1
|
Yang C, Gong Y, Liu S, Sun C, Wang T, Chen X, Liu W, Zhang X, Yang Y, Zhang M. LincR-PPP2R5C deficiency enhancing the fungicidal activity of neutrophils in pulmonary cryptococcosis is linked to the upregulation of IL-4. mBio 2024; 15:e0213024. [PMID: 39287443 PMCID: PMC11481880 DOI: 10.1128/mbio.02130-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Pulmonary cryptococcosis is a common complication in immunocompromised patients. In a mouse model of pulmonary cryptococcosis, Cryptococcus neoformans induces a type 2 immune response that is detrimental to host protection. Long non-coding RNAs (lncRNAs) have emerged as key players in the pathogenesis of infectious diseases. However, the roles and mechanisms of lncRNAs in fungal infection are largely elusive. In the present study, we aimed to explore the roles of LincR-PPP2R5C in pulmonary cryptococcosis. We observed an increase in the level of LincR-PPP2R5C in the lung tissues of C57BL/6J mice after tracheal infection with C. neoformans. Subsequently, we intratracheally infected LincR-PPP2R5C knockout (KO) mice and wild-type mice with C. neoformans. LincR-PPP2R5C deficiency mitigates C. neoformans infection, which can be demonstrated by extending survival time and decreasing fungal burden in the lung. In the lung tissues of infected LincR-PPP2R5C KO mice, there was a notable increase in the levels of type 2 cytokines [interleukin (IL)-4 and IL-5] and an increase in the number of neutrophils in both the lung tissue and bronchoalveolar lavage fluid. Mechanistically, the lack of LincR-PPP2R5C results in increased protein phosphatase 2A phosphorylation, thereby enhancing the fungicidal activity of neutrophils against Cryptococcus neoformans, with IL-4 playing a synergistic role in this process. Overall, LincR-PPP2R5C deficiency mitigated pulmonary cryptococcosis by increasing the fungicidal activity of neutrophils, which was associated with increased IL-4 levels. Our study presented specific evidence of the role of host-derived lncRNAs in the regulation of C. neoformans infection. IMPORTANCE Pulmonary cryptococcosis is a human fungal disease caused by Cryptococcus neoformans, which is common not only in immunocompromised individuals but also in patients with normal immune function. Therefore, studying the control mechanisms of pulmonary cryptococcosis is highly important. Here, we demonstrated that the deletion of LincR-PPP2R5C leads to increased killing of C. neoformans by neutrophils, thereby reducing pulmonary cryptococcal infection. These findings will greatly enhance our understanding of the mechanisms by which lncRNAs regulate the pathogenesis of C. neoformans, facilitating the use of lncRNAs in pulmonary cryptococcosis therapy.
Collapse
Affiliation(s)
- Chen Yang
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Gong
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Shan Liu
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Chunan Sun
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Xin Chen
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Xia Zhang
- Department of Infectious Diseases, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yonglin Yang
- Department of Infectious Diseases, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Mingshun Zhang
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Zhang F, Zhou Y, Tang X, Li M. Identification of risk factors for disseminated cryptococcosis in non-hiv patients: a retrospective analysis. Eur J Med Res 2023; 28:612. [PMID: 38115055 PMCID: PMC10731787 DOI: 10.1186/s40001-023-01592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the potential risk factors associated with disseminated cryptococcosis in HIV-negative individuals. METHODS A total of 106 HIV-negative patients with cryptococcal disease were enrolled. The observation group consisted of patients with disseminated cryptococcosis (DC), whereas the control groups included patients with pulmonary cryptococcosis (PC) and cryptococcal meningitis (CM). Univariate and multivariate logistic regression algorithms were used to explore the significant clinical and laboratory characteristics that affect the progression of cryptococcal infections. Finally, receiver operating characteristics (ROC) curves are applied to assess the diagnostic value of identified risk factors.LE: Kindly check the edit made in the title.I agree RESULTS: Of the 106 patients, 57 were diagnosed with pulmonary cryptococcosis, 22 with cryptococcal meningitis, and 27 with disseminated cryptococcosis. The logistic regression equation included five variables: diabetes, decompensated liver cirrhosis, long-term use of immunosuppressive agents, decreased serum albumin level, and elevated plasma cytokine IL-10 level. The ROC curves showed that albumin (AUC > 0.7), IL-10 (AUC > 0.7) and decompensated liver cirrhosis (AUC > 0.6) have relatively high diagnostic capacity in predicting the progression of Cryptococcus. CONCLUSION This study identified elevated IL-10 levels as an independent risk factor for developing disseminated cryptococcosis in the control groups. Furthermore, decompensated liver cirrhosis and decreased serum albumin independently affected the progression of cryptococcosis in the CM and PC groups, respectively.
Collapse
Affiliation(s)
- Fan Zhang
- School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Yiqing Zhou
- Department of Infectious Disease, Shaoxing People's Hospital, 568 Zhongxing Road, Shaoxing, 312000, China
| | - Xiaoqi Tang
- School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Minghui Li
- Department of Infectious Disease, Shaoxing People's Hospital, 568 Zhongxing Road, Shaoxing, 312000, China.
| |
Collapse
|
3
|
De Giovanni M, Dang EV, Chen KY, An J, Madhani HD, Cyster JG. Platelets and mast cells promote pathogenic eosinophil recruitment during invasive fungal infection via the 5-HIAA-GPR35 ligand-receptor system. Immunity 2023; 56:1548-1560.e5. [PMID: 37279752 PMCID: PMC10360074 DOI: 10.1016/j.immuni.2023.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Cryptococcus neoformans is the leading cause of fungal meningitis and is characterized by pathogenic eosinophil accumulation in the context of type-2 inflammation. The chemoattractant receptor GPR35 is expressed by granulocytes and promotes their migration to the inflammatory mediator 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite. Given the inflammatory nature of cryptococcal infection, we examined the role of GPR35 in the circuitry underlying cell recruitment to the lung. GPR35 deficiency dampened eosinophil recruitment and fungal growth, whereas overexpression promoted eosinophil homing to airways and fungal replication. Activated platelets and mast cells were the sources of GPR35 ligand activity and pharmacological inhibition of serotonin conversion to 5-HIAA, or genetic deficiency in 5-HIAA production by platelets and mast cells resulted in more efficient clearance of Cryptococcus. Thus, the 5-HIAA-GPR35 axis is an eosinophil chemoattractant receptor system that modulates the clearance of a lethal fungal pathogen, with implications for the use of serotonin metabolism inhibitors in the treatment of fungal infections.
Collapse
Affiliation(s)
- Marco De Giovanni
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Eric V Dang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kevin Y Chen
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jinping An
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
4
|
Cheng X, Zhu H, Bai S, Zou Y, Xia Z, Yang R. Pathogenicity of phospholipase B1 of Trichosporon asahii in immunosuppressed mice. Mycoses 2023; 66:467-476. [PMID: 36680377 DOI: 10.1111/myc.13568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/28/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Trichosporon asahii is an opportunistic pathogenic yeast-like fungus. Phospholipase B1 (PLB1) is an important virulence factor of pathogenic fungi such as Candida albicans and Cryptococcus neoformans, and there are few studies on the role of PLB1 in the pathogenicity of T. asahii. OBJECTIVES To investigate the role of PLB1 in the pathogenicity of T. asahii. METHODS A strain with low secretion of PLB1 (4848) was screened, a PLB1 overexpression strain (PLB1OX ) was constructed, and the differences in histopathology, fungal load of organ, survival time of mice, the levels of IL-6, IL-10, TNF-α, and GM-GSF in the serum and organs caused by the two strains were compared. RESULTS Histopathology showed that spores and hyphae were observed in both groups, and PLB1OX led to more fungal invasion. The fungal loads in the kidney, lung, spleen and liver in the PLB1OX group were significantly higher than those in the 4848 group, and the survival time of mice was significantly lower than that in the 4848 group. The levels of TNF-α in the serum, liver, spleen, lung and kidney of the PLB1OX group were lower than those of the 4848 group, while the level of IL-10 in the serum was higher than that of the 4848 group. CONCLUSIONS These results suggest that PLB1 can enhance the invasive function of T. asahii and affect the secretion of TNF-α and IL-10 which may affect the host antifungal immune response, providing evidence that PLB1 plays a role in the pathogenic infection of T. asahii.
Collapse
Affiliation(s)
- Xiaoxian Cheng
- Chinese PLA Medical School, Peking, China.,Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China
| | - He Zhu
- Chinese PLA Medical School, Peking, China.,Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China
| | - Shuang Bai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Dermatology, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Yuekun Zou
- Chinese PLA Medical School, Peking, China.,Department of Geriatrics, The Sixth Medical Center of PLA General Hospital, Peking, China
| | - Zhikuan Xia
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Rongya Yang
- Chinese PLA Medical School, Peking, China.,Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China
| |
Collapse
|
5
|
Cunha MM, Pereira ABM, Lino RC, da Silva PR, Andrade-Silva LE, de Vito FB, de Souza HM, Silva-Vergara ML, Rogério AP. Effects of combination of Cryptococcus gattii and IFN-γ, IL-4 or IL-27 on human bronchial epithelial cells. Immunobiology 2023; 228:152312. [PMID: 36577248 DOI: 10.1016/j.imbio.2022.152312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Airway epithelial cells are crucial for the establishment of cryptococcosis. In experimental cryptococcosis, the Th2 immune response is associated with host susceptibility, while Th1 cells are associated with protection. The absence of IL-27 receptor alpha in mice favor the increase Cryptococcus neoformans burden in the lung. Here, we evaluated the effects of the combination of IL-4, IFN-γ or IL-27 with C. gattii on human bronchial epithelial cells (BEAS-2B). METHODS BEAS-2B were stimulated with IL-4, IFN-γ or IL-27 (100 ng/mL) and/or live yeast forms of C. gattii (multiplicities of infection (MOI) of 1-100) and vice-versa, as well as with heat-killed cells of C. gattii for 24 h. RESULTS None of the C. gattii MOIs had cytotoxic effects on BEAS-2B when compared to control. The cells stimulated by cytokines (IL-4, IFN-γ or IL-27) followed by live yeast forms of C. gattii (MOI of 100) infection and vice-versa demonstrated a reduction in IL-6, IL-8 and/or CCL2 production and activation of STAT6 (induced by IL-4) and STAT1 (induced by IL-27 or IFN-γ) when compared to cells stimulated with C. gattii, IL-4, IFN-γ or IL-27. In the combination of cytokines and heat-killed cells of C. gattii, no inhibition of these inflammatory parameters was observed. The growth of C. gattii was increased while the phagocytosis of live yeast forms of C. gattii in the BEAS-2B were reduced in the presence of IL-4, IFN-γ or IL-27. Conclusion The association of live yeast forms, but not heat-killed yeast forms, of C. gattii with IL-4, IFN-γ or IL-27 induced an anti-inflammatory effect.
Collapse
Affiliation(s)
- Maiara Medeiros Cunha
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Aline Beatriz Mahler Pereira
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Roberta Campos Lino
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Paulo Roberto da Silva
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Leonardo Euripedes Andrade-Silva
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Mycology, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Fernanda Bernadelli de Vito
- Institute of Biological and Natural Sciences, Department of Genetics, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Hélio Moraes de Souza
- Institute of Biological and Natural Sciences, Department of Genetics, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Mario Leon Silva-Vergara
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Mycology, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Alexandre Paula Rogério
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG, USA.
| |
Collapse
|
6
|
Cryptococcal Immune Reconstitution Inflammatory Syndrome: From Clinical Studies to Animal Experiments. Microorganisms 2022; 10:microorganisms10122419. [PMID: 36557672 PMCID: PMC9780901 DOI: 10.3390/microorganisms10122419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Cryptococcus neoformans is an encapsulated pathogenic fungus that initially infects the lung but can migrate to the central nervous system (CNS), resulting in meningoencephalitis. The organism causes the CNS infection primarily in immunocompromised individuals including HIV/AIDS patients, but also, rarely, in immunocompetent individuals. In HIV/AIDS patients, limited inflammation in the CNS, due to impaired cellular immunity, cannot efficiently clear a C. neoformans infection. Antiretroviral therapy (ART) can rapidly restore cellular immunity in HIV/AIDS patients. Paradoxically, ART induces an exaggerated inflammatory response, termed immune reconstitution inflammatory syndrome (IRIS), in some HIV/AIDS patients co-infected with C. neoformans. A similar excessive inflammation, referred to as post-infectious inflammatory response syndrome (PIIRS), is also frequently seen in previously healthy individuals suffering from cryptococcal meningoencephalitis. Cryptococcal IRIS and PIIRS are life-threatening complications that kill up to one-third of affected people. In this review, we summarize the inflammatory responses in the CNS during HIV-associated cryptococcal meningoencephalitis. We overview the current understanding of cryptococcal IRIS developed in HIV/AIDS patients and cryptococcal PIIRS occurring in HIV-uninfected individuals. We also describe currently available animal models that closely mimic aspects of cryptococcal IRIS observed in HIV/AIDS patients.
Collapse
|
7
|
Cryptococcus neoformans Infection in the Central Nervous System: The Battle between Host and Pathogen. J Fungi (Basel) 2022; 8:jof8101069. [PMID: 36294634 PMCID: PMC9605252 DOI: 10.3390/jof8101069] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cryptococcus neoformans (C. neoformans) is a pathogenic fungus with a global distribution. Humans become infected by inhaling the fungus from the environment, and the fungus initially colonizes the lungs. If the immune system fails to contain C. neoformans in the lungs, the fungus can disseminate to the blood and invade the central nervous system, resulting in fatal meningoencephalitis particularly in immunocompromised individuals including HIV/AIDS patients. Following brain invasion, C. neoformans will encounter host defenses involving resident as well as recruited immune cells in the brain. To overcome host defenses, C. neoformans possesses multiple virulence factors capable of modulating immune responses. The outcome of the interactions between the host and C. neoformans will determine the disease progression. In this review, we describe the current understanding of how C. neoformans migrates to the brain across the blood–brain barrier, and how the host immune system responds to the invading organism in the brain. We will also discuss the virulence factors that C. neoformans uses to modulate host immune responses.
Collapse
|
8
|
Pulmonary Fibrosis and Hypereosinophilia in TLR9-/- Mice Infected by Cryptococcus gattii. Pathogens 2022; 11:pathogens11090987. [PMID: 36145419 PMCID: PMC9505093 DOI: 10.3390/pathogens11090987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 11/20/2022] Open
Abstract
Cryptococcus gattii is a worldwide-distributed basidiomycetous yeast that can infect immunocompetent hosts. However, little is known about the mechanisms involved in the disease. The innate immune response is essential to the control of infections by microorganisms. Toll-like receptor 9 (TLR9) is an innate immune receptor, classically described as a non-methylated DNA recognizer and associated with bacteria, protozoa and opportunistic mycosis infection models. Previously, our group showed that TLR9-/- mice were more susceptible to C. gattii after 21 days of infection. However, some questions about the innate immunity involving TLR9 response against C. gattii remain unknown. In order to investigate the systemic cryptococcal infection, we evaluated C57BL/6 mice and C57BL/6 TLR9-/- after intratracheal infection with 104C. gattii yeasts for 21 days. Our data evidenced that TLR9-/- was more susceptible to C. gattii. TLR9-/- mice had hypereosinophilia in pulmonary mixed cellular infiltrate, severe bronchiolitis and vasculitis and type 2 alveolar cell hyperplasia. In addition, TLR9-/- mice developed severe pulmonary fibrosis and areas with strongly birefringent fibers. Together, our results corroborate the hypothesis that TLR9 is important to support the Th1/Th17 response against C. gattii infection in the murine experimental model.
Collapse
|
9
|
Guasconi L, Beccacece I, Volpini X, Burstein VL, Mena CJ, Silvane L, Almeida MA, Musri MM, Cervi L, Chiapello LS. Pulmonary Conventional Type 1 Langerin-Expressing Dendritic Cells Play a Role in Impairing Early Protective Immune Response against Cryptococcus neoformans Infection in Mice. J Fungi (Basel) 2022; 8:jof8080792. [PMID: 36012781 PMCID: PMC9410147 DOI: 10.3390/jof8080792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Lung dendritic cells (DC) are powerful antigen-presenting cells constituted by various subpopulations that differ in terms of their function and origin and differentially regulate cell-mediated antifungal immunity. The lung is the primary target organ of Cryptococcus neoformans and C. gattii infections, which makes it essential in the establishment of the first line of anti-cryptococcal defense. However, the lung-specific dynamics and function of DC subsets are poorly understood in cryptococcosis. In this study, we provide evidence for the in vivo function of a conventional langerin-expressing DC1 dendritic cell (LangDC1) population during the first week of intratracheal C. neoformans infection in mice. By using conditional depletion of LangDC1 after diphtheria toxin treatment of LangDTREGFP mice, we demonstrate that these animals better control the fungal infection and produce type 1 and 17 cytokines in the context of a type 2 immune response, favoring a predominance of iNOS over arginase-1 expression by pulmonary cells. Our results suggest that LangDC1 cells play a role in impairing immune response for the clearance of C. neoformans in the early stage of pulmonary infection.
Collapse
Affiliation(s)
- Lorena Guasconi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (L.G.); (I.B.); (X.V.); (V.L.B.); (C.J.M.); (L.S.); (M.A.A.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
| | - Ignacio Beccacece
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (L.G.); (I.B.); (X.V.); (V.L.B.); (C.J.M.); (L.S.); (M.A.A.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
| | - Ximena Volpini
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (L.G.); (I.B.); (X.V.); (V.L.B.); (C.J.M.); (L.S.); (M.A.A.)
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5016GCA, Argentina;
| | - Verónica L. Burstein
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (L.G.); (I.B.); (X.V.); (V.L.B.); (C.J.M.); (L.S.); (M.A.A.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
| | - Cristian J. Mena
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (L.G.); (I.B.); (X.V.); (V.L.B.); (C.J.M.); (L.S.); (M.A.A.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
| | - Leonardo Silvane
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (L.G.); (I.B.); (X.V.); (V.L.B.); (C.J.M.); (L.S.); (M.A.A.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
| | - Mariel A. Almeida
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (L.G.); (I.B.); (X.V.); (V.L.B.); (C.J.M.); (L.S.); (M.A.A.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
| | - Melina Mara Musri
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5016GCA, Argentina;
- Departamento de Fisiología, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba, Córdoba X5016GCA, Argentina
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (L.G.); (I.B.); (X.V.); (V.L.B.); (C.J.M.); (L.S.); (M.A.A.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
- Correspondence: (L.C.); (L.S.C.)
| | - Laura S. Chiapello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (L.G.); (I.B.); (X.V.); (V.L.B.); (C.J.M.); (L.S.); (M.A.A.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
- Correspondence: (L.C.); (L.S.C.)
| |
Collapse
|
10
|
Oliveira-Brito PKM, de Campos GY, Guimarães JG, Serafim da Costa L, Silva de Moura E, Lazo-Chica JE, Roque-Barreira MC, da Silva TA. Adjuvant Curdlan Contributes to Immunization against Cryptococcus gattii Infection in a Mouse Strain-Specific Manner. Vaccines (Basel) 2022; 10:vaccines10040620. [PMID: 35455369 PMCID: PMC9030172 DOI: 10.3390/vaccines10040620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
The low efficacy and side effects associated with antifungal agents have highlighted the importance of developing immunotherapeutic approaches to treat Cryptococcus gattii infection. We developed an immunization strategy that uses selective Dectin-1 agonist as an adjuvant. BALB/c or C57BL/6 mice received curdlan or β-glucan peptide (BGP) before immunization with heat-killed C. gattii, and the mice were infected with viable C. gattii on day 14 post immunization and euthanized 14 days after infection. Adjuvant curdlan restored pulmonary tumor necrosis factor- α (TNF-α) levels, as induced by immunization with heat-killed C. gattii. The average area and relative frequency of C. gattii titan cells in the lungs of curdlan-treated BALB/c mice were reduced. However, this did not reduce the pulmonary fungal burden or decrease the i0,nflammatory infiltrate in the pulmonary parenchyma of BALB/c mice. Conversely, adjuvant curdlan induced high levels of interferon-γ (IFN-γ) and interleukin (IL)-10 and decreased the C. gattii burden in the lungs of C57BL/6 mice, which was not replicated in β-glucan peptide-treated mice. The adjuvant curdlan favors the control of C. gattii infection depending on the immune response profile of the mouse strain. This study will have implications for developing new immunotherapeutic approaches to treat C. gattii infection.
Collapse
Affiliation(s)
- Patrícia Kellen Martins Oliveira-Brito
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.K.M.O.-B.); (G.Y.d.C.); (J.G.G.); (E.S.d.M.); (M.C.R.-B.)
| | - Gabriela Yamazaki de Campos
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.K.M.O.-B.); (G.Y.d.C.); (J.G.G.); (E.S.d.M.); (M.C.R.-B.)
| | - Júlia Garcia Guimarães
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.K.M.O.-B.); (G.Y.d.C.); (J.G.G.); (E.S.d.M.); (M.C.R.-B.)
| | - Letícia Serafim da Costa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 14049-900, SP, Brazil;
| | - Edanielle Silva de Moura
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.K.M.O.-B.); (G.Y.d.C.); (J.G.G.); (E.S.d.M.); (M.C.R.-B.)
| | - Javier Emílio Lazo-Chica
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-189, MG, Brazil;
| | - Maria Cristina Roque-Barreira
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.K.M.O.-B.); (G.Y.d.C.); (J.G.G.); (E.S.d.M.); (M.C.R.-B.)
| | - Thiago Aparecido da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (P.K.M.O.-B.); (G.Y.d.C.); (J.G.G.); (E.S.d.M.); (M.C.R.-B.)
- Thiago Aparecido da Silva, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto 14049-900, SP, Brazil
- Correspondence: or ; Tel.: +55-16-3315-3049
| |
Collapse
|
11
|
Sheemar A, Soni D, Takkar B, Basu S, Venkatesh P. Inflammatory mediators in diabetic retinopathy: Deriving clinicopathological correlations for potential targeted therapy. Indian J Ophthalmol 2021; 69:3035-3049. [PMID: 34708739 PMCID: PMC8725076 DOI: 10.4103/ijo.ijo_1326_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
The role of inflammation in diabetic retinopathy (DR) is well-established and dysregulation of a large number of inflammatory mediators is known. These include cytokines, chemokines, growth factors, mediators of proteogenesis, and pro-apoptotic molecules. This para-inflammation as a response is not directed to a particular pathogen or antigen but is rather directed toward the by-products of the diabetic milieu. The inflammatory mediators take part in cascades that result in cellular level responses like neurodegeneration, pericyte loss, leakage, capillary drop out, neovascularization, etc. There are multiple overlaps between the inflammatory pathways occurring within the diabetic retina due to a large number of mediators, their varied sources, and cross-interactions. This makes understanding the role of inflammation in clinical manifestations of DR difficult. Currently, mediator-based therapy for DR is being evaluated for interventions that target a specific step of the inflammatory cascade. We reviewed the role of inflammation in DR and derived a simplified clinicopathological correlation between the sources and stimuli of inflammation, the inflammatory mediators and pathways, and the clinical manifestations of DR. By doing so, we deliberate mediator-specific therapy for DR. The cross-interactions between inflammatory mediators and the molecular cycles influencing the inflammatory cascades are crucial challenges to such an approach. Future research should be directed to assess the feasibility of the pathology-based therapy for DR.
Collapse
Affiliation(s)
- Abhishek Sheemar
- Department of Ophthalmology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Deepak Soni
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Brijesh Takkar
- Smt. Kanuri Santhamma Center for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India
- Indian Health Outcomes, Public Health and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Soumyava Basu
- Uveitis Service, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Pradeep Venkatesh
- Dr.R.P.Centre for Ophthalmic Sciences, All India Institute of Medical Science, New Delhi, India
| |
Collapse
|
12
|
Alshahrani MY, Alfaifi M, Al Shahrani M, Alshahrani AS, Alkhathami AG, Dera AA, Ahmad I, Wahab S, Beg MMA, Hakamy A, Hamid ME. Increased mRNA expression of key cytokines among suspected cases of Pneumocystis jirovecii infection. BMC Infect Dis 2021; 21:28. [PMID: 33413198 PMCID: PMC7792013 DOI: 10.1186/s12879-020-05729-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Background Pneumocystis pneumonia (PCP) is a fatal infectious disease caused by Pneumocystis jirovecii (PJP). The major factor relevant to morbidity and mortality seems to be the host inflammatory reaction. The objective of this study was to evaluate the role of IL-2, IL-4, IL-10, and IL-13 cytokine mRNA expression among suspected P. jirovecii infection. Methods This was a cross-sectional analytical study undertaken in Aseer region, Saudi Arabia. One hundred suspected PCP cases and 100 healthy controls were included in the study. Basic clinical manifestations, radiological findings, microbiological and immunological findings were extracted from the hospital records from January 2019 to August 2019, Pneumocystis detection was done by immune-fluorescent staining (IFAT, Gomorimethanamine silver staining (GMSS), Giemsa staining, Toluidine blue O (TBO), and Pneumocystis RT-PCR. Results Increased more than 5 fold, 3 fold, 4 fold, and 7 fold of IL-2, IL-4, IL-10, and IL-13 mRNA expression were observed in PCP cases compared to controls. Higher expression of IL-2 mRNA was connected with crept, wheezing and chest X-ray findings like central perihilar infiltrate, patchy infiltrate, consolidation, hilar lymphadenopathy, pneumothorax, pleural effusion which showed higher expression compared to counterpart (p< 0.0001). Higher expression of IL-4 mRNA was found to be significantly associated with weight loss (p=0.002), dyspnea (p=0.003), crept (p=0.01), and chest X-ray findings (p< 0.0001). Significantly increased expression of IL-10 mRNA was observed to be associated with weight loss, dyspnea, night sweats, wheezing, and different findings of chest X-ray compared to their counterparts, whereas, IL-13 mRNA was observed in cases with fever. Suspected cases of PCP confirmed positive by IFTA with higher IL-2, IL-4, and IL-10 mRNA expression compared to negative cases. RT-PCR confirmed PCP cases had significantly higher expression of IL-2, IL-4, and IL-10 as well as IL-13 mRNA compared to negative cases. Positive detected cases by GMSS showed higher IL-2, IL-10 mRNA expression, while Giemsa showed only higher IL-4 mRNA expression compared to negative cases. Conclusion Confirmed cases of P. jirovecii showed higher IL-2, IL-4, IL-10, and IL-13 mRNA expression comparatively to negative cases. Increased expression of cytokines may be indicative of infection severity and could help in patients’ management.
Collapse
Affiliation(s)
- Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Alfaifi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mirza M A Beg
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| | - Ali Hakamy
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohamed E Hamid
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
13
|
Chesdachai S, Engen NW, Rhein J, Tugume L, Kiiza Kandole T, Abassi M, Ssebambulidde K, Kasibante J, Williams DA, Skipper CP, Hullsiek KH, Musubire AK, Rajasingham R, Meya DB, Boulware DR. Baseline Serum C-Reactive Protein Level Predicts Mortality in Cryptococcal Meningitis. Open Forum Infect Dis 2020; 7:ofaa530. [PMID: 33335936 PMCID: PMC7727340 DOI: 10.1093/ofid/ofaa530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND C-reactive protein (CRP) is an acute phase protein produced by the liver in response to systemic inflammation. CRP is a helpful surrogate biomarker used for following the progression and resolution of infection. We aimed to determine the association of baseline CRP level and the temporal change in CRP over time with cryptococcal meningitis outcome. METHODS We reviewed 168 prospectively enrolled HIV-infected Ugandans with confirmed first-episode cryptococcal meningitis. Baseline plasma CRP collected within 5 days of meningitis diagnosis was categorized into quartiles. We compared baseline CRP with 18-week survival using time-to-event analysis. RESULTS Of 168 participants, the baseline first quartile of serum CRP was <29.0 mg/L, second quartile 29.0-49.5 mg/L, third quartile 49.6-83.6 mg/L, and fourth quartile >83.6 mg/L. Baseline CD4 count, HIV viral load, and cerebrospinal fluid results did not differ by CRP quartile. Participants with CRP >49.5 mg/L more likely presented with Glasgow Coma Scale (GCS) <15 (P = .03). The 18-week mortality rate was 55% (46/84) in the highest 2 quartile CRP groups (>49.5 mg/L), 41% (17/42) in the mid-range CRP group (29.0-49.5 mg/L), and 14% (6/42) in the low-CRP group (<29.0 mg/L; P < .001). After adjustment for possible confounding factors including GCS <15, CRP remained significantly associated with mortality (adjusted hazard ratio, 1.084 per 10 mg/L; 95% CI, 1.031-1.139; P = .0016). CONCLUSIONS Higher baseline CRP is associated with increased mortality in HIV-infected individuals with first-episode cryptococcal meningitis. CRP could be a surrogate marker for undiagnosed coinfections or may reflect immune dysregulation, leading to worse outcomes in persons with advanced AIDS and concomitant cryptococcal meningitis.
Collapse
Affiliation(s)
- Supavit Chesdachai
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA,Correspondence: Supavit Chesdachai, MD, 420 Delaware Street SE, MMC 284, Minneapolis, MN 55455 ()
| | - Nicole W Engen
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joshua Rhein
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lillian Tugume
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Tadeo Kiiza Kandole
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Mahsa Abassi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kenneth Ssebambulidde
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - John Kasibante
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Darlisha A Williams
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Caleb P Skipper
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kathy H Hullsiek
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Abdu K Musubire
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Radha Rajasingham
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - David B Meya
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David R Boulware
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
Chung KY, Brown JCS. Biology and function of exo-polysaccharides from human fungal pathogens. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020; 7:1-11. [PMID: 33042730 DOI: 10.1007/s40588-020-00137-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of review Environmental fungi such as Cryptococcus neoformans and Aspergillus fumigatus must survive many different and changing environments as they transition from their environmental niches to human lungs and other organs. Fungi alter their cell surfaces and secreted macromolecules to respond to and manipulate their surroundings. Recent findings This review focuses on exo-polysaccharides, chains of sugars that transported out of the cell and spread to the local environment. Major exo-polysaccharides for C. neoformans and A. fumigatus are glucuronylxylomannan (GXM) and galactosaminogalactan (GAG), respectively, which accumulate at high concentrations in growth medium and infected patients. Summary Here we discuss GXM and GAG synthesis and export, their immunomodulatory properties, and their roles in biofilm formation. We also propose areas of future research to address outstanding questions in the field that could facilitate development of new disease treatments.
Collapse
Affiliation(s)
- Krystal Y Chung
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jessica C S Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
15
|
Shourian M, Qureshi ST. Resistance and Tolerance to Cryptococcal Infection: An Intricate Balance That Controls the Development of Disease. Front Immunol 2019; 10:66. [PMID: 30761136 PMCID: PMC6361814 DOI: 10.3389/fimmu.2019.00066] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
Cryptococcus neoformans is a ubiquitous environmental yeast and a leading cause of invasive fungal infection in humans. The most recent estimate of global disease burden includes over 200,000 cases of cryptococcal meningitis each year. Cryptococcus neoformans expresses several virulence factors that may have originally evolved to protect against environmental threats, and human infection may be an unintended consequence of these acquired defenses. Traditionally, C. neoformans has been viewed as a purely opportunistic pathogen that targets severely immune compromised hosts; however, during the past decade the spectrum of susceptible individuals has grown considerably. In addition, the closely related strain Cryptococcus gattii has recently emerged in North America and preferentially targets individuals with intact immunity. In parallel to the changing epidemiology of cryptococcosis, an increasing role for host immunity in the pathogenesis of severe disease has been elucidated. Initially, the HIV/AIDS epidemic revealed the capacity of C. neoformans to cause host damage in the absence of adaptive immunity. Subsequently, the development and clinical implementation of highly active antiretroviral treatment (HAART) led to recognition of an immune reconstitution inflammatory syndrome (IRIS) in a subset of HIV+ individuals, demonstrating the pathological role of host immunity in disease. A post-infectious inflammatory syndrome (PIIRS) characterized by abnormal T cell-macrophage activation has also been documented in HIV-negative individuals following antifungal therapy. These novel clinical conditions illustrate the highly complex host-pathogen relationship that underlies severe cryptococcal disease and the intricate balance between tolerance and resistance that is necessary for effective resolution. In this article, we will review current knowledge of the interactions between cryptococci and mammalian hosts that result in a tolerant phenotype. Future investigations in this area have potential for translation into improved therapies for affected individuals.
Collapse
Affiliation(s)
- Mitra Shourian
- Translational Research in Respiratory Diseases Program, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Salman T Qureshi
- Translational Research in Respiratory Diseases Program, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
16
|
Zhou X, Ballou ER. The Cryptococcus neoformans Titan Cell: From In Vivo Phenomenon to In Vitro Model. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0107-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Teitz-Tennenbaum S, Viglianti SP, Roussey JA, Levitz SM, Olszewski MA, Osterholzer JJ. Autocrine IL-10 Signaling Promotes Dendritic Cell Type-2 Activation and Persistence of Murine Cryptococcal Lung Infection. THE JOURNAL OF IMMUNOLOGY 2018; 201:2004-2015. [PMID: 30097531 DOI: 10.4049/jimmunol.1800070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/21/2018] [Indexed: 12/14/2022]
Abstract
The substantial morbidity and mortality caused by invasive fungal pathogens, including Cryptococcus neoformans, necessitates increased understanding of protective immune responses against these infections. Our previous work using murine models of cryptococcal lung infection demonstrated that dendritic cells (DCs) orchestrate critical transitions from innate to adaptive immunity and that IL-10 signaling blockade improves fungal clearance. To further understand interrelationships among IL-10 production, fungal clearance, and the effect of IL-10 on lung DCs, we performed a comparative temporal analysis of cryptococcal lung infection in wild type C57BL/6J mice (designated IL-10+/+) and IL-10-/- mice inoculated intratracheally with C. neoformans (strain 52D). Early and sustained IL-10 production by lung leukocytes was associated with persistent infection in IL-10+/+ mice, whereas fungal clearance was improved in IL-10-/- mice during the late adaptive phase of infection. Numbers of monocyte-derived DCs, T cells, and alveolar and exudate macrophages were increased in lungs of IL-10-/- versus IL-10+/+ mice concurrent with evidence of enhanced DC type-1, Th1/Th17 CD4 cell, and classical macrophage activation. Bone marrow-derived DCs stimulated with cryptococcal mannoproteins, a component of the fungal capsule, upregulated expression of IL-10 and IL-10R, which promoted DC type-2 activation in an autocrine manner. Thus, our findings implicate fungus-triggered autocrine IL-10 signaling and DC type-2 activation as important contributors to the development of nonprotective immune effector responses, which characterize persistent cryptococcal lung infection. Collectively, this study informs and strengthens the rationale for IL-10 signaling blockade as a novel treatment for fungal infections.
Collapse
Affiliation(s)
- Seagal Teitz-Tennenbaum
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Steven P Viglianti
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105
| | - Jonathan A Roussey
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical Center, Worcester, MA 01605
| | - Michal A Olszewski
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109; and
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; .,Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109; and.,Pulmonary Section Medical Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105
| |
Collapse
|
18
|
Rübsam A, Parikh S, Fort PE. Role of Inflammation in Diabetic Retinopathy. Int J Mol Sci 2018; 19:ijms19040942. [PMID: 29565290 PMCID: PMC5979417 DOI: 10.3390/ijms19040942] [Citation(s) in RCA: 470] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/09/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy is a common complication of diabetes and remains the leading cause of blindness among the working-age population. For decades, diabetic retinopathy was considered only a microvascular complication, but the retinal microvasculature is intimately associated with and governed by neurons and glia, which are affected even prior to clinically detectable vascular lesions. While progress has been made to improve the vascular alterations, there is still no treatment to counteract the early neuro-glial perturbations in diabetic retinopathy. Diabetes is a complex metabolic disorder, characterized by chronic hyperglycemia along with dyslipidemia, hypoinsulinemia and hypertension. Increasing evidence points to inflammation as one key player in diabetes-associated retinal perturbations, however, the exact underlying molecular mechanisms are not yet fully understood. Interlinked molecular pathways, such as oxidative stress, formation of advanced glycation end-products and increased expression of vascular endothelial growth factor have received a lot of attention as they all contribute to the inflammatory response. In the current review, we focus on the involvement of inflammation in the pathophysiology of diabetic retinopathy with special emphasis on the functional relationships between glial cells and neurons. Finally, we summarize recent advances using novel targets to inhibit inflammation in diabetic retinopathy.
Collapse
Affiliation(s)
- Anne Rübsam
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA.
| | - Sonia Parikh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA.
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
19
|
Dutra FF, Albuquerque PC, Rodrigues ML, Fonseca FL. Warfare and defense: The host response to Cryptococcus infection. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
CD4 + T Cells Orchestrate Lethal Immune Pathology despite Fungal Clearance during Cryptococcus neoformans Meningoencephalitis. mBio 2017; 8:mBio.01415-17. [PMID: 29162707 PMCID: PMC5698549 DOI: 10.1128/mbio.01415-17] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cryptococcus neoformans is a major fungal pathogen that disseminates to the central nervous system (CNS) to cause fatal meningoencephalitis, but little is known about immune responses within this immune-privileged site. CD4+ T cells have demonstrated roles in anticryptococcal defenses, but increasing evidence suggests that they may contribute to clinical deterioration and pathology in both HIV-positive (HIV+) and non-HIV patients who develop immune reconstitution inflammatory syndrome (IRIS) and post-infectious inflammatory response syndrome (PIIRS), respectively. Here we report a novel murine model of cryptococcal meningoencephalitis and a potential damaging role of T cells in disseminated cryptococcal CNS infection. In this model, fungal burdens plateaued in the infected brain by day 7 postinfection, but activation of microglia and accumulation of CD45hi leukocytes was significantly delayed relative to fungal growth and did not peak until day 21. The inflammatory leukocyte infiltrate consisted predominantly of gamma interferon (IFN-γ)-producing CD4+ T cells, conventionally believed to promote fungal clearance and recovery. However, more than 50% of mice succumbed to infection and neurological dysfunction between days 21 and 35 despite a 100-fold reduction in fungal burdens. Depletion of CD4+ cells significantly impaired IFN-γ production, CD8+ T cell and myeloid cell accumulation, and fungal clearance from the CNS but prevented the development of clinical symptoms and mortality. These findings conclusively demonstrate that although CD4+ T cells are necessary to control fungal growth, they can also promote significant immunopathology and mortality during CNS infection. The results from this model may provide important guidance for development and use of anti-inflammatory therapies to minimize CNS injury in patients with severe cryptococcal infections. CNS infection with the fungal pathogen Cryptococcus neoformans often results in debilitating brain injury and has a high mortality rate despite antifungal treatment. Treatment is complicated by the fact that immune responses needed to eliminate infection are also thought to drive CNS damage in a subset of both HIV+ and non-HIV patients. Thus, physicians need to balance efforts to enhance patients’ immune responses and promote microbiological control with anti-inflammatory therapy to protect the CNS. Here we report a novel model of cryptococcal meningoencephalitis demonstrating that fungal growth within the CNS does not immediately cause symptomatic disease. Rather, accumulation of antifungal immune cells critically mediates CNS injury and mortality. This model demonstrates that antifungal immune responses in the CNS can cause detrimental pathology and addresses the urgent need for animal models to investigate the specific cellular and molecular mechanisms underlying cryptococcal disease in order to better treat patients with CNS infections.
Collapse
|
21
|
Roussey JA, Viglianti SP, Teitz-Tennenbaum S, Olszewski MA, Osterholzer JJ. Anti-PD-1 Antibody Treatment Promotes Clearance of Persistent Cryptococcal Lung Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2017; 199:3535-3546. [PMID: 29038249 DOI: 10.4049/jimmunol.1700840] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023]
Abstract
Activation of immunomodulatory pathways in response to invasive fungi can impair clearance and promote persistent infections. The programmed cell death protein-1 (PD-1) signaling pathway inhibits immune effector responses against tumors, and immune checkpoint inhibitors that block this pathway are being increasingly used as cancer therapy. The objective of this study was to investigate whether this pathway contributes to persistent fungal infection and to determine whether anti-PD-1 Ab treatment improves fungal clearance. Studies were performed using C57BL/6 mice infected with a moderately virulent strain of Cryptococcus neoformans (52D), which resulted in prolonged elevations in fungal burden and histopathologic evidence of chronic lung inflammation. Persistent infection was associated with increased and sustained expression of PD-1 on lung lymphocytes, including a mixed population of CD4+ T cells. In parallel, expression of the PD-1 ligands, PD-1 ligands 1 and 2, was similarly upregulated on specific subsets of resident and recruited lung dendritic cells and macrophages. Treatment of persistently infected mice for 4 wk by repetitive administration of neutralizing anti-PD-1 Ab significantly improved pulmonary fungal clearance. Treatment was well tolerated without evidence of morbidity. Immunophenotyping revealed that anti-PD-1 Ab treatment did not alter immune effector cell numbers or myeloid cell activation. Treatment did reduce gene expression of IL-5 and IL-10 by lung leukocytes and promoted sustained upregulation of OX40 by Th1 and Th17 cells. Collectively, this study demonstrates that PD-1 signaling promotes persistent cryptococcal lung infection and identifies this pathway as a potential target for novel immune-based treatments of chronic fungal disease.
Collapse
Affiliation(s)
- Jonathan A Roussey
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, University of Michigan Health System, Ann Arbor, MI 48103.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48103
| | - Steven P Viglianti
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, University of Michigan Health System, Ann Arbor, MI 48103
| | - Seagal Teitz-Tennenbaum
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, University of Michigan Health System, Ann Arbor, MI 48103.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48103
| | - Michal A Olszewski
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, University of Michigan Health System, Ann Arbor, MI 48103.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48103.,Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48103; and
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48103; .,Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48103; and.,Pulmonary Section, Medical Service, University of Michigan Health System, Ann Arbor, MI 48103
| |
Collapse
|
22
|
Xu J, Flaczyk A, Neal LM, Fa Z, Cheng D, Ivey M, Moore BB, Curtis JL, Osterholzer JJ, Olszewski MA. Exploitation of Scavenger Receptor, Macrophage Receptor with Collagenous Structure, by Cryptococcus neoformans Promotes Alternative Activation of Pulmonary Lymph Node CD11b + Conventional Dendritic Cells and Non-Protective Th2 Bias. Front Immunol 2017; 8:1231. [PMID: 29033946 PMCID: PMC5624996 DOI: 10.3389/fimmu.2017.01231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022] Open
Abstract
Macrophage receptor with collagenous structure (MARCO) contributes to fungal containment during the early/innate phase of cryptococcal infection; however, its role in adaptive antifungal immunity remains unknown. Using a murine model of cryptococcosis, we compared host adaptive immune responses in wild-type and MARCO−/− mice throughout an extended time course post-infection. Unlike in early infection, MARCO deficiency resulted in improved pulmonary fungal clearance and diminished cryptococcal dissemination during the efferent phase. Improved fungal control in the absence of MARCO expression was associated with enhanced hallmarks of protective Th1-immunity, including higher frequency of pulmonary TNF-α-producing T cells, increased cryptococcal-antigen-triggered IFN-γ and TNF-α production by splenocytes, and enhanced expression of M1 polarization genes by pulmonary macrophages. Concurrently, we found lower frequencies of IL-5- and IL-13-producing T cells in the lungs, impaired production of IL-4 and IL-10 by cryptococcal antigen-pulsed splenocytes, and diminished serum IgE, which were hallmarks of profoundly suppressed efferent Th2 responses in MARCO-deficient mice compared to WT mice. Mechanistically, we found that MARCO expression facilitated early accumulation and alternative activation of CD11b+ conventional DC (cDC) in the lung-associated lymph nodes (LALNs), which contributed to the progressive shift of the immune response from Th1 toward Th2 at the priming site (LALNs) and local infection site (lungs) during the efferent phase of cryptococcal infection. Taken together, our study shows that MARCO can be exploited by the fungal pathogen to promote accumulation and alternative activation of CD11b+ cDC in the LALN, which in turn alters Th1/Th2 balance to promote fungal persistence and dissemination.
Collapse
Affiliation(s)
- Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Adam Flaczyk
- Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Lori M Neal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Zhenzong Fa
- Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Daphne Cheng
- Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Mike Ivey
- Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Department of Veterans Affairs Health System, VA Ann Arbor Healthcare System (VHA), Ann Arbor, MI, United States
| |
Collapse
|
23
|
Abstract
Cryptococcus species are encapsulated fungi found in the environment that predominantly cause disease in immunocompromised hosts after inhalation into the lungs. Even with contemporary antifungal regimens, patients with cryptococcosis continue to have high morbidity and mortality rates. The development of more effective therapies may depend on our understanding of the cellular and molecular mechanisms by which the host promotes sterilizing immunity against the fungus. This review will highlight our current knowledge of how Cryptococcus, primarily the species C. neoformans, is sensed by the mammalian host and how subsequent signaling pathways direct the anti-cryptococcal response by effector cells of the innate immune system.
Collapse
Affiliation(s)
- Lena J Heung
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
24
|
Roussey JA, Olszewski MA, Osterholzer JJ. Immunoregulation in Fungal Diseases. Microorganisms 2016; 4:microorganisms4040047. [PMID: 27973396 PMCID: PMC5192530 DOI: 10.3390/microorganisms4040047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 02/07/2023] Open
Abstract
This review addresses specific regulatory mechanisms involved in the host immune response to fungal organisms. We focus on key cells and regulatory pathways involved in these responses, including a brief overview of their broader function preceding a discussion of their specific relevance to fungal disease. Important cell types discussed include dendritic cells and regulatory T cells, with a focus on specific studies relating to their effects on immune responses to fungi. We highlight the interleukin-10, programmed cell death 1, and cytotoxic T lymphocyte-associated protein 4 signaling pathways and emphasize interrelationships between these pathways and the regulatory functions of dendritic cells and regulatory T cells. Throughout our discussion, we identify selected studies best illustrating the role of these cells and pathways in response to specific fungal pathogens to provide a contextual understanding of the tightly-controlled network of regulatory mechanisms critical to determining the outcome of exposure to fungal pathogens. Lastly, we discuss two unique phenomena relating to immunoregulation, protective tolerance and immune reactivation inflammatory syndrome. These two clinically-relevant conditions provide perspective as to the range of immunoregulatory mechanisms active in response to fungi.
Collapse
Affiliation(s)
- Jonathan A Roussey
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA.
- Pulmonary Section, Medical Service, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA.
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA.
- Pulmonary Section, Medical Service, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA.
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA.
- Pulmonary Section, Medical Service, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA.
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| |
Collapse
|
25
|
Eastman AJ, Osterholzer JJ, Olszewski MA. Role of dendritic cell-pathogen interactions in the immune response to pulmonary cryptococcal infection. Future Microbiol 2016; 10:1837-57. [PMID: 26597428 DOI: 10.2217/fmb.15.92] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review discusses the unique contributions of dendritic cells (DCs) to T-cell priming and the generation of effective host defenses against Cryptococcus neoformans (C.neo) infection. We highlight DC subsets involved in the early and later stages of anticryptococcal immune responses, interactions between C.neo pathogen-associated molecular patterns and pattern recognition receptors expressed by DC, and the influence of DC on adaptive immunity. We emphasize recent studies in mouse models of cryptococcosis that illustrate the importance of DC-derived cytokines and costimulatory molecules and the potential role of DC epigenetic modifications that support maintenance of these signals throughout the immune response to C.neo. Lastly, we stipulate where these advances can be developed into new, immune-based therapeutics for treatment of this global pathogen.
Collapse
Affiliation(s)
- Alison J Eastman
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - John J Osterholzer
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Michal A Olszewski
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Heyen L, Müller U, Siegemund S, Schulze B, Protschka M, Alber G, Piehler D. Lung epithelium is the major source of IL-33 and is regulated by IL-33-dependent and IL-33-independent mechanisms in pulmonary cryptococcosis. Pathog Dis 2016; 74:ftw086. [DOI: 10.1093/femspd/ftw086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2016] [Indexed: 01/08/2023] Open
|
27
|
Chen GH, Teitz-Tennenbaum S, Neal LM, Murdock BJ, Malachowski AN, Dils AJ, Olszewski MA, Osterholzer JJ. Local GM-CSF-Dependent Differentiation and Activation of Pulmonary Dendritic Cells and Macrophages Protect against Progressive Cryptococcal Lung Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2016; 196:1810-21. [PMID: 26755822 DOI: 10.4049/jimmunol.1501512] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/09/2015] [Indexed: 02/05/2023]
Abstract
Patients with acquired deficiency in GM-CSF are susceptible to infections with Cryptococcus neoformans and other opportunistic fungi. We previously showed that GM-CSF protects against progressive fungal disease using a murine model of cryptococcal lung infection. To better understand the cellular and molecular mechanisms through which GM-CSF enhances antifungal host defenses, we investigated temporal and spatial relationships between myeloid and lymphoid immune responses in wild-type C57BL/6 mice capable of producing GM-CSF and GM-CSF-deficient mice infected with a moderately virulent encapsulated strain of C. neoformans (strain 52D). Our data demonstrate that GM-CSF deficiency led to a reduction in: 1) total lung leukocyte recruitment; 2) Th2 and Th17 responses; 3) total numbers of CD11b(+) dendritic cells (DC) and CD11b(-) and CD11b(+) macrophages (Mϕ); 4) DC and Mϕ activation; and 5) localization of DC and Mϕ to the microanatomic sites of alveolar infection. In contrast, GM-CSF deficiency resulted in increased accumulation of DC and Mϕ precursors, namely Ly-6C(high) monocytes, in the blood and lungs of infected mice. Collectively, these results show that GM-CSF promotes the local differentiation, accumulation, activation, and alveolar localization of lung DC and Mϕ in mice with cryptococcal lung infection. These findings identify GM-CSF as central to the protective immune response that prevents progressive fungal disease and thus shed new light on the increased susceptibility to these infections observed in patients with acquired GM-CSF deficiency.
Collapse
Affiliation(s)
- Gwo-Hsiao Chen
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Seagal Teitz-Tennenbaum
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Lori M Neal
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Benjamin J Murdock
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Antoni N Malachowski
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Anthony J Dils
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Michal A Olszewski
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Graduate Program in Immunology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; and
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Graduate Program in Immunology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; and Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105
| |
Collapse
|
28
|
Development of protective inflammation and cell-mediated immunity against Cryptococcus neoformans after exposure to hyphal mutants. mBio 2015; 6:e01433-15. [PMID: 26443458 PMCID: PMC4611043 DOI: 10.1128/mbio.01433-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Morphological switch is tightly coupled with the pathogenesis of many dimorphic fungal pathogens. Cryptococcus neoformans, the major causative agent of cryptococcal meningitis, mostly presents as the yeast form but is capable of switching to the hyphal form. The filamentous form has long been associated with attenuated virulence, yet the underlying mechanism remains elusive. We previously identified the master regulator Znf2 that controls the yeast-to-hypha transition in Cryptococcus. Activation of Znf2 promotes hyphal formation and abolishes fungal virulence in vivo. Here we demonstrated that the cryptococcal strain overexpressing ZNF2 elicited strong and yet temporally confined proinflammatory responses in the early stage of infection. In contrast, exacerbated inflammation in mice infected with the wild-type (WT) strain showed that they were unable to control the infection. Animals inoculated with this filamentous Cryptococcus strain had fewer pulmonary eosinophils and CD11c(+) CD11b(+) cells than animals inoculated with WT yeast. Moreover, mice infected with this strain developed protective Th1- or Th17-type T cell responses. These findings suggest that the virulence attenuation of the filamentous form is likely due to its elicitation of protective host responses. The antivirulence effect of Znf2 was independent of two previously identified factors downstream of Znf2. Interestingly, mucosal immunizations with high doses of ZNF2-overexpressing cells, either in the live or heat-killed form, offered 100% protection to the host from a subsequent challenge with the otherwise lethal clinical strain H99. Our results demonstrate that heat-resistant cellular components presented in cryptococcal cells with activated ZNF2 elicit protective host immune responses. These findings could facilitate future research on novel immunological therapies. IMPORTANCE Cryptococcal meningitis is one of the leading causes of death among AIDS patients. This disease presents a severe threat to public health. The current antifungal regimens are unsatisfactory in controlling or clearing the pathogen Cryptococcus neoformans. Immunotherapies and/or vaccines could be a promising approach to prevent or manage this deadly disease. However, the lack of understanding of host-pathogen interactions during cryptococcal infection greatly hampers the development of effective immunotherapies. In this study, we discovered that inoculation of cryptococcal cells with activated Znf2, a morphogenesis regulator and an antivirulence factor, could shift the host pathological Th2 responses to the protective Th1 or Th17 responses. Importantly, we discovered that vaccination with either the viable or heat-killed form of ZNF2-overexpressing cells protected animals from the otherwise lethal infection by the highly virulent clinical strain. Our study suggests that the fungal cellular component(s) of the ZNF2-overexpressing strain may provide potential vaccine candidate(s) for controlling the fatal disease.
Collapse
|
29
|
Sato K, Yamamoto H, Nomura T, Matsumoto I, Miyasaka T, Zong T, Kanno E, Uno K, Ishii K, Kawakami K. Cryptococcus neoformans Infection in Mice Lacking Type I Interferon Signaling Leads to Increased Fungal Clearance and IL-4-Dependent Mucin Production in the Lungs. PLoS One 2015; 10:e0138291. [PMID: 26384031 PMCID: PMC4575107 DOI: 10.1371/journal.pone.0138291] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/29/2015] [Indexed: 11/19/2022] Open
Abstract
Type I interferons (IFNs) are secreted by many cell types upon stimulation via pattern recognition receptors and bind to IFN-α/β receptor (IFNAR), which is composed of IFNAR1 and IFNAR2. Although type I IFNs are well known as anti-viral cytokines, limited information is available on their role during fungal infection. In the present study, we addressed this issue by examining the effect of IFNAR1 defects on the host defense response to Cryptococcus neoformans. In IFNAR1KO mice, the number of live colonies was lower and the host immune response mediated not only by Th1 but also by Th2 and Th17-related cytokines was more accelerated in the infected lungs than in WT mice. In addition, mucin production by bronchoepithelial cells and expression of MUC5AC, a major core protein of mucin in the lungs, were significantly higher in IFNAR1KO mice than in WT mice. This increase in mucin and MUC5AC production was significantly inhibited by treatment with neutralizing anti-IL-4 mAb. In contrast, administration of recombinant IFN-αA/D significantly suppressed the production of IL-4, but not of IFN-γ and IL-17A, in the lungs of WT mice after cryptococcal infection. These results indicate that defects of IFNAR1 led to improved clearance of infection with C. neoformans and enhanced synthesis of IFN-γ and the IL-4-dependent production of mucin. They also suggest that type I IFNs may be involved in the negative regulation of early host defense to this infection.
Collapse
Affiliation(s)
- Ko Sato
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hideki Yamamoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Toshiki Nomura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ikumi Matsumoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomomitsu Miyasaka
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tong Zong
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazuko Uno
- Louis Pasteur Center for Medical Research, Kyoto, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
30
|
STAT1 signaling within macrophages is required for antifungal activity against Cryptococcus neoformans. Infect Immun 2015; 83:4513-27. [PMID: 26351277 DOI: 10.1128/iai.00935-15] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023] Open
Abstract
Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, is an opportunistic fungal pathogen that primarily affects AIDS patients and patients undergoing immunosuppressive therapy. In immunocompromised individuals, C. neoformans can lead to life-threatening meningoencephalitis. Studies using a virulent strain of C. neoformans engineered to produce gamma interferon (IFN-γ), denoted H99γ, demonstrated that protection against pulmonary C. neoformans infection is associated with the generation of a T helper 1 (Th1)-type immune response and signal transducer and activator of transcription 1 (STAT1)-mediated classical (M1) macrophage activation. However, the critical mechanism by which M1 macrophages mediate their anti-C. neoformans activity remains unknown. The current studies demonstrate that infection with C. neoformans strain H99γ in mice with macrophage-specific STAT1 ablation resulted in severely increased inflammation of the pulmonary tissue, a dysregulated Th1/Th2-type immune response, increased fungal burden, deficient M1 macrophage activation, and loss of protection. STAT1-deficient macrophages produced significantly less nitric oxide (NO) than STAT1-sufficient macrophages, correlating with an inability to control intracellular cryptococcal proliferation, even in the presence of reactive oxygen species (ROS). Furthermore, macrophages from inducible nitric oxide synthase knockout mice, which had intact ROS production, were deficient in anticryptococcal activity. These data indicate that STAT1 activation within macrophages is required for M1 macrophage activation and anti-C. neoformans activity via the production of NO.
Collapse
|
31
|
Grahnert A, Müller U, von Buttlar H, Treudler R, Alber G. Analysis of asthma patients for cryptococcal seroreactivity in an urban German area. Med Mycol 2015; 53:576-86. [PMID: 26026172 DOI: 10.1093/mmy/myv024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 01/15/2023] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes lung inflammation and meningoencephalitis in immunocompromised patients but is also able to asymptomatically infect immunocompetent individuals. C. neoformans is found ubiquitously especially in urban areas where it is spread by pigeons, and fungal exposure may predispose for asthma development already at an early age, as soon as confronted with pigeon droppings. In the study presented here, we investigated the presence of specific immunoglobulin G (IgG) against C. neoformans in sera from patients suffering from asthma in comparison to a healthy control cohort, accrued from the Leipzig Research Centre for Civilization Diseases (LIFE). For serological analysis we developed a flow cytometry (FACS) based assay specific for an acapsular strain of C. neoformans to comprehensively analyze different cryptococcal serotypes. Compared with the non-asthmatic cohort, asthmatics exhibited, as expected, an elevated level of total serum immunoglobulin E (IgE), whereas the IgG seroreactivity against C. neoformans was not significantly different among the two groups (P = .118). Nevertheless, there was a trend toward increased Cryptococcus-specific IgG antibodies in the serum of asthmatics. Additionally, in male asthmatics an increased IgG-mediated seroreactivity compared to female asthmatics was found. This points to a higher prevalence of subclinical C. neoformans infection in male asthmatics and may support the hypothesis of C. neoformans as a risk factor for the development of asthma in urban areas.
Collapse
Affiliation(s)
- Andreas Grahnert
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Uwe Müller
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Heiner von Buttlar
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Regina Treudler
- Department of Dermatology, Venerology & Allergology, University of Leipzig, Leipzig, Germany LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Germany
| |
Collapse
|
32
|
Panackal AA, Wuest SC, Lin YC, Wu T, Zhang N, Kosa P, Komori M, Blake A, Browne SK, Rosen LB, Hagen F, Meis J, Levitz SM, Quezado M, Hammoud D, Bennett JE, Bielekova B, Williamson PR. Paradoxical Immune Responses in Non-HIV Cryptococcal Meningitis. PLoS Pathog 2015; 11:e1004884. [PMID: 26020932 PMCID: PMC4447450 DOI: 10.1371/journal.ppat.1004884] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/14/2015] [Indexed: 11/18/2022] Open
Abstract
The fungus Cryptococcus is a major cause of meningoencephalitis in HIV-infected as well as HIV-uninfected individuals with mortalities in developed countries of 20% and 30%, respectively. In HIV-related disease, defects in T-cell immunity are paramount, whereas there is little understanding of mechanisms of susceptibility in non-HIV related disease, especially that occurring in previously healthy adults. The present description is the first detailed immunological study of non-HIV-infected patients including those with severe central nervous system (s-CNS) disease to 1) identify mechanisms of susceptibility as well as 2) understand mechanisms underlying severe disease. Despite the expectation that, as in HIV, T-cell immunity would be deficient in such patients, cerebrospinal fluid (CSF) immunophenotyping, T-cell activation studies, soluble cytokine mapping and tissue cellular phenotyping demonstrated that patients with s-CNS disease had effective microbiological control, but displayed strong intrathecal expansion and activation of cells of both the innate and adaptive immunity including HLA-DR+ CD4+ and CD8+ cells and NK cells. These expanded CSF T cells were enriched for cryptococcal-antigen specific CD4+ cells and expressed high levels of IFN-γ as well as a lack of elevated CSF levels of typical T-cell specific Th2 cytokines -- IL-4 and IL-13. This inflammatory response was accompanied by elevated levels of CSF NFL, a marker of axonal damage, consistent with ongoing neurological damage. However, while tissue macrophage recruitment to the site of infection was intact, polarization studies of brain biopsy and autopsy specimens demonstrated an M2 macrophage polarization and poor phagocytosis of fungal cells. These studies thus expand the paradigm for cryptococcal disease susceptibility to include a prominent role for macrophage activation defects and suggest a spectrum of disease whereby severe neurological disease is characterized by immune-mediated host cell damage. Cryptococcus is an important cause of fungal meningitis with significant mortality globally. Susceptibility to the fungus in humans has been related to T-lymphocyte defects in HIV-infected individuals, but little is known about possible immune defects in non HIV-infected patients including previously healthy individuals. This latter group also has some of the worst response rates to therapy with almost a third dying in the United States, despite available therapy. Here we conducted the first detailed immunological analysis of non-HIV apparently immunocompetent individuals with active cryptococcal disease. In contrast to HIV-infected individuals, these studies identified a highly activated antigen-presenting dendritic cell population within CSF, accompanied by a highly active T-lymphocyte population with potentially damaging inflammatory cytokine responses. Furthermore, elevated levels of CSF neurofilament light chains (NFL), a marker of axonal damage in severe central nervous system infections suggest a dysfunctional role to this acute inflammatory state. Paradoxically, CSF macrophage proportions were reduced in patients with severe disease and biopsy and autopsy samples identified alternatively activated tissue macrophage populations that failed to appropriately phagocytose fungal cells. Our study thus provides new insights into the susceptibility to human cryptococcal disease and identifies a paradoxically active T-lymphocyte response that may be amenable to adjunctive immunomodulation to improve treatment outcomes in this high-mortality disease.
Collapse
Affiliation(s)
- Anil A. Panackal
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
- Division of Infectious Diseases, Department of Medicine, F. Hebert School of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, United States of America
| | - Simone C. Wuest
- Neuroimmunological Diseases Unit, Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Yen-Chih Lin
- Neuroimmunological Diseases Unit, Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Tianxia Wu
- Neuroimmunological Diseases Unit, Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Nannan Zhang
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Peter Kosa
- Neuroimmunological Diseases Unit, Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Mika Komori
- Neuroimmunological Diseases Unit, Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Andrew Blake
- Neuroimmunological Diseases Unit, Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Sarah K. Browne
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Lindsey B. Rosen
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Ferry Hagen
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Jacques Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands
| | - Stuart M. Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Martha Quezado
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dima Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, Bethesda, Maryland, United States of America
| | - John E. Bennett
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Bibi Bielekova
- Neuroimmunological Diseases Unit, Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail: (BB); (PRW)
| | - Peter R. Williamson
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
- * E-mail: (BB); (PRW)
| |
Collapse
|
33
|
Eastman AJ, He X, Qiu Y, Davis MJ, Vedula P, Lyons DM, Park YD, Hardison SE, Malachowski AN, Osterholzer JJ, Wormley FL, Williamson PR, Olszewski MA. Cryptococcal heat shock protein 70 homolog Ssa1 contributes to pulmonary expansion of Cryptococcus neoformans during the afferent phase of the immune response by promoting macrophage M2 polarization. THE JOURNAL OF IMMUNOLOGY 2015; 194:5999-6010. [PMID: 25972480 DOI: 10.4049/jimmunol.1402719] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/19/2015] [Indexed: 12/13/2022]
Abstract
Numerous virulence factors expressed by Cryptococcus neoformans modulate host defenses by promoting nonprotective Th2-biased adaptive immune responses. Prior studies demonstrate that the heat shock protein 70 homolog, Ssa1, significantly contributes to serotype D C. neoformans virulence through the induction of laccase, a Th2-skewing and CNS tropic factor. In the present study, we sought to determine whether Ssa1 modulates host defenses in mice infected with a highly virulent serotype A strain of C. neoformans (H99). To investigate this, we assessed pulmonary fungal growth, CNS dissemination, and survival in mice infected with either H99, an SSA1-deleted H99 strain (Δssa1), and a complement strain with restored SSA1 expression (Δssa1::SSA1). Mice infected with the Δssa1 strain displayed substantial reductions in lung fungal burden during the innate phase (days 3 and 7) of the host response, whereas less pronounced reductions were observed during the adaptive phase (day 14) and mouse survival increased only by 5 d. Surprisingly, laccase activity assays revealed that Δssa1 was not laccase deficient, demonstrating that H99 does not require Ssa1 for laccase expression, which explains the CNS tropism we still observed in the Ssa1-deficient strain. Lastly, our immunophenotyping studies showed that Ssa1 directly promotes early M2 skewing of lung mononuclear phagocytes during the innate phase, but not the adaptive phase, of the immune response. We conclude that Ssa1's virulence mechanism in H99 is distinct and laccase-independent. Ssa1 directly interferes with early macrophage polarization, limiting innate control of C. neoformans, but ultimately has no effect on cryptococcal control by adaptive immunity.
Collapse
Affiliation(s)
- Alison J Eastman
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109; Veterans Affairs Hospital, Ann Arbor, MI 48105
| | - Xiumiao He
- Veterans Affairs Hospital, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Yafeng Qiu
- Veterans Affairs Hospital, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Michael J Davis
- Veterans Affairs Hospital, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109
| | | | | | - Yoon-Dong Park
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sarah E Hardison
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78458; South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249; and
| | - Antoni N Malachowski
- Veterans Affairs Hospital, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109
| | - John J Osterholzer
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109; Veterans Affairs Hospital, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Floyd L Wormley
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78458; South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249; and
| | - Peter R Williamson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL 60612
| | - Michal A Olszewski
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109; Veterans Affairs Hospital, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
34
|
Mora DJ, Fortunato LR, Andrade-Silva LE, Ferreira-Paim K, Rocha IH, Vasconcelos RR, Silva-Teixeira DN, Nascentes GAN, Silva-Vergara ML. Cytokine profiles at admission can be related to outcome in AIDS patients with cryptococcal meningitis. PLoS One 2015; 10:e0120297. [PMID: 25799044 PMCID: PMC4370646 DOI: 10.1371/journal.pone.0120297] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 01/27/2015] [Indexed: 01/12/2023] Open
Abstract
Cryptococcal meningitis (CM) remains as common life-threatening AIDS-defining illness mainly in resource-limited settings. Previous reports suggested that baseline cytokine profiles can be associated to fungal burden and clinical outcome. This study aimed to evaluate the baseline cytokine profiles in AIDS patients with CM and its relation with the outcome at weeks 2 and 10. Thirty AIDS patients with CM diagnosed by cerebrospinal fluid (CSF) Cryptococcus neoformans positive culture, India ink stain and cryptococcal antigen test were prospectively evaluated. As controls, 56 HIV-infected patients without CM and 48 non-HIV individuals were included. Baseline CSF and sera levels of IL-2, IL-4, IL-8, IL-10, IL-12p40, IL-17A, INF-γ and TNF-α were measured by ELISA. Of 30 CM patients, 24 (80%) were male, median age of 38.1. The baseline CSF high fungal burden and positive blood culture were associated with a positive CSF culture at week 2 (p = 0.043 and 0.029). Most CSF and sera cytokines presented higher levels in CM patients than control subjects (p < 0.05). CSF levels of IL-8, IL-12p40, IL-17A, TNF-α, INF-γ and sera TNF-α were significantly higher among survivors at weeks 2 and 10 (p < 0.05). Patients with increased intracranial pression exhibited CSF IL-10 high levels and poor outcome at week 10 (p = 0.032). Otherwise, baseline CSF log10 IFN-γ and IL-17A were negatively correlated with fungal burden (r = -0.47 and -0.50; p = 0.0175 and 0.0094, respectively). The mortality rate was 33% (10/30) at week 2 and 57% (17/30) at week 10. The severity of CM and the advanced immunodeficiency at admission were related to a poor outcome in these patients. Otherwise, the predominant Th1 cytokines profile among survivors confirms its pivotal role to infection control and would be a prognostic marker in cryptococcal meningitis.
Collapse
Affiliation(s)
- Delio José Mora
- Infectious Diseases Unit, Internal Medicine Department, Triângulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil
- * E-mail: (MLS-V); (DJM)
| | - Laila Rigolin Fortunato
- Infectious Diseases Unit, Internal Medicine Department, Triângulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil
| | | | - Kennio Ferreira-Paim
- Infectious Diseases Unit, Internal Medicine Department, Triângulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil
| | - Ivonete Helena Rocha
- Infectious Diseases Unit, Internal Medicine Department, Triângulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil
| | - Rakel Rocha Vasconcelos
- Infectious Diseases Unit, Internal Medicine Department, Triângulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil
| | | | | | - Mario León Silva-Vergara
- Infectious Diseases Unit, Internal Medicine Department, Triângulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil
- * E-mail: (MLS-V); (DJM)
| |
Collapse
|
35
|
Eisma JH, Dulle JE, Fort PE. Current knowledge on diabetic retinopathy from human donor tissues. World J Diabetes 2015; 6:312-320. [PMID: 25789112 PMCID: PMC4360424 DOI: 10.4239/wjd.v6.i2.312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/23/2014] [Accepted: 12/31/2014] [Indexed: 02/05/2023] Open
Abstract
According to the American Diabetes Association, diabetes was the seventh leading cause of death, and diabetic retinopathy the leading cause of blindness in working age adults in the United States in 2010. Diabetes is characterized by hyperglycemia associated with either hypoinsulinemia or insulin resistance, and over time, this chronic metabolic condition may lead to various complications including kidney failure, heart attacks, and retinal degeneration. In order to better understand the molecular basis of this disease and its complications, animal models have been the primary approach used to investigate the effects of diabetes on various tissues or cell types of the body, including the retina. However, inherent to these animal models are critical limitations that make the insight gained from these models challenging to apply to the human pathology. These difficulties in translating the knowledge obtained from animal studies have led a growing number of research groups to explore the diabetes complications, especially diabetic retinopathy, on tissues from human donors. This review summarizes the data collected from diabetic patients at various stages of diabetic retinopathy and classifies the data based upon their relevance to the main aspects of diabetic retinopathy: retinal vasculature dysfunction, inflammation, and neurodegeneration. This review discusses the importance of those studies to discriminate and establish the relevance of the findings obtained from animal models but also the limitations of such approaches.
Collapse
|
36
|
Murdock BJ, Teitz-Tennenbaum S, Chen GH, Dils AJ, Malachowski AN, Curtis JL, Olszewski MA, Osterholzer JJ. Early or late IL-10 blockade enhances Th1 and Th17 effector responses and promotes fungal clearance in mice with cryptococcal lung infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:4107-16. [PMID: 25225664 DOI: 10.4049/jimmunol.1400650] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The potent immunoregulatory properties of IL-10 can counteract protective immune responses and, thereby, promote persistent infections, as evidenced by studies of cryptococcal lung infection in IL-10-deficient mice. To further investigate how IL-10 impairs fungal clearance, the current study used an established murine model of C57BL/6J mice infected with Cryptococcus neoformans strain 52D. Our results demonstrate that fungal persistence is associated with an early and sustained expression of IL-10 by lung leukocytes. To examine whether IL-10-mediated immune modulation occurs during the early or late phase of infection, assessments of fungal burden and immunophenotyping were performed on mice treated with anti-IL-10R-blocking Ab at 3, 6, and 9 d postinfection (dpi) (early phase) or at 15, 18, and 21 dpi (late phase). We found that both early and late IL-10 blockade significantly improved fungal clearance within the lung compared with isotype control treatment when assessed 35 dpi. Immunophenotyping identified that IL-10 blockade enhanced several critical effector mechanisms, including increased accumulation of CD4(+) T cells and B cells, but not CD8(+) T cells; specific increases in the total numbers of Th1 and Th17 cells; and increased accumulation and activation of CD11b(+) dendritic cells and exudate macrophages. Importantly, IL-10 blockade effectively abrogated dissemination of C. neoformans to the brain. Collectively, this study identifies early and late cellular and molecular mechanisms through which IL-10 impairs fungal clearance and highlights the therapeutic potential of IL-10 blockade in the treatment of fungal lung infections.
Collapse
Affiliation(s)
- Benjamin J Murdock
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Seagal Teitz-Tennenbaum
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Gwo-Hsiao Chen
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Anthony J Dils
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Antoni N Malachowski
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Pulmonary Section, Medical Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109
| | - Michal A Olszewski
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Pulmonary Section, Medical Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109
| |
Collapse
|
37
|
Leopold Wager CM, Hole CR, Wozniak KL, Olszewski MA, Wormley FL. STAT1 signaling is essential for protection against Cryptococcus neoformans infection in mice. THE JOURNAL OF IMMUNOLOGY 2014; 193:4060-71. [PMID: 25200956 DOI: 10.4049/jimmunol.1400318] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nonprotective immune responses to highly virulent Cryptococcus neoformans strains, such as H99, are associated with Th2-type cytokine production, alternatively activated macrophages, and inability of the host to clear the fungus. In contrast, experimental studies show that protective immune responses against cryptococcosis are associated with Th1-type cytokine production and classical macrophage activation. The protective response induced during C. neoformans strain H99γ (C. neoformans strain H99 engineered to produce murine IFN-γ) infection correlates with enhanced phosphorylation of the transcription factor STAT1 in macrophages; however, the role of STAT1 in protective immunity to C. neoformans is unknown. The current studies examined the effect of STAT1 deletion in murine models of protective immunity to C. neoformans. Survival and fungal burden were evaluated in wild-type and STAT1 knockout (KO) mice infected with either strain H99γ or C. neoformans strain 52D (unmodified clinical isolate). Both strains H99γ and 52D were rapidly cleared from the lungs, did not disseminate to the CNS, or cause mortality in the wild-type mice. Conversely, STAT1 KO mice infected with H99γ or 52D had significantly increased pulmonary fungal burden, CNS dissemination, and 90-100% mortality. STAT1 deletion resulted in a shift from Th1 to Th2 cytokine bias, pronounced lung inflammation, and defective classical macrophage activation. Pulmonary macrophages from STAT1 KO mice exhibited defects in NO production correlating with inefficient inhibition of fungal proliferation. These studies demonstrate that STAT1 signaling is essential not only for regulation of immune polarization but also for the classical activation of macrophages that occurs during protective anticryptococcal immune responses.
Collapse
Affiliation(s)
- Chrissy M Leopold Wager
- Department of Biology, University of Texas, San Antonio, TX 78249; South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX 78249
| | - Camaron R Hole
- Department of Biology, University of Texas, San Antonio, TX 78249; South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX 78249
| | - Karen L Wozniak
- Department of Biology, University of Texas, San Antonio, TX 78249; South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX 78249
| | - Michal A Olszewski
- Veterans Affairs Ann Arbor Health System, University of Michigan Health System, Ann Arbor, MI 48109; and Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Floyd L Wormley
- Department of Biology, University of Texas, San Antonio, TX 78249; South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX 78249;
| |
Collapse
|
38
|
IL-4 receptor-alpha-dependent control of Cryptococcus neoformans in the early phase of pulmonary infection. PLoS One 2014; 9:e87341. [PMID: 24475277 PMCID: PMC3903725 DOI: 10.1371/journal.pone.0087341] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/20/2013] [Indexed: 12/28/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes lung inflammation and meningoencephalitis in immunocompromised people. Previously we showed that mice succumb to intranasal infection by induction of pulmonary interleukin (IL)-4Rα-dependent type 2 immune responses, whereas IL-12-dependent type 1 responses confer resistance. In the experiments presented here, IL-4Rα⁻/⁻ mice unexpectedly show decreased fungal control early upon infection with C. neoformans, whereas wild-type mice are able to control fungal growth accompanied by enhanced macrophage and dendritic cell recruitment to the site of infection. Lower pulmonary recruitment of macrophages and dendritic cells in IL-4Rα⁻/⁻ mice is associated with reduced pulmonary expression of CCL2 and CCL20 chemokines. Moreover, IFN-γ and nitric oxide production are diminished in IL-4Rα⁻/⁻ mice compared to wild-type mice. To directly study the potential mechanism(s) responsible for reduced production of IFN-γ, conventional dendritic cells were stimulated with C. neoformans in the presence of IL-4 which results in increased IL-12 production and reduced IL-10 production. Together, a beneficial role of early IL-4Rα signaling is demonstrated in pulmonary cryptococcosis, which contrasts with the well-known IL-4Rα-mediated detrimental effects in the late phase.
Collapse
|
39
|
Vaccinated C57BL/6 mice develop protective and memory T cell responses to Coccidioides posadasii infection in the absence of interleukin-10. Infect Immun 2013; 82:903-13. [PMID: 24478103 DOI: 10.1128/iai.01148-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
High concentrations of lung tissue-associated interleukin-10 (IL-10), an anti-inflammatory and immunosuppressive cytokine, correlate with susceptibility of mice to Coccidioides spp. infection. In this study, we found that macrophages, dendritic cells, neutrophils, and both CD8(+) and CD4(+) T cells recruited to Coccidioides posadasii-infected lungs of nonvaccinated and vaccinated mice contributed to the production of IL-10. The major IL-10-producing leukocytes were CD8(+) T cells, neutrophils, and macrophages in lungs of nonvaccinated mice, while both Foxp3(+) and Foxp3(-) subsets of IL-10(+) CD4(+) T cells were significantly elevated in vaccinated mice. Profiles of the recruited leukocytes in lungs revealed that only CD4(+) T cells were significantly increased in IL-10(-/-) knockout mice compared to their wild-type counterparts. Furthermore, ex vivo recall assays showed that CD4(+) T cells isolated from vaccinated IL-10(-/-) mice compared to vaccinated wild-type mice produced significantly higher amounts of IL-2, gamma interferon (IFN-γ), IL-4, IL-6, and IL-17A in the presence of a coccidioidal antigen, indicating that IL-10 suppresses Th1, Th2, and Th17 immunity to Coccidioides infection. Analysis of absolute numbers of CD44(+) CD62L(-) CD4(+) T effector memory T cells (TEM) and IFN-γ- and IL-17A-producing CD4(+) T cells in the lungs of Coccidioides-infected mice correlated with better fungal clearance in nonvaccinated IL-10(-/-) mice than in nonvaccinated wild-type mice. Our results suggest that IL-10 suppresses CD4(+) T-cell immunity in nonvaccinated mice during Coccidioides infection but does not impede the development of a memory response nor exacerbate immunopathology of vaccinated mice over at least a 4-month period after the last immunization.
Collapse
|
40
|
Flaczyk A, Duerr CU, Shourian M, Lafferty EI, Fritz JH, Qureshi ST. IL-33 Signaling Regulates Innate and Adaptive Immunity toCryptococcus neoformans. THE JOURNAL OF IMMUNOLOGY 2013; 191:2503-13. [DOI: 10.4049/jimmunol.1300426] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
X-linked immunodeficient mice exhibit enhanced susceptibility to Cryptococcus neoformans Infection. mBio 2013; 4:mBio.00265-13. [PMID: 23820392 PMCID: PMC3705448 DOI: 10.1128/mbio.00265-13] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bruton’s tyrosine kinase (Btk) is a signaling molecule that plays important roles in B-1 B cell development and innate myeloid cell functions and has recently been identified as a target for therapy of B cell lymphomas. We examined the contribution of B-1 B cells to resistance to Cryptococcus neoformans infection by utilizing X-linked immunodeficient (XID) mice (CBA-CaHN-XID), which possess a mutation in Btk. XID mice had significantly higher brain fungal burdens than the controls 6 weeks after infection with C. neoformans strain 52D (CN52D); however, consistent with the propensity for greater virulence of C. neoformans strain H99 (CNH99), CNH99-infected XID mice had higher lung and brain fungal burdens than the controls 3 weeks after infection. Further studies in a chronic CN52D model revealed markedly lower levels of total and C. neoformans-specific serum IgM in XID mice than in the control mice 1 and 6 weeks after infection. Alveolar macrophage phagocytosis was markedly impaired in CN52D-infected XID mice compared to the controls, with XID mice exhibiting a disorganized lung inflammatory pattern in which Gomori silver staining revealed significantly more enlarged, extracellular C. neoformans cells than the controls. Adoptive transfer of B-1 B cells to XID mice restored peritoneal B-1 B cells but did not restore IgM levels to those of the controls and had no effect on the brain fungal burden at 6 weeks. Taken together, our data support the hypothesis that IgM promotes fungal containment in the lungs by enhancing C. neoformans phagocytosis and restricting C. neoformans enlargement. However, peritoneal B-1 B cells are insufficient to reconstitute a protective effect in the lungs. Cryptococcus neoformans is a fungal pathogen that causes an estimated 600,000 deaths per year. Most infections occur in individuals who are immunocompromised, with the majority of cases occurring in those with HIV/AIDS, but healthy individuals also develop disease. Immunoglobulin M (IgM) has been linked to resistance to disease in humans and mice. In this article, we found that X-linked immunodeficient (XID) mice, which have markedly reduced levels of IgM, were unable to contain Cryptococcus in the lungs. This was associated with reduced yeast uptake by macrophages, an aberrant tissue inflammatory response, an enlargement of the yeast cells in the lungs, and fungal dissemination to the brain. Since XID mice have a mutation in the Bruton’s tyrosine kinase (Btk) gene, our data suggest that treatments aimed at blocking the function of Btk could pose a higher risk for cryptococcosis.
Collapse
|
42
|
Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. mBio 2013; 4:e00264-13. [PMID: 23781069 PMCID: PMC3684832 DOI: 10.1128/mbio.00264-13] [Citation(s) in RCA: 324] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The outcome of cryptococcal pneumonia correlates with local macrophage polarization status, as M1 and M2 polarization marks protective and nonprotective responses, respectively. Overall, pulmonary macrophage polarization status changes over time during a cryptococcal infection. This could have been caused by repolarization of individual macrophages or by a replacement of M2-polarized cells by new M1-polarized cells. To explore the ability of macrophages to change between polarization states, we conducted a series of experiments using in vitro macrophages. Coculture of macrophages with Cryptococcus neoformans resulted in development of a weak M1-like phenotype, with modestly increased inducible nitric oxide synthase (iNOS) but lacking interleukin 6 (IL-6) induction. The C. neoformans-induced M1-like polarization state was plastic, as macrophages stimulated first with C. neoformans and then with gamma interferon (IFN-γ) or IL-4 expressed mRNA polarization patterns similar to those stimulated with cytokines alone. To further evaluate macrophage polarization plasticity, cytokine stimulatory conditions were established which fully polarized macrophages. IFN-γ and IL-4 stimulation differentially induced complete M1 and M2 polarization, defined by differential expression of marker mRNA panels, surface marker expression, and tumor necrosis factor alpha (TNF-α) protein production. Switching IFN-γ- to IL-4-stimulating conditions, and vice versa, resulted in uniform changes in profiles of polarization marker genes consistent with the most recent cytokine environment. Furthermore, the ability of sequentially stimulated macrophages to inhibit C. neoformans reflected the most recent polarizing condition, independent of previous polarization. Collectively, these data indicate that M1/M2 macrophage polarization phenotypes are highly plastic to external signals, and interventions which therapeutically repolarize macrophages could be beneficial for treatment of cryptococcosis.
Collapse
|
43
|
Williamson PR. Advancing translational immunology in HIV-associated cryptococcal meningitis. J Infect Dis 2013; 207:1793-5. [PMID: 23493727 DOI: 10.1093/infdis/jit102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
44
|
Qiu J, Olszewski MA, Williamson PR. Cryptococcus neoformans growth and protection from innate immunity are dependent on expression of a virulence-associated DEAD-box protein, Vad1. Infect Immun 2013; 81:777-88. [PMID: 23264050 PMCID: PMC3584887 DOI: 10.1128/iai.00821-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/19/2012] [Indexed: 12/31/2022] Open
Abstract
The fungus Cryptococcus neoformans has emerged as a major cause of meningoencephalitis worldwide. Host response to the fungus involves both innate and adaptive immunity, but fungal genes that modulate these processes are poorly understood. Previous studies demonstrated attenuated virulence of a mutant of a virulence-associated DEAD-box protein (VAD1) in mice, despite normal growth at host temperatures, suggesting modulation of the immune response. In the present study, the Δvad1 mutant demonstrated progressive clearance from lung and was unable to induce pathological lesions or to cause extrapulmonary disease, despite retaining its ability to grow in mouse serum and a J774.16 macrophage cell line. Pulmonary clearance occurred with a minimal cellular infiltrate, marked by reduced CD4 cells, CD11b(+) Ly6C(high) monocytes, and F4/80(+) macrophages, but the mutant strain retained recruitment of CD8 cells, compared to infections with wild-type fungi. Adaptive cytokine responses were reduced, including Th1, Th2, and Th17 cytokines; however, early gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) responses were retained while nonprotective interleukin 4 (IL-4) and IL-5 were diminished. Furthermore, the Δvad1 mutant was controlled in lungs despite CD4/CD8 cell depletion. These data, along with improved phagocytosis by macrophages and increases in early/innate IL-1α, IFN-γ, and chemokines elicited in the lungs within 3 days of infection with the Δvad1 mutant, indicate that VAD1 expression reduces innate recognition of C. neoformans, rendering the yeast resistant to elimination by the innate mechanisms of host defense. Thus, our studies define a novel role of the cryptococcal Vad1 protein as a central regulator of cryptococcal virulence and illustrate that Vad1 promotes microbe resistance to innate host defenses.
Collapse
Affiliation(s)
- Jin Qiu
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Michal A. Olszewski
- VA Medical Center, Ann Arbor
- University of Michigan, Ann Arbor, Ann Arbor, Michigan, USA
| | - Peter R. Williamson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
- Section of Infectious Diseases, Immunology and International Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
45
|
Piehler D, Grahnert A, Eschke M, Richter T, Köhler G, Stenzel W, Alber G. T1/ST2 promotes T helper 2 cell activation and polyfunctionality in bronchopulmonary mycosis. Mucosal Immunol 2013; 6:405-14. [PMID: 22990621 DOI: 10.1038/mi.2012.84] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Interleukin (IL)-33 enhances T helper (Th)2 immunity via its receptor T1/ST2. Infection with the yeast-like pathogen Cryptococcus neoformans is usually controlled by a Th1-mediated immune response. The mechanisms responsible for nonprotective Th2 immunity leading to allergic inflammation in pulmonary cryptococcosis are still not fully understood. Using a murine pulmonary model of C. neoformans infection, we report that T1/ST2 expression correlates with the intensity of Th2 activation, as demonstrated by the expression of CD25 and CD44 and downregulation of CD62L. Antigen-specific T1/ST2(+) Th cells are the primary source of the Th2 cytokines IL-5 and IL-13 as compared with wild-type T1/ST2(-) Th cells or Th cells from T1/ST2(-/-) mice. In addition, T1/ST2(+) Th cells almost exclusively contain bi- and trifunctional Th2 cytokine-producing Th cells compared with T1/ST2(-) Th cells or Th cells from T1/ST2(-/-) mice. Finally, T1/ST2-driven Th2 development resulted in defective pulmonary fungal control. These data demonstrate that T1/ST2 directs Th2 cell activation and polyfunctionality in allergic bronchopulmonary mycosis.
Collapse
Affiliation(s)
- D Piehler
- Institute of Immunology, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Altered immune response differentially enhances susceptibility to Cryptococcus neoformans and Cryptococcus gattii infection in mice expressing the HIV-1 transgene. Infect Immun 2013; 81:1100-13. [PMID: 23340313 DOI: 10.1128/iai.01339-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cryptococcus neoformans var. grubii is the most frequent cause of AIDS-associated cryptococcosis worldwide, while Cryptococcus gattii usually infects immunocompetent people. To understand the mechanisms which cause differential susceptibility to these cryptococcal species in HIV infection, we established and characterized a model of cryptococcosis in CD4C/HIV(MutA) transgenic (Tg) mice expressing gene products of HIV-1 and developing an AIDS-like disease. Tg mice infected intranasally with C. neoformans var. grubii strain H99 or C23 consistently displayed reduced survival compared to non-Tg mice at three graded inocula, while shortened survival of Tg mice infected with C. gattii strain R265 or R272 was restricted to a single high inoculum. HIV-1 transgene expression selectively augmented systemic dissemination to the liver and spleen for strains H99 and C23 but not strains R265 and R272. Histopathologic examination of lungs of Tg mice revealed large numbers of widely scattered H99 cells, with a minimal inflammatory cell response, while in the non-Tg mice H99 was almost completely embedded within extensive mixed inflammatory cell infiltrates. In contrast to H99, R265 was dispersed throughout the lung parenchyma and failed to induce a strong inflammatory response in both Tg and non-Tg mice. HIV-1 transgene expression reduced pulmonary production of CCL2 and CCL5 after infection with H99 or R265, and production of these two chemokines was lower after infection with R265. These results indicate that an altered immune response in these Tg mice markedly enhances C. neoformans but not C. gattii infection. This model therefore provides a powerful new tool to further investigate the immunopathogenesis of cryptococcosis.
Collapse
|
47
|
Cryptococcal genotype influences immunologic response and human clinical outcome after meningitis. mBio 2012; 3:mBio.00196-12. [PMID: 23015735 PMCID: PMC3448160 DOI: 10.1128/mbio.00196-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED In sub-Saharan Africa, cryptococcal meningitis (CM) continues to be a predominant cause of AIDS-related mortality. Understanding virulence and improving clinical treatments remain important. To characterize the role of the fungal strain genotype in clinical disease, we analyzed 140 Cryptococcus isolates from 111 Ugandans with AIDS and CM. Isolates consisted of 107 nonredundant Cryptococcus neoformans var. grubii strains and 8 C. neoformans var. grubii/neoformans hybrid strains. Multilocus sequence typing (MLST) was used to characterize genotypes, yielding 15 sequence types and 4 clonal clusters. The largest clonal cluster consisted of 74 isolates. The results of Burst and phylogenetic analysis suggested that the C. neoformans var. grubii strains could be separated into three nonredundant evolutionary groups (Burst group 1 to group 3). Patient mortality was differentially associated with the different evolutionary groups (P = 0.04), with the highest mortality observed among Burst group 1, Burst group 2, and hybrid strains. Compared to Burst group 3 strains, Burst group 1 strains were associated with higher mortality (P = 0.02), exhibited increased capsule shedding (P = 0.02), and elicited a more pronounced Th(2) response during ex vivo cytokine release assays with strain-specific capsule stimulation (P = 0.02). The results of these analyses suggest that cryptococcal strain variation can be an important determinant of human immune responses and mortality. IMPORTANCE Cryptococcus neoformans is a common life-threatening human fungal pathogen that is responsible for an estimated 1 million cases of meningitis in HIV-infected patients annually. Virulence factors that are important in human disease have been identified, yet the impacts of the fungal strain genotype on virulence and outcomes of human infection remain poorly understood. Using an analysis of strain variation based on in vitro assays and clinical data from Ugandans living with AIDS and cryptococcal infection, we report that strain genotype predicts the type of immune response and mortality risk. These studies suggest that knowledge of the strain genotype during human infections could be used to predict disease outcomes and lead to improved treatment approaches aimed at targeting the specific combination of pathogen virulence and host response.
Collapse
|
48
|
Susceptibility to progressive Cryptococcus neoformans pulmonary infection is regulated by loci on mouse chromosomes 1 and 9. Infect Immun 2012; 80:4167-76. [PMID: 22988020 DOI: 10.1128/iai.00417-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic factors that regulate the pathogenesis of pneumonia caused by the fungus Cryptococcus neoformans are poorly understood. Through a phenotypic strain survey we observed that inbred C3H/HeN mice develop a significantly greater lung fungal burden than mice of the resistant CBA/J strain 4 weeks following intratracheal infection with C. neoformans ATCC 24067. The aim of the present study was to characterize the inflammatory response of C3H/HeN mice following C. neoformans pulmonary infection and to identify genetic loci that regulate host defense. Following cryptococcal infection, C3H/HeN mice demonstrated a Th2 immune response with heightened airway and tissue eosinophilia, goblet cell metaplasia, and significantly higher lung interleukin-5 (IL-5) and IL-13 protein expression relative to CBA/J mice. Conversely, CBA/J mice exhibited greater airway and tissue neutrophilia that was associated with significantly higher pulmonary expression of gamma interferon, CXCL10, and IL-17 proteins than C3H/HeN mice. Using the fungal burden at 4 weeks postinfection as a phenotype, genome-wide quantitative trait locus (QTL) analysis among 435 segregating (C3H/HeN × CBA/J)F2 (C3HCBAF2) hybrids identified two significant QTLs on chromosomes 1 (Cnes4) and 9 (Cnes5) that control susceptibility to cryptococcal pneumonia in an additive manner. Susceptible C3H/HeN mice carry a resistance allele at Cnes4 and a susceptibility allele at Cnes5. These studies reveal additional genetic complexity of the host response to C. neoformans that is associated with divergent patterns of pulmonary inflammation.
Collapse
|
49
|
He X, Lyons DM, Toffaletti DL, Wang F, Qiu Y, Davis MJ, Meister DL, Dayrit JK, Lee A, Osterholzer JJ, Perfect JR, Olszewski MA. Virulence factors identified by Cryptococcus neoformans mutant screen differentially modulate lung immune responses and brain dissemination. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1356-66. [PMID: 22846723 DOI: 10.1016/j.ajpath.2012.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/29/2012] [Accepted: 06/26/2012] [Indexed: 01/07/2023]
Abstract
Deletions of cryptococcal PIK1, RUB1, and ENA1 genes independently rendered defects in yeast survival in human CSF and within macrophages. We evaluated virulence potential of these genes by comparing wild-type Cryptococcus neoformans strain H99 with deletant and complement strains in a BALB/c mouse model of pulmonary infection. Survival of infected mice; pulmonary cryptococcal growth and pathology; immunological parameters; dissemination kinetics; and CNS pathology were examined. Deletion of each PIK1, RUB1, and ENA1 differentially reduced pulmonary growth and dissemination rates of C. neoformans and extended mice survival. Furthermore, pik1Δ induced similar pathologies to H99, however, with significantly delayed onset; rub1Δ was more efficiently contained within pulmonary macrophages and was further delayed in causing CNS dissemination/pathology; whereas ena1Δ was progressively eliminated from the lungs and did not induce pathological lesions or disseminate into the CNS. The diminished virulence of mutant strains was associated with differential modulation of pulmonary immune responses, including changes in leukocyte subsets, cytokine responses, and macrophage activation status. Compared to H99 infection, mutants induced more hallmarks of a protective Th1 immune response, rather than Th2, and more classical, rather than alternative, macrophage activation. The magnitude of immunological effects precisely corresponded to the level of virulence displayed by each strain. Thus, cryptococcal PIK1, RUB1, and ENA1 differentially contribute to cryptococcal virulence, in correlation with their differential capacity to modulate immune responses.
Collapse
Affiliation(s)
- Xiumiao He
- VA Ann Arbor Health System, Research Service, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lack of IL-4 receptor expression on T helper cells reduces T helper 2 cell polyfunctionality and confers resistance in allergic bronchopulmonary mycosis. Mucosal Immunol 2012; 5:299-310. [PMID: 22333910 DOI: 10.1038/mi.2012.9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
T helper (Th)1 and Th2 cells play decisive roles in the regulation of resistance vs. susceptibility to pulmonary cryptococcosis. To study the function of interleukin (IL)-4 receptor (IL-4R) on Th cells in pulmonary cryptococcosis, we infected mice specifically lacking IL-4Rα on CD4(+) T cells (Lck(Cre)IL-4Rα(-/lox) mice) and IL-4Rα(-/lox) controls. Lck(Cre)IL-4Rα(-/lox) mice developed enhanced resistance accompanied by reduced pulmonary allergic inflammation and diminished production of the Th2 cytokines IL-4, IL-5, and IL-13 as compared with IL-4Rα(-/lox) mice. Polyfunctional antigen-specific Th2 cells producing simultaneously two or three Th2 cytokines were reduced in infected Lck(Cre)IL-4Rα(-/lox) mice, pointing to a critical role of polyfunctional Th2 cells for disease progression. Reduced Th2 polyfunctionality was associated with fewer pulmonary alternatively activated macrophages. This work is the first direct evidence for a critical contribution of the IL-4R on Th cells to Th2-dependent susceptibility during allergic bronchopulmonary mycosis. Moreover, the data demonstrate that the quality of the Th2 response has an impact on type 2 inflammation. The analysis of polyfunctional Th2 cells may be useful for monitoring the course of the disease.
Collapse
|