1
|
Sheppe AEF, Santelices J, Czyz DM, Edelmann MJ. Yersinia pseudotuberculosis YopJ Limits Macrophage Response by Downregulating COX-2-Mediated Biosynthesis of PGE2 in a MAPK/ERK-Dependent Manner. Microbiol Spectr 2021; 9:e0049621. [PMID: 34319170 PMCID: PMC8552654 DOI: 10.1128/spectrum.00496-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an essential immunomodulatory lipid released by cells in response to infection with many bacteria, yet its function in macrophage-mediated bacterial clearance is poorly understood. Yersinia overall inhibits the inflammatory circuit, but its effect on PGE2 production is unknown. We hypothesized that one of the Yersinia effector proteins is responsible for the inhibition of PGE2 biosynthesis. We identified that yopB-deficient Y. enterocolitica and Y. pseudotuberculosis deficient in the secretion of virulence proteins via a type 3 secretion system (T3SS) failed to inhibit PGE2 biosynthesis in macrophages. Consistently, COX-2-mediated PGE2 biosynthesis is upregulated in cells treated with heat-killed or T3SS-deficient Y. pseudotuberculosis but diminished in the presence of a MAPK/ERK inhibitor. Mutants expressing catalytically inactive YopJ induce similar levels of PGE2 as heat-killed or ΔyopB Y. pseudotuberculosis, reversed by YopJ complementation. Shotgun proteomics discovered host pathways regulated in a YopJ-mediated manner, including pathways regulating PGE2 synthesis and oxidative phosphorylation. Consequently, this study identified that YopJ-mediated inhibition of MAPK signal transduction serves as a mechanism targeting PGE2, an alternative means of inflammasome inhibition by Yersinia. Finally, we showed that EP4 signaling supports macrophage function in clearing intracellular bacteria. In summary, our unique contribution was to determine a bacterial virulence factor that targets COX-2 transcription, thereby enhancing the intracellular survival of yersiniae. Future studies should investigate whether PGE2 or its stable synthetic derivatives could serve as a potential therapeutic molecule to improve the outcomes of specific bacterial infections. Since other pathogens encode YopJ homologs, this mechanism is expected to be present in other infections. IMPORTANCE PGE2 is a critical immunomodulatory lipid, but its role in bacterial infection and pathogen clearance is poorly understood. We previously demonstrated that PGE2 leads to macrophage polarization toward the M1 phenotype and stimulates inflammasome activation in infected macrophages. Finally, we also discovered that PGE2 improved the clearance of Y. enterocolitica. The fact that Y. enterocolitica hampers PGE2 secretion in a type 3 secretion system (T3SS)-dependent manner and because PGE2 appears to assist macrophage in the clearance of this bacterium indicates that targeting of the eicosanoid pathway by Yersinia might be an adaption used to counteract host defenses. Our study identified a mechanism used by Yersinia that obstructs PGE2 biosynthesis in human macrophages. We showed that Y. pseudotuberculosis interferes with PGE2 biosynthesis by using one of its T3SS effectors, YopJ. Specifically, YopJ targets the host COX-2 enzyme responsible for PGE2 biosynthesis, which happens in a MAPK/ER-dependent manner. Moreover, in a shotgun proteomics study, we also discovered other pathways that catalytically active YopJ targets in the infected macrophages. YopJ was revealed to play a role in limiting host LPS responses, including repression of EGR1 and JUN proteins, which control transcriptional activation of proinflammatory cytokine production such as interleukin-1β. Since YopJ has homologs in other bacterial species, there are likely other pathogens that target and inhibit PGE2 biosynthesis. In summary, our study's unique contribution was to determine a bacterial virulence factor that targets COX-2 transcription. Future studies should investigate whether PGE2 or its stable synthetic derivatives could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Austin E. F. Sheppe
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - John Santelices
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Daniel M. Czyz
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Mariola J. Edelmann
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
MicroRNA-155 Modulates Macrophages' Response to Non-Tuberculous Mycobacteria through COX-2/PGE2 Signaling. Pathogens 2021; 10:pathogens10080920. [PMID: 34451384 PMCID: PMC8398909 DOI: 10.3390/pathogens10080920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/01/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) have been recognized as a causative agent of various human diseases, including severe infections in immunocompromised patients, such as people living with HIV. The most common species identified is the Mycobacterium avium-intracellulare complex (MAI/MAC), accounting for a majority of infections. Despite abundant information detailing the clinical significance of NTM, little is known about host–pathogen interactions in NTM infection. MicroRNAs (miRs) serve as important post-transcriptional regulators of gene expression. Using a microarray profile, we found that the expression of miR-155 and cyclo-oxygenase 2 (COX-2) is significantly increased in bone-marrow-derived macrophages from mice and human monocyte-derived macrophages from healthy volunteers that are infected with NTM. Antagomir against miR-155 effectively suppressed expression of COX-2 and reduced Prostaglandin E2(PGE2) secretion, suggesting that COX-2/PGE2 expression is dependent on miR-155. Mechanistically, we found that inhibition of NF-κB activity significantly reduced miR-155/COX-2 expression in infected macrophages. Most importantly, blockade of COX-2, E-prostanoid receptors (EP2 and EP4) enhanced killing of MAI in macrophages. These findings provide novel mechanistic insights into the role of miR-155/COX-2/PGE2 signalling and suggest that induction of these pathways enhances survival of mycobacteria in macrophages. Defining host–pathogen interactions can lead to novel immunomodulatory therapies for NTM infections which are difficult to treat.
Collapse
|
3
|
Roles of Eicosanoids in Regulating Inflammation and Neutrophil Migration as an Innate Host Response to Bacterial Infections. Infect Immun 2021; 89:e0009521. [PMID: 34031130 DOI: 10.1128/iai.00095-21] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Eicosanoids are lipid-based signaling molecules that play a unique role in innate immune responses. The multiple types of eicosanoids, such as prostaglandins (PGs) and leukotrienes (LTs), allow the innate immune cells to respond rapidly to bacterial invaders. Bacterial pathogens alter cyclooxygenase (COX)-derived prostaglandins (PGs) in macrophages, such as PGE2 15d-PGJ2, and lipoxygenase (LOX)-derived leukotriene LTB4, which has chemotactic functions. The PG synthesis and secretion are regulated by substrate availability of arachidonic acid and by the COX-2 enzyme, and the expression of this protein is regulated at multiple levels, both transcriptionally and posttranscriptionally. Bacterial pathogens use virulence strategies such as type three secretion systems (T3SSs) to deliver virulence factors altering the expression of eicosanoid-specific biosynthetic enzymes, thereby modulating the host response to bacterial lipopolysaccharides (LPS). Recent advances have identified a novel role of eicosanoids in inflammasome activation during intracellular infection with bacterial pathogens. Specifically, PGE2 was found to enhance inflammasome activation, driving the formation of pore-induced intracellular traps (PITs), thus trapping bacteria from escaping the dying cell. Finally, eicosanoids and IL-1β released from macrophages are implicated in the efferocytosis of neighboring neutrophils. Neutrophils play an essential role in phagocytosing and degrading PITs and associated bacteria to restore homeostasis. This review focuses on the novel functions of host-derived eicosanoids in the host-pathogen interactions.
Collapse
|
4
|
Yan X, Hu S, Yang Y, Xu D, Liu W, Li G, Cai W, Bu Z. Proteomics Investigation of the Time Course Responses of RAW264.7 Macrophages to Infections With the Wild-Type and Twin-Arginine Translocation Mutant Strains of Brucella melitensis. Front Cell Infect Microbiol 2021; 11:679571. [PMID: 34195100 PMCID: PMC8238042 DOI: 10.3389/fcimb.2021.679571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Brucella, a notorious intracellular pathogen, causes chronic infections in many mammals, including humans. The twin-arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane; protein substrates translocated by Brucella include ABC transporters, oxidoreductases, and cell envelope biosynthesis proteins. Previously, we showed that a Tat mutant of Brucella melitensis M28 exhibits reduced survival within murine macrophages. In this study, we compared the host responses elicited by wild-type M28 and its Tat-mutant strains ex vivo. We utilized label-free quantitative proteomics to assess proteomic changes in RAW264.7 macrophages after infection with M28 and its Tat mutants. A total of 6085 macrophage proteins were identified with high confidence, and 79, 50, and 99 proteins were differentially produced upon infection with the Tat mutant at 4, 24, and 48 hpi, respectively, relative to the wild-type infection. Gene ontology and KEGG enrichment analysis indicated that immune response-related proteins were enriched among the upregulated proteins. Compared to the wild-type M28 infection, the most upregulated proteins upon Tat-mutant infection included the cytosolic nucleic acid signaling pathway-related proteins IFIH1, DHX58, IFI202, IFI204, and ISG15 and the NF-κB signaling pathway-related proteins PTGS2, CD40, and TRAF1, suggesting that the host increases the production of these proteins in response to Tat mutant infection. Upregulation of some proteins was further verified by a parallel reaction monitoring (PRM) assay. ELISA and qRT-PCR assays indicated that Tat mutant infection significantly induced proinflammatory cytokine (TNF-α and IL-6) and nitric oxide (NO) production. Finally, we showed that the Tat mutant displays higher sensitivity to nitrosative stress than the wild type and that treatment with the NO synthase inhibitor L-NMMA significantly increases the intracellular survival of the Tat mutant, indicating that NO production contributes to restricting Tat mutant survival within macrophages. Collectively, this work improves our understanding of host immune responses to Tat mutants and provides insights into the mechanisms underlying the attenuated virulence of Tat mutants.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Sen Hu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan Yang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Da Xu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenxing Liu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ganwu Li
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Wentong Cai
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| | - Zhigao Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| |
Collapse
|
5
|
Nouwen LV, Everts B. Pathogens MenTORing Macrophages and Dendritic Cells: Manipulation of mTOR and Cellular Metabolism to Promote Immune Escape. Cells 2020; 9:cells9010161. [PMID: 31936570 PMCID: PMC7017145 DOI: 10.3390/cells9010161] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/01/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Myeloid cells, including macrophages and dendritic cells, represent an important first line of defense against infections. Upon recognition of pathogens, these cells undergo a metabolic reprogramming that supports their activation and ability to respond to the invading pathogens. An important metabolic regulator of these cells is mammalian target of rapamycin (mTOR). During infection, pathogens use host metabolic pathways to scavenge host nutrients, as well as target metabolic pathways for subversion of the host immune response that together facilitate pathogen survival. Given the pivotal role of mTOR in controlling metabolism and DC and macrophage function, pathogens have evolved strategies to target this pathway to manipulate these cells. This review seeks to discuss the most recent insights into how pathogens target DC and macrophage metabolism to subvert potential deleterious immune responses against them, by focusing on the metabolic pathways that are known to regulate and to be regulated by mTOR signaling including amino acid, lipid and carbohydrate metabolism, and autophagy.
Collapse
|
6
|
Perkins DJ, Richard K, Hansen AM, Lai W, Nallar S, Koller B, Vogel SN. Autocrine-paracrine prostaglandin E 2 signaling restricts TLR4 internalization and TRIF signaling. Nat Immunol 2018; 19:1309-1318. [PMID: 30397349 PMCID: PMC6240378 DOI: 10.1038/s41590-018-0243-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
The unique cell biology of Toll-like receptor 4 (TLR4) allows it to initiate two signal transduction cascades: a Mal (TIRAP)–MyD88-dependent signal from the cell surface that regulates proinflammatory cytokines and a TRAM–TRIF-dependent signal from endosomes that drives type I interferon production. Negative feedback circuits to limit TLR4 signals from both locations are necessary to balance the inflammatory response. We describe a negative feedback loop driven by autocrine-paracrine prostaglandin E2 (PGE2), and the PGE2 receptor, EP4, which restricted TRIF-dependent signals and IFN-β induction through regulation of TLR4 trafficking. Inhibition of PGE2 production or EP4 antagonism increased the rate of TLR4 endosomal translocation, and amplified TRIF-dependent IRF3 and caspase 8 activation. This PGE2-driven mechanism restricted TLR4-TRIF signaling in vitro upon infection of macrophages by Gram-negative pathogens Escherichia coli and Citrobacter rodentium and protected mice against Salmonella enteritidis serovar Typhimurium (ST)-induced mortality. Thus, PGE2 restricts TLR4-TRIF signaling specifically in response to lipopolysaccharide.
Collapse
Affiliation(s)
- Darren J Perkins
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA.
| | - Katharina Richard
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA
| | - Anne-Marie Hansen
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA
| | - Wendy Lai
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA
| | - Shreeram Nallar
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA
| | - Beverly Koller
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC, USA
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Sheppe AEF, Kummari E, Walker A, Richards A, Hui WW, Lee JH, Mangum L, Borazjani A, Ross MK, Edelmann MJ. PGE2 Augments Inflammasome Activation and M1 Polarization in Macrophages Infected With Salmonella Typhimurium and Yersinia enterocolitica. Front Microbiol 2018; 9:2447. [PMID: 30429830 PMCID: PMC6220063 DOI: 10.3389/fmicb.2018.02447] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022] Open
Abstract
Eicosanoids are cellular metabolites, which shape the immune response, including inflammatory processes in macrophages. The effects of these lipid mediators on inflammation and bacterial pathogenesis are not clearly understood. Certain eicosanoids are suspected to act as molecular sensors for the recruitment of neutrophils, while others regulate bacterial uptake. In this study, gene expression analyses indicated that genes involved in eicosanoid biosynthesis including COX-1, COX-2, DAGL, and PLA-2 are differentially regulated in THP-1 human macrophages infected with Salmonella enterica Typhimurium or Yersinia enterocolitica. By using targeted metabolomics approach, we found that the eicosanoid precursor, arachidonic acid (AA) as well as its derivatives, including prostaglandins (PGs) PGF2α or PGE2/PGD2, and thromboxane TxB2, are rapidly secreted from macrophages infected with these Gram-negative pathogenic bacteria. The magnitude of eicosanoid biosynthesis in infected host cells depends on the presence of virulence factors of Y. enterocolitica and S. Typhimurium strains, albeit in an opposite way in Y. enterocolitica compared to S. Typhimurium infection. Trials with combinations of EP2/EP4 PGE2 receptor agonists and antagonists suggest that PGE2 signaling in these infection models works primarily through the EP4 receptor. Downstream of EP4 activation, PGE2 enhances inflammasome activation and represses M2 macrophage polarization while inducing key M1-type markers. PGE2 also led to a decreased numbers of Y. enterocolitica within macrophages. To summarize, PGE2 is a potent autocrine/paracrine activator of inflammation during infection in Gram-negative bacteria, and it affects macrophage polarization, likely controlling bacterial clearance by macrophages.
Collapse
Affiliation(s)
- Austin E. F. Sheppe
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL, United States
| | - Evangel Kummari
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Alyssa Walker
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL, United States
| | - Angela Richards
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL, United States
| | - Winnie W. Hui
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL, United States
| | - Jung Hwa Lee
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Lauren Mangum
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Abdolsamad Borazjani
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Matthew K. Ross
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Mariola J. Edelmann
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Zhu H, Xiong Y, Xia Y, Zhang R, Tian D, Wang T, Dai J, Wang L, Yao H, Jiang H, Yang K, Liu E, Shi Y, Fu Z, Gao L, Zou L. Therapeutic Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Acute Lung Injury Mice. Sci Rep 2017; 7:39889. [PMID: 28051154 PMCID: PMC5209685 DOI: 10.1038/srep39889] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/29/2016] [Indexed: 02/05/2023] Open
Abstract
The incidence and mortality of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are still very high, but stem cells show some promise for its treatment. Here we found that intratracheal administration of human umbilical cord-mesenchymal stem cells (UC-MSCs) significantly improved survival and attenuated the lung inflammation in lipopolysaccharide (LPS)-induced ALI mice. We also used the proteins-chip and bioinformatics to analyze interactions between UC-MSCs treatment and immune-response alternations of ALI mice. Then we demonstrated that UC-MSCs could inhibit the inflammatory response of mouse macrophage in ALI mice, as well as enhance its IL-10 expression. We provide data to support the concept that the therapeutic capacity of UC-MSCs for ALI was primarily through paracrine secretion, particularly of prostaglandin-E2 (PGE2). Furthermore, we showed that UC-MSCs might secrete a panel of factors including GM-CSF, IL-6 and IL-13 to ameliorate ALI. Our study suggested that UC-MSCs could protect LPS-induced ALI model by immune regulation and paracrine factors, indicating that UC-MSCs should be a promising strategy for ALI/ARDS.
Collapse
Affiliation(s)
- Hua Zhu
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Department of Pediatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yi Xiong
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yunqiu Xia
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Rong Zhang
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Daiyin Tian
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Ting Wang
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jihong Dai
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lijia Wang
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hongbing Yao
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Department of Otorhinolaryngology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hong Jiang
- Department of Pediatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ke Yang
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - Enmei Liu
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yujun Shi
- Laboratoryof Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhou Fu
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - Li Gao
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Department of Otorhinolaryngology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - Lin Zou
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China.,Center for Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
9
|
Gagnaire A, Gorvel L, Papadopoulos A, Von Bargen K, Mège JL, Gorvel JP. COX-2 Inhibition Reduces Brucella Bacterial Burden in Draining Lymph Nodes. Front Microbiol 2016; 7:1987. [PMID: 28018318 PMCID: PMC5149544 DOI: 10.3389/fmicb.2016.01987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/28/2016] [Indexed: 11/26/2022] Open
Abstract
Brucella is a Gram-negative facultative intracellular bacterium responsible for a chronic disease known as brucellosis, the most widespread re-emerging zoonosis worldwide. Establishment of a Th1-mediated immune response characterized by the production of IL-12 and IFNγ is essential to control the disease. Leukotrienes derived from arachidonic acid (AA) metabolism are known to negatively regulate a protective Th1 immune response against bacterial infections. Here, using genomics approaches we demonstrate that Brucella abortus strongly stimulates the prostaglandin (PG) pathway in dendritic cells (DC). We also show an induction of AA production by infected cells. This correlates with the expression of Ptgs2, a gene encoding the downstream cyclooxygenase-2 (COX-2) enzyme in infected DC. By comparing different infection routes (oral, intradermal, intranasal and conjunctival), we identified the intradermal inoculation route as the more potent in inducing Ptgs2 expression but also in inducing a local inflammatory response in the draining cervical lymph nodes (CLN). NS-398, a specific inhibitor of COX-2 enzymatic activity decreased B. melitensis burden in the CLN after intradermal infection. This effect was accompanied by a decrease of Il10 and a concomitant increase of Ifng expression. Altogether, these results suggest that Brucella has evolved to take advantage of the PG pathway in the harsh environment of the CLN in order to persist and subvert immune responses. This work also proposes that novel strategies to control brucellosis may include the use of COX-2 inhibitors.
Collapse
Affiliation(s)
- Aurélie Gagnaire
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy Marseille, France
| | - Laurent Gorvel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis MO, USA
| | - Alexia Papadopoulos
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy Marseille, France
| | - Kristine Von Bargen
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy Marseille, France
| | - Jean-Louis Mège
- Aix Marseille Univ, INSERM, CNRS, IRD, URMITE Marseille, France
| | - Jean-Pierre Gorvel
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy Marseille, France
| |
Collapse
|
10
|
Krause J, Geginat G, Tammer I. Prostaglandin E2 from Candida albicans Stimulates the Growth of Staphylococcus aureus in Mixed Biofilms. PLoS One 2015; 10:e0135404. [PMID: 26262843 PMCID: PMC4532413 DOI: 10.1371/journal.pone.0135404] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/21/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Previous studies showed that Staphylococcus aureus and Candida albicans interact synergistically in dual species biofilms resulting in enhanced mortality in animal models. METHODOLOGY/PRINCIPAL FINDINGS The aim of the current study was to test possible candidate molecules which might mediate this synergistic interaction in an in vitro model of mixed biofilms, such as farnesol, tyrosol and prostaglandin (PG) E2. In mono-microbial and dual biofilms of C.albicans wild type strains PGE2 levels between 25 and 250 pg/mL were measured. Similar concentrations of purified PGE2 significantly enhanced S.aureus biofilm formation in a mode comparable to that observed in dual species biofilms. Supernatants of the null mutant deficient in PGE2 production did not stimulate the proliferation of S.aureus and the addition of the cyclooxygenase inhibitor indomethacin blocked the S.aureus biofilm formation in a dose-dependent manner. Additionally, S. aureus biofilm formation was boosted by low and inhibited by high farnesol concentrations. Supernatants of the farnesol-deficient C. albicans ATCC10231 strain significantly enhanced the biofilm formation of S. aureus but at a lower level than the farnesol producer SC5314. However, C. albicans ATCC10231 also produced PGE2 but amounts were significantly lower compared to SC5314. CONCLUSION/SIGNIFICANCE In conclision, we identified C. albicans PGE2 as a key molecule stimulating the growth and biofilm formation of S. aureus in dual S. aureus/C. albicans biofilms, although C. albicans derived farnesol, but not tyrosol, may also contribute to this effect but to a lesser extent.
Collapse
Affiliation(s)
- Jan Krause
- Institute of Medical Microbiology, Hospital Control and Prevention, Otto-von-Guericke University, Magdeburg, Germany
| | - Gernot Geginat
- Institute of Medical Microbiology, Hospital Control and Prevention, Otto-von-Guericke University, Magdeburg, Germany
| | - Ina Tammer
- Institute of Medical Microbiology, Hospital Control and Prevention, Otto-von-Guericke University, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
11
|
Peptidases from latex of Carica candamarcensis upregulate COX-2 and IL-1 mRNA transcripts against Salmonella enterica ser. Typhimurium-mediated inflammation. Mediators Inflamm 2014; 2014:819731. [PMID: 24757289 PMCID: PMC3976864 DOI: 10.1155/2014/819731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/09/2014] [Accepted: 01/24/2014] [Indexed: 11/18/2022] Open
Abstract
The immunomodulatory properties of a mixture of cysteine peptidases (P1G10) obtained from the fruit lattice of Carica candamarcensis were investigated. P1G10 was obtained from fresh latex samples by chromatography in a Sephadex column and initially administered to Swiss mice (n = 5; 1 or 10 mg/kg) via i.p. After 30 min, the mice were injected with carrageenan (0.5 mg/mouse) or heat-killed S. Typhimurium (10(7) CFU/mL; 100°C/30 min) into the peritoneal cavity. Afterwards, two animal groups were i.p. administered with P1G10 (n = 6; 1, 5, or 10 mg/Kg) or PBS 24 hours prior to challenge with live S. Typhimurium (10(7) CFU/mL). P1G10 stimulated the proliferation of circulating neutrophils and lymphocytes, 6 h after injection of carrageenan or heat-killed bacteria, respectively. Furthermore, survival after infection was dose-dependent and reached 60% of the animal group. On the other hand, control mice died 1-3 days after infection. The examination of mRNA transcripts in liver cells 24 h after infection confirmed fold variation increases of 5.8 and 4.8 times on average for IL-1 and COX-2, respectively, in P1G10 pretreated mice but not for TNF-α, IL-10, γ-IFN and iNOS, for which the results were comparable to untreated animals. These data are discussed in light of previous reports.
Collapse
|
12
|
Agard M, Asakrah S, Morici LA. PGE(2) suppression of innate immunity during mucosal bacterial infection. Front Cell Infect Microbiol 2013; 3:45. [PMID: 23971009 PMCID: PMC3748320 DOI: 10.3389/fcimb.2013.00045] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/30/2013] [Indexed: 12/28/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an important lipid mediator in inflammatory and immune responses during acute and chronic infections. Upon stimulation by various proinflammatory stimuli such as lipopolysaccharide (LPS), interleukin (IL)-1β, and tumor necrosis factor (TNF)-α, PGE2 synthesis is upregulated by the expression of cyclooxygenases. Biologically active PGE2 is then able to signal through four primary receptors to elicit a response. PGE2 is a critical molecule that regulates the activation, maturation, migration, and cytokine secretion of several immune cells, particularly those involved in innate immunity such as macrophages, neutrophils, natural killer cells, and dendritic cells. Both Gram-negative and Gram-positive bacteria can induce PGE2 synthesis to regulate immune responses during bacterial pathogenesis. This review will focus on PGE2 in innate immunity and how bacterial pathogens influence PGE2 production during enteric and pulmonary infections. The conserved ability of many bacterial pathogens to promote PGE2 responses during infection suggests a common signaling mechanism to deter protective pro-inflammatory immune responses. Inhibition of PGE2 production and signaling during infection may represent a therapeutic alternative to treat bacterial infections. Further study of the immunosuppressive effects of PGE2 on innate immunity will lead to a better understanding of potential therapeutic targets within the PGE2 pathway.
Collapse
Affiliation(s)
- Mallory Agard
- Department of Microbiology and Immunology, Tulane University School of Medicine New Orleans, LA 70119, USA
| | | | | |
Collapse
|
13
|
Nelson DA, Chauhan VS, Tolbert MD, Bost KL. An expanded myeloid derived suppressor cell population does not play a role in gammaherpesvirus-exacerbated breast cancer metastases. Infect Agent Cancer 2012; 7:22. [PMID: 22946998 PMCID: PMC3464903 DOI: 10.1186/1750-9378-7-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/30/2012] [Indexed: 11/12/2022] Open
Abstract
Background Mice latently infected with murine gammaherpesvirus 68 (HV-68) and transplanted with 4 T1 breast cancer cells developed exacerbated metastatic lesions when compared to controls. The mechanisms responsible for this viral-exacerbated disease were not clear. The ability of HV-68 infection to induce S100A8 and S100A9 production and to expand a population of CD11b+Gr-1+ cells suggested that increased numbers, or activity, of viral-expanded myeloid derived suppressor cells (MDSCs) might contribute to HV-68-associated metastatic breast cancer in this model. We questioned whether mock or HV-68 infected mice with significant breast cancer might have differences in the number and/or activity of MDSCs. Methods Myeloid-derived macrophages and dendritic cells were isolated from normal mice and cultured in vitro with HV-68 to assess S100A8 and S100A9 mRNA and protein expression. In vivo studies were performed using groups of mice that were mock treated or infected with HV-68. After viral latency was established, 4 T1 breast cancer cells were transplanted in mice. When primary breast tumors were present mice were euthanized and cells isolated for phenotyping of myeloid cell populations using FACS, and for ex vivo analysis of suppressor activity. Serum from these animals was also collected to quantify S100A8 and S100A9 levels. Results In vitro studies demonstrated that direct exposure of myeloid cells to HV-68 did not induce increased expression of S100A8 or S100A9 mRNAs or secreted protein. HV-68 infected mice with metastatic breast cancer disease had no increases in S100A8/A9 levels and no significant increases in the numbers or activation of CD11b+Gr-1+MDSCs when compared to mock treated mice with breast cancer. Conclusions Together these studies are consistent with the notion that expanded myeloid derived suppressor cells do not play a role in gammaherpesvirus-exacerbated breast cancer metastases. The mechanisms responsible for HV-68 induced exacerbation of metastatic breast cancer remain unclear.
Collapse
Affiliation(s)
- Daniel A Nelson
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, North Carolina, USA.
| | | | | | | |
Collapse
|
14
|
Nelson DA, Chauhan VS, Tolbert MD, Bost KL. Murine gammaherpesvirus-68 expands, but does not activate, CD11b+ gr-1+ splenocytes in vivo. JOURNAL OF INFLAMMATION-LONDON 2012; 9:14. [PMID: 22507226 PMCID: PMC3431986 DOI: 10.1186/1476-9255-9-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/22/2012] [Indexed: 12/15/2022]
Abstract
Background Murine gammaherpesvirus 68 (HV-68) is an efficient pathogen, capable of infecting and establishing lifelong latency in rodents. While many studies have demonstrated the ability of this viral infection to modulate immune responses, a unifying mechanism for HV-68-induced subversion of a protective host response remains elusive. We questioned whether infection with HV-68 could expand a population of myeloid derived suppressor cells (MDSC) as one mechanism for altering protective immunity. Methods Mice were infected with HV-68, with viral latency being established in these animals. At varying times post-infection, cells were isolated for detection of viral genomes, phenotyping of myeloid cell populations, and ex vivo analysis of suppressor activity of myeloid cells. Results CD11b + Gr-1+ myeloid cells accumulated in the spleens, but not the bone marrow, of HV-68 infected mice. These cells were predominantly Gr-1+ Ly-6 G+, and could be found to contain viral genomes. Increased levels of serum S100A8/A9 produced during viral infection were consistent with the expansion of these CD11b + Gr-1+ myeloid cells. Despite their expansion, these cells exhibited no increased arginase 1 or iNOS activity, and did not have the ability to suppress anti-CD3 antibody activated T lymphocyte responses. Conclusions We concluded that HV-68 infection was capable of expanding a population of myeloid cells which were phenotypically similar to MDSC. However these cells were not sufficiently activated during the establishment of viral latency to actively suppress T cell responses.
Collapse
Affiliation(s)
- Daniel A Nelson
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd,, Charlotte, NC, 28223, USA.
| | | | | | | |
Collapse
|
15
|
Iwanaga K, Okada M, Murata T, Hori M, Ozaki H. Prostaglandin E2 Promotes Wound-Induced Migration of Intestinal Subepithelial Myofibroblasts via EP2, EP3, and EP4 Prostanoid Receptor Activation. J Pharmacol Exp Ther 2011; 340:604-11. [DOI: 10.1124/jpet.111.189845] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
16
|
Nelson DA, Singh SJ, Young AB, Tolbert MD, Bost KL. 3,4-Methylenedioxymethamphetamine (MDMA) alters acute gammaherpesvirus burden and limits interleukin 27 responses in a mouse model of viral infection. Drug Alcohol Depend 2011; 116:211-21. [PMID: 21269783 PMCID: PMC3105168 DOI: 10.1016/j.drugalcdep.2010.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 10/12/2010] [Accepted: 12/29/2010] [Indexed: 11/30/2022]
Abstract
AIMS To test whether 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") abuse might increase the susceptibility, or alter the immune response, to murine gammaherpesvirus 68 (HV-68) and/or bacterial lipopolysaccharide. METHODS Groups of experimental and control mice were subjected to three day binges of MDMA, and the effect of this drug abuse on acute and latent HV-68 viral burden were assessed. In vitro and in vivo studies were also performed to assess the MDMA effect on IL-27 expression in virally infected or LPS-exposed macrophages and dendritic cells, and latently infected animals, exposed to this drug of abuse. RESULTS Acute viral burden was significantly increased in MDMA-treated mice when compared to controls. However the latent viral burden, and physiological and behavioral responses were not altered in infected mice despite repeated bingeing with MDMA. MDMA could limit the IL-27 response of HV-68 infected or LPS-exposed macrophages and dendritic cells in vitro and in vivo, demonstrating the ability of this drug to alter normal cytokine responses in the context of a viral infection and/or a TLR4 agonist. CONCLUSION MDMA bingeing could alter the host's immune response resulting in greater acute viral replication and reductions in the production of the cytokine, IL-27 during immune responses.
Collapse
Affiliation(s)
- Daniel A. Nelson
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Sam J. Singh
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Amy B. Young
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Melanie D. Tolbert
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Kenneth L. Bost
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA,Corresponding author at: Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA. Tel: +1 704 687 8677; fax +1 704 687 3128
| |
Collapse
|
17
|
Proteomic investigation of the time course responses of RAW 264.7 macrophages to infection with Salmonella enterica. Infect Immun 2009; 77:3227-33. [PMID: 19528222 DOI: 10.1128/iai.00063-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To investigate the extent to which macrophages respond to Salmonella infection, we infected RAW 264.7 macrophages with Salmonella enterica serotype Typhimurium and analyzed macrophage proteins at various time points following infection by using a global proteomic approach. A total of 1,006 macrophage and 115 Salmonella proteins were identified with high confidence. Most of the Salmonella proteins were observed in the late stage of the infection time course, which is consistent with the fact that the bacterial cells proliferate inside RAW 264.7 macrophages. The peptide abundances of most of the identified macrophage proteins remained relatively constant over the time course of infection. Compared to those of the control, the peptide abundances of 244 macrophage proteins (i.e., 24% of the total identified macrophage proteins) changed significantly after infection. The functions of these Salmonella-affected macrophage proteins were diverse, including production of antibacterial nitric oxide (i.e., inducible nitric oxide synthase), production of prostaglandin H(2) (i.e., cyclooxygenase 2), and regulation of intracellular traffic (e.g., sorting nexin 5 [SNX5], SNX6, and SNX9). Diverse functions of the Salmonella-affected macrophage proteins demonstrate a global macrophage response to Salmonella infection. Western blot analysis not only confirmed the proteomic results for a selected set of proteins but also revealed that (i) the protein abundance of mitochondrial superoxide dismutase increased following macrophage infection, indicating an infection-induced oxidative stress in mitochondria, and (ii) in contrast to infection of macrophages by wild-type Salmonella, infection by the sopB deletion mutant had no negative impact on the abundance of SNX6, suggesting a role for SopB in regulating the abundance of SNX6.
Collapse
|
18
|
Bowman CC, Bost KL. [Not Available]. Open Microbiol J 2009; 3:23-8. [PMID: 19543553 PMCID: PMC2698426 DOI: 10.2174/1874285800903010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 02/20/2009] [Accepted: 02/23/2009] [Indexed: 11/22/2022] Open
Abstract
Production of IL-12 and IFN-γ secretion are important components of the protective host response against the intracellular bacterial pathogen, Salmonella typhimurium. While infection with Salmonella does elicit this T helper type 1 response, its magnitude does not appear to be sufficient to prevent infection or limit pathogenesis. Therefore we have investigated factors which might limit a T helper type 1 response following infection. Previously we found that infection of antigen presenting cells with Salmonella dramatically increases cyclooxygenase-2 (COX-2) activity, resulting in high levels of prostaglandin E₂ (PGE₂). Since PGE₂ production can have profound effects on initiation of T helper type 1 responses, we questioned whether this mediator might limit antigen-specific T cell activation. Here we show that blockage of COX-2 activity with the selective inhibitor celecoxib leads to enhancement of the T helper type 1 components stimulated by Salmonella infection. In vitro studies demonstrate the induction of IL-12 and IFN-γ upon Salmonella exposure, which are further increased following COX-2 inhibition. Taken together these in vitro studies suggest that COX-2 activity can limit a salmonella-initiated T helper type 1 response.
Collapse
Affiliation(s)
- C C Bowman
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223
| | | |
Collapse
|
19
|
Ménesi D, Kitajka K, Molnár E, Kis Z, Belleger J, Narce M, Kang JX, Puskás LG, Das UN. Gene and protein expression profiling of the fat-1 mouse brain. Prostaglandins Leukot Essent Fatty Acids 2009; 80:33-42. [PMID: 19138887 DOI: 10.1016/j.plefa.2008.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 01/07/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential structural components of all cell membranes and, more so, of the central nervous system. Several studies revealed that n-3 PUFAs possess anti-inflammatory actions and are useful in the treatment of dyslipidemia. These actions explain the beneficial actions of n-3 PUFAs in the management of cardiovascular diseases, inflammatory conditions, neuronal dysfunction, and cancer. But, the exact molecular targets of these beneficial actions of n-3 PUFAs are not known. Mice engineered to carry a fat-1 gene from Caenorhabditis elegans add a double bond into an unsaturated fatty acid hydrocarbon chain and convert n-6 to n-3 fatty acids. This results in an abundance of n-3 eicosapentaenoic acid and docosapentaenoic acid specifically in the brain and a reduction in n-6 fatty acids of these mice that can be used to evaluate the actions of n-3 PUFAs. Gene expression profile, RT-PCR and protein microarray studies in the hippocampus and whole brain of wild-type and fat-1 transgenic mice revealed that genes and proteins concerned with inflammation, apoptosis, neurotransmission, and neuronal growth and synapse formation are specifically modulated in fat-1 mice. These results may explain as to why n-3 PUFAs are of benefit in the prevention and treatment of diseases such as Alzheimer's disease, schizophrenia and other diseases associated with neuronal dysfunction, low-grade systemic inflammatory conditions, and bronchial asthma. Based on these data, it is evident that n-3 PUFAs act to modulate specific genes and formation of their protein products and thus, bring about their various beneficial actions.
Collapse
Affiliation(s)
- Dalma Ménesi
- Functional Genomics Laboratory, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Salmonella enterica serovar Enteritidis dam mutant induces low NOS-2 and COX-2 expression in macrophages via attenuation of MAPK and NF-kappaB pathways. Microbes Infect 2008; 10:1431-9. [PMID: 18801455 DOI: 10.1016/j.micinf.2008.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/28/2008] [Accepted: 08/08/2008] [Indexed: 01/10/2023]
Abstract
Although dam mutants of Salmonella have been proposed as live vaccines, their capacity to trigger cell inflammatory cascades has not been fully elucidated. We investigated in detail the ability of Salmonella enterica dam mutant to activate the signalling pathways of the inflammatory response in RAW 264.7 cells. Apoptosis in macrophages treated with Salmonella dam mutant was low. Similarly, the expression of both NOS-2 and COX-2 and subsequently the production of NO and PGE(2) was significantly reduced. Also, Salmonella dam mutant induced an attenuated activation of the inflammatory signalling pathway as indicated by the reduced degradation of IkappaBalpha and IkappaBbeta and the low IkappaBalpha phosphorylation found. In addition, translocation of p65 to the nucleus was notably impaired and the amount of phosphorylated p44, p42 and p38 MAPKs was clearly reduced in extracts from dam-infected macrophages. These results indicate that the lack of ERK and p38 phosphorylation at the proper time in dam-infected cells notably reduces the engagement of subsequent signalling pathways involved in the full activation of NF-kappaB in response to infection. Taken together, these results suggest that Salmonella activation of both signalling cascades in the inflammatory response is a mechanism requiring Dam protein participation.
Collapse
|
21
|
Nelson DA, Nirmaier JL, Singh SJ, Tolbert MD, Bost KL. Ecstasy (3,4-methylenedioxymethamphetamine) limits murine gammaherpesvirus-68 induced monokine expression. Brain Behav Immun 2008; 22:912-22. [PMID: 18280699 PMCID: PMC4275657 DOI: 10.1016/j.bbi.2008.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/07/2008] [Accepted: 01/08/2008] [Indexed: 01/03/2023] Open
Abstract
While Ecstasy (3,4-methylenedioxymethamphetamine, MDMA) has been shown to modulate immune responses, no studies have addressed drug-induced alterations to viral infection. In this study, bone marrow-derived macrophages were exposed to MDMA, then infected with murine gammaherpesvirus-68, and the expression of monokines assessed. MDMA-induced reductions in virus-stimulated monokine mRNA expression were observed in a dose-dependent manner. In particular, IL-6 mRNA expression and secretion was significantly decreased in gammaherpesvirus-infected macrophages exposed to MDMA. Concentrations of MDMA capable of reducing monokine production did not induce significant cell death and allowed normal viral gene expression. These studies represent the first to demonstrate the ability of this drug of abuse to alter a viral-induced macrophage response.
Collapse
Affiliation(s)
- Daniel A Nelson
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA.
| | | | | | | | | |
Collapse
|
22
|
Nelson DA, Tolbert MD, Singh SJ, Bost KL. Expression of neuronal trace amine-associated receptor (Taar) mRNAs in leukocytes. J Neuroimmunol 2007; 192:21-30. [PMID: 17900709 PMCID: PMC2189554 DOI: 10.1016/j.jneuroim.2007.08.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 08/23/2007] [Accepted: 08/24/2007] [Indexed: 10/22/2022]
Abstract
Trace amines such as tyramine, octopamine and beta-phenylethylamine bind with high affinity to the mammalian trace amine-associated receptor 1 (Taar1), potentially activating G-proteins in the synaptic membranes of target neurons. Recently there has been significant interest in Taar1, since this receptor can bind certain psychoactive drugs of abuse such as Ecstasy (3,4-methylenedioxymethamphetamine). Surprisingly, Ecstasy has been shown to alter responses of immune cells, and we questioned whether Taar receptors might be responsible for this effect. Using sensitive and quantitative RT-PCR assays, we found no detectable expression of Taar mRNA in bone marrow, or in primary cultures of mouse macrophages and dendritic cells whether quiescent or activated by exposure to lipopolysaccharide or the mouse gamma herpesvirus-68 (gammaHV-68). Mouse B cells and NK cells isolated from spleen, however, showed expression of several Taar mRNA species. Taar mRNA expression was also upregulated in human peripheral blood lymphocytes following in vitro stimulation with PHA. These studies represent the first to define expression of the mRNAs encoding these trace amine receptors in leukocytes.
Collapse
Affiliation(s)
- Daniel A Nelson
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA.
| | | | | | | |
Collapse
|
23
|
Popov A, Schultze JL. IDO-expressing regulatory dendritic cells in cancer and chronic infection. J Mol Med (Berl) 2007; 86:145-60. [PMID: 17876564 DOI: 10.1007/s00109-007-0262-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 08/19/2007] [Accepted: 08/23/2007] [Indexed: 01/06/2023]
Abstract
Immune evasion and T cell tolerance induction have been associated both with malignant disease and chronic infection. In recent years, increasing evidence has been accumulated that antigen-presenting cells such as dendritic cells (DC) play a major role in immune regulation. They are not only involved in the induction of immunity but also can inhibit immune responses. Interesting parallels for major molecular mechanisms involved in turning DC from stimulatory to regulatory cells have been uncovered between malignant disease and chronic infection. Apparently, not only inhibitory cytokines such as IL-10 seem to play a role, but also metabolic mechanisms dysregulating tryptophan metabolism, thereby, leading to inhibition of T cells and pathogens. We focus here on recent findings establishing the tryptophan catabolizing enzyme indoleamine-pyrrole 2,3 dioxygenase (IDO) as a central feature of DC with regulatory function both in cancer and chronic infection. Induction of enzymatically active IDO can be triggered by various soluble and membrane-bound factors, and in general, require interferon (IFN) signaling. In addition, based on the most recently established link between tumor necrosis factor alpha (TNFalpha), prostaglandin E2 and IDO, a new model of regulation of IDO in context of cancer and infection is proposed. In light of the increasing use of anti-TNFalpha drugs, these findings are also of great interest to the clinician scientist.
Collapse
Affiliation(s)
- Alexey Popov
- Molecular Tumor Biology and Tumor Immunology, Clinic I for Internal Medicine, Cologne, Germany
| | | |
Collapse
|
24
|
Sarangi PP, Kim B, Kurt-Jones E, Rouse BT. Innate recognition network driving herpes simplex virus-induced corneal immunopathology: role of the toll pathway in early inflammatory events in stromal keratitis. J Virol 2007; 81:11128-38. [PMID: 17686871 PMCID: PMC2045562 DOI: 10.1128/jvi.01008-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ocular infection with herpes simplex virus (HSV) sets off an array of events that succeed in clearing virus from the cornea but leaves the tissue with a CD4(+) T-cell-orchestrated chronic inflammatory lesion that impairs vision. We demonstrate that Toll-like receptor (TLR) signaling forms a part of the recognition system that induces the syndrome that eventually culminates in immunopathology. Accordingly, in a comparison of the outcomes of infection in wild-type (WT) mice and those lacking TLR function, it was apparent that the absence of TLR2 and, to a lesser extent, TLR9 resulted in significantly diminished lesions. Similarly, mice lacking the adapter molecule MyD88 were resistant to lesion development, but such animals were also unable to control infection, with most succumbing to lethal encephalitis. The susceptibility of TLR4(-/-) animals was also evaluated. These animals developed lesions, which were more severe, more rapidly than did WT animals. We discuss the possible mechanisms by which early recognition of HSV constituents impacts the subsequent development of immunopathological lesions.
Collapse
Affiliation(s)
- Pranita P Sarangi
- Department of Microbiology, The University of Tennessee, M409 Walters Life Sciences Bldg., 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
25
|
Sadikot RT, Zeng H, Azim AC, Joo M, Dey SK, Breyer RM, Peebles RS, Blackwell TS, Christman JW. Bacterial clearance ofPseudomonas aeruginosa is enhanced by the inhibition of COX-2. Eur J Immunol 2007; 37:1001-9. [PMID: 17330822 DOI: 10.1002/eji.200636636] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prostanoids generated by COX-2 are involved in the regulation of inflammation but their exact role in the innate immune response has not been defined. We investigated whether COX-2 is involved in host defense against Pseudomonas aeruginosa pneumonia. In vitro studies, in a macrophage cell line, showed that cytotoxic strain of P aeruginosa (PA103) induced significant COX-2 protein expression and enzymatic function. In vivo data showed that infection with PA103 increased COX-2 protein production in whole lung tissue compared to mice that were infected with mutant bacteria that lack ExoU (DeltaU) or ExoU and ExoT (DeltaUT). COX-2(-/-) mice had accentuated clearance of cytotoxic P. aeruginosa from the lungs. We further tested the effects of COX-2 products such as prostaglandin E(2) on the function of phagocytic cells. Our studies indicate that prostaglandin E(2) may be involved through interacting with the EP2 receptors in modulating the host response because treatment of macrophages with prostaglandin E(2) suppressed production of reactive oxygen species. Furthermore there was enhanced bacterial clearance in EP2 receptor(-/-) mice compared to the wild-type controls. Thus it is possible that inhibition of COX-2 or EP2 receptors could be an effective adjunctive treatment for severe or resistant P. aeruginosa pneumonia.
Collapse
Affiliation(s)
- Ruxana T Sadikot
- Department of Veterans Affairs, Jesse Brown VA Hospital, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nakano M, Denda N, Matsumoto M, Kawamura M, Kawakubo Y, Hatanaka K, Hiramoto Y, Sato YI, Noshiro M, Harada Y. Interaction between cyclooxygenase (COX)-1- and COX-2-products modulates COX-2 expression in the late phase of acute inflammation. Eur J Pharmacol 2007; 559:210-8. [PMID: 17258197 DOI: 10.1016/j.ejphar.2006.11.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 11/30/2006] [Accepted: 11/30/2006] [Indexed: 12/30/2022]
Abstract
Prostanoid production depends on the activity of two cyclooxygenase (COX) isoforms. It is appreciated that COX-1 plays a role in physiological processes, whereas COX-2 acts in pathological conditions. However their roles, particularly roles of COX-1, have not yet been fully established in inflammation. Here, we examined the effects of COX inhibitors, having differential isoform selectivity, on the late phase of rat carrageenin-induced pleurisy to elucidate the role of COX-2 expressed in the draining lymph nodes and found substantial contribution of COX-1-product(s). Protein and mRNA of COX-2 were detectable with Western blotting analysis and reverse-transcription polymerase chain reaction (RT-PCR) analysis in parathymic lymph nodes, peaking at 48 h after induction of pleurisy. Microsomal prostaglandin E synthase (mPGES)-1 was detectable by immunohistochemical analysis in cells with dendritic processes, a morphological characteristic similar to that of COX-2 expressing cells. Although aspirin, indomethacin and a COX-1 inhibitor, ketorolac, significantly decreased the volume of pleural exudate, they did not affect the levels of COX-2 and mPGES-1 in the lymph node 24 h after induction of pleurisy. In contrast, COX-2 inhibitors, nimesulide and NS-398, had no effect on the exudate volume, but they increased the number of COX-2- and mPGES-1-expressing cells and extension of their dendritic processes with significant increase in the COX-2 level, which were antagonised by ketorolac. These results suggest that COX-2-expressing cells may negatively self-regulate their functions by producing PGE2 via mPGES-1: migration into the draining lymph node and their differentiation. Moreover, COX-1- and COX-2-derived prostanoids may play differential or sometimes antagonistic roles in the late phase of acute inflammation.
Collapse
Affiliation(s)
- Masashi Nakano
- Department of Mediator and Signal Transduction Pharmacology, Kitasato University Graduate School of Medical Sciences, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kim JM, Lee JY, Yoon YM, Oh YK, Kang JS, Kim YJ, Kim KH. Bacteroides fragilis enterotoxin induces cyclooxygenase-2 and fluid secretion in intestinal epithelial cells through NF-kappaB activation. Eur J Immunol 2006; 36:2446-56. [PMID: 16892182 DOI: 10.1002/eji.200535808] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bacteroides fragilis produces an approximately 20-kDa heat-labile toxin (B. fragilis enterotoxin, BFT) which is known to be associated with diarrhea. To determine whether cyclooxygenase (COX)-2, via NF-kappaB activation, can contribute to BFT-induced diarrhea, the relationship between COX-2 expression and fluid secretion in BFT-stimulated human intestinal epithelial cells was examined. BFT stimulation increased the expression of COX-2, but not COX-1, in human intestinal epithelial cells. Suppression of the NF-kappaB signal significantly decreased COX-2 expression in response to BFT stimulation. Prostaglandin E2 (PGE2) levels were increased in parallel with COX-2 expression, and, conversely, PGE2 production was significantly inhibited when COX-2 or NF-kappaB activities were suppressed using COX-2 small interfering RNA (siRNA), p65 NF-kappaB subunit siRNA, or a retrovirus encoding the IkappaBalpha superrepressor. In addition, a selective COX-2 inhibitor, NS-398, significantly inhibited the increased cAMP level induced by BFT stimulation. Furthermore, a selective COX-2 inhibitor prevented BFT-induced PGE2 production and ileal fluid secretion in a mouse ileal loop model. These results suggest that the secretory response to BFT stimulation may be mediated by the production of PGE2, through NF-kappaB activation and the up-regulation of COX-2 in intestinal epithelial cells.
Collapse
Affiliation(s)
- Jung Mogg Kim
- Department of Microbiology and Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Korea.
| | | | | | | | | | | | | |
Collapse
|
28
|
N'Guessan PD, Hippenstiel S, Etouem MO, Zahlten J, Beermann W, Lindner D, Opitz B, Witzenrath M, Rosseau S, Suttorp N, Schmeck B. Streptococcus pneumoniae induced p38 MAPK- and NF-kappaB-dependent COX-2 expression in human lung epithelium. Am J Physiol Lung Cell Mol Physiol 2006; 290:L1131-8. [PMID: 16414978 DOI: 10.1152/ajplung.00383.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Streptococcus pneumoniae is a major cause of community-acquired pneumonia and death from infectious diseases in industrialized countries. Lung airway and alveolar epithelial cells comprise an important barrier against airborne pathogens. Cyclooxygenase (COX)-derived prostaglandins, such as PGE(2), are considered to be important regulators of lung function. Herein, we tested the hypothesis that pneumococci induced COX-2-dependent PGE(2) production in pulmonary epithelial cells. Pneumococci-infected human pulmonary epithelial BEAS-2B cells released PGE(2). Expression of COX-2 but not COX-1 was dose and time dependently increased in S. pneumoniae-infected BEAS-2B cells as well as in lungs of mice with pneumococcal pneumonia. S. pneumoniae induced degradation of IkappaBalpha and DNA binding of NF-kappaB. A specific peptide inhibitor of the IkappaBalpha kinase complex blocked pneumococci-induced PGE(2) release and COX-2 expression. In addition, we noted activation of p38 MAPK and JNK in pneumococci-infected BEAS-2B cells. PGE(2) release and COX-2 expression were reduced by p38 MAPK inhibitor SB-202190 but not by JNK inhibitor SP-600125. We analyzed interaction of kinase pathways and NF-kappaB activation: dominant-negative mutants of p38 MAPK isoforms alpha, beta(2), gamma, and delta blocked S. pneumoniae-induced NF-kappaB activation. In addition, recruitment of NF-kappaB subunit p65/RelA and RNA polymerase II to the cox2 promoter depended on p38 MAPK but not on JNK activity. In summary, p38 MAPK- and NF-kappaB-controlled COX-2 expression and subsequent PGE(2) release by lung epithelial cells may contribute significantly to the host response in pneumococcal pneumonia.
Collapse
Affiliation(s)
- Philippe Dje N'Guessan
- Dept. of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Biswas PS, Banerjee K, Kim B, Kinchington PR, Rouse BT. Role of inflammatory cytokine-induced cyclooxygenase 2 in the ocular immunopathologic disease herpetic stromal keratitis. J Virol 2005; 79:10589-600. [PMID: 16051851 PMCID: PMC1182687 DOI: 10.1128/jvi.79.16.10589-10600.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ocular infection with herpes simplex virus (HSV) results in a blinding immunoinflammatory stromal keratitis (SK) lesion. Early preclinical events include polymorphonuclear neutrophil (PMN) infiltration and neovascularization in the corneal stroma. We demonstrate here that HSV infection of the cornea results in the upregulation of the cyclooxygenase 2 (COX-2) enzyme. Early after infection, COX-2 was produced from uninfected stromal fibroblasts as an indirect effect of virus infection. Subsequently, COX-2 may also be produced from other inflammatory cells that infiltrate the cornea. The induction of COX-2 is a critical event, since inhibition of COX-2 with a selective inhibitor was shown to reduce corneal angiogenesis and SK severity. The administration of a COX-2 inhibitor resulted in compromised PMN infiltration into the cornea, as well as diminished corneal vascular endothelial growth factor levels, likely accounting for the reduced angiogenic response. COX-2 stimulation by HSV infection represents a critical early event accessible for therapy and the control of SK severity.
Collapse
Affiliation(s)
- Partha S Biswas
- Comparative and Experimental Medicine, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | |
Collapse
|
30
|
Zuniga E, Acosta-Rodriguez E, Merino MC, Montes C, Gruppi A. Depletion of immature B cells during Trypanosoma cruzi infection: involvement of myeloid cells and the cyclooxygenase pathway. Eur J Immunol 2005; 35:1849-58. [PMID: 15864778 DOI: 10.1002/eji.200526005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The ability of a microorganism to elicit or evade B cell responses represents a determinant factor for the final outcome of an infection. Although pathogens may subvert humoral responses at different stages of B cell development, most studies addressing the impact of an infection on the B cell compartment have focused on mature B cells within peripheral lymphoid organs. Herein, we report that a protozoan infection, i.e. a Trypanosoma cruzi infection, induces a marked loss of immature B cells in the BM, which also compromises recently emigrated B cells in the periphery. The depletion of BM immature B cells is associated with an increased rate of apoptosis mediated by a parasite-indirect mechanism in a Fas/FasL-independent fashion. Finally, we demonstrated that myeloid cells play an important role in B cell depletion, since CD11b(+) BM cells from infected mice secrete a product of the cyclooxygenase pathway that eliminates immature B cells. These results highlight a previously unrecognized maneuver used by a protozoan parasite to disable B cell generation, limiting host defense and favoring its chronic establishment.
Collapse
Affiliation(s)
- Elina Zuniga
- Department of Clinical Biochemistry, School of Chemical Science, National University of Cordoba, Argentina
| | | | | | | | | |
Collapse
|
31
|
Nelson DA, Marriott I, Bost KL. Expression of hemokinin 1 mRNA by murine dendritic cells. J Neuroimmunol 2004; 155:94-102. [PMID: 15342200 DOI: 10.1016/j.jneuroim.2004.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 05/27/2004] [Accepted: 06/11/2004] [Indexed: 11/29/2022]
Abstract
Hemokinin 1 is encoded by preprotachykinin C (PPT-C) mRNA, and has been proposed as a regulator of B and T cell lymphopoiesis. Here we demonstrate the expression of mouse PPT-C mRNA by CD11b+ macrophages, CD11c+ dendritic cells and in the microglial cell line EOC 13.31. Expression was detected in freshly isolated CD11b+CD11c+ bone marrow cells, as well as in M-CSF expanded bone marrow-derived macrophages and GM-CSF expanded bone marrow-derived dendritic cells. There was preferential expression of PPT-C mRNA in dendritic cell subpopulations that were CD11b+, but not B220+ or GR-1+. These studies are the first to demonstrate PPT-C mRNA expression by cells of the myeloid lineage.
Collapse
Affiliation(s)
- Daniel A Nelson
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | | | | |
Collapse
|
32
|
Payvandi F, Wu L, Haley M, Schafer PH, Zhang LH, Chen RS, Muller GW, Stirling DI. Immunomodulatory drugs inhibit expression of cyclooxygenase-2 from TNF-α, IL-1β, and LPS-stimulated human PBMC in a partially IL-10-dependent manner. Cell Immunol 2004; 230:81-8. [PMID: 15598423 DOI: 10.1016/j.cellimm.2004.09.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 09/14/2004] [Indexed: 11/24/2022]
Abstract
Immunomodulatory drugs (IMiDs) are potent inhibitors of TNF-alpha and IL-1beta and elevators of IL-10 production in LPS-stimulated human PBMC. They are currently in clinical trials for various diseases, including multiple myeloma, myelodysplastic syndrome, and melanoma. In the present study, we have investigated the effects of thalidomide, CC-5013 and CC-4047 on the expression of COX-2 by stimulated PBMC. Our results show that thalidomide and IMiDs inhibited the expression of COX-2 but not the COX-1 protein in LPS-TNF-alpha and IL-1beta stimulated PBMC and shortened the half-life of COX-2 mRNA in a dose-dependent manner. They also inhibited the synthesis of prostaglandin E2 from LPS-stimulated PBMC. While anti-TNF-alpha or IL-1beta neutralizing antibodies had no effect on COX-2 expression, anti-IL-10 neutralizing antibody elevated the expression of COX-2 mRNA, and protein from treated PBMC. These data suggest that the anti-inflammatory and anti-tumor effects of IMiDs may be due in part to elevation of IL-10 production and its subsequent inhibition of COX-2 expression.
Collapse
Affiliation(s)
- Faribourz Payvandi
- Department of Immunotherapeutics, Celgene Corporation, Warren, NJ 07059, USA.
| | | | | | | | | | | | | | | |
Collapse
|