequential contact. The effector function of CD8+ T cells was assessed via cytolysis of multiple myeloma cell line. Variable cell conjugation periods and killing time were detected irrespective of the activation of T cells, although activated T cells delivered significantly higher cytotoxicity. T cell alloreactivity against the target cells was partially mediated by secretion of interferon gamma, which was abrogated by the addition of a neutralizing antibody. These results suggest that the droplet array-based microfluidic platform is a powerful technique for dynamic phenotypic screening and potentially applicable for evaluation of novel cell-based immunotherapeutic agents.
Collapse
Affiliation(s)
- S Sarkar
- Department of Pharmaceutical Sciences, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - P Sabhachandani
- Department of Pharmaceutical Sciences, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - D Stroopinsky
- Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts 02115, USA
| | - K Palmer
- Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts 02115, USA
| | - N Cohen
- Department of Pharmaceutical Sciences, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - J Rosenblatt
- Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts 02115, USA
| | - D Avigan
- Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts 02115, USA
| | - T Konry
- Department of Pharmaceutical Sciences, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
13
|
Gao X, Arpin C, Marvel J, Prokopiou SA, Gandrillon O, Crauste F. IL-2 sensitivity and exogenous IL-2 concentration gradient tune the productive contact duration of CD8(+) T cell-APC: a multiscale modeling study. BMC SYSTEMS BIOLOGY 2016; 10:77. [PMID: 27535120 PMCID: PMC4989479 DOI: 10.1186/s12918-016-0323-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/21/2016] [Indexed: 01/17/2023]
Abstract
Background The CD8+ T cell immune response fights acute infections by intracellular pathogens and, by generating an immune memory, enables immune responses against secondary infections. Activation of the CD8+ T cell immune response involves a succession of molecular events leading to modifications of CD8+ T cell population. To understand the endogenous and exogenous mechanisms controlling the activation of CD8+ T cells and to investigate the influence of early molecular events on the long-term cell population behavior, we developed a multiscale computational model. It integrates three levels of description: a Cellular Potts model describing the individual behavior of CD8+ T cells, a system of ordinary differential equations describing a decision-making molecular regulatory network at the intracellular level, and a partial differential equation describing the diffusion of IL-2 in the extracellular environment. Results We first calibrated the model parameters based on in vivo data and showed the model’s ability to reproduce early dynamics of CD8+ T cells in murine lymph nodes after influenza infection, both at the cell population and intracellular levels. We then showed the model’s ability to reproduce the proliferative responses of CD5hi and CD5lo CD8+ T cells to exogenous IL-2 under a weak TCR stimulation. This stressed the role of short-lasting molecular events and the relevance of explicitly describing both intracellular and cellular scale dynamics. Our results suggest that the productive contact duration of CD8+ T cell-APC is influenced by the sensitivity of individual CD8+ T cells to the activation signal and by the IL-2 concentration in the extracellular environment. Conclusions The multiscale nature of our model allows the reproduction and explanation of some acquired characteristics and functions of CD8+ T cells, and of their responses to multiple stimulation conditions, that would not be accessible in a classical description of cell population dynamics that would not consider intracellular dynamics. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0323-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuefeng Gao
- Inria team Dracula, Inria Antenne Lyon la Doua, Bâtiment CEI-2, 56 Boulevard Niels Bohr, 69603, Villeurbanne cedex, France
| | - Christophe Arpin
- Inserm, U1111, Lyon, F-69007, France.,CNRS, UMR5308, Lyon, F-69007, France.,Centre International de Recherche en Infectiologie, Université Lyon 1, Lyon, F-69007, France.,Ecole Normale Supérieure de Lyon, Lyon, F-69007, France
| | - Jacqueline Marvel
- Inserm, U1111, Lyon, F-69007, France.,CNRS, UMR5308, Lyon, F-69007, France.,Centre International de Recherche en Infectiologie, Université Lyon 1, Lyon, F-69007, France.,Ecole Normale Supérieure de Lyon, Lyon, F-69007, France
| | - Sotiris A Prokopiou
- Inria team Dracula, Inria Antenne Lyon la Doua, Bâtiment CEI-2, 56 Boulevard Niels Bohr, 69603, Villeurbanne cedex, France
| | - Olivier Gandrillon
- Inria team Dracula, Inria Antenne Lyon la Doua, Bâtiment CEI-2, 56 Boulevard Niels Bohr, 69603, Villeurbanne cedex, France. .,Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 allée d'Italie Site Jacques Monod, F-69007, Lyon, France.
| | - Fabien Crauste
- Inria team Dracula, Inria Antenne Lyon la Doua, Bâtiment CEI-2, 56 Boulevard Niels Bohr, 69603, Villeurbanne cedex, France. .,Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, F-69622, Villeurbanne cedex, France.
| |
Collapse
|
14
|
da Cunha A, Antoniazi Michelin M, Cândido Murta EF. Phenotypic profile of dendritic and T cells in the lymph node of Balb/C mice with breast cancer submitted to dendritic cells immunotherapy. Immunol Lett 2016; 177:25-37. [PMID: 27423825 DOI: 10.1016/j.imlet.2016.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/01/2016] [Accepted: 07/12/2016] [Indexed: 11/25/2022]
Abstract
Breast cancer (BC) is the most common malignant neoplasm and the cause of death by cancer among women worldwide. Its development influenced by various mutations that occur in the tumor cell and by the immune system's status, which has a direct influence on the tumor microenvironment and, consequently, on interactions with non-tumor cells involved in the immunological response. Strategies using dendritic cells (DCs) or antigen-presenting cells (APCs), therapeutic mode, in cancer have been developed for some time. The proper interaction between DCs and T cells upon antigen presentation is of greatest importance for an antitumor immune response activation. Thus, various receptors on the surface of T cells must be able to recognize ligands that are located on the surface of APCs. However, little is known about the real behavior and interaction forms of CDs and T cells after vaccination. Due to the crucial importance of DCs in an effective anti-tumor immune response activation and the search for compliant results in inducing this response by immunotherapies with DCs, the phenotypic profile of DCs and T cells in lymph nodes obtained from female Balb/C mice with breast cancer induced by 4T1 cells and DCs treated with vaccines was investigated. We evaluated through flow cytometry based on the surface and intracellular molecules marking; as well as the presence of cytokines and chemokines, IL-2, IL-4, IL-10, IL-12, IFN-γ, TNF-α and TGF-β in the supernatant of the culture of Balb/C lymph nodes by ELISA. The results show that the vaccination with DCs, in the maturation parameters used in this study, was able to stimulate the secretion of cytokines such as IFN-γ and IL-12 and inhibit the secretion of TGF-β and IL-10 in nodal lymph infiltrates, as well as co-stimulatory activating (CD86) and adhesion molecules in DCs and T cells LFA-1/ICAM-1 and inhibit the secretion of CTLA-4 present in lymph nodes. Facts that led to aTh1 profile polarization, immuno competent in relation to breast cancer. We indirectly evaluated the interaction between DCs and T cells dependent on the vaccination with DCs in tumor draining lymph nodes, in breast cancer in Balb/C mice and we believe that, this way, we will be able to achieve a model vaccine protocol in the future, based on the correct interaction between cells that enable the induction of anti-tumor effective response. Breast cancer (BC) is the most common malignant neoplasm and the cause of death by cancer among women worldwide. Its development influenced by various mutations that occur in the tumor cell and by the immune system's status, which has a direct influence on the tumor microenvironment and, consequently, on interactions with non-tumor cells involved in the immunological response. Strategies using dendritic cells (DCs) or antigen-presenting cells (APCs), therapeutic mode, in cancer have been developed for some time. The proper interaction between DCs and T cells upon antigen presentation is of greatest importance for an antitumor immune response activation. Thus, various receptors on the surface of T cells must be able to recognize ligands that are located on the surface of APCs. However, little is known about the real behavior and interaction forms of DCs and T cells after vaccination. Due to the crucial importance of DCs in an effective anti-tumor immune response activation and the search for compliant results in inducing this response by immunotherapies with DCs, the phenotypic profile of DCs and T cells in lymph nodes obtained from female Balb/C mice with breast cancer induced by 4T1 cells and DCs treated with vaccines was investigated. We evaluated through flow cytometry based on the surface and intracellular molecules marking; as well as the presence of cytokines and chemokines, IL-2, IL-4, IL-10, IL-12, IFN-γ, TNF-α and TGF-β in the supernatant of the culture of Balb/C lymph nodes by ELISA. The results show that the vaccination with DCs, in the maturation parameters used in this study, was able to stimulate the secretion of cytokines such as IFN-γ and IL-12 and inhibit the secretion of TGF-β and IL-10 in nodal lymph infiltrates, as well as co-stimulatory activating (CD86) and adhesion molecules in DCs and T cells LFA-1/ICAM-1 and inhibit the secretion of CTLA-4 present in lymph nodes. Facts that led to aTh1 profile polarization, immuno competent in relation to breast cancer. We indirectly evaluated the interaction between DCs and T cells dependent on the vaccination with DCs in tumor draining lymph nodes, in breast cancer in Balb/C mice and we believe that, this way, we will be able to achieve a model vaccine protocol in the future, based on the correct interaction between cells that enable the induction of anti-tumor effective response.
Collapse
Affiliation(s)
- Alessandra da Cunha
- Research Oncology Institute (IPON), Federal University of the Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, 38025-440, Brazil
| | - Marcia Antoniazi Michelin
- Discipline of Immunology, Federal University of the Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, 38025-440, Brazil
| | - Eddie Fernando Cândido Murta
- Discipline of Gynecology and Obstetrics, Federal University of the Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, 38025-440, Brazil.
| |
Collapse
|
15
|
Capece T, Kim M. The Role of Lymphatic Niches in T Cell Differentiation. Mol Cells 2016; 39:515-23. [PMID: 27306645 PMCID: PMC4959015 DOI: 10.14348/molcells.2016.0089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/21/2016] [Accepted: 05/24/2016] [Indexed: 11/27/2022] Open
Abstract
Long-term immunity to many viral and bacterial pathogens requires CD8(+) memory T cell development, and the induction of long-lasting CD8(+) memory T cells from a naïve, undifferentiated state is a major goal of vaccine design. Formation of the memory CD8(+) T cell compartment is highly dependent on the early activation cues received by naïve CD8(+) T cells during primary infection. This review aims to highlight the cellularity of various niches within the lymph node and emphasize recent evidence suggesting that distinct types of T cell activation and differentiation occur within different immune contexts in lymphoid organs.
Collapse
Affiliation(s)
- Tara Capece
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642,
USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642,
USA
| |
Collapse
|
16
|
Benvenuti F. The Dendritic Cell Synapse: A Life Dedicated to T Cell Activation. Front Immunol 2016; 7:70. [PMID: 27014259 PMCID: PMC4780025 DOI: 10.3389/fimmu.2016.00070] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/15/2016] [Indexed: 01/30/2023] Open
Abstract
T-cell activation within immunological synapses is a complex process whereby different types of signals are transmitted from antigen-presenting cells to T cells. The molecular strategies developed by T cells to interpret and integrate these signals have been systematically dissected in recent years and are now in large part understood. On the other side of the immune synapse, dendritic cells (DCs) participate actively in synapse formation and maintenance by remodeling of membrane receptors and intracellular content. However, the details of such changes have been only partially characterized. The DCs actin cytoskeleton has been one of the first systems to be identified as playing an important role in T-cell priming and some of the underlying mechanisms have been elucidated. Similarly, the DCs microtubule cytoskeleton undergoes major spatial changes during synapse formation that favor polarization of the DCs subcellular space toward the interacting T cell. Recently, we have begun to investigate the trafficking machinery that controls polarized delivery of endosomal vesicles at the DC–T immune synapse with the aim of understanding the functional relevance of polarized secretion of soluble factors during T-cell priming. Here, we will review the current knowledge of events occurring in DCs during synapse formation and discuss the open questions that still remain unanswered.
Collapse
Affiliation(s)
- Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology , Trieste , Italy
| |
Collapse
|
17
|
Rocha-Perugini V, Sánchez-Madrid F, Martínez Del Hoyo G. Function and Dynamics of Tetraspanins during Antigen Recognition and Immunological Synapse Formation. Front Immunol 2016; 6:653. [PMID: 26793193 PMCID: PMC4707441 DOI: 10.3389/fimmu.2015.00653] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/18/2015] [Indexed: 12/31/2022] Open
Abstract
Tetraspanin-enriched microdomains (TEMs) are specialized membrane platforms driven by protein–protein interactions that integrate membrane receptors and adhesion molecules. Tetraspanins participate in antigen recognition and presentation by antigen-presenting cells (APCs) through the organization of pattern-recognition receptors (PRRs) and their downstream-induced signaling, as well as the regulation of MHC-II–peptide trafficking. T lymphocyte activation is triggered upon specific recognition of antigens present on the APC surface during immunological synapse (IS) formation. This dynamic process is characterized by a defined spatial organization involving the compartmentalization of receptors and adhesion molecules in specialized membrane domains that are connected to the underlying cytoskeleton and signaling molecules. Tetraspanins contribute to the spatial organization and maturation of the IS by controlling receptor clustering and local accumulation of adhesion receptors and integrins, their downstream signaling, and linkage to the actin cytoskeleton. This review offers a perspective on the important role of TEMs in the regulation of antigen recognition and presentation and in the dynamics of IS architectural organization.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- Servicio de Inmunología, Instituto de Investigación Sanitaria La Princesa, Hospital de la Princesa, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Instituto de Investigación Sanitaria La Princesa, Hospital de la Princesa, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Gloria Martínez Del Hoyo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) , Madrid , Spain
| |
Collapse
|
18
|
Jones EL, Wee JL, Demaria MC, Blakeley J, Ho PK, Vega-Ramos J, Villadangos JA, van Spriel AB, Hickey MJ, Hämmerling GJ, Wright MD. Dendritic Cell Migration and Antigen Presentation Are Coordinated by the Opposing Functions of the Tetraspanins CD82 and CD37. THE JOURNAL OF IMMUNOLOGY 2016; 196:978-87. [PMID: 26729805 DOI: 10.4049/jimmunol.1500357] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 12/01/2015] [Indexed: 11/19/2022]
Abstract
This study supports a new concept where the opposing functions of the tetraspanins CD37 and CD82 may coordinate changes in migration and Ag presentation during dendritic cell (DC) activation. We have previously published that CD37 is downregulated upon monocyte-derived DC activation, promotes migration of both skin and bone marrow-derived dendritic cells (BMDCs), and restrains Ag presentation in splenic and BMDCs. In this article, we show that CD82, the closest phylogenetic relative to CD37, appears to have opposing functions. CD82 is upregulated upon activation of BMDCs and monocyte-derived DCs, restrains migration of skin and BMDCs, supports MHC class II maturation, and promotes stable interactions between T cells and splenic DCs or BMDCs. The underlying mechanism involves the rearrangement of the cytoskeleton via a differential activation of small GTPases. Both CD37(-/-) and CD82(-/-) BMDCs lack cellular projections, but where CD37(-/-) BMDCs spread poorly on fibronectin, CD82(-/-) BMDCs are large and spread to a greater extent than wild-type BMDCs. At the molecular level, CD82 is a negative regulator of RhoA, whereas CD37 promotes activation of Rac-1; both tetraspanins negatively regulate Cdc42. Thus, this study identifies a key aspect of DC biology: an unactivated BMDC is CD37(hi)CD82(lo), resulting in a highly motile cell with a limited ability to activate naive T cells. By contrast, a late activated BMDC is CD37(lo)CD82(hi), and thus has modified its migratory, cytoskeletal, and Ag presentation machinery to become a cell superbly adapted to activating naive T cells.
Collapse
Affiliation(s)
- Eleanor L Jones
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria 3004, Australia
| | - Janet L Wee
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria 3004, Australia; Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria 3168, Australia
| | - Maria C Demaria
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria 3004, Australia
| | - Jessica Blakeley
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria 3004, Australia
| | - Po Ki Ho
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria 3004, Australia
| | - Javier Vega-Ramos
- Department of Microbiology and Immunology, University of Melbourne, Melbourne 3010, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, University of Melbourne, Melbourne 3010, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne 3010, Australia
| | - Annemiek B van Spriel
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, G525 GA Nijmegen, the Netherlands; and
| | - Michael J Hickey
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria 3168, Australia
| | | | - Mark D Wright
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria 3004, Australia;
| |
Collapse
|
19
|
Kallikourdis M, Viola A, Benvenuti F. Human Immunodeficiencies Related to Defective APC/T Cell Interaction. Front Immunol 2015; 6:433. [PMID: 26379669 PMCID: PMC4551858 DOI: 10.3389/fimmu.2015.00433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/09/2015] [Indexed: 11/13/2022] Open
Abstract
The primary event for initiating adaptive immune responses is the encounter between T lymphocytes and antigen presenting cells (APCs) in the T cell area of secondary lymphoid organs and the formation of highly organized intercellular junctions referred to as immune synapses (IS). In vivo live-cell imaging of APC-T cell interactions combined to functional studies unveiled that T cell fate is dictated, in large part, by the stability of the initial contact. Immune cell interaction is equally important during delivery of T cell help to B cells and for the killing of target cells by cytotoxic T cells and NK cells. The critical role of contact dynamics and synapse stability on the immune response is well illustrated by human immune deficiencies in which disease pathogenesis is linked to altered adhesion or defective cross-talk between the synaptic partners. The Wiskott-Aldrich syndrome (WAS) is a severe primary immunodeficiency caused by mutations in the Wiskott-Aldrich syndrome protein (WASp), a scaffold that promotes actin polymerization and links TCR stimulation to T cell activation. Absence or mutations in WASp affects intercellular APC-T cell communications by interfering with multiple mechanisms on both sides of the IS. The warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is caused by mutations in CXCR4, a chemokine receptor that in mutant form leads to impairment of APC-T cell interactions. Present evidences suggest that other recently characterized primary immune deficiencies caused by mutation in genes linked to actin cytoskeletal reorganization, such as WIP and DOCK8, may also depend on altered synapse stability. Here, we will discuss in details the mechanisms of disturbed APC-T cell interactions in WAS and WHIM. Moreover, we will summarize the evidence pointing to a compromised conjugate formation in WIP, DOCK8, and X-linked lymphoproliferative syndrome.
Collapse
Affiliation(s)
- Marinos Kallikourdis
- Humanitas University , Rozzano , Italy ; Adaptive Immunity Laboratory, Humanitas Clinical and Research Center , Rozzano , Italy
| | | | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology , Trieste , Italy
| |
Collapse
|
20
|
Khan N, Vidyarthi A, Pahari S, Agrewala JN. Distinct Strategies Employed by Dendritic Cells and Macrophages in Restricting Mycobacterium tuberculosis Infection: Different Philosophies but Same Desire. Int Rev Immunol 2015; 35:386-398. [PMID: 25793750 DOI: 10.3109/08830185.2015.1015718] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dendritic cells (DCs) and macrophages (Mϕs) are professional antigen-presenting cells (APCs) that can efficiently phagocytose Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB). It is quite interesting to mention here that DCs and Mϕs use distinct strategies to combat and eliminate Mtb. Similarly, Mtb employs different mechanisms to counteract the action of DCs and Mϕs. Mϕs are evolved with specialized, innate, defensive machinery to restrict growth of Mtb at the initial phase of infection. However, DCs are more endowed toward initiating adaptive immunity by activating naïve T cells. During encounter with Mtb, DCs and Mϕs deliver discrete functions via triggering through different pattern recognition receptors (PRRs) expressed by these APCs. Mtb-infected DCs and Mϕs show differential expression of genes encoding cytokines, chemokines, costimulatory molecules, and adhesion molecules. Interestingly, Mtb impairs the immune defensive machinery by exploiting various PRRs. Remarkably, selective signaling through PRRs by Mtb abrogates the bactericidal activity of Mϕs, but subverts differentiation of monocytes to DCs. In this article, we highlight the role of PRRs in inducing distinct immune response by DCs and Mϕs against Mtb. Concurrently, we also discuss smart strategies exploited by Mtb to impair the function of host DCs and Mϕs.
Collapse
Affiliation(s)
- Nargis Khan
- a CSIR-Institute of Microbial Technology , Chandigarh , India
| | | | - Susanta Pahari
- a CSIR-Institute of Microbial Technology , Chandigarh , India
| | | |
Collapse
|
21
|
The bullseye synapse formed between CD4+ T-cell and staphylococcal enterotoxin B-pulsed dendritic cell is a suppressive synapse in T-cell response. Immunol Cell Biol 2014; 93:99-110. [PMID: 25287444 DOI: 10.1038/icb.2014.76] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 01/05/2023]
Abstract
The immunological synapse (IS) is a supermolecular activation cluster formed between T cells and antigen-presenting cells. Although diverse IS structures have been reported, the function of the IS in T-cell activation remains unclear. Here, we found that the bullseye IS, one of IS types at the interface of CD4(+) T cells and staphylococcal enterotoxin B-pulsed dendritic cells, suppressed CD4(+) T-cell activation, whereas multifocal IS, another synapse type, stimulated CD4(+) T-cell activation. Consistent with these results, bullseye IS formation was accompanied by a low-level calcium response in T cells and a loss of T-cell receptor signalling molecules from the synapse, whereas multifocal IS exhibited the opposite. Furthermore, we found that CD4(+)CD25(+) regulatory T cells (T(regs)) more efficiently formed bullseye IS and promoted bullseye IS formation in CD4(+) CD25(-) T cells. Cytotoxic T-lymphocyte antigen-4 (CTLA-4), an inhibitory molecule expressed continuously on T(regs), was localised in bullseye IS. Moreover, blocking CTLA-4 reduced the percentage of bullseye IS formation and promoted T-cell activation. Our data thus indicate that bullseye IS formation is mediated by CTLA-4, and may negatively control T-cell activation as a suppressive synapse.
Collapse
|
22
|
Textor J, Henrickson SE, Mandl JN, von Andrian UH, Westermann J, de Boer RJ, Beltman JB. Random migration and signal integration promote rapid and robust T cell recruitment. PLoS Comput Biol 2014; 10:e1003752. [PMID: 25102014 PMCID: PMC4125054 DOI: 10.1371/journal.pcbi.1003752] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/13/2014] [Indexed: 01/27/2023] Open
Abstract
To fight infections, rare T cells must quickly home to appropriate lymph nodes (LNs), and reliably localize the antigen (Ag) within them. The first challenge calls for rapid trafficking between LNs, whereas the second may require extensive search within each LN. Here we combine simulations and experimental data to investigate which features of random T cell migration within and between LNs allow meeting these two conflicting demands. Our model indicates that integrating signals from multiple random encounters with Ag-presenting cells permits reliable detection of even low-dose Ag, and predicts a kinetic feature of cognate T cell arrest in LNs that we confirm using intravital two-photon data. Furthermore, we obtain the most reliable retention if T cells transit through LNs stochastically, which may explain the long and widely distributed LN dwell times observed in vivo. Finally, we demonstrate that random migration, both between and within LNs, allows recruiting the majority of cognate precursors within a few days for various realistic infection scenarios. Thus, the combination of two-scale stochastic migration and signal integration is an efficient and robust strategy for T cell immune surveillance.
Collapse
Affiliation(s)
- Johannes Textor
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Sarah E. Henrickson
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Judith N. Mandl
- Lymphocyte Biology Section, National Insitutes of Health, Bethesda, Maryland, United States of America
| | - Ulrich H. von Andrian
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Rob J. de Boer
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Joost B. Beltman
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, The Netherlands
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
23
|
The Pseudomonas aeruginosa Mannose Sensitive Hamemagglutination Strain (PA-MSHA) Induces a Th1-Polarizing Phenotype by Promoting Human Dendritic Cells Maturation. Indian J Microbiol 2013; 54:163-9. [PMID: 25320417 DOI: 10.1007/s12088-013-0436-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/21/2013] [Indexed: 01/29/2023] Open
Abstract
Pseudomonas aeruginosa mannose sensitive hamemagglutination strain (PA-MSHA) is a kind of peritrichous P. aeruginosa strain with MSHA fimbriae and has been shown to activate kinds of immunocytes. Dendritic cells (DCs) are specialized antigen-presenting cells required for the stimulating and priming CD4(+) T cells toward the T helper cell type 1 (Th1), Th2 and other different phenotypes. PA-MSHA effecting on Th1 remains an important missing link. Here we demonstrated that PA-MSHA augmented monocytes derived-dendritic cells (Mo-DCs) expression of HLA-DR, co-stimulatory and adhesion molecules, and induced Th1-promoting interleukin-12 and tumor necrosis factor α secretion, in addition, PA-MSHA treated Mo-DCs displayed lesser endocytic capacity. Furthermore, in mixed lymphocyte reactions, allostimulatory capacity of Mo-DCs was enhanced by PA-MSHA, CD4(+) T cells stimulated by PA-MSHA -activated Mo-DCs showed a Th1-polarized cytokine production, increasing secretion of IFN-γ and decreasing secretion of IL-10 and IL-4. Our findings identified PA-MSHA as an important exogenous factor that induced DCs maturation toward a Th1-promoting phenotype.
Collapse
|
24
|
Abstract
The fate of T lymphocytes revolves around a continuous stream of interactions between the T-cell receptor (TCR) and peptide-major histocompatibility complex (MHC) molecules. Beginning in the thymus and continuing into the periphery, these interactions, refined by accessory molecules, direct the expansion, differentiation, and function of T-cell subsets. The cellular context of T-cell engagement with antigen-presenting cells, either in lymphoid or non-lymphoid tissues, plays an important role in determining how these cells respond to antigen encounters. CD8(+) T cells are essential for clearance of a lymphocytic choriomeningitis virus (LCMV) infection, but the virus can present a number of unique challenges that antiviral T cells must overcome. Peripheral LCMV infection can lead to rapid cytolytic clearance or chronic viral persistence; central nervous system infection can result in T-cell-dependent fatal meningitis or an asymptomatic carrier state amenable to immunotherapeutic clearance. These diverse outcomes all depend on interactions that require TCR engagement of cognate peptide-MHC complexes. In this review, we explore the diversity in antiviral T-cell behaviors resulting from TCR engagement, beginning with an overview of the immunological synapse and progressing to regulators of TCR signaling that shape the delicate balance between immunopathology and viral clearance.
Collapse
Affiliation(s)
- E. Ashley Moseman
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Dorian B. McGavern
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
25
|
VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR-activation sites. Nat Immunol 2013; 14:723-31. [PMID: 23666293 DOI: 10.1038/ni.2609] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/09/2013] [Indexed: 01/18/2023]
Abstract
The mechanisms by which Lat (a key adaptor in the T cell antigen receptor (TCR) signaling pathway) and the TCR come together after TCR triggering are not well understood. We investigate here the role of SNARE proteins, which are part of protein complexes involved in the docking, priming and fusion of vesicles with opposing membranes, in this process. Here we found, by silencing approaches and genetically modified mice, that the vesicular SNARE VAMP7 was required for the recruitment of Lat-containing vesicles to TCR-activation sites. Our results indicated that this did not involve fusion of Lat-containing vesicles with the plasma membrane. VAMP7, which localized together with Lat on the subsynaptic vesicles, controlled the phosphorylation of Lat, formation of the TCR-Lat-signaling complex and, ultimately, activation of T cells. Our findings suggest that the transport and docking of Lat-containing vesicles with target membranes containing TCRs regulates TCR-induced signaling.
Collapse
|
26
|
Idzko M, K. Ayata C, Müller T, Dürk T, Grimm M, Baudiß K, Vieira RP, Cicko S, Boehlke C, Zech A, Sorichter S, Pelletier J, Sévigny J, Robson SC. Attenuated allergic airway inflammation in Cd39 null mice. Allergy 2013; 68:472-80. [PMID: 23452076 DOI: 10.1111/all.12119] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2012] [Indexed: 02/01/2023]
Abstract
BACKGROUND Extracellular Adenosine-5'-Triphosphate (ATP) is known to accumulate in the lung, following allergen challenge, and contributes via activation of purinergic receptors on dendritic cells (DC), to the development of allergic airway inflammation (AAI). Extracellular ATP levels in the airways are normally tightly regulated by CD39. This ectonucleotidase is highly expressed by DC purified from skin (Langerhans cells) and bone marrow, and has been shown to modulate DC adaptive/haptenic immune responses. In this study, we have evaluated the impact of Cd39 deletion and associated perturbation of purinergic signaling in AAI. METHODS Standard ovalbumin (OVA)-alum and house dust mite (HDM) bone marrow-derived DC (BMDC)-dependent models of AAI were used to study effects of Cd39. Migration assays, time lapse microscopy, and T-cell priming assays were further used to determine functional relevance of Cd39 expression on BMDC in the setting of immune and Th2-mediated responses in these models. RESULTS Cd39(-/-) mice exhibited marked increases in BALF ATP levels but paradoxically exhibited limited AAI in both OVA-alum and HDM models. These pathophysiological abnormalities were associated with decreased myeloid DC activation and chemotaxis toward ATP, and were linked to purinergic receptor desensitization responses. Further, Cd39(-/-) DCs exhibited limited capacity to both prime Th2 responses and form stable immune synaptic interactions with OVA-transgenic naïve T cells. CONCLUSIONS Cd39-deficient DCs exhibit limited capacity to induce Th2 immunity in a DC-driven model of AAI in vivo. Our data demonstrate a role of CD39 and perturbed purinergic signaling in models of AAI.
Collapse
Affiliation(s)
- M. Idzko
- Department of Pneumology; University Medical Center
| | - C. K. Ayata
- Department of Pneumology; University Medical Center
| | - T. Müller
- Department of Pneumology; University Medical Center
| | - T. Dürk
- Department of Pneumology; University Medical Center
| | - M. Grimm
- Department of Pneumology; University Medical Center
| | - K. Baudiß
- Department of Pneumology; University Medical Center
| | - R. P. Vieira
- Department of Pneumology; University Medical Center
| | - S. Cicko
- Department of Pneumology; University Medical Center
| | - C. Boehlke
- Department of Nephrology; University Medical Center; Freiburg; Germany
| | - A. Zech
- Department of Pneumology; University Medical Center
| | - S. Sorichter
- Department of Pneumology; University Medical Center
| | - J. Pelletier
- Centre de recherche en Rhumatologie et Immunologie; Centre Hospitalier Universitaire de Québec
| | | | - S. C. Robson
- Department of Medicine; Transplant Institute and Division of Gastroenterology; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston; MA; USA
| |
Collapse
|
27
|
Sehgal M, Khan ZK, Talal AH, Jain P. Dendritic Cells in HIV-1 and HCV Infection: Can They Help Win the Battle? Virology (Auckl) 2013; 4:1-25. [PMID: 25512691 PMCID: PMC4222345 DOI: 10.4137/vrt.s11046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Persistent infections with human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) are a major cause of morbidity and mortality worldwide. As sentinels of our immune system, dendritic cells (DCs) play a central role in initiating and regulating a potent antiviral immune response. Recent advances in our understanding of the role of DCs during HIV-1 and HCV infection have provided crucial insights into the mechanisms employed by these viruses to impair DC functions in order to evade an effective immune response against them. Modulation of the immunological synapse between DC and T-cell, as well as dysregulation of the crosstalk between DCs and natural killer (NK) cells, are emerging as two crucial mechanisms. This review focuses on understanding the interaction of HIV-1 and HCV with DCs not only to understand the immunopathogenesis of chronic HIV-1 and HCV infection, but also to explore the possibilities of DC-based immunotherapeutic approaches against them. Host genetic makeup is known to play major roles in infection outcome and rate of disease progression, as well as response to anti-viral therapy in both HIV-1 and HCV-infected individuals. Therefore, we highlight the genetic variations that can potentially affect DC functions, especially in the setting of chronic viral infection. Altogether, we address if DCs’ potential as critical effectors of antiviral immune response could indeed be utilized to combat chronic infection with HIV-1 and HCV.
Collapse
Affiliation(s)
- Mohit Sehgal
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Zafar K Khan
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrew H Talal
- Center for the Study of Hepatitis C, Weill Cornell Medical College, New York, NY
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Abstract
Using an elaborately evolved language of cytokines and chemokines as well as cell-cell interactions, the different components of the immune system communicate with each other and orchestrate a response (or wind one down). Immunological synapses are a key feature of the system in the ways in which they can facilitate and direct these responses. Studies analyzing the structure of an immune synapse as it forms between two cells have provided insight into how the stability and kinetics of this interaction ultimately affect the sensitivity, potency, and magnitude of a given response. Furthermore, we have gained an appreciation of how the immunological synapse provides directionality and contextual cues for downstream signaling and cellular decision-making. In this review, we discuss how using a variety of techniques, developed over the last decade, have allowed us to visualize and quantify key aspects of the dynamic synaptic interface and have furthered our understanding of their function. We describe some of the many characteristics of the immunological synapse that make it a vital part of intercellular communication and some of the questions that remain to be answered.
Collapse
Affiliation(s)
- Jianming Xie
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Cristina M. Tato
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
29
|
Roda-Navarro P. Microspectroscopy reveals mechanisms of lymphocyte activation. Integr Biol (Camb) 2012; 5:300-11. [PMID: 23114860 DOI: 10.1039/c2ib20190a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The immunological synapse (IS) regulates immune responses by integrating extracellular stimuli into intracellular signalling networks, which causes leukocyte differentiation and effector functions. The dynamic spatial organisation of molecules at the IS was initially characterised by wide-field fluorescence microscopy of cell conjugates and cells interacting with planar lipid bilayers. These methods showed stable supramolecular clusters of several microns in size, which were proposed to be responsible for sustained signalling and cell-cell adhesion. The recent emergence of microspectroscopy techniques with higher spatial and temporal resolution nonetheless reveals the complex dynamics of molecular reactions that mediate IS assembly and function. This review describes microspectroscopy-based in vitro experimental approaches for imaging the molecular dynamics at the IS, as well as their contributions and open questions in the field. It also describes experimental methods to obtain quantitative parameters of dynamic biochemical reactions in living cells, and discusses about the important role of quantitative imaging and theoretical science in our understanding of molecular mechanisms underlying lymphocyte activation.
Collapse
Affiliation(s)
- Pedro Roda-Navarro
- Department of Microbiology I, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
30
|
Strioga M, Schijns V, Powell DJ, Pasukoniene V, Dobrovolskiene N, Michalek J. Dendritic cells and their role in tumor immunosurveillance. Innate Immun 2012; 19:98-111. [PMID: 22732734 DOI: 10.1177/1753425912449549] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dendritic cells (DCs) comprise a heterogeneous population of cells that play a key role in initiating, directing and regulating adaptive immune responses, including those critically involved in tumor immunosurveillance. As a riposte to the central role of DCs in the generation of antitumor immune responses, tumors have developed various mechanisms which impair the immunostimulatory functions of DCs or even instruct them to actively contribute to tumor growth and progression. In the first part of this review we discuss general aspects of DC biology, including their origin, subtypes, immature and mature states, and functional plasticity which ensures a delicate balance between active immune response and immune tolerance. In the second part of the review we discuss the complex interactions between DCs and the tumor microenvironment, and point out the challenges faced by DCs during the recognition of tumor Ags. We also discuss the role of DCs in tumor angiogenesis and vasculogenesis.
Collapse
Affiliation(s)
- Marius Strioga
- Department of Immunology, Center of Oncosurgery, Institute of Oncology, Vilnius University, Vilnius, Lithuania.
| | | | | | | | | | | |
Collapse
|
31
|
Compeer EB, Flinsenberg TWH, van der Grein SG, Boes M. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation. Front Immunol 2012; 3:37. [PMID: 22566920 PMCID: PMC3342355 DOI: 10.3389/fimmu.2012.00037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/16/2012] [Indexed: 12/29/2022] Open
Abstract
Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.
Collapse
Affiliation(s)
- Ewoud Bernardus Compeer
- Department of Pediatric Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital Utrecht, Netherlands
| | | | | | | |
Collapse
|
32
|
Wernimont SA, Wiemer AJ, Bennin DA, Monkley SJ, Ludwig T, Critchley DR, Huttenlocher A. Contact-dependent T cell activation and T cell stopping require talin1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:6256-67. [PMID: 22075696 PMCID: PMC3237745 DOI: 10.4049/jimmunol.1102028] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell-APC contact initiates T cell activation and is maintained by the integrin LFA-1. Talin1, an LFA-1 regulator, localizes to the immune synapse (IS) with unknown roles in T cell activation. In this study, we show that talin1-deficient T cells have defects in contact-dependent T cell stopping and proliferation. Although talin1-deficient T cells did not form stable interactions with APCs, transient contacts were sufficient to induce signaling. In contrast to prior models, LFA-1 polarized to T cell-APC contacts in talin1-deficient T cells, but vinculin and F-actin polarization at the IS was impaired. These results indicate that T cell proliferation requires sustained, talin1-mediated T cell-APC interactions and that talin1 is necessary for F-actin polarization and the stability of the IS.
Collapse
Affiliation(s)
- Sarah A Wernimont
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison WI 53705
| | - Andrew J Wiemer
- Department of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin, Madison WI 53706
- Institute on Aging, University of Wisconsin-Madison, Madison WI 53706
| | - David A Bennin
- Department of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin, Madison WI 53706
| | - Susan J Monkley
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | - Thomas Ludwig
- Institute for Cancer Genetics, Columbia University, New York, NY 10032
| | - David R Critchley
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | - Anna Huttenlocher
- Department of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin, Madison WI 53706
| |
Collapse
|
33
|
Qingzhen H, Jia T, Shengjun W, Yang Z, Yanfang L, Pei S, Essien BS, Zhaoliang S, Sheng X, Qixiang S, Finegold SM, Xu H. Corynebacterium pyruviciproducens promotes the production of ovalbumin specific antibody via stimulating dendritic cell differentiation and up-regulating Th2 biased immune response. Vaccine 2011; 30:1115-23. [PMID: 22178104 DOI: 10.1016/j.vaccine.2011.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/27/2011] [Accepted: 12/03/2011] [Indexed: 02/02/2023]
Abstract
Corynebacterium pyruviciproducens (C. pyruviciproducens), a newly discovered Corynebacterium, is gram-positive, non-flagellate, non-spore-forming lipophilic rod. No known pathogenic components of Corynebacteria have been found in this new bacterium, such as diphtheria toxin and tuberculostearic acid. In the present study, referring to Propionibacterium acnes (P. acnes), a well-known bacterial adjuvant, the stimulation of dendritic cells by C. pyruviciproducens was analyzed through detecting the levels of cytokine-secretion, ability of cell-proliferation and expression of membrane molecules. In addition, the effect of C. pyruviciproducens in promoting antibody production in vivo was detected. Compared with P. acnes, C. pyruviciproducens more strongly enhanced cytokine secretion including inflammatory factor IL-6 and Th1-associated molecule IL-12, and more effectively induced proliferation, activation or maturation of D2SC/1 (a murine dendritic cell line) and bone marrow-derived dendritic cells (BMDC). Vaccination studies in mice using ovalbumin (OVA) as a model antigen showed that C. pyruviciproducens effectively promoted antigen-specific humoral immune response by increasing OVA-specific antibody, Th2-biased response in spleen and high IL-4/IFN-γ ratio in serum.
Collapse
Affiliation(s)
- Han Qingzhen
- Department of Immunology, Institute of Laboratory Medicine, Jiangsu University, Zhenjiang, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Duchez S, Rodrigues M, Bertrand F, Valitutti S. Reciprocal Polarization of T and B Cells at the Immunological Synapse. THE JOURNAL OF IMMUNOLOGY 2011; 187:4571-80. [DOI: 10.4049/jimmunol.1100600] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Cytoskeletal remodeling mediated by WASp in dendritic cells is necessary for normal immune synapse formation and T-cell priming. Blood 2011; 118:2492-501. [PMID: 21690559 DOI: 10.1182/blood-2011-03-340265] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Rearrangement of the cytoskeleton in T cells plays a critical role in the organization of a complex signaling interface referred to as immunologic synapse (IS). Surprisingly, the contribution of antigen presenting cells, in particular dendritic cells (DCs), to the structure and function of the IS has not been investigated in as much detail. We have used a natural model of cytoskeletal dysfunction caused by deficiency of the Wiskott-Aldrich syndrome protein (WASp) to explore the contribution of the DC cytoskeleton to IS formation and to T-cell priming. In an antigen-specific system, T-DC contacts were found to be less stable when DCs alone lacked WASp, and associated with multiple defects of IS structure. As a consequence, DCs were unable to support normal IL-12 secretion, and events downstream of TCR signaling were abrogated, including increased calcium flux, microtubule organizing center (MTOC) polarization, phosphorylation of ZAP-70, and T-cell proliferation. Formation of an effective signaling interface is therefore dependent on active cytoskeletal rearrangements in DCs even when T cells are functionally competent. Deficiency of DC-mediated activities may contribute significantly to the varied immunodysregulation observed in patients with WAS, and also in those with limited myeloid reconstitution after allogeneic hematopoietic stem cell transplantation.
Collapse
|
36
|
Dudeck A, Suender CA, Kostka SL, von Stebut E, Maurer M. Mast cells promote Th1 and Th17 responses by modulating dendritic cell maturation and function. Eur J Immunol 2011; 41:1883-93. [PMID: 21491417 DOI: 10.1002/eji.201040994] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 02/16/2011] [Accepted: 04/11/2011] [Indexed: 02/02/2023]
Abstract
Mast cells (MCs) play an important role in the regulation of protective adaptive immune responses against pathogens. However, it is still unclear whether MCs promote such host defense responses via direct effects on T cells or rather by modifying the functions of antigen-presenting cells. To identify the underlying mechanisms of the immunoregulatory capacity of MCs, we investigated the impact of MCs on dendritic cell (DC) maturation and function. We found that murine peritoneal MCs underwent direct crosstalk with immature DCs that induced DC maturation as evidenced by enhanced expression of costimulatory molecules. Furthermore, the MC/DC interaction resulted in the release of the T-cell modulating cytokines IFN-γ, IL-2, IL-6 and TGF-β into coculture supernatants and increased the IL-12p70, IFN-γ, IL-6 and TGF-β secretion of LPS-matured DCs. Such MC-"primed" DCs subsequently induced efficient CD4+ T-cell proliferation. Surprisingly, we observed that MC-primed DCs stimulated CD4+ T cells to release high levels of IFN-γ and IL-17, demonstrating that MCs promote Th1 and Th17 responses. Confirming our in vitro findings, we found that the enhanced disease progression of MC-deficient mice in Leishmania major infection is correlated with impaired induction of both Th1 and Th17 cells.
Collapse
Affiliation(s)
- Anne Dudeck
- Institute for Immunology, University of Technology Dresden, Medical Faculty Carl-Gustav Carus, Dresden, Germany.
| | | | | | | | | |
Collapse
|
37
|
Nierkens S, Janssen EM. Harnessing dendritic cells for tumor antigen presentation. Cancers (Basel) 2011; 3:2195-213. [PMID: 24212804 PMCID: PMC3757412 DOI: 10.3390/cancers3022195] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/14/2011] [Accepted: 04/19/2011] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8+ and CD4+ T cells; the in vitro loading of DCs with tumor antigens.
Collapse
Affiliation(s)
- Stefan Nierkens
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, Nijmegen 6525 GA, The Netherlands; E-Mail:
| | - Edith M. Janssen
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
38
|
Dustin ML. Visualization of Cell-Cell Interaction Contacts: Synapses and Kinapses. SELF/NONSELF 2011; 2:85-97. [PMID: 22299060 PMCID: PMC3268994 DOI: 10.4161/self.2.2.17931] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
T-cell activation requires interactions of T-cell antigen receptors (TCR) and peptides presented by major histocompatibility complex molecules (MHCp) in an adhesive junction between the T-cell and antigen-presenting cell (APC). Stable junctions with bull's eye supramolecular activation clusters (SMACs) have been defined as immunological synapses. The term synapse works in this case because it joins roots for "same" and "fasten," which could be translated as "fasten in the same place." These structures maintain T-cell-APC interaction and allow directed secretion. We have proposed that SMACs are not really clusters, but are analogous to higher order membrane-cytoskeleton zones involved in amoeboid locomotion including a substrate testing lamellipodium, an adhesive lamella and anti-adhesive uropod. Since T-cells can also integrate signaling during locomotion over antigen presenting cells, it is important to consider adhesive junctions maintained as cells move past each other. This combination of movement (kine-) and fastening (-apse) can be described as a kinapse or moving junction. Synapses and kinapses operate in different stages of T-cell priming. Optimal effector functions may also depend upon cyclical use of synapses and kinapses. Visualization of these structures in vitro and in vivo presents many distinct challenges that will be discussed in this paper.
Collapse
Affiliation(s)
- Michael L Dustin
- Program in Molecular Pathogenesis; Skirball Institute of Biomolecular Medicine and Department of Pathology; New York University School of Medicine; New York, NY USA
| |
Collapse
|
39
|
Katzman SD, Gallo E, Hoyer KK, Abbas AK. Differential requirements for Th1 and Th17 responses to a systemic self-antigen. THE JOURNAL OF IMMUNOLOGY 2011; 186:4668-73. [PMID: 21402892 DOI: 10.4049/jimmunol.1003786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell-APC interactions are essential for the initiation of effector responses against foreign and self-antigens, but the role of these interactions in generating different populations of effector T cells in vivo remains unclear. Using a model of CD4(+) T cell responses to a systemic self-antigen without adjuvants or infection, we demonstrate that activation of APCs augments Th17 responses much more than Th1 responses. Recognition of systemic Ag induces tolerance in self-reactive CD4(+) T cells, but induction of CD40 signaling, even under tolerogenic conditions, results in a strong, Ag-specific IL-17 response without large numbers of IFN-γ-producing cells. Transfer of the same CD4(+) T cells into lymphopenic recipients expressing the self-antigen results in uncontrolled production of IL-17, IFN-γ, and systemic inflammation. If the Ag-specific T cells lack CD40L, production of IL-17 but not IFN-γ is decreased, and the survival time of recipient mice is significantly increased. In addition, transient blockade of the initial MHC class II-dependent T cell-APC interaction results in a greater reduction of IL-17 than of IFN-γ production. These data suggest that Th17 differentiation is more sensitive to T cell interactions with APCs than is the Th1 response, and interrupting this interaction, specifically the CD40 pathway, may be key to controlling Th17-mediated autoimmunity.
Collapse
Affiliation(s)
- Shoshana D Katzman
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
40
|
Fife BT, Pauken KE. The role of the PD-1 pathway in autoimmunity and peripheral tolerance. Ann N Y Acad Sci 2011; 1217:45-59. [DOI: 10.1111/j.1749-6632.2010.05919.x] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Pulecio J, Petrovic J, Prete F, Chiaruttini G, Lennon-Dumenil AM, Desdouets C, Gasman S, Burrone OR, Benvenuti F. Cdc42-mediated MTOC polarization in dendritic cells controls targeted delivery of cytokines at the immune synapse. ACTA ACUST UNITED AC 2010; 207:2719-32. [PMID: 21059854 PMCID: PMC2989776 DOI: 10.1084/jem.20100007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The immune synapse (IS) forms as dendritic cells (DCs) and T cells interact in lymph nodes during initiation of adaptive immunity. Factors that contribute to the formation and maintenance of IS stability and function have been mostly studied in T cells, whereas little is known about events occurring during synapse formation in DCs. Here, we show that DCs activated by Toll-like receptor (TLR) agonists reorient the microtubule-organizing center (MTOC) toward the interacting T cell during antigen-specific synapse formation through a mechanism that depends on the Rho GTPase Cdc42. IL-12, a pivotal cytokine produced by DCs, is found enriched around the MTOC at early time points after TLR ligation and is dragged to the DC-T cell interface in antigen-specific synapses. Synaptic delivery of IL-12 induces activation of pSTAT4 and IFN-γ neosynthesis in CD8(+) naive T cells engaged in antigen-specific conjugates and promotes the survival of antigen-primed T cells. We propose that DC polarization increases the local concentration of proinflammatory mediators at the IS and that this represents a new mechanism by which T cell priming is controlled.
Collapse
Affiliation(s)
- Julian Pulecio
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Immunological synapses (ISs) are formed at the T cell-antigen-presenting cell (APC) interface during antigen recognition, and play a central role in T-cell activation and in the delivery of effector functions. ISs were originally described as a peripheral ring of adhesion molecules surrounding a central accumulation of T-cell receptor (TCR)-peptide major histocompatibility complex (pMHC) interactions. Although the structure of these 'classical' ISs has been the subject of intense study, non-classical ISs have also been observed under a variety of conditions. Multifocal ISs, characterized by adhesion molecules dispersed among numerous small accumulations of TCR-pMHC, and motile 'immunological kinapses' have both been described. In this review, we discuss the conditions under which non-classical ISs are formed. Specifically, we explore the profound effect that the phenotypes of both T cells and APCs have on IS structure. We also comment on the role that IS structure may play in T-cell function.
Collapse
Affiliation(s)
- Timothy J Thauland
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | |
Collapse
|
43
|
Leignadier J, Labrecque N. Epitope density influences CD8+ memory T cell differentiation. PLoS One 2010; 5:e13740. [PMID: 21060788 PMCID: PMC2966420 DOI: 10.1371/journal.pone.0013740] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/06/2010] [Indexed: 11/19/2022] Open
Abstract
Background The generation of long-lived memory T cells is critical for successful vaccination but the factors controlling their differentiation are still poorly defined. We tested the hypothesis that the strength of T cell receptor (TCR) signaling contributed to memory CD8+ T cell generation. Methodology/Principal Findings We manipulated the density of antigenic epitope presented by dendritic cells to mouse naïve CD8+ T cells, without varying TCR affinity. Our results show that a two-fold decrease in antigen dose selectively affects memory CD8+ T cell generation without influencing T cell expansion and acquisition of effector functions. Moreover, we show that low antigen dose alters the duration of the interaction between T cells and dendritic cells and finely tunes the expression level of the transcription factors Eomes and Bcl6. Furthermore, we demonstrate that priming with higher epitope density results in a 2-fold decrease in the expression of Neuron-derived orphan nuclear receptor 1 (Nor-1) and this correlates with a lower level of conversion of Bcl-2 into a pro-apoptotic molecule and an increased number of memory T cells. Conclusions Our results show that the amount of antigen encountered by naïve CD8+ T cells following immunization with dendritic cells does not influence the generation of functional effector CD8+ T cells but rather the number of CD8+ memory T cells that persist in the host. Our data support a model where antigenic epitope density sensed by CD8+ T cells at priming influences memory generation by modulating Bcl6, Eomes and Nor-1 expression.
Collapse
Affiliation(s)
- Julie Leignadier
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
44
|
Tourret M, Guégan S, Chemin K, Dogniaux S, Miro F, Bohineust A, Hivroz C. T cell polarity at the immunological synapse is required for CD154-dependent IL-12 secretion by dendritic cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:6809-18. [PMID: 20980629 DOI: 10.4049/jimmunol.1001501] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ag-specific interaction between T lymphocytes and dendritic cells (DCs) leads to both T cell and DC activation. CD154 (CD40 ligand)/CD40 interactions have been shown to play a major, although not exclusive, role in this functional cross-talk. Interactions between T cells and DCs are structured by an immunological synapse (IS), characterized by polarization of the T cell microtubule cytoskeleton toward the interacting DCs. Yet the role T cell polarization may play in T cell-induced DC activation is mostly unknown. In this study, we address the role of T cell polarity in CD154-dependent activation of DCs in a human model, using two different tools to block T cell polarity (i.e., a microtubule depolymerizing drug and an inhibitor of atypical protein kinase C). We show that CD154 is recruited and concentrated at the IS formed between human primary T cells and autologous DCs and that this recruitment requires T cell polarity at the IS. Moreover, we show that T cell polarization at the IS controls T cell-dependent CD154-CD40 signaling in DCs as well as CD154-dependent IL-12 secretion by DCs. This study shows that T cell polarity at the IS plays a key role in CD154/CD40-dependent cross-talk between CD4(+) T cells and DCs.
Collapse
Affiliation(s)
- Marie Tourret
- Institut Curie, Centre de Recherche, Pavillon Pasteur and Institut National de la Santé et de la Recherche Médicale, Unité 932, Immunité et Cancer, Paris, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Hugues S. Dynamics of dendritic cell-T cell interactions: a role in T cell outcome. Semin Immunopathol 2010; 32:227-38. [PMID: 20607241 DOI: 10.1007/s00281-010-0211-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 05/28/2010] [Indexed: 01/19/2023]
Abstract
Antigen-specific dendritic cells (DC)-T cell encounters occur in lymph nodes (LNs) and are essential for the induction of both priming and tolerance. In both cases, T cells are rapidly activated and proliferate. However, the subsequent outcome of T cell activation depends on the modulation of different DC- and T cell-intrinsic signals. Recent advances in two-photon (2P) microscopy have furthered our understanding regarding the complex choreography of DCs and T cells in intact LNs, and established differences in the dynamics of DC-T cell contacts during priming and tolerance induction. The mechanisms that favour DC-T cell encounters, as well as the contribution of the frequency and the duration of such encounters in dictating the T cell response, are discussed in this review.
Collapse
Affiliation(s)
- Stéphanie Hugues
- Department of Pathology, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
46
|
LFA-1 activity state on dendritic cells regulates contact duration with T cells and promotes T-cell priming. Blood 2010; 116:1885-94. [PMID: 20530790 DOI: 10.1182/blood-2009-05-224428] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A key event in the successful induction of adaptive immune responses is the antigen-specific activation of T cells by dendritic cells (DCs). Although LFA-1 (lymphocyte function-associated antigen 1) on T cells is considered to be important for antigen-specific T-cell activation, the role for LFA-1 on DCs remains elusive. Using 2 different approaches to activate LFA-1 on DCs, either by deletion of the αL-integrin cytoplasmic GFFKR sequence or by silencing cytohesin-1-interacting protein, we now provide evidence that DCs are able to make use of active LFA-1 and can thereby control the contact duration with naive T cells. Enhanced duration of DC/T-cell interaction correlates inversely with antigen-specific T-cell proliferation, generation of T-helper 1 cells, and immune responses leading to delayed-type hypersensitivity. We could revert normal interaction time and T-cell proliferation to wild-type levels by inhibition of active LFA-1 on DCs. Our data further suggest that cytohesin-1-interacting protein might be responsible for controlling LFA-1 deactivation on mature DCs. In summary, our findings indicate that LFA-1 on DCs needs to be in an inactive state to ensure optimal T-cell activation and suggest that regulation of LFA-1 activity allows DCs to actively control antigen-driven T-cell proliferation and effective immune responses.
Collapse
|
47
|
Walsh JE, Clark AM, Day TA, Gillespie MB, Young MRI. Use of alpha,25-dihydroxyvitamin D3 treatment to stimulate immune infiltration into head and neck squamous cell carcinoma. Hum Immunol 2010; 71:659-65. [PMID: 20438786 DOI: 10.1016/j.humimm.2010.04.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/02/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
Prior studies have shown that treatment of head and neck squamous cell carcinoma (HNSCC) patients with 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] reduced intratumoral levels of immune inhibitory CD34(+) progenitor cells while increasing levels of mature progeny dendritic cells. This finding was extended to a pilot study to determine whether 1,25(OH)(2)D(3) treatment concurrently increases levels of intratumoral CD4(+) and CD8(+) T cells, increases intratumoral levels of immune cells expressing the early activation marker CD69, and prolongs time to HNSCC recurrence. The clinical trial comprised 16 patients with newly diagnosed HNSCC being untreated and 16 patients being treated with 1,25(OH)(2)D(3) during the 3-week interval between cancer diagnosis and surgical treatment. Immunologic effects of treatment were monitored by immunohistochemical analyses of surgically removed HNSCC. Clinical effectiveness of 1,25(OH)(2)D(3) treatment in this study was measured by the time to HNSCC recurrence. HNSCC tissues of patients who received treatment with 1,25(OH)(2)D(3) contained increased levels of CD4(+) cells and, more significantly, CD8(+) T cells. Also prominent was an increase in cells expressing the lymphoid activation marker CD69. Results of this pilot study suggest that patients treated with 1,25(OH)(2)D(3) had a lengthier time to tumor recurrence compared with patients who were not treated before surgery.
Collapse
Affiliation(s)
- Jarrett E Walsh
- Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| | | | | | | | | |
Collapse
|
48
|
Hochweller K, Wabnitz GH, Samstag Y, Suffner J, Hämmerling GJ, Garbi N. Dendritic cells control T cell tonic signaling required for responsiveness to foreign antigen. Proc Natl Acad Sci U S A 2010; 107:5931-6. [PMID: 20231464 PMCID: PMC2851879 DOI: 10.1073/pnas.0911877107] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DCs) are key components of the adaptive immune system contributing to initiation and regulation of T cell responses. T cells continuously scan DCs in lymphoid organs for the presence of foreign antigen. However, little is known about the functional consequences of these frequent T cell-DC interactions without cognate antigen. Here we demonstrate that these contacts in the absence of foreign antigen serve an important function, namely, induction of a basal activation level in T cells required for responsiveness to subsequent encounters with foreign antigens. This basal activation is provided by self-recognition of MHC molecules on DCs. Following DC depletion in mice, T cells became impaired in TCR signaling and immune synapse formation, and consequently were hyporesponsive to antigen. This process was reversible, as T cells quickly recovered when the number of DCs returned to a normal level. The extent of T cell reactivity correlated with the degree of DC depletion in lymphoid organs, suggesting that a full DC compartment guarantees optimal T cell responsiveness. These findings indicate that DCs are specialized cells that not only present foreign antigen, but also promote a "tonic" state in T cells for antigen responsiveness.
Collapse
Affiliation(s)
- Kristin Hochweller
- Division of Molecular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Guido H. Wabnitz
- Institute for Immunology, University of Heidelberg, 69129 Heidelberg, Germany
| | - Yvonne Samstag
- Institute for Immunology, University of Heidelberg, 69129 Heidelberg, Germany
| | - Janine Suffner
- Division of Molecular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Günter J. Hämmerling
- Division of Molecular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Natalio Garbi
- Division of Molecular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; and
| |
Collapse
|
49
|
Lin A, Schildknecht A, Nguyen LT, Ohashi PS. Dendritic cells integrate signals from the tumor microenvironment to modulate immunity and tumor growth. Immunol Lett 2010; 127:77-84. [DOI: 10.1016/j.imlet.2009.09.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/15/2009] [Accepted: 09/16/2009] [Indexed: 12/16/2022]
|
50
|
Abstract
TCR engagement with peptide/MHC complexes displayed on the surface of the antigen-presenting cells is the crucial event in developing an adaptive immune response and occurs within specialized signaling areas named immunological synapses. Immunological synapses are diverse both in structure and function and exhibit a strikingly dynamic molecular organization. In this review, we focus on the diversity of immunological synapses and on their plasticity in response to stimulation. We discuss how the study of the adaptable features of immunological synapses can be instrumental to a better understanding of the complex regulation of adaptive immunity.
Collapse
|