1
|
Jeon C, Kim D, Kim KM, Lee SH, Lee JH, Kim SH, Kim JS, Kang YM, Jo S, Kim TH, Son CN. Complement factor H-related protein 5 alleviates joint inflammation and osteoclast differentiation by disrupting RANK-JNK signaling in collagen antibody-induced arthritis mouse model. Cytokine 2024; 184:156790. [PMID: 39461285 DOI: 10.1016/j.cyto.2024.156790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Complement Factor H-Related protein 5 (CFHR5) belongs to the factor H/CFHR family and regulates the complement system by modulating factor H's inhibitory activity against C3b. Despite its known role, the impact of CFHR5 on autoimmune arthritis and its relationship to pathophysiological changes in arthritis and bone loss remain unclear. This study aimed to assess the effect of CFHR5 on aggressive osteoclast activity and arthritis using a murine model of collagen antibody-induced arthritis (CAIA). METHODS The effect of recombinant CFHR5 protein (rCFHR5) on arthritis were evaluated in CAIA. The mice were divided into three group and intraperitoneally treated with rCFHR5, methotrexate (MTX) as positive control or PBS as negative control. In the CAIA mouse model, the rCFHR5-treated group significantly reduced the incidence and clinical arthritis equivalent to the MTX group. Clinical arthritis scores, incidence and body weight were measured, and histological analysis of ankle joints was performed by Hematoxylin and Eosin (H&E) and Safranin O - Fast green (SOFG), Tartrate-resistant acid phosphatase (TRAP) staining and Immunohistochemistry. Moreover, to investigate the rCFHR5 role, we isolated murine osteoclast precursor cells (OCPs) from each group, induced osteoclasts with M-CSF and RANKL, and performed TRAP and F-actin staining. To verify the mechanism, mRNA and protein analyses were performed in OCPs. RESULTS Histological examination of ankle joints revealed substantial reductions in synovial hyperplasia, bone marrow inflammation, bone erosion, cartilage destruction and TRAP-positive cells in the rCFHR5 group compared to the vehicle group. The ankle joints of the rCFHR5 group showed markedly decreased expression of proinflammatory cytokines (TNF-α, IL-1β and IL-6). Mechanically, treatment with rCFHR5 inhibited RANKL-mediated osteoclast differentiation from OCPs and disrupted the RANK-JNK signaling. These findings demonstrate that treatment with rCFHR5 attenuates joint inflammation and reduces osteoclast differentiation, indicating its potential anti-inflammatory effect in autoimmune arthritis models.
Collapse
Affiliation(s)
- Chanhyeok Jeon
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, Republic of Korea; Deparment of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dongju Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, Republic of Korea; Deparment of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Kyung-Me Kim
- Department of Rheumatology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Republic of Korea; Eulji Rheumatology Research Institute, Eulji University, Uijeongbu, Republic of Korea
| | - Seung Hoon Lee
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, Republic of Korea
| | - Ji-Hyun Lee
- Department of Rheumatology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Republic of Korea; Eulji Rheumatology Research Institute, Eulji University, Uijeongbu, Republic of Korea
| | - Sang-Hyon Kim
- Division of Rheumatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Mo Kang
- Preclina Inc, Incheon, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sungsin Jo
- Department of Biology, Soonchunhyang University, Asan, Republic of Korea.
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, Republic of Korea; Deparment of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea; Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea.
| | - Chang-Nam Son
- Department of Rheumatology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Republic of Korea; Eulji Rheumatology Research Institute, Eulji University, Uijeongbu, Republic of Korea.
| |
Collapse
|
2
|
Petrow E, Feng C, Frazer-Abel A, Marangoni RG, Lutz K, Nichols WC, Holers VM, Ritchlin C, White RJ, Korman BD. Utility of factor D and other alternative complement factors as biomarkers in systemic sclerosis-associated pulmonary arterial hypertension (SSc-PAH). Semin Arthritis Rheum 2024; 69:152554. [PMID: 39298973 DOI: 10.1016/j.semarthrit.2024.152554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Activation of the complement cascade is thought to play a role in scleroderma vasculopathy. We previously showed that complement factor D was elevated in patients with limited cutaneous SSc and pulmonary arterial hypertension (PAH). In this study, we sought to assess multiple relevant components of the complement cascade to determine if they are altered in SSc-PAH, as well as their potential utility as biomarkers of disease severity and progression. METHODS Complement components (n = 14) were measured using multiplex assays in 156 patients with SSc-PAH from a multi-site repository and were compared to 33 patients with SSc without PAH, and 40 healthy controls. Data were evaluated for correlations between complement levels, right heart catheterization measures, and clinical endpoints including 6-minute walk distance. To assess complement longitudinally, serum complement levels were assayed at 0, 4, 12, 24, 36 and 48 weeks in 52 SSc-PAH patients who participated in a prior clinical trial. RESULTS We found that factor D was significantly elevated in SSc-PAH compared to SSc without PAH (p < 0.0001) and was highly sensitive and specific for SSc-PAH (AUC=0.82, p < 0.001). In SSc-PAH patients, alterations in factor H, C4, and factor D were associated with measures of PAH disease severity including right heart catheterization measurements (cardiac output, right atrial pressure, and VO2 max), survival, and 6-minute walk distance. No significant changes in complement levels or clinical associations were seen over time or associated with treatment in the longitudinal clinical trial study. CONCLUSION Our work confirms prior studies demonstrating a role for complement activation in SSc vascular disease and elevations of factor D in a large SSc-PAH population. Further, factor H and other complement factors are associated with severity of PAH including mortality. Taken together, these findings suggest that the alternative complement pathway plays a role in SSc-PAH pathogenesis and may serve as a biomarker to inform diagnosis and prognosis.
Collapse
Affiliation(s)
- Eva Petrow
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, United States.
| | - Changyong Feng
- Department of Biostatistics and Computational Biology, University of Rochester, Saunders Research Building, 265 Crittenden Boulevard, Box 630, Rochester, NY 14642, United States.
| | - Ashley Frazer-Abel
- Exsera BioLabs, University of Colorado School of Medicine, 1775 Aurora Court, Mail Stop B115, Aurora, CO 80045, United States.
| | - Roberta Goncalves Marangoni
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, United States.
| | - Katie Lutz
- Division of Human Genetics, Cincinnati Children's Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave, ML7016, Cincinnati, OH 45229, United States.
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children's Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave, ML7016, Cincinnati, OH 45229, United States.
| | - V Michael Holers
- Departments of Medicine and Immunology, Division of Rheumatology, University of Colorado School of Medicine, 1775 North Aurora Court, 3102, Aurora, CO 80045, United States.
| | - Christopher Ritchlin
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, United States.
| | - R James White
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Box 692, Rochester NY 14642, United States.
| | - Benjamin D Korman
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, United States.
| |
Collapse
|
3
|
Li Z, Lu Q. The role of neutrophils in autoimmune diseases. Clin Immunol 2024; 266:110334. [PMID: 39098706 DOI: 10.1016/j.clim.2024.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Historically, neutrophils have been primarily regarded as short-lived immune cells that act as initial responders to antibacterial immunity by swiftly neutralizing pathogens and facilitating the activation of adaptive immunity. However, recent evidence indicates that their roles are considerably more complex than previously recognized. Neutrophils comprise distinct subpopulations and can interact with various immune cells, release granular proteins, and form neutrophil extracellular traps. These functions are increasingly recognized as contributing factors to tissue damage in autoimmune diseases. This review comprehensively examines the physiological functions and heterogeneity of neutrophils, their interactions with other immune cells, and their significance in autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, antiphospholipid syndrome, antineutrophil cytoplasmic antibody-associated vasculitis, multiple sclerosis, and others. This review aims to provide a deeper understanding of the function of neutrophils in the development and progression of autoimmune disorders.
Collapse
Affiliation(s)
- Zhuoshu Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
4
|
Donado CA, Jonsson AH, Theisen E, Zhang F, Nathan A, Rupani KV, Jones D, Raychaudhuri S, Dwyer DF, Brenner MB. Granzyme K drives a newly-intentified pathway of complement activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595315. [PMID: 38826230 PMCID: PMC11142156 DOI: 10.1101/2024.05.22.595315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Granzymes are a family of serine proteases mainly expressed by CD8+ T cells, natural killer cells, and innate-like lymphocytes1,2. Although their major role is thought to be the induction of cell death in virally infected and tumor cells, accumulating evidence suggests some granzymes can regulate inflammation by acting on extracellular substrates2. Recently, we found that the majority of tissue CD8+ T cells in rheumatoid arthritis (RA) synovium, inflammatory bowel disease and other inflamed organs express granzyme K (GZMK)3, a tryptase-like protease with poorly defined function. Here, we show that GZMK can activate the complement cascade by cleaving C2 and C4. The nascent C4b and C2a fragments form a C3 convertase that cleaves C3, allowing further assembly of a C5 convertase that cleaves C5. The resulting convertases trigger every major event in the complement cascade, generating the anaphylatoxins C3a and C5a, the opsonins C4b and C3b, and the membrane attack complex. In RA synovium, GZMK is enriched in areas with abundant complement activation, and fibroblasts are the major producers of complement C2, C3, and C4 that serve as targets for GZMK-mediated complement activation. Our findings describe a previously unidentified pathway of complement activation that is entirely driven by lymphocyte-derived GZMK and proceeds independently of the classical, lectin, or alternative pathways. Given the widespread abundance of GZMK-expressing T cells in tissues in chronic inflammatory diseases and infection, GZMK-mediated complement activation is likely to be an important contributor to tissue inflammation in multiple disease contexts.
Collapse
Affiliation(s)
- Carlos A. Donado
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- These authors contributed equally: Carlos A. Donado, A. Helena Jonsson
| | - A. Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Current affiliation: Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
- These authors contributed equally: Carlos A. Donado, A. Helena Jonsson
| | - Erin Theisen
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Fan Zhang
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aparna Nathan
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA USA
- Center for Data Sciences, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karishma Vijay Rupani
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Dominique Jones
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | | | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA USA
- Center for Data Sciences, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel F. Dwyer
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Michael B. Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Zhang M, Duan L, Feng Y. Causal association between rheumatoid arthritis and an increased risk of age-related macular degeneration: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37753. [PMID: 38608102 PMCID: PMC11018156 DOI: 10.1097/md.0000000000037753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 04/14/2024] Open
Abstract
This study's goal is to evaluate if there is a causal connection between rheumatoid arthritis (RA) and age-related macular degeneration (AMD), despite past epidemiological studies suggesting an association between the 2 disorders. The impact of RA on AMD is still unknown. Mendelian randomization (MR) was utilized in this study to assess the two-sample causal relationship between RA and AMD. Summary data from GWAS for RA and AMD in individuals with all European ancestries were gathered using the IEU GWAS database. The GWAS summary statistics of RA (14,361 RA patients and 43,923 healthy controls) and AMD (14,034 AMD patients and 91,214 controls participated) were obtained from the IEU GWAS database. After identifying suitable instrumental variables in line with the 3 MR assumptions, we conducted MR using the Mendelian randomization-Egger (MR-Egger), weighted median, and inverse variance weighting techniques. The MR-Egger intercept and MR-Polyvalent Residuals and Outliers methods were used to investigate the effects of horizontal pleiotropy. The leave-one-out strategy was used to prevent bias caused by certain single nucleotide polymorphisms. Sensitivity analysis was used to detect the heterogeneity. Using 50 single nucleotide polymorphisms as instrumental variables, this study examined the relationship between RA and AMD and discovered that RA increased the risk of AMD (inverse variance weighting odds ratio [OR] = 1.056, 95% confidence interval [CI] = 1.02-1.09, P = 5.44E-04; weighted median OR = 1.085, 95% CI = 1.04-1.14, P = 4.05E-04; MR-Egger OR = 1.074, 95% CI = 1.01-1.14, P = 2.18E-2). The current investigation demonstrated a causal link between AMD and RA. RA increased the risk of AMD. It is advised that future research concentrate on the processes underlying the relationship between RA and AMD.
Collapse
Affiliation(s)
- Mengzhu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lincheng Duan
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Feng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
de Boer ECW, Thielen AJF, Langereis JD, Kamp A, Brouwer MC, Oskam N, Jongsma ML, Baral AJ, Spaapen RM, Zeerleder S, Vidarsson G, Rispens T, Wouters D, Pouw RB, Jongerius I. The contribution of the alternative pathway in complement activation on cell surfaces depends on the strength of classical pathway initiation. Clin Transl Immunology 2023; 12:e1436. [PMID: 36721662 PMCID: PMC9881211 DOI: 10.1002/cti2.1436] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 01/28/2023] Open
Abstract
Objectives The complement system is an important component of innate immunity. The alternative pathway (AP) amplification loop is considered an essential feed forward mechanism for complement activation. However, the role of the AP in classical pathway (CP) activation has only been studied in ELISA settings. Here, we investigated its contribution on physiologically relevant surfaces of human cells and bacterial pathogens and in antibody-mediated complement activation, including in autoimmune haemolytic anaemia (AIHA) setting with autoantibodies against red blood cells (RBCs). Methods We evaluated the contribution of the AP to complement responses initiated through the CP on human RBCs by serum of AIHA patients and recombinant antibodies. Moreover, we studied complement activation on Neisseria meningitidis and Escherichia coli. The effect of the AP was examined using either AP-depleted sera or antibodies against factor B and factor D. Results We show that the amplification loop is redundant when efficient CP activation takes place. This is independent of the presence of membrane-bound complement regulators. The role of the AP may become significant when insufficient CP complement activation occurs, but this depends on antibody levels and (sub)class. Our data indicate that therapeutic intervention in the amplification loop will most likely not be effective to treat antibody-mediated diseases. Conclusion The AP can be bypassed through efficient CP activation. The AP amplification loop has a role in complement activation during conditions of modest activation via the CP, when it can allow for efficient complement-mediated killing.
Collapse
Affiliation(s)
- Esther CW de Boer
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's HospitalAmsterdam University Medical CentreAmsterdamThe Netherlands
| | - Astrid JF Thielen
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - Jeroen D Langereis
- Laboratory of Medical Immunology, Radboud Institute for Molecular Life SciencesRadboudumcNijmegenThe Netherlands,Radboud Center for Infectious Diseases, RadboudumcNijmegenThe Netherlands
| | - Angela Kamp
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - Mieke C Brouwer
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - Nienke Oskam
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - Marlieke L Jongsma
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - April J Baral
- Translational and Clinical Research InstituteNewcastle upon TyneUK
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands,Department of Hematology, Luzerner KantonsspitalLuzern and University of BernBernSwitzerland,Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner LaboratoryAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands,Centre for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Richard B Pouw
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands,Sanquin Health SolutionsAmsterdamThe Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's HospitalAmsterdam University Medical CentreAmsterdamThe Netherlands
| |
Collapse
|
7
|
Tu H, Li YL. Inflammation balance in skeletal muscle damage and repair. Front Immunol 2023; 14:1133355. [PMID: 36776867 PMCID: PMC9909416 DOI: 10.3389/fimmu.2023.1133355] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Responding to tissue injury, skeletal muscles undergo the tissue destruction and reconstruction accompanied with inflammation. The immune system recognizes the molecules released from or exposed on the damaged tissue. In the local minor tissue damage, tissue-resident macrophages sequester pro-inflammatory debris to prevent initiation of inflammation. In most cases of the skeletal muscle injury, however, a cascade of inflammation will be initiated through activation of local macrophages and mast cells and recruitment of immune cells from blood circulation to the injured site by recongnization of damage-associated molecular patterns (DAMPs) and activated complement system. During the inflammation, macrophages and neutrophils scavenge the tissue debris to release inflammatory cytokines and the latter stimulates myoblast fusion and vascularization to promote injured muscle repair. On the other hand, an abundance of released inflammatory cytokines and chemokines causes the profound hyper-inflammation and mobilization of immune cells to trigger a vicious cycle and lead to the cytokine storm. The cytokine storm results in the elevation of cytolytic and cytotoxic molecules and reactive oxygen species (ROS) in the damaged muscle to aggravates the tissue injury, including the healthy bystander tissue. Severe inflammation in the skeletal muscle can lead to rhabdomyolysis and cause sepsis-like systemic inflammation response syndrome (SIRS) and remote organ damage. Therefore, understanding more details on the involvement of inflammatory factors and immune cells in the skeletal muscle damage and repair can provide the new precise therapeutic strategies, including attenuation of the muscle damage and promotion of the muscle repair.
Collapse
|
8
|
Kolev M, Barbour T, Baver S, Francois C, Deschatelets P. With complements: C3 inhibition in the clinic. Immunol Rev 2023; 313:358-375. [PMID: 36161656 DOI: 10.1111/imr.13138] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is a key complement protein, located at the nexus of all complement activation pathways. Extracellular, tissue, cell-derived, and intracellular C3 plays critical roles in the immune response that is dysregulated in many diseases, making it an attractive therapeutic target. However, challenges such as very high concentration in blood, increased acute expression, and the elevated risk of infections have historically posed significant challenges in the development of C3-targeted therapeutics. This is further complicated because C3 activation fragments and their receptors trigger a complex network of downstream effects; therefore, a clear understanding of these is needed to provide context for a better understanding of the mechanism of action (MoA) of C3 inhibitors, such as pegcetacoplan. Because of C3's differential upstream position to C5 in the complement cascade, there are mechanistic differences between pegcetacoplan and eculizumab that determine their efficacy in patients with paroxysmal nocturnal hemoglobinuria. In this review, we compare the MoA of pegcetacoplan and eculizumab in paroxysmal nocturnal hemoglobinuria and discuss the complement-mediated disease that might be amenable to C3 inhibition. We further discuss the current state and outlook for C3-targeted therapeutics and provide our perspective on which diseases might be the next success stories in the C3 therapeutics journey.
Collapse
Affiliation(s)
- Martin Kolev
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Tara Barbour
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Scott Baver
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | | | | |
Collapse
|
9
|
Barnes AP, Khandelwal S, Sartoretto S, Myoung S, Francis SJ, Lee GM, Rauova L, Cines DB, Skare JT, Booth CE, Garcia BL, Arepally GM. Minimal role for the alternative pathway in complement activation by HIT immune complexes. J Thromb Haemost 2022; 20:2656-2665. [PMID: 35996342 PMCID: PMC9938942 DOI: 10.1111/jth.15856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 08/16/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Anti-platelet factor 4 (PF4)/heparin immune complexes that cause heparin-induced thrombocytopenia (HIT) activate complement via the classical pathway. Previous studies have shown that the alternative pathway of complement substantially amplifies the classical pathway of complement activation through the C3b feedback cycle. OBJECTIVES These studies sought to examine the contributions of the alternative pathway to complement activation by HIT antibodies. METHODS Using IgG monoclonal (KKO) and/or patient-derived HIT antibodies, we compared the effects of classical pathway (BBK32 and C1-esterase inhibitor [C1-INH]), alternative pathway (anti-factor B [fB] or factor D [fD] inhibitor) or combined classical and alternative pathway inhibition (soluble complement receptor 1 [sCR1]) in whole blood or plasma. RESULTS Classical pathway inhibitors BBK32 and C1-INH and the combined classical/alternative pathway inhibitor sCR1 prevented KKO/HIT immune complex-induced complement activation, including release of C3 and C5 activation products, binding of immune complexes to B cells, and neutrophil activation. The alternative pathway inhibitors fB and fD, however, did not affect complement activation by KKO/HIT immune complexes. Similarly, alternative pathway inhibition had no effect on complement activation by unrelated immune complexes consisting of anti-dinitrophenyl (DNP) antibody and the multivalent DNP--keyhole limpet hemocyanin antigen. CONCLUSIONS Collectively, these findings suggest the alternative pathway contributes little in support of complement activation by HIT immune complexes. Additional in vitro and in vivo studies are required to examine if this property is shared by most IgG-containing immune complexes or if predominance of the classic pathway is limited to immune complexes composed of multivalent antigens.
Collapse
Affiliation(s)
| | | | | | - Sooho Myoung
- Division of Hematology, Duke University Medical Center, Durham, NC
| | | | - Grace M. Lee
- Division of Hematology, Duke University Medical Center, Durham, NC
| | - Lubica Rauova
- Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Douglas B. Cines
- Departments of Pathology and Laboratory Medicine and Medicine, Perelman University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Jon T. Skare
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, College Station, TX
| | - Charles E. Booth
- Department of Microbiology & Immunology, East Carolina University, Greenville, NC
| | - Brandon L. Garcia
- Department of Microbiology & Immunology, East Carolina University, Greenville, NC
| | | |
Collapse
|
10
|
Banda NK, Deane KD, Bemis EA, Strickland C, Seifert J, Jordan K, Goldman K, Morgan BP, Moreland LW, Lewis MJ, Pitzalis C, Holers VM. Analysis of Complement Gene Expression, Clinical Associations, and Biodistribution of Complement Proteins in the Synovium of Early Rheumatoid Arthritis Patients Reveals Unique Pathophysiologic Features. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2482-2496. [PMID: 35500934 PMCID: PMC9133225 DOI: 10.4049/jimmunol.2101170] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/17/2022] [Indexed: 01/31/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial hyperplasia and inflammation. The finding of autoantibodies in seropositive RA suggests that complement system activation might play a pathophysiologic role due to the local presence of immune complexes in the joints. Our first objective was to explore the Pathobiology of Early Arthritis Cohort (PEAC) mRNA sequencing data for correlations between clinical disease severity as measured by DAS28-ESR (disease activity score in 28 joints for erythrocyte sedimentation rate) and complement system gene expression, both in the synovium and in blood. Our second objective was to determine the biodistribution using multiplex immunohistochemical staining of specific complement activation proteins and inhibitors from subjects in the Accelerating Medicines Partnership (AMP) RA/SLE study. In the PEAC study, there were significant positive correlations between specific complement gene mRNA expression levels in the synovium and DAS28-ESR for the following complement genes: C2, FCN1, FCN3, CFB, CFP, C3AR1, C5AR1, and CR1 Additionally, there were significant negative correlations between DAS28-ESR and Colec12, C5, C6, MASP-1, CFH, and MCP In the synovium there were also significant positive correlations between DAS28-ESR and FcγR1A, FcγR1B, FcγR2A, and FcγR3A Notably, CFHR4 synovial expression was positively correlated following treatment with the DAS28-ESR at 6 mo, suggesting a role in worse therapeutic responses. The inverse correlation of C5 RNA expression in the synovium may underlie the failure of significant benefit from C5/C5aR inhibitors in clinical trials performed in patients with RA. Multiplex immunohistochemical analyses of early RA synovium reveal significant evidence of regional alterations of activation and inhibitory factors that likely promote local complement activation.
Collapse
Affiliation(s)
- Nirmal K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO;
| | - Kevin D Deane
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Elizabeth A Bemis
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Colin Strickland
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jennifer Seifert
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kimberly Jordan
- Human Immune Monitoring Shared Resource, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Katriona Goldman
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K.; and
| | - B Paul Morgan
- Systems Immunity URI, Division of Infection and Immunity, and UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, U.K
| | - Larry W Moreland
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K.; and
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K.; and
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
11
|
Meuleman MS, Duval A, Fremeaux-Bacchi V, Roumenina LT, Chauvet S. Ex Vivo Test for Measuring Complement Attack on Endothelial Cells: From Research to Bedside. Front Immunol 2022; 13:860689. [PMID: 35493497 PMCID: PMC9041553 DOI: 10.3389/fimmu.2022.860689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
As part of the innate immune system, the complement system plays a key role in defense against pathogens and in host cell homeostasis. This enzymatic cascade is rapidly triggered in the presence of activating surfaces. Physiologically, it is tightly regulated on host cells to avoid uncontrolled activation and self-damage. In cases of abnormal complement dysregulation/overactivation, the endothelium is one of the primary targets. Complement has gained momentum as a research interest in the last decade because its dysregulation has been implicated in the pathophysiology of many human diseases. Thus, it appears to be a promising candidate for therapeutic intervention. However, detecting abnormal complement activation is challenging. In many pathological conditions, complement activation occurs locally in tissues. Standard routine exploration of the plasma concentration of the complement components shows values in the normal range. The available tests to demonstrate such dysregulation with diagnostic, prognostic, and therapeutic implications are limited. There is a real need to develop tools to demonstrate the implications of complement in diseases and to explore the complex interplay between complement activation and regulation on human cells. The analysis of complement deposits on cultured endothelial cells incubated with pathologic human serum holds promise as a reference assay. This ex vivo assay most closely resembles the physiological context. It has been used to explore complement activation from sera of patients with atypical hemolytic uremic syndrome, malignant hypertension, elevated liver enzymes low platelet syndrome, sickle cell disease, pre-eclampsia, and others. In some cases, it is used to adjust the therapeutic regimen with a complement-blocking drug. Nevertheless, an international standard is lacking, and the mechanism by which complement is activated in this assay is not fully understood. Moreover, primary cell culture remains difficult to perform, which probably explains why no standardized or commercialized assay has been proposed. Here, we review the diseases for which endothelial assays have been applied. We also compare this test with others currently available to explore complement overactivation. Finally, we discuss the unanswered questions and challenges to overcome for validating the assays as a tool in routine clinical practice.
Collapse
Affiliation(s)
- Marie-Sophie Meuleman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Anna Duval
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | | | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Sophie Chauvet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
12
|
Wu S, Wang S, Wang L, Peng H, Zhang S, Yang Q, Huang M, Li Y, Guan S, Jiang W, Zhang Z, Bi Q, Li L, Gao Y, Xiong P, Zhong Z, Xu B, Deng Y, Deng Y. Docosahexaenoic acid supplementation represses the early immune response against murine cytomegalovirus but enhances NK cell effector function. BMC Immunol 2022; 23:17. [PMID: 35439922 PMCID: PMC9017742 DOI: 10.1186/s12865-022-00492-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/12/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA) supplementation is beneficial for several chronic diseases; however, its effect on immune regulation is still debated. Given the prevalence of cytomegalovirus (CMV) infection and because natural killer (NK) cells are a component of innate immunity critical for controlling CMV infection, the current study explored the effect of a DHA-enriched diet on susceptibility to murine (M) CMV infection and the NK cell effector response to MCMV infection. RESULTS Male C57BL/6 mice fed a control or DHA-enriched diet for 3 weeks were infected with MCMV and sacrificed at the indicated time points postinfection. Compared with control mice, DHA-fed mice had higher liver and spleen viral loads at day 7 postinfection, but final MCMV clearance was not affected. The total numbers of NK cells and their terminal mature cell subset (KLRG1+ and Ly49H+ NK cells) were reduced compared with those in control mice at day 7 postinfection but not day 21. DHA feeding resulted in higher IFN-γ and granzyme B expression in splenic NK cells at day 7 postinfection. A mechanistic analysis showed that the splenic NK cells of DHA-fed mice had enhanced glucose uptake, increased CD71 and CD98 expression, and higher mitochondrial mass than control mice. In addition, DHA-fed mice showed reductions in the total numbers and activation levels of CD4+ and CD8+ T cells. CONCLUSIONS These results suggest that DHA supplementation represses the early response to CMV infection but preserves NK cell effector functions by improving mitochondrial activity, which may play critical roles in subsequent MCMV clearance.
Collapse
Affiliation(s)
- Shuting Wu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Shanshan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Lili Wang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Hongyan Peng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Shuju Zhang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Qinglan Yang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Minghui Huang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Yana Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Shuzhen Guan
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Wenjuan Jiang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Zhaohui Zhang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Qinghua Bi
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Liping Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Yuan Gao
- Southwest Hospital/Southwest Eye Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Peiwen Xiong
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Zhaoyang Zhong
- Cancer Center, Daping Hospital and Research Institute of Surgery, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Bo Xu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China.
| | - Yafei Deng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China.
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China.
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
13
|
Holers VM, La Rosa FG, Banda NK. A Potential New Mouse Model of Axial Spondyloarthritis Involving the Complement System. Immune Netw 2022; 21:e45. [PMID: 35036032 PMCID: PMC8733187 DOI: 10.4110/in.2021.21.e45] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022] Open
Abstract
Many mouse models of rheumatoid arthritis have been identified, but only a limited number are present for axial spondyloarthritis (AxSpA). Collagen Ab-induced arthritis (CAIA) is one of the most widely used mouse models of arthritis, and it is complement-dependent. We found that mice developing CAIA also developed spinal lesions similar to those found in AxSpA. To induce CAIA, mice were injected intraperitoneally at day 0 with anti-collagen Abs, followed by LPS injection at day 3. CAIA mice demonstrated a significant kyphosis through the spine, as well as hypertrophic cartilage and osseous damage of the intravertebral joints. Immunohistochemical staining of the kyphotic area revealed increased complement C3 deposition and macrophage infiltration, with localization to the intravertebral joint margins. Near Infrared (NIR) in vivo imaging showed that anti-collagen Abs conjugated with IRDye® 800CW not only localized to cartilage surface in the joints but also to the spine in arthritic mice. We report here a novel preclinical mouse model in which, associated with the induction of CAIA, mice also exhibited salient features of AxSpA; this new experimental model of AxSpA may allow investigators to shed light on the local causal mechanisms of AxSpA bone and soft tissue changes as well as treatment.
Collapse
Affiliation(s)
- V Michael Holers
- Division of Rheumatology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Francisco G La Rosa
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nirmal K Banda
- Division of Rheumatology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
14
|
Cockram TOJ, Dundee JM, Popescu AS, Brown GC. The Phagocytic Code Regulating Phagocytosis of Mammalian Cells. Front Immunol 2021; 12:629979. [PMID: 34177884 PMCID: PMC8220072 DOI: 10.3389/fimmu.2021.629979] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Mammalian phagocytes can phagocytose (i.e. eat) other mammalian cells in the body if they display certain signals, and this phagocytosis plays fundamental roles in development, cell turnover, tissue homeostasis and disease prevention. To phagocytose the correct cells, phagocytes must discriminate which cells to eat using a 'phagocytic code' - a set of over 50 known phagocytic signals determining whether a cell is eaten or not - comprising find-me signals, eat-me signals, don't-eat-me signals and opsonins. Most opsonins require binding to eat-me signals - for example, the opsonins galectin-3, calreticulin and C1q bind asialoglycan eat-me signals on target cells - to induce phagocytosis. Some proteins act as 'self-opsonins', while others are 'negative opsonins' or 'phagocyte suppressants', inhibiting phagocytosis. We review known phagocytic signals here, both established and novel, and how they integrate to regulate phagocytosis of several mammalian targets - including excess cells in development, senescent and aged cells, infected cells, cancer cells, dead or dying cells, cell debris and neuronal synapses. Understanding the phagocytic code, and how it goes wrong, may enable novel therapies for multiple pathologies with too much or too little phagocytosis, such as: infectious disease, cancer, neurodegeneration, psychiatric disease, cardiovascular disease, ageing and auto-immune disease.
Collapse
Affiliation(s)
| | | | | | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
G protein-coupled receptor kinase 5 deletion suppresses synovial inflammation in a murine model of collagen antibody-induced arthritis. Sci Rep 2021; 11:10481. [PMID: 34006987 PMCID: PMC8131379 DOI: 10.1038/s41598-021-90020-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
G protein-coupled receptor kinase 5 (GRK5) regulates inflammatory responses via the nuclear factor-kappa B (NF-κB) pathway. This study investigated the functional involvement of GRK5 in the pathogenesis of inflammatory arthritis. Immunohistochemically, rheumatoid arthritis (RA) synovium had a significantly higher proportion of GRK5-positive cells in the synovial lining layer than healthy control synovium. Gene expression and NF-κB activation in lipopolysaccharide-stimulated human SW982 synovial cells were significantly suppressed by silencing of the GRK5 gene. Similarly, GRK5 kinase activity inhibition in human primary RA synovial cells attenuated gene expressions of inflammatory factors. In a murine model of collagen antibody-induced arthritis, arthritis scores and serum IL6 production of GRK5 knockout (GRK5-/-) mice were significantly lower than those of wild-type mice. Histologically, the degree of synovitis and cartilage degeneration in GRK5-/- mice was significantly lower than in wild-type mice. In in vitro analyses using activated murine macrophages and fibroblast-like synoviocytes, gene expression of inflammatory factors and p65 nuclear translocation were significantly lower in GRK5-/- mice compared to wild-type mice. In conclusion, our results suggested that GRK5 is deeply involved in the pathogenesis of inflammatory arthritis, therefore, GRK5 inhibition could be a potential therapeutic target for types of inflammatory arthritis such as RA.
Collapse
|
16
|
Takahashi K, Banda NK, Holers VM, Van Cott EM. Complement component factor B has thrombin-like activity. Biochem Biophys Res Commun 2021; 552:17-22. [PMID: 33740660 PMCID: PMC8035301 DOI: 10.1016/j.bbrc.2021.02.134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/25/2021] [Indexed: 01/13/2023]
Abstract
Serine proteases are fundamental components of biology, including innate immunity, which is systematically orchestrated in an orderly, balanced fashion in the healthy host. Such serine proteases are found in two well-recognized pathways of an innate immune network, coagulation and complement. Both pathways, if uncontrolled due to a variety of causes, are pathogenic in numerous diseases, including coagulation disorders and infectious diseases. Previous studies have reported sequence homologies, functional similarities and interplay between these two pathways with some implications in health and disease. The current study newly reveals that complement component factor B (Bf), the second component of the alternative complement pathway, has thrombin-like activity, which is supported by a characteristic homology of the trypsin-like domain of Bf to that of thrombin. Moreover, we newly report that the trypsin-like domain of Bf is closely related to Limulus clotting factor C, the LPS sensitive clotting factor of the innate immune system. We will also discuss potential implications of our findings in diseases.
Collapse
Affiliation(s)
- Kazue Takahashi
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States.
| | - Nirmal K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, United States
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, United States
| | - Elizabeth M Van Cott
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States
| |
Collapse
|
17
|
Galindo-Izquierdo M, Pablos Alvarez JL. Complement as a Therapeutic Target in Systemic Autoimmune Diseases. Cells 2021; 10:cells10010148. [PMID: 33451011 PMCID: PMC7828564 DOI: 10.3390/cells10010148] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
The complement system (CS) includes more than 50 proteins and its main function is to recognize and protect against foreign or damaged molecular components. Other homeostatic functions of CS are the elimination of apoptotic debris, neurological development, and the control of adaptive immune responses. Pathological activation plays prominent roles in the pathogenesis of most autoimmune diseases such as systemic lupus erythematosus, antiphospholipid syndrome, rheumatoid arthritis, dermatomyositis, and ANCA-associated vasculitis. In this review, we will review the main rheumatologic autoimmune processes in which complement plays a pathogenic role and its potential relevance as a therapeutic target.
Collapse
|
18
|
The Role of Yersinia enterocolitica O:3 Lipopolysaccharide in Collagen-Induced Arthritis. J Immunol Res 2020; 2020:7439506. [PMID: 33274243 PMCID: PMC7676966 DOI: 10.1155/2020/7439506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/24/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022] Open
Abstract
Yersinia enterocolitica O:3 is mentioned among the most common arthritogenic pathogens. Bacterial components (including lipopolysaccharide (LPS)) may persist in the joint after eradication of infection. Having an adjuvant activity, LPS may enhance production of anticollagen antibodies, involved in the pathogenesis of rheumatoid arthritis. Furthermore, its ability to activate complement contributes to the inflammation. The aim of this work was to investigate whether Yersinia LPS (coinjected with collagen) is associated with arthritis progression or other pathological effects and to elucidate the mechanism of this association. It was demonstrated that murine mannose-binding lectin C (MBL-C) recognizes the inner core heptoses of the Rd1 chemotype LPS of Yersinia. In addition, the Rd1 LPS activates the MBL-associated serine protease 1 (MASP-1) stronger than the S and Ra chemotype LPS and comparable to Klebsiella pneumoniae O:3 LPS. However, in contrast to the latter, Yersinia Rd1 LPS was associated neither with the adjuvancity nor with the enhancement of pathological changes in animal paws/impairment of motility. On the other hand, it seemed to be more hepatotoxic when compared with the other tested endotoxins, while the enlargement of inguinal lymph nodes and drop in hepatic MBL-C expression (at the mRNA level) were independent of LPS chemotype. Our data did not suggest no greater impact Y. enterocolitica O:3 on the development or severity of arthropathy related to anticollagen antibody-induced arthritis in mice, although its interaction with MBL-C and subsequent complement activation may contribute to some adverse effects.
Collapse
|
19
|
Banda NK, Tomlinson S, Scheinman RI, Ho N, Ramirez JR, Mehta G, Wang G, Vu VP, Simberg D, Kulik L, Holers VM. C2 IgM Natural Antibody Enhances Inflammation and Its Use in the Recombinant Single Chain Antibody-Fused Complement Inhibitor C2-Crry to Target Therapeutics to Joints Attenuates Arthritis in Mice. Front Immunol 2020; 11:575154. [PMID: 33178202 PMCID: PMC7596757 DOI: 10.3389/fimmu.2020.575154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/08/2020] [Indexed: 01/12/2023] Open
Abstract
Natural IgM antibodies (NAbs) have been shown to recognize injury-associated neoepitopes and to initiate pathogenic complement activation. The NAb termed C2 binds to a subset of phospholipids displayed on injured cells, and its role(s) in arthritis, as well as the potential therapeutic benefit of a C2 NAb-derived ScFv-containing protein fused to a complement inhibitor, complement receptor-related y (Crry), on joint inflammation are unknown. Our first objective was to functionally test mAb C2 binding to apoptotic cells from the joint and also evaluate its inflammation enhancing capacity in collagen antibody-induced arthritis (CAIA). The second objective was to generate and test the complement inhibitory capacity of C2-Crry fusion protein in the collagen-induced arthritis (CIA) model. The third objective was to demonstrate in vivo targeting of C2-Crry to damaged joints in mice with arthritis. The effect of C2-NAb on CAIA in C57BL/6 mice was examined by inducing a suboptimal disease. The inhibitory effect of C2-Crry in DBA/1J mice with CIA was determined by injecting 2x per week with a single dose of 0.250 mg/mouse. Clinical disease activity (CDA) was examined, and knee joints were fixed for analysis of histopathology, C3 deposition, and macrophage infiltration. In mice with suboptimal CAIA, at day 10 there was a significant (p < 0.017) 74% increase in the CDA in mice treated with C2 NAb, compared to mice treated with F632 control NAb. In mice with CIA, at day 35 there was a significant 39% (p < 0.042) decrease in the CDA in mice treated with C2-Crry. Total scores for histopathology were also 50% decreased (p < 0.0005) in CIA mice treated with C2-Crry. C3 deposition was significantly decreased in the synovium (44%; p < 0.026) and on the surface of cartilage (42%; p < 0.008) in mice treated with C2-Crry compared with PBS treated CIA mice. Furthermore, C2-Crry specifically bound to apoptotic fibroblast-like synoviocytes in vitro, and also localized in the knee joints of arthritic mice as analyzed by in vivo imaging. In summary, NAb C2 enhanced arthritis-related injury, and targeted delivery of C2-Crry to inflamed joints demonstrated disease modifying activity in a mouse model of human inflammatory arthritis.
Collapse
Affiliation(s)
- Nirmal K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Robert I Scheinman
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nhu Ho
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joseline Ramos Ramirez
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Gaurav Mehta
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Guankui Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Vivian Pham Vu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Dmitri Simberg
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Liudmila Kulik
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
20
|
Li Y, Zou W, Brestoff JR, Rohatgi N, Wu X, Atkinson JP, Harris CA, Teitelbaum SL. Fat-Produced Adipsin Regulates Inflammatory Arthritis. Cell Rep 2020; 27:2809-2816.e3. [PMID: 31167128 DOI: 10.1016/j.celrep.2019.05.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/21/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
We explored the relationship of obesity and inflammatory arthritis (IA) by selectively expressing diphtheria toxin in adipose tissue yielding "fat-free" (FF) mice completely lacking white and brown fat. FF mice exhibit systemic neutrophilia and elevated serum acute phase proteins suggesting a predisposition to severe IA. Surprisingly, FF mice are resistant to K/BxN serum-induced IA and attendant bone destruction. Despite robust systemic basal neutrophilia, neutrophil infiltration into joints of FF mice does not occur when challenged with K/BxN serum. Absence of adiponectin, leptin, or both has no effect on joint disease, but deletion of the adipokine adipsin (complement factor D) completely prevents serum-induced IA. Confirming that fat-expressed adipsin modulates the disorder, transplantation of wild-type (WT) adipose tissue into FF mice restores susceptibility to IA, whereas recipients of adipsin-deficient fat remain resistant. Thus, adipose tissue regulates development of IA through a pathway in which adipocytes modify neutrophil responses in distant tissues by producing adipsin.
Collapse
Affiliation(s)
- Yongjia Li
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Zou
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jonathan R Brestoff
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nidhi Rohatgi
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaobo Wu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles A Harris
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L Teitelbaum
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
Kirpotina LN, Schepetkin IA, Hammaker D, Kuhs A, Khlebnikov AI, Quinn MT. Therapeutic Effects of Tryptanthrin and Tryptanthrin-6-Oxime in Models of Rheumatoid Arthritis. Front Pharmacol 2020; 11:1145. [PMID: 32792961 PMCID: PMC7394103 DOI: 10.3389/fphar.2020.01145] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/13/2020] [Indexed: 01/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease involving joint and bone damage that is mediated in part by proteases and cytokines produced by synovial macrophages and fibroblast-like synoviocytes (FLS). Although current biological therapeutic strategies for RA have been effective in many cases, new classes of therapeutics are needed. We investigated anti-inflammatory properties of the natural alkaloid tryptanthrin (TRYP) and its synthetic derivative tryptanthrin-6-oxime (TRYP-Ox). Both TRYP and TRYP-Ox inhibited matrix metalloproteinase (MMP)-3 gene expression in interleukin (IL)-1β-stimulated primary human FLS, as well as IL-1β–induced secretion of MMP-1/3 by FLS and synovial SW982 cells and IL-6 by FLS, SW982 cells, human umbilical vein endothelial cells (HUVECs), and monocytic THP-1 cells, although TRYP-Ox was generally more effective and had no cytotoxicity in vitro. Evaluation of the therapeutic potential of TRYP and TRYP-Ox in vivo in murine arthritis models showed that both compounds significantly attenuated the development of collagen-induced arthritis (CIA) and collagen-antibody–induced arthritis (CAIA), with comparable efficacy. Collagen II (CII)-specific antibody levels were similarly reduced in TRYP- and TRYP-Ox-treated CIA mice. TRYP and TRYP-Ox also suppressed proinflammatory cytokine production by lymph node cells from CIA mice, with TRYP-Ox being more effective in inhibiting IL-17A, granulocyte-macrophage colony-stimulating factor (GM-CSF), and receptor activator of nuclear factor-κB ligand (RANKL). Thus, even though TRYP-Ox generally had a better in vitro profile, possibly due to its ability to inhibit c-Jun N-terminal kinase (JNK), both TRYP and TRYP-Ox were equally effective in inhibiting the clinical symptoms and damage associated with RA. Overall, TRYP and/or TRYP-Ox may represent potential new directions for the pursuit of novel treatments for RA.
Collapse
Affiliation(s)
- Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Deepa Hammaker
- Division of Rheumatology, Allergy, and Immunology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Amanda Kuhs
- Division of Rheumatology, Allergy, and Immunology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, Russia.,Research Institute of Biological Medicine, Altai State University, Barnaul, Russia
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
22
|
Khan MA, Shamma T, Kazmi S, Altuhami A, Ahmed HA, Assiri AM, Broering DC. Hypoxia-induced complement dysregulation is associated with microvascular impairments in mouse tracheal transplants. J Transl Med 2020; 18:147. [PMID: 32234039 PMCID: PMC7110829 DOI: 10.1186/s12967-020-02305-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Complement Regulatory Proteins (CRPs), especially CD55 primarily negate complement factor 3-mediated injuries and maintain tissue homeostasis during complement cascade activation. Complement activation and regulation during alloimmune inflammation contribute to allograft injury and therefore we proposed to investigate a crucial pathological link between vascular expression of CD55, active-C3, T cell immunity and associated microvascular tissue injuries during allograft rejection. METHODS Balb/c→C57BL/6 allografts were examined for microvascular deposition of CD55, C3d, T cells, and associated tissue microvascular impairments during rejection in mouse orthotopic tracheal transplantation. RESULTS Our findings demonstrated that hypoxia-induced early activation of HIF-1α favors a cell-mediated inflammation (CD4+, CD8+, and associated proinflammatory cytokines, IL-2 and TNF-α), which proportionally triggers the downregulation of CRP-CD55, and thereby augments the uncontrolled release of active-C3, and Caspase-3 deposition on CD31+ graft vascular endothelial cells. These molecular changes are pathologically associated with microvascular deterioration (low tissue O2 and Blood flow) and subsequent airway epithelial injuries of rejecting allografts as compared to non-rejecting syngrafts. CONCLUSION Together, these findings establish a pathological correlation between complement dysregulation, T cell immunity, and microvascular associated injuries during alloimmune inflammation in transplantation.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.
| | - Talal Shamma
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Shadab Kazmi
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Abdullah Altuhami
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Hala Abdalrahman Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia.,Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Dieter Clemens Broering
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Holers VM, Borodovsky A, Scheinman RI, Ho N, Ramirez JR, Dobó J, Gál P, Lindenberger J, Hansen AG, Desai D, Pihl R, Thiel S, Banda NK. Key Components of the Complement Lectin Pathway Are Not Only Required for the Development of Inflammatory Arthritis but Also Regulate the Transcription of Factor D. Front Immunol 2020; 11:201. [PMID: 32153567 PMCID: PMC7046807 DOI: 10.3389/fimmu.2020.00201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system plays an important role in the pathogenesis of rheumatoid arthritis (RA). Besides driving lectin pathway (LP) activation, the mannan-binding lectin (MBL)-associated serine proteases (MASPs) also play a key role in regulating the alternative pathway (AP). We evaluated the effects of N-acetylgalactosamine (GalNAc)-conjugated MASP-1 and MASP-2 duplexes in vitro and in mice with and without arthritis to examine whether knockdown of MASP-1 and MASP-2 expression affects the development of arthritis. GalNAc-siRNAs for MASP-1 and MASP-2 demonstrated robust silencing of MASP-1 or MASP-2 at pM concentrations in vitro. To evaluate the impact of silencing in arthritic mice, we used the collagen antibody-induced arthritis (CAIA) mouse model of RA. Mice were injected a 10 mg/kg dose of GalNAc-siRNAs 3x s.q. prior to the induction of CAIA. Liver gene expression was examined using qRT-PCR, and protein levels were confirmed in the circulation by sandwich immunoassays and Western blot. At day 10, CAIA mice separately treated with MASP-1 and MASP-2 duplexes had a specific reduction in expression of liver MASP-1 (70–95%, p < 0.05) and MASP-2 (90%, p < 0.05) mRNA, respectively. MASP-1-siRNA treatment resulted in a 95% reduction in levels of MASP-1 protein in circulation with no effect on MASP-2 levels and clinical disease activity (CDA). In mice injected with MASP-2 duplex, there was a significant (p < 0.05) 90% decrease in ex vivo C4b deposition on mannan, with nearly complete elimination of MASP-2 in the circulation. MASP-2 silencing initially significantly decreased CDA by 60% but subsequently changed to a 40% decrease vs. control. Unexpectedly, GalNAc-siRNA-mediated knockdown of MASP-1 and MASP-2 revealed a marked effect of these proteins on the transcription of FD under normal physiological conditions, whereas LPS-induced inflammatory conditions reversed this effect on FD levels. LPS is recognized by Toll-like receptor 4 (TLR4), we found MBL not only binds to TLR4 an interaction with a Kd of 907 nM but also upregulated FD expression in differentiated adipocytes. We show that MASP-2 knockdown impairs the development of RA and that the interrelationship between proteins of the LP and the AP may extend to the transcriptional modulation of the FD gene.
Collapse
Affiliation(s)
- V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Robert I Scheinman
- Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nhu Ho
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joseline Ramos Ramirez
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - József Dobó
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Péter Gál
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Jared Lindenberger
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Annette G Hansen
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Dhruv Desai
- Alnylam Pharmaceutical Inc., Boston, MA, United States
| | - Rasmus Pihl
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Nirmal K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
24
|
Cheng TH, Yoon SH, Lee P, Dimaculangan D, Vikram Maheshwari A, Zhang M. Knee synovial fluid complement C3-β chain levels correlate with clinical symptoms of knee osteoarthritis. Int J Rheum Dis 2020; 23:569-575. [PMID: 31989759 DOI: 10.1111/1756-185x.13794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/17/2019] [Accepted: 12/29/2019] [Indexed: 12/20/2022]
Abstract
AIM Early research found innate immune factor complement C3 in the synovial fluid (SF) and activated in serum of osteoarthritis (OA) patients. Whether synovial C3 comes from circulation, or is produced locally, is still unknown. It is also unclear whether synovial and circulating C3 is responsible to OA symptoms. A native C3 molecule consists of two chains, C3-α and C3-β. Small fragments breaking down from C3-α chain in serum and SF were reported to be related to OA severity. Little is known if C3-β chain is involved in the pathogenesis. METHOD In this study, we evaluated these important areas by biochemical analyses of C3-α and C3-β chains in both the SF and plasma of OA patients. RESULTS Our results showed that C3-α and C3-β levels in SF did not correlate with those in plasma, suggesting that synovial C3 is independently and locally produced, rather than being "leaked" from circulation. Synovial C3-β but not C3-α levels correlated with pain, other OA symptoms, function in daily living, and sports/recreational activities. Plasma C3-β levels only marginally correlated with pain, and plasma C3-α levels did not correlate with any of these OA symptoms. CONCLUSION We present first-hand evidence that the clinical symptoms of OA are mainly associated with C3 in the local SF rather than systemic circulation, suggesting local factors in the etiopathogenesis. Future local targeted therapies for pain management may be more effective and safer.
Collapse
Affiliation(s)
- Tzu Hsuan Cheng
- Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Seung Ho Yoon
- Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Philip Lee
- Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Dennis Dimaculangan
- Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | | | - Ming Zhang
- Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, NY, USA.,Department of Orthopedics, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
25
|
Westman J, Grinstein S, Marques PE. Phagocytosis of Necrotic Debris at Sites of Injury and Inflammation. Front Immunol 2020; 10:3030. [PMID: 31998312 PMCID: PMC6962235 DOI: 10.3389/fimmu.2019.03030] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Clearance of cellular debris is required to maintain the homeostasis of multicellular organisms. It is intrinsic to processes such as tissue growth and remodeling, regeneration and resolution of injury and inflammation. Most of the removal of effete and damaged cells is performed by macrophages and neutrophils through phagocytosis, a complex phenomenon involving ingestion and degradation of the disposable particles. The study of the clearance of cellular debris has been strongly biased toward the removal of apoptotic bodies; as a result, the mechanisms underlying the removal of necrotic cells have remained relatively unexplored. Here, we will review the incipient but growing knowledge of the phagocytosis of necrotic debris, from their recognition and engagement to their internalization and disposal. Critical insights into these events were gained recently through the development of new in vitro and in vivo models, along with advances in live-cell and intravital microscopy. This review addresses the classes of "find-me" and "eat-me" signals presented by necrotic cells and their cognate receptors in phagocytes, which in most cases differ from the extensively characterized counterparts in apoptotic cell engulfment. The roles of damage-associated molecular patterns, chemokines, lipid mediators, and complement components in recruiting and activating phagocytes are reviewed. Lastly, the physiological importance of necrotic cell removal is emphasized, highlighting the key role of impaired debris clearance in autoimmunity.
Collapse
Affiliation(s)
- Johannes Westman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Jager NM, van Zanden JE, Subías M, Leuvenink HGD, Daha MR, Rodríguez de Córdoba S, Poppelaars F, Seelen MA. Blocking Complement Factor B Activation Reduces Renal Injury and Inflammation in a Rat Brain Death Model. Front Immunol 2019; 10:2528. [PMID: 31736957 PMCID: PMC6838866 DOI: 10.3389/fimmu.2019.02528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/11/2019] [Indexed: 12/28/2022] Open
Abstract
Introduction: The majority of kidneys used for transplantation are retrieved from brain-dead organ donors. In brain death, the irreversible loss of brain functions results in hemodynamic instability, hormonal changes and immunological activation. Recently, brain death has been shown to cause activation of the complement system, which is adversely associated with renal allograft outcome in recipients. Modulation of the complement system in the brain-dead donor might be a promising strategy to improve organ quality before transplantation. This study investigated the effect of an inhibitory antibody against complement factor B on brain death-induced renal inflammation and injury. Method: Brain death was induced in male Fischer rats by inflating a balloon catheter in the epidural space. Anti-factor B (anti-FB) or saline was administered intravenously 20 min before the induction of brain death (n = 8/group). Sham-operated rats served as controls (n = 4). After 4 h of brain death, renal function, renal injury, and inflammation were assessed. Results: Pretreatment with anti-FB resulted in significantly less systemic and local complement activation than in saline-treated rats after brain death. Moreover, anti-FB treatment preserved renal function, reflected by significantly reduced serum creatinine levels compared to saline-treated rats after 4 h of brain death. Furthermore, anti-FB significantly attenuated histological injury, as seen by reduced tubular injury scores, lower renal gene expression levels (>75%) and renal deposition of kidney injury marker-1. In addition, anti-FB treatment significantly prevented renal macrophage influx and reduced systemic IL-6 levels compared to saline-treated rats after brain death. Lastly, renal gene expression of IL-6, MCP-1, and VCAM-1 were significantly reduced in rats treated with anti-FB. Conclusion: This study shows that donor pretreatment with anti-FB preserved renal function, reduced renal damage and inflammation prior to transplantation. Therefore, inhibition of factor B in organ donors might be a promising strategy to reduce brain death-induced renal injury and inflammation.
Collapse
Affiliation(s)
- Neeltina M Jager
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Judith E van Zanden
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marta Subías
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Centro de Investigación Biomédica en Enfermedades Raras, Madrid, Spain
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mohamed R Daha
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Santiago Rodríguez de Córdoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Centro de Investigación Biomédica en Enfermedades Raras, Madrid, Spain
| | - Felix Poppelaars
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marc A Seelen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
27
|
Bemis EA, Norris JM, Seifert J, Frazer-Abel A, Okamoto Y, Feser ML, Demoruelle MK, Deane KD, Banda NK, Holers VM. Complement and its environmental determinants in the progression of human rheumatoid arthritis. Mol Immunol 2019; 112:256-265. [PMID: 31207549 PMCID: PMC7712508 DOI: 10.1016/j.molimm.2019.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/26/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022]
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune disease with an etiology that is not yet well understood, disproportionally affects women and also varies in incidence and prevalence by population. The presence of anti-citrullinated protein antibodies (ACPA) is a highly specific biomarker for the diagnosis of clinically apparent RA. ACPA are also present in the serum for an average of 3-5 years prior to the onset of RA during an asymptomatic period characterized by mucosal inflammation and local ACPA production at these sites. We hypothesized that systemic complement activation products might be generated during the pre-clinical initiation of RA and/or provide a second hit that promotes subsequent arthritis development in the joints. In addition, we evaluated which demographic and genetic features and environmental exposures could influence the complement activation process. We analyzed plasma from healthy subjects, subjects at-risk for the development of RA based on serum ACPA positivity in absence of inflammatory arthritis (IA), and ACPA positive RA subjects by Multiplex Assay and ELISA for eighteen complement system components, factors and activation products belonging to the classical, lectin and alternative pathways. By using regression models, associations between complement proteins and various demographic, genetic, and environmental factors previously found to be associated with RA, including sex, smoking, shared epitope, and oral contraceptive use, were examined. We found no evidence of systemic complement activation in ACPA positive subjects without IA, but in contrast found evidence of systemic involvement of the both classical and alternative pathways during the stage of the disease where classified RA is present, (i.e. during joint inflammation and damage). With regard to the demographic, genetic, and environmental variables, females who reported current or past oral contraceptive use and subjects with current tobacco exposure demonstrated alterations of the alternative pathway of complement. Furthermore, RA subjects with established disease who have a body mass index categorized as obese demonstrated higher levels of C2 compared to RA subjects who are not considered obese. In sum, the complement system may be involved in the pathogenesis of RA, with only localized mucosal effects during the preclinical period in those at-risk for RA but in the joint as well as systemically in those who have developed clinically apparent arthritis.
Collapse
Affiliation(s)
- Elizabeth A Bemis
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Jennifer Seifert
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Ashley Frazer-Abel
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Yuko Okamoto
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Marie L Feser
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - M Kristen Demoruelle
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Kevin D Deane
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Nirmal K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States.
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| |
Collapse
|
28
|
Abstract
Inflammatory arthritis encompasses a set of common diseases characterized by immune-mediated attack on joint tissues. Most but not all affected patients manifest circulating autoantibodies. Decades of study in human and animal arthritis have identified key roles for autoantibodies in immune complexes and through direct modulation of articular biology. However, joint inflammation can arise because of pathogenic T cells and other pathways that are antibody-independent. Here we review the evidence for these parallel tracks, in animal models and in humans, to explore the range of mechanisms engaged in the pathophysiology of arthritis and to highlight opportunities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Margaret H. Chang
- Department of Medicine, Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter A. Nigrovic
- Department of Medicine, Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Fridkis-Hareli M, Storek M, Or E, Altman R, Katti S, Sun F, Peng T, Hunter J, Johnson K, Wang Y, Lundberg AS, Mehta G, Banda NK, Michael Holers V. The human complement receptor type 2 (CR2)/CR1 fusion protein TT32, a novel targeted inhibitor of the classical and alternative pathway C3 convertases, prevents arthritis in active immunization and passive transfer mouse models. Mol Immunol 2018; 105:150-164. [PMID: 30513451 DOI: 10.1016/j.molimm.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/29/2018] [Accepted: 09/20/2018] [Indexed: 02/08/2023]
Abstract
Complement activation in human diseases is characterized by the local covalent deposition of the long-lived C3 fragments iC3b/C3dg/C3d. Previously, TT30, a complement alternative pathway (AP)-selective inhibitor, was designed as a fusion protein linking the first four short consensus repeats (SCRs) of human complement receptor type 2 (CR2) with the first five SCRs of human factor H (fH). TT30 acts by utilizing CR2 SCR1-4 to bind the initially formed iC3b/C3dg/C3d fragments and delivering surface-targeted inhibition of AP C3 and C5 convertases through fH SCR 1-5. In order to combine classical (CP) and lectin (LP) pathway inhibitory abilities employing CR2-mediated targeting, TT32 was developed. TT32 is a CR2-CR1 fusion protein using the first ten SCRs of CR1, chosen because they contain both C3 and C5 convertase inhibitory activity through utilization of decay-acceleration and cofactor activity for both AP and CP. In Wieslab assays, TT32 showed potent inhibition of the CP and AP with IC50 of 11 and 46 nM, respectively. The TT32 inhibitory activity is partially blocked with a molar excess of a competing anti-CR2 mAb, thus demonstrating the importance of the CR2 targeting. TT32 was studied in the type II (CII) collagen-induced arthritis (CIA), an active immunization model, and the CII antibody-induced arthritis (CAIA) passive transfer model. In CIA, injection of 2.0 mg TT32 at day 21 and 28 post disease induction, but not untargeted CR1 alone, resulted in a 51.5% decrease in clinical disease activity (CDA). In CAIA, treatment with TT32 resulted in a 47.4% decrease in CDA. Therefore, a complement inhibitor that targets both the AP and CP/LP C3/C5 convertases was shown to limit complement-mediated tissue damage and inflammation in disease models in which all three complement activation pathways are implicated.
Collapse
Affiliation(s)
| | - Michael Storek
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Eran Or
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Richard Altman
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Suresh Katti
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Fang Sun
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Tao Peng
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Jeff Hunter
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Krista Johnson
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Yi Wang
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Ante S Lundberg
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Gaurav Mehta
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Nirmal K Banda
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA.
| | - V Michael Holers
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| |
Collapse
|
30
|
Valverde-Franco G, Tardif G, Mineau F, Paré F, Lussier B, Fahmi H, Pelletier JP, Martel-Pelletier J. High in vivo levels of adipsin lead to increased knee tissue degradation in osteoarthritis: data from humans and animal models. Rheumatology (Oxford) 2018; 57:1851-1860. [PMID: 29982662 DOI: 10.1093/rheumatology/key181] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 01/02/2023] Open
Abstract
Objective This study explored the role of the adipokine adipsin in OA. Methods Control and OA articular tissues, cells and serum were obtained from human individuals. Serum adipsin levels of human OA individuals were compared with cartilage volume loss as assessed by MRI at 48 months. Human adipsin expression was determined by PCR, its production in tissues by immunohistochemistry, and in SF and serum by a specific assay. OA was surgically induced in wild-type (Df+/+) and adipsin-deficient (Df-/-) mice, and synovial membrane and cartilage processed for histology and immunohistochemistry. Results Adipsin levels were significantly increased in human OA serum, SF, synovial membrane and cartilage compared with controls, but the expression was similar in chondrocytes, synoviocytes and osteoblasts. Multivariate analysis demonstrated that human serum adipsin levels were significantly associated (P = 0.045) with cartilage volume loss in the lateral compartment of the knee. Destabilization of the medial meniscus-Df-/- mice showed a preservation of the OA synovial membrane and cartilage lesions (P ⩽ 0.026), the latter corroborated by the decreased production of cartilage degradation products and proteases (P ⩽ 0.047). The adipsin effect is likely due to a deficient alternative complement pathway (P ⩽ 0.036). Conclusion In human OA, higher serum adipsin levels were associated with greater cartilage volume loss in the lateral compartment, and adipsin deficiency led to a preservation of knee structure. Importantly, we documented an association between adipsin and OA synovial membrane and cartilage degeneration through the activation of the complement pathway. This study highlights the clinical relevance of adipsin as a valuable biomarker and potential therapeutic target for OA.
Collapse
Affiliation(s)
- Gladys Valverde-Franco
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Ginette Tardif
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - François Mineau
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Frédéric Paré
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Bertrand Lussier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.,Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| |
Collapse
|
31
|
Banda NK, Desai D, Scheinman RI, Pihl R, Sekine H, Fujita T, Sharma V, Hansen AG, Garred P, Thiel S, Borodovsky A, Holers VM. Targeting of Liver Mannan-Binding Lectin-Associated Serine Protease-3 with RNA Interference Ameliorates Disease in a Mouse Model of Rheumatoid Arthritis. Immunohorizons 2018; 2:274-295. [PMID: 30417171 PMCID: PMC6220895 DOI: 10.4049/immunohorizons.1800053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mannan-binding lectin–associated serine protease 3 (MASP-3) regulates the alternative pathway of complement and is predominantly synthesized in the liver. The role of liver-derived MASP-3 in the pathogenesis of rheumatoid arthritis (RA) is unknown. We hypothesized that liver-derived MASP-3 is essential for the development of joint damage and that targeted inhibition of MASP-3 in the liver can attenuate arthritis. We used MASP-3–specific small interfering RNAs (siRNAs) conjugated to N-acetylgalactosamine (GalNAc) to specifically target the liver via asialoglycoprotein receptors. Active GalNAc–MASP3–siRNA conjugates were identified, and in vivo silencing of liver MASP-3 mRNA was demonstrated in healthy mice. The s.c. treatment with GalNAc–MASP-3–siRNAs specifically decreased the expression of MASP-3 in the liver and the level of MASP-3 protein in circulation of mice without affecting the levels of the other spliced products. In mice with collagen Ab–induced arthritis, s.c. administration of GalNAc–MASP-3–siRNA decreased the clinical disease activity score to 50% of controls, with decrease in histopathology scores and MASP-3 deposition. To confirm the ability to perform MASP-3 gene silencing in human cells, we generated a lentivirus expressing a short hairpin RNA specific for human MASP-3 mRNA. This procedure not only eliminated the short-term (at day 15) expression of MASP-3 in HepG2 and T98G cell lines but also diminished the long-term (at day 60) synthesis of MASP-3 protein in T98G cells. Our study demonstrates that isoform-specific silencing of MASP-3 in vivo modifies disease activity in a mouse model of RA and suggests that liver-directed MASP3 silencing may be a therapeutic approach in human RA.
Collapse
Affiliation(s)
- Nirmal K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Dhruv Desai
- Alnylam Pharmaceuticals Inc., Boston, MA 02142
| | - Robert I Scheinman
- Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Rasmus Pihl
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Vibha Sharma
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Annette G Hansen
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, University Hospital of Copenhagen, 2200 Copenhagen, Denmark
| | - Steffen Thiel
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark
| | | | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
32
|
Dong X, Zheng Z, Zhai Y, Zheng Y, Ding J, Jiang J, Zhu P. ACPA mediates the interplay between innate and adaptive immunity in rheumatoid arthritis. Autoimmun Rev 2018; 17:845-853. [DOI: 10.1016/j.autrev.2018.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 01/17/2023]
|
33
|
Luo W, Olaru F, Miner JH, Beck LH, van der Vlag J, Thurman JM, Borza DB. Alternative Pathway Is Essential for Glomerular Complement Activation and Proteinuria in a Mouse Model of Membranous Nephropathy. Front Immunol 2018; 9:1433. [PMID: 29988342 PMCID: PMC6023961 DOI: 10.3389/fimmu.2018.01433] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/11/2018] [Indexed: 01/15/2023] Open
Abstract
Membranous nephropathy is an immune kidney disease caused by IgG antibodies that form glomerular subepithelial immune complexes. Proteinuria is mediated by complement activation, as a result of podocyte injury by C5b-9, but the role of specific complement pathways is not known. Autoantibodies-mediating primary membranous nephropathy are predominantly of IgG4 subclass, which cannot activate the classical pathway. Histologic evidence from kidney biopsies suggests that the lectin and the alternative pathways may be activated in membranous nephropathy, but the pathogenic relevance of these pathways remains unclear. In this study, we evaluated the role of the alternative pathway in a mouse model of membranous nephropathy. After inducing the formation of subepithelial immune complexes, we found similar glomerular IgG deposition in wild-type mice and in factor B-null mice, which lack a functional alternative pathway. Unlike wild-type mice, mice lacking factor B did not develop albuminuria nor exhibit glomerular deposition of C3c and C5b-9. Albuminuria was also reduced but not completely abolished in C5-deficient mice. Our results provide the first direct evidence that the alternative pathway is necessary for pathogenic complement activation by glomerular subepithelial immune complexes and is, therefore, a key mediator of proteinuria in experimental membranous nephropathy. This knowledge is important for the rational design of new therapies for membranous nephropathy.
Collapse
Affiliation(s)
- Wentian Luo
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN, United States.,Vanderbilt Center for Kidney Disease, Vanderbilt Division of Nephrology, Nashville, TN, United States
| | - Florina Olaru
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN, United States.,Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN, United States
| | - Jeffrey H Miner
- Renal Division, Washington University School of Medicine, St. Louis, MO, United States
| | - Laurence H Beck
- Division of Nephrology, Boston University Medical Center, Boston, MA, United States
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Dorin-Bogdan Borza
- Vanderbilt Center for Kidney Disease, Vanderbilt Division of Nephrology, Nashville, TN, United States.,Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN, United States
| |
Collapse
|
34
|
Mödinger Y, Löffler B, Huber-Lang M, Ignatius A. Complement involvement in bone homeostasis and bone disorders. Semin Immunol 2018; 37:53-65. [DOI: 10.1016/j.smim.2018.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
|
35
|
Holers VM, Banda NK. Complement in the Initiation and Evolution of Rheumatoid Arthritis. Front Immunol 2018; 9:1057. [PMID: 29892280 PMCID: PMC5985368 DOI: 10.3389/fimmu.2018.01057] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/27/2018] [Indexed: 01/03/2023] Open
Abstract
The complement system is a major component of the immune system and plays a central role in many protective immune processes, including circulating immune complex processing and clearance, recognition of foreign antigens, modulation of humoral and cellular immunity, removal of apoptotic and dead cells, and engagement of injury resolving and tissue regeneration processes. In stark contrast to these beneficial roles, however, inadequately controlled complement activation underlies the pathogenesis of human inflammatory and autoimmune diseases, including rheumatoid arthritis (RA) where the cartilage, bone, and synovium are targeted. Recent studies of this disease have demonstrated that the autoimmune response evolves over time in an asymptomatic preclinical phase that is associated with mucosal inflammation. Notably, experimental models of this disease have demonstrated that each of the three major complement activation pathways plays an important role in recognition of injured joint tissue, although the lectin and amplification pathways exhibit particularly impactful roles in the initiation and amplification of damage. Herein, we review the complement system and focus on its multi-factorial role in human patients with RA and experimental murine models. This understanding will be important to the successful integration of the emerging complement therapeutics pipeline into clinical care for patients with RA.
Collapse
Affiliation(s)
| | - Nirmal K. Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
36
|
Hayashi H, Kaneko R, Demizu S, Akasaka D, Tayama M, Harada T, Irie H, Ogino Y, Fujino N, Sasaki E. TAS05567, a Novel Potent and Selective Spleen Tyrosine Kinase Inhibitor, Abrogates Immunoglobulin-Mediated Autoimmune and Allergic Reactions in Rodent Models. J Pharmacol Exp Ther 2018; 366:84-95. [DOI: 10.1124/jpet.118.248153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 12/21/2022] Open
|
37
|
Nandakumar KS. Targeting IgG in Arthritis: Disease Pathways and Therapeutic Avenues. Int J Mol Sci 2018; 19:E677. [PMID: 29495570 PMCID: PMC5877538 DOI: 10.3390/ijms19030677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a polygenic and multifactorial syndrome. Many complex immunological and genetic interactions are involved in the final outcome of the clinical disease. Autoantibodies (rheumatoid factors, anti-citrullinated peptide/protein antibodies) are present in RA patients' sera for a long time before the onset of clinical disease. Prior to arthritis onset, in the autoantibody response, epitope spreading, avidity maturation, and changes towards a pro-inflammatory Fc glycosylation phenotype occurs. Genetic association of epitope specific autoantibody responses and the induction of inflammation dependent and independent changes in the cartilage by pathogenic autoantibodies emphasize the crucial contribution of antibody-initiated inflammation in RA development. Targeting IgG by glyco-engineering, bacterial enzymes to specifically cleave IgG/alter N-linked Fc-glycans at Asn 297 or blocking the downstream effector pathways offers new avenues to develop novel therapeutics for arthritis treatment.
Collapse
Affiliation(s)
- Kutty Selva Nandakumar
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
38
|
Howard M, Farrar CA, Sacks SH. Structural and functional diversity of collectins and ficolins and their relationship to disease. Semin Immunopathol 2018; 40:75-85. [PMID: 28894916 PMCID: PMC5794833 DOI: 10.1007/s00281-017-0642-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022]
Abstract
Pattern recognition molecules are sensors for the innate immune system and trigger a number of pathophysiological functions after interaction with the corresponding ligands on microorganisms or altered mammalian cells. Of those pattern recognition molecules used by the complement system, collagen-like lectins (collectins) are an important subcomponent. Whereas the best known of these collectins, mannose-binding lectin, largely occurs as a circulating protein following production by hepatocytes, the most recently described collectins exhibit strong local biosynthesis. This local production and release of soluble collectin molecules appear to serve local tissue functions at extravascular sites, including a developmental function. In this article, we focus on the characteristics of collectin-11 (CL-11 or CL-K1), whose ubiquitous expression and multiple activities likely reflect a wide biological relevance. Collectin-11 appears to behave as an acute phase protein whose production associated with metabolic and physical stress results in locally targeted inflammation and tissue cell death. Early results indicate the importance of fucosylated ligand marking the injured cells targeted by collectin-11, and we suggest that further characterisation of this and related ligands will lead to better understanding of pathophysiological significance and exploitation for clinical benefit.
Collapse
Affiliation(s)
- Mark Howard
- MRC Centre for Transplantation, King's College London, Guy's Hospital, 5th Floor Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Conrad A Farrar
- MRC Centre for Transplantation, King's College London, Guy's Hospital, 5th Floor Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Steven H Sacks
- MRC Centre for Transplantation, King's College London, Guy's Hospital, 5th Floor Tower Wing, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
39
|
Cheng HD, Stöckmann H, Adamczyk B, McManus CA, Ercan A, Holm IA, Rudd PM, Ackerman ME, Nigrovic PA. High-throughput characterization of the functional impact of IgG Fc glycan aberrancy in juvenile idiopathic arthritis. Glycobiology 2017; 27:1099-1108. [PMID: 28973482 PMCID: PMC5881781 DOI: 10.1093/glycob/cwx082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/30/2017] [Accepted: 09/09/2017] [Indexed: 12/19/2022] Open
Abstract
Juvenile idiopathic arthritis (JIA) encompasses all forms of chronic idiopathic arthritis that arise before age 16. Previous studies have found JIA to be associated with lower Fc galactosylation of circulating IgG, but the overall spectrum of glycan changes and the net impact on IgG function are unknown. Using ultra performance liquid chromatography (UPLC), we compared IgG glycosylation in 54 subjects with recent-onset untreated JIA with 98 healthy pediatric controls, paired to biophysical profiling of affinity for 20 IgG receptors using a high-throughput multiplexed microsphere assay. Patients with JIA exhibited an increase in hypogalactosylated and hyposialylated IgG glycans, but no change in fucosylation or bisection, together with alteration in the spectrum of IgG ligand binding. Supervised machine learning demonstrated a robust capacity to discriminate JIA subjects from controls using either glycosylation or binding data. The binding signature was driven predominantly by enhanced affinity for Fc receptor like protein 5 (FcRL5), a noncanonical Fc receptor expressed on B cells. Affinity for FcRL5 correlated inversely with galactosylation and sialylation, a relationship confirmed through enzymatic manipulation. These results demonstrate the capacity of combined structural and biophysical IgG phenotyping to define the overall functional impact of IgG glycan changes and implicate FcRL5 as a potential cellular sensor of IgG glycosylation.
Collapse
Affiliation(s)
- Hao D Cheng
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, 03755 NH, USA
| | - Henning Stöckmann
- NIBRT-The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94 X099, Ireland
| | - Barbara Adamczyk
- NIBRT-The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94 X099, Ireland
| | - Ciara A McManus
- NIBRT-The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94 X099, Ireland
| | - Altan Ercan
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ingrid A Holm
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, USA
| | - Pauline M Rudd
- NIBRT-The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94 X099, Ireland
| | - Margaret E Ackerman
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, 03755 NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, 03755 NH, USA
| | - Peter A Nigrovic
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Immunology, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
40
|
Iyer A, Xu W, Reid RC, Fairlie DP. Chemical Approaches to Modulating Complement-Mediated Diseases. J Med Chem 2017; 61:3253-3276. [DOI: 10.1021/acs.jmedchem.7b00882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Abishek Iyer
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Weijun Xu
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert C. Reid
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P. Fairlie
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
41
|
Banda NK, Acharya S, Scheinman RI, Mehta G, Takahashi M, Endo Y, Zhou W, Farrar CA, Sacks SH, Fujita T, Sekine H, Holers VM. Deconstructing the Lectin Pathway in the Pathogenesis of Experimental Inflammatory Arthritis: Essential Role of the Lectin Ficolin B and Mannose-Binding Protein-Associated Serine Protease 2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1835-1845. [PMID: 28739878 PMCID: PMC5568486 DOI: 10.4049/jimmunol.1700119] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022]
Abstract
Complement plays an important role in the pathogenesis of rheumatoid arthritis. Although the alternative pathway (AP) is known to play a key pathogenic role in models of rheumatoid arthritis, the importance of the lectin pathway (LP) pattern recognition molecules such as ficolin (FCN) A, FCN B, and collectin (CL)-11, as well as the activating enzyme mannose-binding lectin-associated serine protease-2 (MASP-2), are less well understood. We show in this article that FCN A-/- and CL-11-/- mice are fully susceptible to collagen Ab-induced arthritis (CAIA). In contrast, FCN B-/- and MASP-2-/-/sMAp-/- mice are substantially protected, with clinical disease activity decreased significantly (p < 0.05) by 47 and 70%, respectively. Histopathology scores, C3, factor D, FCN B deposition, and infiltration of synovial macrophages and neutrophils were similarly decreased in FCN B-/- and MASP-2-/-/sMAp-/- mice. Our data support that FCN B plays an important role in the development of CAIA, likely through ligand recognition in the joint and MASP activation, and that MASP-2 also contributes to the development of CAIA, likely in a C4-independent manner. Decreased AP activity in the sera from FCN B-/- and MASP-2-/-/sMAp-/- mice with arthritis on adherent anti-collagen Abs also support the hypothesis that pathogenic Abs, as well as additional inflammation-related ligands, are recognized by the LP and operate in vivo to activate complement. Finally, we also speculate that the residual disease seen in our studies is driven by the AP and/or the C2/C4 bypass pathway via the direct cleavage of C3 through an LP-dependent mechanism.
Collapse
Affiliation(s)
- Nirmal K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| | - Sumitra Acharya
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Robert I Scheinman
- Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Gaurav Mehta
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Minoru Takahashi
- Department of Immunology, Fukushima Medical University, Fukushima, Hikarigaoka, Japan 960-1295; and
| | - Yuichi Endo
- Department of Immunology, Fukushima Medical University, Fukushima, Hikarigaoka, Japan 960-1295; and
| | - Wuding Zhou
- Medical Research Council Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London, Strand, London SE19 RT, United Kingdom
| | - Conrad A Farrar
- Medical Research Council Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London, Strand, London SE19 RT, United Kingdom
| | - Steven H Sacks
- Medical Research Council Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London, Strand, London SE19 RT, United Kingdom
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University, Fukushima, Hikarigaoka, Japan 960-1295; and
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University, Fukushima, Hikarigaoka, Japan 960-1295; and
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
42
|
Ganova P, Gyurkovska V, Belenska-Todorova L, Ivanovska N. Functional complement activity is decisive for the development of chronic synovitis, osteophyte formation and processes of cell senescence in zymosan-induced arthritis. Immunol Lett 2017; 190:213-220. [PMID: 28860038 DOI: 10.1016/j.imlet.2017.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/19/2017] [Accepted: 08/22/2017] [Indexed: 01/09/2023]
Abstract
Synovial inflammation plays a critical role in the symptoms and structural progression of arthritis which leads to irreversible damage of the adjacent cartilage and bone. Activation of complement system is strongly implicated as a factor in the pathogenesis of chronic synovitis in human rheumatoid arthritis (RA). In this study, we show that the depletion of functional complement activity at the time of the initiation of zymosan-induced arthritis, significantly reduced the expression of TGF-beta1/3, BMP2 and pSmad2 and decreased the number of Sudan Black B positive cells in the synovium. Also, the excessive synthesis of proteoglycans and glycosaminoglycans was diminished. The appearance of apoptotic and senescent cells among the adherent bone marrow cells cultivated in vitro was not observed in complement depleted mice. Therefore, the lack of functional complement prevented the development of chronic synovitis, osteophyte formation and the generation of pathologic senescent arthritic cells.
Collapse
Affiliation(s)
- Petya Ganova
- Department of Immunology, Institute of Microbiology, Sofia, Bulgaria
| | | | | | - Nina Ivanovska
- Department of Immunology, Institute of Microbiology, Sofia, Bulgaria.
| |
Collapse
|
43
|
Trouw LA, Pickering MC, Blom AM. The complement system as a potential therapeutic target in rheumatic disease. Nat Rev Rheumatol 2017; 13:538-547. [DOI: 10.1038/nrrheum.2017.125] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Willis VC, Banda NK, Cordova KN, Chandra PE, Robinson WH, Cooper DC, Lugo D, Mehta G, Taylor S, Tak PP, Prinjha RK, Lewis HD, Holers VM. Protein arginine deiminase 4 inhibition is sufficient for the amelioration of collagen-induced arthritis. Clin Exp Immunol 2017; 188:263-274. [PMID: 28128853 DOI: 10.1111/cei.12932] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2017] [Indexed: 12/12/2022] Open
Abstract
Citrullination of joint proteins by the protein arginine deiminase (PAD) family of enzymes is recognized increasingly as a key process in the pathogenesis of rheumatoid arthritis. This present study was undertaken to explore the efficacy of a novel PAD4-selective inhibitor, GSK199, in the murine collagen-induced arthritis model of rheumatoid arthritis. Mice were dosed daily from the time of collagen immunization with GSK199. Efficacy was assessed against a wide range of end-points, including clinical disease scores, joint histology and immunohistochemistry, serum and joint citrulline levels and quantification of synovial autoantibodies using a proteomic array containing joint peptides. Administration of GSK199 at 30 mg/kg led to significant effects on arthritis, assessed both by global clinical disease activity and by histological analyses of synovial inflammation, pannus formation and damage to cartilage and bone. In addition, significant decreases in complement C3 deposition in both synovium and cartilage were observed robustly with GSK199 at 10 mg/kg. Neither the total levels of citrulline measurable in joint and serum, nor levels of circulating collagen antibodies, were affected significantly by treatment with GSK199 at any dose level. In contrast, a subset of serum antibodies reactive against citrullinated and non-citrullinated joint peptides were reduced with GSK199 treatment. These data extend our previous demonstration of efficacy with the pan-PAD inhibitor Cl-amidine and demonstrate robustly that PAD4 inhibition alone is sufficient to block murine arthritis clinical and histopathological end-points.
Collapse
Affiliation(s)
- V C Willis
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - N K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - K N Cordova
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - P E Chandra
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA and the VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - W H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA and the VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - D C Cooper
- Target Sciences Statistics, GlaxoSmithKline, Collegeville, PA, USA
| | - D Lugo
- Immuno-Inflammation Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - G Mehta
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - S Taylor
- Immuno-Inflammation Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - P P Tak
- Immuno-Inflammation Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - R K Prinjha
- Immuno-Inflammation Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - H D Lewis
- Immuno-Inflammation Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - V M Holers
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
45
|
Comparative proteomics in alkaptonuria provides insights into inflammation and oxidative stress. Int J Biochem Cell Biol 2016; 81:271-280. [DOI: 10.1016/j.biocel.2016.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/09/2016] [Accepted: 08/16/2016] [Indexed: 12/26/2022]
|
46
|
Christensen AD, Haase C, Cook AD, Hamilton JA. K/BxN Serum-Transfer Arthritis as a Model for Human Inflammatory Arthritis. Front Immunol 2016; 7:213. [PMID: 27313578 PMCID: PMC4889615 DOI: 10.3389/fimmu.2016.00213] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/17/2016] [Indexed: 12/29/2022] Open
Abstract
The K/BxN serum-transfer arthritis (STA) model is a murine model in which the immunological mechanisms occurring in rheumatoid arthritis (RA) and other arthritides can be studied. To induce K/BxN STA, serum from arthritic transgenic K/BxN mice is transferred to naive mice and manifestations of arthritis occur a few days later. The inflammatory response in the model is driven by autoantibodies against the ubiquitously expressed self-antigen, glucose-6-phosphate isomerase (G6PI), leading to the formation of immune complexes that drive the activation of different innate immune cells such as neutrophils, macrophages, and possibly mast cells. The pathogenesis further involves a range of immune mediators including cytokines, chemokines, complement factors, Toll-like receptors, Fc receptors, and integrins, as well as factors involved in pain and bone erosion. Hence, even though the K/BxN STA model mimics only the effector phase of RA, it still involves a wide range of relevant disease mediators. Additionally, as a murine model for arthritis, the K/BxN STA model has some obvious advantages. First, it has a rapid and robust onset of arthritis with 100% incidence in genetically identical animals. Second, it can be induced in a wide range of strain backgrounds and can therefore also be induced in gene-deficient strains to study the specific importance of disease mediators. Even though G6PI might not be an essential autoantigen, for example, in RA, the K/BxN STA model is a useful tool to understand how autoantibodies, in general, drive the progression of arthritis by interacting with downstream components of the innate immune system. Finally, the model has also proven useful as a model wherein arthritic pain can be studied. Taken together, these features make the K/BxN STA model a relevant one for RA, and it is a potentially valuable tool, especially for the preclinical screening of new therapeutic targets for RA and perhaps other forms of inflammatory arthritis. Here, we describe the molecular and cellular pathways in the development of K/BxN STA focusing on the recent advances in the understanding of the important mechanisms. Additionally, this review provides a comparison of the K/BxN STA model to some other arthritis models.
Collapse
Affiliation(s)
- Anne D Christensen
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia; Novo Nordisk A/S, Måløv, Denmark
| | | | - Andrew D Cook
- Department of Medicine, University of Melbourne , Parkville, VIC , Australia
| | - John A Hamilton
- Department of Medicine, University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
47
|
Biomarkers of systemic inflammation in farmers with musculoskeletal disorders; a plasma proteomic study. BMC Musculoskelet Disord 2016; 17:206. [PMID: 27160764 PMCID: PMC4862124 DOI: 10.1186/s12891-016-1059-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/03/2016] [Indexed: 12/24/2022] Open
Abstract
Background Farmers have an increased risk for musculoskeletal disorders (MSD) such as osteoarthritis of the hip, low back pain, and neck and upper limb complaints. The underlying mechanisms are not fully understood. Work-related exposures and inflammatory responses might be involved. Our objective was to identify plasma proteins that differentiated farmers with MSD from rural referents. Methods Plasma samples from 13 farmers with MSD and rural referents were included in the investigation. Gel based proteomics was used for protein analysis and proteins that differed significantly between the groups were identified by mass spectrometry. Results In total, 15 proteins differed significantly between the groups. The levels of leucine-rich alpha-2-glycoprotein, haptoglobin, complement factor B, serotransferrin, one isoform of kininogen, one isoform of alpha-1-antitrypsin, and two isoforms of hemopexin were higher in farmers with MSD than in referents. On the other hand, the levels of alpha-2-HS-glycoprotein, alpha-1B-glycoprotein, vitamin D- binding protein, apolipoprotein A1, antithrombin, one isoform of kininogen, and one isoform of alpha-1-antitrypsin were lower in farmers than in referents. Many of the identified proteins are known to be involved in inflammation. Conclusions Farmers with MSD had altered plasma levels of protein biomarkers compared to the referents, indicating that farmers with MSD may be subject to a more systemic inflammation. It is possible that the identified differences of proteins may give clues to the biochemical changes occurring during the development and progression of MSD in farmers, and that one or several of these protein biomarkers might eventually be used to identify and prevent work-related MSD. Electronic supplementary material The online version of this article (doi:10.1186/s12891-016-1059-y) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Niu X, Lu C, Xiao C, Ge N, Jiang M, Li L, Bian Y, Xu G, Bian Z, Zhang G, Lu A. The Crosstalk of Pathways Involved in Immune Response Maybe the Shared Molecular Basis of Rheumatoid Arthritis and Type 2 Diabetes. PLoS One 2015; 10:e0134990. [PMID: 26252209 PMCID: PMC4529222 DOI: 10.1371/journal.pone.0134990] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/15/2015] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) and Type 2 diabetes (T2D) are both systemic diseases linked with altered immune response, moderate mortality when present together. The treatment for both RA and T2D are not satisfied, partly because of the linkage between them has not yet been appreciated. A comprehensive study for the potential associations between the two disorders is needed. In this study, we used RNA sequencing to explore the differently expressed genes (DEGs) in peripheral blood mononuclear cells (PBMC) of 10 RA and 10 T2D patients comparing with 10 healthy volunteers (control). We used bioinformatics analysis and the Ingenuity Pathways Analysis (IPA) to predict the commonalities on signaling pathways and molecular networks between those two diseases. 212 DEGs in RA and 114 DEGs in T2D patients were identified compared with healthy controls, respectively. 32 DEGs were shared between the two comparisons. The top 10 shared pathways interacted in cross-talking networks, regulated by 5 shared predicted upstream regulators, leading to the activated immune response were explored, which was considered as partly of the association mechanism of this two disorders. These discoveries would be considered as new understanding on the associations between RA and T2D, and provide novel treatment or prevention strategy.
Collapse
Affiliation(s)
- Xuyan Niu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases,School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Cheng Xiao
- China-Japan Friendship Hospital, Beijing, China
| | - Na Ge
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqin Bian
- E-Institute of Chinese Traditional Internal Medicine, Shanghai Municipal Education Commission, Shanghai, China
| | - Gang Xu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases,School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhaoxiang Bian
- Institute for Advancing Translational Medicine in Bone & Joint Diseases,School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases,School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Aiping Lu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases,School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- E-Institute of Chinese Traditional Internal Medicine, Shanghai Municipal Education Commission, Shanghai, China
- * E-mail:
| |
Collapse
|
49
|
Gelber SE, Brent E, Redecha P, Perino G, Tomlinson S, Davisson RL, Salmon JE. Prevention of Defective Placentation and Pregnancy Loss by Blocking Innate Immune Pathways in a Syngeneic Model of Placental Insufficiency. THE JOURNAL OF IMMUNOLOGY 2015; 195:1129-38. [PMID: 26071558 DOI: 10.4049/jimmunol.1402220] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
Defective placentation and subsequent placental insufficiency lead to maternal and fetal adverse pregnancy outcome, but their pathologic mechanisms are unclear, and treatment remains elusive. The mildly hypertensive BPH/5 mouse recapitulates many features of human adverse pregnancy outcome, with pregnancies characterized by fetal loss, growth restriction, abnormal placental development, and defects in maternal decidual arteries. Using this model, we show that recruitment of neutrophils triggered by complement activation at the maternal/fetal interface leads to elevation in local TNF-α levels, reduction of the essential angiogenic factor vascular endothelial growth factor, and, ultimately, abnormal placentation and fetal death. Blockade of complement with inhibitors specifically targeted to sites of complement activation, depletion of neutrophils, or blockade of TNF-α improves spiral artery remodeling and rescues pregnancies. These data underscore the importance of innate immune system activation in the pathogenesis of placental insufficiency and identify novel methods for treatment of pregnancy loss mediated by abnormal placentation.
Collapse
Affiliation(s)
- Shari E Gelber
- Department of Obstetrics and Gynecology, Weill Cornell Medical Center, New York, NY 10065
| | - Elyssa Brent
- Department of Obstetrics and Gynecology, Weill Cornell Medical Center, New York, NY 10065
| | - Patricia Redecha
- Department of Medicine, Hospital for Special Surgery, Weill Cornell Medical Center, New York, NY 10021
| | - Giorgio Perino
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, NY 10021
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401
| | - Robin L Davisson
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853; and Department of Cell and Developmental Biology, Weill Cornell Medical Center, New York, NY 10065
| | - Jane E Salmon
- Department of Medicine, Hospital for Special Surgery, Weill Cornell Medical Center, New York, NY 10021;
| |
Collapse
|
50
|
Danks L, Komatsu N, Guerrini MM, Sawa S, Armaka M, Kollias G, Nakashima T, Takayanagi H. RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann Rheum Dis 2015; 75:1187-95. [PMID: 26025971 DOI: 10.1136/annrheumdis-2014-207137] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/01/2015] [Indexed: 11/04/2022]
Abstract
OBJECTIVE RANKL is mainly expressed by synovial fibroblasts and T cells within the joints of rheumatoid arthritis patients. The relative importance of RANKL expression by these cell types for the formation of bone erosions is unclear. We therefore aimed to quantify the contribution of RANKL by each cell type to osteoclast differentiation and bone destruction during inflammatory arthritis. METHODS RANKL was specifically deleted in T cells (Tnfsf11(flox/Δ) Lck-Cre), in collagen VI expressing cells including synovial fibroblasts (Tnfsf11(flox/Δ) Col6a1-Cre) and in collagen II expressing cells including articular chondrocytes (Tnfsf11(flox/Δ) Col2a1-Cre). Erosive disease was induced using the collagen antibody-induced arthritis (CAIA) and collagen-induced arthritis (CIA) models. Osteoclasts and cartilage degradation were assessed by histology and bone erosions were assessed by micro-CT. RESULTS The inflammatory joint score during CAIA was equivalent in all mice regardless of cell-targeted deletion of RANKL. Significant increases in osteoclast numbers and bone erosions were observed in both the Tnfsf11(flox/Δ) and the Tnfsf11(flox/Δ) Lck-Cre groups during CAIA; however, the Tnfsf11(flox/Δ) Col6a1-Cre mice showed significant protection against osteoclast formation and bone erosions. Similar results on osteoclast formation and bone erosions were obtained in CIA mice. The deletion of RANKL on any cell type did not prevent articular cartilage loss in either model of arthritis used. CONCLUSIONS The expression of RANKL on synovial fibroblasts rather than T cells is predominantly responsible for the formation of osteoclasts and erosions during inflammatory arthritis. Synovial fibroblasts would be the best direct target in RANKL inhibition therapies.
Collapse
Affiliation(s)
- Lynett Danks
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan Explorative Research for Advanced Technology (ERATO) Program, Japan Science and Technology Agency (JST), Takayanagi Osteonetwork Project, Tokyo, Japan
| | - Noriko Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Matteo M Guerrini
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan Explorative Research for Advanced Technology (ERATO) Program, Japan Science and Technology Agency (JST), Takayanagi Osteonetwork Project, Tokyo, Japan
| | - Shinichiro Sawa
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan Explorative Research for Advanced Technology (ERATO) Program, Japan Science and Technology Agency (JST), Takayanagi Osteonetwork Project, Tokyo, Japan
| | - Marietta Armaka
- Institute of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - George Kollias
- Institute of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Tomoki Nakashima
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan Explorative Research for Advanced Technology (ERATO) Program, Japan Science and Technology Agency (JST), Takayanagi Osteonetwork Project, Tokyo, Japan
| |
Collapse
|