1
|
Khan MA, Mousa AM, Alradhi AE, Allemailem K. Efficacy of lipid nanoparticles-based vaccine to protect against vulvovaginal candidiasis (VVC): Implications for women's reproductive health. Life Sci 2025; 361:123312. [PMID: 39674269 DOI: 10.1016/j.lfs.2024.123312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
AIMS Vulvovaginal candidiasis (VVC) is a common women's health issue, with rising antifungal resistance. This study was aimed to prepare and evaluate the efficacy of a lipid nanoparticle-based vaccine in a murine model of VVC. MATERIALS AND METHODS Dried and reconstituted vesicles containing C. albicans antigens (DRNPs-Ca-Ags) vaccine, formulated with phosphatidylcholine and cholesterol-based lipid nanoparticles via film hydration and freeze-drying. The safety evaluation of DRNPs-CaAgs was conducted by determining hepatic (AST, ALT) or renal (BUN, creatinine) biomarkers. Female mice were immunized with DRNPs-CaAgs or Alum-CaAgs, and immune responses were evaluated via antibody titers, IgG isotypes, and splenocyte proliferation. Protective efficacy of vaccine formulations was assessed through fungal burden, biofilm formation, cytokine levels, and histopathological analysis of vaginal tissues. KEY FINDINGS Mice vaccinated with DRNPs-CaAgs showed significantly enhanced immune responses, with higher antibody titers and IgG2a levels as compared to the Alum-CaAgs group. Vaginal fungal burden was dramatically reduced (665 ± 78 CFUs in DRNPs-CaAgs immunized group vs. 12,944 ± 3540 CFUs in Alum-CaAgs group, p < 0.01). Biofilm formation decreased by 45 % (p < 0.05), and inflammatory cytokines were significantly lowered. Histopathological analysis revealed minimal tissue damage in DRNPs-CaAgs vaccinated mice. SIGNIFICANCE The findings suggest DRNPs-CaAgs as a promising vaccine for VVC, eliciting strong immunity, reducing fungal load, and minimizing inflammation. While the reliance on a murine model is a limitation, future clinical trials are essential to evaluate its efficacy and safety in humans, offering a potential strategy to combat drug-resistant infections and improve women's reproductive health.
Collapse
Affiliation(s)
- Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia.
| | - Ayman M Mousa
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Arwa Essa Alradhi
- General Administration for Infectious Disease Control, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Khaled Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| |
Collapse
|
2
|
Heyman B. Antibody feedback regulation. Immunol Rev 2024; 328:126-142. [PMID: 39180190 PMCID: PMC11659925 DOI: 10.1111/imr.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Antibodies are able to up- or downregulate antibody responses to the antigen they bind. Two major mechanisms can be distinguished. Suppression is most likely caused by epitope masking and can be induced by all isotypes tested (IgG1, IgG2a, IgG2b, IgG3, IgM, and IgE). Enhancement is often caused by the redistribution of antigen in a favorable way, either for presentation to B cells via follicular dendritic cells (IgM and IgG3) or to CD4+ T cells via dendritic cells (IgE, IgG1, IgG2a, and IgG2b). IgM and IgG3 complexes activate complement and are transported from the marginal zone to follicles by marginal zone B cells expressing complement receptors. IgE-antigen complexes are captured by CD23+ B cells in the blood and transported to follicles, delivered to CD8α+ conventional dendritic cells, and presented to CD4+ T cells. Enhancement of antibody responses by IgG1, IgG2a, and IgG2b in complex with proteins requires activating FcγRs. These immune complexes are captured by dendritic cells and presented to CD4+ T cells, subsequently helping cognate B cells. Endogenous feedback regulation influences the response to booster doses of vaccines and passive administration of anti-RhD antibodies is used to prevent alloimmunization of RhD-negative women carrying RhD-positive fetuses.
Collapse
Affiliation(s)
- Birgitta Heyman
- Department of Medical Biochemistry and MicrobiologyUppsala University, (BMC)UppsalaSweden
| |
Collapse
|
3
|
Cyster JG, Wilson PC. Antibody modulation of B cell responses-Incorporating positive and negative feedback. Immunity 2024; 57:1466-1481. [PMID: 38986442 PMCID: PMC11257158 DOI: 10.1016/j.immuni.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
Antibodies are powerful modulators of ongoing and future B cell responses. While the concept of antibody feedback has been appreciated for over a century, the topic has seen a surge in interest due to the evidence that the broadening of antibody responses to SARS-CoV-2 after a third mRNA vaccination is a consequence of antibody feedback. Moreover, the discovery that slow antigen delivery can lead to more robust humoral immunity has put a spotlight on the capacity for early antibodies to augment B cell responses. Here, we review the mechanisms whereby antibody feedback shapes B cell responses, integrating findings in humans and in mouse models. We consider the major influence of epitope masking and the diverse actions of complement and Fc receptors and provide a framework for conceptualizing the ways antigen-specific antibodies may influence B cell responses to any form of antigen, in conditions as diverse as infectious disease, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| | - Patrick C Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Lan X, Zhang J, Ren S, Wang H, Shao B, Qin Y, Qin H, Sun C, Zhu Y, Li G, Wang H. Oxymatrine combined with rapamycin to attenuate acute cardiac allograft rejection. Heliyon 2024; 10:e29448. [PMID: 38655317 PMCID: PMC11036008 DOI: 10.1016/j.heliyon.2024.e29448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Background and aim Solid organ transplantation remains a life-saving therapeutic option for patients with end-stage organ dysfunction. Acute cellular rejection (ACR), dominated by dendritic cells (DCs) and CD4+ T cells, is a major cause of post-transplant mortality. Inhibiting DC maturation and directing the differentiation of CD4+ T cells toward immunosuppression are keys to inhibiting ACR. We propose that oxymatrine (OMT), a quinolizidine alkaloid, either alone or in combination with rapamycin (RAPA), attenuates ACR by inhibiting the mTOR-HIF-1α pathway. Methods Graft damage was assessed using haematoxylin and eosin staining. Intragraft CD11c+ and CD4+ cell infiltrations were detected using immunohistochemical staining. The proportions of mature DCs, T helper (Th) 1, Th17, and Treg cells in the spleen; donor-specific antibody (DSA) secretion in the serum; mTOR-HIF-1α expression in the grafts; and CD4+ cells and bone marrow-derived DCs (BMDCs) were evaluated using flow cytometry. Results OMT, either alone or in combination with RAPA, significantly alleviated pathological damage; decreased CD4+ and CD11c+ cell infiltration in cardiac allografts; reduced the proportion of mature DCs, Th1 and Th17 cells; increased the proportion of Tregs in recipient spleens; downregulated DSA production; and inhibited mTOR and HIF-1α expression in the grafts. OMT suppresses mTOR and HIF-1α expression in BMDCs and CD4+ T cells in vitro. Conclusions Our study suggests that OMT-based therapy can significantly attenuate acute cardiac allograft rejection by inhibiting DC maturation and CD4+ T cell responses. This process may be related to the inhibition of the mTOR-HIF-1α signaling pathway by OMT.
Collapse
Affiliation(s)
- Xu Lan
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Jingyi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| | - Shaohua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| | - Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| | - Guangming Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin 300052, China
| |
Collapse
|
5
|
Grund M, Choi SJ, Powell L, Lukomski S. Intranasal immunization with a Bucl8-based vaccine ameliorates bacterial burden and pathological inflammation, and promotes an IgG2a/b dominant response in an outbred mouse model of Burkholderia infection. Front Immunol 2023; 14:1177650. [PMID: 37545515 PMCID: PMC10399622 DOI: 10.3389/fimmu.2023.1177650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Burkholderia pseudomallei is a gram-negative bacterium that is the etiological agent of the tropical disease melioidosis. Currently, there is no licensed vaccine for melioidosis, but numerous candidates are being tested for protective efficacy and characterization of the elicited immune response. Our lab has previously reported the immunogenicity of a Bucl8-protein-based peptide antigen, designated L1-CRM197 (Cross-reacting material 197). When given subcutaneously, this vaccine formulation promoted a strong Th2 (IgG1) antibody response, however immunization did not protect from death. In this study, we hypothesized that an intranasally administered L1-CRM197 vaccine would induce protective mucosal immunity. To evaluate vaccine efficacy, we developed a surrogate Burkholderia infection model that employs outbred CD-1 mice which imitates the immunogenetic diversity of humans. Mice were immunized with either L1-CRM197 adjuvanted with fluorinated cyclic diguanosine monophosphate (FCDG) or with FCDG-only control. These mice were then challenged intranasally with an infectious dose of a luminescent strain of B. thailandensis E264 two weeks post-immunization, and correlates of protection were assessed in euthanized mice on days 1, 2, 3, and 7 post-infection. Overall, intranasal vaccination, compared to subcutaneous administration, induced a stronger Th1 (IgG2a/2b) to Th2 (IgG1) antibody response and promoted anti-L1 nasal, pulmonary, and systemic IgA. Additionally, sera IgG from L1-CRM197-vaccinated mice recognized whole-cell B. thailandensis and B. pseudomallei, a select agent exempt strain Bp82. Vaccination ameliorated disease indicators, including luminescent signal and bacterial cell counts, weight and temperature loss, and organ weight, which negatively correlated with IgG2a antibody levels and mucosa-stimulating cytokines IL-13 and IL-9. L1-CRM197-vaccinated mice also had earlier resolution of inflammatory and tissue-damaging cytokines compared to the FCDG-only controls. These results suggest a balanced humoral and cell-mediated response, along with mucosa-based immunity are beneficial for protection. Future efforts should further assess mucosal cellular and humoral mechanisms of protection and test such protection, using aerosolized B. pseudomallei select agent strain(s).
Collapse
Affiliation(s)
| | | | | | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
6
|
Vijayanand S, Patil S, Menon I, Braz Gomes K, Kale A, Bagwe P, Uddin MN, Zughaier SM, D’Souza MJ. An Adjuvanted Inactivated SARS-CoV-2 Microparticulate Vaccine Delivered Using Microneedles Induces a Robust Immune Response in Vaccinated Mice. Pharmaceutics 2023; 15:pharmaceutics15030895. [PMID: 36986756 PMCID: PMC10058898 DOI: 10.3390/pharmaceutics15030895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
SARS-CoV-2, the causal agent of COVID-19, is a contagious respiratory virus that frequently mutates, giving rise to variant strains and leading to reduced vaccine efficacy against the variants. Frequent vaccination against the emerging variants may be necessary; thus, an efficient vaccination system is needed. A microneedle (MN) vaccine delivery system is non-invasive, patient-friendly, and can be self-administered. Here, we tested the immune response produced by an adjuvanted inactivated SARS-CoV-2 microparticulate vaccine administered via the transdermal route using a dissolving MN. The inactivated SARS-CoV-2 vaccine antigen and adjuvants (Alhydrogel® and AddaVax™) were encapsulated in poly(lactic-co-glycolic acid) (PLGA) polymer matrices. The resulting MP were approximately 910 nm in size, with a high percentage yield and percent encapsulation efficiency of 90.4%. In vitro, the vaccine MP was non-cytotoxic and increased the immunostimulatory activity measured as nitric oxide release from dendritic cells. The adjuvant MP potentiated the immune response of the vaccine MP in vitro. In vivo, the adjuvanted SARS-CoV-2 MP vaccine induced high levels of IgM, IgG, IgA, IgG1, and IgG2a antibodies and CD4+ and CD8+ T-cell responses in immunized mice. In conclusion, the adjuvanted inactivated SARS-CoV-2 MP vaccine delivered using MN induced a robust immune response in vaccinated mice.
Collapse
Affiliation(s)
- Sharon Vijayanand
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Smital Patil
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Ipshita Menon
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Keegan Braz Gomes
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Akanksha Kale
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Priyal Bagwe
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Mohammad N. Uddin
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Susu M. Zughaier
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence:
| | - Martin J. D’Souza
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| |
Collapse
|
7
|
Khan MA, Khan A, Alzohairy MA, Alruwetei AM, Alsahli MA, Allemailem KS, Alrumaihi F, Almatroudi A, Alhatlani BY, Rugaie OA, Malik A. Encapsulation of MERS antigen into α-GalCer-bearing-liposomes elicits stronger effector and memory immune responses in immunocompetent and leukopenic mice. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2022; 34:102124. [PMID: 35663348 PMCID: PMC9135648 DOI: 10.1016/j.jksus.2022.102124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/22/2022] [Accepted: 05/21/2022] [Indexed: 05/28/2023]
Abstract
Objectives Here, we prepared a liposome-based vaccine formulation containing Middle East Respiratory Syndrome Coronavirus papain-like protease (MERS-CoV-PLpro). Methods A persistent leukopenic condition was induced in mice by injecting cyclophosphamide (CYP) three days before each dose of immunization. Mice were immunized on days 0, 14 and 21 with α-GalCer-bearing MERS-CoV PLpro-encapsulated DPPC-liposomes (α-GalCer-MERS-PLpro-liposomes or MERS-CoV PLpo-encapsulated DPPC-liposomes (MERS-PLpro-liposomes), whereas the antigen emulsified in Alum (MERS-PLpro-Alum) was taken as a control. On day 26, the blood was taken from the immunized mice to analyze IgG titer, whereas the splenocytes were used to analyze the lymphocyte proliferation and the level of cytokines. In order to assess the memory immune response, mice were given a booster dose after 150 days of the last immunization. Results The higher levels of MERS-CoV-PLpro-specific antibody titer, IgG2a and lymphocyte proliferation were noticed in mice immunized with α-GalCer-MERS-PLpro-liposomes. Besides, the splenocytes from mice immunized with α-GalCer-MERS-PLpro-liposomes produced larger amounts of IFN-γ as compared to the splenocytes from MERS-PLpro-liposomes or MERS- PLpro-Alum immunized mice. Importantly, an efficient antigen-specific memory immune response was observed in α-GalCer-MERS-PLpro-liposomes immunized mice. Conclusions These findings suggest that α-GalCer-MERS-PLpro-liposomes may substantiate to be a successful vaccine formulation against MERS-CoV infection, particularly in immunocompromised individuals.
Collapse
Affiliation(s)
- Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdulmohsen M Alruwetei
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Bader Y Alhatlani
- Department of Applied Medical Sciences, Applied College, Qassim University, Unayzah, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unayzah, Saudi Arabia
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Khan MA, Allemailem KS, Maswadeh H, Younus H. Safety and Prophylactic Efficacy of Liposome-Based Vaccine against the Drug-Resistant Acinetobacter baumannii in Mice. Pharmaceutics 2022; 14:pharmaceutics14071357. [PMID: 35890253 PMCID: PMC9318010 DOI: 10.3390/pharmaceutics14071357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, the emergence of multidrug-resistant Acientobacter baumannii has greatly threatened public health and depleted our currently available antibacterial armory. Due to limited therapeutic options, the development of an effective vaccine formulation becomes critical in order to fight this drug-resistant pathogen. The objective of the present study was to develop a safe vaccine formulation that can be effective against A. baumannii infection and its associated complications. Here, we prepared liposomes-encapsulated whole cell antigens (Lip-WCAgs) as a vaccine formulation and investigated its prophylactic efficacy against the systemic infection of A. baumannii. The immunization with Lip-WCAgs induced the higher production of antigen-specific antibody titers, greater lymphocyte proliferation, and increased secretion of Th1 cytokines, particularly IFN-γ and IL-12. Antisera from Lip-WCAgs-immunized mice showed the utmost bactericidal activity and potently inhibited the biofilm formation by A. baumannii. Interestingly, Lip-WCAgs-induced immune response was translated in in vivo protection studies as the immunized mice exhibited the highest resistance to A. baumannii infection. Mice in the group immunized with Lip-WCAgs had an 80% survival rate and a bacterial burden of 5464 ± 1193 CFUs per gram of the lung tissue, whereas the mice immunized with IFA-WCAgs had a 50% survival rate and 51,521 ± 8066 CFUs. In addition, Lip-WCAgs vaccinated mice had lower levels of the inflammatory markers, including CRP, IL-6, IL-1β, and TNF-α. The findings of this study suggest that Lip-WCAgs may be considered a potential vaccine formulation to protect individuals against A. baumannii infection.
Collapse
Affiliation(s)
- Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: ; Tel.: +966-(50)-7059437; Fax: +966-(63)-801628
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Hamzah Maswadeh
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India;
| |
Collapse
|
9
|
Meena J, Singhvi P, Srichandan S, Dandotiya J, Verma J, Singh M, Ahuja R, Panwar N, Wani TQ, Khatri R, Siddiqui G, Gupta A, Samal S, Panda AK. RBD decorated PLA nanoparticle admixture with aluminum hydroxide elicit robust and long lasting immune response against SARS-CoV-2. Eur J Pharm Biopharm 2022; 176:43-53. [PMID: 35589003 PMCID: PMC9110063 DOI: 10.1016/j.ejpb.2022.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
Nanoparticles-based multivalent antigen display has the capability of mimicking natural virus infection characteristics, making it useful for eliciting potent long-lasting immune response. Several vaccines are developed against global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However these subunit vaccines use mammalian expression system, hence mass production with rapid pace is a bigger challenge. In contrast E. coli based subunit vaccine production circumvents these limitations.The objective of the present investigation was to develop nanoparticle vaccine with multivalent display of receptor binding domain (RBD) of SARS-CoV-2 expressed in E. coli. Results showed that RBD entrapped PLA (Poly lactic acid) nanoparticle in combination with aluminum hydroxide elicited 9-fold higher immune responses as compared to RBD adsorbed aluminum hydroxide, a common adjuvant used for human immunization. It was interesting to note that RBD entrapped PLA nanoparticle with aluminum hydroxide not only generated robust and long-lasting antibody response but also provided Th1 and Th2 balanced immune response. Moreover, challenge with 1 µg of RBD alone was able to generate secondary antibody response, suggesting that immunization with RBD-PLA nanoparticleshas the ability to elicit memory antibody against RBD. Plaque assay revealed that the antibody generated using the polymeric formulation was able to neutralize SARS-CoV-2.The RBD entrapped PLA nanoparticles blended with aluminum hydroxide thus has potential to develop asa subunit vaccine against COVID-19.
Collapse
Affiliation(s)
- Jairam Meena
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India; Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India.
| | - Priyank Singhvi
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sudeepa Srichandan
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jyotsna Dandotiya
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Juhi Verma
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mamta Singh
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rahul Ahuja
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Neha Panwar
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Tabiya Qayoom Wani
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ritika Khatri
- Infection and Immunology Laboratory, Translational Health Science & Technology Institute, Gurgaon-Faridabad, India
| | - Gazala Siddiqui
- Infection and Immunology Laboratory, Translational Health Science & Technology Institute, Gurgaon-Faridabad, India
| | - Anuradha Gupta
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sweety Samal
- Infection and Immunology Laboratory, Translational Health Science & Technology Institute, Gurgaon-Faridabad, India
| | - Amulya Kumar Panda
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
10
|
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system (CNS) that often progresses to severe disability. Previous studies have highlighted the role of T cells in disease pathophysiology; however, the success of B-cell-targeted therapies has led to an increased interest in how B cells contribute to disease immunopathology. In this review, we summarize evidence of B-cell involvement in MS disease mechanisms, starting with pathology and moving on to review aspects of B cell immunobiology potentially relevant to MS. We describe current theories of critical B cell contributions to the inflammatory CNS milieu in MS, namely (i) production of autoantibodies, (ii) antigen presentation, (iii) production of proinflammatory cytokines (bystander activation), and (iv) EBV involvement. In the second part of the review, we summarize medications that have targeted B cells in patients with MS and their current position in the therapeutic armamentarium based on clinical trials and real-world data. Covered therapeutic strategies include the targeting of surface molecules such as CD20 (rituximab, ocrelizumab, ofatumumab, ublituximab) and CD19 (inebilizumab), and molecules necessary for B-cell activation such as B cell activating factor (BAFF) (belimumab) and Bruton's Tyrosine Kinase (BTK) (evobrutinib). We finally discuss the use of B-cell-targeted therapeutics in pregnancy.
Collapse
|
11
|
Shimizu T, Kawaguchi Y, Ando H, Ishima Y, Ishida T. Development of an Antigen Delivery System for a B Cell-Targeted Vaccine as an Alternative to Dendritic Cell-Targeted Vaccines. Chem Pharm Bull (Tokyo) 2022; 70:341-350. [DOI: 10.1248/cpb.c22-00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Yoshino Kawaguchi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|
12
|
Khan MA, Malik A, Alruwetei A, Alzohairy MA, Alhatlani BY, Al Rugaie O, Alhumaydhi FA, Khan A. Delivery of MERS antigen encapsulated in α-GalCer-bearing liposomes elicits stronger antigen-specific immune responses. J Drug Target 2022; 30:884-893. [PMID: 35418263 DOI: 10.1080/1061186x.2022.2066681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alpha-Galactosylceramide (α-GalCer) effectively activates the natural killer T (NKT) cells to secrete remarkable amounts of Th1 and Th2 cytokines and therefore, acts as a potential immunoadjuvant in vaccine formulation. In the present study, we prepared α-GalCer-bearing or α-GalCer-free liposomes and loaded them with Middle East Respiratory Syndrome Corona virus papain-like protease (α-GalCer-Lip-MERS-CoV PLpro or Lip- MERS-CoV PLpro). These formulations were injected in mice to investigate the antigen-specific humoral and cell-mediated immune responses. The immunization with α-GalCer-Lip-MERS-CoV PLpro or Lip- MERS-CoV PLpro did not induce any notable toxicity in immunized mice. The results demonstrated that mice immunized with α-GalCer-Lip-MERS-CoV PLpro showed greater antigen-specific antibody titer, switching of IgG isotyping to IgG2a subclass and higher lymphocyte proliferation. Moreover, the splenocytes from α-GalCer-Lip-MERS-CoV PLpro immunized mice secreted greater levels of IFN-γ, IL-4, IL-2 and IL-12. Interestingly, a booster dose induced stronger memory immune responses in mice previously immunized with α-GalCer-Lip-MERS-CoV PLpro. In summary, α-GalCer-Lip-MERS-CoV PLpro may prove to be a promising vaccine formulation to protect the individuals against MERS-CoV infection.
Collapse
Affiliation(s)
- Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulmohsen Alruwetei
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Bader Y Alhatlani
- Department of Applied Medical Sciences, Applied College in Unayzah, Qassim University, Unayzah, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unayzah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
13
|
Liposome-Mediated Delivery of MERS Antigen Induces Potent Humoral and Cell-Mediated Immune Response in Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020403. [PMID: 35056718 PMCID: PMC8778403 DOI: 10.3390/molecules27020403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/23/2022]
Abstract
The advancements in the field of nanotechnology have provided a great platform for the development of effective antiviral vaccines. Liposome-mediated delivery of antigens has been shown to induce the antigen-specific stimulation of the humoral and cell-mediated immune responses. Here, we prepared dried, reconstituted vesicles (DRVs) from DPPC liposomes and used them as the vaccine carrier system for the Middle East respiratory syndrome coronavirus papain-like protease (DRVs-MERS-CoV PLpro). MERS-CoV PLpro emulsified in the Incomplete Freund’s Adjuvant (IFA-MERS-CoV PLpro) was used as a control. Immunization of mice with DRVs-MERS-CoV PLpro did not induce any notable toxicity, as revealed by the levels of the serum alanine transaminase (ALT), aspartate transaminase (AST), blood urea nitrogen (BUN) and lactate dehydrogenase (LDH) in the blood of immunized mice. Immunization with DRVs-MERS-CoV PLpro induced greater antigen-specific antibody titer and switching of IgG1 isotyping to IgG2a as compared to immunization with IFA-MERS-CoV PLpro. Moreover, splenocytes from mice immunized with DRVs-MERS-CoV PLpro exhibited greater proliferation in response to antigen stimulation. Moreover, splenocytes from DRVs-MERS-CoV PLpro-immunized mice secreted significantly higher IFN-γ as compared to splenocytes from IFA-MERS-CoV PLpro mice. In summary, DRVs-MERS-CoV PLpro may prove to be an effective prophylactic formulation to prevent MERS-CoV infection.
Collapse
|
14
|
Xu H, Heyman B. IgG-mediated suppression of antibody responses: Hiding or snatching epitopes? Scand J Immunol 2020; 92:e12921. [PMID: 32594540 DOI: 10.1111/sji.12921] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/21/2020] [Indexed: 01/03/2023]
Abstract
Antibodies forming a complex with antigen in vivo can dramatically change the antibody response to this antigen. In some situations, the response will be a 100-fold stronger than in animals immunized with antigen alone, and in other situations, the response will be completely suppressed. IgG is known to suppress the antibody response, for example to erythrocytes, and this is used clinically in Rhesus prophylaxis. The mechanism behind IgG-mediated immune suppression is still not understood. Here, we will review studies performed in experimental animal models and discuss the various hypotheses put forward to explain the profound suppressive effect of IgG. We conclude that an exclusive role for negative regulation of B cells through FcγRIIB, increased clearance of erythrocytes from the circulation or complement-mediated lysis is unlikely. Epitope masking, where IgG hides the epitope from B cells, or trogocytosis, where IgG removes the epitope from the erythrocyte, is compatible with many observations. These two mechanisms are not mutually exclusive. Moreover, it cannot be ruled out that clearance, in combination with other mechanisms, plays a role.
Collapse
Affiliation(s)
- Hui Xu
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Hu Z, Ni J, Cao Y, Liu X. Newcastle Disease Virus as a Vaccine Vector for 20 Years: A Focus on Maternally Derived Antibody Interference. Vaccines (Basel) 2020; 8:vaccines8020222. [PMID: 32422944 PMCID: PMC7349365 DOI: 10.3390/vaccines8020222] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
It has been 20 years since Newcastle disease virus (NDV) was first used as a vector. The past two decades have witnessed remarkable progress in vaccine generation based on the NDV vector and optimization of the vector. Protective antigens of a variety of pathogens have been expressed in the NDV vector to generate novel vaccines for animals and humans, highlighting a great potential of NDV as a vaccine vector. More importantly, the research work also unveils a major problem restraining the NDV vector vaccines in poultry, i.e., the interference from maternally derived antibody (MDA). Although many efforts have been taken to overcome MDA interference, a lack of understanding of the mechanism of vaccination inhibition by MDA in poultry still hinders vaccine improvement. In this review, we outline the history of NDV as a vaccine vector by highlighting some milestones. The recent advances in the development of NDV-vectored vaccines or therapeutics for animals and humans are discussed. Particularly, we focus on the mechanisms and hypotheses of vaccination inhibition by MDA and the efforts to circumvent MDA interference with the NDV vector vaccines. Perspectives to fill the gap of understanding concerning the mechanism of MDA interference in poultry and to improve the NDV vector vaccines are also proposed.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jie Ni
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
16
|
Lima MIS, Capparelli FE, Dias Oliveira JDD, Fujimura PT, Moraes ECDS, Araujo ECB, Silva NM, Alves-Balvedi RP, Brito-Madurro AG, Goulart IMB, Goulart LR. Biotechnological and Immunological Platforms Based on PGL-I Carbohydrate-Like Peptide of Mycobacterium leprae for Antibodies Detection Among Leprosy Clinical Forms. Front Microbiol 2020; 11:429. [PMID: 32256479 PMCID: PMC7092704 DOI: 10.3389/fmicb.2020.00429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
Phenolic glycolipid I (PGL-I) is an abundant antigen on the Mycobacterium leprae cell wall, commonly used for operational classification of leprosy patients. Our aim was to develop PGL-I mimotopes with similar characteristics and functions of the native antigen. We have used a random peptide phage display (PD) library for selections against the monoclonal antibody anti-PGL-I. After three selection cycles, six peptides were identified. All sequences were interspersed by a spacer generating a chimeric peptide (PGLI-M3) that was artificially synthesized. The highly reactive peptide was submitted to a reverse PD selection with a single-chain Fv (scFv) antibody fragment combinatorial library. The most reactive scFv was then validated by enzyme-linked immunosorbent assay (ELISA) against both native PGL-I and two derived synthetic (NDO and ND-O-HSA). We have further proved the scFv specificity by detecting M. leprae bacilli in leprosy lesions through immunohistochemistry. We then described its applicability in ELISA for all clinical forms and household contacts (HC). Afterward, we showed differential binding affinities of PGLI-M3 to sera (anti-PGL-I IgM) from all leprosy clinical forms through surface plasmon resonance (SPR). ELISA IgM detection showed 89.1% sensitivity and 100% specificity, considering all clinical forms. Positivity for anti-PGL-I IgM was twofold higher in both HC and patients with paucibacillary forms in hyperendemic regions than in endemic ones. The SPR immunosensor was able to differentiate clinical forms with 100% accuracy. This is the first time that a PGL-I mimotope has efficiently mimicked the carbohydrate group of the M. leprae antigen with successful immunoassay applications and may become a substitute for the native antigen.
Collapse
Affiliation(s)
- Mayara Ingrid Sousa Lima
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, Brazil
| | - Fausto Emilio Capparelli
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Patrícia Tiemi Fujimura
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | | | | | - Neide Maria Silva
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Ana Graci Brito-Madurro
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Isabela Maria Bernardes Goulart
- National Reference Center in Sanitary Dermatology and Leprosy, Clinics' Hospital, School of Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil.,Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
17
|
Mathew MK, Virmani N, Bera BC, Anand T, Kumar R, Balena V, Sansanwal R, Pavulraj S, Sundaram K, Virmani M, Tripathi BN. Protective efficacy of inactivated reverse genetics based equine influenza vaccine candidate adjuvanted with Montanide TM Pet Gel in murine model. J Vet Med Sci 2019; 81:1753-1762. [PMID: 31656240 PMCID: PMC6943333 DOI: 10.1292/jvms.19-0399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Equine influenza is a leading cause for respiratory illness in equines. Major control
measures involve vaccination which requires continuous harmonization owing to antigenic
drift. The present study focused on assessing the protective efficacy of an inactivated
recombinant equine influenza virus (rgEIV) vaccine candidate adjuvanted with
MontanideTM Pet Gel in murine model. The rgEIV was generated using reverse
genetics by incorporating HA and NA segments from EIV/H3N8, clade 2-Florida sublineage in
an A/WSN/33 /H1N1 backbone and inactivated by formalin. The vaccine was
prepared by mixing inactivated rgEIV with MontanideTM Pet Gel adjuvant followed
by intranasal inoculation into BALB/c mice intranasally. The immune responses and
protective efficacy of the vaccine was evaluated by measurement of antibody titer,
immunoglobulin subtyping, cytokines, clinical signs and pathological lesions after
immunization and challenge with wild EIV. Serology and cytokine expression pattern
indicated that the vaccine activated mixed Th1- and Th2-like responses of vaccine. Booster
immunization stimulated strong antibody responses (HAI titre: 192 ± 28.6) at 42 days post
immunization and the predominant antibody subtype was IgG1. Upregulation of interferon
(IFN)-gamma, interleukin (IL)-12 and
IL-2 levels indicates effective induction of Th1 type response. We
found that vaccination has protected mice against equine influenza virus challenge as
adjudged through a lack of nonappearance of visible clinical signs of disease, no loss of
body weight loss, reduced pathology in the lungs and markedly reduced virus shedding from
the respiratory tract. Therefore, we conclude that recombinant EIV vaccine candidate
adjuvanted with MontanideTM Pet Gel could aid in quick harmonization of the
vaccines through replacement of HA and NA genes for control of EIV outbreaks.
Collapse
Affiliation(s)
- Manu Kurian Mathew
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar-125 001, Haryana, India
| | - Nitin Virmani
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar-125 001, Haryana, India
| | - Bidhan Chandra Bera
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar-125 001, Haryana, India
| | - Taruna Anand
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar-125 001, Haryana, India
| | - Ramesh Kumar
- Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar-125004 Haryana, India
| | | | - Rekha Sansanwal
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar-125 001, Haryana, India
| | - Selvaraj Pavulraj
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar-125 001, Haryana, India
| | - Karthik Sundaram
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar-125 001, Haryana, India
| | - Meenakshi Virmani
- Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar-125004 Haryana, India
| | | |
Collapse
|
18
|
Abstract
Glycosylation of IgG Fc domains is a central mechanism in the diversification of antibody function. Modifications to the core Fc glycan impact antibody function by shifting the balance of Type I and Type II Fc gamma receptors (FcγR) that will be engaged by immune complexes. This, in turn, modulates the effector cells and functions that can be recruited during immune activation. Critically, humans have evolved to regulate Fc glycan modifications for immune homeostasis. Dysregulation in Fc glycan modifications can lead to loss of immune tolerance, symptomatic autoimmunity, and susceptibility to infectious diseases. Here, we discuss IgG Fc glycosylation and its role in human health and disease.
Collapse
Affiliation(s)
- Taia T Wang
- Department of Medicine, Division of Infectious Diseases, Department of Microbiology and Immunology, Program in Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
19
|
Abstract
Specific IgM, administered together with the antigen it recognizes, enhances primary antibody responses, formation of germinal centers, and priming for secondary antibody responses. The response to all epitopes on the antigen to which IgM binds is usually enhanced. IgM preferentially enhances responses to large antigens such as erythrocytes, malaria parasites, and keyhole limpet hemocyanine. In order for an effect to be seen, antigens must be administered in suboptimal concentrations and in close temporal relationship to the IgM. Enhancement is dependent on the ability of IgM to activate complement, but the lytic pathway is not required. Enhancement does not take place in mice lacking complement receptors 1 and 2 (CR1/2) suggesting that the role of IgM is to generate C3 split products, i.e., the ligands for CR1/2. In mice, these receptors are expressed on follicular dendritic cells (FDCs) and B cells. Optimal IgM-mediated enhancement requires that both cell types express CR1/2, but intermediate enhancement is seen when only FDCs express the receptors and low enhancement when only B cells express them. These observations imply that IgM-mediated enhancement works through several, non-mutually exclusive, pathways. Marginal zone B cells can transport IgM-antigen-complement complexes, bound to CR1/2, from the marginal zone and deposit them onto FDCs. In addition, co-crosslinking of the BCR and the CR2/CD19/CD81 co-receptor complex may enhance signaling to specific B cells, a mechanism likely to be involved in induction of early extrafollicular antibody responses.
Collapse
Affiliation(s)
- Anna Sörman
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE 751 23, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE 751 23, Uppsala, Sweden.
| |
Collapse
|
20
|
Fcγ Receptor Type I (CD64)-Mediated Impairment of the Capacity of Dendritic Cells to Activate Specific CD8 T Cells by IgG-opsonized Friend Virus. Viruses 2019; 11:v11020145. [PMID: 30744065 PMCID: PMC6410291 DOI: 10.3390/v11020145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DCs) express Fcγ receptors (FcγRs) for the binding immune complexes (ICs) consisting of IgG and antigens (Ags). IC–FcγR interactions have been demonstrated to enhance activation and antigen-presenting functions of DCs. Utilizing Friend virus (FV), an oncogenic mouse retrovirus, we investigated the effect of IgG-opsonization of retroviral particles on the infection of DCs and the subsequent presentation of viral antigens by DCs to virus-specific CD8 T cells. We found that opsonization by virus-specific non-neutralizing IgG abrogated DC infection and as a consequence significantly reduced the capacity of DCs to activate virus-specific CD8 T cells. Effects of IgG-opsonization were mediated by the high-affinity FcγR type I, CD64, expressed on DCs. Our results suggest that different opsonization patterns on the retroviral surface modulate infection and antigen-presenting functions of DCs, whereby, in contrast to complement, IgG reduces the capacity of DCs to activate cytotoxic T cell (CTL) responses.
Collapse
|
21
|
The Role of Fc Gamma Receptors in Broad Protection against Influenza Viruses. Vaccines (Basel) 2018; 6:vaccines6030036. [PMID: 29966222 PMCID: PMC6160953 DOI: 10.3390/vaccines6030036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/14/2022] Open
Abstract
Recent studies have revealed multiple roles for Fc gamma receptors (FcγRs) in broad immunity against influenza viruses. Activating FcγR pathways can be harnessed to confer protection mediated by non-neutralizing anti-HA IgGs and to increase the potency of broadly neutralizing anti-HA IgGs and of anti-NA IgGs. Separate FcγR pathways can be targeted to enhance the breadth of antibody responses elicited by seasonal influenza virus vaccines. Here, we review the current understanding of FcγR pathways in broad influenza immunity and suggest mechanisms to bypass FcγR signaling heterogeneity among people that arises from distinctions in structural repertoires of IgG Fc domains.
Collapse
|
22
|
Wang TT, Bournazos S, Ravetch JV. Immunological responses to influenza vaccination: lessons for improving vaccine efficacy. Curr Opin Immunol 2018; 53:124-129. [PMID: 29753885 DOI: 10.1016/j.coi.2018.04.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/15/2022]
Abstract
A critical factor in the maturation of influenza vaccine responses is the nearly inevitable binding of vaccine antigens by exiting anti-influenza IgGs. These antigen-IgG immune complexes direct the response to immunization by modulating cellular processes that determine antibody and T-cell repertoires: maturation of dendritic cells, processing and presentation of antigens to T cells, trafficking of antigens to the germinal center, and selection of B cells for antibody production. By focusing on the recent advances in the study of the immunomodulatory processes mediated by IgG immune complexes upon influenza vaccination, we discuss a pathway that is critical for modulating the breadth and potency of anti-HA antibody responses and has previously led to the development of strategies to improve influenza vaccine efficacy.
Collapse
Affiliation(s)
- Taia T Wang
- Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | | | |
Collapse
|
23
|
Roghanian A, Stopforth RJ, Dahal LN, Cragg MS. New revelations from an old receptor: Immunoregulatory functions of the inhibitory Fc gamma receptor, FcγRIIB (CD32B). J Leukoc Biol 2018; 103:1077-1088. [PMID: 29406570 DOI: 10.1002/jlb.2mir0917-354r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/03/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022] Open
Abstract
The Fc gamma receptor IIB (FcγRIIB/CD32B) was generated million years ago during evolution. It is the sole inhibitory receptor for IgG, and has long been associated with the regulation of humoral immunity and innate immune homeostasis. However, new and surprising functions of FcγRIIB are emerging. In particular, FcγRIIB has been shown to perform unexpected activatory roles in both immune-signaling and monoclonal antibody (mAb) immunotherapy. Furthermore, although ITIM signaling is an integral part of FcγRIIB regulatory activity, it is now clear that inhibition/activation of immune responses can occur independently of the ITIM. In light of these new findings, we present an overview of the established and noncanonical functions of FcγRIIB and discuss how this knowledge might be exploited therapeutically.
Collapse
Affiliation(s)
- Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Richard J Stopforth
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Lekh N Dahal
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
24
|
Sadam H, Pihlak A, Kivil A, Pihelgas S, Jaago M, Adler P, Vilo J, Vapalahti O, Neuman T, Lindholm D, Partinen M, Vaheri A, Palm K. Prostaglandin D2 Receptor DP1 Antibodies Predict Vaccine-induced and Spontaneous Narcolepsy Type 1: Large-scale Study of Antibody Profiling. EBioMedicine 2018; 29:47-59. [PMID: 29449194 PMCID: PMC5925455 DOI: 10.1016/j.ebiom.2018.01.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuropathological findings support an autoimmune etiology as an underlying factor for loss of orexin-producing neurons in spontaneous narcolepsy type 1 (narcolepsy with cataplexy; sNT1) as well as in Pandemrix influenza vaccine-induced narcolepsy type 1 (Pdmx-NT1). The precise molecular target or antigens for the immune response have, however, remained elusive. METHODS Here we have performed a comprehensive antigenic repertoire analysis of sera using the next-generation phage display method - mimotope variation analysis (MVA). Samples from 64 children and adolescents were analyzed: 10 with Pdmx-NT1, 6 with sNT1, 16 Pandemrix-vaccinated, 16 H1N1 infected, and 16 unvaccinated healthy individuals. The diagnosis of NT1 was defined by the American Academy of Sleep Medicine international criteria of sleep disorders v3. FINDINGS Our data showed that although the immunoprofiles toward vaccination were generally similar in study groups, there were also striking differences in immunoprofiles between sNT1 and Pdmx-NT1 groups as compared with controls. Prominent immune response was observed to a peptide epitope derived from prostaglandin D2 receptor (DP1), as well as peptides homologous to B cell lymphoma 6 protein. Further validation confirmed that these can act as true antigenic targets in discriminating NT1 diseased along with a novel epitope of hemagglutinin of H1N1 to delineate exposure to H1N1. INTERPRETATION We propose that DP1 is a novel molecular target of autoimmune response and presents a potential diagnostic biomarker for NT1. DP1 is involved in the regulation of non-rapid eye movement (NREM) sleep and thus alterations in its functions could contribute to the disturbed sleep regulation in NT1 that warrants further studies. Together our results also show that MVA is a helpful method for finding novel peptide antigens to classify human autoimmune diseases, possibly facilitating the design of better therapies.
Collapse
Affiliation(s)
- Helle Sadam
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Arno Pihlak
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Anri Kivil
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia
| | | | | | - Priit Adler
- Institute of Computer Science, University of Tartu, Liivi 2-314, 50409 Tartu, Estonia; Quretec LLC, Ülikooli 6a, 51003 Tartu, Estonia
| | - Jaak Vilo
- Institute of Computer Science, University of Tartu, Liivi 2-314, 50409 Tartu, Estonia; Quretec LLC, Ülikooli 6a, 51003 Tartu, Estonia
| | - Olli Vapalahti
- Department of Virology, Medicum, Haartmaninkatu 3, 00014 University of Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin Katu 2, 00014 University of Helsinki, Finland; Virology and Immunology, HUSLAB, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Toomas Neuman
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; IPDx Immunoprofiling Diagnostics GmbH, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Medicum, Haartmaninkatu 8, 00014 University of Helsinki, Finland; Minerva Foundation Medical Research Institute, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Markku Partinen
- Finnish Narcolepsy Research Center, Helsinki Sleep Clinic, Vitalmed Research Center, Valimotie 21, 00380, Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Medicum, Haartmaninkatu 3, 00014 University of Helsinki, Finland
| | - Kaia Palm
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
25
|
Bergström JJE, Heyman B. Mice Immunized with IgG Anti-Sheep Red Blood Cells (SRBC) Together With SRBC Have a Suppressed Anti-SRBC Antibody Response but Generate Germinal Centers and Anti-IgG Antibodies in Response to the Passively Administered IgG. Front Immunol 2017; 8:911. [PMID: 28824636 PMCID: PMC5539184 DOI: 10.3389/fimmu.2017.00911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/17/2017] [Indexed: 12/29/2022] Open
Abstract
Antigen-specific IgG antibodies, passively administered together with large particulate antigens such as erythrocytes, can completely suppress the antigen-specific antibody response. The mechanism behind has been elusive. Herein, we made the surprising observation that mice immunized with IgG anti-sheep red blood cells (SRBC) and SRBC, in spite of a severely suppressed anti-SRBC response, have a strong germinal center (GC) response. This occurred regardless of whether the passively administered IgG was of the same allotype as that of the recipient or not. Six days after immunization, the GC size and the number of GC B cells were higher in mice immunized with SRBC alone than in mice immunized with IgG and SRBC, but at the other time points these parameters were similar. GCs in the IgG-groups had a slight shift toward dark zone B cells 6 days after immunization and toward light zone B cells 10 days after immunization. The proportions of T follicular helper cells (TFH) and T follicular regulatory cells (TFR) were similar in the two groups. Interestingly, mice immunized with allogeneic IgG anti-SRBC together with SRBC mounted a vigorous antibody response against the passively administered suppressive IgG. Thus, although their anti-SRBC response was almost completely suppressed, an antibody response against allogeneic, and probably also syngeneic, IgG developed. This most likely explains the development of GCs in the absence of an anti-SRBC antibody response.
Collapse
Affiliation(s)
- Joakim J E Bergström
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Portuondo DL, Batista-Duharte A, Ferreira LS, de Andrade CR, Quinello C, Téllez-Martínez D, de Aguiar Loesch ML, Carlos IZ. Comparative efficacy and toxicity of two vaccine candidates against Sporothrix schenckii using either Montanide™ Pet Gel A or aluminum hydroxide adjuvants in mice. Vaccine 2017; 35:4430-4436. [PMID: 28687406 DOI: 10.1016/j.vaccine.2017.05.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/19/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022]
Abstract
Sporotrichosis is an important zoonosis in Brazil and the most frequent subcutaneous mycosis in Latin America, caused by different Sporothrix species. Currently, there is no effective vaccine available to prevent this disease. In this study, the efficacy and toxicity of the adjuvant Montanide™ Pet Gel A (PGA) formulated with S. schenckii cell wall proteins (ssCWP) was evaluated and compared with that of aluminum hydroxide (AH). Balb/c mice received two subcutaneous doses (1st and 14th days) of either the unadjuvanted or adjuvanted vaccine candidates. On the 21st day, anti-ssCWP antibody levels (ELISA), the phagocytic index, as well as the ex vivo release of IFN-γ, IL-4, and IL-17 by splenocytes and IL-12 by peritoneal macrophages were assessed. Cytotoxicity of the vaccine formulations was evaluated in vitro and by histopathological analysis of the inoculation site. Both adjuvanted vaccine formulations increased anti-ssCWP IgG, IgG1, IgG2a, and IgG3 levels, although IgG2a levels were higher in response to PGA+CWP100, probably contributing to the increase in S. schenckii yeast phagocytosis by macrophages in the opsonophagocytosis assay when using serum from PGA+CWP100-immunized mice. Immunization with AH+CWP100 led to a mixed Th1/Th2/Th17 ex vivo cytokine release profile, while PGA+CWP100 stimulated a preferential Th1/Th2 profile. Moreover, PGA+CWP100 was less cytotoxic in vitro, caused less local toxicity and led to a similar reduction in fungal load in the liver and spleen of S. schenckii- or S. brasiliensis-challenged mice as compared with AH+CWP100. These results suggest that PGA may be an effective and safe adjuvant for a future sporotrichosis vaccine.
Collapse
Affiliation(s)
- Deivys Leandro Portuondo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Alexander Batista-Duharte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Lucas Souza Ferreira
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Cleverton Roberto de Andrade
- São Paulo State University (UNESP), School of Dentistry, Department of Physiology & Pathology, Araraquara, SP, Brazil.
| | - Camila Quinello
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Damiana Téllez-Martínez
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Maria Luiza de Aguiar Loesch
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Iracilda Zeppone Carlos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| |
Collapse
|
27
|
Sido JM, Nagarkatti PS, Nagarkatti M. Production of endocannabinoids by activated T cells and B cells modulates inflammation associated with delayed-type hypersensitivity. Eur J Immunol 2017; 46:1472-9. [PMID: 27064137 DOI: 10.1002/eji.201546181] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/29/2016] [Accepted: 04/05/2016] [Indexed: 11/07/2022]
Abstract
Endocannabinoids are endogenous ligands for the cannabinoid (CB) receptors which include anandamide (AEA) and 2-arachidonyl glycerol (2-AG). 2-AG has been linked to inflammation due to its elevated expression in animal models of autoimmunity and hypersensitivity. However, administration of exogenous 2-AG has been shown to suppress inflammation making its precise role unclear. In the current study, we investigated the role of 2-AG following immunization of C57BL/6 (BL6) mice with methylated BSA (mBSA) antigen, which triggers both delayed-type hypersensitivity (DTH) and antibody response. We found that while naïve T cells and B cells expressed low levels of 2-AG, expression significantly increased upon activation. Furthermore, mBSA-immunized mice exhibited higher 2-AG concentration than naïve mice. Exogenous 2-AG treatment (40 mg/kg) in mBSA-immunized mice led to reduced DTH response, and decreased Th1 and Th17-associated cytokines including IL-6, IL-2, TNF-α, and the IgG response. Addition of 2-AG to activated popliteal lymph node (PopLN) cell cultures also inhibited lymphocyte proliferation. Together, these data show for the first time that activated T and B cells produce 2-AG, which plays a negative regulatory role to decrease DTH via inhibition of T-cell activation and proliferation. Moreover, these findings suggest that exogenous 2-AG treatment can be used therapeutically in Th1- or Th17-driven disease.
Collapse
Affiliation(s)
- Jessica M Sido
- Department of Pathology, Microbiology, & Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology, & Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, & Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.,WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| |
Collapse
|
28
|
Effect of TLR ligands co-encapsulated with multiepitopic antigen in nanoliposomes targeted to human DCs via Fc receptor for cancer vaccines. Immunobiology 2017. [PMID: 28624137 DOI: 10.1016/j.imbio.2017.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nanoliposomes (NLs) hold promise as new highly specific nanomedicine for anti-tumor vaccines, since they could be targeted to specific receptors on dendritic cell (DC) to induce maturation and activation and increase the anti-tumor immune response. Here we studied a NLs formulation targeted or not to FcR (the receptor for the IgG Fc fragment) for the treatment of androgen-responsive prostate cancer. Luteinizing-hormone-releasing hormone (LHRH) peptide (B- and T-cell epitopes), in tandem with a tetanus toxoid T-helper epitope (830-844 region) and several TLR (Toll-Like Receptor) ligands as adjuvants were co-encapsulated. Specific uptake in vitro of LHRH-TT liposomes targeted to the FcRs of human DCs was enhanced. DC maturation/activation, cytokine production and lymphocyte activation were consistently higher in targeted than non-targeted liposomes. Similar increase was observed as more adjuvants were administrated. Targeting to specific receptor and co-encapsulation of several TLR adjuvants are essential factors for the immune response in peptide based liposome vaccine.
Collapse
|
29
|
Chang TZ, Diambou I, Kim JR, Wang B, Champion JA. Host- and pathogen-derived adjuvant coatings on protein nanoparticle vaccines. Bioeng Transl Med 2017; 2:120-130. [PMID: 28516165 PMCID: PMC5412930 DOI: 10.1002/btm2.10052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 02/01/2023] Open
Abstract
Nanoparticulate and molecular adjuvants have shown great efficacy in enhancing immune responses, and the immunogenic vaccines of the future will most likely contain both. To investigate the immunostimulatory effects of molecular adjuvants on nanoparticle vaccines, we have designed ovalbumin (OVA) protein nanoparticles coated with two different adjuvants-flagellin (FliC) and immunoglobulin M (IgM). These proteins, derived from Salmonella and mice, respectively, are representatives of pathogen- and host-derived molecules that can enhance immune responses. FliC-coated OVA nanoparticles, soluble FliC (sFliC) admixed with OVA nanoparticles, IgM-coated nanoparticles, and OVA-coated nanoparticles were assessed for immunogenicity in an in vivo mouse immunization study. IgM coatings on nanoparticles significantly enhanced both antibody and T cell responses, and promoted IgG2a class switching but not affinity maturation. FliC-coated nanoparticles and FliC-admixed with nanoparticles both triggered IgG2a class switching, but only FliC-coated nanoparticles enhanced antibody affinity maturation. Our findings that affinity maturation and class switching can be directed independently of one another suggest that adjuvant coatings on nanoparticles can be tailored to generate specific vaccine effector responses against different classes of pathogens.
Collapse
Affiliation(s)
- Timothy Z. Chang
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332
| | - Ishatou Diambou
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332
| | - Jong Rok Kim
- Institute for Biomedical SciencesGeorgia State UniversityAtlantaGA 30332
| | - Baozhong Wang
- Institute for Biomedical SciencesGeorgia State UniversityAtlantaGA 30332
| | - Julie A. Champion
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332
| |
Collapse
|
30
|
Ding Z, Dahlin JS, Xu H, Heyman B. IgE-mediated enhancement of CD4(+) T cell responses requires antigen presentation by CD8α(-) conventional dendritic cells. Sci Rep 2016; 6:28290. [PMID: 27306570 PMCID: PMC4910288 DOI: 10.1038/srep28290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022] Open
Abstract
IgE, forming an immune complex with small proteins, can enhance the specific antibody and CD4(+) T cell responses in vivo. The effects require the presence of CD23 (Fcε-receptor II)(+) B cells, which capture IgE-complexed antigens (Ag) in the circulation and transport them to splenic B cell follicles. In addition, also CD11c(+) cells, which do not express CD23, are required for IgE-mediated enhancement of T cell responses. This suggests that some type of dendritic cell obtains IgE-Ag complexes from B cells and presents antigenic peptides to T cells. To elucidate the nature of this dendritic cell, mice were immunized with ovalbumin (OVA)-specific IgE and OVA, and different populations of CD11c(+) cells, obtained from the spleens four hours after immunization, were tested for their ability to present OVA. CD8α(-) conventional dendritic cells (cDCs) were much more efficient in inducing specific CD4(+) T cell proliferation ex vivo than were CD8α(+) cDCs or plasmacytoid dendritic cells. Thus, IgE-Ag complexes administered intravenously are rapidly transported to the spleen by recirculating B cells where they are delivered to CD8α(-) cDCs which induce proliferation of CD4(+) T cells.
Collapse
Affiliation(s)
- Zhoujie Ding
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Joakim S. Dahlin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hui Xu
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc Natl Acad Sci U S A 2016; 113:3323-8. [PMID: 26957602 DOI: 10.1073/pnas.1519608113] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple sclerosis (MS) is caused by T cells that are reactive for brain antigens. In experimental autoimmune encephalomyelitis, the animal model for MS, myelin-reactive T cells initiate the autoimmune process when entering the nervous tissue and become reactivated upon local encounter of their cognate CNS antigen. Thereby, the strength of the T-cellular reactivation process within the CNS tissue is crucial for the manifestation and the severity of the clinical disease. Recently, B cells were found to participate in the pathogenesis of CNS autoimmunity, with several diverse underlying mechanisms being under discussion. We here report that B cells play an important role in promoting the initiation process of CNS autoimmunity. Myelin-specific antibodies produced by autoreactive B cells after activation in the periphery diffused into the CNS together with the first invading pathogenic T cells. The antibodies accumulated in resident antigen-presenting phagocytes and significantly enhanced the activation of the incoming effector T cells. The ensuing strong blood-brain barrier disruption and immune cell recruitment resulted in rapid manifestation of clinical disease. Therefore, myelin oligodendrocyte glycoprotein (MOG)-specific autoantibodies can initiate disease bouts by cooperating with the autoreactive T cells in helping them to recognize their autoantigen and become efficiently reactivated within the immune-deprived nervous tissue.
Collapse
|
32
|
Downmodulation of vaccine-induced immunity and protection against the intracellular bacterium Francisella tularensis by the inhibitory receptor FcγRIIB. J Immunol Res 2015; 2015:840842. [PMID: 25961064 PMCID: PMC4417568 DOI: 10.1155/2015/840842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 02/08/2023] Open
Abstract
Fc gamma receptor IIB (FcγRIIB) is the only Fc gamma receptor (FcγR) which negatively regulates the immune response, when engaged by antigen- (Ag-) antibody (Ab) complexes. Thus, the generation of Ag-specific IgG in response to infection or immunization has the potential to downmodulate immune protection against infection. Therefore, we sought to determine the impact of FcγRIIB on immune protection against Francisella tularensis (Ft), a Category A biothreat agent. We utilized inactivated Ft (iFt) as an immunogen. Naïve and iFt-immunized FcγRIIB knockout (KO) or wildtype (WT) mice were challenged with Ft-live vaccine strain (LVS). While no significant difference in survival between naïve FcγRIIB KO versus WT mice was observed, iFt-immunized FcγRIIB KO mice were significantly better protected than iFt-immunized WT mice. Ft-specific IgA in serum and bronchial alveolar lavage, as well as IFN-γ, IL-10, and TNF-α production by splenocytes harvested from iFt-immunized FcγRIIB KO, were also significantly elevated. In addition, iFt-immunized FcγRIIB KO mice exhibited a reduction in proinflammatory cytokine levels in vivo at 5 days after challenge, which correlates with increased survival following Ft-LVS challenge in published studies. Thus, these studies demonstrate for the first time the ability of FcγRIIB to regulate vaccine-induced IgA production and downmodulate immunity and protection. The immune mechanisms behind the above observations and their potential impact on vaccine development are discussed.
Collapse
|
33
|
Iwata H, Pipi E, Möckel N, Sondermann P, Vorobyev A, van Beek N, Zillikens D, Ludwig RJ. Recombinant Soluble CD32 Suppresses Disease Progression in Experimental Epidermolysis Bullosa Acquisita. J Invest Dermatol 2015; 135:916-919. [DOI: 10.1038/jid.2014.451] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Baker MP, Reynolds HM, Lumicisi B, Bryson CJ. Immunogenicity of protein therapeutics: The key causes, consequences and challenges. SELF NONSELF 2014; 1:314-322. [PMID: 21487506 DOI: 10.4161/self.1.4.13904] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/20/2010] [Accepted: 10/07/2010] [Indexed: 12/15/2022]
Abstract
The immunogenicity of protein therapeutics has so far proven to be difficult to predict in patients, with many biologics inducing undesirable immune responses directed towards the therapeutic resulting in reduced efficacy, anaphylaxis and occasionally life threatening autoimmunity. The most common effect of administrating an immunogenic protein therapeutic is the development of a high affinity anti-therapeutic antibody response. Furthermore, it is clear from clinical studies that protein therapeutics derived from endogenous human proteins are capable of stimulating undesirable immune responses in patients, and as a consequence, the prediction and reduction of immunogenicity has been the focus of intense research. This review will outline the principle causes of the immunogenicity in protein therapeutics, and describe the development of pre-clinical models that can be used to aid in the prediction of the immunogenic potential of novel protein therapeutics prior to administration in man.
Collapse
Affiliation(s)
- Matthew P Baker
- Antitope Ltd.; Babraham Research Campus; Babraham, Cambridge UK
| | | | | | | |
Collapse
|
35
|
Cui Y, Dahlin JS, Feinstein R, Bankova LG, Xing W, Shin K, Gurish MF, Hallgren J. Mouse mast cell protease-6 and MHC are involved in the development of experimental asthma. THE JOURNAL OF IMMUNOLOGY 2014; 193:4783-4789. [PMID: 25320274 DOI: 10.4049/jimmunol.1302947] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Allergic asthma is a complex disease with a strong genetic component where mast cells play a major role by the release of proinflammatory mediators. In the mouse, mast cell protease-6 (mMCP-6) closely resembles the human version of mast cell tryptase, β-tryptase. The gene that encodes mMCP-6, Tpsb2, resides close by the H-2 complex (MHC gene) on chromosome 17. Thus, when the original mMCP-6 knockout mice were backcrossed to the BALB/c strain, these mice were carrying the 129/Sv haplotype of MHC (mMCP-6(-/-)/H-2bc). Further backcrossing yielded mMCP-6(-/-) mice with the BALB/c MHC locus. BALB/c mice were compared with mMCP-6(-/-) and mMCP-6(-/-)/H-2bc mice in a mouse model of experimental asthma. Although OVA-sensitized and challenged wild type mice displayed a striking airway hyperresponsiveness (AHR), mMCP-6(-/-) mice had less AHR that was comparable with that of mMCP-6(-/-)/H-2bc mice, suggesting that mMCP-6 is required for a full-blown AHR. The mMCP-6(-/-)/H-2bc mice had strikingly reduced lung inflammation, IgE responses, and Th2 cell responses upon sensitization and challenge, whereas the mMCP-6(-/-) mice responded similarly to the wild type mice but with a minor decrease in bronchoalveolar lavage eosinophils. These findings suggest that inflammatory Th2 responses are highly dependent on the MHC-haplotype and that they can develop essentially independently of mMCP-6, whereas mMCP-6 plays a key role in the development of AHR.
Collapse
Affiliation(s)
- Yue Cui
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Joakim S Dahlin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ricardo Feinstein
- Department of Pathology and Wildlife Diseases, The National Veterinary Institute, Uppsala, Sweden
| | - Lora G Bankova
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Xing
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kichul Shin
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Michael F Gurish
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
36
|
Furlan SN, Mandraju R, Brewer T, Roybal K, Troutman TD, Hu W, Palm NW, Unni A, Pasare C. Enhancement of anti-tumor CD8 immunity by IgG1-mediated targeting of Fc receptors. MAbs 2014; 6:108-18. [PMID: 24284965 DOI: 10.4161/mabs.27052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dendritic cells (DCs) function as professional antigen presenting cells and are critical for linking innate immune responses to the induction of adaptive immunity. Many current cancer DC vaccine strategies rely on differentiating DCs, feeding them tumor antigens ex vivo, and infusing them into patients. Importantly, this strategy relies on prior knowledge of suitable “tumor-specific” antigens to prime an effective anti-tumor response. DCs express a variety of receptors specific for the Fc region of immunoglobulins, and antigen uptake via Fc receptors is highly efficient and facilitates antigen presentation to T cells. Therefore, we hypothesized that expression of the mouse IgG1 Fc region on the surface of tumors would enhance tumor cell uptake by DCs and other myeloid cells and promote the induction of anti-tumor T cell responses. To test this, we engineered a murine lymphoma cell line expressing surface IgG1 Fc and discovered that such tumor cells were taken up rapidly by DCs, leading to enhanced cross-presentation of tumor-derived antigen to CD8+ T cells. IgG1-Fc tumors failed to grow in vivo and prophylactic vaccination of mice with IgG1-Fc tumors resulted in rejection of unmanipulated tumor cells. Furthermore, IgG1-Fc tumor cells were able to slow the growth of an unmanipulated primary tumor when used as a therapeutic tumor vaccine. Our data demonstrate that engagement of Fc receptors by tumors expressing the Fc region of IgG1 is a viable strategy to induce efficient and protective anti-tumor CD8+ T cell responses without prior knowledge of tumor-specific antigens.
Collapse
|
37
|
Zhang L, Ding Z, Xu H, Heyman B. Marginal zone B cells transport IgG3-immune complexes to splenic follicles. THE JOURNAL OF IMMUNOLOGY 2014; 193:1681-9. [PMID: 25015822 DOI: 10.4049/jimmunol.1400331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ag administered together with specific IgG3 induces a higher Ab response than Ag administered alone, an effect requiring the presence of complement receptors 1 and 2 (CR1/2). In this study, we have investigated the fate of Ag, the development of germinal centers (GCs), and the Ab response after i.v. administration of IgG3 anti-trinitrophenyl (TNP) in complex with OVA-TNP. After 2 h, OVA-TNP was detected on marginal zone (MZ) B cells, and a substantial amount of Ag was detected in splenic follicles and colocalized with follicular dendritic cells (FDCs). After 10 d, the percentage of GCs and the IgG responses were markedly higher than in mice immunized with uncomplexed OVA-TNP. The effects of IgG3 were dependent on CR1/2 known to be expressed on B cells and FDCs. Using bone marrow chimeric mice, we demonstrate that an optimal response to IgG3-Ag complexes requires that CR1/2 is expressed on both cell types. These data suggest that CR1/2(+) MZ B cells transport IgG3-Ag-C complexes from the MZ to the follicles, where they are captured by FDCs and induce GCs and IgG production. This pathway for initiating the transport of Ags into splenic follicles complements previously known B-cell dependent pathways where Ag is transported by 1) MZ B cells, binding large Ags-IgM-C complexes via CR1/2; 2) recirculating B cells, binding Ag via BCR; or 3) recirculating B cells, binding IgE-Ag complexes via the low-affinity receptor for IgE, CD23.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123, Uppsala, Sweden
| | - Zhoujie Ding
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123, Uppsala, Sweden
| | - Hui Xu
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123, Uppsala, Sweden
| |
Collapse
|
38
|
Sörman A, Zhang L, Ding Z, Heyman B. How antibodies use complement to regulate antibody responses. Mol Immunol 2014; 61:79-88. [PMID: 25001046 DOI: 10.1016/j.molimm.2014.06.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/03/2014] [Accepted: 06/07/2014] [Indexed: 02/06/2023]
Abstract
Antibodies, forming immune complexes with their specific antigen, can cause complete suppression or several 100-fold enhancement of the antibody response. Immune complexes containing IgG and IgM may activate complement and in such situations also complement components will be part of the immune complex. Here, we review experimental data on how antibodies via the complement system upregulate specific antibody responses. Current data suggest that murine IgG1, IgG2a, and IgG2b upregulate antibody responses primarily via Fc-receptors and not via complement. In contrast, IgM and IgG3 act via complement and require the presence of complement receptors 1 and 2 (CR1/2) expressed on both B cells and follicular dendritic cells. Complement plays a crucial role for antibody responses not only to antigen complexed to antibodies, but also to antigen administered alone. Lack of C1q, but not of Factor B or MBL, severely impairs antibody responses suggesting involvement of the classical pathway. In spite of this, normal antibody responses are found in mice lacking several activators of the classical pathway (complement activating natural IgM, serum amyloid P component (SAP), specific intracellular adhesion molecule-grabbing non-integrin R1 (SIGN-R1) or C-reactive protein. Possible explanations to these observations will be discussed.
Collapse
Affiliation(s)
- Anna Sörman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, BMC, SE-751 23 Uppsala, Sweden
| | - Lu Zhang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, BMC, SE-751 23 Uppsala, Sweden
| | - Zhoujie Ding
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, BMC, SE-751 23 Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, BMC, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
39
|
Cruz LJ, Rueda F, Simón L, Cordobilla B, Albericio F, Domingo JC. Liposomes containing NY-ESO-1/tetanus toxoid and adjuvant peptides targeted to human dendritic cells via the Fc receptor for cancer vaccines. Nanomedicine (Lond) 2014; 9:435-49. [DOI: 10.2217/nnm.13.66] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aim: To improve the immunological response against tumors, a vaccine based on nanoliposomes targeted to the Fcγ-receptor was developed to enhance the immunogenicity of tumor-associated antigens (TAAs). Materials & methods: Using human dendritic cells in vitro, a fragment of the TAA NY-ESO-1 combined with a T-helper peptide from the tetanus toxoid encapsulated in nanoliposomes was evaluated. In addition, peptides Palm-IL-1 and MAP-IFN-γwere coadministered as adjuvants to enhance the immunological response. Results: Coadministration of Palm-IL-1 or MAP-IFN-γpeptide adjuvants and the hybrid NY-ESO-1-tetanus toxoid (soluble or encapsulated in nanoliposomes without targeting) increased immunogenicity. However, the most potent immunological response was obtained when the peptide adjuvants were encapsulated in liposomes targeted to human dendritic cells via the Fc receptor. Conclusion: This targeted vaccine strategy is a promising tool to activate and deliver antigens to dendritic cells, thus improving immunotherapeutic response in situations in which the immune system is frequently compromised, as in advanced cancers.
Collapse
Affiliation(s)
- Luis J Cruz
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials & Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
- Institute for Research in Biomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Felix Rueda
- Department of Biochemistry & Molecular Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Lorena Simón
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials & Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
- Institute for Research in Biomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Begoña Cordobilla
- Department of Biochemistry & Molecular Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Fernando Albericio
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials & Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
- Institute for Research in Biomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
- Department of Organic Chemistry, University of Barcelona, Marti i Franques 1, 08028-Barcelona, Spain
- School of Chemistry, University of KwaZulu Natal, Durban, Kwa-Zulu Natal, 4000, South Africa
| | - Joan C Domingo
- Department of Biochemistry & Molecular Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
40
|
Abstract
Antibodies in complex with specific antigen can dramatically change the antibody response to this antigen. Depending on antibody class and type of antigen, >99 % suppression or >100-fold enhancement of the response can take place. IgM and IgG3 are efficient enhancers and operate via the complement system. In contrast, IgG1, IgG2a, and IgG2b enhance antibody and CD4(+) T cell responses to protein antigens via activating Fcγ-receptors. IgE also enhances antibody and CD4(+) T cell responses to small proteins but uses the low-affinity receptor for IgE, CD23. Most likely, IgM and IgG3 work by increasing the effective concentration of antigen on follicular dendritic cells in splenic follicles. IgG1, IgG2a, IgG2b, and IgE probably enhance antibody responses by increasing antigen presentation by dendritic cells to T helper cells. IgG antibodies of all subclasses have a dual effect, and suppress antibody responses to particulate antigens such as erythrocytes. This capacity is used in the clinic to prevent immunization of Rhesus-negative women to Rhesus-positive fetal erythrocytes acquired via transplacental hemorrage. IgG-mediated suppression in mouse models can take place in the absence of Fcγ-receptors and complement and to date no knock-out mouse strain has been found where suppression is abrogated.
Collapse
Affiliation(s)
- Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden,
| |
Collapse
|
41
|
Czajkowsky DM, Hu J, Shao Z, Pleass RJ. Fc-fusion proteins: new developments and future perspectives. EMBO Mol Med 2012; 4:1015-28. [PMID: 22837174 PMCID: PMC3491832 DOI: 10.1002/emmm.201201379] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/29/2012] [Accepted: 06/15/2012] [Indexed: 12/25/2022] Open
Abstract
Since the first description in 1989 of CD4-Fc-fusion antagonists that inhibit human immune deficiency virus entry into T cells, Fc-fusion proteins have been intensely investigated for their effectiveness to curb a range of pathologies, with several notable recent successes coming to market. These promising outcomes have stimulated the development of novel approaches to improve their efficacy and safety, while also broadening their clinical remit to other uses such as vaccines and intravenous immunoglobulin therapy. This increased attention has also led to non-clinical applications of Fc-fusions, such as affinity reagents in microarray devices. Here we discuss recent results and more generally applicable strategies to improve Fc-fusion proteins for each application, with particular attention to the newer, less charted areas.
Collapse
Affiliation(s)
- Daniel M Czajkowsky
- Key Laboratory of Systems Biomedicine (Ministry of Education) & State Key Laboratory of Oncogenes & Related Genes, Shanghai Jiao Tong University, Shanghai, P. R. China
| | | | | | | |
Collapse
|
42
|
van Montfoort N, Mangsbo SM, Camps MGM, van Maren WWC, Verhaart IEC, Waisman A, Drijfhout JW, Melief CJM, Verbeek JS, Ossendorp F. Circulating specific antibodies enhance systemic cross-priming by delivery of complexed antigen to dendritic cells in vivo. Eur J Immunol 2012; 42:598-606. [DOI: 10.1002/eji.201141613] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Live attenuated Salmonella vaccines against Mycobacterium tuberculosis with antigen delivery via the type III secretion system. Infect Immun 2011; 80:798-814. [PMID: 22144486 DOI: 10.1128/iai.05525-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis remains a global health threat, and there is dire need to develop a vaccine that is safe and efficacious and confers long-lasting protection. In this study, we constructed recombinant attenuated Salmonella vaccine (RASV) strains with plasmids expressing fusion proteins consisting of the 80 amino-terminal amino acids of the type 3 secretion system effector SopE of Salmonella and the Mycobacterium tuberculosis antigens early secreted antigenic target 6-kDa (ESAT-6) protein and culture filtrate protein 10 (CFP-10). We demonstrated that the SopE-mycobacterial antigen fusion proteins were translocated into the cytoplasm of INT-407 cells in cell culture assays. Oral immunization of mice with RASV strains synthesizing SopE-ESAT-6-CFP-10 fusion proteins resulted in significant protection of the mice against aerosol challenge with M. tuberculosis H37Rv that was similar to the protection afforded by immunization with Mycobacterium bovis bacillus Calmette-Guérin (BCG) administered subcutaneously. In addition, oral immunization with the RASV strains specifying these mycobacterial antigens elicited production of significant antibody titers to ESAT-6 and production of ESAT-6- or CFP-10-specific gamma interferon (IFN-γ)-secreting and tumor necrosis factor alpha (TNF-α)-secreting splenocytes.
Collapse
|
44
|
Zaharatos GJ, Yu J, Pace C, Song Y, Vasan S, Ho DD, Huang Y. HIV-1 and influenza antigens synthetically linked to IgG2a Fc elicit superior humoral responses compared to unmodified antigens in mice. Vaccine 2011; 30:42-50. [PMID: 22064264 DOI: 10.1016/j.vaccine.2011.10.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/21/2011] [Accepted: 10/23/2011] [Indexed: 01/19/2023]
Abstract
Using murine IgG subclass molecules (IgG1 or IgG2a) synthetically fused to HIV-1 or influenza test antigens, we explored the potential for IgG Fc scaffolds to augment immunogenicity. Each antigen (Ag) was grafted onto a hinge-Fc scaffold containing all critical residues necessary for interaction with effector cells, thus retaining effector functions of the native IgG subclass. We hypothesized that the differential affinity of FcγRs for specific IgG subclasses would influence the magnitude of immune responses elicited by immunization with an Ag-IgG Fc fusion vaccine. We demonstrate here that the antigen-specific humoral response elicited by Ag-IgG2a fusion vaccines is at least tenfold greater than that elicited by native antigen, that this response is superior to that elicited by Ag-IgG1, and that the augmented antigen-specific humoral response elicited is Fcγ receptor-dependent.
Collapse
Affiliation(s)
- Gerasimos J Zaharatos
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, 7th Floor, New York, NY 10016, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Cruz LJ, Rueda F, Cordobilla B, Simón L, Hosta L, Albericio F, Domingo JC. Targeting Nanosystems to Human DCs via Fc Receptor as an Effective Strategy to Deliver Antigen for Immunotherapy. Mol Pharm 2010; 8:104-16. [DOI: 10.1021/mp100178k] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Luis J. Cruz
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| | - Felix Rueda
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| | - Begoña Cordobilla
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| | - Lorena Simón
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| | - Leticia Hosta
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| | - Fernando Albericio
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| | - Joan Carles Domingo
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1, 08028 Barcelona, Spain, Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain, Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 10, 08028 Barcelona, Spain, and Department of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028 Barcelona, Spain
| |
Collapse
|
46
|
Torres-Escobar A, Juárez-Rodríguez MD, Branger CG, Curtiss R. Evaluation of the humoral immune response in mice orally vaccinated with live recombinant attenuated Salmonella enterica delivering a secreted form of Yersinia pestis PsaA. Vaccine 2010; 28:5810-6. [PMID: 20600475 DOI: 10.1016/j.vaccine.2010.06.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/15/2010] [Accepted: 06/22/2010] [Indexed: 12/25/2022]
Abstract
Yersinia pestis PsaA is an adhesin that is synthesized inside macrophages. Here, we evaluated the immune profile of codon-optimized Y. pestis PsaA synthesized in a live recombinant attenuated Salmonella vaccine (RASV) strain chi9558. Oral immunization of BALB/c mice with chi9558(pYA3705) delivering a secreted form of PsaA, elicited a systemic PsaA-specific immunoglobulin G (IgG) response but offered limited protection against lethal challenge with the intranasally introduced Y. pestis CO92 strain. Our results suggest that appropriate fine-tuning of Y. pestis PsaA delivery by RASV could improve its protective role in curtailing plague colonization and infection.
Collapse
Affiliation(s)
- Ascención Torres-Escobar
- Center for Infectious Disease and Vaccinology at the Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401, USA
| | | | | | | |
Collapse
|
47
|
Szekeres Z, Herbáth M, Angyal A, Szittner Z, Virág V, Balogh P, Erdei A, Prechl J. Modulation of immune response by combined targeting of complement receptors and low-affinity Fcγ receptors. Immunol Lett 2010; 130:66-73. [DOI: 10.1016/j.imlet.2009.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 12/02/2009] [Indexed: 01/20/2023]
|
48
|
Fine-tuning synthesis of Yersinia pestis LcrV from runaway-like replication balanced-lethal plasmid in a Salmonella enterica serovar typhimurium vaccine induces protection against a lethal Y. pestis challenge in mice. Infect Immun 2010; 78:2529-43. [PMID: 20308296 DOI: 10.1128/iai.00005-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A balanced-lethal plasmid expression system that switches from low-copy-number to runaway-like high-copy-number replication (pYA4534) was constructed for the regulated delayed in vivo synthesis of heterologous antigens by vaccine strains. This is an antibiotic resistance-free maintenance system containing the asdA gene (essential for peptidoglycan synthesis) as a selectable marker to complement the lethal chromosomal DeltaasdA allele in live recombinant attenuated Salmonella vaccines (RASVs) such as Salmonella enterica serovar Typhimurium strain chi9447. pYA4534 harbors two origins of replication, pSC101 and pUC (low and high copy numbers, respectively). The pUC replication origin is controlled by a genetic switch formed by the operator/promoter of the P22 cro gene (O/P(cro)) (P(R)), which is negatively regulated by an arabinose-inducible P22 c2 gene located on both the plasmid and the chromosome (araC P(BAD) c2). The absence of arabinose, which is unavailable in vivo, triggers replication to a high-copy-number plasmid state. To validate these vector attributes, the Yersinia pestis virulence antigen LcrV was used to develop a vaccine against plague. An lcrV sequence encoding amino acids 131 to 326 (LcrV196) was optimized for expression in Salmonella, flanked with nucleotide sequences encoding the signal peptide (SS) and the carboxy-terminal domain (CT) of beta-lactamase, and cloned into pYA4534 under the control of the P(trc) promoter to generate plasmid pYA4535. Our results indicate that the live Salmonella vaccine strain chi9447 harboring pYA4535 efficiently stimulated a mixed Th1/Th2 immune response that protected mice against lethal challenge with Y. pestis strain CO92 introduced through either the intranasal or subcutaneous route.
Collapse
|
49
|
Zarkhin V, Chalasani G, Sarwal MM. The yin and yang of B cells in graft rejection and tolerance. Transplant Rev (Orlando) 2010; 24:67-78. [PMID: 20149626 DOI: 10.1016/j.trre.2010.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Various lineages of B cells are being increasingly recognized as important players in the etiology and prognosis of both acute and chronic graft rejection. The role of immature, chronically activated B cells, as efficient antigen-presenting cells, supporting recalcitrant cell-mediated graft rejection and late lineage B cells driving humoral rejections, is being increasingly recognized. This review captures the recent literature on this subject and discusses the various roles of the B cell in renal graft rejection and conversely, also in graft tolerance, both in animal and human studies. In addition, novel therapies targeting specific B-cell lineages in graft rejection are also discussed, with a view to developing more targeted therapies for graft rejection.
Collapse
Affiliation(s)
- Valeriya Zarkhin
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
| | | | | |
Collapse
|
50
|
Devriendt B, Verdonck F, Summerfield A, Goddeeris BM, Cox E. Targeting of Escherichia coli F4 fimbriae to Fcgamma receptors enhances the maturation of porcine dendritic cells. Vet Immunol Immunopathol 2009; 135:188-98. [PMID: 20022123 DOI: 10.1016/j.vetimm.2009.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 11/17/2009] [Accepted: 11/23/2009] [Indexed: 12/14/2022]
Abstract
F4(+) enterotoxigenic Escherichia coli (ETEC) infections are an important cause of postweaning diarrhoea in piglets and an oral immunization of piglets with purified F4 fimbriae protects them from a subsequent F4(+) ETEC infection. However, oral immunization of suckling piglets is hampered due to the immature status of their immune system. Targeting of antigens to Fcgamma receptors (FcgammaR) on human and murine dendritic cells (DC) has been shown to enhance DC maturation and both humoral and cellular immune responses. To investigate the effect of F4 fimbriae incorporated in immune complexes (F4-IC) on porcine DC, we used porcine monocytic-derived DC (MoDC) as a model system. The results in this study demonstrate that FcgammaRI, II and III mRNA is expressed by porcine MoDC. Furthermore, we show that FcgammaRII and III are expressed on the cell surface and that F4-IC are internalized by MoDC via FcgammaR. This FcgammaR ligation induced a significantly enhanced expression of Major Histocompatibility complex (MHCII) class II and the costimulatory molecules CD80/86 and CD40 by MoDC compared with immature MoDC. Furthermore, the phagocytic capacity of F4-IC stimulated MoDC was reduced as evidenced by a reduced uptake of DQ-ovalbumin and FITC-dextran. In an allogenic and autologous mixed lymphocyte reaction, these F4-IC-activated MoDC showed an improved T cell stimulatory capacity in comparison with immature MoDC. The F4-IC induced DC maturation correlated with significant higher expression levels of several pro-inflammatory cytokines such as interleukine (IL) 1beta, IL-6 and Tumor necrosis factor alpha, the chemokine IL-8 and IL-12p40 in comparison with immature MoDC. Altogether, these results clearly demonstrate that FcgammaR engagement enhances the maturation of porcine MoDC, which may suggest that antigen targeting to FcgammaR on DC could improve vaccine design against infections.
Collapse
Affiliation(s)
- Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|