1
|
Russell DG, Simwela NV, Mattila JT, Flynn J, Mwandumba HC, Pisu D. How macrophage heterogeneity affects tuberculosis disease and therapy. Nat Rev Immunol 2025:10.1038/s41577-024-01124-3. [PMID: 39774813 DOI: 10.1038/s41577-024-01124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Macrophages are the primary host cell type for infection by Mycobacterium tuberculosis in vivo. Macrophages are also key immune effector cells that mediate the control of bacterial growth. However, the specific macrophage phenotypes that are required for optimal immune control of M. tuberculosis infection in vivo remain poorly defined. There are two distinct macrophage lineages in the lung, comprising embryonically derived, tissue-resident alveolar macrophages and recruited, blood monocyte-derived interstitial macrophages. Recent studies have shown that these lineages respond divergently to similar immune environments within the tuberculosis granuloma. Here, we discuss how the differing responses of macrophage lineages might affect the control or progression of tuberculosis disease. We suggest that the ability to reprogramme macrophage responses appropriately, through immunological or chemotherapeutic routes, could help to optimize vaccines and drug regimens for tuberculosis.
Collapse
Affiliation(s)
- David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Nelson V Simwela
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - JoAnne Flynn
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Davide Pisu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| |
Collapse
|
2
|
Scriba TJ, Maseeme M, Young C, Taylor L, Leslie AJ. Immunopathology in human tuberculosis. Sci Immunol 2024; 9:eado5951. [PMID: 39671470 DOI: 10.1126/sciimmunol.ado5951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/15/2024] [Indexed: 12/15/2024]
Abstract
Mycobacterium tuberculosis (M.tb) is a bacterial pathogen that has evolved in humans, and its interactions with the host are complex and best studied in humans. Myriad immune pathways are involved in infection control, granuloma formation, and progression to tuberculosis (TB) disease. Inflammatory cells, such as macrophages, neutrophils, conventional and unconventional T cells, B cells, NK cells, and innate lymphoid cells, interact via cytokines, cell-cell communication, and eicosanoid signaling to contain or eliminate infection but can alternatively mediate pathological changes required for pathogen transmission. Clinical manifestations include pulmonary and extrapulmonary TB, as well as post-TB lung disease. Risk factors for TB progression, in turn, largely relate to immune status and, apart from traditional chemotherapy, interventions primarily target immune mechanisms, highlighting the critical role of immunopathology in TB. Maintaining a balance between effector mechanisms to achieve protective immunity and avoid detrimental inflammation is central to the immunopathogenesis of TB. Many research gaps remain and deserve prioritization to improve our understanding of human TB immunopathogenesis.
Collapse
Affiliation(s)
- Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mahlatse Maseeme
- Africa Health Research Institute, Durban, South Africa
- College of Heath Sciences, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Carly Young
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Laura Taylor
- Forensic Pathology Services, Western Cape Government/University of Cape Town, Cape Town, South Africa
| | - Alasdair J Leslie
- Africa Health Research Institute, Durban, South Africa
- University College London, London, UK
| |
Collapse
|
3
|
Perez RL, Chase J, Tanner R. Shared challenges to the control of complex intracellular neglected pathogens. Front Public Health 2024; 12:1423420. [PMID: 39324165 PMCID: PMC11422159 DOI: 10.3389/fpubh.2024.1423420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
The complex intracellular pathogens Mycobacterium tuberculosis, Mycobacterium leprae, Leishmania spp., and Burkholderia pseudomallei, which cause tuberculosis, leprosy, leishmaniasis, and melioidosis respectively, represent major health threats with a significant global burden concentrated in low- and middle-income countries. While these diseases vary in their aetiology, pathology and epidemiology, they share key similarities in the biological and sociodemographic factors influencing their incidence and impact worldwide. In particular, their occurrence in resource-limited settings has important implications for research and development, disease prevalence and associated risk factors, as well as access to diagnostics and therapeutics. In accordance with the vision of the VALIDATE (VAccine deveLopment for complex Intracellular neglecteD pAThogeEns) Network, we consider shared challenges to the effective prevention, diagnosis and treatment of these diseases as shaped by both biological and social factors, illustrating the importance of taking an interdisciplinary approach. We further highlight how a cross-pathogen perspective may provide valuable insights for understanding and addressing challenges to the control of all four pathogens.
Collapse
Affiliation(s)
- Rebecca Lynn Perez
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Wadham College, University of Oxford, Oxford, United Kingdom
| | - Jemima Chase
- Wadham College, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- Wadham College, University of Oxford, Oxford, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Huang S, Liu M, Zhang H, Song W, Guo W, Feng Y, Ma X, Shi X, Liu J, Liu L, Qi T, Wang Z, Yan B, Shen Y. HIV-MTB Co-Infection Reduces CD4+ T Cells and Affects Granuloma Integrity. Viruses 2024; 16:1335. [PMID: 39205309 PMCID: PMC11360352 DOI: 10.3390/v16081335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Granuloma is a crucial pathological feature of tuberculosis (TB). The relationship between CD4+ T cells in both peripheral blood and granulomatous tissue, and the integrity of granulomas in Human Immunodeficiency Virus (HIV)-MTB co-infection, remains unexplored. This study collected biopsy specimens from 102 TB patients (53 with HIV-MTB co-infection and 49 only with TB). Hematoxylin and eosin (HE) staining and immunohistochemical staining were performed, followed by microscopic examination of the integrity of tuberculous granulomas. Through statistical analysis of peripheral blood CD4+ T cell counts, tissue CD4+ T cell proportion, and the integrity of granulomas, it was observed that HIV infection leads to poor formation of tuberculous granulomas. Peripheral blood CD4+ T cell counts were positively correlated with granuloma integrity, and there was a similar positive correlation between tissue CD4+ T cell proportions and granuloma integrity. Additionally, a positive correlation was found between peripheral blood CD4+ T cell counts and the proportion of CD4+ T cells in granuloma tissues. Therefore, HIV infection could impact the morphology and structure of tuberculous granulomas, with a reduced proportion of both peripheral blood and tissue CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Suyue Huang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Maoying Liu
- Department of Microbiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Hui Zhang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Wenjuan Guo
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Yanling Feng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Xin Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Xia Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Jianjian Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Li Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Tangkai Qi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Zhenyan Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Bo Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Yinzhong Shen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| |
Collapse
|
5
|
Mandal M, Pires D, Calado M, Azevedo-Pereira JM, Anes E. Cystatin F Depletion in Mycobacterium tuberculosis-Infected Macrophages Improves Cathepsin C/Granzyme B-Driven Cytotoxic Effects on HIV-Infected Cells during Coinfection. Int J Mol Sci 2024; 25:8141. [PMID: 39125711 PMCID: PMC11311260 DOI: 10.3390/ijms25158141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Cystatin F (CstF) is a protease inhibitor of cysteine cathepsins, including those involved in activating the perforin/granzyme cytotoxic pathways. It is targeted at the endolysosomal pathway but can also be secreted to the extracellular milieu or endocytosed by bystander cells. CstF was shown to be significantly increased in tuberculous pleurisy, and during HIV coinfection, pleural fluids display high viral loads. In human macrophages, our previous results revealed a strong upregulation of CstF in phagocytes activated by interferon γ or after infection with Mycobacterium tuberculosis (Mtb). CstF manipulation using RNA silencing led to increased proteolytic activity of lysosomal cathepsins, improving Mtb intracellular killing. In the present work, we investigate the impact of CstF depletion in macrophages during the coinfection of Mtb-infected phagocytes with lymphocytes infected with HIV. The results indicate that decreasing the CstF released by phagocytes increases the major pro-granzyme convertase cathepsin C of cytotoxic immune cells from peripheral blood-derived lymphocytes. Consequently, an observed augmentation of the granzyme B cytolytic activity leads to a significant reduction in viral replication in HIV-infected CD4+ T-lymphocytes. Ultimately, this knowledge can be crucial for developing new therapeutic approaches to control both pathogens based on manipulating CstF.
Collapse
Affiliation(s)
- Manoj Mandal
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (D.P.); (J.M.A.-P.)
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (D.P.); (J.M.A.-P.)
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| | - Marta Calado
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (D.P.); (J.M.A.-P.)
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (D.P.); (J.M.A.-P.)
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (D.P.); (J.M.A.-P.)
| |
Collapse
|
6
|
Anes E, Azevedo-Pereira JM, Pires D. Role of Type I Interferons during Mycobacterium tuberculosis and HIV Infections. Biomolecules 2024; 14:848. [PMID: 39062562 PMCID: PMC11275242 DOI: 10.3390/biom14070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis and AIDS remain two of the most relevant human infectious diseases. The pathogens that cause them, Mycobacterium tuberculosis (Mtb) and HIV, individually elicit an immune response that treads the line between beneficial and detrimental to the host. Co-infection further complexifies this response since the different cytokines acting on one infection might facilitate the dissemination of the other. In these responses, the role of type I interferons is often associated with antiviral mechanisms, while for bacteria such as Mtb, their importance and clinical relevance as a suitable target for manipulation are more controversial. In this article, we review the recent knowledge on how these interferons play distinct roles and sometimes have opposite consequences depending on the stage of the pathogenesis. We highlight the dichotomy between the acute and chronic infections displayed by both infections and how type I interferons contribute to an initial control of each infection individually, while their chronic induction, particularly during HIV infection, might facilitate Mtb primo-infection and progression to disease. We expect that further findings and their systematization will allow the definition of windows of opportunity for interferon manipulation according to the stage of infection, contributing to pathogen clearance and control of immunopathology.
Collapse
Affiliation(s)
- Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| |
Collapse
|
7
|
Ullah H, Shi X, Taj A, Cheng L, Yan Q, Sha S, Ahmad, Kang J, Haris M, Ma X, Ma Y. Mycobacterium tuberculosis PE_PGRS38 Enhances Intracellular Survival of Mycobacteria by Inhibiting TLR4/NF-κB-Dependent Inflammation and Apoptosis of the Host. BIOLOGY 2024; 13:313. [PMID: 38785795 PMCID: PMC11118070 DOI: 10.3390/biology13050313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/20/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
Mycobacterium tuberculosis (Mtb) ranks as the most lethal human pathogen, able to fend off repeated attacks by the immune system or medications. PE_PGRS proteins are hallmarks of the pathogenicity of Mtb and contribute to its antigenic diversity, virulence, and persistence during infection. M. smegmatis is a nonpathogenic mycobacterium that naturally lacks PE_PGRS and is used as a model to express Mtb proteins. PE_PGRS has the capability to evade host immune responses and enhance the intracellular survival of M. smegmatis. Despite the intense investigations into PE_PGRS proteins, their role in tuberculosis remains elusive. We engineered the recombinant M. smegmatis strain Ms-PE_PGRS38. The result shows that PE_PGRS38 is expressed in the cell wall of M. smegmatis. PE_PGRS38 contributes to biofilm formation, confers permeability to the cell wall, and shows variable responses to exogenous stresses. PE_PGRS38 downregulated TLR4/NF-κB signaling in RAW264.7 macrophages and lung tissues of infected mice. In addition, PE_PGRS38 decreased NLRP3-dependent IL-1β release and limited pathogen-mediated inflammasome activity during infection. Moreover, PE_PGRS38 inhibited the apoptosis of RAW264.7 cells by downregulating the expression of apoptotic markers including Bax, cytochrome c, caspase-3, and caspase-9. In a nutshell, our findings demonstrate that PE_PGRS38 is a virulence factor for Mtb that enables recombinant M. smegmatis to survive by resisting and evading the host's immune responses during infection.
Collapse
Affiliation(s)
- Hayan Ullah
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
- Department of Microbiology, Dalian Medical University, Dalian 116044, China;
| | - Xiaoxia Shi
- Department of Experimental Teaching Center of Public Health, Dalian Medical University, Dalian 116044, China;
| | - Ayaz Taj
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
| | - Lin Cheng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
| | - Qiulong Yan
- Department of Microbiology, Dalian Medical University, Dalian 116044, China;
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
| | - Ahmad
- Department of Immunology, Dalian Medical University, Dalian 116044, China;
| | - Jian Kang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
| | - Muhammad Haris
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
| | - Xiaochi Ma
- Pharmaceutical Research Center, The Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (H.U.); (A.T.); (L.C.); (S.S.); (J.K.); (M.H.)
- Department of Microbiology, Dalian Medical University, Dalian 116044, China;
| |
Collapse
|
8
|
Solomon SL, Bryson BD. Single-cell analysis reveals a weak macrophage subpopulation response to Mycobacterium tuberculosis infection. Cell Rep 2023; 42:113418. [PMID: 37963018 PMCID: PMC10842899 DOI: 10.1016/j.celrep.2023.113418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/28/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection remains one of society's greatest human health challenges. Macrophages integrate multiple signals derived from ontogeny, infection, and the environment. This integration proceeds heterogeneously during infection. Some macrophages are infected, while others are not; therefore, bulk approaches mask the subpopulation dynamics. We establish a modular, targeted, single-cell protein analysis framework to study the immune response to Mtb. We demonstrate that during Mtb infection, only a small fraction of resting macrophages produce tumor necrosis factor (TNF) protein. We demonstrate that Mtb infection results in muted phosphorylation of p38 and JNK, regulators of inflammation, and leverage our single-cell methods to distinguish between pathogen-mediated interference in host signaling and weak activation of host pathways. We demonstrate that the inflammatory signal magnitude is decoupled from the ability to control Mtb growth. These data underscore the importance of developing pathogen-specific models of signaling and highlight barriers to activation of pathways that control inflammation.
Collapse
Affiliation(s)
- Sydney L Solomon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Ragon Institute of MGH, Harvard & MIT, Cambridge, MA 02139, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Ragon Institute of MGH, Harvard & MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
García-Bengoa M, Meurer M, Goethe R, Singh M, Reljic R, von Köckritz-Blickwede M. Role of phagocyte extracellular traps during Mycobacterium tuberculosis infections and tuberculosis disease processes. Front Microbiol 2023; 14:983299. [PMID: 37492257 PMCID: PMC10365110 DOI: 10.3389/fmicb.2023.983299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) infections remain one of the most significant causes of mortality worldwide. The current situation shows an emergence of new antibiotic-resistant strains making it difficult to control the tuberculosis (TB) disease. A large part of its success as a pathogen is due to its ability to persist for years or even decades without causing evident clinical manifestations. M.tb is highly successful in evading the host-defense by manipulating host-signalling pathways. Although macrophages are generally viewed as the key cell type involved in harboring M.tb, growing evidence shows that neutrophils also play a fundamental role. Both cells are known to act in multiple ways when encountering an invading pathogen, including phagocytosis, release of cytokines and chemokines, and oxidative burst. In addition, the formation of neutrophil extracellular traps (NETs) and macrophage extracellular traps (METs) has been described to contribute to M.tb infections. NETs/METs are extracellular DNA fibers with associated granule components, which are released upon activation of the cells by the pathogen or by pro-inflammatory mediators. On one hand, they can lead to a protective immune response by entrapment and killing of pathogens. However, on the other hand, they can also play a severe pathological role by inducing tissue damage. Extracellular traps (ETs) produced in the pulmonary alveoli can expand easily and expose tissue-damaging factors with detrimental effects. Since host-directed therapies offer a complementary strategy in TB, the knowledge of NET/MET formation is important for understanding potential protective versus detrimental pathways during innate immune signaling. In this review, we summarize the progress made in understanding the role of NETs/METs in the pathogenesis of TB.
Collapse
Affiliation(s)
- María García-Bengoa
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Marita Meurer
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Rajko Reljic
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Maren von Köckritz-Blickwede
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
10
|
Azevedo-Pereira JM, Pires D, Calado M, Mandal M, Santos-Costa Q, Anes E. HIV/Mtb Co-Infection: From the Amplification of Disease Pathogenesis to an “Emerging Syndemic”. Microorganisms 2023; 11:microorganisms11040853. [PMID: 37110276 PMCID: PMC10142195 DOI: 10.3390/microorganisms11040853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Human immunodeficiency virus (HIV) and Mycobacterium tuberculosis (Mtb) are pathogens responsible for millions of new infections each year; together, they cause high morbidity and mortality worldwide. In addition, late-stage HIV infection increases the risk of developing tuberculosis (TB) by a factor of 20 in latently infected people, and even patients with controlled HIV infection on antiretroviral therapy (ART) have a fourfold increased risk of developing TB. Conversely, Mtb infection exacerbates HIV pathogenesis and increases the rate of AIDS progression. In this review, we discuss this reciprocal amplification of HIV/Mtb coinfection and how they influence each other’s pathogenesis. Elucidating the infectious cofactors that impact on pathogenesis may open doors for the design of new potential therapeutic strategies to control disease progression, especially in contexts where vaccines or the sterile clearance of pathogens are not effectively available.
Collapse
Affiliation(s)
- José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (J.M.A.-P.); (E.A.)
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| | - Marta Calado
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Manoj Mandal
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Quirina Santos-Costa
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (J.M.A.-P.); (E.A.)
| |
Collapse
|
11
|
Inflammation-mediated tissue damage in pulmonary tuberculosis and host-directed therapeutic strategies. Semin Immunol 2023; 65:101672. [PMID: 36469987 DOI: 10.1016/j.smim.2022.101672] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Treatment of tuberculosis (TB) involves the administration of anti-mycobacterial drugs for several months. The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb, the causative agent) together with increased disease severity in people with co-morbidities such as diabetes mellitus and HIV have hampered efforts to reduce case fatality. In severe disease, TB pathology is largely attributable to over-exuberant host immune responses targeted at controlling bacterial replication. Non-resolving inflammation driven by host pro-inflammatory mediators in response to high bacterial load leads to pulmonary pathology including cavitation and fibrosis. The need to improve clinical outcomes and reduce treatment times has led to a two-pronged approach involving the development of novel antimicrobials as well as host-directed therapies (HDT) that favourably modulate immune responses to Mtb. HDT strategies incorporate aspects of immune modulation aimed at downregulating non-productive inflammatory responses and augmenting antimicrobial effector mechanisms to minimise pulmonary pathology and accelerate symptom resolution. HDT in combination with existing antimycobacterial agents offers a potentially promising strategy to improve the long-term outcome for TB patients. In this review, we describe components of the host immune response that contribute to inflammation and tissue damage in pulmonary TB, including cytokines, matrix metalloproteinases, lipid mediators, and neutrophil extracellular traps. We then proceed to review HDT directed at these pathways.
Collapse
|
12
|
Hoerter A, Arnett E, Schlesinger LS, Pienaar E. Systems biology approaches to investigate the role of granulomas in TB-HIV coinfection. Front Immunol 2022; 13:1014515. [PMID: 36405707 PMCID: PMC9670175 DOI: 10.3389/fimmu.2022.1014515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/20/2022] [Indexed: 09/29/2023] Open
Abstract
The risk of active tuberculosis disease is 15-21 times higher in those coinfected with human immunodeficiency virus-1 (HIV) compared to tuberculosis alone, and tuberculosis is the leading cause of death in HIV+ individuals. Mechanisms driving synergy between Mycobacterium tuberculosis (Mtb) and HIV during coinfection include: disruption of cytokine balances, impairment of innate and adaptive immune cell functionality, and Mtb-induced increase in HIV viral loads. Tuberculosis granulomas are the interface of host-pathogen interactions. Thus, granuloma-based research elucidating the role and relative impact of coinfection mechanisms within Mtb granulomas could inform cohesive treatments that target both pathogens simultaneously. We review known interactions between Mtb and HIV, and discuss how the structure, function and development of the granuloma microenvironment create a positive feedback loop favoring pathogen expansion and interaction. We also identify key outstanding questions and highlight how coupling computational modeling with in vitro and in vivo efforts could accelerate Mtb-HIV coinfection discoveries.
Collapse
Affiliation(s)
- Alexis Hoerter
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Eusondia Arnett
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Larry S. Schlesinger
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
13
|
Kathamuthu GR, Rajamanickam A, Sridhar R, Baskaran D, Babu S. Strongyloidiasis stercoralis coinfection is associated with altered iron status biomarkers in tuberculous lymphadenitis. Front Immunol 2022; 13:999614. [PMID: 36341407 PMCID: PMC9632344 DOI: 10.3389/fimmu.2022.999614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022] Open
Abstract
Soil-transmitted helminth [mainly Strongyloidiasis stercoralis (Ss)] and tuberculous lymphadenitis (TBL) coinfection in humans is a significant public health problem. We have previously shown that TBL+Ss+ coinfection significantly alters diverse cytokine, matrix metalloproteinase, and tissue inhibitors of metalloproteinase profiles. However, no data is available to understand the influence of Ss coinfection in TBL disease with respect to iron status biomarkers. Hence, we have studied the effect of Ss coinfection on the circulating levels of iron status (ferritin, transferrin [TF], apotransferrin [ApoT], hepcidin, hemopexin) biomarkers in TBL disease. Our results show that TBL+Ss+ and/or TBL+Ss- individuals are associated with significantly altered biochemical and hematological (red blood cell (RBC) counts, hemoglobin (Hb), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) were decreased, and platelets were increased) parameters compared to TBL-Ss+ individuals. Our results also show that TBL+Ss+ coinfection is associated with diminished circulating levels of ferritin, ApoT, hepcidin, and hemopexin compared to TBL+Ss- individuals. TBL+Ss+ and TBL+Ss- groups are associated with altered iron status biomarkers (decreased ferritin [TBL+Ss+ alone] and increased TF, ApoT, hepcidin and hemopexin [TBL+Ss- alone]) compared to TBL-Ss+ group. The heat map expression profile and principal component analysis (PCA) analysis of iron status biomarkers were significantly altered in TBL+Ss+ compared to TBL+Ss- and/or TBL-Ss+ individuals. A significant correlation (positive/negative) was obtained among the biochemical and hematological parameters (white blood cells (WBC)/ferritin, TF, and hepcidin, mean corpuscular hemoglobin concentration (MCHC)/ferritin and hemopexin) with iron status biomarkers. Finally, receiver operating characteristic (ROC) analysis revealed that hemopexin was significantly associated with greater specificity and sensitivity in discriminating TBL+Ss+ and TBL+Ss- coinfected individuals. Thus, our data conclude that Ss coinfection is associated with altered iron status biomarkers indicating that coinfection might alter the host-Mtb interface and could influence the disease pathogenesis.
Collapse
Affiliation(s)
- Gokul Raj Kathamuthu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
- Indian Council of Medical Research-National Institute for Research in Tuberculosis (ICMR-NIRT), Chennai, India
- *Correspondence: Gokul Raj Kathamuthu,
| | - Anuradha Rajamanickam
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | | | - Dhanaraj Baskaran
- Indian Council of Medical Research-National Institute for Research in Tuberculosis (ICMR-NIRT), Chennai, India
| | - Subash Babu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Herrera MT, Guzmán-Beltrán S, Bobadilla K, Santos-Mendoza T, Flores-Valdez MA, Gutiérrez-González LH, González Y. Human Pulmonary Tuberculosis: Understanding the Immune Response in the Bronchoalveolar System. Biomolecules 2022; 12:biom12081148. [PMID: 36009042 PMCID: PMC9405639 DOI: 10.3390/biom12081148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Mycobacterium tuberculosis, the causal agent of one of the most devastating infectious diseases worldwide, can evade or modulate the host immune response and remain dormant for many years. In this review, we focus on identifying the local immune response induced in vivo by M. tuberculosis in the lungs of patients with active tuberculosis by analyzing data from untouched cells from bronchoalveolar lavage fluid (BALF) or exhaled breath condensate (EBC) samples. The most abundant resident cells in patients with active tuberculosis are macrophages and lymphocytes, which facilitate the recruitment of neutrophils. The cellular response is characterized by an inflammatory state and oxidative stress produced mainly by macrophages and T lymphocytes. In the alveolar microenvironment, the levels of cytokines such as interleukins (IL), chemokines, and matrix metalloproteinases (MMP) are increased compared with healthy patients. The production of cytokines such as interferon (IFN)-γ and IL-17 and specific immunoglobulin (Ig) A and G against M. tuberculosis indicate that the adaptive immune response is induced despite the presence of a chronic infection. The role of epithelial cells, the processing and presentation of antigens by macrophages and dendritic cells, as well as the role of tissue-resident memory T cells (Trm) for in situ vaccination remains to be understood.
Collapse
Affiliation(s)
- María Teresa Herrera
- Department of Microbiology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Silvia Guzmán-Beltrán
- Department of Microbiology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Karen Bobadilla
- Laboratory of Transcriptomics and Molecular Immunology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Teresa Santos-Mendoza
- Laboratory of Transcriptomics and Molecular Immunology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Mexico
| | - Luis Horacio Gutiérrez-González
- Laboratory of Transcriptomics and Molecular Immunology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
- Correspondence: (L.H.G.-G.); (Y.G.); Tel.: +52-55-5487-1700 (ext. 5117) (Y.G.)
| | - Yolanda González
- Department of Microbiology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
- Correspondence: (L.H.G.-G.); (Y.G.); Tel.: +52-55-5487-1700 (ext. 5117) (Y.G.)
| |
Collapse
|
15
|
Gairola A, Benjamin A, Weatherston JD, Cirillo JD, Wu HJ. Recent Developments in Drug Delivery for Treatment of Tuberculosis by Targeting Macrophages. ADVANCED THERAPEUTICS 2022; 5:2100193. [PMID: 36203881 PMCID: PMC9531895 DOI: 10.1002/adtp.202100193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/10/2022]
Abstract
Tuberculosis (TB) is among the greatest public health and safety concerns in the 21st century, Mycobacterium tuberculosis, which causes TB, infects alveolar macrophages and uses these cells as one of its primary sites of replication. The current TB treatment regimen, which consist of chemotherapy involving a combination of 3-4 antimicrobials for a duration of 6-12 months, is marked with significant side effects, toxicity, and poor compliance. Targeted drug delivery offers a strategy that could overcome many of the problems of current TB treatment by specifically targeting infected macrophages. Recent advances in nanotechnology and material science have opened an avenue to explore drug carriers that actively and passively target macrophages. This approach can increase the drug penetration into macrophages by using ligands on the nanocarrier that interact with specific receptors for macrophages. This review encompasses the recent development of drug carriers specifically targeting macrophages actively and passively. Future directions and challenges associated with development of effective TB treatment is also discussed.
Collapse
Affiliation(s)
- Anirudh Gairola
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Aaron Benjamin
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Joshua D Weatherston
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
16
|
Pires D, Calado M, Velez T, Mandal M, Catalão MJ, Neyrolles O, Lugo-Villarino G, Vérollet C, Azevedo-Pereira JM, Anes E. Modulation of Cystatin C in Human Macrophages Improves Anti-Mycobacterial Immune Responses to Mycobacterium tuberculosis Infection and Coinfection With HIV. Front Immunol 2021; 12:742822. [PMID: 34867965 PMCID: PMC8637326 DOI: 10.3389/fimmu.2021.742822] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/21/2021] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis owes its resurgence as a major global health threat mostly to the emergence of drug resistance and coinfection with HIV. The synergy between HIV and Mycobacterium tuberculosis (Mtb) modifies the host immune environment to enhance both viral and bacterial replication and spread. In the lung immune context, both pathogens infect macrophages, establishing favorable intracellular niches. Both manipulate the endocytic pathway in order to avoid destruction. Relevant players of the endocytic pathway to control pathogens include endolysosomal proteases, cathepsins, and their natural inhibitors, cystatins. Here, a mapping of the human macrophage transcriptome for type I and II cystatins during Mtb, HIV, or Mtb-HIV infection displayed different profiles of gene expression, revealing cystatin C as a potential target to control mycobacterial infection as well as HIV coinfection. We found that cystatin C silencing in macrophages significantly improves the intracellular killing of Mtb, which was concomitant with an increased general proteolytic activity of cathepsins. In addition, downmodulation of cystatin C led to an improved expression of the human leukocyte antigen (HLA) class II in macrophages and an increased CD4+ T-lymphocyte proliferation along with enhanced IFN-γ secretion. Overall, our results suggest that the targeting of cystatin C in human macrophages represents a promising approach to improve the control of mycobacterial infections including multidrug-resistant (MDR) TB.
Collapse
Affiliation(s)
- David Pires
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Calado
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Tomás Velez
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Manoj Mandal
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria João Catalão
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Olivier Neyrolles
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Toulouse, France
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Toulouse, France
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Toulouse, France
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Abstract
Alveolar macrophages (AMs) are lung-resident myeloid cells that sit at the interface of the airway and lung tissue. Under homeostatic conditions, their primary function is to clear debris, dead cells and excess surfactant from the airways. They also serve as innate pulmonary sentinels for respiratory pathogens and environmental airborne particles and as regulators of pulmonary inflammation. However, they have not typically been viewed as primary therapeutic targets for respiratory diseases. Here, we discuss the role of AMs in various lung diseases, explore the potential therapeutic strategies to target these innate cells and weigh the potential risks and challenges of such therapies. Additionally, in the context of the COVID-19 pandemic, we examine the role AMs play in severe disease and the therapeutic strategies that have been harnessed to modulate their function and protect against severe lung damage. There are many novel approaches in development to target AMs, such as inhaled antibiotics, liposomal and microparticle delivery systems, and host-directed therapies, which have the potential to provide critical treatment to patients suffering from severe respiratory diseases, yet there is still much work to be done to fully understand the possible benefits and risks of such approaches.
Collapse
|
18
|
Llibre A, Dedicoat M, Burel JG, Demangel C, O’Shea MK, Mauro C. Host Immune-Metabolic Adaptations Upon Mycobacterial Infections and Associated Co-Morbidities. Front Immunol 2021; 12:747387. [PMID: 34630426 PMCID: PMC8495197 DOI: 10.3389/fimmu.2021.747387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterial diseases are a major public health challenge. Their causative agents include, in order of impact, members of the Mycobacterium tuberculosis complex (causing tuberculosis), Mycobacterium leprae (causing leprosy), and non-tuberculous mycobacterial pathogens including Mycobacterium ulcerans. Macrophages are mycobacterial targets and they play an essential role in the host immune response to mycobacteria. This review aims to provide a comprehensive understanding of the immune-metabolic adaptations of the macrophage to mycobacterial infections. This metabolic rewiring involves changes in glycolysis and oxidative metabolism, as well as in the use of fatty acids and that of metals such as iron, zinc and copper. The macrophage metabolic adaptations result in changes in intracellular metabolites, which can post-translationally modify proteins including histones, with potential for shaping the epigenetic landscape. This review will also cover how critical tuberculosis co-morbidities such as smoking, diabetes and HIV infection shape host metabolic responses and impact disease outcome. Finally, we will explore how the immune-metabolic knowledge gained in the last decades can be harnessed towards the design of novel diagnostic and therapeutic tools, as well as vaccines.
Collapse
Affiliation(s)
- Alba Llibre
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Martin Dedicoat
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Julie G. Burel
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Caroline Demangel
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1224, Paris, France
| | - Matthew K. O’Shea
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
19
|
Pisu D, Huang L, Narang V, Theriault M, Lê-Bury G, Lee B, Lakudzala AE, Mzinza DT, Mhango DV, Mitini-Nkhoma SC, Jambo KC, Singhal A, Mwandumba HC, Russell DG. Single cell analysis of M. tuberculosis phenotype and macrophage lineages in the infected lung. J Exp Med 2021; 218:e20210615. [PMID: 34292313 PMCID: PMC8302446 DOI: 10.1084/jem.20210615] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/19/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
In this study, we detail a novel approach that combines bacterial fitness fluorescent reporter strains with scRNA-seq to simultaneously acquire the host transcriptome, surface marker expression, and bacterial phenotype for each infected cell. This approach facilitates the dissection of the functional heterogeneity of M. tuberculosis-infected alveolar (AMs) and interstitial macrophages (IMs) in vivo. We identify clusters of pro-inflammatory AMs associated with stressed bacteria, in addition to three different populations of IMs with heterogeneous bacterial phenotypes. Finally, we show that the main macrophage populations in the lung are epigenetically constrained in their response to infection, while inter-species comparison reveals that most AMs subsets are conserved between mice and humans. This conceptual approach is readily transferable to other infectious disease agents with the potential for an increased understanding of the roles that different host cell populations play during the course of an infection.
Collapse
MESH Headings
- Animals
- Antitubercular Agents/pharmacology
- Bronchoalveolar Lavage Fluid/microbiology
- CD11 Antigens/immunology
- CD11 Antigens/metabolism
- Epigenesis, Genetic
- Gene Expression Regulation, Bacterial
- Heme/metabolism
- Host-Pathogen Interactions
- Humans
- Lung/microbiology
- Lung/pathology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/microbiology
- Macrophages, Alveolar/pathology
- Mice, Inbred C57BL
- Microorganisms, Genetically-Modified
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- Sequence Analysis, RNA
- Single-Cell Analysis
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
- Mice
Collapse
Affiliation(s)
- Davide Pisu
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Lu Huang
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
- Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Vipin Narang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Monique Theriault
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Gabrielle Lê-Bury
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Agnes E. Lakudzala
- Malawi Liverpool Wellcome Trust Clinical Research Program, University of Malawi College of Medicine, Blantyre, Malawi
| | - David T. Mzinza
- Malawi Liverpool Wellcome Trust Clinical Research Program, University of Malawi College of Medicine, Blantyre, Malawi
| | - David V. Mhango
- Malawi Liverpool Wellcome Trust Clinical Research Program, University of Malawi College of Medicine, Blantyre, Malawi
| | - Steven C. Mitini-Nkhoma
- Malawi Liverpool Wellcome Trust Clinical Research Program, University of Malawi College of Medicine, Blantyre, Malawi
| | - Kondwani C. Jambo
- Malawi Liverpool Wellcome Trust Clinical Research Program, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Amit Singhal
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
- A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research, Singapore
| | - Henry C. Mwandumba
- Malawi Liverpool Wellcome Trust Clinical Research Program, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David G. Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
20
|
The tryptophan biosynthetic pathway is essential for Mycobacterium tuberculosis to cause disease. Biochem Soc Trans 2021; 48:2029-2037. [PMID: 32915193 PMCID: PMC7609029 DOI: 10.1042/bst20200194] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is the most significant cause of death from a single infectious agent worldwide. Antibiotic-resistant strains of M. tuberculosis represent a threat to effective treatment, and the long duration, toxicity and complexity of current chemotherapy for antibiotic-resistant disease presents a need for new therapeutic approaches with novel modes of action. M. tuberculosis is an intracellular pathogen that must survive phagocytosis by macrophages, dendritic cells or neutrophils to establish an infection. The tryptophan biosynthetic pathway is required for bacterial survival in the phagosome, presenting a target for new classes of antitubercular compound. The enzymes responsible for the six catalytic steps that produce tryptophan from chorismate have all been characterised in M. tuberculosis, and inhibitors have been described for some of the steps. The innate immune system depletes cellular tryptophan in response to infection in order to inhibit microbial growth, and this effect is likely to be important for the efficacy of tryptophan biosynthesis inhibitors as new antibiotics. Allosteric inhibitors of both the first and final enzymes in the pathway have proven effective, including by a metabolite produced by the gut biota, raising the intriguing possibility that the modulation of tryptophan biosynthesis may be a natural inter-bacterial competition strategy.
Collapse
|
21
|
Abstract
Mycobacterium tuberculosis infections claim more than a million lives each year, and better treatments or vaccines are required. A crucial pathogenicity factor is translocation from phagolysosomes to the cytosol upon phagocytosis by macrophages. Translocation from the phagolysosome to the cytosol is an ESX-1-dependent process, as previously shown in vitro Here, we show that in vivo, mycobacteria also translocate to the cytosol but mainly when host immunity is compromised. We observed only low numbers of cytosolic bacilli in mice, armadillos, zebrafish, and patient material infected with M. tuberculosis, M. marinum, or M. leprae In contrast, when innate or adaptive immunity was compromised, as in severe combined immunodeficiency (SCID) or interleukin-1 receptor 1 (IL-1R1)-deficient mice, significant numbers of cytosolic M. tuberculosis bacilli were detected in the lungs of infected mice. Taken together, in vivo, translocation to the cytosol of M. tuberculosis is controlled by adaptive immune responses as well as IL-1R1-mediated signals.IMPORTANCE For decades, Mycobacterium tuberculosis has been one of the deadliest pathogens known. Despite infecting approximately one-third of the human population, no effective treatment or vaccine is available. A crucial pathogenicity factor is subcellular localization, as M. tuberculosis can translocate from phagolysosome to the cytosol in macrophages. The situation in vivo is more complicated. In this study, we establish that high-level cytosolic escape of mycobacteria can indeed occur in vivo but mainly when host resistance is compromised. The IL-1 pathway is crucial for the control of the number of cytosolic mycobacteria. The establishment that immune signals result in the clearance of cells containing cytosolic mycobacteria connects two important fields, cell biology and immunology, which is vital for the understanding of the pathology of M. tuberculosis.
Collapse
|
22
|
Namdev P, Patel S, Sparling B, Garg A. Monocytic-Myeloid Derived Suppressor Cells of HIV-Infected Individuals With Viral Suppression Exhibit Suppressed Innate Immunity to Mycobacterium tuberculosis. Front Immunol 2021; 12:647019. [PMID: 33995365 PMCID: PMC8113814 DOI: 10.3389/fimmu.2021.647019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis can occur during any stage of Human Immunodeficiency virus 1 (HIV) -infection including times when CD4+ T cell numbers have reconstituted and viral replication suppressed. We have previously shown that CD11b+CD33+CD14+HLA-DR-/lo monocytic myeloid-derived suppressor cells (MDSC) persist in HIV-infected individuals on combined anti-retroviral therapy (cART) and with virologic suppression. The response of MDSC to Mycobacterium tuberculosis (Mtb) is not known. In this study, we compared the anti-mycobacterial activity of MDSC isolated from HIV –infected individuals on cART with virologic suppression (HIV MDSC) and HIV-uninfected healthy controls (HIV (-) MDSC). Compared to HIV (-) MDSC, HIV MDSC produced significantly less quantities of anti-mycobacterial cytokines IL-12p70 and TNFα, and reactive oxygen species when cultured with infectious Mtb or Mtb antigens. Furthermore, HIV MDSC showed changes in the Toll-like receptor and IL-27 signaling, including reduced expression of MyD88 and higher levels of IL-27. Neutralizing IL-27 and overexpression of MyD88 synergistically controlled intracellular replication of Mtb in HIV MDSC. These results demonstrate that MDSC in fully suppressed HIV-infected individuals are permissive to Mtb and exhibit downregulated anti-mycobacterial innate immune activity through mechanisms involving IL-27 and TLR signaling. Our findings suggest MDSC as novel mediators of tuberculosis in HIV-Mtb co-infected individuals with virologic suppression.
Collapse
Affiliation(s)
- Priyanka Namdev
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Shiv Patel
- Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
| | - Brandi Sparling
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ankita Garg
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
23
|
Pires D, Valente S, Calado M, Mandal M, Azevedo-Pereira JM, Anes E. Repurposing Saquinavir for Host-Directed Therapy to Control Mycobacterium Tuberculosis Infection. Front Immunol 2021; 12:647728. [PMID: 33841429 PMCID: PMC8032898 DOI: 10.3389/fimmu.2021.647728] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Despite the available antibiotics, tuberculosis (TB) has made its return since the 90’s of the last century as a global threat mostly due to co-infection with HIV, to the emergence of drug resistant strains and the lack of an effective vaccine. Host-directed strategies could be exploited to improve treatment efficacy, contain drug-resistant strains, improve immune responses and reduce disease severity. Macrophages in the lungs are often found infected with Mycobacterium tuberculosis (Mtb) and/or with HIV. The long-term survival of lung macrophages infected with Mtb or with HIV, together with their ability to produce viral particles, especially during TB, makes these niches major contributors to the pathogenicity of the infection. Among the available drugs to control HIV infection, protease inhibitors (PIs), acting at post-integrational stages of virus replication cycle, are the only drugs able to interfere with virus production and release from macrophages during chronic infection. For Mtb we recently found that the pathogen induces a general down-regulation of lysosomal proteases, helping bacteria to establish an intracellular niche in macrophages. Here we found that the PI saquinavir, contrary to ritonavir, is able to induce an increase of endolysosomal proteases activity especially of cathepsin S in Mtb infected macrophages and during co-infection with HIV. Our results indicate that saquinavir treatment of infected macrophages led not only to a significant intracellular killing of Mtb but also: (i) to an improved expression of the HLA class II antigen presentation machinery at the cell surface; (ii) to increased T-lymphocyte priming and proliferation; and (iii) to increased secretion of IFN-γ. All together the results indicate saquinavir as a potential host directed therapy for tuberculosis.
Collapse
Affiliation(s)
- David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia Valente
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Calado
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Manoj Mandal
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
24
|
Rens C, Chao JD, Sexton DL, Tocheva EI, Av-Gay Y. Roles for phthiocerol dimycocerosate lipids in Mycobacterium tuberculosis pathogenesis. MICROBIOLOGY-SGM 2021; 167. [PMID: 33629944 DOI: 10.1099/mic.0.001042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The success of Mycobacterium tuberculosis as a pathogen is well established: tuberculosis is the leading cause of death by a single infectious agent worldwide. The threat of multi- and extensively drug-resistant bacteria has renewed global concerns about this pathogen and understanding its virulence strategies will be essential in the fight against tuberculosis. The current review will focus on phthiocerol dimycocerosates (PDIMs), a long-known and well-studied group of complex lipids found in the M. tuberculosis cell envelope. Numerous studies show a role for PDIMs in several key steps of M. tuberculosis pathogenesis, with recent studies highlighting its involvement in bacterial virulence, in association with the ESX-1 secretion system. Yet, the mechanisms by which PDIMs help M. tuberculosis to control macrophage phagocytosis, inhibit phagosome acidification and modulate host innate immunity, remain to be fully elucidated.
Collapse
Affiliation(s)
- Céline Rens
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Joseph D Chao
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Danielle L Sexton
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
| | - Elitza I Tocheva
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
| | - Yossef Av-Gay
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada.,Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
25
|
Jha V, Pal R, Kumar D, Mukhopadhyay S. ESAT-6 Protein of Mycobacterium tuberculosis Increases Holotransferrin-Mediated Iron Uptake in Macrophages by Downregulating Surface Hemochromatosis Protein HFE. THE JOURNAL OF IMMUNOLOGY 2020; 205:3095-3106. [PMID: 33148716 DOI: 10.4049/jimmunol.1801357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/01/2020] [Indexed: 11/19/2022]
Abstract
Iron is an essential element for Mycobacterium tuberculosis; it has at least 40 enzymes that require iron as a cofactor. Accessibility of iron at the phagosomal surface inside macrophage is crucial for survival and virulence of M. tuberculosis ESAT-6, a 6-kDa-secreted protein of region of difference 1, is known to play a crucial role in virulence and pathogenesis of M. tuberculosis In our earlier study, we demonstrated that ESAT-6 protein interacts with β-2-microglobulin (β2M) and affects class I Ag presentation through sequestration of β2M inside endoplasmic reticulum, which contributes toward inhibition of MHC class I:β2M:peptide complex formation. The 6 aa at C-terminal region of ESAT-6 are essential for ESAT6:β2M interaction. β2M is essential for proper folding of HFE, CD1, and MHC class I and their surface expression. It is known that M. tuberculosis recruit holotransferrin at the surface of the phagosome. But the upstream mechanism by which it modulates holotransferrin-mediated iron uptake at the surface of macrophage is not well understood. In the current study, we report that interaction of the ESAT-6 protein with β2M causes downregulation of surface HFE, a protein regulating iron homeostasis via interacting with transferrin receptor 1 (TFR1). We found that ESAT-6:β2M interaction leads to sequestration of HFE in endoplasmic reticulum, causing poorer surface expression of HFE and HFE:TFR1 complex (nonfunctional TFR1) in peritoneal macrophages from C57BL/6 mice, resulting in increased holotransferrin-mediated iron uptake in these macrophages. These studies suggest that M. tuberculosis probably targets the ESAT-6 protein to increase iron uptake.
Collapse
Affiliation(s)
- Vishwanath Jha
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; and
| | - Ravi Pal
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; and
| | - Dhiraj Kumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, Telangana, India;
| |
Collapse
|
26
|
Tram TTB, Ha VTN, Thu DDA, Dinh TD, Nhung HN, Hanh NT, Phu NH, Thwaites GE, Thuong NTT. Variations in Antimicrobial Activities of Human Monocyte-Derived Macrophage and Their Associations With Tuberculosis Clinical Manifestations. Front Cell Infect Microbiol 2020; 10:586101. [PMID: 33194825 PMCID: PMC7644444 DOI: 10.3389/fcimb.2020.586101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/22/2020] [Indexed: 11/28/2022] Open
Abstract
Macrophages play a significant role in preventing infection through antimicrobial activities, particularly acidification, and proteolysis. Mycobacterium tuberculosis (Mtb) infection can lead to diverse outcomes, from latent asymptomatic infection to active disease involving multiple organs. Monocyte-derived macrophage is one of the main cell types accumulating in lungs following Mtb infection. The variation of intracellular activities of monocyte-derived macrophages in humans and the influence of these activities on the tuberculosis (TB) spectrum are not well understood. By exploiting ligand-specific bead-based assays, we investigated macrophage antimicrobial activities real-time in healthy volunteers (n = 53) with 35 cases of latent TB (LTB), and those with active TB (ATB), and either pulmonary TB (PTB, n = 70) or TB meningitis (TBM, n = 77). We found wide person-to-person variations in acidification and proteolytic activities in response to both non-immunogenic IgG and pathogenic ligands comprising trehalose 6,6'−dimycolate (TDM) from Mtb or β-glucan from Saccharamyces cerevisiase. The variation in the macrophage activities remained similar regardless of stimuli; however, IgG induced stronger acidification activity than immunogenic ligands TDM (P = 10−5, 3 × 10−5 and 0.01 at 30, 60, and 90 min) and β-glucan (P = 10−4, 3 × 10−4 and 0.04 at 30, 60, and 90 min). Variation in proteolysis activity was slightly higher in LTB than in ATB (CV = 40% in LTB vs. 29% in ATB, P = 0.03). There was no difference in measured antimicrobial activities in response to TDM and bacterial killing in macrophages from LTB and ATB, or from PTB and TBM. Our results indicate that antimicrobial activities of monocyte-derived macrophages vary among individuals and show immunological dependence, but suggest these activities cannot be solely responsible for the control of bacterial replication or dissemination in TB.
Collapse
Affiliation(s)
- Trinh T B Tram
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Vu T N Ha
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Do D A Thu
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tran D Dinh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Hoang N Nhung
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nguyen T Hanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nguyen H Phu
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Nguyen T T Thuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Auld SC, Staitieh BS. HIV and the tuberculosis "set point": how HIV impairs alveolar macrophage responses to tuberculosis and sets the stage for progressive disease. Retrovirology 2020; 17:32. [PMID: 32967690 PMCID: PMC7509826 DOI: 10.1186/s12977-020-00540-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022] Open
Abstract
As HIV has fueled a global resurgence of tuberculosis over the last several decades, there is a growing awareness that HIV-mediated impairments in both innate and adaptive immunity contribute to the heightened risk of tuberculosis in people with HIV. Since early immune responses to Mycobacterium tuberculosis (Mtb) set the stage for subsequent control or progression to active tuberculosis disease, early host-pathogen interactions following Mtb infection can be thought of as establishing a mycobacterial "set point," which we define as the mycobacterial burden at the point of adaptive immune activation. This early immune response is impaired in the context of HIV coinfection, allowing for a higher mycobacterial set point and greater likelihood of progression to active disease with greater bacterial burden. Alveolar macrophages, as the first cells to encounter Mtb in the lungs, play a critical role in containing Mtb growth and establishing the mycobacterial set point. However, a number of key macrophage functions, ranging from pathogen recognition and uptake to phagocytosis and microbial killing, are blunted in HIV coinfection. To date, research evaluating the effects of HIV on the alveolar macrophage response to Mtb has been relatively limited, particularly with regard to the critical early events that help to dictate the mycobacterial set point. A greater understanding of alveolar macrophage functions impacted by HIV coinfection will improve our understanding of protective immunity to Mtb and may reveal novel pathways amenable to intervention to improve both early immune control of Mtb and clinical outcomes for the millions of people worldwide infected with HIV.
Collapse
Affiliation(s)
- Sara C Auld
- Emory University School of Medicine, Atlanta, GA, USA.
- Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | | |
Collapse
|
28
|
Mishra R, Kohli S, Malhotra N, Bandyopadhyay P, Mehta M, Munshi M, Adiga V, Ahuja VK, Shandil RK, Rajmani RS, Seshasayee ASN, Singh A. Targeting redox heterogeneity to counteract drug tolerance in replicating Mycobacterium tuberculosis. Sci Transl Med 2020; 11:11/518/eaaw6635. [PMID: 31723039 DOI: 10.1126/scitranslmed.aaw6635] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/26/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022]
Abstract
The capacity of Mycobacterium tuberculosis (Mtb) to tolerate multiple antibiotics represents a major problem in tuberculosis (TB) management. Heterogeneity in Mtb populations is one of the factors that drives antibiotic tolerance during infection. However, the mechanisms underpinning this variation in bacterial population remain poorly understood. Here, we show that phagosomal acidification alters the redox physiology of Mtb to generate a population of replicating bacteria that display drug tolerance during infection. RNA sequencing of this redox-altered population revealed the involvement of iron-sulfur (Fe-S) cluster biogenesis, hydrogen sulfide (H2S) gas, and drug efflux pumps in antibiotic tolerance. The fraction of the pH- and redox-dependent tolerant population increased when Mtb infected macrophages with actively replicating HIV-1, suggesting that redox heterogeneity could contribute to high rates of TB therapy failure during HIV-TB coinfection. Pharmacological inhibition of phagosomal acidification by the antimalarial drug chloroquine (CQ) eradicated drug-tolerant Mtb, ameliorated lung pathology, and reduced postchemotherapeutic relapse in in vivo models. The pharmacological profile of CQ (C max and AUClast) exhibited no major drug-drug interaction when coadministered with first line anti-TB drugs in mice. Our data establish a link between phagosomal pH, redox metabolism, and drug tolerance in replicating Mtb and suggest repositioning of CQ to shorten TB therapy and achieve a relapse-free cure.
Collapse
Affiliation(s)
- Richa Mishra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Sakshi Kohli
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Nitish Malhotra
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore 560065, India
| | - Parijat Bandyopadhyay
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Mansi Mehta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - MohamedHusen Munshi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | | | - Radha K Shandil
- Foundation for Neglected Disease Research, Bangalore 560065, India
| | - Raju S Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Aswin Sai Narain Seshasayee
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore 560065, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
29
|
Nguyen H, Gazy N, Venketaraman V. A Role of Intracellular Toll-Like Receptors (3, 7, and 9) in Response to Mycobacterium tuberculosis and Co-Infection with HIV. Int J Mol Sci 2020; 21:E6148. [PMID: 32858917 PMCID: PMC7503332 DOI: 10.3390/ijms21176148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a highly infectious acid-fast bacillus and is known to cause tuberculosis (TB) in humans. It is a leading cause of death from a sole infectious agent, with an estimated 1.5 million deaths yearly worldwide, and up to one third of the world's population has been infected with TB. The virulence and susceptibility of Mtb are further amplified in the presence of Human Immunodeficiency Virus (HIV). Coinfection with Mtb and HIV forms a lethal combination. Previous studies had demonstrated the synergistic effects of Mtb and HIV, with one disease accelerating the disease progression of the other through multiple mechanisms, including the modulation of the immune response to these two pathogens. The response of the endosomal pattern recognition receptors to these two pathogens, specifically toll-like receptors (TLR)-3, -7, and -9, has not been elucidated, with some studies producing mixed results. This article seeks to review the roles of TLR-3, -7, and -9 in response to Mtb infection, as well as Mtb-HIV-coinfection via Toll-interleukin 1 receptor (TIR) domain-containing adaptor inducing INF-β (TRIF)-dependent and myeloid differentiation factor 88 (MyD88)-dependent pathways.
Collapse
Affiliation(s)
- Huy Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Nicky Gazy
- Beaumont Health System, 5450 Fort St, Trenton, MI 48183, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| |
Collapse
|
30
|
Early dynamics of innate immunity during pulmonary tuberculosis. Immunol Lett 2020; 221:56-60. [DOI: 10.1016/j.imlet.2020.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 01/22/2023]
|
31
|
Mycobacterium tuberculosis Reactivates HIV-1 via Exosome-Mediated Resetting of Cellular Redox Potential and Bioenergetics. mBio 2020; 11:mBio.03293-19. [PMID: 32127457 PMCID: PMC7064780 DOI: 10.1128/mbio.03293-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The synergy between Mycobacterium tuberculosis and human immunodeficiency virus-1 (HIV-1) interferes with therapy and facilitates the pathogenesis of both human pathogens. Fundamental mechanisms by which M. tuberculosis exacerbates HIV-1 infection are not clear. Here, we show that exosomes secreted by macrophages infected with M. tuberculosis, including drug-resistant clinical strains, reactivated HIV-1 by inducing oxidative stress. Mechanistically, M. tuberculosis-specific exosomes realigned mitochondrial and nonmitochondrial oxygen consumption rates (OCR) and modulated the expression of host genes mediating oxidative stress response, inflammation, and HIV-1 transactivation. Proteomics analyses revealed the enrichment of several host factors (e.g., HIF-1α, galectins, and Hsp90) known to promote HIV-1 reactivation in M. tuberculosis-specific exosomes. Treatment with a known antioxidant-N-acetyl cysteine (NAC)-or with inhibitors of host factors-galectins and Hsp90-attenuated HIV-1 reactivation by M. tuberculosis -specific exosomes. Our findings uncover new paradigms for understanding the redox and bioenergetics bases of HIV-M. tuberculosis coinfection, which will enable the design of effective therapeutic strategies.IMPORTANCE Globally, individuals coinfected with the AIDS virus (HIV-1) and with M. tuberculosis (causative agent of tuberculosis [TB]) pose major obstacles in the clinical management of both diseases. At the heart of this issue is the apparent synergy between the two human pathogens. On the one hand, mechanisms induced by HIV-1 for reactivation of TB in AIDS patients are well characterized. On the other hand, while clinical findings clearly identified TB as a risk factor for HIV-1 reactivation and associated mortality, basic mechanisms by which M. tuberculosis exacerbates HIV-1 replication and infection remain poorly characterized. The significance of our research is in identifying the role of fundamental mechanisms such as redox and energy metabolism in catalyzing HIV-M. tuberculosis synergy. The quantification of redox and respiratory parameters affected by M. tuberculosis in stimulating HIV-1 will greatly enhance our understanding of HIV-M. tuberculosis coinfection, leading to a wider impact on the biomedical research community and creating new translational opportunities.
Collapse
|
32
|
Ufimtseva E, Eremeeva N, Bayborodin S, Umpeleva T, Vakhrusheva D, Skornyakov S. Mycobacterium tuberculosis with different virulence reside within intact phagosomes and inhibit phagolysosomal biogenesis in alveolar macrophages of patients with pulmonary tuberculosis. Tuberculosis (Edinb) 2018; 114:77-90. [PMID: 30711161 DOI: 10.1016/j.tube.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) is a dangerous airborne disease caused by Mycobacterium tuberculosis (Mtb) and characterized by a tight interplay between pathogen and host cells, mainly alveolar macrophages. Studies of the mechanisms of Mtb survival within human cells during TB disease are extremely important for the development of new strategies and drugs for TB treatment. We have used the ex vivo cultures of alveolar macrophages and histological sections obtained from the resected lungs of patients with pulmonary TB to establish the unique features of Mtb lifestyle in host cells. Our data indicate that Mtb with different virulence, as single and in colonies, with or without cording morphology, are exclusively intravacuolar pathogens with intact phagosomal membranes in viable host cells of TB patients and Mtb-infected guinea pig. Mycobacteria were detected in the cytoplasm and/or damaged vacuoles only in alveolar macrophages with morphological signs of cell death after prolonged ex vivo culture, however Mtb were found inside phagosomes in viable alveolar macrophages or cells with apoptotic/necrotic morphology in the same ex vivo cell culture. The Mtb phagosomes interacted with human different endocytic pathways, but inhibited phagolysosomal biogenesis, while intracellular vesicles containing Mtb products were fused with lysosomes in the same host cells.
Collapse
Affiliation(s)
- Elena Ufimtseva
- Laboratory of Medical Biotechnology, Research Institute of Biochemistry, Federal Research Center of Fundamental and Translational Medicine, 2 Timakova Street, 630117, Novosibirsk, Russia; Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda Street, 620039, Yekaterinburg, Russia.
| | - Natalya Eremeeva
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda Street, 620039, Yekaterinburg, Russia.
| | - Sergey Bayborodin
- Shared Center for Microscopic Analysis of Biological Objects, Federal Research Center Institute of Cytology and Genetics, 10 Lavrentyeva Prospect, 630090, Novosibirsk, Russia.
| | - Tatiana Umpeleva
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda Street, 620039, Yekaterinburg, Russia.
| | - Diana Vakhrusheva
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda Street, 620039, Yekaterinburg, Russia.
| | - Sergey Skornyakov
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda Street, 620039, Yekaterinburg, Russia.
| |
Collapse
|
33
|
Mononuclear cell dynamics in M. tuberculosis infection provide opportunities for therapeutic intervention. PLoS Pathog 2018; 14:e1007154. [PMID: 30365557 PMCID: PMC6221360 DOI: 10.1371/journal.ppat.1007154] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/07/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium tuberculosis causes chronic infection of mononuclear phagocytes, especially resident (alveolar) macrophages, recruited macrophages, and dendritic cells. Despite the importance of these cells in tuberculosis (TB) pathogenesis and immunity, little is known about the population dynamics of these cells at the sites of infection. We used a combination of congenic monocyte adoptive transfer, and pulse-chase labeling of DNA, to determine the kinetics and characteristics of trafficking, differentiation, and infection of mononuclear phagocytes during the chronic, adaptive immune phase of M. tuberculosis infection in mice. We found that Ly6Chi monocytes traffic rapidly to the lungs, where a subpopulation become Ly6Clo and remain in the lung vascular space, while the remainder migrate into the lung parenchyma and differentiate into Ly6Chi dendritic cells, CD11b+ dendritic cells, and recruited macrophages. As in humans with TB, M. tuberculosis-infected mice have increased numbers of blood monocytes; this is due to increased egress from the bone marrow, and not delayed egress from the blood. Pulse-chase labeling of dividing cells and flow cytometry analysis revealed a T1/2 of ~15 hrs for Ly6Chi monocytes, indicating that they differentiate rapidly upon entry to the parenchyma of infected lungs; in contrast, cells that differentiate from Ly6Chi monocytes turn over more slowly, but diminish in frequency in less than one week. New cells (identified by pulse-chase labeling) acquire bacteria within 1–3 days of appearance in the lungs, indicating that bacteria regularly encounter new cellular niches, even during the chronic stage of infection. Our findings that mononuclear phagocyte populations at the site of M. tuberculosis infection are highly dynamic provide support for specific approaches for host-directed therapies directed at monocytes, including trained immunity, as potential interventions in TB, by replacing cells with limited antimycobacterial capabilities with newly-recruited cells better able to restrict and kill M. tuberculosis. During certain chronic infections such as tuberculosis, inflammatory cells, including macrophages and dendritic cells, are recruited to infected tissues where they aggregate to form tissue lesions known as granulomas. Although granulomas can persist long term, the dynamics of the cell populations that comprise granulomas are not well understood. We used a combination of methods to discover that, during chronic infection of mice with Mycobacterium tuberculosis, the monocyte, macrophage, and dendritic cell populations are highly dynamic: recently-proliferated cells traffic rapidly to infected lung tissues, yet they persist with a half-life of less than one week. We also found that recently-proliferated cells become infected with M. tuberculosis as soon as one day after their arrival in the lungs, indicating that the bacteria are regularly moving to new cellular niches, even during the chronic stage of infection. The dynamic nature of the cell populations that encounter M. tuberculosis suggests that interventions such as trained immunity have potential therapeutic roles, by replacing cells that have poor antimycobacterial activity with cells with enhanced antimycobacterial activity. These interventions could improve the outcomes of treatment of drug resistant tuberculosis.
Collapse
|
34
|
Mishra A, Surolia A. Mycobacterium tuberculosis: Surviving and Indulging in an Unwelcoming Host. IUBMB Life 2018; 70:917-925. [DOI: 10.1002/iub.1882] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Archita Mishra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India 560012
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India 560012
| |
Collapse
|
35
|
Devalraju KP, Neela VSK, Gaddam R, Chaudhury A, Van A, Krovvidi SS, Vankayalapati R, Valluri VL. Defective MyD88 and IRAK4 but not TLR-2 expression in HIV+ individuals with latent tuberculosis infection. Cytokine 2018; 110:213-221. [PMID: 29778672 DOI: 10.1016/j.cyto.2018.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/17/2018] [Accepted: 05/07/2018] [Indexed: 01/02/2023]
Abstract
HIV infection markedly increases the likelihood of latent tuberculosis infection progressing to active TB. Information on expression of TLR-2, myeloid differentiation factor (MyD88), IL-1R- associated kinase-4 (IRAK4) and nuclear factor kappa B (NF-kB) in HIV+LTBI+ and HIV+ patients with active TB disease is limited. We found significantly higher percentages of CD14+TLR2+ cells in PBMCs of HIV+LTBI+ patients compared to HIV-LTBI+ individuals. γ-irradiated Mtb was unable to induce MyD88, IRAK4 expression and IL-1β, MCP-1, IP-10 production in HIV+LTBI+ patients. Pleural fluids from HIV+TB+ patients had low IL-1β, MCP-1, IP-10 and high IL-10, TNF-α production. γ-irradiated Mtb stimulated CD14+ cells from HIV+TB+ patients had low IL-1β, MCP-1, IP-10 production and MyD88, IRAK4 and similar NF-kB expression compared to those from of HIV-TB+ patients. Our results suggest defective MyD88, IRAK4 but not NF-kB inhibit IL-1β, MCP-1 and IP-10 production by CD14+ cells of HIV+ individuals with LTBI and active TB disease in peripheral blood and at the site of disease.
Collapse
Affiliation(s)
- Kamakshi Prudhula Devalraju
- Immunology and Molecular Biology Division, Blue Peter Public Health and Research Centre, LEPRA Society, Cherlapally, Hyderabad 501301, India
| | - Venkata Sanjeev Kumar Neela
- Immunology and Molecular Biology Division, Blue Peter Public Health and Research Centre, LEPRA Society, Cherlapally, Hyderabad 501301, India
| | - Ramulu Gaddam
- Department of Respiratory Medicine, AP Chest and General Hospital, Osmania Medical College, Erragadda, Hyderabad 500038, India
| | - Arunabala Chaudhury
- Clinical Division, Cheyutha, LEPRA Society, Cherlapally, Hyderabad 501301, India
| | - Abhinav Van
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Center, Tyler, TX 75708, United States
| | - Siva Sai Krovvidi
- Department of Biotechnology, Sreenidhi Institute of Science and Technology, Yamnampet, Ghatkesar, Hyderabad, Telangana 501301, India
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Center, Tyler, TX 75708, United States.
| | - Vijaya Lakshmi Valluri
- Immunology and Molecular Biology Division, Blue Peter Public Health and Research Centre, LEPRA Society, Cherlapally, Hyderabad 501301, India.
| |
Collapse
|
36
|
Esmail H, Riou C, Bruyn ED, Lai RPJ, Harley YXR, Meintjes G, Wilkinson KA, Wilkinson RJ. The Immune Response to Mycobacterium tuberculosis in HIV-1-Coinfected Persons. Annu Rev Immunol 2018; 36:603-638. [PMID: 29490165 DOI: 10.1146/annurev-immunol-042617-053420] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Globally, about 36.7 million people were living with HIV infection at the end of 2015. The most frequent infection co-occurring with HIV-1 is Mycobacterium tuberculosis-374,000 deaths per annum are attributable to HIV-tuberculosis, 75% of those occurring in Africa. HIV-1 infection increases the risk of tuberculosis by a factor of up to 26 and alters its clinical presentation, complicates diagnosis and treatment, and worsens outcome. Although HIV-1-induced depletion of CD4+ T cells underlies all these effects, more widespread immune deficits also contribute to susceptibility and pathogenesis. These defects present a challenge to understand and ameliorate, but also an opportunity to learn and optimize mechanisms that normally protect people against tuberculosis. The most effective means to prevent and ameliorate tuberculosis in HIV-1-infected people is antiretroviral therapy, but this may be complicated by pathological immune deterioration that in turn requires more effective host-directed anti-inflammatory therapies to be derived.
Collapse
Affiliation(s)
- Hanif Esmail
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa; .,Department of Medicine, Imperial College London, London W2 1PG, United Kingdom.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Catherine Riou
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | - Elsa du Bruyn
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | | | - Yolande X R Harley
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | - Katalin A Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa; .,The Francis Crick Institute, London NW1 2AT, United Kingdom
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa; .,Department of Medicine, Imperial College London, London W2 1PG, United Kingdom.,The Francis Crick Institute, London NW1 2AT, United Kingdom
| |
Collapse
|
37
|
Sun J, Schaaf K, Duverger A, Wolschendorf F, Speer A, Wagner F, Niederweis M, Kutsch O. Protein phosphatase, Mg2+/Mn2+-dependent 1A controls the innate antiviral and antibacterial response of macrophages during HIV-1 and Mycobacterium tuberculosis infection. Oncotarget 2017; 7:15394-409. [PMID: 27004401 PMCID: PMC4941249 DOI: 10.18632/oncotarget.8190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/04/2016] [Indexed: 12/13/2022] Open
Abstract
Co-infection with HIV-1 and Mycobacterium tuberculosis (Mtb) is a major public health issue. While some research has described how each pathogen accelerates the course of infection of the other pathogen by compromising the immune system, very little is known about the molecular biology of HIV-1/Mtb co-infection at the host cell level. This is somewhat surprising, as both pathogens are known to replicate and persist in macrophages. We here identify Protein Phosphatase, Mg2+/Mn2+-dependent 1A (PPM1A) as a molecular link between Mtb infection and increased HIV-1 susceptibility of macrophages. We demonstrate that both Mtb and HIV-1 infection induce the expression of PPM1A in primary human monocyte/macrophages and THP-1 cells. Genetic manipulation studies revealed that increased PPMA1 expression rendered THP-1 cells highly susceptible to HIV-1 infection, while depletion of PPM1A rendered them relatively resistant to HIV-1 infection. At the same time, increased PPM1A expression abrogated the ability of THP-1 cells to respond to relevant bacterial stimuli with a proper cytokine/chemokine secretion response, blocked their chemotactic response and impaired their ability to phagocytose bacteria. These data suggest that PPM1A, which had previously been shown to play a role in the antiviral response to Herpes Simplex virus infection, also governs the antibacterial response of macrophages to bacteria, or at least to Mtb infection. PPM1A thus seems to play a central role in the innate immune response of macrophages, implying that host directed therapies targeting PPM1A could be highly beneficial, in particular for HIV/Mtb co-infected patients.
Collapse
Affiliation(s)
- Jim Sun
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kaitlyn Schaaf
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alexandra Duverger
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Frank Wolschendorf
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alexander Speer
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, Netherlands
| | - Frederic Wagner
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olaf Kutsch
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
38
|
Roux AL, Viljoen A, Bah A, Simeone R, Bernut A, Laencina L, Deramaudt T, Rottman M, Gaillard JL, Majlessi L, Brosch R, Girard-Misguich F, Vergne I, de Chastellier C, Kremer L, Herrmann JL. The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages. Open Biol 2017; 6:rsob.160185. [PMID: 27906132 PMCID: PMC5133439 DOI: 10.1098/rsob.160185] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium abscessus is a pathogenic, rapidly growing mycobacterium responsible for pulmonary and cutaneous infections in immunocompetent patients and in patients with Mendelian disorders, such as cystic fibrosis (CF). Mycobacterium abscessus is known to transition from a smooth (S) morphotype with cell surface-associated glycopeptidolipids (GPL) to a rough (R) morphotype lacking GPL. Herein, we show that M. abscessus S and R variants are able to grow inside macrophages and are present in morphologically distinct phagosomes. The S forms are found mostly as single bacteria within phagosomes characterized by a tightly apposed phagosomal membrane and the presence of an electron translucent zone (ETZ) surrounding the bacilli. By contrast, infection with the R form leads to phagosomes often containing more than two bacilli, surrounded by a loose phagosomal membrane and lacking the ETZ. In contrast to the R variant, the S variant is capable of restricting intraphagosomal acidification and induces less apoptosis and autophagy. Importantly, the membrane of phagosomes enclosing the S forms showed signs of alteration, such as breaks or partial degradation. Although not frequently encountered, these events suggest that the S form is capable of provoking phagosome-cytosol communication. In conclusion, M. abscessus S exhibits traits inside macrophages that are reminiscent of slow-growing mycobacterial species.
Collapse
Affiliation(s)
- Anne-Laure Roux
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919, Route de Mende, 34293, Montpellier, France.,Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM 2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Aïcha Bah
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089 CNRS/Université Paul Sabatier, 205 route de Narbonne, BP 64182, 31077 Toulouse Cedex 4, France
| | - Roxane Simeone
- Unité de Pathogénomique mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, Paris, France
| | - Audrey Bernut
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919, Route de Mende, 34293, Montpellier, France
| | - Laura Laencina
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Therese Deramaudt
- UMR1179, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Martin Rottman
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Jean-Louis Gaillard
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Laleh Majlessi
- Unité de Pathogénomique mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, Paris, France
| | - Roland Brosch
- Unité de Pathogénomique mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, Paris, France
| | - Fabienne Girard-Misguich
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Isabelle Vergne
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089 CNRS/Université Paul Sabatier, 205 route de Narbonne, BP 64182, 31077 Toulouse Cedex 4, France
| | - Chantal de Chastellier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM 2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919, Route de Mende, 34293, Montpellier, France .,INSERM, CPBS, 34293 Montpellier, France
| | - Jean-Louis Herrmann
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| |
Collapse
|
39
|
Larson EC, Novis CL, Martins LJ, Macedo AB, Kimball KE, Bosque A, Planelles V, Barrows LR. Mycobacterium tuberculosis reactivates latent HIV-1 in T cells in vitro. PLoS One 2017; 12:e0185162. [PMID: 28949981 PMCID: PMC5614573 DOI: 10.1371/journal.pone.0185162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/07/2017] [Indexed: 11/18/2022] Open
Abstract
Following proviral integration into the host cell genome and establishment of a latent state, the human immunodeficiency virus type 1 (HIV-1) can reenter a productive life cycle in response to various stimuli. HIV-1 reactivation occurs when transcription factors, such as nuclear factor-κB (NF-κB), nuclear factor of activated T cells (NFAT), and activator protein -1 (AP-1), bind cognate sites within the long terminal repeat (LTR) region of the HIV-1 provirus to promote transcription. Interestingly, pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) can reactivate latent HIV-1 through activation of the transcription factor NF-κB. Some PRRs are expressed on central memory CD4+ T cells (TCM), which in HIV-1 patients constitute the main reservoir of latent HIV-1. Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), interacts with PRRs through membrane components. However, the ability of Mtb to reactivate latent HIV-1 has not been extensively studied. Here we show that phosphatidylinositol mannoside 6 (PIM6), a component of the Mtb membrane, in addition to whole bacteria in co-culture, can reactivate HIV-1 in a primary TCM cell model of latency. Using a JLAT model of HIV-1 latency, we found this interaction to be mediated through Toll-like receptor-2 (TLR-2). Thus, we describe a mechanism by which Mtb can exacerbate HIV-1 infection. We hypothesize that chronic Mtb infection can drive HIV-1 reactivation. The phenomenon described here could explain, in part, the poor prognosis that characterizes HIV-1/Mtb co-infection.
Collapse
Affiliation(s)
- Erica C. Larson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, United States of America
| | - Camille L. Novis
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Laura J. Martins
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Amanda B. Macedo
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Kadyn E. Kimball
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Alberto Bosque
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Vicente Planelles
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Louis R. Barrows
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
40
|
Mycobacterial Acid Tolerance Enables Phagolysosomal Survival and Establishment of Tuberculous Infection In Vivo. Cell Host Microbe 2017; 20:250-8. [PMID: 27512905 PMCID: PMC4985559 DOI: 10.1016/j.chom.2016.07.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/20/2016] [Accepted: 07/19/2016] [Indexed: 01/20/2023]
Abstract
The blockade of phagolysosomal fusion is considered a critical mycobacterial strategy to survive in macrophages. However, viable mycobacteria have been observed in phagolysosomes during infection of cultured macrophages, and mycobacteria have the virulence determinant MarP, which confers acid resistance in vitro. Here we show in mice and zebrafish that innate macrophages overcome mycobacterial lysosomal avoidance strategies to rapidly deliver a substantial proportion of infecting bacteria to phagolysosomes. Exploiting the optical transparency of the zebrafish, we tracked the fates of individual mycobacteria delivered to phagosomes versus phagolysosomes and discovered that bacteria survive and grow in phagolysosomes, though growth is slower. MarP is required specifically for phagolysosomal survival, making it an important determinant for the establishment of mycobacterial infection in their hosts. Our work suggests that if pathogenic mycobacteria fail to prevent lysosomal trafficking, they tolerate the resulting acidic environment of the phagolysosome to establish infection. In vivo, newly infecting mycobacteria are rapidly trafficked to lysosomes within macrophages The mycobacterial acid tolerance determinant MarP enables lysosomal survival and growth Phagolysosomal mycobacteria can successfully establish infection, which is MarP dependent
Collapse
|
41
|
Abstract
The modulation of tuberculosis (TB)-induced immunopathology caused by human immunodeficiency virus (HIV)-1 coinfection remains incompletely understood but underlies the change seen in the natural history, presentation, and prognosis of TB in such patients. The deleterious combination of these two pathogens has been dubbed a "deadly syndemic," with each favoring the replication of the other and thereby contributing to accelerated disease morbidity and mortality. HIV-1 is the best-recognized risk factor for the development of active TB and accounts for 13% of cases globally. The advent of combination antiretroviral therapy (ART) has considerably mitigated this risk. Rapid roll-out of ART globally and the recent recommendation by the World Health Organization (WHO) to initiate ART for everyone living with HIV at any CD4 cell count should lead to further reductions in HIV-1-associated TB incidence because susceptibility to TB is inversely proportional to CD4 count. However, it is important to note that even after successful ART, patients with HIV-1 are still at increased risk for TB. Indeed, in settings of high TB incidence, the occurrence of TB often remains the first presentation of, and thereby the entry into, HIV care. As advantageous as ART-induced immune recovery is, it may also give rise to immunopathology, especially in the lower-CD4-count strata in the form of the immune reconstitution inflammatory syndrome. TB-immune reconstitution inflammatory syndrome will continue to impact the HIV-TB syndemic.
Collapse
|
42
|
Abstract
The importance of mycobacteria as opportunistic pathogens, particularly members of the M. avium complex (MAC), in patients with progressive HIV infection was recognized early in the AIDS epidemic. It took longer to appreciate the global impact and devastation that would result from the deadly synergy that exists between HIV and M. tuberculosis. This HIV/M. tuberculosis co-pandemic is ongoing and claiming millions of lives every year. In addition to MAC, a number of other non-tuberculous mycobacteria have been recognized as opportunistic pathogens in HIV-infected individuals; some of these are more commonly encountered (e.g., M. kansasii) than others (M. haemophilum and M. genevense). Finally, there are challenges to concomitantly treating the HIV and the infecting Mycobacterium species, because of antimicrobial resistance, therapeutic side-effects and the complex pharmacologic interactions of the antiretroviral and antimycobacterial multidrug therapy.
Collapse
Affiliation(s)
- Gary W Procop
- Staff, Pathology and Clinical Microbiology, Cleveland Clinic, 9500 Euclid Avenue/LL2-2, Cleveland, OH 44195, United States.
| |
Collapse
|
43
|
Sepehri Z, Mirzaei N, Sargazi A, Sargazi A, Mishkar AP, Kiani Z, Oskoee HO, Arefi D, Ghavami S. Essential and toxic metals in serum of individuals with active pulmonary tuberculosis in an endemic region. J Clin Tuberc Other Mycobact Dis 2017; 6:8-13. [PMID: 31723693 PMCID: PMC6850246 DOI: 10.1016/j.jctube.2017.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/21/2017] [Indexed: 12/02/2022] Open
Abstract
Trace elements play an important role in tuberculosis infection because their deficiencies can be associated with impaired immunity. Blood samples were collected from a total of 320 active pulmonary tuberculosis patients and healthy individuals. The serum concentrations of Zinc, Iron, Copper, Calcium, lead, Arsenic and Selenium were analyzed by atomic absorption spectrometry. The levels of trace elements were measured after 2, 4 and 6 months of anti-TB treatment initiation in TB infected groups. Compared to the control group, the concentrations of Zinc, Selenium, and Iron were significantly lower (P < 0.001) in tuberculosis patients; however, that of Arsenic, Lead, and copper was significantly higher (P < 0.001) in the serum of patients. Cu/Zn and Cu/Se ratios were also significantly higher (P < 0.001) in TB patients compared to the control group. In addition, serum concentration calcium was similar in both TB patients and healthy controls. Our results indicated that trace elements concentrations in tuberculosis patients are related to each element role in immune system. Wherever the element is essential for the pathogenesis of bacteria, its concentration will remain low; and contrariwise, when the element is toxic for the bacteria, its level will be regulated up to provide a perfect condition for bacterial growth.
Collapse
Affiliation(s)
- Zahra Sepehri
- Department of Internal Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Nima Mirzaei
- Zabol University of Medical Sciences, Zabol, Iran
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 3P4, Canada
| | - Aliyeh Sargazi
- Medical Student, Student Research Committee, Zabol University of Medical Sciences, Zabol, Iran
| | - Alireza Sargazi
- Medical Student, Student Research Committee, Zabol University of Medical Sciences, Zabol, Iran
| | | | - Zohre Kiani
- Medical Student, Student Research Committee, Zabol University of Medical Sciences, Zabol, Iran
- Medical Student, Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Owaysee Oskoee
- Department of infectious diseases, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Donya Arefi
- Zabol University of Medical Sciences, Zabol, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 3P4, Canada
| |
Collapse
|
44
|
Russell DG. The ins and outs of the Mycobacterium tuberculosis-containing vacuole. Cell Microbiol 2016; 18:1065-9. [PMID: 27247149 DOI: 10.1111/cmi.12623] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/17/2016] [Accepted: 05/25/2016] [Indexed: 12/16/2022]
Abstract
The past few years have seen publication of reports from several groups documenting the escape of Mycobacterium tuberculosis (Mtb) from its intracellular vacuole to access the cytosol. The major questions addressed in these publications are the mechanism(s) underlying this process, the frequency of its occurrence and, most importantly, the biological significance of this phenomenon to bacterial survival, growth and virulence. I believe that the first two questions are moving towards resolution, but questions relating to biological context have yet to be answered fully. In this viewpoint article, I will try to convince the readers why escape from the vacuole in no way diminishes the significance of Mtb's intravacuolar survival mechanisms and why, as a lab, we continue to focus the majority of our efforts on the 'bug in the bag'.
Collapse
Affiliation(s)
- David G Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
45
|
Refaya AK, Sharma D, Kumar V, Bisht D, Narayanan S. A Serine/threonine kinase PknL, is involved in the adaptive response of Mycobacterium tuberculosis. Microbiol Res 2016; 190:1-11. [PMID: 27393993 DOI: 10.1016/j.micres.2016.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/05/2016] [Accepted: 02/22/2016] [Indexed: 12/28/2022]
Abstract
Mycobacterium tuberculosis adapts itself to various environmental stress conditions to thrive inside the phagosome for establishing a chronic infection. Serine/threonine protein kinases (STPKs) play a major role in the physiology and pathogenesis of Mycobacterium tuberculosis. Some of these STPKs are involved in regulating the growth of the mycobacterium under nutrient stress and starvation conditions. In this study, we have investigated the role of PknL, a STPK in the adaptive responses of M. tuberculosis by conditional inactivation of the gene using antisense technology. The inhibition of PknL in the knockdown strain was validated by RT-PCR. The in vitro growth kinetics of M. tuberculosis strain following inhibition of PknL was found to be bacteriostatic. The knock down strain of PknL exhibited a better survival in pH 5.5 when compared to its growth in pH 7.0. Similarly, it also exhibited more resistance to both SDS(0.01%) and Lysozyme stress (2.5mg/ml), indicating that loss of PknL enhances the growth of mycobacterium under stress conditions. SEM pictographs also represent an increase in the cell length of the knock down strain compared to Wild type stressing its role in cellular integrity. Lastly, the proteome analysis of differentially expressing PknL strains by 2D gel electrophoresis and mass spectrometry identified 19 differentially expressed proteins. Our findings have shown that PknL plays an important role in sensing the host environment and adapting itself in slowing down the growth of the pathogen and persisting within the host.
Collapse
Affiliation(s)
- Ahmed Kabir Refaya
- Department of Immunology, National Institute for Research in Tuberculosis, #1, Mayor Sathiyamoorthy road, Chetpet, Chennai, 600 031, India.
| | - Divakar Sharma
- National JALMA Institute for Leprosy & other Mycobacterial Diseases, Taj Ganj, Agra 282004, India.
| | - Virendra Kumar
- National JALMA Institute for Leprosy & other Mycobacterial Diseases, Taj Ganj, Agra 282004, India.
| | - Deepa Bisht
- National JALMA Institute for Leprosy & other Mycobacterial Diseases, Taj Ganj, Agra 282004, India.
| | - Sujatha Narayanan
- Department of Immunology, National Institute for Research in Tuberculosis, #1, Mayor Sathiyamoorthy road, Chetpet, Chennai, 600 031, India.
| |
Collapse
|
46
|
Sarkar P, Mitra S, Pant P, Kotwal A, Kakati B, Masih V, Sindhwani G, Biswas D. Granzyme B as a diagnostic marker of tuberculosis in patients with and without HIV coinfection. Diagn Microbiol Infect Dis 2016; 85:47-52. [PMID: 26915636 DOI: 10.1016/j.diagmicrobio.2016.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 01/03/2016] [Accepted: 01/09/2016] [Indexed: 10/22/2022]
Abstract
Immunodiagnostic tests for tuberculosis (TB) are based on the estimation of interferon γ (IFN-γ) or IFN-γ-secreting CD4(+) T cells following ex vivo stimulation with ESAT6 and CFP-10. Sensitivity of these tests is likely to be compromised in CD4(+) T-cell-depleted situations, like HIV-TB coinfection. CD4(+) and CD8(+) T cells, isolated from 3 groups, viz., HIV-negative patients with active TB, HIV-TB coinfected patients, and healthy household contacts (HHCs) were cocultivated with autologous dendritic cells, and the cytokine response to rESAT6 stimulation was compared between groups in supernatants. While CD4(+) T-cell stimulation yielded significantly elevated levels of IFN-γ and interleukin 4 in HIV-negative TB patients, compared to HHCs, the levels of both these cytokines were nondiscriminatory between HIV-positive TB patients and HHCs. However, CD8(+) T-cell stimulation yielded significantly elevated granzyme B titers in both groups of patients, irrespective of HIV coinfection status. Hence, contrary to IFN-γ, granzyme B might be a useful diagnostic marker for Mycobacterium tuberculosis infection particularly in HIV coinfected patients.
Collapse
Affiliation(s)
- Pronoti Sarkar
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Ram Nagar, Jolly Grant, Dehradun 248140, India.
| | - Soumik Mitra
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Ram Nagar, Jolly Grant, Dehradun 248140, India.
| | - Priyannk Pant
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Ram Nagar, Jolly Grant, Dehradun 248140, India.
| | - Aarti Kotwal
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Ram Nagar, Jolly Grant, Dehradun 248140, India.
| | - Barnali Kakati
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Ram Nagar, Jolly Grant, Dehradun 248140, India.
| | - Victor Masih
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Ram Nagar, Jolly Grant, Dehradun 248140, India.
| | - Girish Sindhwani
- Department of Pulmonary Medicine, Himalayan Institute of Medical Sciences, Swami Ram Nagar, Jolly Grant, Dehradun 248140, India.
| | - Debasis Biswas
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Ram Nagar, Jolly Grant, Dehradun 248140, India.
| |
Collapse
|
47
|
Lerner TR, Borel S, Gutierrez MG. The innate immune response in human tuberculosis. Cell Microbiol 2015; 17:1277-85. [PMID: 26135005 PMCID: PMC4832344 DOI: 10.1111/cmi.12480] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/15/2015] [Accepted: 06/30/2015] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis (Mtb) infection can be cleared by the innate immune system before the initiation of an adaptive immune response. This innate protection requires a variety of robust cell autonomous responses from many different host immune cell types. However, Mtb has evolved strategies to circumvent some of these defences. In this mini-review, we discuss these host-pathogen interactions with a focus on studies performed in human cells and/or supported by human genetics studies (such as genome-wide association studies).
Collapse
Affiliation(s)
- Thomas R Lerner
- Mill Hill Laboratory, The Francis Crick Institute, London, UK
| | - Sophie Borel
- Mill Hill Laboratory, The Francis Crick Institute, London, UK
| | | |
Collapse
|
48
|
Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium tuberculosis and Innate Immune Cells. J Immunol Res 2015; 2015:747543. [PMID: 26258152 PMCID: PMC4516846 DOI: 10.1155/2015/747543] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/24/2015] [Indexed: 01/16/2023] Open
Abstract
Tuberculosis (TB) remains a serious global public health problem that results in up to 2 million deaths each year. TB is caused by the human pathogen, Mycobacterium tuberculosis (Mtb), which infects primarily innate immune cells patrolling the lung. Innate immune cells serve as barometers of the immune response against Mtb infection by determining the inflammatory milieu in the lungs and promoting the generation of adaptive immune responses. However, innate immune cells are also potential niches for bacterial replication and are readily manipulated by Mtb. Our understanding of the early interactions between Mtb and innate immune cells is limited, especially in the context of human infection. This review will focus on Mtb interactions with human macrophages, dendritic cells, neutrophils, and NK cells and detail evidence that Mtb modulation of these cells negatively impacts Mtb-specific immune responses. Furthermore, this review will emphasize important innate immune pathways uncovered through human immunogenetic studies. Insights into the human innate immune response to Mtb infection are necessary for providing a rational basis for the augmentation of immune responses against Mtb infection, especially with respect to the generation of effective anti-TB immunotherapeutics and vaccines.
Collapse
|
49
|
Rylance J, Fullerton DG, Scriven J, Aljurayyan AN, Mzinza D, Barrett S, Wright AKA, Wootton DG, Glennie SJ, Baple K, Knott A, Mortimer K, Russell DG, Heyderman RS, Gordon SB. Household air pollution causes dose-dependent inflammation and altered phagocytosis in human macrophages. Am J Respir Cell Mol Biol 2015; 52:584-93. [PMID: 25254931 DOI: 10.1165/rcmb.2014-0188oc] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Three billion people are exposed to household air pollution from biomass fuel use. Exposure is associated with higher incidence of pneumonia, and possibly tuberculosis. Understanding mechanisms underlying these defects would improve preventive strategies. We used human alveolar macrophages obtained from healthy Malawian adults exposed naturally to household air pollution and compared them with human monocyte-derived macrophages exposed in vitro to respirable-sized particulates. Cellular inflammatory response was assessed by IL-6 and IL-8 production in response to particulate challenge; phagosomal function was tested by uptake and oxidation of fluorescence-labeled beads; ingestion and killing of Streptococcus pneumoniae and Mycobacterium tuberculosis were measured by microscopy and quantitative culture. Particulate ingestion was quantified by digital image analysis. We were able to reproduce the carbon loading of naturally exposed alveolar macrophages by in vitro exposure of monocyte-derived macrophages. Fine carbon black induced IL-8 release from monocyte-derived and alveolar macrophages (P < 0.05) with similar magnitude responses (log10 increases of 0.93 [SEM = 0.2] versus 0.74 [SEM = 0.19], respectively). Phagocytosis of pneumococci and mycobacteria was impaired with higher particulate loading. High particulate loading corresponded with a lower oxidative burst capacity (P = 0.0015). There was no overall effect on killing of M. tuberculosis. Alveolar macrophage function is altered by particulate loading. Our macrophage model is comparable morphologically to the in vivo uptake of particulates. Wood smoke-exposed cells demonstrate reduced phagocytosis, but unaffected mycobacterial killing, suggesting defects related to chronic wood smoke inhalation limited to specific innate immune functions.
Collapse
Affiliation(s)
- Jamie Rylance
- 1 Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Srivastava S, Ernst JD, Desvignes L. Beyond macrophages: the diversity of mononuclear cells in tuberculosis. Immunol Rev 2015; 262:179-92. [PMID: 25319335 DOI: 10.1111/imr.12217] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB), is an intracellular pathogen of mononuclear phagocytes. Although M. tuberculosis has traditionally been thought to survive and replicate in macrophages, recent work in our laboratory and others has revealed that M. tuberculosis infects multiple subsets of mononuclear phagocytes in vivo and in vitro. In experimental animals, M. tuberculosis infects no fewer than five distinct cell subsets in the lungs, including resident alveolar macrophages and 4 types of cells that recruited to the lungs in response to inflammatory signals: neutrophils, monocytes, interstitial macrophages, and dendritic cells. A characteristic of the adaptive immune response in TB is that it is delayed for several weeks following infection, and we have determined that this delay is due to prolonged residence of the bacteria in lung phagocytes prior to acquisition of the bacteria by dendritic cells. Among the mechanisms used by M. tuberculosis to delay acquisition by dendritic cells is to inhibit apoptosis of alveolar macrophages and neutrophils, which sequester the bacteria and prevent their acquisition by dendritic cells in the early stages of infection. We hypothesize that each infected cell subset makes a distinct contribution to the overall biology of M. tuberculosis and allows the bacteria to evade elimination by T-cell responses and to avoid rapid killing by antimycobacterial drugs.
Collapse
Affiliation(s)
- Smita Srivastava
- Departments of Medicine, Microbiology, and Pathology, New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|