1
|
Liu H, Chen H, Yang Z, Wen Z, Gao Z, Liu Z, Liu L, Chen Y. Precision Nanovaccines for Potent Vaccination. JACS AU 2024; 4:2792-2810. [PMID: 39211600 PMCID: PMC11350730 DOI: 10.1021/jacsau.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Compared with traditional vaccines, nanoparticulate vaccines are especially suitable for delivering antigens of proteins, peptides, and nucleic acids and facilitating lymph node targeting. Moreover, apart from improving pharmacokinetics and safety, nanoparticulate vaccines assist antigens and molecular adjuvants in crossing biological barriers, targeting immune organs and antigen-presenting cells (APC), controlled release, and cross-presentation. However, the process that stimulates and orchestrates the immune response is complicated, involving spatiotemporal interactions of multiple cell types, including APCs, B cells, T cells, and macrophages. The performance of nanoparticulate vaccines also depends on the microenvironments of the target organs or tissues in different populations. Therefore, it is necessary to develop precise nanoparticulate vaccines that accurately regulate vaccine immune response beyond simply improving pharmacokinetics. This Perspective summarizes and highlights the role of nanoparticulate vaccines with precise size, shape, surface charge, and spatial management of antigen or adjuvant for a precision vaccination in regulating the distribution, targeting, and immune response. It also discusses the importance of the rational design of nanoparticulate vaccines based on the anatomical and immunological microstructure of the target tissues. Moreover, the target delivery and controlled release of nanovaccines should be taken into consideration in designing vaccines for achieving precise immune responses. Additionally, it shows that the nanovaccines remodel the suppressed tumor environment and modulate various immune cell responses which are also essential.
Collapse
Affiliation(s)
- Hong Liu
- College
of Chemistry and Molecular Science, Henan
University, Zhengzhou 450046, China
- Translational
Medical Center of Huaihe Hospital, Henan
University, Kaifeng 475004, China
| | - Haolin Chen
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zeyu Yang
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenfu Wen
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhan Gao
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhijia Liu
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Lixin Liu
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongming Chen
- College
of Chemistry and Molecular Science, Henan
University, Zhengzhou 450046, China
- State
Key Laboratory of Antiviral Drugs, Henan
University, Zhengzhou 450046, China
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Henderson E, Wilson K, Huynh G, Plebanski M, Corrie S. Bionano Interactions of Organosilica Nanoparticles with Myeloid Derived Immune Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43329-43340. [PMID: 39109853 DOI: 10.1021/acsami.4c08415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Investigating the interactions between nanomaterials and the cells they are likely to encounter in vivo is a critical aspect of designing nanomedicines for imaging and therapeutic applications. Immune cells such as dendritic cells, macrophages, and myeloid derived suppressor cells have a frontline role in the identification and removal of foreign materials from the body, with interactions shown to be heavily dependent on variables such as nanoparticle size, charge, and surface chemistry. Interactions such as cellular association or uptake of nanoparticles can lead to diminished functionality or rapid clearance from the body, making it critical to consider these interactions when designing and synthesizing nanomaterials for biomedical applications ranging from drug delivery to imaging and biosensing. We investigated the interactions between PEGylated organosilica nanoparticles and naturally endocytic immune cells grown from stem cells in murine bone marrow. Specifically, we varied the particle size from 60 nm up to 1000 nm and investigated the effects of size on immune cell association, activation, and maturation with these critical gatekeeper cells. These results will help inform future design parameters for in vitro and in vivo biomedical applications utilizing organosilica nanoparticles.
Collapse
Affiliation(s)
- Edward Henderson
- Department of Chemical and Biological Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Kirsty Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Gabriel Huynh
- Department of Chemical and Biological Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| |
Collapse
|
3
|
Li Y, Tian S, Ai Y, Hu Z, Ma C, Fu M, Xu Z, Li Y, Liu S, Zou Y, Zhou Y, Jin J. A nanoparticle vaccine displaying varicella-zoster virus gE antigen induces a superior cellular immune response than a licensed vaccine in mice and non-human primates. Front Immunol 2024; 15:1419634. [PMID: 39081325 PMCID: PMC11286566 DOI: 10.3389/fimmu.2024.1419634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Herpes zoster (HZ), also known as shingles, remains a significant global health issue and most commonly seen in elderly individuals with an early exposure history to varicella-zoster virus (VZV). Currently, the licensed vaccine Shingrix, which comprises a recombinant VZV glycoprotein E (gE) formulated with a potent adjuvant AS01B, is the most effective shingles vaccine on the market. However, undesired reactogenicity and increasing global demand causing vaccine shortage, prompting the development of novel shingles vaccines. Here, we developed novel vaccine candidates utilising multiple nanoparticle (NP) platforms to display the recombinant gE antigen, formulated in an MF59-biosimilar adjuvant. In naïve mice, all tested NP vaccines induced higher humoral and cellular immune responses than Shingrix, among which, the gEM candidate induced the highest cellular response. In live attenuated VZV (VZV LAV)-primed mouse and rhesus macaque models, the gEM candidate elicited superior cell-mediated immunity (CMI) over Shingrix. Collectively, we demonstrated that NP technology remains a suitable tool for developing shingles vaccine, and the reported gEM construct is a highly promising candidate in the next-generation shingles vaccine development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jing Jin
- Patronus Biotech Co. Ltd., Guangzhou, China
| |
Collapse
|
4
|
Laura Soriano Pérez M, Montironi I, Alejandro Funes J, Margineda C, Campra N, Noelia Cariddi L, José Garrido J, Molina M, Alustiza F. Nanogel-Mediated antigen delivery: Biocompatibility, immunogenicity, and potential for tailored vaccine design across species. Vaccine 2024; 42:3721-3732. [PMID: 38719694 DOI: 10.1016/j.vaccine.2024.04.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024]
Abstract
Nanotechnology has emerged as a promising avenue for enhancing the efficacy of vaccine delivery systems. This study investigates the utilization of nanogels as carriers for the model antigen ovalbumin, with a focus on in vivo assessments in equine and murine models. Nanogels, owing to their biocompatibility and tunable physicochemical properties, offer a versatile platform for efficient antigen encapsulation and controlled release. The encapsulation efficiency and physicochemical characteristics of ovalbumin-loaded nanogels were comprehensively characterized. In vitro biocompatibility was evaluated, finding excellent properties of these nanogels. In vivo evaluations were conducted on both equine and murine subjects, assessing immunogenicity through antibody and splenic cell response. Furthermore, the study propose the potential use of nanogels in tailoring immune responses through the modulation of antigen release kinetics. The results obtained in the in vitro assays showed an increase in the uptake of nanogels by APCs compared to free antigen (OVA). In mice, an absence of inflammatory response in the inoculation site was observed, without systemic damage in the evaluated organs. In addition, non-significant humoral response was found nor cellular proliferation and proinflammatory cytokine production, compared with a traditional adjuvant as aluminum hydroxide, in both animal models. These findings allow further insights into nanogel-based delivery systems and offer valuable insights into their application in various animal models. In conclusion, this research establishes the utility of nanogels as effective carriers for antigens-based vaccines, with interesting biocompatibility properties and highly taken affinity by antigen-presenting cells, without inducing inflammation at the injection site. The study underscores the potential of nanogel technology in revolutionizing vaccine design and highlights the importance of tailored approaches for diverse target species.
Collapse
Affiliation(s)
| | - Ivana Montironi
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | | | | | - Noelia Campra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Laura Noelia Cariddi
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Juan José Garrido
- Laboratorio de Inmunogenómica y Patogénesis Molecular, Departamento de Genética, Facultad de Medicina Veterinaria, Universidad de Córdoba, España
| | - Maria Molina
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.
| | | |
Collapse
|
5
|
Pan Y, Cheng J, Zhu Y, Zhang J, Fan W, Chen X. Immunological nanomaterials to combat cancer metastasis. Chem Soc Rev 2024; 53:6399-6444. [PMID: 38745455 DOI: 10.1039/d2cs00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metastasis causes greater than 90% of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of cancer due to its high heterogeneity and widespread dissemination to various organs. Therefore, it is imperative to combat cancer metastasis, which is the key to achieving complete cancer eradication. Immunotherapy as a systemic approach has shown promising potential to combat metastasis. However, current clinical immunotherapies are not effective for all patients or all types of cancer metastases owing to insufficient immune responses. In recent years, immunological nanomaterials with intrinsic immunogenicity or immunomodulatory agents with efficient loading have been shown to enhance immune responses to eliminate metastasis. In this review, we would like to summarize various types of immunological nanomaterials against metastasis. Moreover, this review will summarize a series of immunological nanomaterial-mediated immunotherapy strategies to combat metastasis, including immunogenic cell death, regulation of chemokines and cytokines, improving the immunosuppressive tumour microenvironment, activation of the STING pathway, enhancing cytotoxic natural killer cell activity, enhancing antigen presentation of dendritic cells, and enhancing chimeric antigen receptor T cell therapy. Furthermore, the synergistic anti-metastasis strategies based on the combinational use of immunotherapy and other therapeutic modalities will also be introduced. In addition, the nanomaterial-mediated imaging techniques (e.g., optical imaging, magnetic resonance imaging, computed tomography, photoacoustic imaging, surface-enhanced Raman scattering, radionuclide imaging, etc.) for detecting metastasis and monitoring anti-metastasis efficacy are also summarized. Finally, the current challenges and future prospects of immunological nanomaterial-based anti-metastasis are also elucidated with the intention to accelerate its clinical translation.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Junjie Cheng
- Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| |
Collapse
|
6
|
Erensoy G, Råberg L, von Mentzer U, Menges LD, Bardhi E, Hultgård Ekwall AK, Stubelius A. Dynamic Release from Acetalated Dextran Nanoparticles for Precision Therapy of Inflammation. ACS APPLIED BIO MATERIALS 2024; 7:3810-3820. [PMID: 38795048 PMCID: PMC11191005 DOI: 10.1021/acsabm.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/27/2024]
Abstract
Polymer-based nanoparticles (NPs) that react to altered physiological characteristics have the potential to enhance the delivery of therapeutics to a specific area. These materials can utilize biochemical triggers, such as low pH, which is prone to happen locally in an inflammatory microenvironment due to increased cellular activity. This reduced pH is neutralized when inflammation subsides. For precise delivery of therapeutics to match this dynamic reaction, drug delivery systems (DDS) need to not only release the drug (ON) but also stop the release (OFF) autonomously. In this study, we use a systematic approach to optimize the composition of acetalated dextran (AcDex) NPs to start (ON) and stop (OFF) releasing model cargo, depending on local pH changes. By mixing ratios of AcDex polymers (mixed NPs), we achieved a highly sensitive material that was able to rapidly release cargo when going from pH 7.4 to pH 6.0. At the same time, the mix also offered a stable composition that enabled a rapid ON/OFF/ON/OFF switching within this narrow pH range in only 90 min. These mixed NPs were also sensitive to biological pH changes, with increased release in the presence of inflammatory cells compared to healthy cells. Such precise and controllable characteristics of a DDS position mixed NPs as a potential treatment platform to inhibit disease flare-ups, reducing both systemic and local side effects to offer a superior treatment option for inflammation compared to conventional systems.
Collapse
Affiliation(s)
- Gizem Erensoy
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Loise Råberg
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Ula von Mentzer
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Luca Dirk Menges
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Endri Bardhi
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Anna-Karin Hultgård Ekwall
- The
Rheumatology Clinic, Sahlgrenska University
Hospital, Gothenburg 413 45, Sweden
- Department
of Rheumatology and Inflammation Research, Institute of Medicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 46, Sweden
| | - Alexandra Stubelius
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
7
|
Jose J, M N V, R G B, Jose AS, Jubin J. The Intellectual Landscape of Nanovaccines: A Bibliometric Perspective on Scientific Progress and Future Directions. Cureus 2024; 16:e60131. [PMID: 38868255 PMCID: PMC11167401 DOI: 10.7759/cureus.60131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2024] [Indexed: 06/14/2024] Open
Abstract
This bibliometric study provides a comprehensive analysis of the burgeoning field of nanovaccine research, leveraging data sourced from Scopus and employing the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) flowchart for the meticulous screening, inclusion, and exclusion of relevant studies. Utilizing sophisticated bibliometric tools, such as Biblioshiny and CiteSpace, we dissected the expansive literature to unearth critical insights into the annual scientific output, identifying key contributors and pivotal publications that have shaped the domain. The analysis delineates the most influential authors, sources, and globally cited documents, offering a macroscopic view of the field's intellectual structure and growth trajectory. Trend topics and thematic mapping underscored the evolution of research foci, from fundamental immunological mechanisms to cutting-edge nanomaterial applications. Factorial analysis and keyword co-occurrence networks revealed the intricate associations and thematic concentrations within the literature. The study's robust methodology also pinpointed the keywords exhibiting the strongest citation bursts, signifying emergent areas of intense academic interest. Networks of cited authors illuminated collaborative patterns among scholars, while timeline network visualizations of country collaborations depicted the global interplay in nanovaccine development. Crucially, this study identified notable research gaps and practical implications, suggesting directions for future investigation and highlighting the translational potential of nanovaccines in public health and personalized medicine. This bibliometric investigation not only maps the current landscape but also charts a course for the trajectory of nanovaccine research, emphasizing its role as a cornerstone of innovative immunotherapeutic strategies.
Collapse
Affiliation(s)
- Jobin Jose
- Library, Marian College Kuttikkanam (Autonomous), Kuttikkanam, IND
| | - Vinoj M N
- Physics, St. Peter's College, Kolenchery, Kolenchery, IND
| | - Bindu R G
- Physics, Nair Service Society (NSS) College, Nilamel, Kollam, IND
| | | | - Jacob Jubin
- Library, St. Thomas College, Palai (Autonomous), Palai, IND
| |
Collapse
|
8
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
9
|
Dolce M, Proietti D, Principato S, Giusti F, Adamo GM, Favaron S, Ferri E, Margarit I, Romano MR, Scarselli M, Carboni F. Impact of Protein Nanoparticle Shape on the Immunogenicity of Antimicrobial Glycoconjugate Vaccines. Int J Mol Sci 2024; 25:3736. [PMID: 38612547 PMCID: PMC11011275 DOI: 10.3390/ijms25073736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Protein self-assembling nanoparticles (NPs) can be used as carriers for antigen delivery to increase vaccine immunogenicity. NPs mimic the majority of invading pathogens, inducing a robust adaptive immune response and long-lasting protective immunity. In this context, we investigated the potential of NPs of different sizes and shapes-ring-, rod-like, and spherical particles-as carriers for bacterial oligosaccharides by evaluating in murine models the role of these parameters on the immune response. Oligosaccharides from Neisseria meningitidis type W capsular polysaccharide were conjugated to ring-shape or nanotubes of engineered Pseudomonas aeruginosa Hemolysin-corregulated protein 1 (Hcp1cc) and to spherical Helicobacter pylori ferritin. Glycoconjugated NPs were characterized using advanced technologies such as High-Performance Liquid Chromatography (HPLC), Asymmetric Flow-Field Flow fractionation (AF4), and Transmission electron microscopy (TEM) to verify their correct assembly, dimensions, and glycosylation degrees. Our results showed that spherical ferritin was able to induce the highest immune response in mice against the saccharide antigen compared to the other glycoconjugate NPs, with increased bactericidal activity compared to benchmark MenW-CRM197. We conclude that shape is a key attribute over size to be considered for glycoconjugate vaccine development.
Collapse
Affiliation(s)
- Marta Dolce
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- GSK, 53100 Siena, Italy
| | | | | | | | | | - Sara Favaron
- GSK, 53100 Siena, Italy
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Hou F, Guo Z, Ho MT, Hui Y, Zhao CX. Particle-Based Artificial Antigen-Presenting Cell Systems for T Cell Activation in Adoptive T Cell Therapy. ACS NANO 2024; 18:8571-8599. [PMID: 38483840 DOI: 10.1021/acsnano.3c10180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
T cell-based adoptive cell therapy (ACT) has emerged as a promising treatment for various diseases, particularly cancers. Unlike other immunotherapy modalities, ACT involves directly transferring engineered T cells into patients to eradicate diseased cells; hence, it necessitates methods for effectively activating and expanding T cells in vitro. Artificial antigen-presenting cells (aAPCs) have been widely developed based on biomaterials, particularly micro- and nanoparticles, and functionalized with T cell stimulatory antibodies to closely mimic the natural T cell-APC interactions. Due to their vast clinical utility, aAPCs have been employed as an off-the-shelf technology for T cell activation in FDA-approved ACTs, and the development of aAPCs is constantly advancing with the emergence of aAPCs with more sophisticated designs and additional functionalities. Here, we review the recent advancements in particle-based aAPCs for T cell activation in ACTs. Following a brief introduction, we first describe the manufacturing processes of ACT products. Next, the design and synthetic strategies for micro- and nanoparticle-based aAPCs are discussed separately to emphasize their features, advantages, and limitations. Then, the impact of design parameters of aAPCs, such as size, shape, ligand density/mobility, and stiffness, on their functionality and biomedical performance is explored to provide deeper insights into the design concepts and principles for more efficient and safer aAPCs. The review concludes by discussing current challenges and proposing future perspectives for the development of more advanced aAPCs.
Collapse
Affiliation(s)
- Fei Hou
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Zichao Guo
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Minh Trang Ho
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yue Hui
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Chun-Xia Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
11
|
Dehghankhold M, Sadat Abolmaali S, Nezafat N, Mohammad Tamaddon A. Peptide nanovaccine in melanoma immunotherapy. Int Immunopharmacol 2024; 129:111543. [PMID: 38301413 DOI: 10.1016/j.intimp.2024.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Melanoma is an especially fatal neoplasm resistant to traditional treatment. The advancement of novel therapeutical approaches has gained attention in recent years by shedding light on the molecular mechanisms of melanoma tumorigenesis and their powerful interplay with the immune system. The presence of many mutations in melanoma cells results in the production of a varied array of antigens. These antigens can be recognized by the immune system, thereby enabling it to distinguish between tumors and healthy cells. In the context of peptide cancer vaccines, generally, they are designed based on tumor antigens that stimulate immunity through antigen-presenting cells (APCs). As naked peptides often have low potential in eliciting a desirable immune reaction, immunization with such compounds usually necessitates adjuvants and nanocarriers. Actually, nanoparticles (NPs) can provide a robust immune response to peptide-based melanoma vaccines. They improve the directing of peptide vaccines to APCs and induce the secretion of cytokines to get maximum immune response. This review provides an overview of the current knowledge of the utilization of nanotechnology in peptide vaccines emphasizing melanoma, as well as highlights the significance of physicochemical properties in determining the fate of these nanovaccines in vivo, including their drainage to lymph nodes, cellular uptake, and influence on immune responses.
Collapse
Affiliation(s)
- Mahvash Dehghankhold
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Computational vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Elbohy OA, Iqbal M, Daly JM, Dunham SP. Development of Virus-like Particle Plant-Based Vaccines against Avian H5 and H9 Influenza A Viruses. Vet Sci 2024; 11:93. [PMID: 38393111 PMCID: PMC10891754 DOI: 10.3390/vetsci11020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Avian influenza A virus (AIV) is a significant cause of mortality in poultry, causing substantial economic loss, particularly in developing countries, and has zoonotic potential. For example, highly pathogenic avian influenza (HPAI) viruses of the H5 subtype have been circulating in Egypt for around two decades. In the last decade, H5N1 viruses of clade 2.2.1 have been succeeded by the antigenically distinct H5N8 clade 2.3.4.4b viruses. Furthermore, H9N2 viruses co-circulate with the H5N8 viruses in Egyptian poultry. It is widely recognised that effective vaccination against IAV requires a close antigenic match between the vaccine and viruses circulating in the field. Therefore, approaches to develop cost-effective vaccines that can be rapidly adapted to local virus strains are required for developing countries such as Egypt. In this project, the haemagglutinin (HA) proteins of Egyptian H5 and H9 viruses were expressed by transient transfection of plants (Nicotiana benthamiana). The formation of virus-like particles (VLPs) was confirmed by transmission electron microscopy. Mice were immunised with four doses of either H5 or H9 VLPs with adjuvant. Antibody and cellular immune responses were measured against the corresponding recombinant protein using ELISA and enzyme-linked immunosorbent assay (ELISpot), respectively. Chickens were immunised with one dose of H5 VLPs, eliciting HA-specific antibodies measured by ELISA and a pseudotyped virus neutralisation test using a heterologous H5 HA. In conclusion, plant-based VLP vaccines have potential for producing an effective vaccine candidate within a short time at a relatively low cost.
Collapse
Affiliation(s)
- Ola A Elbohy
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Munir Iqbal
- Avian Influenza Group and Newcastle Disease, The Pirbright Institute, Woking GU24 0NF, UK
| | - Janet M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Stephen P Dunham
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| |
Collapse
|
13
|
Ninyio N, Schmitt K, Sergon G, Nilsson C, Andersson S, Scherbak N. Stable expression of HIV-1 MPER extended epitope on the surface of the recombinant probiotic bacteria Escherichia Coli Nissle 1917 using CRISPR/Cas9. Microb Cell Fact 2024; 23:39. [PMID: 38311724 PMCID: PMC10840157 DOI: 10.1186/s12934-023-02290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Mucosal vaccines have the potential to induce protective immune responses at the sites of infection. Applying CRISPR/Cas9 editing, we aimed to develop a probiotic-based vaccine candidate expressing the HIV-1 envelope membrane-proximal external region (MPER) on the surface of E. coli Nissle 1917. RESULTS The HIV-1 MPER epitope was successfully introduced in the porin OmpF of the E. coli Nissle 1917 (EcN-MPER) and the modification was stable over 30 passages of the recombinant bacteria on the DNA and protein level. Furthermore, the introduced epitope was recognized by a human anti-HIV-1 gp41 (2F5) antibody using both live and heat-killed EcN-MPER, and this antigenicity was also retained over 30 passages. Whole-cell dot blot suggested a stronger binding of anti-HIV-1 gp41 (2F5) to heat-killed EcN-MPER than their live counterpart. An outer membrane vesicle (OMV) - rich extract from EcN-MPER culture supernatant was equally antigenic to anti-HIV-1 gp41 antibody which suggests that the MPER antigen could be harboured in EcN-MPER OMVs. Using quantitative ELISA, we determined the amount of MPER produced by the modified EcN to be 14.3 µg/108 cfu. CONCLUSIONS The CRISPR/Cas9 technology was an effective method for establishment of recombinant EcN-MPER bacteria that was stable over many passages. The developed EcN-MPER clone was devoid of extraneous plasmids and antibiotic resistance genes which eliminates the risk of plasmid transfer to animal hosts, should this clone be used as a vaccine. Also, the EcN-MPER clone was recognised by anti-HIV-1 gp41 (2F5) both as live and heat-killed bacteria making it suitable for pre-clinical evaluation. Expression of OmpF on bacterial surfaces and released OMVs identifies it as a compelling candidate for recombinant epitope modification, enabling surface epitope presentation on both bacteria and OMVs. By applying the methods described in this study, we present a potential platform for cost-effective and rational vaccine antigen expression and administration, offering promising prospects for further research in the field of vaccine development.
Collapse
Affiliation(s)
- Nathaniel Ninyio
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Katharina Schmitt
- School of Science and Technology, Life Science Center, Örebro University, Örebro, Sweden
- Institute of Virology, Saarland University Medical Center, 66421, Homburg, Germany
| | - Gladys Sergon
- School of Science and Technology, Life Science Center, Örebro University, Örebro, Sweden
| | - Charlotta Nilsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Sören Andersson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Public Health Analysis and Data Management, Unit for Vaccination Programmes, Public Health Agency of Sweden, Solna, Sweden
| | - Nikolai Scherbak
- School of Science and Technology, Life Science Center, Örebro University, Örebro, Sweden.
| |
Collapse
|
14
|
Huete-Carrasco J, Lynch RI, Ward RW, Lavelle EC. Rational design of polymer-based particulate vaccine adjuvants. Eur J Immunol 2024; 54:e2350512. [PMID: 37994660 DOI: 10.1002/eji.202350512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Vaccination is considered one of the major milestones in modern medicine, facilitating the control and eradication of life-threatening infectious diseases. Vaccine adjuvants are a key component of many vaccines, serving to steer antigen-specific immune responses and increase their magnitude. Despite major advances in the field of adjuvant research over recent decades, our understanding of their mechanism of action remains incomplete. This hinders our capacity to further improve these adjuvant technologies, so addressing how adjuvants induce and control the induction of innate and adaptive immunity is a priority. Investigating how adjuvant physicochemical properties, such as size and charge, exert immunomodulatory effects can provide valuable insights and serve as the foundation for the rational design of vaccine adjuvants. Most clinically applied adjuvants are particulate in nature and polymeric particulate adjuvants present advantages due to stability, biocompatibility profiles, and flexibility in terms of formulation. These properties can impact on antigen release kinetics and biodistribution, cellular uptake and targeting, and drainage to the lymphatics, consequently dictating the induction of innate, cellular, and humoral adaptive immunity. A current focus is to apply rational design principles to the development of adjuvants capable of eliciting robust cellular immune responses including CD8+ cytotoxic T-cell and Th1-biased CD4+ T-cell responses, which are required for vaccines against intracellular pathogens and cancer. This review highlights recent advances in our understanding of how particulate adjuvants, especially polymer-based particulates, modulate immune responses and how this can be used as a guide for improved adjuvant design.
Collapse
Affiliation(s)
- Jorge Huete-Carrasco
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Roisin I Lynch
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Ross W Ward
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Khazaei S, Varela-Calviño R, Rad-Malekshahi M, Quattrini F, Jokar S, Rezaei N, Balalaie S, Haririan I, Csaba N, Garcia-Fuentes M. Self-assembled peptide/polymer hybrid nanoplatform for cancer immunostimulating therapies. Drug Deliv Transl Res 2024; 14:455-473. [PMID: 37721693 PMCID: PMC10761384 DOI: 10.1007/s13346-023-01410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 09/19/2023]
Abstract
Integrating peptide epitopes in self-assembling materials is a successful strategy to obtain nanovaccines with high antigen density and improved efficacy. In this study, self-assembling peptides containing MAGE-A3/PADRE epitopes were designed to generate functional therapeutic nanovaccines. To achieve higher stability, peptide/polymer hybrid nanoparticles were formulated by controlled self-assembly of the engineered peptides. The nanoparticles showed good biocompatibility to both human red blood- and dendritic cells. Incubation of the nanoparticles with immature dendritic cells triggered immune effects that ultimately activated CD8 + cells. The antigen-specific and IgG antibody responses of healthy C57BL/6 mice vaccinated with the nanoparticles were analyzed. The in vivo results indicate a specific response to the nanovaccines, mainly mediated through a cellular pathway. This research indicates that the immunogenicity of peptide epitope vaccines can be effectively enhanced by developing self-assembled peptide-polymer hybrid nanostructures.
Collapse
Affiliation(s)
- Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ruben Varela-Calviño
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Federico Quattrini
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Noemi Csaba
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Marcos Garcia-Fuentes
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Center and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
16
|
Gholap AD, Gupta J, Kamandar P, Bhowmik DD, Rojekar S, Faiyazuddin M, Hatvate NT, Mohanto S, Ahmed MG, Subramaniyan V, Kumarasamy V. Harnessing Nanovaccines for Effective Immunization─A Special Concern on COVID-19: Facts, Fidelity, and Future Prospective. ACS Biomater Sci Eng 2024; 10:271-297. [PMID: 38096426 DOI: 10.1021/acsbiomaterials.3c01247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Nanotechnology has emerged as a transformative pathway in vaccine research and delivery. Nanovaccines, encompassing lipid and nonlipid formulations, exhibit considerable advantages over traditional vaccine techniques, including enhanced antigen stability, heightened immunogenicity, targeted distribution, and the potential for codelivery with adjuvants or immune modulators. This review provides a comprehensive overview of the latest advancements and applications of lipid and non-lipid-based nanovaccines in current vaccination strategies for immunization. The review commences by outlining the fundamental concepts underlying lipid and nonlipid nanovaccine design before delving into the diverse components and production processes employed in their development. Subsequently, a comparative analysis of various nanocarriers is presented, elucidating their distinct physicochemical characteristics and impact on the immune response, along with preclinical and clinical studies. The discussion also highlights how nanotechnology enables the possibility of personalized and combined vaccination techniques, facilitating the creation of tailored nanovaccines to meet the individual patient needs. The ethical aspects concerning the use of nanovaccines, as well as potential safety concerns and public perception, are also addressed. The study underscores the gaps and challenges that must be overcome before adopting nanovaccines in clinical practice. This comprehensive analysis offers vital new insights into lipid and nonlipid nanovaccine status. It emphasizes the significance of continuous research, collaboration among interdisciplinary experts, and regulatory measures to fully unlock the potential of nanotechnology in enhancing immunization and ensuring a healthier, more resilient society.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Juhi Gupta
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Pallavi Kamandar
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Deblina D Bhowmik
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Md Faiyazuddin
- Department of Pharmaceutics, School of Pharmacy, Al-Karim University, Katihar 854106, Bihar, India
| | - Navnath T Hatvate
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangaluru 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangaluru 575018, Karnataka, India
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Shi Y, Zhang Y, Zhu L, Miao Y, Zhu Y, Yue B. Tailored Drug Delivery Platforms: Stimulus-Responsive Core-Shell Structured Nanocarriers. Adv Healthc Mater 2024; 13:e2301726. [PMID: 37670419 DOI: 10.1002/adhm.202301726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Indexed: 09/07/2023]
Abstract
Core-shell structured nanocarriers have come into the scientific spotlight in recent years due to their intriguing properties and wide applications in materials chemistry, biology, and biomedicine. Tailored core-shell structures to achieve desired performance have emerged as a research frontier in the development of smart drug delivery system. However, systematic reviews on the design and loading/release mechanisms of stimulus-responsive core-shell structured nanocarriers are uncommon. This review starts with the categories of core-shell structured nanocarriers with different means of drug payload, and then highlights the controlled release mechanism realized through stimulus-response processes triggered under different environments. Finally, some multifaceted perspectives on the design of core-shell structured materials as drug carriers are addressed. This work aims to provide new enlightenments and prospects in the drug delivery field for further developing advanced and smart nanocarriers.
Collapse
Affiliation(s)
- Yulong Shi
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yiran Zhang
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yueqi Zhu
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Bingbing Yue
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
| |
Collapse
|
18
|
Neun BW, Cedrone E, Dobrovolskaia MA. Analysis of Nanoparticle Adjuvant Properties. Methods Mol Biol 2024; 2789:209-216. [PMID: 38507006 DOI: 10.1007/978-1-0716-3786-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Nanoparticles can be engineered for targeted antigen delivery to immune cells and for stimulating an immune response to improve the antigen immunogenicity. This approach is commonly used to develop nanotechnology-based vaccines. In addition, some nanotechnology platforms may be initially designed for drug delivery, but in the course of subsequent characterization, additional immunomodulatory functions may be discovered that can potentially benefit vaccine efficacy. In both of these scenarios, an in vivo proof of concept study to verify the utility of the nanocarrier for improving vaccine efficacy is needed. Here we describe an experimental approach and considerations for designing an animal study to test adjuvant properties of engineered nanomaterials in vivo.
Collapse
Affiliation(s)
- Barry W Neun
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Edward Cedrone
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
19
|
Huang J, Guo Y, Yu S, Wang D, Li S, Wu J, Sun P, Zhu L, Wang H, Pan C. One-step preparation of a self-assembled bioconjugate nanovaccine against Brucella. Virulence 2023; 14:2280377. [PMID: 37981707 PMCID: PMC10732601 DOI: 10.1080/21505594.2023.2280377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023] Open
Abstract
Brucellosis, caused by Brucella, is a severe zoonosis, and the current Brucella live attenuated vaccine cannot be used in humans due to major safety risks. Although polysaccharide antigens can be used to prepare the Brucella vaccine, their lower immunogenicity limits them from producing efficient and broad protection. In this study, we produced a high-performance bioconjugate nanovaccine against different species of Brucella by introducing a self-assembly nanoparticle platform and an O-linked glycosylation system into Yersinia enterocolitica serotype O:9, which has an O-polysaccharide composed of the same unit as Brucella. After successfully preparing the vaccine and confirming its stability, we subsequently demonstrated the safety of the vaccine in mice by high-dose immunization. Then, by a series of mouse experiments, we found that the nanovaccine greatly promoted antibody responses. In particular, the increase of IgG2a was more obvious than that of IgG1. Most importantly, this nanovaccine could provide cross-protection against B. abortus, B. melitensis, and B. suis strains by lethal dose challenged models, and could improve the clearance of B. melitensis, the most common pathogenic species in human brucellosis, by non-lethal dose infection. Overall, for the first time, we biocoupled polysaccharide antigens with nano carriers to prepare a Brucella vaccine, which showed pronounced and extensive protective effects in mice. Thus, we provided a potential candidate vaccine and a new direction for Brucella vaccine design.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Shujuan Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Dongshu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Shulei Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
20
|
Mellid-Carballal R, Gutierrez-Gutierrez S, Rivas C, Garcia-Fuentes M. Viral protein-based nanoparticles (part 2): Pharmaceutical applications. Eur J Pharm Sci 2023; 189:106558. [PMID: 37567394 DOI: 10.1016/j.ejps.2023.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Viral protein nanoparticles (ViP NPs) such as virus-like particles and virosomes are structures halfway between viruses and synthetic nanoparticles. The biological nature of ViP NPs endows them with the biocompatibility, biodegradability, and functional properties that many synthetic nanoparticles lack. At the same time, the absence of a viral genome avoids the safety concerns of viruses. Such characteristics of ViP NPs offer a myriad of opportunities for theirapplication at several points across disease development: from prophylaxis to diagnosis and treatment. ViP NPs present remarkable immunostimulant properties, and thus the vaccination field has benefited the most from these platforms capable of overcoming the limitations of both traditional and subunit vaccines. This was reflected in the marketing authorization of several VLP- and virosome-based vaccines. Besides, ViP NPs inherit the ability of viruses to deliver their cargo to target cells. Because of that, ViP NPs are promising candidates as vectors for drug and gene delivery, and for diagnostic applications. In this review, we analyze the pharmaceutical applications of ViP NPs, describing the products that are commercially available or under clinical evaluation, but also the advances that scientists are making toward the implementation of ViP NPs in other areas of major pharmaceutical interest.
Collapse
Affiliation(s)
- Rocio Mellid-Carballal
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Sara Gutierrez-Gutierrez
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Carmen Rivas
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain; Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB)-CSIC, Spain
| | - Marcos Garcia-Fuentes
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain.
| |
Collapse
|
21
|
Sadr S, Poorjafari Jafroodi P, Haratizadeh MJ, Ghasemi Z, Borji H, Hajjafari A. Current status of nano-vaccinology in veterinary medicine science. Vet Med Sci 2023; 9:2294-2308. [PMID: 37487030 PMCID: PMC10508510 DOI: 10.1002/vms3.1221] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/11/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023] Open
Abstract
Vaccination programmes provide a safe, effective and cost-efficient strategy for maintaining population health. In veterinary medicine, vaccination not only reduces disease within animal populations but also serves to enhance public health by targeting zoonoses. Nevertheless, for many pathogens, an effective vaccine remains elusive. Recently, nanovaccines have proved to be successful for various infectious and non-infectious diseases of animals. These novel technologies, such as virus-like particles, self-assembling proteins, polymeric nanoparticles, liposomes and virosomes, offer great potential for solving many of the vaccine production challenges. Their benefits include low immunotoxicity, antigen stability, enhanced immunogenicity, flexibility sustained release and the ability to evoke both humoral and cellular immune responses. Nanovaccines are more efficient than traditional vaccines due to ease of control and plasticity in their physio-chemical properties. They use a highly targeted immunological approach which can provide strong and long-lasting immunity. This article reviews the currently available nanovaccine technology and considers its utility for both infectious diseases and non-infectious diseases such as auto-immunity and cancer. Future research opportunities and application challenges from bench to clinical usage are also discussed.
Collapse
Affiliation(s)
- Soheil Sadr
- Department of Clinical SciencesFaculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | | | | | - Zahra Ghasemi
- Department of Clinical SciencesFaculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Hassan Borji
- Department of PathobiologyFaculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Ashkan Hajjafari
- Department of PathobiologyFaculty of Veterinary MedicineIslamic Azad University, Science and Research BranchTehranIran
| |
Collapse
|
22
|
Ben-Akiva E, Hickey JW, Meyer RA, Isser A, Shannon SR, Livingston NK, Rhodes KR, Kosmides AK, Warren TR, Tzeng SY, Schneck JP, Green JJ. Shape matters: Biodegradable anisotropic nanoparticle artificial antigen presenting cells for cancer immunotherapy. Acta Biomater 2023; 160:187-197. [PMID: 36812956 PMCID: PMC10335041 DOI: 10.1016/j.actbio.2023.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
Artificial antigen presenting cells are biomimetic particles that recapitulate the signals presented by natural antigen presenting cells in order to stimulate T cells in an antigen-specific manner using an acellular platform. We have engineered an enhanced nanoscale biodegradable artificial antigen presenting cell by modulating particle shape to achieve a nanoparticle geometry that allows for increased radius of curvature and surface area for T cell contact. The non-spherical nanoparticle artificial antigen presenting cells developed here have reduced nonspecific uptake and improved circulation time compared both to spherical nanoparticles and to traditional microparticle technologies. Additionally, the anisotropic nanoparticle artificial antigen presenting cells efficiently engage with and activate T cells, ultimately leading to a marked anti-tumor effect in a mouse melanoma model that their spherical counterparts were unable to achieve. STATEMENT OF SIGNIFICANCE: Artificial antigen presenting cells (aAPC) can activate antigen-specific CD8+ T cells but have largely been limited to microparticle-based platforms and ex vivo T cell expansion. Although more amenable to in vivo use, nanoscale aAPC have traditionally been ineffective due to limited surface area available for T cell interaction. In this work, we engineered non-spherical biodegradable nanoscale aAPC to investigate the role of particle geometry and develop a translatable platform for T cell activation. The non-spherical aAPC developed here have increased surface area and a flatter surface for T cell engagement and, therefore, can more effectively stimulate antigen-specific T cells, resulting in anti-tumor efficacy in a mouse melanoma model.
Collapse
Affiliation(s)
- Elana Ben-Akiva
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - John W Hickey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Randall A Meyer
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ariel Isser
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sydney R Shannon
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Natalie K Livingston
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kelly R Rhodes
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Alyssa K Kosmides
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Tiarra R Warren
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jonathan P Schneck
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
23
|
Multiepitope Subunit Peptide-Based Nanovaccine against Porcine Circovirus Type 2 (PCV2) Elicited High Antibody Titers in Vaccinated Mice. Molecules 2023; 28:molecules28052248. [PMID: 36903494 PMCID: PMC10005372 DOI: 10.3390/molecules28052248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Porcine circovirus 2 (PCV2) infection is one of the most serious threats to the swine industry. While the disease can be prevented, to some extent, by commercial PCV2a vaccines, the evolving nature of PCV2 necessitates the development of a novel vaccine that can compete with the mutations of the virus. Thus, we have developed novel multiepitope vaccines based on the PCV2b variant. Three PCV2b capsid protein epitopes, together with a universal T helper epitope, were synthesized and formulated with five delivery systems/adjuvants: complete Freund's adjuvant, poly(methyl acrylate) (PMA), poly(hydrophobic amino acid), liposomes and rod-shaped polymeric nanoparticles built from polystyrene-poly(N-isopropylacrylamide)-poly(N-dimethylacrylamide). Mice were subcutaneously immunized with the vaccine candidates three times at three-week intervals. All vaccinated mice produced high antibody titters after three immunizations as analyzed by the enzyme-linked immunosorbent assay (ELISA), while mice vaccinated with PMA-adjuvanted vaccine elicited high antibody titers even after a single immunization. Thus, the multiepitope PCV2 vaccine candidates designed and examined here show strong potential for further development.
Collapse
|
24
|
VelcroVax: a "Bolt-On" Vaccine Platform for Glycoprotein Display. mSphere 2023; 8:e0056822. [PMID: 36719225 PMCID: PMC9942589 DOI: 10.1128/msphere.00568-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Having varied approaches to the design and manufacture of vaccines is critical in being able to respond to worldwide needs and newly emerging pathogens. Virus-like particles (VLPs) form the basis of two of the most successful licensed vaccines (against hepatitis B virus [HBV] and human papillomavirus). They are produced by recombinant expression of viral structural proteins, which assemble into immunogenic nanoparticles. VLPs can be modified to present unrelated antigens, and here we describe a universal "bolt-on" platform (termed VelcroVax) where the capturing VLP and the target antigen are produced separately. We utilize a modified HBV core (HBcAg) VLP with surface expression of a high-affinity binding sequence (Affimer) directed against a SUMO tag and use this to capture SUMO-tagged gp1 glycoprotein from the arenavirus Junín virus (JUNV). Using this model system, we have solved the first high-resolution structures of VelcroVax VLPs and shown that the VelcroVax-JUNV gp1 complex induces superior humoral immune responses compared to the noncomplexed viral protein. We propose that this system could be modified to present a range of antigens and therefore form the foundation of future rapid-response vaccination strategies. IMPORTANCE The hepatitis B core protein (HBc) forms noninfectious virus-like particles, which can be modified to present a capturing molecule, allowing suitably tagged antigens to be bound on their surface. This system can be adapted and provides the foundation for a universal "bolt-on" vaccine platform (termed VelcroVax) that can be easily and rapidly modified to generate nanoparticle vaccine candidates.
Collapse
|
25
|
Badten A, Ramirez A, Hernandez-Davies JE, Albin TJ, Jain A, Nakajima R, Felgner J, Davies DH, Wang SW. Protein Nanoparticle-Mediated Delivery of Recombinant Influenza Hemagglutinin Enhances Immunogenicity and Breadth of the Antibody Response. ACS Infect Dis 2023; 9:239-252. [PMID: 36607269 PMCID: PMC9926493 DOI: 10.1021/acsinfecdis.2c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 01/07/2023]
Abstract
The vast majority of seasonal influenza vaccines administered each year are derived from virus propagated in eggs using technology that has changed little since the 1930s. The immunogenicity, durability, and breadth of response would likely benefit from a recombinant nanoparticle-based approach. Although the E2 protein nanoparticle (NP) platform has been previously shown to promote effective cell-mediated responses to peptide epitopes, it has not yet been reported to deliver whole protein antigens. In this study, we synthesized a novel maleimido tris-nitrilotriacetic acid (NTA) linker to couple protein hemagglutinin (HA) from H1N1 influenza virus to the E2 NP, and we evaluated the HA-specific antibody responses using protein microarrays. We found that recombinant H1 protein alone is immunogenic in mice but requires two boosts for IgG to be detected and is strongly IgG1 (Th2) polarized. When conjugated to E2 NPs, IgG2c is produced leading to a more balanced Th1/Th2 response. Inclusion of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) significantly enhances the immunogenicity of H1-E2 NPs while retaining the Th1/Th2 balance. Interestingly, broader homo- and heterosubtypic cross-reactivity is also observed for conjugated H1-E2 with MPLA, compared to unconjugated H1 with or without MPLA. These results highlight the potential of an NP-based delivery of HA for tuning the immunogenicity, breadth, and Th1/Th2 balance generated by recombinant HA-based vaccination. Furthermore, the modularity of this protein-protein conjugation strategy may have utility for future vaccine development against other human pathogens.
Collapse
Affiliation(s)
- Alexander
J. Badten
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Aaron Ramirez
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Jenny E. Hernandez-Davies
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Tyler J. Albin
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Aarti Jain
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Rie Nakajima
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Jiin Felgner
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - D. Huw Davies
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Szu-Wen Wang
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, Institute for Immunology, University of California, Irvine, California 92697, United States
| |
Collapse
|
26
|
Bjanes E, Zhou J, Qayum T, Krishnan N, Zurich RH, Menon ND, Hoffman A, Fang RH, Zhang L, Nizet V. Outer Membrane Vesicle-Coated Nanoparticle Vaccine Protects Against Acinetobacter baumannii Pneumonia and Sepsis. ADVANCED NANOBIOMED RESEARCH 2023; 3:2200130. [PMID: 37151210 PMCID: PMC10156090 DOI: 10.1002/anbr.202200130] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The highly multidrug-resistant (MDR) Gram-negative bacterial pathogen Acinetobacter baumannii is a top global health priority where an effective vaccine could protect susceptible populations and limit resistance acquisition. Outer membrane vesicles (OMVs) shed from Gram-negative bacteria are enriched with virulence factors and membrane lipids but heterogeneous in size and cargo. We report a vaccine platform combining precise and replicable nanoparticle technology with immunogenic A. baumannii OMVs (Ab-OMVs). Gold nanoparticle cores coated with Ab-OMVs (Ab-NPs) induced robust IgG titers in rabbits that enhanced human neutrophil opsonophagocytic killing and passively protected against lethal A. baumannii sepsis in mice. Active Ab-NP immunization in mice protected against sepsis and pneumonia, accompanied by B cell recruitment to draining lymph nodes, activation of dendritic cell markers, improved splenic neutrophil responses, and mitigation of proinflammatory cytokine storm. Nanoparticles are an efficient and efficacious platform for OMV vaccine delivery against A. baumannii and perhaps other high-priority MDR pathogens.
Collapse
Affiliation(s)
- Elisabet Bjanes
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Jiarong Zhou
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Tariq Qayum
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Nishta Krishnan
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Raymond H. Zurich
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Nitasha D. Menon
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Alexandria Hoffman
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Ronnie H. Fang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
27
|
Xu J, Song M, Fang Z, Zheng L, Huang X, Liu K. Applications and challenges of ultra-small particle size nanoparticles in tumor therapy. J Control Release 2023; 353:699-712. [PMID: 36521689 DOI: 10.1016/j.jconrel.2022.12.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
With the development of nanotechnology, nanomedicines are widely used in tumor therapy. However, biological barriers in the delivery of nanoparticles still limit their application in tumor therapy. As one of the most fundamental properties of nanoparticles, particle size plays a crucial role in the process of the nanoparticles delivery process. It is difficult for large size nanoparticles with fixed size to achieve satisfactory outcomes in every process. In order to overcome the poor penetration of larger size, nanoparticles with ultra-small particle size are proposed, which are more conducive to deep tumor penetration and uniform drug distribution. In this review, the latest progresses and advantages of ultra-small nanoparticles are systematically summarized, the perspectives and challenges of ultra-small nanoparticles strategy for cancer treatment are also discussed.
Collapse
Affiliation(s)
- Jiaqi Xu
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Mengdi Song
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Zhou Fang
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Lanxi Zheng
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Xiaoya Huang
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Kehai Liu
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China.
| |
Collapse
|
28
|
Shi T, Sun M, Lu C, Meng F. Self-assembled nanoparticles: A new platform for revolutionizing therapeutic cancer vaccines. Front Immunol 2023; 14:1125253. [PMID: 36895553 PMCID: PMC9988954 DOI: 10.3389/fimmu.2023.1125253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Cancer vaccines have had some success in the past decade. Based on in-depth analysis of tumor antigen genomics, many therapeutic vaccines have already entered clinical trials for multiple cancers, including melanoma, lung cancer, and head and neck squamous cell carcinoma, which have demonstrated impressive tumor immunogenicity and antitumor activity. Recently, vaccines based on self-assembled nanoparticles are being actively developed as cancer treatment, and their feasibility has been confirmed in both mice and humans. In this review, we summarize recent therapeutic cancer vaccines based on self-assembled nanoparticles. We describe the basic ingredients for self-assembled nanoparticles, and how they enhance vaccine immunogenicity. We also discuss the novel design method for self-assembled nanoparticles that pose as a promising delivery platform for cancer vaccines, and the potential in combination with multiple therapeutic approaches.
Collapse
Affiliation(s)
- Tianyu Shi
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mengna Sun
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Changchang Lu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fanyan Meng
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
29
|
Gao K, Lian H, Xue C, Zhou J, Yan X. High-Throughput Counting and Sizing of Therapeutic Protein Aggregates in the Nanometer Size Range by Nano-Flow Cytometry. Anal Chem 2022; 94:17634-17644. [PMID: 36474427 DOI: 10.1021/acs.analchem.2c04382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein aggregation is one of the greatest challenges in biopharmaceuticals as it could decrease therapeutic efficacy, induce immunogenicity, and reduce shelf life of protein drugs. However, there lacks high-throughput methods than can count and size protein aggregates in the nanometer size range, especially for those smaller than 100 nm. Employing a laboratory-built nano-flow cytometer (nFCM) that enables light scattering detection of single silica nanoparticles as small as 24 nm with sizing resolution and accuracy comparable to those of electron microscopy, here, we report a new benchmark to analyze single protein aggregates as small as 40 nm. With an analysis rate of up to 10,000 particles/min, the size distribution and particle concentration of nanometer protein aggregates can be acquired in 2-3 min. Employing heat-induced aggregation of bovine serum albumin (BSA) at high concentrations as the model system, effects of different categories of excipients, including sugars, polyols, salts, and amino acids on the inhibition of protein aggregation were investigated. Strikingly enough, as high as 1010 to 1012 particles/mL of protein aggregates were observed in the size range of 40 to 200 nm for therapeutic proteins of human serum albumin injection, reconstituted recombinant human interieukin-2 solution, and human immunoglobulin injection. nFCM opens a new avenue to count and size nanometer protein aggregates, suggesting its future usability in the quality assessment and formulation promotion of therapeutic proteins.
Collapse
Affiliation(s)
- Kaimin Gao
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Hong Lian
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Chengfeng Xue
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Jing Zhou
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Xiaomei Yan
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| |
Collapse
|
30
|
Doan-Nguyen TP, Mantala K, Atithep T, Crespy D. Osmotic Pressure as Driving Force for Reducing the Size of Nanoparticles in Emulsions. ACS NANO 2022; 17:940-954. [PMID: 36472438 DOI: 10.1021/acsnano.2c05565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We describe here a method to decrease particle size of nanoparticles synthesized by miniemulsion polymerization. Small nanoparticles or nanocapsules were obtained by generating an osmotic pressure to induce the diffusion of monomer molecules from the dispersed phase of a miniemulsion before polymerization to an upper oil layer. The size reduction is dependent on the difference in concentration of monomer in the dispersed phase and in the upper oil layer and on the solubility of the monomer in water. By labeling the emulsion droplets with a copolymer of stearyl methacrylate and a polymerizable dye, we demonstrated that the migration of the monomer to the upper hexadecane layer relied on molecular diffusion rather than diffusion of monomer droplets to the oil layer. Moreover, surface tension measurements confirmed that the emulsions were still in the miniemulsion regime and not in the microemulsion regime. The particle size can be tuned by controlling the duration during which the miniemulsion stayed in contact with the hexadecane layer, the interfacial area between the miniemulsion and the hexadecane layer and by the concentration of surfactant. Our method was applied to reduce the size of polystyrene and poly(methyl methacrylate) nanoparticles, nanocapsules of a copolymer of styrene and methyl methacrylic acid, and silica nanocapsules. This work demonstrated that a successful reduction of nanoparticle size in the miniemulsion process can be achieved without using excess amounts of surfactant. The method relies on building osmotic pressure in oil droplets dispersed in water which acts as semipermeable membrane.
Collapse
Affiliation(s)
- Thao P Doan-Nguyen
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Kanyarat Mantala
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Thassanant Atithep
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Daniel Crespy
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
31
|
Wu Y, Zhang Z, Wei Y, Qian Z, Wei X. Nanovaccines for cancer immunotherapy: Current knowledge and future perspectives. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Liu ZH, Deng ZF, Lu Y, Fang WH, He F. A modular and self-adjuvanted multivalent vaccine platform based on porcine circovirus virus-like nanoparticles. J Nanobiotechnology 2022; 20:493. [PMID: 36424615 PMCID: PMC9685936 DOI: 10.1186/s12951-022-01710-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Virus-like particles (VLPs) are supramolecular structures composed of multiple protein subunits and resemble natural virus particles in structure and size, making them highly immunogenic materials for the development of next-generation subunit vaccines. The orderly and repetitive display of antigenic epitopes on particle surface allows efficient recognition and cross-link by B cell receptors (BCRs), thereby inducing higher levels of neutralizing antibodies and cellular immune responses than regular subunit vaccines. Here, we present a novel multiple antigen delivery system using SpyCatcher/Spytag strategy and self-assembled VLPs formed by porcine circovirus type 2 (PCV2) Cap, a widely used swine vaccine in solo. RESULTS Cap-SC, recombinant Cap with a truncated SpyCatcher polypeptide at its C-terminal, self-assembled into 26-nm VLPs. Based on isopeptide bonds formed between SpyCatcher and SpyTag, classical swine fever virus (CSFV) E2, the antigen of interest, was linked to SpyTag and readily surface-displayed on SpyCatcher decorated Cap-SC via in vitro covalent conjugation. E2-conjugated Cap VLPs (Cap-E2 NPs) could be preferentially captured by antigen presenting cells (APCs) and effectively stimulate APC maturation and cytokine production. In vivo studies confirmed that Cap-E2 NPs elicited an enhanced E2 specific IgG response, which was significantly higher than soluble E2, or the admixture of Cap VLPs and E2. Moreover, E2 displayed on the surface did not mask the immunodominant epitopes of Cap-SC VLPs, and Cap-E2 NPs induced Cap-specific antibody levels and neutralizing antibody levels comparable to native Cap VLPs. CONCLUSION These results demonstrate that this modularly assembled Cap-E2 NPs retains the immune potential of Cap VLP backbone, while the surface-displayed antigen significantly elevated E2-induced immune potency. This immune strategy provides distinctly improved efficacy than conventional vaccine combination. It can be further applied to the development of dual or multiple nanoparticle vaccines to prevent co-infection of PCV2 and other swine pathogens.
Collapse
Affiliation(s)
- Ze-Hui Liu
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China
| | - Zhuo-Fan Deng
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China
| | - Ying Lu
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China
| | - Wei-Huan Fang
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China ,grid.13402.340000 0004 1759 700XLaboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, 310058 Hangzhou, China
| | - Fang He
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China ,grid.13402.340000 0004 1759 700XLaboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
33
|
Jia Y, Agbayani G, Chandan V, Iqbal U, Dudani R, Qian H, Jakubek Z, Chan K, Harrison B, Deschatelets L, Akache B, McCluskie MJ. Evaluation of Adjuvant Activity and Bio-Distribution of Archaeosomes Prepared Using Microfluidic Technology. Pharmaceutics 2022; 14:2291. [PMID: 36365110 PMCID: PMC9697222 DOI: 10.3390/pharmaceutics14112291] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/24/2023] Open
Abstract
Archaeosomes, composed of sulfated lactosyl archaeol (SLA) glycolipids, have been proven to be an effective vaccine adjuvant in multiple preclinical models of infectious disease or cancer. They have classically been prepared using a thin-film hydration method with an average particle size of 100-200 nm. In this study, we developed methods to generate SLA archaeosomes at different sizes, i.e., 30 nm and 100 nm, via microfluidic mixing technology and evaluated their physicochemical characteristics, as well as adjuvant activity and in vivo biodistribution in mice. Archaeosomes, prepared using thin-film and microfluidic mixing techniques, had similar nanostructures and physicochemical characteristics, with both appearing stable during the course of this study when stored at 4 °C or 37 °C. They also demonstrated similar adjuvant activity when admixed with ovalbumin antigen and used to immunize mice, generating equivalent antigen-specific immune responses. Archaeosomes, labeled with CellVueTM NIR815, had an equivalent biodistribution with both sizes, namely the highest signal at the injection site at 24 h post injection, followed by liver, spleen and inguinal lymph node. The presence of SLA archaeosomes of either size helped to retain OVA antigen (OVA-Cy5.5) longer at the injection site than unadjuvanted OVA. Overall, archaeosomes of two sizes (30 nm and 100 nm) prepared using microfluidic mixing maintained similar physicochemical properties, adjuvant activity and biodistribution of antigen, in comparison to those compared by the conventional thin film hydration method. This suggests that microfluidics based approaches could be applied to generate consistently sized archaeosomes for use as a vaccine adjuvant.
Collapse
Affiliation(s)
- Yimei Jia
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Vandana Chandan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Umar Iqbal
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Renu Dudani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Hui Qian
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G2M9, Canada
| | - Zygmunt Jakubek
- Metrology Research Centre, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Kenneth Chan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Blair Harrison
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Lise Deschatelets
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Bassel Akache
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Michael J. McCluskie
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| |
Collapse
|
34
|
Koyande NP, Srivastava R, Padmakumar A, Rengan AK. Advances in Nanotechnology for Cancer Immunoprevention and Immunotherapy: A Review. Vaccines (Basel) 2022; 10:1727. [PMID: 36298592 PMCID: PMC9610880 DOI: 10.3390/vaccines10101727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023] Open
Abstract
One of the most effective cancer therapies, cancer immunotherapy has produced outstanding outcomes in the field of cancer treatment. However, the cost is excessive, which limits its applicability. A smart way to address this issue would be to apply the knowledge gained through immunotherapy to develop strategies for the immunoprevention of cancer. The use of cancer vaccines is one of the most popular methods of immunoprevention. This paper reviews the technologies and processes that support the advantages of cancer immunoprevention over traditional cancer immunotherapies. Nanoparticle drug delivery systems and nanoparticle-based nano-vaccines have been employed in the past for cancer immunotherapy. This paper outlines numerous immunoprevention strategies and how nanotechnology can be applied in immunoprevention. To comprehend the non-clinical and clinical evaluation of these cancer vaccines through clinical studies is essential for acceptance of the vaccines.
Collapse
Affiliation(s)
| | | | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| |
Collapse
|
35
|
Azharuddin M, Zhu GH, Sengupta A, Hinkula J, Slater NKH, Patra HK. Nano toolbox in immune modulation and nanovaccines. Trends Biotechnol 2022; 40:1195-1212. [PMID: 35450779 PMCID: PMC10439010 DOI: 10.1016/j.tibtech.2022.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/23/2022]
Abstract
Despite the great success of vaccines over two centuries, the conventional strategy is based on attenuated/altered microorganisms. However, this is not effective for all microbes and often fails to elicit a protective immune response, and sometimes poses unexpected safety risks. The expanding nano toolbox may overcome some of the roadblocks in vaccine development given the plethora of unique nanoparticle (NP)-based platforms that can successfully induce specific immune responses leading to exciting and novel solutions. Nanovaccines necessitate a thorough understanding of the immunostimulatory effect of these nanotools. We present a comprehensive description of strategies in which nanotools have been used to elicit an immune response and provide a perspective on how nanotechnology can lead to future personalized nanovaccines.
Collapse
Affiliation(s)
- Mohammad Azharuddin
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Geyunjian Harry Zhu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Anirban Sengupta
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Jorma Hinkula
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Nigel K H Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Hirak K Patra
- Department of Surgical Biotechnology, University College London, London, UK.
| |
Collapse
|
36
|
Wang Z, Li S, Shan P, Wei D, Hao S, Zhang Z, Xu J. Improved Aluminum Adjuvants Eliciting Stronger Immune Response When Mixed with Hepatitis B Virus Surface Antigens. ACS OMEGA 2022; 7:34528-34537. [PMID: 36188281 PMCID: PMC9521023 DOI: 10.1021/acsomega.2c04266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Adjuvants can regulate the immune response triggered by vaccines. Traditional aluminum adjuvants can induce humoral immunity, but they lack the ability to effectively induce Th1 cellular immunity, which is not conducive to the development of vaccines with improved protective effects. Aluminum adjuvants from different sources may have different physicochemical properties, and therefore, completely different immune responses can be triggered. This suggests that adjuvant recognition by the immune system and its responses are closely associated with the physicochemical properties of the adjuvant itself. To test this hypothesis, in this study, we developed a new method for preparing an aluminum adjuvant. This aluminum adjuvant has a pseudoboehmite structure, strong protein adsorption capacity, and excellent suspension stability. The adjuvant was tested using the hepatitis B virus surface antigen (HBsAg) as a model antigen for immunization; the results showed that this aluminum adjuvant effectively induced not only humoral immunity but also an outstanding cellular immune response. These results provide a reference for improving the efficacy of adjuvants.
Collapse
|
37
|
Pegu H, Tamuly S, Sharma RK, Borah P, Nath R. Immunopotential of Pasteurella multocida bivalent outer membrane protein-based vaccine entrapped in aluminum hydroxide nanoparticles. Braz J Microbiol 2022; 53:2299-2307. [PMID: 35922692 PMCID: PMC9679094 DOI: 10.1007/s42770-022-00795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 07/07/2022] [Indexed: 01/13/2023] Open
Abstract
Swine pasteurellosis is one of the most economically important diseases of pig caused by Pasteurella multocida (P. multocida) capsular types A and D. These organisms are commensals and opportunistic pathogens in the upper respiratory tract in pig. In the present study, we extracted whole outer membrane proteins (OMP) from P. multocida capsular types A and D and were mixed together in the ratio of 1:1 forming bivalent outer-membrane proteins. The bivalent OMP was adsorbed onto aluminum hydroxide nanoparticles. The size of aluminum hydroxide nanoparticles adsorbed outer membrane protein was found to be in the range of 125 to 130 nm. We observed that aluminum hydroxide nanoparticles adjuvanted bivalent OMP-based vaccine elicited quicker immune kinetics in terms of IgG response as compared to aluminum hydroxide microparticles adjuvanted bivalent bacterin vaccine against P. multocida capsular type A and D.
Collapse
Affiliation(s)
- Haladhar Pegu
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, 781022 India
| | - Shantanu Tamuly
- Department of Veterinary Biochemistry, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, 781022 India
| | - Rajeev Kumar Sharma
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, 781022 India
| | - Probodh Borah
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, 781022 India
| | - Rita Nath
- Department of Veterinary Biochemistry, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, 781022 India
| |
Collapse
|
38
|
Davodabadi F, Sarhadi M, Arabpour J, Sargazi S, Rahdar A, Díez-Pascual AM. Breast cancer vaccines: New insights into immunomodulatory and nano-therapeutic approaches. J Control Release 2022; 349:844-875. [PMID: 35908621 DOI: 10.1016/j.jconrel.2022.07.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Breast cancer (BC) is known to be a highly heterogeneous disease that is clinically subdivided into four primary molecular subtypes, each having distinct morphology and clinical implications. These subtypes are principally defined by hormone receptors and other proteins involved (or not involved) in BC development. BC therapeutic vaccines [including peptide-based vaccines, protein-based vaccines, nucleic acid-based vaccines (DNA/RNA vaccines), bacterial/viral-based vaccines, and different immune cell-based vaccines] have emerged as an appealing class of cancer immunotherapeutics when used alone or combined with other immunotherapies. Employing the immune system to eliminate BC cells is a novel therapeutic modality. The benefit of active immunotherapies is that they develop protection against neoplastic tissue and readjust the immune system to an anti-tumor monitoring state. Such immunovaccines have not yet shown effectiveness for BC treatment in clinical trials. In recent years, nanomedicines have opened new windows to increase the effectiveness of vaccinations to treat BC. In this context, some nanoplatforms have been designed to efficiently deliver molecular, cellular, or subcellular vaccines to BC cells, increasing the efficacy and persistence of anti-tumor immunity while minimizing undesirable side effects. Immunostimulatory nano-adjuvants, liposomal-based vaccines, polymeric vaccines, virus-like particles, lipid/calcium/phosphate nanoparticles, chitosan-derived nanostructures, porous silicon microparticles, and selenium nanoparticles are among the newly designed nanostructures that have been used to facilitate antigen internalization and presentation by antigen-presenting cells, increase antigen stability, enhance vaccine antigenicity and remedial effectivity, promote antigen escape from the endosome, improve cytotoxic T lymphocyte responses, and produce humoral immune responses in BC cells. Here, we summarized the existing subtypes of BC and shed light on immunomodulatory and nano-therapeutic strategies for BC vaccination. Finally, we reviewed ongoing clinical trials on BC vaccination and highlighted near-term opportunities for moving forward.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
39
|
Assessing the Immunomodulatory Effect of Size on the Uptake and Immunogenicity of Influenza- and Hepatitis B Subunit Vaccines In Vitro. Pharmaceuticals (Basel) 2022; 15:ph15070887. [PMID: 35890185 PMCID: PMC9321264 DOI: 10.3390/ph15070887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
Abstract
Viral subunit vaccines are a safer and more tolerable alternative to whole inactivated virus vaccines. However, they often come with limited efficacy, necessitating the use of adjuvants. Using free and particle-bound viral antigens, we assessed whether size affects the uptake of those antigens by human monocyte-derived dendritic cells (Mo-DCs) and whether differences in uptake affect their capacity to stimulate cytokine production by T cells. To this end, influenza antigens and hepatitis B surface antigen (HBsAg) were covalently conjugated to polystyrene particles of 500 nm and 3 μm. Cellular uptake of the antigens, either unconjugated or conjugated, and their capacity to stimulate T cells within a population of human peripheral blood mononuclear cells (PBMCs) were measured by flow cytometry. Conjugation of both antigens to particles significantly increased their uptake by Mo-DCs. Moreover, both the 500 nm and 3 μm influenza conjugates induced significantly higher numbers of cytokine-producing CD4+ T cells and induced increased production of the pro-inflammatory cytokines IFNγ and TNFα. In contrast, conjugation of HBsAg to particles did not notably affect the T cell response. In conclusion, conjugation of antigen to 500 nm and 3 μm particles leads to increased antigen uptake by human Mo-DCs, although the capacity of such conjugates to induce T cell stimulation likely depends on the immunological status of the PBMC donor.
Collapse
|
40
|
Nakayama T, Kobayashi K, Kameda T, Hase M, Hirano A. Protein's Protein Corona: Nanoscale Size Evolution of Human Immunoglobulin G Aggregates Induced by Serum Albumin. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32937-32947. [PMID: 35822632 DOI: 10.1021/acsami.2c08271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoparticles are readily coated by proteins in biological systems. The protein layers on the nanoparticles, which are called the protein corona, influence the biological impacts of the nanoparticles, including internalization into cells and cytotoxicity. This study expands the scope of the nanoparticle's protein corona for exogenous artificial nanoparticles to that for exogenous proteinaceous nanoparticles. Specifically, this study addresses the formation of protein coronas on nanoscale human antibody aggregates with a radius of approximately 20-40 nm, where the antibody aggregates were induced by a pH shift from low to neutral pH. The size of the human immunoglobulin G (hIgG) aggregates grew to approximately 25 times the original size in the presence of human serum albumin (HSA). This size evolution was ascribed to the association of the hIgG aggregates, which was triggered by the formation of the hIgG aggregate's protein corona, i.e., protein's protein corona, consisting of the adsorbed HSA molecules. Because hIgG aggregate association was significantly reduced by the addition of 30-150 mM NaCl, it was attributed to electrostatic attraction, which was supported by molecular dynamics (MD) simulations. Currently, the use of antibodies as biopharmaceuticals is concerning because of undesired immune responses caused by antibody aggregates that are typically generated by a pH shift during the antibody purification process. The present findings suggest that nanoscale antibody aggregates form protein coronas induced by HSA and the resulting nanoscale antibody-HSA complexes are stable in blood containing approximately 150 mM salt ions, at least in terms of the size evolution. Mechanistic insights into protein corona formation on nanoscale antibody aggregates are useful for understanding the unintentional biological impacts of antibody drugs.
Collapse
Affiliation(s)
- Tomohito Nakayama
- Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Kaito Kobayashi
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo135-0064, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo135-0064, Japan
| | - Muneaki Hase
- Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Atsushi Hirano
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
41
|
Egorova EA, Lamers GEM, Monikh FA, Boyle AL, Slütter B, Kros A. Gold nanoparticles decorated with ovalbumin-derived epitopes: effect of shape and size on T-cell immune responses. RSC Adv 2022; 12:19703-19716. [PMID: 35865201 PMCID: PMC9260517 DOI: 10.1039/d2ra03027f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022] Open
Abstract
Gold nanoparticles (GNPs) can be manufactured in various shapes, and their size is programmable, which permits the study of the effects imposed by these parameters on biological processes. However, there is currently no clear evidence that a certain shape or size is beneficial. To address this issue, we have utilised GNPs and gold nanorods (GNRs) functionalised with model epitopes derived from chicken ovalbumin (OVA257-264 and OVA323-339). By using two distinct epitopes, it was possible to draw conclusions regarding the impact of nanoparticle shape and size on different aspects of the immune response. Our findings indicate that the peptide amphiphile-coated GNPs and GNRs are a safe and versatile epitope-presenting system. Smaller GNPs (∼15 nm in diameter) induce significantly less intense T-cell responses. Furthermore, effective antigen presentation via MHC-I was observed for larger spherical particles (∼40 nm in diameter), and to a lesser extent for rod-like particles (40 by 15 nm). At the same time, antigen presentation via MHC-II strongly correlated with the cellular uptake, with smaller GNPs being the least efficient. We believe these findings will have implications for vaccine development, and lead to a better understanding of cellular uptake and antigen egress from lysosomes into the cytosol.
Collapse
Affiliation(s)
- Elena A Egorova
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University The Netherlands
| | - Gerda E M Lamers
- Core Facility Microscopy, Institute of Biology, Leiden University The Netherlands
| | - Fazel Abdolahpur Monikh
- Environmental Biology, Institute of Environmental Sciences, Leiden University The Netherlands
| | - Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University The Netherlands
| | - Bram Slütter
- Leiden Academic Centre for Drug Research, Biotherapeutics, Leiden University The Netherlands
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University The Netherlands
| |
Collapse
|
42
|
Activation of Cellular Players in Adaptive Immunity via Exogenous Delivery of Tumor Cell Lysates. Pharmaceutics 2022; 14:pharmaceutics14071358. [PMID: 35890254 PMCID: PMC9316852 DOI: 10.3390/pharmaceutics14071358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Tumor cell lysates (TCLs) are a good immunogenic source of tumor-associated antigens. Since whole necrotic TCLs can enhance the maturation and antigen-presenting ability of dendritic cells (DCs), multiple strategies for the exogenous delivery of TCLs have been investigated as novel cancer immunotherapeutic solutions. The TCL-mediated induction of DC maturation and the subsequent immunological response could be improved by utilizing various material-based carriers. Enhanced antitumor immunity and cancer vaccination efficacy could be eventually achieved through the in vivo administration of TCLs. Therefore, (1) important engineering methodologies to prepare antigen-containing TCLs, (2) current therapeutic approaches using TCL-mediated DC activation, and (3) the significant sequential mechanism of DC-based signaling and stimulation in adaptive immunity are summarized in this review. More importantly, the recently reported developments in biomaterial-based exogenous TCL delivery platforms and co-delivery strategies with adjuvants for effective cancer vaccination and antitumor effects are emphasized.
Collapse
|
43
|
Nanoparticle and virus-like particle vaccine approaches against SARS-CoV-2. J Microbiol 2022; 60:335-346. [PMID: 35089583 PMCID: PMC8795728 DOI: 10.1007/s12275-022-1608-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
The global spread of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has provoked an urgent need for prophylactic measures. Several innovative vaccine platforms have been introduced and billions of vaccine doses have been administered worldwide. To enable the creation of safer and more effective vaccines, additional platforms are under development. These include the use of nanoparticle (NP) and virus-like particle (VLP) technology. NP vaccines utilize self-assembling scaffold structures designed to load the entire spike protein or receptor-binding domain of SARS-CoV-2 in a trimeric configuration. In contrast, VLP vaccines are genetically modified recombinant viruses that are considered safe, as they are generally replication-defective. Furthermore, VLPs have indigenous immunogenic potential due to their microbial origin. Importantly, NP and VLP vaccines have shown stronger immunogenicity with greater protection by mimicking the physicochemical characteristics of SARS-CoV-2. The study of NP- and VLP-based coronavirus vaccines will help ensure the development of rapid-response technology against SARS-CoV-2 variants and future coronavirus pandemics.
Collapse
|
44
|
Abstract
A favorable outcome of the COVID-19 crisis might be achieved with massive vaccination. The proposed vaccines contain several different vaccine active principles (VAP), such as inactivated virus, antigen, mRNA, and DNA, which are associated with either standard adjuvants or nanomaterials (NM) such as liposomes in Moderna's and BioNTech/Pfizer's vaccines. COVID-19 vaccine adjuvants may be chosen among liposomes or other types of NM composed for example of graphene oxide, carbon nanotubes, micelles, exosomes, membrane vesicles, polymers, or metallic NM, taking inspiration from cancer nano-vaccines, whose adjuvants may share some of their properties with those of viral vaccines. The mechanisms of action of nano-adjuvants are based on the facilitation by NM of targeting certain regions of immune interest such as the mucus, lymph nodes, and zones of infection or blood irrigation, the possible modulation of the type of attachment of the VAP to NM, in particular VAP positioning on the NM external surface to favor VAP presentation to antigen presenting cells (APC) or VAP encapsulation within NM to prevent VAP degradation, and the possibility to adjust the nature of the immune response by tuning the physico-chemical properties of NM such as their size, surface charge, or composition. The use of NM as adjuvants or the presence of nano-dimensions in COVID-19 vaccines does not only have the potential to improve the vaccine benefit/risk ratio, but also to reduce the dose of vaccine necessary to reach full efficacy. It could therefore ease the overall spread of COVID-19 vaccines within a sufficiently large portion of the world population to exit the current crisis.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France. .,Nanobacterie SARL, 36 Boulevard Flandrin, 75116, Paris, France.,Institute of Anatomy, UZH University of Zurich, Instiute of Anatomy, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
45
|
Rane SS, Dearman RJ, Kimber I, Derrick JP. Adaptation of an ELISA assay for detection of IgG 2a responses against therapeutic monoclonal antibodies in a mouse immunization model. J Immunotoxicol 2022; 19:1-7. [PMID: 35077659 DOI: 10.1080/1547691x.2021.2020937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Biotherapeutic monoclonal antibodies (mAb) play important roles in clinical medicine but their potential to elicit immune responses in patients remains a major issue. In a study designed to investigate the effect of aggregation on immunogenic responses, mice were immunized with two monoclonal antibodies (mAb1 and mAb2). Serum levels of total IgG, IgG1, and IgG2a were measured by ELISA. An anti-mouse IgG2a monoclonal detection antibody cross-reacted with mAb2 but not mAb1, leading to high background when the ELISA plate was coated with mAb2. The problem was solved by use of a goat anti-mouse IgG2a polyclonal antibody that demonstrated the required specificity. IgG2a responses were similar for monomer- or aggregate-coated ELISA plates. The results demonstrate the importance of assessment of the specificity of individual reagents when measuring antibody responses against therapeutic antibodies by ELISA.
Collapse
Affiliation(s)
- Shraddha S Rane
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Rebecca J Dearman
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Ian Kimber
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
46
|
Firdaus FZ, Skwarczynski M, Toth I. Developments in Vaccine Adjuvants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:145-178. [PMID: 34918245 DOI: 10.1007/978-1-0716-1892-9_8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines, including subunit, recombinant, and conjugate vaccines, require the use of an immunostimulator/adjuvant for maximum efficacy. Adjuvants not only enhance the strength and longevity of immune responses but may also influence the type of response. In this chapter, we review the adjuvants that are available for use in human vaccines, such as alum, MF59, AS03, and AS01. We extensively discuss their composition, characteristics, mechanism of action, and effects on the immune system. Additionally, we summarize recent trends in adjuvant discovery, providing a brief overview of saponins, TLRs agonists, polysaccharides, nanoparticles, cytokines, and mucosal adjuvants.
Collapse
Affiliation(s)
- Farrhana Ziana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
47
|
Koirala P, Bashiri S, Toth I, Skwarczynski M. Current Prospects in Peptide-Based Subunit Nanovaccines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:309-338. [PMID: 34918253 DOI: 10.1007/978-1-0716-1892-9_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vaccination renders protection against pathogens via stimulation of the body's natural immune responses. Classical vaccines that utilize whole organisms or proteins have several disadvantages, such as induction of undesired immune responses, poor stability, and manufacturing difficulties. The use of minimal immunogenic pathogen components as vaccine antigens, i.e., peptides, can greatly reduce these shortcomings. However, subunit antigens require a specific delivery system and immune adjuvant to increase their efficacy. Recently, nanotechnology has been extensively utilized to address this issue. Nanotechnology-based formulation of peptide vaccines can boost immunogenicity and efficiently induce cellular and humoral immune responses. This chapter outlines the recent developments and advances of nano-sized delivery platforms for peptide antigens, including nanoparticles composed of polymers, peptides, lipids, and inorganic materials.
Collapse
Affiliation(s)
- Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Sahra Bashiri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia. .,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, St Lucia, QLD, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
48
|
Tang J, Cai L, Xu C, Sun S, Liu Y, Rosenecker J, Guan S. Nanotechnologies in Delivery of DNA and mRNA Vaccines to the Nasal and Pulmonary Mucosa. NANOMATERIALS 2022; 12:nano12020226. [PMID: 35055244 PMCID: PMC8777913 DOI: 10.3390/nano12020226] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
Recent advancements in the field of in vitro transcribed mRNA (IVT-mRNA) vaccination have attracted considerable attention to such vaccination as a cutting-edge technique against infectious diseases including COVID-19 caused by SARS-CoV-2. While numerous pathogens infect the host through the respiratory mucosa, conventional parenterally administered vaccines are unable to induce protective immunity at mucosal surfaces. Mucosal immunization enables the induction of both mucosal and systemic immunity, efficiently removing pathogens from the mucosa before an infection occurs. Although respiratory mucosal vaccination is highly appealing, successful nasal or pulmonary delivery of nucleic acid-based vaccines is challenging because of several physical and biological barriers at the airway mucosal site, such as a variety of protective enzymes and mucociliary clearance, which remove exogenously inhaled substances. Hence, advanced nanotechnologies enabling delivery of DNA and IVT-mRNA to the nasal and pulmonary mucosa are urgently needed. Ideal nanocarriers for nucleic acid vaccines should be able to efficiently load and protect genetic payloads, overcome physical and biological barriers at the airway mucosal site, facilitate transfection in targeted epithelial or antigen-presenting cells, and incorporate adjuvants. In this review, we discuss recent developments in nucleic acid delivery systems that target airway mucosa for vaccination purposes.
Collapse
Affiliation(s)
- Jie Tang
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia;
| | - Larry Cai
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia;
| | - Chuanfei Xu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
| | - Si Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
| | - Yuheng Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
| | - Joseph Rosenecker
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
- Correspondence: (J.R.); (S.G.); Tel.: +49-89-440057713 (J.R.); +86-23-68771645 (S.G.)
| | - Shan Guan
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
- Correspondence: (J.R.); (S.G.); Tel.: +49-89-440057713 (J.R.); +86-23-68771645 (S.G.)
| |
Collapse
|
49
|
Monreal-Escalante E, Ramos-Vega A, Angulo C, Bañuelos-Hernández B. Plant-Based Vaccines: Antigen Design, Diversity, and Strategies for High Level Production. Vaccines (Basel) 2022; 10:100. [PMID: 35062761 PMCID: PMC8782010 DOI: 10.3390/vaccines10010100] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/25/2021] [Accepted: 01/01/2022] [Indexed: 12/18/2022] Open
Abstract
Vaccines for human use have conventionally been developed by the production of (1) microbial pathogens in eggs or mammalian cells that are then inactivated, or (2) by the production of pathogen proteins in mammalian and insect cells that are purified for vaccine formulation, as well as, more recently, (3) by using RNA or DNA fragments from pathogens. Another approach for recombinant antigen production in the last three decades has been the use of plants as biofactories. Only have few plant-produced vaccines been evaluated in clinical trials to fight against diseases, of which COVID-19 vaccines are the most recent to be FDA approved. In silico tools have accelerated vaccine design, which, combined with transitory antigen expression in plants, has led to the testing of promising prototypes in pre-clinical and clinical trials. Therefore, this review deals with a description of immunoinformatic tools and plant genetic engineering technologies used for antigen design (virus-like particles (VLP), subunit vaccines, VLP chimeras) and the main strategies for high antigen production levels. These key topics for plant-made vaccine development are discussed and perspectives are provided.
Collapse
Affiliation(s)
- Elizabeth Monreal-Escalante
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto PoliItécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (A.R.-V.); (C.A.)
- CONACYT—Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Abel Ramos-Vega
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto PoliItécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (A.R.-V.); (C.A.)
| | - Carlos Angulo
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto PoliItécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (A.R.-V.); (C.A.)
| | - Bernardo Bañuelos-Hernández
- Escuela de Veterinaria, Universidad De La Salle Bajío, Avenida Universidad 602, Lomas del Campestre, Leon 37150, GTO, Mexico
| |
Collapse
|
50
|
Li L, Yan X, Xia M, Shen B, Cao Y, Wu X, Sun J, Zhang Y, Zhang M. Nanoparticle/Nanocarrier Formulation as an Antigen: The Immunogenicity and Antigenicity of Itself. Mol Pharm 2022; 19:148-159. [PMID: 34886673 DOI: 10.1021/acs.molpharmaceut.1c00704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In antibody preparation, the immunogenicity of small molecules is limited due to the instability of adjuvant/hapten emulsions. Nanoparticle-based adjuvants overcome instability and effectively improve immune responses. Immunogenicity and antigenicity are fundamentally important, yet understudied, facets of nanoparticle formulations themselves. Herein, we studied the immunogenicity and antigenicity of nanoparticle formulations. In experiments in a rabbit model, simple inorganic nanoparticle (e.g., gold nanoparticle (AuNP) and silver nanoparticle (AgNP)) immunogens induced higher titers of antiserum. Moreover, several promising nanoparticle drug carrier immunogens (e.g., SiO2, oleylamine graft polysuccinimide (PSIOAm), oleylamine and N-(3-aminopropyl)imidazole cograft polysuccinimide (PSIOAm-NAPI), Fe3O4@O-dextran, etc.) showed excellent immunogenicity. Cross-reactivity calculations revealed that the antigenicity properties of AgNP and AuNP antigens are highly size-dependent. Meanwhile, four nanoparticle drug carriers generate antibody-specific immune responses to their antigens. The reactivity of the anti-NP antibodies with nanoparticle antigens was confirmed using immunoassays. This study systematically identified the immunogenicity and antigenicity of the nanoparticle formulation itself. These findings provide insights into the immunological properties of the nanoparticle formulation itself in an organism.
Collapse
Affiliation(s)
- Lei Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xi Yan
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Meng Xia
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Bi Shen
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yiting Cao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xiayu Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Jinwen Sun
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yue Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Mingcui Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|