1
|
Diaz-Barreiro A, Cereghetti G, Ortega Sánchez FG, Tonacini J, Talabot-Ayer D, Kieffer-Jaquinod S, Kissling VM, Huard A, Swale C, Knowles TPJ, Couté Y, Peter M, Francés-Monerris A, Palmer G. Oxidation-sensitive cysteines drive IL-38 amyloid formation. Cell Rep 2024; 43:114940. [PMID: 39488827 DOI: 10.1016/j.celrep.2024.114940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
Interleukin (IL)-1 family cytokines are essential for host defense at epithelial barriers. The IL-1 family member IL-33 was recently linked to stress granules (SGs). Formation of SGs and other biomolecular condensates is promoted by proteins containing low-complexity regions (LCRs). Computational analysis predicts LCRs in six of the 11 IL-1 family members. Among these, IL-38 contains a long LCR including two amyloid cores. IL-38 localizes to intracellular granules in keratinocytes under oxidative stress (OS) and forms OS-induced amyloid aggregates in cells and in vitro. Interestingly, soluble and aggregated IL-38 are released from keratinocytes in an exosome-enriched extracellular vesicle fraction. Disulfide-bond mapping, in silico modeling, and mutational analysis suggest that oxidation-sensitive cysteines act as redox switches to alter IL-38 conformation and promote its aggregation. Finally, the presence of IL-38 granules in human epidermis facing environmental OS suggests that oxidation-induced amyloidogenesis, as an intrinsic property of IL-38, supports barrier function.
Collapse
Affiliation(s)
- Alejandro Diaz-Barreiro
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Geneva, Switzerland.
| | - Gea Cereghetti
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Francisco Gabriel Ortega Sánchez
- IBS Granada, Institute of Biomedical Research, Granada, Spain; Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Jenna Tonacini
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Dominique Talabot-Ayer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Geneva, Switzerland
| | | | - Vera Maria Kissling
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Empa (Swiss Federal Laboratories for Materials Science and Technology), St. Gallen, Switzerland
| | - Arnaud Huard
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Christopher Swale
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Grenoble, France
| | | | - Yohann Couté
- Université Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, FR2048 Grenoble, France
| | - Matthias Peter
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Geneva, Switzerland
| |
Collapse
|
2
|
Luo Y, Su B, Hung V, Luo Y, Shi Y, Wang G, de Graaf D, Dinarello CA, Spaner DE. IL-1 receptor antagonism reveals a yin-yang relationship between NFκB and interferon signaling in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2024; 121:e2405644121. [PMID: 39121163 PMCID: PMC11331101 DOI: 10.1073/pnas.2405644121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/10/2024] [Indexed: 08/11/2024] Open
Abstract
Nuclear factor kappa B (NFκB) is a pathogenic factor in chronic lymphocytic leukemia (CLL) that is not addressed specifically by current therapies. NFκB is activated by inflammatory factors that stimulate toll-like receptors (TLRs) and receptors for interleukin-1 (IL-1) family members. IL-1 is considered a master regulator of inflammation, and IL-1 receptor signaling is inhibited by the IL-1 receptor antagonist anakinra. These considerations suggested that anakinra might have a role in the treatment of CLL. Consistent with this idea, anakinra inhibited spontaneous and TLR7-mediated activation of the canonical NFκB pathway in CLL cells in vitro. However, CLL cells exhibited only weak signaling responses to IL-1 itself, and anakinra was found to inhibit NFκB along with oxidative stress in an IL-1 receptor-independent manner. Anakinra was then administered with minimal toxicity to 11 previously untreated CLL patients in a phase I dose-escalation trial (NCT04691765). A stereotyped clinical response was observed in all patients. Anakinra lowered blood lymphocytes and lymph node sizes within the first month that were associated with downregulation of NFκB and oxidative stress in the leukemia cells. However, inhibition of NFκB was accompanied by upregulation of type 1 interferon (IFN) signaling, c-MYC-regulated genes and proteins, and loss of the initial clinical response. Anakinra increased IFN signaling and survival of CLL cells in vitro that were, respectively, phenocopied by mitochondrial antioxidants and reversed by IFN receptor blocking antibodies. These observations suggest that anakinra has activity in CLL and may be a useful adjunct for conventional therapies as long as compensatory IFN signaling is blocked at the same time.
Collapse
Affiliation(s)
- YuXuan Luo
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, TorontoM4N 3M5, Canada
- Department of Immunology, University of Toronto, TorontoM5S 1A8, Canada
| | - BoYang Su
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, TorontoM4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, TorontoM5G 2M9, Canada
| | - Vincent Hung
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, TorontoM4N 3M5, Canada
| | - YuHan Luo
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, TorontoM4N 3M5, Canada
- Department of Immunology, University of Toronto, TorontoM5S 1A8, Canada
| | - Yonghong Shi
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, TorontoM4N 3M5, Canada
| | - Guizhi Wang
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, TorontoM4N 3M5, Canada
| | - Dennis de Graaf
- Department of Medicine, University of Colorado Denver, Denver, CO80045
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn53127, Germany
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Denver, CO80045
- Department of Medicine, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - David E. Spaner
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, TorontoM4N 3M5, Canada
- Department of Immunology, University of Toronto, TorontoM5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, TorontoM5G 2M9, Canada
- Department of Hematology, Odette Cancer Center, TorontoM4N 3M5, Canada
- Department of Medicine, University of Toronto, TorontoM5G 2C4, Canada
| |
Collapse
|
3
|
Taylor RN, Berga SL, Zou E, Washington J, Song S, Marzullo BJ, Bagchi IC, Bagchi MK, Yu J. Interleukin-1β induces and accelerates human endometrial stromal cell senescence and impairs decidualization via the c-Jun N-terminal kinase pathway. Cell Death Discov 2024; 10:288. [PMID: 38879630 PMCID: PMC11180092 DOI: 10.1038/s41420-024-02048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/19/2024] Open
Abstract
As the mean age of first-time mothers increases in the industrialized world, inquiries into causes of human reproductive senescence have followed. Rates of ovulatory dysfunction and oocyte aneuploidy parallel chronological age, but poor reproductive outcomes in women older than 35 years are also attributed to endometrial senescence. The current studies, using primary human endometrial stromal cell (ESC) cultures as an in vitro model for endometrial aging, characterize the proinflammatory cytokine, IL-1β-mediated and passage number-dependent effects on ESC phenotype. ESC senescence was accelerated by incubation with IL-1β, which was monitored by RNA sequencing, ELISA, immunocytochemistry and Western blotting. Senescence associated secreted phenotype (SASP) proteins, IL-1β, IL-6, IL-8, TNF-α, MMP3, CCL2, CCL5, and other senescence-associated biomarkers of DNA damage (p16, p21, HMGB1, phospho-γ-histone 2 A.X) were noted to increase directly in response to 0.1 nM IL-1β stimulation. Production of the corresponding SASP proteins increased further following extended cell passage. Using enzyme inhibitors and siRNA interference, these effects of IL-1β were found to be mediated via the c-Jun N-terminal kinase (JNK) signaling pathway. Hormone-induced ESC decidualization, classical morphological and biochemical endocrine responses to estradiol, progesterone and cAMP stimulation (prolactin, IGFBP-1, IL-11 and VEGF), were attenuated pari passu with prolonged ESC passaging. The kinetics of differentiation responses varied in a biomarker-specific manner, with IGFBP-1 and VEGF secretion showing the largest and smallest reductions, with respect to cell passage number. ESC hormone responsiveness was most robust when limited to the first six cell passages. Hence, investigation of ESC cultures as a decidualization model should respect this limitation of cell aging. The results support the hypotheses that "inflammaging" contributes to endometrial senescence, disruption of decidualization and impairment of fecundity. IL-1β and the JNK signaling pathway are pathogenetic targets amenable to pharmacological correction or mitigation with the potential to reduce endometrial stromal senescence and enhance uterine receptivity.
Collapse
Affiliation(s)
- Robert N Taylor
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sarah L Berga
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Eric Zou
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jacara Washington
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sunyangzi Song
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Brandon J Marzullo
- Genomics and Bioinformatics Core, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Indrani C Bagchi
- Departments of Comparative Biosciences, University of Illinois, Urbana/Champaign, Urbana, IL, USA
| | - Milan K Bagchi
- Molecular and Integrative Physiology, University of Illinois, Urbana/Champaign, Urbana, IL, USA
| | - Jie Yu
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
4
|
Fang Z, Jiang J, Zheng X. Interleukin-1 receptor antagonist: An alternative therapy for cancer treatment. Life Sci 2023; 335:122276. [PMID: 37977354 DOI: 10.1016/j.lfs.2023.122276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
The interleukin-1 receptor antagonist (IL-1Ra) is an anti-inflammatory cytokine and a naturally occurring antagonist of the IL-1 receptor. It effectively counteracts the IL-1 signaling pathway mediated by IL-1α/β. Over the past few decades, accumulating evidence has suggested that IL-1 signaling plays an essential role in tumor formation, growth, and metastasis. Significantly, anakinra, the first United States Food and Drug Administration (FDA)-approved IL-1Ra drug, has demonstrated promising antitumor effects in animal studies. Numerous clinical trials have subsequently incorporated anakinra into their cancer treatment protocols. In this review, we comprehensively discuss the research progress on the role of IL-1 in tumors and summarize the significant contribution of IL-1Ra (anakinra) to tumor immunity. Additionally, we analyze the potential value of IL-1Ra as a biomarker from a clinical perspective. This review is aimed to highlight the important link between inflammation and cancer and provide potential drug targets for future cancer therapy.
Collapse
Affiliation(s)
- Zhang Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China; Institute for Cell Therapy of Soochow University, Changzhou, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China; Institute for Cell Therapy of Soochow University, Changzhou, Jiangsu, China.
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China; Institute for Cell Therapy of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
5
|
Chen XX, Qiao S, Li R, Wang J, Li X, Zhang G. Evasion strategies of porcine reproductive and respiratory syndrome virus. Front Microbiol 2023; 14:1140449. [PMID: 37007469 PMCID: PMC10063791 DOI: 10.3389/fmicb.2023.1140449] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
During the co-evolution of viruses and their hosts, viruses have developed various strategies for overcoming host immunological defenses so that they can proliferate efficiently. Porcine reproductive and respiratory syndrome virus (PRRSV), a significant virus to the swine industry across the world, typically establishes prolonged infection via diverse and complicated mechanisms, which is one of the biggest obstacles for controlling the associated disease, porcine reproductive and respiratory syndrome (PRRS). In this review, we summarize the latest research on how PRRSV circumvents host antiviral responses from both the innate and adaptive immune systems and how this virus utilizes other evasion mechanisms, such as the manipulation of host apoptosis and microRNA. A thorough understanding of the exact mechanisms of PRRSV immune evasion will help with the development of novel antiviral strategies against PRRSV.
Collapse
Affiliation(s)
- Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Jing Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xuewu Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
Ding Y, Yi J, Wang J, Sun Z. Interleukin-1 receptor antagonist: a promising cytokine against human squamous cell carcinomas. Heliyon 2023; 9:e14960. [PMID: 37025835 PMCID: PMC10070157 DOI: 10.1016/j.heliyon.2023.e14960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Inflammation, especially chronic inflammation, is closely linked to tumor development. As essential chronic inflammatory cytokines, the interleukin family plays a key role in inflammatory infections and malignancies. The interleukin-1 (IL-1) receptor antagonist (IL1RA), as a naturally occurring receptor antagonist, is the first discovered and can compete with IL-1 in binding to the receptor. Recent studies have revealed the association of the polymorphisms in IL1RA with an increased risk of squamous cell carcinomas (SCCs), including squamous cell carcinoma of the head and neck (SCCHN), cervical squamous cell carcinoma, cutaneous squamous cell carcinoma (cSCC), esophageal squamous cell carcinoma (ESCC), and bronchus squamous cell carcinoma. Here, we reviewed the antitumor potential of IL1RA as an IL-1-targeted inhibitor.
Collapse
Affiliation(s)
- Yujie Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Yi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhida Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
- Corresponding author. Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Mermoud L, Shutova M, Diaz‐Barreiro A, Talabot‐Ayer D, Drukala J, Wolnicki M, Kaya G, Boehncke W, Palmer G, Borowczyk J. IL-38 orchestrates proliferation and differentiation in human keratinocytes. Exp Dermatol 2022; 31:1699-1711. [PMID: 35833307 PMCID: PMC9796879 DOI: 10.1111/exd.14644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 01/07/2023]
Abstract
Interleukin (IL)-38 is a member of the IL-1 cytokine family with reported anti-inflammatory activity. The highest constitutive IL-38 expression is detected in the skin, where it is mainly produced by differentiating keratinocytes. However, little data are available regarding its biological functions. In this study, we investigated the role of IL-38 in skin physiology. We demonstrate here that dermal fibroblasts and epithelial cells of skin appendages, such as eccrine sweat glands and sebaceous glands, also express IL-38. Next, using two- and three-dimensional cell cultures, we show that endogenous expression of IL-38 correlates with keratinocyte differentiation and its ectopic overexpression inhibits keratinocyte proliferation and enhances differentiation. Accordingly, immunohistochemical analysis revealed downregulation of IL-38 in skin pathologies characterized by keratinocyte hyperproliferation, such as psoriasis and basal or squamous cell carcinoma. Finally, intracellular IL-38 can shuttle between the nucleus and the cytoplasm and its overexpression modulates the activity of the transcription regulators YAP and ID1. Our results indicate that IL-38 can act independently from immune system activation and suggest that it may affect the epidermis directly by decreasing proliferation and promoting differentiation of keratinocytes. These data suggest an important role of keratinocyte-derived IL-38 in skin homeostasis and pathologies characterized by epidermal alterations.
Collapse
Affiliation(s)
- Loïc Mermoud
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Maria Shutova
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Alejandro Diaz‐Barreiro
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Dominique Talabot‐Ayer
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Justyna Drukala
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityCracowPoland
| | - Michal Wolnicki
- Department of Pediatric UrologyJagiellonian University Medical CollegeCracowPoland
| | - Gürkan Kaya
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Clinical PathologyUniversity Hospital of GenevaGenevaSwitzerland
| | - Wolf‐Henning Boehncke
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Dermatology and VenereologyUniversity HospitalsGenevaSwitzerland
| | - Gaby Palmer
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Julia Borowczyk
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
8
|
Niklander SE. Inflammatory Mediators in Oral Cancer: Pathogenic Mechanisms and Diagnostic Potential. FRONTIERS IN ORAL HEALTH 2022; 2:642238. [PMID: 35047997 PMCID: PMC8757707 DOI: 10.3389/froh.2021.642238] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Approximately 15% of cancers are attributable to the inflammatory process, and growing evidence supports an association between oral squamous cell carcinoma (OSCC) and chronic inflammation. Different oral inflammatory conditions, such as oral lichen planus (OLP), submucous fibrosis, and oral discoid lupus, are all predisposing for the development of OSCC. The microenvironment of these conditions contains various transcription factors and inflammatory mediators with the ability to induce proliferation, epithelial-to-mesenchymal transition (EMT), and invasion of genetically predisposed lesions, thereby promoting tumor development. In this review, we will focus on the main inflammatory molecules and transcription factors activated in OSCC, with emphasis on their translational potential.
Collapse
Affiliation(s)
- Sven E Niklander
- Unidad de Patologia y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
9
|
van de Veerdonk FL, Renga G, Pariano M, Bellet MM, Servillo G, Fallarino F, De Luca A, Iannitti RG, Piobbico D, Gargaro M, Manni G, D'Onofrio F, Stincardini C, Sforna L, Borghi M, Castelli M, Pieroni S, Oikonomou V, Villella VR, Puccetti M, Giovagnoli S, Galarini R, Barola C, Maiuri L, Maria Agnese DF, Cellini B, Talesa V, Dinarello CA, Costantini C, Romani L. Anakinra restores cellular proteostasis by coupling mitochondrial redox balance to autophagy. J Clin Invest 2021; 132:144983. [PMID: 34847078 PMCID: PMC8759782 DOI: 10.1172/jci144983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/24/2021] [Indexed: 12/09/2022] Open
Abstract
Autophagy selectively degrades aggregation-prone misfolded proteins caused by defective cellular proteostasis. However, the complexity of autophagy may prevent the full appreciation of how its modulation could be used as a therapeutic strategy in disease management. Here we define a molecular pathway through which recombinant interleukin-1 receptor antagonist (IL-1Ra, anakinra) affects cellular proteostasis independently from the IL-1 receptor (IL-1R1). Anakinra promoted H2O2-driven autophagy through a xenobiotic sensing pathway involving the aryl hydrocarbon receptor that, activated through the indoleamine 2,3-dioxygenase 1-kynurenine pathway, transcriptionally activates NADPH Oxidase 4 independent of the IL-1R1. By coupling the mitochondrial redox balance to autophagy, anakinra improved the dysregulated proteostasis network in murine and human cystic fibrosis. We anticipate that anakinra may represent a therapeutic option in addition to its IL-1R1 dependent anti-inflammatory properties by acting at the intersection of mitochondrial oxidative stress and autophagy with the capacity to restore conditions in which defective proteostasis leads to human disease.
Collapse
Affiliation(s)
| | - Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marina M Bellet
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giuseppe Servillo
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Antonella De Luca
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rossana G Iannitti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Danilo Piobbico
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giorgia Manni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Fiorella D'Onofrio
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Luigi Sforna
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Monica Borghi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marilena Castelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefania Pieroni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Valeria R Villella
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Roberta Galarini
- Centro Sviluppo e Validazione Metodi, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Carolina Barola
- Centro Sviluppo e Validazione Metodi, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Luigi Maiuri
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | | | - Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Vincenzo Talesa
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Charles A Dinarello
- Department of Medicine, University of Colorado, Denver, United States of America
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
10
|
Niklander SE, Murdoch C, Hunter KD. IL-1/IL-1R Signaling in Head and Neck Cancer. FRONTIERS IN ORAL HEALTH 2021; 2:722676. [PMID: 35048046 PMCID: PMC8757896 DOI: 10.3389/froh.2021.722676] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 01/22/2023] Open
Abstract
Decades ago, the study of cancer biology was mainly focused on the tumor itself, paying little attention to the tumor microenvironment (TME). Currently, it is well recognized that the TME plays a vital role in cancer development and progression, with emerging treatment strategies focusing on different components of the TME, including tumoral cells, blood vessels, fibroblasts, senescent cells, inflammatory cells, inflammatory factors, among others. There is a well-accepted relationship between chronic inflammation and cancer development. Interleukin-1 (IL-1), a potent pro-inflammatory cytokine commonly found at tumor sites, is considered one of the most important inflammatory factors in cancer, and has been related with carcinogenesis, tumor growth and metastasis. Increasing evidence has linked development of head and neck squamous cell carcinoma (HNSCC) with chronic inflammation, and particularly, with IL-1 signaling. This review focuses on the most important members of the IL-1 family, with emphasis on how their aberrant expression can promote HNSCC development and metastasis, highlighting possible clinical applications.
Collapse
Affiliation(s)
- Sven E. Niklander
- Unidad de Patología y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar, Chile
| | - Craig Murdoch
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- Oral Biology and Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
11
|
Pariano M, Pieroni S, De Luca A, Iannitti RG, Borghi M, Puccetti M, Giovagnoli S, Renga G, D’Onofrio F, Bellet MM, Stincardini C, Della-Fazia MA, Servillo G, van de Veerdonk FL, Costantini C, Romani L. Anakinra Activates Superoxide Dismutase 2 to Mitigate Inflammasome Activity. Int J Mol Sci 2021; 22:6531. [PMID: 34207085 PMCID: PMC8234597 DOI: 10.3390/ijms22126531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 01/03/2023] Open
Abstract
Inflammasomes are powerful cytosolic sensors of environmental stressors and are critical for triggering interleukin-1 (IL-1)-mediated inflammatory responses. However, dysregulation of inflammasome activation may lead to pathological conditions, and the identification of negative regulators for therapeutic purposes is increasingly being recognized. Anakinra, the recombinant form of the IL-1 receptor antagonist, proved effective by preventing the binding of IL-1 to its receptor, IL-1R1, thus restoring autophagy and dampening NLR family pyrin domain containing 3 (NLRP3) activity. As the generation of mitochondrial reactive oxidative species (ROS) is a critical upstream event in the activation of NLRP3, we investigated whether anakinra would regulate mitochondrial ROS production. By profiling the activation of transcription factors induced in murine alveolar macrophages, we found a mitochondrial antioxidative pathway induced by anakinra involving the manganese-dependent superoxide dismutase (MnSOD) or SOD2. Molecularly, anakinra promotes the binding of SOD2 with the deubiquitinase Ubiquitin Specific Peptidase 36 (USP36) and Constitutive photomorphogenesis 9 (COP9) signalosome, thus increasing SOD2 protein longevity. Functionally, anakinra and SOD2 protects mice from pulmonary oxidative inflammation and infection. On a preclinical level, anakinra upregulates SOD2 in murine models of chronic granulomatous disease (CGD) and cystic fibrosis (CF). These data suggest that protection from mitochondrial oxidative stress may represent an additional mechanism underlying the clinical benefit of anakinra and identifies SOD2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Stefania Pieroni
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Antonella De Luca
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Rossana G. Iannitti
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Monica Borghi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Matteo Puccetti
- Department of Pharmaceutical Science, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.G.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Science, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.G.)
| | - Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Fiorella D’Onofrio
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Marina M. Bellet
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Claudia Stincardini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Maria Agnese Della-Fazia
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Giuseppe Servillo
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | | | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.P.); (A.D.L.); (R.G.I.); (M.B.); (G.R.); (F.D.); (M.M.B.); (C.S.); (M.A.D.-F.); (G.S.); (C.C.)
| |
Collapse
|
12
|
Martin P, Goldstein JD, Mermoud L, Diaz-Barreiro A, Palmer G. IL-1 Family Antagonists in Mouse and Human Skin Inflammation. Front Immunol 2021; 12:652846. [PMID: 33796114 PMCID: PMC8009184 DOI: 10.3389/fimmu.2021.652846] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Interleukin (IL)-1 family cytokines initiate inflammatory responses, and shape innate and adaptive immunity. They play important roles in host defense, but excessive immune activation can also lead to the development of chronic inflammatory diseases. Dysregulated IL-1 family signaling is observed in a variety of skin disorders. In particular, IL-1 family cytokines have been linked to the pathogenesis of psoriasis and atopic dermatitis. The biological activity of pro-inflammatory IL-1 family agonists is controlled by the natural receptor antagonists IL-1Ra and IL-36Ra, as well as by the regulatory cytokines IL-37 and IL-38. These four anti-inflammatory IL-1 family members are constitutively and highly expressed at steady state in the epidermis, where keratinocytes are a major producing cell type. In this review, we provide an overview of the current knowledge concerning their regulatory roles in skin biology and inflammation and their therapeutic potential in human inflammatory skin diseases. We further highlight some common misunderstandings and less well-known observations, which persist in the field despite recent extensive interest for these cytokines.
Collapse
Affiliation(s)
- Praxedis Martin
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jérémie D. Goldstein
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Loïc Mermoud
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alejandro Diaz-Barreiro
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Talabot-Ayer D, Mermoud L, Borowczyk J, Drukala J, Wolnicki M, Modarressi A, Boehncke WH, Brembilla N, Palmer G. Interleukin-38 interacts with destrin/actin-depolymerizing factor in human keratinocytes. PLoS One 2019; 14:e0225782. [PMID: 31770407 PMCID: PMC6879167 DOI: 10.1371/journal.pone.0225782] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/12/2019] [Indexed: 01/20/2023] Open
Abstract
Interleukin (IL)-38 is a member of the IL-1 family of cytokines, which was proposed to exert anti-inflammatory effects. IL-38 is constitutively expressed in the skin, where keratinocytes are the main producing cells. Little information is currently available concerning IL-38 biology. Here, we investigated the subcellular localization and interaction partners of the IL-38 protein in human keratinocytes. IL-38 expression was reduced in primary keratinocytes grown in monolayer (2D) cultures. We thus used IL-38 overexpressing immortalized normal human keratinocytes (NHK/38) to study this cytokine in cell monolayers. In parallel, differentiation of primary human keratinocytes in an in vitro reconstructed human epidermis (RHE) 3D model allowed us to restore endogenous IL-38 expression. In NHK/38 cells and in RHE, IL-38 was mainly cell-associated, rather than released into culture supernatants. Intracellular IL-38 was preferentially, although not exclusively, cytoplasmic. Similarly, in normal human skin sections, IL-38 was predominantly cytoplasmic in the epidermis and essentially excluded from keratinocyte nuclei. A yeast two-hybrid screen identified destrin/actin-depolymerizing factor (DSTN) as a potential IL-38-interacting molecule. Co-immunoprecipitation and proximity ligation assay confirmed this interaction. We further observed partial co-localization of IL-38 and DSTN in NHK/38 cells. Endogenous IL-38 and DSTN were also co-expressed in all epidermal layers in RHE and in normal human skin. Finally, IL-38 partially co-localized with F-actin in NHK/38 cells, in particular along the cortical actin network and in filopodia. In conclusion, IL-38 is found predominantly in the cytoplasm of human keratinocytes, where it interacts with DSTN. The functional relevance of this interaction remains to be investigated.
Collapse
Affiliation(s)
- Dominique Talabot-Ayer
- Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals, Geneva, Switzerland
| | - Loïc Mermoud
- Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals, Geneva, Switzerland
| | - Julia Borowczyk
- Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Dermatology and Venereology, University Hospitals, Geneva, Switzerland
| | - Justyna Drukala
- Cell Bank, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Michal Wolnicki
- Department of Pediatric Urology, Jagiellonian University Medical College, Cracow, Poland
| | - Ali Modarressi
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospitals of Geneva, University of Geneva School of Medicine, Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Dermatology and Venereology, University Hospitals, Geneva, Switzerland
| | - Nicolo Brembilla
- Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Dermatology and Venereology, University Hospitals, Geneva, Switzerland
| | - Gaby Palmer
- Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
14
|
Bloch S, Zwicker S, Bostanci N, Sjöling Å, Boström EA, Belibasakis GN, Schäffer C. Immune response profiling of primary monocytes and oral keratinocytes to different Tannerella forsythia strains and their cell surface mutants. Mol Oral Microbiol 2018; 33:155-167. [PMID: 29235255 DOI: 10.1111/omi.12208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2017] [Indexed: 12/18/2022]
Abstract
The oral pathogen Tannerella forsythia possesses a unique surface (S-) layer with a complex O-glycan containing a bacterial sialic acid mimic in the form of either pseudaminic acid or legionaminic acid at its terminal position. We hypothesize that different T. forsythia strains employ these stereoisomeric sugar acids for interacting with the immune system and resident host tissues in the periodontium. Here, we show how T. forsythia strains ATCC 43037 and UB4 displaying pseudaminic acid and legionaminic acid, respectively, and selected cell surface mutants of these strains modulate the immune response in monocytes and human oral keratinocytes (HOK) using a multiplex immunoassay. When challenged with T. forsythia, monocytes secrete proinflammatory cytokines, chemokines and vascular endothelial growth factor (VEGF) with the release of interleukin-1β (IL-1β) and IL-7 being differentially regulated by the two T. forsythia wild-type strains. Truncation of the bacteria's O-glycan leads to significant reduction of IL-1β and regulates macrophage inflammatory protein-1. HOK infected with T. forsythia produce IL-1Ra, chemokines and VEGF. Although the two wild-type strains elicit preferential immune responses for IL-8, both truncation of the O-glycan and deletion of the S-layer result in significantly increased release of IL-8, granulocyte-macrophage colony-stimulating factor and monocyte chemoattractant protein-1. Through immunofluorescence and confocal laser scanning microscopy of infected HOK we additionally show that T. forsythia is highly invasive and tends to localize to the perinuclear region. This indicates, that the T. forsythia S-layer and attached sugars, particularly pseudaminic acid in ATCC 43037, contribute to dampening the response of epithelial tissues to initial infection and hence play a pivotal role in orchestrating the bacterium's virulence.
Collapse
Affiliation(s)
- S Bloch
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - S Zwicker
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - N Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Å Sjöling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - E A Boström
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - G N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - C Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
15
|
Najor NA, Fitz GN, Koetsier JL, Godsel LM, Albrecht LV, Harmon R, Green KJ. Epidermal Growth Factor Receptor neddylation is regulated by a desmosomal-COP9 (Constitutive Photomorphogenesis 9) signalosome complex. eLife 2017; 6:22599. [PMID: 28891468 PMCID: PMC5663478 DOI: 10.7554/elife.22599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 09/08/2017] [Indexed: 12/12/2022] Open
Abstract
Cell junctions are scaffolds that integrate mechanical and chemical signaling. We previously showed that a desmosomal cadherin promotes keratinocyte differentiation in an adhesion-independent manner by dampening Epidermal Growth Factor Receptor (EGFR) activity. Here we identify a potential mechanism by which desmosomes assist the de-neddylating COP9 signalosome (CSN) in attenuating EGFR through an association between the Cops3 subunit of the CSN and desmosomal components, Desmoglein1 (Dsg1) and Desmoplakin (Dp), to promote epidermal differentiation. Silencing CSN or desmosome components shifts the balance of EGFR modifications from ubiquitination to neddylation, inhibiting EGFR dynamics in response to an acute ligand stimulus. A reciprocal relationship between loss of Dsg1 and neddylated EGFR was observed in a carcinoma model, consistent with a role in sustaining EGFR activity during tumor progression. Identification of this previously unrecognized function of the CSN in regulating EGFR neddylation has broad-reaching implications for understanding how homeostasis is achieved in regenerating epithelia. The outer layer of skin – the epidermis – forms a critical barrier against a range of stresses from the environment. The epidermis itself consists of multiple layers of cells that are constantly being renewed. New cells are made in the deepest layer and move upwards until they eventually reach the skin’s surface. During this journey, the cells change the molecules they make in a process called epidermal differentiation. To maintain an effective barrier, the epidermis must balance the division of cells in the deepest layer with the differentiation of cells in the layers above. When activated, a protein called the Epidermal Growth Factor Receptor (or EGFR for short) encourages cells in the deepest layer to divide. However, it remains poorly understood how the balance between cells dividing and cells differentiating is achieved. The desmosome is a structure that can link together cells within the epidermis. Najor et al. now report a new interaction between the desmosome and a very large protein complex called the COP9- signalosome known to remove protein-based tags from other proteins. The experiments show that the COP9-signalosome results in the removal of these tags from EGFR. The status of the tags on EGFR regulates whether or not it is found at the cell surface. Najor et al. propose that that the desmosome acts as a scaffold and holds the COP9 signalosome close to EGFR. The enzyme in the COP9 signalosome then removes protein-based tags from EGFR, which triggers a series of events that remove EGFR from the cell surface. This dampens down the signals EGFR would normally send to make cells divide, and allows differentiation to proceed. The balance between cell division and differentiation is a fundamental process that is affected in many skin conditions, including psoriasis and atopic dermatitis. EGFR is also commonly overactive in cancers. As such, understanding how epidermal differentiation and cell division are controlled will shed light on a variety of disorders, allowing for the potential development of new treatments for these diseases.
Collapse
Affiliation(s)
- Nicole Ann Najor
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, Detroit, United States.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Gillian Nicole Fitz
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Jennifer Leigh Koetsier
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Lisa Marie Godsel
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, United States.,Department of Dermatology Chicago, Feinberg School of Medicine, Northwestern University, Evanston, United States
| | - Lauren Veronica Albrecht
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Robert Harmon
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Kathleen Janee Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, United States.,Department of Dermatology Chicago, Feinberg School of Medicine, Northwestern University, Evanston, United States
| |
Collapse
|
16
|
The Therapeutic Potential of Anti-Inflammatory Exerkines in the Treatment of Atherosclerosis. Int J Mol Sci 2017; 18:ijms18061260. [PMID: 28608819 PMCID: PMC5486082 DOI: 10.3390/ijms18061260] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/22/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
Although many cardiovascular (CVD) medications, such as antithrombotics, statins, and antihypertensives, have been identified to treat atherosclerosis, at most, many of these therapeutic agents only delay its progression. A growing body of evidence suggests physical exercise could be implemented as a non-pharmacologic treatment due to its pro-metabolic, multisystemic, and anti-inflammatory benefits. Specifically, it has been discovered that certain anti-inflammatory peptides, metabolites, and RNA species (collectively termed “exerkines”) are released in response to exercise that could facilitate these benefits and could serve as potential therapeutic targets for atherosclerosis. However, much of the relationship between exercise and these exerkines remains unanswered, and there are several challenges in the discovery and validation of these exerkines. This review primarily highlights major anti-inflammatory exerkines that could serve as potential therapeutic targets for atherosclerosis. To provide some context and comparison for the therapeutic potential of exerkines, the anti-inflammatory, multisystemic benefits of exercise, the basic mechanisms of atherosclerosis, and the limited efficacies of current anti-inflammatory therapeutics for atherosclerosis are briefly summarized. Finally, key challenges and future directions for exploiting these exerkines in the treatment of atherosclerosis are discussed.
Collapse
|
17
|
Proteomic and histopathological characterization of the interface between oral squamous cell carcinoma invasion fronts and non-cancerous epithelia. Exp Mol Pathol 2017; 102:327-336. [DOI: 10.1016/j.yexmp.2017.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/23/2017] [Indexed: 11/21/2022]
|
18
|
Nedumpun T, Wongyanin P, Sirisereewan C, Ritprajak P, Palaga T, Thanawongnuwech R, Suradhat S. Interleukin-1 receptor antagonist: an early immunomodulatory cytokine induced by porcine reproductive and respiratory syndrome virus. J Gen Virol 2017; 98:77-88. [PMID: 27902420 DOI: 10.1099/jgv.0.000665] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection poorly induces pro-inflammatory cytokines (IL-1, IL-6 and TNF-α) and type I IFN production during the early phase of infection. Our microarray analysis indicated strong upregulation of the IL1RA gene in type 2 PRRSV -infected monocyte-derived dendritic cells. Interleukin-1 receptor antagonist (IL-1Ra) is an early inhibitory cytokine that suppresses pro-inflammatory cytokines and T-lymphocyte responses. To investigate the induction of IL-1Ra by PRRSV, monocyte-derived dendritic cells were cultured with type 2 PRRSV or other swine viruses. PRRSV increased both IL1RA gene expression and IL-1Ra protein production in the culture. The enhanced production of IL-1Ra was further confirmed in PRRSV-cultured PBMC and PRRSV-exposed pigs by flow cytometry. Myeloid cell population appeared to be the major IL-1Ra producer both in vitro and in vivo. In contrast to the type 2 PRRSV, the highly pathogenic (HP)- PRRSV did not upregulate IL1RA gene expression in vitro. To determine the kinetics of PRRSV-induced IL1RA gene expression in relation to other pro-inflammatory cytokine genes, PRRSV-negative pigs were vaccinated with a commercially available type 2 modified-live PRRS vaccine or intranasally inoculated with HP-PRRSV. In modified-live PRRS vaccine pigs, upregulation of IL1RA, but not IL1B and IFNA, gene expression was observed from 2 days post- vaccination. Consistent with the in vitro findings, upregulation of IL1RA gene expression was not observed in the HP-PRRSV-infected pigs throughout the experiment. This study identified IL-1Ra as an early immunomodulatory mediator that could be involved in the immunopathogenesis of PRRSV infections.
Collapse
Affiliation(s)
- Teerawut Nedumpun
- Interdisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Piya Wongyanin
- Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok, Thailand
| | - Chaitawat Sirisereewan
- Graduate Program in Veterinary Pathobiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Patcharee Ritprajak
- Department of Microbiology, RU in Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Roongroje Thanawongnuwech
- Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand.,Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sanipa Suradhat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| |
Collapse
|
19
|
Ghivizzani SC, Gouze E, Watson RS, Saran J, Kay JD, Bush ML, Levings PP, Gouze JN. Interleukin-1 in Rheumatoid Arthritis: Its Inhibition by IL-1Ra and Anakinra. J Pharm Technol 2016. [DOI: 10.1177/875512250702300205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: To review the biology of interleukin-1 (IL-1) in the pathogenesis of rheumatoid arthritis (RA), as well as the biology of its natural inhibitor, IL receptor antagonist (IL-1Ra), and the clinical efficacy and safety of the recombinant form, anakinra. Data Sources: A MEDLINE search (1966–January 2007) of English-language articles was conducted using the key words anakinra, arthritis, clinical trial, interleukin-1 receptor antagonist, and Kineret. Study Selection and Data Extraction: Over 79 research articles and literature reviews were used to compile a discussion of the biology of IL-1 and IL-1Ra. Ten of these articles were selected to discuss the clinical safety and efficacy of anakinra. Data Synthesis: In RA, IL-1 primarily acts locally to mediate erosion of cartilage and bone. IL-1Ra serves to modulate its activity through competitive inhibition of cellular receptors. Administration of anakinra to animals with experimental arthritis reduced inflammation and joint damage. In clinical trials, anakinra was reasonably well tolerated; however, injection site reactions were frequent and there was a slight increased risk of serious infection. Alone or in combination with methotrexate, anakinra significantly reduced the symptoms and clinical signs of RA at the American College of Rheumatology 20% response level. However, no additive benefit was observed following coadministration with etanercept, a soluble tumor necrosis factor antagonist, and anakinra had no beneficial effect in patients that failed treatment with etanercept. Conclusions: Laboratory studies have indicated that IL-1 is primarily responsible for cartilage destruction and bone erosion in RA. The selective inhibition of IL-1 through administration of anakinra may offer symptomatic relief of RA in some patients.
Collapse
Affiliation(s)
- Steven C Ghivizzani
- STEVEN C GHIVIZZANI PhD, Associate Professor, Department of Orthopaedics and Rehabilitation, College of Medicine, University of Florida, Gainesville, FL
| | - Elvire Gouze
- ELVIRE GOUZE PhD, Assistant Research Professor, Department of Orthopaedics and Rehabilitation, College of Medicine, University of Florida
| | - Rachael S Watson
- RACHAEL S WATSON BS, Graduate Student, Department of Orthopaedics and Rehabilitation, College of Medicine, University of Florida
| | - Jeetpaul Saran
- JEETPAUL SARAN MD, Postdoctoral Fellow, Department of Orthopaedics and Rehabilitation, College of Medicine, University of Florida
| | - Jesse D Kay
- JESSE D KAY BS, Graduate Student, Department of Orthopaedics and Rehabilitation, College of Medicine, University of Florida
| | - Marsha L Bush
- MARSHA L BUSH BS, Graduate Student, Department of Orthopaedics and Rehabilitation, College of Medicine, University of Florida
| | - Padraic P Levings
- PADRAIC P LEVINGS PhD, Postdoctoral Fellow, Department of Orthopaedics and Rehabilitation, College of Medicine, University of Florida
| | - Jean-Noel Gouze
- JEAN-NOEL GOUZE PhD, Assistant Research Professor, Department of Orthopaedics and Rehabilitation, College of Medicine, University of Florida
| |
Collapse
|
20
|
Yan C, Gao N, Sun H, Yin J, Lee P, Zhou L, Fan X, Yu FS. Targeting Imbalance between IL-1β and IL-1 Receptor Antagonist Ameliorates Delayed Epithelium Wound Healing in Diabetic Mouse Corneas. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1466-80. [PMID: 27109611 DOI: 10.1016/j.ajpath.2016.01.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 12/15/2022]
Abstract
Patients with diabetes mellitus often develop corneal complications and delayed wound healing. How diabetes might alter acute inflammatory responses to tissue injury, leading to delayed wound healing, remains mostly elusive. Using a streptozotocin-induced type I diabetes mellitus mice and corneal epithelium-debridement wound model, we discovered that although wounding induced marked expression of IL-1β and the secreted form of IL-1 receptor antagonist (sIL-1Ra), diabetes suppressed the expressions of sIL-1Ra but not IL-1β in healing epithelia and both in whole cornea. In normoglycemic mice, IL-1β or sIL-1Ra blockade delayed wound healing and influenced each other's expression. In diabetic mice, in addition to delayed reepithelization, diabetes weakened phosphatidylinositol 3-kinase-Akt signaling, caused cell apoptosis, diminished cell proliferation, suppressed neutrophil and natural killer cell infiltrations, and impaired sensory nerve reinnervation in healing mouse corneas. Local administration of recombinant IL-1Ra partially, but significantly, reversed these pathological changes in the diabetic corneas. CXCL10 was a downstream chemokine of IL-1β-IL-1Ra, and exogenous CXCL10 alleviated delayed wound healing in the diabetic, but attenuated it in the normal corneas. In conclusion, the suppressed early innate/inflammatory responses instigated by the imbalance between IL-1β and IL-1Ra is an underlying cause for delayed wound healing in the diabetic corneas. Local application of IL-1Ra accelerates reepithelialization and may be used to treat chronic corneal and potential skin wounds of diabetic patients.
Collapse
Affiliation(s)
- Chenxi Yan
- Department of Ophthalmology, Graduate Program, Shanghai Ninth Peoples' Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Nan Gao
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Haijing Sun
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jia Yin
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Patrick Lee
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Li Zhou
- Department of Dermatology, Henry Ford Immunology Program, Henry Ford Health System, Detroit, Michigan
| | - Xianqun Fan
- Department of Ophthalmology, Graduate Program, Shanghai Ninth Peoples' Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fu-Shin Yu
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
21
|
Bourdiec A, Ahmad SF, Lachhab A, Akoum A. Regulation of inflammatory and angiogenesis mediators in a functional model of decidualized endometrial stromal cells. Reprod Biomed Online 2015; 32:85-95. [PMID: 26602943 DOI: 10.1016/j.rbmo.2015.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 01/02/2023]
Abstract
The mechanisms involving the expression of interleukin (IL) 1 family members in the process of preparing the endometrium to receive an embryo remain unclear. In this study, decidualization differentially skewed the balance of IL1 family receptor expression in a pattern that increases endometrial stromal cell receptivity to IL1, IL18 and IL33. Additionally, endometrial cells showed increased expression of homeobox HOXA10 and HOXA11 and LIFR, which are known to be involved in endometrial embryo receptivity. Further analyses of decidual endometrial cells revealed a significant increase in the release of potent proinflammatory, remodelling and angiogenic factors implicated in the embryo invasion process, such as VEGF (P = 0.0305), MMP9 (P = 0.0003), TIMP3 (P = 0.0001), RANTES (P = 0.0020), MCP1 (P = 0.0001) and MIF (P = 0.0068). No significant changes in endogenous IL1B secretion were observed. Decreased secretion of IL18 and decidualization increased secretion of IL33. These findings reveal a significant modulation of endometrial cell receptivity to IL1 family members during endometrial stromal cell decidualization, and suggest that the involvement of IL1 family members is important in physiological processes of endometrial receptivity, including adaptive immunology. This may be relevant to establishing a favourable uterine microenvironment for embryo implantation.
Collapse
Affiliation(s)
- Amélie Bourdiec
- Endocrinologie de la reproduction, Centre de recherche-Hôpital Saint-François d'Assise, Centre Hospitalier Universitaire de Québec, Faculté de médecine, Université Laval, Québec, Canada.
| | - Syed-Furquan Ahmad
- Endocrinologie de la reproduction, Centre de recherche-Hôpital Saint-François d'Assise, Centre Hospitalier Universitaire de Québec, Faculté de médecine, Université Laval, Québec, Canada
| | - Asmaa Lachhab
- Endocrinologie de la reproduction, Centre de recherche-Hôpital Saint-François d'Assise, Centre Hospitalier Universitaire de Québec, Faculté de médecine, Université Laval, Québec, Canada
| | - Ali Akoum
- Endocrinologie de la reproduction, Centre de recherche-Hôpital Saint-François d'Assise, Centre Hospitalier Universitaire de Québec, Faculté de médecine, Université Laval, Québec, Canada
| |
Collapse
|
22
|
Gibson MS, Kaiser P, Fife M. The chicken IL-1 family: evolution in the context of the studied vertebrate lineage. Immunogenetics 2014; 66:427-38. [PMID: 24863340 PMCID: PMC4090809 DOI: 10.1007/s00251-014-0780-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/07/2014] [Indexed: 12/15/2022]
Abstract
The interleukin-1 gene family encodes a group of related proteins that exhibit a remarkable pleiotropy in the context of health and disease. The set of indispensable functions they control suggests that these genes should be found in all eukaryotic species. The ligands and receptors of this family have been primarily characterised in man and mouse. The genomes of most non-mammalian animal species sequenced so far possess all of the IL-1 receptor genes found in mammals. Yet, strikingly, very few of the ligands are identifiable in non-mammalian genomes. Our recent identification of two further IL-1 ligands in the chicken warranted a critical reappraisal of the evolution of this vitally important cytokine family. This review presents substantial data gathered across multiple, divergent metazoan genomes to unambiguously trace the origin of these genes. With the hypothesis that all of these genes, both ligands and receptors, were formed in a single ancient ancestor, extensive database mining revealed sufficient evidence to confirm this. It therefore suggests that the emergence of mammals is unrelated to the expansion of the IL-1 family. A thorough review of this cytokine family in the chicken, the most extensively studied amongst non-mammalian species, is also presented.
Collapse
Affiliation(s)
- Mark S Gibson
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK,
| | | | | |
Collapse
|
23
|
Vecile E, Dobrina A, Salloum FN, Van Tassell BW, Falcione A, Gustini E, Secchiero S, Crovella S, Sinagra G, Finato N, Nicklin MJ, Abbate A. Intracellular function of interleukin-1 receptor antagonist in ischemic cardiomyocytes. PLoS One 2013; 8:e53265. [PMID: 23308180 PMCID: PMC3540084 DOI: 10.1371/journal.pone.0053265] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 11/27/2012] [Indexed: 01/24/2023] Open
Abstract
Background Loss of cardiac myocytes due to apoptosis is a relevant feature of ischemic heart disease. It has been described in infarct and peri-infarct regions of the myocardium in coronary syndromes and in ischemia-linked heart remodeling. Previous studies have provided protection against ischemia-induced cardiomyocyte apoptosis by the anti-inflammatory cytokine interleukin-1 receptor-antagonist (IL-1Ra). Mitochondria triggering of caspases plays a central role in ischemia-induced apoptosis. We examined the production of IL-1Ra in the ischemic heart and, based on dual intra/extracellular function of some other interleukins, we hypothesized that IL-1Ra may also directly inhibit mitochondria-activated caspases and cardiomyocyte apoptosis. Methodology/Principal Findings Synthesis of IL-1Ra was evidenced in the hearts explanted from patients with ischemic heart disease. In the mouse ischemic heart and in a mouse cardiomyocyte cell line exposed to long-lasting hypoxia, IL-1Ra bound and inhibited mitochondria-activated caspases, whereas inhibition of caspase activation was not observed in the heart of mice lacking IL-1Ra (Il-1ra−/−) or in siRNA to IL-1Ra-interfered cells. An impressive 6-fold increase of hypoxia-induced apoptosis was observed in cells lacking IL-1Ra. IL-1Ra down-regulated cells were not protected against caspase activation and apoptosis by knocking down of the IL-1 receptor, confirming the intracellular, receptor-independent, anti-apoptotic function of IL-1Ra. Notably, the inhibitory effect of IL-1Ra was not influenced by enduring ischemic conditions in which previously described physiologic inhibitors of apoptosis are neutralized. Conclusions/Significance These observations point to intracellular IL-1Ra as a critical mechanism of the cell self-protection against ischemia-induced apoptosis and suggest that this cytokine plays an important role in the remodeling of heart by promoting survival of cardiomyocytes in the ischemic regions.
Collapse
Affiliation(s)
- Elena Vecile
- Department of Life Sciences, University of Trieste, Italy
| | - Aldo Dobrina
- Department of Life Sciences, University of Trieste, Italy
- * E-mail:
| | - Fadi N. Salloum
- Victoria Johnson Research Laboratory and VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Benjamin W. Van Tassell
- Victoria Johnson Research Laboratory and VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | | | | | | | - Sergio Crovella
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Nicoletta Finato
- Department of Medical and Morphological Research, University of Udine, Italy
| | - Martin J. Nicklin
- Division of Genomic Medicine, Sir Henry Wellcome Laboratories for Medical Research, University of Sheffield, United Kingdom
| | - Antonio Abbate
- Victoria Johnson Research Laboratory and VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
24
|
Gibson MS, Fife M, Bird S, Salmon N, Kaiser P. Identification, cloning, and functional characterization of the IL-1 receptor antagonist in the chicken reveal important differences between the chicken and mammals. THE JOURNAL OF IMMUNOLOGY 2012; 189:539-50. [PMID: 22689884 DOI: 10.4049/jimmunol.1103204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The human IL-1 family contains 11 genes encoded at three separate loci. Nine, including IL-1R antagonist (IL-1RN), are present at a single locus on chromosome 2, whereas IL-18 and IL-33 lie on chromosomes 11 and 9, respectively. There are currently only two known orthologs in the chicken, IL-1β and IL-18, which are encoded on chromosomes 22 and 24, respectively. Two novel chicken IL-1 family sequences were identified from expressed sequence tag libraries, representing secretory and intracellular (icIL-1RN) structural variants of the IL-1RN gene, as seen in mammals. Two further putative splice variants (SVs) of both chicken IL-1RN (chIL-1RN) structural variants were also isolated. Alternative splicing of human icIL-1RN gives three different transcripts; there are no known SVs for human secretory IL-1RN. The chicken icIL-1RN SVs differ from those found in human icIL-1RN in terms of the rearrangements involved. In mammals, IL-1RN inhibits IL-1 activity by physically occupying the IL-1 type I receptor. Both full-length structural variants of chIL-1RN exhibited biological activity similar to their mammalian orthologs in a macrophage cell line bioassay. The four SVs, however, were not biologically active. The chicken IL-1 family is more fragmented in the genome than those of mammals, particularly in that the large multigene locus seen in mammals is absent. This suggests differential evolution of the family since the divergence of birds and mammals from a common ancestor, and makes determination of the full repertoire of chicken IL-1 family members more challenging.
Collapse
Affiliation(s)
- Mark S Gibson
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK.
| | | | | | | | | |
Collapse
|
25
|
Alexander MR, Moehle CW, Johnson JL, Yang Z, Lee JK, Jackson CL, Owens GK. Genetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice. J Clin Invest 2011; 122:70-9. [PMID: 22201681 DOI: 10.1172/jci43713] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/19/2011] [Indexed: 12/13/2022] Open
Abstract
Clinical complications of atherosclerosis arise primarily as a result of luminal obstruction due to atherosclerotic plaque growth, with inadequate outward vessel remodeling and plaque destabilization leading to rupture. IL-1 is a proinflammatory cytokine that promotes atherogenesis in animal models, but its role in plaque destabilization and outward vessel remodeling is unclear. The studies presented herein show that advanced atherosclerotic plaques in mice lacking both IL-1 receptor type I and apolipoprotein E (Il1r1⁻/⁻Apoe⁻/⁻ mice) unexpectedly exhibited multiple features of plaque instability as compared with those of Il1r1⁺/⁺Apoe⁻/⁻ mice. These features included reduced plaque SMC content and coverage, reduced plaque collagen content, and increased intraplaque hemorrhage. In addition, the brachiocephalic arteries of Il1r1⁻/⁻Apoe⁻/⁻ mice exhibited no difference in plaque size, but reduced vessel area and lumen size relative to controls, demonstrating a reduction in outward vessel remodeling. Interestingly, expression of MMP3 was dramatically reduced within the plaque and vessel wall of Il1r1⁻/⁻Apoe⁻/⁻ mice, and Mmp3⁻/⁻Apoe⁻/⁻ mice showed defective outward vessel remodeling compared with controls. In addition, MMP3 was required for IL-1-induced SMC invasion of Matrigel in vitro. Taken together, these results show that IL-1 signaling plays a surprising dual protective role in advanced atherosclerosis by promoting outward vessel remodeling and enhancing features of plaque stability, at least in part through MMP3-dependent mechanisms.
Collapse
Affiliation(s)
- Matthew R Alexander
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Fischer P, Rümmler M, Schulz C, Peschel C, Ott I, Oostendorp RAJ. Altered adhesive properties of cord blood endothelial outgrowth cells expressing IL-1ra. Immunol Cell Biol 2010; 88:313-20. [PMID: 20101252 DOI: 10.1038/icb.2009.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of this study was to examine the potential of endothelial outgrowth cells (EOCs) expanded from CD34(+) cord blood-derived cells (CB-EOCs) for overexpression of therapeutic transgenes. As proof of principle, we overexpressed icIL-1ra in CB-EOCs. Proinflammatory activation of CB-EOCs in response to cytokine stimulation (IL-1beta and tumor necrosis factor (TNF)) and during coculture with monocytes showed that icIL-1ra-expressing CB-EOCs express significantly reduced levels of ICAM-1, MCP-1 and thrombin receptor expression. Moreover, overexpression of icIL-1ra attenuated the IL-1beta-mediated proinflammatory activation by diminishing the expression of ICAM-1, SELE, MCP-1 and IL-1beta. Interestingly, overexpression of icIL-1ra also inhibited TNF-induced upregulation of ICAM-1. Expression of ICAM-1, VCAM-1, tissue factor and IL-1beta was also decreased on direct contact with monocytes. These changes in gene expression were accompanied by functional reduction in leukocyte rolling, adhesion of monocytes to CB-EOCs, as well as by a reduction in transendothelial migration of monocytes. Our findings show that CB-EOCs stably expressing transgenic icIL-1ra are protected against activation by not only IL-1beta but also TNFalpha-mediated proinflammatory stimuli and inhibit decisive pathomechanisms of inflammatory processes such as rolling, adhesion and transmigration of monocytes. Therefore, icIL-ra transgenic CB-EOCs may prove to be beneficial in the treatment of IL-1beta- and TNFalpha-mediated inflammatory vasculopathies.
Collapse
Affiliation(s)
- Philipp Fischer
- III. Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Luheshi NM, Rothwell NJ, Brough D. Dual functionality of interleukin-1 family cytokines: implications for anti-interleukin-1 therapy. Br J Pharmacol 2010; 157:1318-29. [PMID: 19681864 PMCID: PMC2765320 DOI: 10.1111/j.1476-5381.2009.00331.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dysregulated inflammation contributes to disease pathogenesis in both the periphery and the brain. Cytokines are coordinators of inflammation and were originally defined as secreted mediators, released from expressing cells to activate plasma membrane receptors on responsive cells. However, a group of cytokines is now recognized as having dual functionality. In addition to their extracellular effects, these cytokines act inside the nuclei of cytokine-expressing or cytokine-responsive cells. Interleukin-1 (IL-1) family cytokines are key pro-inflammatory mediators, and blockade of the IL-1 system in inflammatory diseases is an attractive therapeutic goal. All current therapies target IL-1 extracellular actions. Here we review evidence that suggests IL-1 family members have dual functionality. Several IL-1 family members have been detected inside the nuclei of IL-1-expressing or IL-1-responsive cells, and intranuclear IL-1 is reported to regulate gene transcription and mRNA splicing. However, further work is required to determine the impact of IL-1 intranuclear actions on disease pathogenesis. The intranuclear actions of IL-1 family members represent a new and potentially important area of IL-1 biology and may have implications for the future development of anti-IL-1 therapies.
Collapse
Affiliation(s)
- N M Luheshi
- Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | | | | |
Collapse
|
28
|
Abstract
Recent findings suggest cytokines as important key molecules in the pathogenic mechanisms of idiopathic inflammatory myopathies, myositis. In this review, we focus on cytokines with a potential role in disease mechanisms in myositis and present some general information on individual cytokines and an updated summary from the literature concerning cytokines in these disorders. The idiopathic inflammatory myopathies is a heterogeneous group of disorders clinically characterized by symmetric proximal muscle weakness and by certain defined histolopathological findings, including inflammatory infiltrates in muscle tissue. Other prominent findings in the target tissue of these patients are defined molecular changes of blood vessels and muscle fibers, including reformation to high endothelial venule (HEV)-like blood vessels and intensive MHC class I expression in muscle fibers. The predominant clinical symptoms of muscle weakness and decreased muscle endurance are shared by all subsets of inflammatory myopathies and indicate that some pathogenic mechanisms related to muscle function may be shared by the different disease groups. Studies on cytokine gene, RNA and protein expression in muscle tissue from patients with various forms of the disease also indicate similar profiles, despite different phenotypes of the inflammatory cells present in muscle tissue from the different subsets of myositis. There is a pronounced expression of various cytokines in muscle tissue, among which the proinflammatory cytokines TNF-alpha and IL-1 are most widely explored in the inflammatory myopathies, which has made them into potential therapeutic targets. The use of targeted cytokine therapy has been successful in several other chronic inflammatory diseases and although the exact role of cytokines in chronic idiopathic inflammatory myopathies remains to be delineated their potential role as targets for new therapies in this disorder will be discussed in this review.
Collapse
Affiliation(s)
- Stina Salomonsson
- Karolinska University Hospital, Karolinska Institutet, Rheumatology Unit, Department of Medicine, Solna, Stockholm, Sweden
| | | |
Collapse
|
29
|
Chong HC, Tan MJ, Philippe V, Tan SH, Tan CK, Ku CW, Goh YY, Wahli W, Michalik L, Tan NS. Regulation of epithelial-mesenchymal IL-1 signaling by PPARbeta/delta is essential for skin homeostasis and wound healing. ACTA ACUST UNITED AC 2009; 184:817-31. [PMID: 19307598 PMCID: PMC2699156 DOI: 10.1083/jcb.200809028] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Skin morphogenesis, maintenance, and healing after wounding require complex epithelial–mesenchymal interactions. In this study, we show that for skin homeostasis, interleukin-1 (IL-1) produced by keratinocytes activates peroxisome proliferator–activated receptor β/δ (PPARβ/δ) expression in underlying fibroblasts, which in turn inhibits the mitotic activity of keratinocytes via inhibition of the IL-1 signaling pathway. In fact, PPARβ/δ stimulates production of the secreted IL-1 receptor antagonist, which leads to an autocrine decrease in IL-1 signaling pathways and consequently decreases production of secreted mitogenic factors by the fibroblasts. This fibroblast PPARβ/δ regulation of the IL-1 signaling is required for proper wound healing and can regulate tumor as well as normal human keratinocyte cell proliferation. Together, these findings provide evidence for a novel homeostatic control of keratinocyte proliferation and differentiation mediated via PPARβ/δ regulation in dermal fibroblasts of IL-1 signaling. Given the ubiquitous expression of PPARβ/δ, other epithelial–mesenchymal interactions may also be regulated in a similar manner.
Collapse
Affiliation(s)
- Han Chung Chong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Apte RN, Voronov E. Is interleukin-1 a good or bad 'guy' in tumor immunobiology and immunotherapy? Immunol Rev 2009; 222:222-41. [PMID: 18364005 DOI: 10.1111/j.1600-065x.2008.00615.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interleukin-1 (IL-1) family consists of two major agonistic proteins, IL-1alpha and IL-1beta, which are pleiotropic and affect mainly inflammation, immunity, and hemopoiesis. The IL-1 receptor antagonist (IL-1Ra) is a physiological inhibitor of pre-formed IL-1. In their secreted form, IL-1alpha and IL-1beta bind to the same receptors and induce the same biological functions. However, the IL-1 molecules differ in their compartmentalization within the producing cell or the microenvironment. Thus, IL-1beta is solely active in its secreted form, whereas IL-1alpha is mainly active in cell-associated forms (intracellular precursor and membrane-bound IL-1) and only rarely as a secreted cytokine, mainly by macrophages/monocytes. IL-1 is abundant at tumor sites, being produced by cellular elements of the tumor microenvironment or by the malignant cells, and it affects not only various phases of the malignant process, such as carcinogenesis, tumor growth, and invasiveness, but also patterns of interactions between malignant cells and the host's immune system. Hence, the effects of the IL-1 molecules on the malignant process are complex and are often of an opposing nature. Comparative studies on the differential roles of malignant cell- or host-derived IL-1alpha and IL-1beta in different stages of the malignant process can subsequently open new avenues for manipulation of IL-1 expression and function in cancer immunotherapy.
Collapse
Affiliation(s)
- Ron N Apte
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and The Cancer Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | |
Collapse
|
31
|
Fahy AS, Clark RH, Glyde EF, Smith GL. Vaccinia virus protein C16 acts intracellularly to modulate the host response and promote virulence. J Gen Virol 2008; 89:2377-2387. [PMID: 18796705 PMCID: PMC2885005 DOI: 10.1099/vir.0.2008/004895-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Accepted: 07/09/2008] [Indexed: 01/15/2023] Open
Abstract
The vaccinia virus (VACV) strain Western Reserve C16 protein has been characterized and its effects on virus replication and virulence have been determined. The C16L gene is present in the inverted terminal repeat and so is one of the few VACV genes that are diploid. The C16 protein is highly conserved between different VACV strains, and also in the orthopoxviruses variola virus, ectromelia virus, horsepox virus and cowpox virus. C16 is a 37.5 kDa protein, which is expressed early during infection and localizes to the cell nucleus and cytoplasm of infected and transfected cells. The loss of the C16L gene had no effect on virus growth kinetics but did reduce plaque size slightly. Furthermore, the virulence of a virus lacking C16L (vDeltaC16) was reduced in a murine intranasal model compared with control viruses and there were reduced virus titres from 4 days post-infection. In the absence of C16, the recruitment of inflammatory cells in the lung and bronchoalveolar lavage was increased early after infection (day 3) and more CD4(+) and CD8(+) T cells expressed the CD69 activation marker. Conversely, late after infection with vDeltaC16 (day 10) there were fewer T cells remaining, indicating more rapid clearance of infection. Collectively, these data indicate that C16 diminishes the immune response and is an intracellular immunomodulator.
Collapse
Affiliation(s)
- Aodhnait S Fahy
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Richard H Clark
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Emily F Glyde
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Geoffrey L Smith
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
32
|
Interleukin-1 receptor antagonist (IL-1ra) modulates endothelial cell proliferation. FEBS Lett 2008; 582:886-90. [PMID: 18282478 DOI: 10.1016/j.febslet.2008.02.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 02/05/2008] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
Abstract
Endothelial cell (EC) lifespan controlled by the IL-1 family of cytokines is an important determinant of susceptibility to artery wall disease. Here we show that EC lacking intracellular interleukin-1 receptor antagonist (IL-1ra) have a reduced lifespan compared to controls. Over expression of IL-1ra enhanced proliferation via cyclin dependent kinase 2 activity and retinoblastoma protein phosphorylation. This was not seen in EC lacking IL-1 receptor 1 (IL-1 signalling ability), nor apparent using other stimuli e.g. TNF alpha. These data suggest that IL-1ra has a specific and receptor-dependent function to control the growth and lifespan of EC.
Collapse
|
33
|
Intracellular interleukin-1alpha mediates interleukin-8 production induced by Chlamydia trachomatis infection via a mechanism independent of type I interleukin-1 receptor. Infect Immun 2007; 76:942-51. [PMID: 18086816 DOI: 10.1128/iai.01313-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chlamydia trachomatis infection induces a wide array of inflammatory cytokines and chemokines, which may contribute to chlamydia-induced pathologies. However, the precise mechanisms by which Chlamydia induces cytokines remain unclear. Here we demonstrate that the proinflammatory cytokine interleukin-1alpha (IL-1alpha) plays an essential role in chlamydial induction of the chemokine IL-8. Cells deficient in IL-1alpha expression or IL-1alpha-competent cells treated with IL-1alpha-specific small interfering RNA failed to produce IL-8 in response to chlamydial infection. However, neutralization of extracellular IL-1alpha or blockade of or deficiency in type I IL-1 receptor (IL-1RI) signaling did not affect chlamydial induction of IL-8 in cells capable of producing IL-1alpha. These results suggest that IL-1alpha can mediate the chlamydial induction of IL-8 via an intracellular mechanism independent of IL-1RI, especially during the early stage of the infection cycle. This conclusion is further supported by the observations that expression of a transgene-encoded full-length IL-1alpha fusion protein in the nuclei enhanced IL-8 production and that nuclear localization of chlamydia-induced precursor IL-1alpha correlated with chlamydial induction of IL-8. Thus, we have identified a novel mechanism for chlamydial induction of the chemokine IL-8.
Collapse
|
34
|
Palmer G, Talabot-Ayer D, Kaya G, Gabay C. Type I IL-1 receptor mediates IL-1 and intracellular IL-1 receptor antagonist effects in skin inflammation. J Invest Dermatol 2007; 127:1938-46. [PMID: 17476299 DOI: 10.1038/sj.jid.5700803] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The IL-1 system plays a key role in skin physiology and pathology. In this study, we used mutant mice lacking the type I IL-1 receptor (IL-1RI), lacking IL-1 receptor antagonist (IL-1Ra), or overexpressing the human intracellular (ic) IL-1Ra1 isoform, as well as combinations thereof, to dissect the role of the IL-1 system in phorbol 13-myristate 12-acetate (PMA)-induced skin inflammation. In wild-type (WT) mice, PMA application induced epidermal thickening and dermal inflammation. Skin IL-1alpha production and circulating levels of the acute-phase protein serum amyloid A (SAA) were elevated. In mice lacking IL-1RI or overexpressing icIL-1Ra1, PMA induced similar epidermal thickening as in WT mice, but dermal inflammation was partially prevented. Skin IL-1alpha mRNA expression was similar in PMA-treated IL-1RI-/- and WT mice, whereas the increase in serum SAA was suppressed in IL-1RI-/- mice. Interestingly, PMA-induced IL-1alpha mRNA expression was further enhanced by icIL-1Ra1 overexpression in an IL-1RI-dependent manner. Finally, IL-1Ra-/- mice spontaneously displayed skin lesions characterized by high IL-1beta, but not IL-1alpha, expression. In conclusion, PMA-induced epidermal thickening and skin IL-1alpha expression were independent of IL-1 signaling, in contrast to dermal inflammation and systemic inflammatory response.
Collapse
Affiliation(s)
- Gaby Palmer
- Division of Rheumatology, University Hospital, Geneva, Switzerland
| | | | | | | |
Collapse
|
35
|
Traicoff JL, Chung JY, Braunschweig T, Mazo I, Shu Y, Ramesh A, D'Amico MW, Galperin MM, Knezevic V, Hewitt SM. Expression of EIF3-p48/INT6, TID1 and Patched in cancer, a profiling of multiple tumor types and correlation of expression. J Biomed Sci 2007; 14:395-405. [PMID: 17385060 DOI: 10.1007/s11373-007-9149-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022] Open
Abstract
Alterations in eIF3-p48/INT6 gene expression have been implicated in murine and human mammary carcinogenesis. We examined levels of INT6 protein in human tumors and determined that breast and colon tumors clustered into distinct groups based on levels of INT6 expression and clinicopathological variables. We performed multiplex tissue immunoblotting of breast, colon, lung, and ovarian tumor tissues and found that INT6 protein levels positively correlated with those of TID1, Patched, p53, c-Jun, and phosphorylated-c-Jun proteins in a tissue-specific manner. INT6 and TID1 showed significant positive correlation in all tissue types tested. These findings were confirmed by immunohistochemical staining of INT6 and TID1. Further evidence supporting a cooperative role for INT6 and TID1 is the presence of endogenous INT6 and TID1 proteins as complexes. We detected co-immunoprecipitation between INT6 and TID1, as well as between INT6 and Patched. These findings suggest potential integrated roles for INT6, TID1, and Patched proteins in cell growth, development, and tumorigenesis. Additionally, these data suggest that the combination of INT6, TID1, and Patched protein levels may be useful biomarkers for the development of diagnostic assays.
Collapse
|
36
|
Song MJ, Wang YQ, Wu GC. Lipopolysaccharide-induced protein kinase D activation mediated by interleukin-1beta and protein kinase C. Brain Res 2007; 1145:19-27. [PMID: 17331478 DOI: 10.1016/j.brainres.2007.01.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 01/25/2007] [Accepted: 01/26/2007] [Indexed: 11/29/2022]
Abstract
Protein kinase D (PKD), a newly described serine/threonine kinase, has been implicated in many signal transduction pathways. The present study was designed to determine whether and how PKD is activated in inflammation. The results demonstrated that lipopolysaccharide (LPS, 30 microg/ml) stimulated PKD and protein kinase C (PKC) phosphorylation in spinal neurons within 0.5 h, and the activation reached a maximum at 3 or 8 h and declined at 12 h. The phosphorylation could be inhibited by the selective inhibitors for PKC (100 nM), mainly for PKCalpha and PKCbeta, suggesting the involvement of the PKC pathway. Particularly, PKCalpha might be critical for LPS-induced PKD activation since the PKCbeta inhibitor (100 nM) observed no effect on the phosphorylation of PKD. Furthermore, the expression of interleukin-1beta (IL-1beta) was significantly induced by LPS within 0.5 h, and reached a maximum at 8 h. IL-1 receptor antagonist inhibited PKD and PKCs activation induced by LPS at a concentration of 50 nM and achieved maximum at 1000 nM. These results demonstrated for the first time that PKD could be activated by LPS in spinal neurons, might via the IL-1beta/PKCalpha pathway. Additionally, immunostaining showed an increase in number of phosphorylated PKD-immunoreactive cells of adult spinal dorsal horn induced by intraplantar injected carrageenan (2 microg/100 microl), and antisense oligodeoxynucleotide to IL-1 receptor type I (50 microg/10 microl, intrathecal injected) inhibited the PKD activation, suggesting an involvement of IL-1beta/PKD pathway in inflammation in adult spinal cord.
Collapse
Affiliation(s)
- Ming-Juan Song
- Department of Integrative Medicine and Neurobiology, Institute of Acupuncture Research, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | |
Collapse
|
37
|
Trifonova RT, Pasicznyk JM, Fichorova RN. Biocompatibility of solid-dosage forms of anti-human immunodeficiency virus type 1 microbicides with the human cervicovaginal mucosa modeled ex vivo. Antimicrob Agents Chemother 2006; 50:4005-10. [PMID: 17030562 PMCID: PMC1693981 DOI: 10.1128/aac.00588-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Topical anti-human immunodeficiency virus (HIV) microbicides are being sought to reduce the spread of HIV type 1 (HIV-1) during sexual intercourse. The success of this strategy depends upon the selection of formulations compatible with the natural vaginal mucosal barrier. This study applied ex vivo-modeled human cervicovaginal epithelium to evaluate experimental solid-dosage forms of the anti-HIV-1 microbicide cellulose acetate 1,2-benzenedicarboxylate (CAP) and over-the-counter (OTC) vaginal products for their impact on inflammatory mediators regarded as potential HIV-1-enhancing risk factors. We assessed product-induced imbalances between interleukin-1alpha (IL-1alpha) and IL-1beta and the natural IL-1 receptor antagonist (IL-1RA) and changes in levels of IL-6, tumor necrosis factor alpha, IL-8, gamma interferon inducible protein 10 (IP-10), and macrophage inflammatory protein 3alpha (MIP-3alpha), known to recruit and activate monocytes, dendritic cells, and T cells to the inflamed mucosa. CAP film and gel formulation, similarly to the hydroxyethylcellulose universal vaginal placebo gel and the OTC K-Y moisturizing gel, were nontoxic and caused no significant changes in any inflammatory biomarker. In contrast, OTC vaginal cleansing and contraceptive films containing octoxynol-9 or nonoxynol-9 (N-9) demonstrated similar levels of toxicity but distinct immunoinflammatory profiles. IL-1alpha, IL-1beta, IL-8, and IP-10 were increased after treatment with both OTC vaginal cleansing and contraceptive films; however, MIP-3alpha was significantly elevated by the N-9-based film only (P < 0.01). Although both films increased extracellular IL-1RA, the cleansing film only significantly elevated the IL-1RA/IL-1 ratio (P < 0.001). The N-9-based film decreased intracellular IL-1RA (P < 0.05), which has anti-inflammatory intracrine functions. This study identifies immunoinflammatory biomarkers that can discriminate between formulations better than toxicity assays and should be clinically validated in relevance to the risk of HIV-1 acquisition.
Collapse
Affiliation(s)
- Radiana T Trifonova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
38
|
Burger D, Dayer JM, Palmer G, Gabay C. Is IL-1 a good therapeutic target in the treatment of arthritis? Best Pract Res Clin Rheumatol 2006; 20:879-96. [PMID: 16980212 DOI: 10.1016/j.berh.2006.06.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inflammation is an important homeostatic mechanism that limits the effects of infectious agents. However, inflammation might be self-damaging and therefore has to be tightly controlled or even abolished by the organism. Interleukin 1 (IL-1) is a crucial mediator of the inflammatory response, playing an important part in the body's natural responses and the development of pathological conditions leading to chronic inflammation. While IL-1 production may be decreased or its effects limited by so-called anti-inflammatory cytokines, in vitro IL-1 inflammatory effects are inhibited and can be abolished by one particularly powerful inhibitor, IL-1 receptor antagonist (IL-1Ra). Recent research has shown that in the processes of rheumatoid arthritis (RA) IL-1 is one of the pivotal cytokines in initiating disease, and IL-1Ra has been shown conclusively to block its effects. In laboratory and animal studies the inhibition of IL-1 by either antibodies to IL-1 or IL-1Ra proved beneficial to the outcome. Because of its beneficial effects in many animal disease models, IL-1Ra has been used as a therapeutic agent in human patients. The recombinant form of IL-1Ra, anakinra (Kineret, Amgen) failed to show beneficial effects in septic shock and displays weak effects in RA patients. However, IL-1 blockade by anakinra is dramatically effective in systemic-onset juvenile idiopathic arthritis, in adult Still's disease and in several autoinflammatory disorders, most of the latter being caused by mutations of proteins controlling IL-1beta secretion. Importantly, to be efficacious, anakinra required daily injections, suggesting that administered IL-1Ra displays very short-term effects. Better IL-1 antagonists are in the process of being developed.
Collapse
Affiliation(s)
- Danielle Burger
- Clinical Immunology Unit, Division of Immunology and Allergy, Department of Internal Medicine, University Hospital, 24 rue Micheli-du-Crest, CH-1211 Geneva 14, Switzerland.
| | | | | | | |
Collapse
|
39
|
Yu M, Yeh J, Van Waes C. Protein kinase casein kinase 2 mediates inhibitor-kappaB kinase and aberrant nuclear factor-kappaB activation by serum factor(s) in head and neck squamous carcinoma cells. Cancer Res 2006; 66:6722-31. [PMID: 16818647 PMCID: PMC1839920 DOI: 10.1158/0008-5472.can-05-3758] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We showed previously that the signal transcription factor nuclear factor-kappaB (NF-kappaB) is aberrantly activated and that inhibition of NF-kappaB induces cell death and inhibits tumorigenesis in head and neck squamous cell carcinomas (HNSCC). Thus, identification of specific kinases underlying the activation of NF-kappaB could provide targets for selective therapy. Inhibitor-kappaB (IkappaB) kinase (IKK) is known to activate NF-kappaB by inducing NH(2)-terminal phosphorylation and degradation of its endogenous inhibitor, IkappaB. Casein kinase 2 (CK2) was previously reported to be overexpressed in HNSCC cells and to be a COOH-terminal IKK, but its relationship to NF-kappaB activation in HNSCC cells is unknown. In this study, we examined the contribution of IKK and CK2 in the regulation of NF-kappaB in HNSCC in vitro. NF-kappaB activation was specifically inhibited by kinase-dead mutants of the IKK1 and IKK2 subunits or small interfering RNA targeting the beta subunit of CK2. CK2 and IKK kinase activity, as well as NF-kappaB transcriptional activity, was shown to be serum responsive, indicating that these kinases mediate aberrant activation of NF-kappaB in response to serum factor(s) in vitro. Recombinant CK2alpha was shown to phosphorylate recombinant IKK2 as well as to promote immunoprecipitated IKK complex from HNSCC to phosphorylate the NH(2)-terminal S32/S36 of IkappaBalpha. We conclude that the aberrant NF-kappaB activity in HNSCC cells in response to serum is partially through a novel mechanism involving CK2-mediated activation of IKK2, making these kinases candidates for selective therapy to target the NF-kappaB pathway in HNSCC.
Collapse
Affiliation(s)
- Ming Yu
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders/NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
40
|
Dumont FJ. The interleukin-1 families of cytokines and receptors: therapeutic potential for immunomodulation and the treatment of inflammatory disorders. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.7.879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Kanangat S, Postlethwaite AE, Higgins GC, Hasty KA. Novel functions of intracellular IL-1ra in human dermal fibroblasts: implications in the pathogenesis of fibrosis. J Invest Dermatol 2006; 126:756-65. [PMID: 16456536 DOI: 10.1038/sj.jid.5700097] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intracellular IL-1 receptor antagonist (icIL-1ra) is reportedly involved in functions independent of blocking IL-1 receptor signaling. Fibroblasts derived from the involved skin of patients with systemic sclerosis (SSc) are predominantly of the myofibroblast phenotype, with higher levels of icIL-1ra compared to normal skin fibroblasts. We examined the effect of overexpression of icIL-1ra on the phenotype and function of normal fibroblasts with respect to the expression of alpha smooth muscle actin (alpha-SMA), a specific marker for myofibroblasts, and plasminogen activator inhibitor (PAI), a protein involved in fibrogenesis and expressed at higher levels in myofibroblasts, and the production of collagenase (matrix metalloproteinase-1 (MMP-1)), the major enzyme involved in the degradation of native collagen in the skin. Normal human foreskin fibroblasts overexpressing icIL-1ra showed higher levels of alpha-SMA and PAI and had lower levels of collagenase and MMP-1 mRNA induced by inflammatory cytokines. By contrast, levels of mRNA for tissue inhibitor of metalloproteinase-1 in the transfected cells were not different from the control cells. Pretreatment of the ic-IL-1ra-transfected cells with antisense oligonucleotide directed against the mRNA of icIL-1ra restored MMP-1 expression induced by stimulation with IL-1beta. Our data indicate novel functions for icIL-1ra, which might be relevant to the genesis of fibrotic diseases such as SSc.
Collapse
Affiliation(s)
- Siva Kanangat
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
42
|
Evans I, Dower SK, Francis SE, Crossman DC, Wilson HL. Action of intracellular IL-1Ra (Type 1) is independent of the IL-1 intracellular signalling pathway. Cytokine 2006; 33:274-80. [PMID: 16564702 DOI: 10.1016/j.cyto.2006.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 12/16/2005] [Accepted: 02/07/2006] [Indexed: 11/30/2022]
Abstract
The balance between IL-1 and its naturally occurring inhibitor IL-1 receptor antagonist (IL-1ra) is critical in determining the inflammatory response. Four splice variants of the IL-1ra gene have been identified; one secreted (sIL-1ra) and three intracellular (icIL-1ra1-3). The biological roles of the intracellular isoforms remain largely unclear. We wished to determine whether icIL-1ra1 had intracellular functions regulating IL-1 signalling. Signalling was determined using an NF-kappaB reporter assay measuring induction of the IL-8 promoter in transfected cells. Over-expression of icIL-1ra1 in HeLa cells had no effect on IL-1 stimulated IL-8 activity. In contrast over-expression of sIL-ra significantly attenuated IL-1 activity. In addition, transfection of icIL-1ra1 in HeLa cells did not cause inhibition of IL-8 promoter activity following over-expression of the IL-1 signalling components MyD88, IRAK-1, TRAF-6, Ikappakappabeta or RelA. This implies that icIL-1ra1 does not act to alter IL-1 mediated intracellular signalling in this system. We investigated whether ATP and/or over-expression of the P2X7 receptor caused icIL-1ra1 inhibition of IL-1beta mediated IL-8 reporter activation, by permitting its release. In HeLa cells, no effect of icIL-1ra1 was observed in ATP stimulated and/or P2X7 transfected cells, compared to a significant inhibition in sIL-1ra transfected cells. However, in endothelial cells stimulated with ATP, the released fraction was effective in attenuating IL-1beta activation of the IL-8 reporter. These results suggest that icIL-1ra1 does not act at an intracellular level to alter IL-1 mediated signalling, and is effective in inhibiting IL-1 responses only when released in an ATP-dependent and cell type specific manner.
Collapse
Affiliation(s)
- Iona Evans
- Section of Functional Genomics, Division of Genomic Medicine, Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK
| | | | | | | | | |
Collapse
|
43
|
Jacques C, Gosset M, Berenbaum F, Gabay C. The role of IL-1 and IL-1Ra in joint inflammation and cartilage degradation. VITAMINS AND HORMONES 2006; 74:371-403. [PMID: 17027524 DOI: 10.1016/s0083-6729(06)74016-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin (IL)-1 is a cytokine that plays a major role in inflammatory responses in the context of infections and immune-mediated diseases. IL-1 refers to two different cytokines, termed IL-1alpha and IL-1beta, produced from two genes. IL-1alpha and IL-1beta are produced by different cell types following stimulation by bacterial products, cytokines, and immune complexes. Monocytes/macrophages are the primary source of IL-1beta. Both cytokines do not possess leader peptide sequences and do not follow a classical secretory pathway. IL-1alpha is mainly cell associated, whereas IL-1beta can be released from activated cells after cleavage of its amino-terminal region by caspase-1. IL-1 is present in the synovial tissue and fluids of patients with rheumatoid arthritis. Several in vitro studies have shown that IL-1 stimulates the production of mediators such as prostaglandin E(2), nitric oxide, cytokines, chemokines, and adhesion molecules that are involved in articular inflammation. Furthermore, IL-1 stimulates the synthesis and activity of matrix metalloproteinases and other enzymes involved in cartilage destruction in rheumatoid arthritis and osteoarthritis. The effects of IL-1 are inhibited in vitro and in vivo by natural inhibitors such as IL-1 receptor antagonist and soluble receptors. IL-1 receptor antagonist belongs to the IL-1 family of cytokines and binds to IL-1 receptors but does not induce any intracellular response. IL-1 receptor antagonist inhibits the effect of IL-1 by blocking its interaction with cell surface receptors. The use of IL-1 inhibitors in experimental models of inflammatory arthritis and osteoarthritis has provided a strong support for the role of IL-1 in the pathogeny of these diseases. Most importantly, these findings have been confirmed in clinical trials in patients with rheumatic diseases. Additional strategies aimed to block the effect of IL-1 are tested in clinical trials.
Collapse
Affiliation(s)
- Claire Jacques
- UMR 7079 CNRS, Physiology and Physiopathology Laboratory, University Paris 6, Paris, 75252 Cedex 5, France
| | | | | | | |
Collapse
|