1
|
Entrup GP, Unadkat A, Warheit-Niemi HI, Thomas B, Gurczynski SJ, Cui Y, Smith AM, Gallagher KA, Moore BB, Singer K. Obesity Inhibits Alveolar Macrophage Responses to Pseudomonas aeruginosa Pneumonia via Upregulation of Prostaglandin E2 in Male, but Not Female, Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:317-327. [PMID: 38905107 PMCID: PMC11250913 DOI: 10.4049/jimmunol.2400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/09/2024] [Indexed: 06/23/2024]
Abstract
Obesity is associated with increased morbidity and mortality during bacterial pneumonia. Cyclooxygenase-2 (COX-2) and PGE2 have been shown to be upregulated in patients who are obese. In this study, we investigated the role of obesity and PGE2 in bacterial pneumonia and how inhibition of PGE2 improves antibacterial functions of macrophages. C57BL/6J male and female mice were fed either a normal diet (ND) or high-fat diet (HFD) for 16 wk. After this time, animals were infected with Pseudomonas aeruginosa in the lung. In uninfected animals, alveolar macrophages were extracted for either RNA analysis or to be cultured ex vivo for functional analysis. HFD resulted in changes in immune cell numbers in both noninfected and infected animals. HFD animals had increased bacterial burden compared with ND animals; however, male HFD animals had higher bacterial burden compared with HFD females. Alveolar macrophages from HFD males had decreased ability to phagocytize and kill bacteria and were shown to have increased cyclooxygenase-2 and PGE2. Treating male, but not female, alveolar macrophages with PGE2 leads to increases in cAMP and decreased bacterial phagocytosis. Treatment with lumiracoxib-conjugated nanocarriers targeting alveolar macrophages improves bacterial phagocytosis and clearance in both ND and HFD male animals. Our study highlights that obesity leads to worse morbidity during bacterial pneumonia in male mice because of elevated PGE2. In addition, we uncover a sex difference in both obesity and infection, because females produce high basal PGE2 but because of a failure to signal via cAMP do not display impaired phagocytosis.
Collapse
Affiliation(s)
| | - Aayush Unadkat
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI
| | | | - Brooke Thomas
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI
| | - Stephen J Gurczynski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | - Yuxiao Cui
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Champaign, IL
| | - Andrew M Smith
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Champaign, IL
| | | | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | | |
Collapse
|
2
|
Lin S, Wang Q, Huang X, Feng J, Wang Y, Shao T, Deng X, Cao Y, Chen X, Zhou M, Zhao C. Wounds under diabetic milieu: The role of immune cellar components and signaling pathways. Biomed Pharmacother 2023; 157:114052. [PMID: 36462313 DOI: 10.1016/j.biopha.2022.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
A major challenge in the field of diabetic wound healing is to confirm the body's intrinsic mechanism that could sense the immune system damage promptly and protect the wound from non-healing. Accumulating literature indicates that macrophage, a contributor to prolonged inflammation occurring at the wound site, might play such a role in hindering wound healing. Likewise, other immune cell dysfunctions, such as persistent neutrophils and T cell infection, may also lead to persistent oxidative stress and inflammatory reaction during diabetic wound healing. In this article, we discuss recent advances in the immune cellular components in wounds under the diabetic milieu, and the role of key signaling mechanisms that compromise the function of immune cells leading to persistent wound non-healing.
Collapse
Affiliation(s)
- Siyuan Lin
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qixue Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoting Huang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Tengteng Shao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xiaofei Deng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xinghua Chen
- Jinshan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
3
|
Zhou X, Moore BB. Experimental Models of Infectious Pulmonary Complications Following Hematopoietic Cell Transplantation. Front Immunol 2021; 12:718603. [PMID: 34484223 PMCID: PMC8415416 DOI: 10.3389/fimmu.2021.718603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
Pulmonary infections remain a major cause of morbidity and mortality in hematopoietic cell transplantation (HCT) recipients. The prevalence and type of infection changes over time and is influenced by the course of immune reconstitution post-transplant. The interaction between pathogens and host immune responses is complex in HCT settings, since the conditioning regimens create periods of neutropenia and immunosuppressive drugs are often needed to prevent graft rejection and limit graft-versus-host disease (GVHD). Experimental murine models of transplantation are valuable tools for dissecting the procedure-related alterations to innate and adaptive immunity. Here we review mouse models of post-HCT infectious pulmonary complications, primarily focused on three groups of pathogens that frequently infect HCT recipients: bacteria (often P. aeruginosa), fungus (primarily Aspergillus fumigatus), and viruses (primarily herpesviruses). These mouse models have advanced our knowledge regarding how the conditioning and HCT process negatively impacts innate immunity and have provided new potential strategies of managing the infections. Studies using mouse models have also validated clinical observations suggesting that prior or occult infections are a potential etiology of noninfectious pulmonary complications post-HCT as well.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Dept. of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States.,Division of Pulmonary and Critical Care Medicine, Dept. of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Bethany B Moore
- Dept. of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States.,Division of Pulmonary and Critical Care Medicine, Dept. of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Zinter MS, Hume JR. Effects of Hematopoietic Cell Transplantation on the Pulmonary Immune Response to Infection. Front Pediatr 2021; 9:634566. [PMID: 33575235 PMCID: PMC7871005 DOI: 10.3389/fped.2021.634566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Pulmonary infections are common in hematopoietic cell transplant (HCT) patients of all ages and are associated with high levels of morbidity and mortality. Bacterial, viral, fungal, and parasitic pathogens are all represented as causes of infection. The lung mounts a complex immune response to infection and this response is significantly affected by the pre-HCT conditioning regimen, graft characteristics, and ongoing immunomodulatory therapy. We review the published literature, including animal models as well as human data, to describe what is known about the pulmonary immune response to infection in HCT recipients. Studies have focused on the pulmonary immune response to Aspergillus fumigatus, gram-positive and gram-negative bacteria, and viruses, and show a range of defects associated with both the innate and adaptive immune responses after HCT. There are still many open areas for research, to delineate novel therapeutic targets for pulmonary infections as well as to explore linkages to non-infectious inflammatory lung conditions.
Collapse
Affiliation(s)
- Matt S. Zinter
- Department of Pediatrics, Divisions of Critical Care and Bone Marrow Transplantation, University of California, San Francisco, San Francisco, CA, United States
| | - Janet R. Hume
- Department of Pediatrics, Division of Critical Care Medicine, University of Minnesota Medical School, Minnesota, MN, United States
| |
Collapse
|
5
|
Zhang T, Dai Y, Zhang L, Tian Y, Li Z, Wang J. Effects of Edible Oils with Different n-6/n-3 PUFA Ratios on Articular Cartilage Degeneration via Regulating the NF-κB Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12641-12650. [PMID: 33136410 DOI: 10.1021/acs.jafc.0c05240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Osteoarthritis (OA), a common chronic disease, is characterized by articular cartilage degeneration and inflammation. Recent studies report that n-3 polyunsaturated fatty acids (PUFAs) exhibit protective effects against OA, while n-6 PUFAs are more likely to damage cartilage. However, the effects of edible oils with different n-6/n-3 PUFA ratios on OA are rarely reported. This study investigates the effect of linseed oil (LO), soybean oil (SO), and peanut oil (PO) on cartilage changes in mice joints following destabilization of the medial meniscus. We determined the n-6/n-3 PUFA ratios of LO, SO, and PO used in this experiment to be 1:3.85, 9.15:1, and 372.73:1, respectively. After 12 weeks of LO or SO feeding, OA mice showed increased cartilage thickness and decreased TNF-α in both the serum and cartilage, whereas no improvement was found in the PO group. This may be due to the fact that LO and SO optimized the fatty acid composition of articular cartilage. We further demonstrated that LO or SO activated GPR120 and attenuated EP4, which was followed by inhibition of the NFκB pathway and its downstream matrix-degrading enzymes: MMP13 and ADAMTS5. In conclusion, edible oils with low n-6/n-3 PUFA retard OA progression via inhibiting the NFκB pathway. This study provides a dietary guidance for OA patients.
Collapse
Affiliation(s)
- Tianqi Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yufeng Dai
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Lei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yingying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhuo Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
6
|
Norel X, Sugimoto Y, Ozen G, Abdelazeem H, Amgoud Y, Bouhadoun A, Bassiouni W, Goepp M, Mani S, Manikpurage HD, Senbel A, Longrois D, Heinemann A, Yao C, Clapp LH. International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E 2 Receptors (EP1-4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacol Rev 2020; 72:910-968. [PMID: 32962984 PMCID: PMC7509579 DOI: 10.1124/pr.120.019331] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.
Collapse
Affiliation(s)
- Xavier Norel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yukihiko Sugimoto
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Gulsev Ozen
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Heba Abdelazeem
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yasmine Amgoud
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amel Bouhadoun
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Wesam Bassiouni
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Marie Goepp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Salma Mani
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Hasanga D Manikpurage
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amira Senbel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Dan Longrois
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Akos Heinemann
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Chengcan Yao
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Lucie H Clapp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| |
Collapse
|
7
|
Davis FM, Tsoi LC, Wasikowski R, denDekker A, Joshi A, Wilke C, Deng H, Wolf S, Obi A, Huang S, Billi AC, Robinson S, Lipinski J, Melvin WJ, Audu CO, Weidinger S, Kunkel SL, Smith A, Gudjonsson JE, Moore BB, Gallagher KA. Epigenetic regulation of the PGE2 pathway modulates macrophage phenotype in normal and pathologic wound repair. JCI Insight 2020; 5:138443. [PMID: 32879137 PMCID: PMC7526451 DOI: 10.1172/jci.insight.138443] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Macrophages are a primary immune cell involved in inflammation, and their cell plasticity allows for transition from an inflammatory to a reparative phenotype and is critical for normal tissue repair following injury. Evidence suggests that epigenetic alterations play a critical role in establishing macrophage phenotype and function during normal and pathologic wound repair. Here, we find in human and murine wound macrophages that cyclooxygenase 2/prostaglandin E2 (COX-2/PGE2) is elevated in diabetes and regulates downstream macrophage-mediated inflammation and host defense. Using single-cell RNA sequencing of human wound tissue, we identify increased NF-κB-mediated inflammation in diabetic wounds and show increased COX-2/PGE2 in diabetic macrophages. Further, we identify that COX-2/PGE2 production in wound macrophages requires epigenetic regulation of 2 key enzymes in the cytosolic phospholipase A2/COX-2/PGE2 (cPLA2/COX-2/PGE2) pathway. We demonstrate that TGF-β-induced miRNA29b increases COX-2/PGE2 production via inhibition of DNA methyltransferase 3b-mediated hypermethylation of the Cox-2 promoter. Further, we find mixed-lineage leukemia 1 (MLL1) upregulates cPLA2 expression and drives COX-2/PGE2. Inhibition of the COX-2/PGE2 pathway genetically (Cox2fl/fl Lyz2Cre+) or with a macrophage-specific nanotherapy targeting COX-2 in tissue macrophages reverses the inflammatory macrophage phenotype and improves diabetic tissue repair. Our results indicate the epigenetically regulated PGE2 pathway controls wound macrophage function, and cell-targeted manipulation of this pathway is feasible to improve diabetic wound repair.
Collapse
Affiliation(s)
- Frank M Davis
- Section of Vascular Surgery, Department of Surgery.,Department of Microbiology and Immunology
| | | | | | | | - Amrita Joshi
- Section of Vascular Surgery, Department of Surgery
| | - Carol Wilke
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hongping Deng
- Department of Bioengineering, University of Illinois, Champaign, Illinois, USA
| | - Sonya Wolf
- Section of Vascular Surgery, Department of Surgery
| | - Andrea Obi
- Section of Vascular Surgery, Department of Surgery
| | - Steven Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | - Jay Lipinski
- Section of Vascular Surgery, Department of Surgery
| | | | | | - Stephan Weidinger
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Steven L Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew Smith
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Bethany B Moore
- Department of Microbiology and Immunology.,Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Katherine A Gallagher
- Section of Vascular Surgery, Department of Surgery.,Department of Microbiology and Immunology
| |
Collapse
|
8
|
Warheit-Niemi HI, Hult EM, Moore BB. A pathologic two-way street: how innate immunity impacts lung fibrosis and fibrosis impacts lung immunity. Clin Transl Immunology 2019; 8:e1065. [PMID: 31293783 PMCID: PMC6593479 DOI: 10.1002/cti2.1065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Lung fibrosis is characterised by the accumulation of extracellular matrix within the lung and is secondary to both known and unknown aetiologies. This accumulation of scar tissue limits gas exchange causing respiratory insufficiency. The pathogenesis of lung fibrosis is poorly understood, but immunologic‐based treatments have been largely ineffective. Despite this, accumulating evidence suggests that innate immune cells and receptors play important modulatory roles in the initiation and propagation of the disease. Paradoxically, while innate immune signalling may be important for the pathogenesis of fibrosis, there is also evidence to suggest that innate immune function against pathogens may be impaired, leading to dysregulated and/or impaired host defence. This review summarises the evidence for this pathologic two‐way street, highlights new concepts of pathogenesis and recommends future directions for research emphasis.
Collapse
Affiliation(s)
| | - Elissa M Hult
- Department of Molecular and Integrative Physiology University of Michigan Ann Arbor MI USA
| | - Bethany B Moore
- Department of Microbiology and Immunology University of Michigan Ann Arbor MI USA.,Department of Internal Medicine Division of Pulmonary and Critical Care Medicine University of Michigan Ann Arbor MI USA
| |
Collapse
|
9
|
Chandrasekharan JA, Sharma-Walia N. Arachidonic Acid Derived Lipid Mediators Influence Kaposi's Sarcoma-Associated Herpesvirus Infection and Pathogenesis. Front Microbiol 2019; 10:358. [PMID: 30915039 PMCID: PMC6422901 DOI: 10.3389/fmicb.2019.00358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/11/2019] [Indexed: 12/30/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) infection, particularly latent infection is often associated with inflammation. The arachidonic acid pathway, the home of several inflammation and resolution associated lipid mediators, is widely altered upon viral infections. Several in vitro studies show that these lipid mediators help in the progression of viral pathogenesis. This review summarizes the findings related to human herpesvirus KSHV infection and arachidonic acid pathway metabolites. KSHV infection has been shown to promote inflammation by upregulating cyclooxygenase-2 (COX-2), 5 lipoxygenase (5LO), and their respective metabolites prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) to promote latency and an inflammatory microenvironment. Interestingly, the anti-inflammatory lipid mediator lipoxin is downregulated during KSHV infection to facilitate infected cell survival. These studies aid in understanding the role of arachidonic acid pathway metabolites in the progression of viral infection, the host inflammatory response, and pathogenesis. With limited therapeutic options to treat KSHV infection, use of inhibitors to these inflammatory metabolites and their synthetic pathways or supplementing anti-inflammatory lipid mediators could be an effective alternative therapeutic.
Collapse
Affiliation(s)
- Jayashree A Chandrasekharan
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Neelam Sharma-Walia
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
10
|
Rogers LM, Anders AP, Doster RS, Gill EA, Gnecco JS, Holley JM, Randis TM, Ratner AJ, Gaddy JA, Osteen K, Aronoff DM. Decidual stromal cell-derived PGE 2 regulates macrophage responses to microbial threat. Am J Reprod Immunol 2018; 80:e13032. [PMID: 30084522 DOI: 10.1111/aji.13032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/16/2018] [Indexed: 12/30/2022] Open
Abstract
PROBLEM Bacterial chorioamnionitis causes adverse pregnancy outcomes, yet host-microbial interactions are not well characterized within gestational membranes. The decidua, the outermost region of the membranes, is a potential point of entry for bacteria ascending from the vagina to cause chorioamnionitis. We sought to determine whether paracrine communication between decidual stromal cells and macrophages shaped immune responses to microbial sensing. METHOD OF STUDY Decidual cell-macrophage interactions were modeled in vitro utilizing decidualized, telomerase-immortalized human endometrial stromal cells (dTHESCs) and phorbol ester-differentiated THP-1 macrophage-like cells. The production of inflammatory mediators in response to LPS was monitored by ELISA for both cell types, while phagocytosis of bacterial pathogens (Escherichia coli and Group B Streptococcus (GBS)) was measured in THP-1 cells or primary human placental macrophages. Diclofenac, a non-selective cyclooxygenase inhibitor, and prostaglandin E2 (PGE2 ) were utilized to interrogate prostaglandins as decidual cell-derived paracrine immunomodulators. A mouse model of ascending chorioamnionitis caused by GBS was utilized to assess the colocalization of bacteria and macrophages in vivo and assess PGE2 production. RESULTS In response to LPS, dTHESC and THP-1 coculture demonstrated enhancement of most inflammatory mediators, but a potent suppression of macrophage TNF-α generation was observed. This appeared to reflect a paracrine-mediated effect of decidual cell-derived PGE2 . In mice with GBS chorioamnionitis, macrophages accumulated at sites of bacterial invasion with increased PGE2 in amniotic fluid, suggesting such paracrine effects might hold relevance in vivo. CONCLUSION These data suggest key roles for decidual stromal cells in modulating tissue responses to microbial threat through release of PGE2 .
Collapse
Affiliation(s)
- Lisa M Rogers
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anjali P Anders
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Ryan S Doster
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Juan S Gnecco
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jacob M Holley
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tara M Randis
- Department of Pediatrics, New York University School of Medicine, New York, New York.,Department of Microbiology, New York University School of Medicine, New York, New York
| | - Adam J Ratner
- Department of Pediatrics, New York University School of Medicine, New York, New York.,Department of Microbiology, New York University School of Medicine, New York, New York
| | - Jennifer A Gaddy
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Veteran Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee
| | - Kevin Osteen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Veteran Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee
| | - David M Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
11
|
Staudt MR, Salit J, Kaner RJ, Hollmann C, Crystal RG. Altered lung biology of healthy never smokers following acute inhalation of E-cigarettes. Respir Res 2018; 19:78. [PMID: 29754582 PMCID: PMC5950177 DOI: 10.1186/s12931-018-0778-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Background Little is known about health risks associated with electronic cigarette (EC) use although EC are rising in popularity and have been advocated as a means to quit smoking cigarettes. Methods Ten never-smokers, without exposure history to tobacco products or EC, were assessed at baseline with questionnaire, chest X-ray, lung function, plasma levels of endothelial microparticles (EMP), and bronchoscopy to obtain small airway epithelium (SAE) and alveolar macrophages (AM). One week later, subjects inhaled 10 puffs of “Blu” brand EC, waited 30 min, then another 10 puff; n = 7 were randomized to EC with nicotine and n = 3 to EC without nicotine to assess biological responses in healthy, naive individuals. Results Two hr. post-EC exposure, subjects were again assessed as at baseline. No significant changes in clinical parameters were observed. Biological changes were observed compared to baseline, including altered transcriptomes of SAE and AM for all subjects and elevated plasma EMP levels following inhalation of EC with nicotine. Conclusions This study provides in vivo human data demonstrating that acute inhalation of EC aerosols dysregulates normal human lung homeostasis in a limited cohort of healthy naïve individuals. These observations have implications to new EC users, nonsmokers exposed to secondhand EC aerosols and cigarette smokers using EC to quit smoking. Trial registration ClinicalTrials.gov NCT01776398 (registered 10/12/12), NCT02188511 (registered 7/2/14). Electronic supplementary material The online version of this article (10.1186/s12931-018-0778-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle R Staudt
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, USA
| | - Jacqueline Salit
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, USA
| | - Robert J Kaner
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, USA
| | - Charleen Hollmann
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, USA.
| |
Collapse
|
12
|
Abstract
The body is exposed to foreign pathogens every day, but remarkably, most pathogens are effectively cleared by the innate immune system without the need to invoke the adaptive immune response. Key cellular components of the innate immune system include macrophages and neutrophils and the recruitment and function of these cells are tightly regulated by chemokines and cytokines in the tissue space. Innate immune responses are also known to regulate development of adaptive immune responses often via the secretion of various cytokines. In addition to these protein regulators, numerous lipid mediators can also influence innate and adaptive immune functions. In this review, we cover one particular lipid regulator, prostaglandin E2 (PGE2) and describe its synthesis and signaling and what is known about the ability of this lipid to regulate immunity and host defense against viral, fungal and bacterial pathogens.
Collapse
Affiliation(s)
| | - Bethany B Moore
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Elevated prostaglandin E 2 post-bone marrow transplant mediates interleukin-1β-related lung injury. Mucosal Immunol 2018; 11:319-332. [PMID: 28589946 PMCID: PMC5720939 DOI: 10.1038/mi.2017.51] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/25/2017] [Indexed: 02/04/2023]
Abstract
Hematopoietic stem cell transplant (HSCT) treats or cures a variety of hematological and inherited disorders. Unfortunately, patients who undergo HSCT are susceptible to infections by a wide array of opportunistic pathogens. Pseudomonas aeruginosa bacteria can have life-threatening effects in HSCT patients by causing lung pathology that has been linked to high levels of the potent pro-inflammatory cytokine, interleukin-1β (IL-1β). Using a murine bone marrow transplant (BMT) model, we show that overexpression of prostaglandin E2 (PGE2) post-BMT signals via EP2 or EP4 to induce cyclic adenosine monophosphate (cAMP), which activates protein kinase A or the exchange protein activated by cAMP (Epac) to induce cAMP response element binding-dependent transcription of IL-1β leading to exacerbated lung injury in BMT mice. Induction of IL-1β by PGE2 is time and dose dependent. Interestingly, IL-1β processing post-P. aeruginosa infection occurs via the enzymatic activity of either caspase-1 or caspase-8. Furthermore, PGE2 can limit autophagy-mediated killing of P. aeruginosa in alveolar macrophages, yet autophagy does not have a role in PGE2-mediated upregulation of IL-1β. Reducing PGE2 levels with indomethacin improved bacterial clearance and reduced IL-1β-mediated acute lung injury in P. aeruginosa-infected BMT mice.
Collapse
|
14
|
Aoyagi T, Newstead MW, Zeng X, Nanjo Y, Peters-Golden M, Kaku M, Standiford TJ. Interleukin-36γ and IL-36 receptor signaling mediate impaired host immunity and lung injury in cytotoxic Pseudomonas aeruginosa pulmonary infection: Role of prostaglandin E2. PLoS Pathog 2017; 13:e1006737. [PMID: 29166668 PMCID: PMC5718565 DOI: 10.1371/journal.ppat.1006737] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 12/06/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative pathogen that can lead to severe infection associated with lung injury and high mortality. The interleukin (IL)-36 cytokines (IL-36α, IL-36β and IL-36γ) are newly described IL-1 like family cytokines that promote inflammatory response via binding to the IL-36 receptor (IL-36R). Here we investigated the functional role of IL-36 cytokines in the modulating of innate immune response against P. aeruginosa pulmonary infection. The intratracheal administration of flagellated cytotoxic P. aeruginosa (ATCC 19660) upregulated IL-36α and IL-36γ, but not IL-36β, in the lungs. IL-36α and IL-36γ were expressed in pulmonary macrophages (PMs) and alveolar epithelial cells in response to P. aeruginosa in vitro. Mortality after bacterial challenge in IL-36 receptor deficient (IL-36R-/-) mice and IL-36γ deficient (IL-36γ-/-) mice, but not IL-36α deficient mice, was significantly lower than that of wild type mice. Decreased mortality in IL-36R-/- mice and IL-36γ-/- mice was associated with reduction in bacterial burden in the alveolar space, bacterial dissemination, production of inflammatory cytokines and lung injury, without changes in lung leukocyte influx. Interestingly, IL-36γ enhanced the production of prostaglandin E2 (PGE2) during P. aeruginosa infection in vivo and in vitro. Treatment of PMs with recombinant IL-36γ resulted in impaired bacterial killing via PGE2 and its receptor; EP2. P. aeruginosa infected EP2 deficient mice or WT mice treated with a COX-2-specific inhibitor showed decreased bacterial burden and dissemination, but no change in lung injury. Finally, we observed an increase in IL-36γ, but not IL-36α, in the airspace and plasma of patients with P. aeruginosa-induced acute respiratory distress syndrome. Thus, IL-36γ and its receptor signal not only impaired bacterial clearance in a possible PGE2 dependent fashion but also mediated lung injury during P. aeruginosa infection.
Collapse
Affiliation(s)
- Tetsuji Aoyagi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Infection Control and Laboratory Diagnostics, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| | - Michael W. Newstead
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xianying Zeng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yuta Nanjo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mitsuo Kaku
- Department of Infection Control and Laboratory Diagnostics, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Theodore J. Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
15
|
Domingo-Gonzalez R, Martínez-Colón GJ, Smith AJ, Smith CK, Ballinger MN, Xia M, Murray S, Kaplan MJ, Yanik GA, Moore BB. Inhibition of Neutrophil Extracellular Trap Formation after Stem Cell Transplant by Prostaglandin E2. Am J Respir Crit Care Med 2016; 193:186-97. [PMID: 26417909 DOI: 10.1164/rccm.201501-0161oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RATIONALE Autologous and allogeneic hematopoietic stem cell transplant (HSCT) patients are susceptible to pulmonary infections, including bacterial pathogens, even after hematopoietic reconstitution. We previously reported that murine bone marrow transplant (BMT) neutrophils overexpress cyclooxygenase-2, overproduce prostaglandin E2 (PGE2), and exhibit defective intracellular bacterial killing. Neutrophil extracellular traps (NETs) are DNA structures that capture and kill extracellular bacteria and other pathogens. OBJECTIVES To determine whether NETosis was defective after transplant and if so, whether this was regulated by PGE2 signaling. METHODS Neutrophils isolated from mice and humans (both control and HSCT subjects) were analyzed for NETosis in response to various stimuli in the presence or absence of PGE2 signaling modifiers. MEASUREMENTS AND MAIN RESULTS NETs were visualized by immunofluorescence or quantified by Sytox Green fluorescence. Treatment of BMT or HSCT neutrophils with phorbol 12-myristate 13-acetate or rapamycin resulted in reduced NET formation relative to control cells. NET formation after BMT was rescued both in vitro and in vivo with cyclooxygenase inhibitors. Additionally, the EP2 receptor antagonist (PF-04418948) or the EP4 antagonist (AE3-208) restored NET formation in neutrophils isolated from BMT mice or HSCT patients. Exogenous PGE2 treatment limited NETosis of neutrophils collected from normal human volunteers and naive mice in an exchange protein activated by cAMP- and protein kinase A-dependent manner. CONCLUSIONS Our results suggest blockade of the PGE2-EP2 or EP4 signaling pathway restores NETosis after transplantation. Furthermore, these data provide the first description of a physiologic inhibitor of NETosis.
Collapse
Affiliation(s)
| | | | | | - Carolyne K Smith
- 1 Immunology Graduate Program.,3 Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland; and
| | - Megan N Ballinger
- 4 Pulmonary, Allergy, Critical Care and Sleep Division, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Meng Xia
- 5 Biostatistics Department, School of Public Health
| | - Susan Murray
- 5 Biostatistics Department, School of Public Health
| | - Mariana J Kaplan
- 3 Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland; and
| | - Gregory A Yanik
- 6 Department of Pediatrics, Division of Hematology-Oncology, Medical School
| | - Bethany B Moore
- 7 Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, and.,8 Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
16
|
Bone marrow transplantation alters lung antigen-presenting cells to promote TH17 response and the development of pneumonitis and fibrosis following gammaherpesvirus infection. Mucosal Immunol 2016; 9:610-20. [PMID: 26376362 PMCID: PMC4794430 DOI: 10.1038/mi.2015.85] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/31/2015] [Indexed: 02/04/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) efficacy is limited by numerous pulmonary complications. We developed a model of syngeneic bone marrow transplantion (BMT) followed by infection with murine gamma herpesvirus-68 that results in pneumonitis and fibrosis and mimics human "noninfectious" HSCT complications. BMT mice experience increased early lytic replication, but establish viral latency by 21 days post infection. CD4 T cells in BMT mice are skewed toward interleukin (IL)-17A rather than interferon (IFN)-γ production. Transplantation of bone marrow from Il-17a(-/-) donors or treatment with anti-IL-17A neutralization antibodies at late stages attenuates pneumonitis and fibrosis in infected BMT mice, suggesting that hematopoietic-derived IL-17A is essential for development of pathology. IL-17A directly influences activation and extracellular matrix production by lung mesenchymal cells. Lung CD11c+ cells of BMT mice secrete more transforming growth factor beta-β1, and pro-TH17 mRNAs for IL-23 and IL-6, and less TH1-promoting cytokine mRNA for IFN-γ but slightly more IL-12 mRNA in response to viral infection. Adoptive transfer of non-BMT lung CD11c-enriched cells restores robust TH1 response and suppresses aberrant TH17 response in BMT mice to improve lung pathology. Our data suggest that "noninfectious" HSCT lung complications may reflect preceding viral infections and demonstrate that IL-17A neutralization may offer therapeutic advantage even after disease onset.
Collapse
|
17
|
Dolan JM, Weinberg JB, O'Brien E, Abashian A, Procario MC, Aronoff DM, Crofford LJ, Peters-Golden M, Ward L, Mancuso P. Increased lethality and defective pulmonary clearance of Streptococcus pneumoniae in microsomal prostaglandin E synthase-1-knockout mice. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1111-20. [PMID: 27059285 DOI: 10.1152/ajplung.00220.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 03/31/2016] [Indexed: 01/14/2023] Open
Abstract
The production of prostaglandin E2 (PGE2) increases dramatically during pneumococcal pneumonia, and this lipid mediator impairs alveolar macrophage (AM)-mediated innate immune responses. Microsomal prostaglandin E synthase-1 (mPGES-1) is a key enzyme involved in the synthesis of PGE2, and its expression is enhanced during bacterial infections. Genetic deletion of mPGES-1 in mice results in diminished PGE2 production and elevated levels of other prostaglandins after infection. Since PGE2 plays an important immunoregulatory role during bacterial pneumonia we assessed the impact of mPGES-1 deletion in the host defense against pneumococcal pneumonia in vivo and in AMs in vitro. Wild-type (WT) and mPGES-1 knockout (KO) mice were challenged with Streptococcus pneumoniae via the intratracheal route. Compared with WT animals, we observed reduced survival and increased lung and spleen bacterial burdens in mPGES-1 KO mice 24 and 48 h after S. pneumoniae infection. While we found modest differences between WT and mPGES-1 KO mice in pulmonary cytokines, AMs from mPGES-1 KO mice exhibited defective killing of ingested bacteria in vitro that was associated with diminished inducible nitric oxide synthase expression and reduced nitric oxide (NO) synthesis. Treatment of AMs from mPGES-1 KO mice with an NO donor restored bacterial killing in vitro. These results suggest that mPGES-1 plays a critical role in bacterial pneumonia and that genetic ablation of this enzyme results in diminished pulmonary host defense in vivo and in vitro. These results suggest that specific inhibition of PGE2 synthesis by targeting mPGES-1 may weaken host defense against bacterial infections.
Collapse
Affiliation(s)
- Jennifer M Dolan
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Jason B Weinberg
- Department of Pediatrics and Communicable Disease and Microbiology and Immunology, School of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Edmund O'Brien
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Anya Abashian
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Megan C Procario
- Department of Pediatrics and Communicable Disease and Microbiology and Immunology, School of Medicine, University of Michigan, Ann Arbor, Michigan
| | - David M Aronoff
- Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Leslie J Crofford
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, Michigan; Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan; and
| | - Lindsay Ward
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Peter Mancuso
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan; and Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
18
|
Fourie R, Ells R, Swart CW, Sebolai OM, Albertyn J, Pohl CH. Candida albicans and Pseudomonas aeruginosa Interaction, with Focus on the Role of Eicosanoids. Front Physiol 2016; 7:64. [PMID: 26955357 PMCID: PMC4767902 DOI: 10.3389/fphys.2016.00064] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/11/2016] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is commonly found in mixed infections with Pseudomonas aeruginosa, especially in the lungs of cystic fibrosis (CF) patients. Both of these opportunistic pathogens are able to form resistant biofilms and frequently infect immunocompromised individuals. The interaction between these two pathogens, which includes physical interaction as well as secreted factors, is mainly antagonistic. In addition, research suggests considerable interaction with their host, especially with immunomodulatory lipid mediators, termed eicosanoids. Candida albicans and Pseudomonas aeruginosa are both able to utilize arachidonic acid (AA), liberated from the host cells during infection, to form eicosanoids. The production of these eicosanoids, such as Prostaglandin E2, by the host and the pathogens may affect the dynamics of polymicrobial infection and the outcome of infections. It is of considerable importance to elucidate the role of host-produced, as well as pathogen-produced eicosanoids in polymicrobial infection. This review will focus on in vitro as well as in vivo interaction between C. albicans and P. aeruginosa, paying special attention to the role of eicosanoids in the cross-talk between host and the pathogens.
Collapse
Affiliation(s)
- Ruan Fourie
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Ruan Ells
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa; National Control Laboratory, University of the Free StateBloemfontein, South Africa
| | - Chantel W Swart
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Olihile M Sebolai
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Jacobus Albertyn
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Carolina H Pohl
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| |
Collapse
|
19
|
Prostaglandin E2 Production and T Cell Function in Mouse Adenovirus Type 1 Infection following Allogeneic Bone Marrow Transplantation. PLoS One 2015; 10:e0139235. [PMID: 26407316 PMCID: PMC4583312 DOI: 10.1371/journal.pone.0139235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/10/2015] [Indexed: 11/19/2022] Open
Abstract
Adenovirus infections are important complications of bone marrow transplantation (BMT). We demonstrate delayed clearance of mouse adenovirus type 1 (MAV-1) from lungs of mice following allogeneic BMT. Virus-induced prostaglandin E2 (PGE2) production was greater in BMT mice than in untransplanted controls, but BMT using PGE2-deficient donors or recipients failed to improve viral clearance, and treatment of untransplanted mice with the PGE2 analog misoprostol did not affect virus clearance. Lymphocyte recruitment to the lungs was not significantly affected by BMT. Intracellular cytokine staining of lung lymphocytes demonstrated impaired production of INF-γ and granzyme B by cells from BMT mice, and production of IFN-γ, IL-2, IL-4, and IL-17 following ex vivo stimulation was impaired in lymphocytes obtained from lungs of BMT mice. Viral clearance was not delayed in untransplanted INF-γ-deficient mice, suggesting that delayed viral clearance in BMT mice was not a direct consequence of impaired IFN-γ production. However, lung viral loads were higher in untransplanted CD8-deficient mice than in controls, suggesting that delayed MAV-1 clearance in BMT mice is due to defective CD8 T cell function. We did not detect significant induction of IFN-β expression in lungs of BMT mice or untransplanted controls, and viral clearance was not delayed in untransplanted type I IFN-unresponsive mice. We conclude that PGE2 overproduction in BMT mice is not directly responsible for delayed viral clearance. PGE2-independent effects on CD8 T cell function likely contribute to the inability of BMT mice to clear MAV-1 from the lungs.
Collapse
|
20
|
Johansson JU, Woodling NS, Shi J, Andreasson KI. Inflammatory Cyclooxygenase Activity and PGE 2 Signaling in Models of Alzheimer's Disease. ACTA ACUST UNITED AC 2015; 11:125-131. [PMID: 28413375 PMCID: PMC5384338 DOI: 10.2174/1573395511666150707181414] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/03/2015] [Accepted: 04/19/2015] [Indexed: 11/28/2022]
Abstract
The inflammatory response is a fundamental driving force in the pathogenesis of Alzheimer’s disease (AD). In the setting of accumulating immunogenic Aß peptide assemblies, microglia, the innate immune cells of the brain, generate a non-resolving immune response and fail to adequately clear accumulating Aß peptides, accelerating neuronal and synaptic injury. Pathological, biomarker, and imaging studies point to a prominent role of the innate immune response in AD development, and the molecular components of this response are beginning to be unraveled. The inflammatory cyclooxygenase-PGE2 pathway is implicated in pre-clinical development of AD, both in epidemiology of normal aging populations and in transgenic mouse models of Familial AD. The cyclooxygenase-PGE2 pathway modulates the inflammatory response to accumulating Aß peptides through actions of specific E-prostanoid G-protein coupled receptors.
Collapse
Affiliation(s)
- Jenny U Johansson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Present address: SRI International, Menlo Park, CA, USA
| | - Nathaniel S Woodling
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Present address: Institute of Healthy Ageing, University College London, London, UK
| | - Ju Shi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Present address: True North Therapeutics, South San Francisco, CA, USA
| | - Katrin I Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Mao YX, Xu JF, Seeley EJ, Tang XD, Xu LL, Zhu YG, Song YL, Qu JM. Adipose Tissue-Derived Mesenchymal Stem Cells Attenuate Pulmonary Infection Caused by Pseudomonas aeruginosa via Inhibiting Overproduction of Prostaglandin E2. Stem Cells 2015; 33:2331-42. [PMID: 25788456 DOI: 10.1002/stem.1996] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/19/2015] [Indexed: 12/12/2022]
Abstract
RATIONALE New strategies for treating Pseudomonas aeruginosa pulmonary infection are urgently needed. Adipose tissue-derived mesenchymal stem cells (ASCs) may have a potential therapeutic role in P. aeruginosa-induced pulmonary infection. METHODS The therapeutic and mechanistic effects of ASCs on P. aeruginosa pulmonary infection were evaluated in a murine model of P. aeruginosa pneumonia. RESULTS ASCs exhibited protective effects against P. aeruginosa pulmonary infection, evidenced by reduced bacterial burdens, inhibition of alveolar neutrophil accumulation, decreased levels of myeloperoxidase, macrophage inflammatory protein-2 and total proteins in broncho-alveolar lavage fluid (BALF), and attenuated severity of lung injury. ASCs had no effects on BALF and serum levels of keratinocyte growth factor or Ang-1. ASCs had no effects on the levels of insulin growth factor 1 (IGF-1) in BALF, but increased IGF-1 levels in serum. ASCs inhibited the overproduction of prostaglandin E2 (PGE2 ) by decreasing the expression of cyclooxygenase-2 (COX2) and enhancing the expression of 15-PGDH. In addition, the addition of exogenous PGE2 with ASCs abolished many of the protective effects of ASCs, and administrating PGE2 alone exacerbated lung infection. By inhibiting production of PGE2 , ASCs improved phagocytosis and the bactericidal properties of macrophages. Furthermore suppressing PGE2 signaling by COX2 inhibition or EP2 inhibition exhibited protective effects against pulmonary infection as well. CONCLUSIONS In a murine model of P. aeruginosa pneumonia, ASCs exhibited protective effects by inhibiting production of PGE2 , which subsequently improved phagocytosis and the bactericidal properties of macrophages. ASCs may provide a new strategy for managing pulmonary infection caused by P. aeruginosa.
Collapse
Affiliation(s)
- Yan-Xiong Mao
- Department of Pulmonary Medicine, Huadong Hospital and d, Fudan University, Shanghai, People's Republic of China
| | - Jin-Fu Xu
- Department of Pulmonary Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Eric J Seeley
- Department of Pulmonary and Critical Care Medicine, University of California, San Francisco, USA
| | - Xiao-Dan Tang
- Department of Pulmonary Medicine, Huadong Hospital and d, Fudan University, Shanghai, People's Republic of China
| | - Lu-Lu Xu
- Department of Pulmonary Medicine, Huadong Hospital and d, Fudan University, Shanghai, People's Republic of China
| | - Ying-Gang Zhu
- Department of Pulmonary Medicine, Huadong Hospital and d, Fudan University, Shanghai, People's Republic of China
| | - Yuan-Lin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jie-Ming Qu
- Department of Pulmonary Medicine, Huadong Hospital and d, Fudan University, Shanghai, People's Republic of China.,Department of Pulmonary Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Domingo-Gonzalez R, Wilke CA, Huang SK, Laouar Y, Brown JP, Freeman CM, Curtis JL, Yanik GA, Moore BB. Transforming growth factor-β induces microRNA-29b to promote murine alveolar macrophage dysfunction after bone marrow transplantation. Am J Physiol Lung Cell Mol Physiol 2014; 308:L86-95. [PMID: 25361568 DOI: 10.1152/ajplung.00283.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is complicated by pulmonary infections that manifest posttransplantation. Despite engraftment, susceptibility to infections persists long after reconstitution. Previous work using a murine bone marrow transplant (BMT) model implicated increased cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in promoting impaired alveolar macrophage (AM) responses. However, mechanisms driving COX-2 overexpression remained elusive. Previously, transforming growth factor-β (TGF-β) signaling after BMT was shown to promote hypomethylation of the COX-2 gene. Here, we provide mechanistic insight into how this occurs and show that TGF-β induces microRNA (miR)-29b while decreasing DNA methyltransferases (DNMT)1, DNMT3a, and DNMT3b in AMs after BMT. De novo DNMT3a and DNMT3b were decreased upon transient transfection of miR-29b, resulting in decreased methylation of the COX-2 promoter and induction of COX-2. As a consequence, miR-29b-driven upregulation of COX-2 promoted AM dysfunction, and transfection of BMT AMs with a miR-29b inhibitor rescued the bacterial-killing defect. MiR-29b-mediated defects in BMT AMs were dependent on increased levels of PGE2, as miR-29b-transfected AMs treated with a novel E prostanoid receptor 2 antagonist abrogated the impaired bacterial killing. We also demonstrate that patients that have undergone HSCT exhibit increased miR-29b; thus these studies highlight miR-29b in driving defective AM responses and identify this miRNA as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Carol A Wilke
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Steven K Huang
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Yasmina Laouar
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jeanette P Brown
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| | | | - Jeffrey L Curtis
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan; Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan; Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Gregory A Yanik
- Department of Pediatrics, Division of Hematology-Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Bethany B Moore
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan; Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan;
| |
Collapse
|
23
|
Ashley SL, Jegal Y, Moore TA, van Dyk LF, Laouar Y, Moore BB. γ-Herpes virus-68, but not Pseudomonas aeruginosa or influenza A (H1N1), exacerbates established murine lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2014; 307:L219-30. [PMID: 24879051 DOI: 10.1152/ajplung.00300.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Patients with idiopathic pulmonary fibrosis (IPF) often do worse following infection, but the cause of the decline is not fully understood. We previously demonstrated that infection with a murine gamma herpes virus (γHV-68) could exacerbate established lung fibrosis following administration of fluorescein isothiocyanate (McMillan et al. Am J Respir Crit Care Med 177: 771-780, 2008). In the present study, we anesthetized mice and injected saline or bleomycin intratracheally on day 0. On day 14, mice were anesthetized again and infected with either a Gram-negative bacteria (Pseudomonas aeruginosa), or with H1N1 or γHV-68 viruses. Measurements were then made on days 15, 21, or 35. We demonstrate that infection with P. aeruginosa does not exacerbate extracellular matrix deposition post-bleomycin. Furthermore, fibrotic mice are effectively able to clear P. aeruginosa infection. In contrast, bleomycin-treated mice develop worse lung fibrosis when infected with γHV-68, but not when infected with H1N1. The differential ability of γHV-68 to cause increased collagen deposition could not be explained by differences in inflammatory cell recruitment or whole lung chemokine and cytokine responses. Alveolar epithelial cells from γHV-68-infected mice displayed increased expression of TGFβ receptor 1, increased SMAD3 phosphorylation, and evidence of apoptosis measured by cleaved poly-ADP ribose polymerase (PARP). The ability of γHV-68 to augment fibrosis required the ability of the virus to reactivate from latency. This property appears unique to γHV-68, as the β-herpes virus, cytomegalovirus, did not have the same effect.
Collapse
Affiliation(s)
- Shanna L Ashley
- Immunology Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Yangjin Jegal
- Department of Internal Medicine, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Korea
| | - Thomas A Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan;
| | - Linda F van Dyk
- Departments of Microbiology and Immunology, University of Colorado, Denver, Colorado; and
| | - Yasmina Laouar
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Bethany B Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
24
|
Domingo-Gonzalez R, Moore BB. Innate Immunity Post-Hematopoietic Stem Cell Transplantation: Focus on Epigenetics. ACTA ACUST UNITED AC 2014; 5:189-197. [PMID: 26709355 DOI: 10.3233/nib-140079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epigenetic regulation of gene expression is important for normal biological processes like immune cell development, immune responses, and differentiation from hematopoietic stem cells. Furthermore, it is well understood that epigenetic mechanisms can include methylation, histone modification, and more recently, microRNAs. Interestingly, aberrant epigenetic modification can also promote pathology in many diseases like cancer. The effects of methylation on gene expression and its resulting phenotype have been extensively studied. In this review, we discuss the inhibition of innate immunity that occurs in humans and animal models post-stem cell transplant. In addition, we highlight the changes methylation and microRNA profiles have on regulating pulmonary innate immune responses in the context of hematopoietic stem cell transplantation in experimental animal models.
Collapse
Affiliation(s)
| | - Bethany B Moore
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA ; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Rodríguez M, Domingo E, Municio C, Alvarez Y, Hugo E, Fernández N, Sánchez Crespo M. Polarization of the innate immune response by prostaglandin E2: a puzzle of receptors and signals. Mol Pharmacol 2013; 85:187-97. [PMID: 24170779 DOI: 10.1124/mol.113.089573] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Eicosanoids tailor the innate immune response by supporting local inflammation and exhibiting immunomodulatory properties. Prostaglandin (PG) E2 is the most abundant eicosanoid in the inflammatory milieu due to the robust production elicited by pathogen-associated molecular patterns on cells of the innate immune system. The different functions and cell distribution of E prostanoid receptors explain the difficulty encountered thus far to delineate the actual role of PGE2 in the immune response. The biosynthesis of eicosanoids includes as the first step the Ca(2+)- and kinase-dependent activation of the cytosolic phospholipase A2, which releases arachidonic acid from membrane phospholipids, and later events depending on the transcriptional regulation of the enzymes of the cyclooxygenase routes, where PGE2 is the most relevant product. Acting in an autocrine/paracrine manner in macrophages, PGE2 induces a regulatory phenotype including the expression of interleukin (IL)-10, sphingosine kinase 1, and the tumor necrosis factor family molecule LIGHT. PGE2 also stabilizes the suppressive function of myeloid-derived suppressor cells, inhibits the release of IL-12 p70 by macrophages and dendritic cells, and may enhance the production of IL-23. PGE2 is a central component of the inflammasome-dependent induction of the eicosanoid storm that leads to massive loss of intravascular fluid, increases the mortality rate associated with coinfection by Candida ssp. and bacteria, and inhibits fungal phagocytosis. These effects have important consequences for the outcome of infections and the polarization of the immune response into the T helper cell types 2 and 17 and can be a clue to develop pharmacological tools to address infectious, autoimmune, and autoinflammatory diseases.
Collapse
Affiliation(s)
- Mario Rodríguez
- Department of Biochemistry and Molecular Biology, University of Valladolid, Valladolid, Spain (M.R., N.F.); and Institute of Biology and Molecular Genetics, Spanish National Research Council, Valladolid, Spain (E.D., C.M., Y.A., E.H., M.S.C.)
| | | | | | | | | | | | | |
Collapse
|
26
|
Yuan Z, Panchal D, Syed MA, Mehta H, Joo M, Hadid W, Sadikot RT. Induction of cyclooxygenase-2 signaling by Stomatococcus mucilaginosus highlights the pathogenic potential of an oral commensal. THE JOURNAL OF IMMUNOLOGY 2013; 191:3810-7. [PMID: 24018272 DOI: 10.4049/jimmunol.1300883] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stomatococcus mucilaginosus is an oral commensal that has been occasionally reported to cause severe infections in immunocompromised patients. There is no information about the pathogenic role of S. mucilaginosus in airway infections. In a cohort of 182 subjects with bronchiectasis, we found that 9% were colonized with S. mucilaginosus in their lower airways by culture growth from bronchoalveolar lavage. To address the pathogenic potential of S.mucilaginosus, we developed a murine model of S. mucilaginosus lung infection. Intratracheal injection of S. mucilaginosus in C57BL/6 mice resulted in a neutrophilic influx with production of proinflammatory cytokines, chemokines, and lipid mediators, mainly PGE₂ with induction of cyclooxygenase-2 (COX-2) in the lungs. Presence of TLR2 was necessary for induction of COX-2 and production of PGE₂ by S. mucilaginosus. TLR2-deficient mice showed an enhanced clearance of S. mucilaginosus compared with wild-type mice. Administration of PGE₂ to TLR2(-/-) mice resulted in impaired clearance of S. mucilaginosus, suggesting a key role for COX-2-induced PGE₂ production in immune response to S. mucilaginosus. Mechanistically, induction of COX-2 in macrophages was dependent on the p38-ERK/MAPK signaling pathway. Furthermore, mice treated with S. mucilaginosus and Pseudomonas aeruginosa showed an increased mortality compared with mice treated with PA103 or S. mucilaginosus alone. Inhibition of COX-2 significantly improved survival in mice infected with PA103 and S. mucilaginosus. These data provide novel insights into the bacteriology and personalized microbiome in patients with bronchiectasis and suggest a pathogenic role for S. mucilaginosus in patients with bronchiectasis.
Collapse
Affiliation(s)
- Zhihong Yuan
- Veterans Affairs Medical Center, Gainesville, FL 32610
| | | | | | | | | | | | | |
Collapse
|
27
|
Agard M, Asakrah S, Morici LA. PGE(2) suppression of innate immunity during mucosal bacterial infection. Front Cell Infect Microbiol 2013; 3:45. [PMID: 23971009 PMCID: PMC3748320 DOI: 10.3389/fcimb.2013.00045] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/30/2013] [Indexed: 12/28/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an important lipid mediator in inflammatory and immune responses during acute and chronic infections. Upon stimulation by various proinflammatory stimuli such as lipopolysaccharide (LPS), interleukin (IL)-1β, and tumor necrosis factor (TNF)-α, PGE2 synthesis is upregulated by the expression of cyclooxygenases. Biologically active PGE2 is then able to signal through four primary receptors to elicit a response. PGE2 is a critical molecule that regulates the activation, maturation, migration, and cytokine secretion of several immune cells, particularly those involved in innate immunity such as macrophages, neutrophils, natural killer cells, and dendritic cells. Both Gram-negative and Gram-positive bacteria can induce PGE2 synthesis to regulate immune responses during bacterial pathogenesis. This review will focus on PGE2 in innate immunity and how bacterial pathogens influence PGE2 production during enteric and pulmonary infections. The conserved ability of many bacterial pathogens to promote PGE2 responses during infection suggests a common signaling mechanism to deter protective pro-inflammatory immune responses. Inhibition of PGE2 production and signaling during infection may represent a therapeutic alternative to treat bacterial infections. Further study of the immunosuppressive effects of PGE2 on innate immunity will lead to a better understanding of potential therapeutic targets within the PGE2 pathway.
Collapse
Affiliation(s)
- Mallory Agard
- Department of Microbiology and Immunology, Tulane University School of Medicine New Orleans, LA 70119, USA
| | | | | |
Collapse
|
28
|
Mason KL, Rogers LM, Soares EM, Bani-Hashemi T, Erb Downward J, Agnew D, Peters-Golden M, Weinberg JB, Crofford LJ, Aronoff DM. Intrauterine group A streptococcal infections are exacerbated by prostaglandin E2. THE JOURNAL OF IMMUNOLOGY 2013; 191:2457-65. [PMID: 23913961 DOI: 10.4049/jimmunol.1300786] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Streptococcus pyogenes (Group A Streptococcus; GAS) is a major cause of severe postpartum sepsis, a re-emerging cause of maternal morbidity and mortality worldwide. Immunological alterations occur during pregnancy to promote maternofetal tolerance, which may increase the risk for puerperal infection. PGE2 is an immunomodulatory lipid that regulates maternofetal tolerance, parturition, and innate immunity. The extent to which PGE2 regulates host immune responses to GAS infections in the context of endometritis is unknown. To address this, both an in vivo mouse intrauterine (i.u.) GAS infection model and an in vitro human macrophage-GAS interaction model were used. In C57BL/6 mice, i.u. GAS inoculation resulted in local and systemic inflammatory responses and triggered extensive changes in the expression of eicosanoid pathway genes. The i.u. administration of PGE2 increased the mortality of infected mice, suppressed local IL-6 and IL-17A levels, enhanced neutrophilic inflammation, reduced uterine macrophage populations, and increased bacterial dissemination. A role for endogenous PGE2 in the modulation of antistreptococcal host defense was suggested, because mice lacking the genes encoding the microsomal PGE2 synthase-1 or the EP2 receptor were protected from death, as were mice treated with the EP4 receptor antagonist, GW627368X. PGE2 also regulated GAS-macrophage interactions. In GAS-infected human THP-1 (macrophage-like) cells, PGE2 inhibited the production of MCP-1 and TNF-α while augmenting IL-10 expression. PGE2 also impaired the phagocytic ability of human placental macrophages, THP-1 cells, and mouse peritoneal macrophages in vitro. Exploring the targeted disruption of PGE2 synthesis and signaling to optimize existing antimicrobial therapies against GAS may be warranted.
Collapse
Affiliation(s)
- Katie L Mason
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rogers LM, Thelen T, Fordyce K, Bourdonnay E, Lewis C, Yu H, Zhang J, Xie J, Serezani CH, Peters-Golden M, Aronoff DM. EP4 and EP2 receptor activation of protein kinase A by prostaglandin E2 impairs macrophage phagocytosis of Clostridium sordellii. Am J Reprod Immunol 2013; 71:34-43. [PMID: 23902376 DOI: 10.1111/aji.12153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/01/2013] [Indexed: 12/18/2022] Open
Abstract
PROBLEM Clostridium sordellii causes endometrial infections, but little is known regarding host defenses against this pathogen. METHOD OF STUDY We tested the hypothesis that the immunoregulatory lipid prostaglandin (PG) E2 suppresses human macrophage clearance of C. sordellii through receptor-induced increases in intracellular cyclic adenosine monophosphate (cAMP). The THP-1 macrophage cell line was used to quantify C. sordellii phagocytosis. RESULTS PGE2 increased cAMP levels, activated protein kinase A (PKA), and inhibited the class A scavenger receptor-dependent phagocytosis of C. sordellii. Activation of the EP2 and EP4 receptors increased intracellular cAMP and inhibited phagocytosis, with evidence favoring a more important role for EP4 over EP2. This was supported by EP receptor expression data and the use of pharmacological receptor antagonists. In addition, the PKA isoform RI appeared to be more important than RII in mediating the suppression of ingestion of C. sordellii. CONCLUSION The endogenous lipid mediator PGE2 impairs human innate immune responses against C. sordellii.
Collapse
Affiliation(s)
- Lisa M Rogers
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Domingo-Gonzalez R, Moore BB. Defective pulmonary innate immune responses post-stem cell transplantation; review and results from one model system. Front Immunol 2013; 4:126. [PMID: 23745124 PMCID: PMC3662877 DOI: 10.3389/fimmu.2013.00126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/13/2013] [Indexed: 01/14/2023] Open
Abstract
Infectious pulmonary complications limit the success of hematopoietic stem cell transplantation (HSCT) as a therapy for malignant and non-malignant disorders. Susceptibility to pathogens in both autologous and allogeneic HSCT recipients persists despite successful immune reconstitution. As studying the causal effects of these immune defects in the human population can be limiting, a bone marrow transplant (BMT) mouse model can be used to understand the defect in mounting a productive innate immune response post-transplantation. When syngeneic BMT is performed, this system allows the study of BMT-induced alterations in innate immune cell function that are independent of the confounding effects of immunosuppressive therapy and graft-versus-host disease. Studies from several laboratories, including our own show that pulmonary susceptibility to bacterial infections post-BMT are largely due to alterations in the lung alveolar macrophages. Changes in these cells post-BMT include cytokine and eicosanoid dysregulations, scavenger receptor alterations, changes in micro RNA profiles, and alterations in intracellular signaling molecules that limit bacterial phagocytosis and killing. The changes that occur highlight mechanisms that promote susceptibility to infections commonly afflicting HSCT recipients and provide insight into therapeutic targets that may improve patient outcomes post-HSCT.
Collapse
|
31
|
Asakrah S, Nieves W, Mahdi Z, Agard M, Zea AH, Roy CJ, Morici LA. Post-exposure therapeutic efficacy of COX-2 inhibition against Burkholderia pseudomallei. PLoS Negl Trop Dis 2013; 7:e2212. [PMID: 23675544 PMCID: PMC3649956 DOI: 10.1371/journal.pntd.0002212] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 03/30/2013] [Indexed: 01/02/2023] Open
Abstract
Burkholderia pseudomallei is a Gram-negative, facultative intracellular bacillus and the etiologic agent of melioidosis, a severe disease in Southeast Asia and Northern Australia. Like other multidrug-resistant pathogens, the inherent antibiotic resistance of B. pseudomallei impedes treatment and highlights the need for alternative therapeutic strategies that can circumvent antimicrobial resistance mechanisms. In this work, we demonstrate that host prostaglandin E2 (PGE2) production plays a regulatory role in the pathogenesis of B. pseudomallei. PGE2 promotes B. pseudomallei intracellular survival within macrophages and bacterial virulence in a mouse model of pneumonic melioidosis. PGE2-mediated immunosuppression of macrophage bactericidal effector functions is associated with increased arginase 2 (Arg2) expression and decreased nitric oxide (NO) production. Treatment with a commercially-available COX-2 inhibitor suppresses the growth of B. pseudomallei in macrophages and affords significant protection against rapidly lethal pneumonic melioidosis when administered post-exposure to B. pseudomallei-infected mice. COX-2 inhibition may represent a novel immunotherapeutic strategy to control infection with B. pseudomallei and other intracellular pathogens. Burkholderia pseudomallei is the etiologic agent of melioidosis, a severe disease endemic in Southeast Asia and Northern Australia. B. pseudomallei is also classified as a Tier 1 select agent due to the threat of malicious use of the organism. Treatment of melioidosis is complicated by the inherent multidrug resistance of B. pseudomallei, leading to high case fatality rates or disease relapse. New therapeutic strategies are urgently needed to improve patient survival and to protect against a deliberate release of B. pseudomallei. Immunotherapeutics that can enhance the host immune response and delay disease progression represent a significant area of research interest. A number of immunomodulatory agents delivered locally to the lung prior to B. pseudomallei infection have afforded significant protection against pulmonary disease in animal models of melioidosis; however, their protective capacity significantly wanes upon post-exposure administration. In this work, we identify the PGE2 pathway as an immunotherapeutic target in pulmonary melioidosis and show that post-exposure COX-2 inhibition provides significant protection against lethal B. pseudomallei lung infection in mice. Further research examining FDA-approved COX-2 inhibitors as post-exposure prophylaxis for B. pseudomallei is warranted, as this may represent a safe, affordable, and efficacious immunotherapeutic strategy.
Collapse
Affiliation(s)
- Saja Asakrah
- Tulane University School of Medicine, Department of Microbiology and Immunology, New Orleans, Louisiana, United States of America
| | - Wildaliz Nieves
- Tulane University School of Medicine, Department of Microbiology and Immunology, New Orleans, Louisiana, United States of America
| | - Zaid Mahdi
- Tulane University School of Medicine, Department of Microbiology and Immunology, New Orleans, Louisiana, United States of America
| | - Mallory Agard
- Tulane University School of Medicine, Department of Microbiology and Immunology, New Orleans, Louisiana, United States of America
| | - Arnold H. Zea
- Louisiana State University Health Sciences Center, Section of Pulmonary and Critical Care Medicine, New Orleans, Louisiana, United States of America
| | - Chad J. Roy
- Tulane National Primate Research Center, Division of Microbiology, Covington, Louisiana, United States of America
| | - Lisa A. Morici
- Tulane University School of Medicine, Department of Microbiology and Immunology, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
32
|
Domingo-Gonzalez R, Katz S, Serezani CH, Moore TA, Levine AM, Moore BB. Prostaglandin E2-induced changes in alveolar macrophage scavenger receptor profiles differentially alter phagocytosis of Pseudomonas aeruginosa and Staphylococcus aureus post-bone marrow transplant. THE JOURNAL OF IMMUNOLOGY 2013; 190:5809-17. [PMID: 23630358 DOI: 10.4049/jimmunol.1203274] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effectiveness of hematopoietic stem cell transplantation as a therapy for malignant and nonmalignant conditions is complicated by pulmonary infections. Using our syngeneic bone marrow transplant (BMT) mouse model, BMT mice with a reconstituted hematopoietic system displayed increased susceptibility to Pseudomonas aeruginosa and Staphylococcus aureus. BMT alveolar macrophages (AMs) exhibited a defect in P. aeruginosa phagocytosis, whereas S. aureus uptake was surprisingly enhanced. We hypothesized that the difference in phagocytosis was due to an altered scavenger receptor (SR) profile. Interestingly, MARCO expression was decreased, whereas SR-AI/II was increased. To understand how these dysregulated SR profiles might affect macrophage function, CHO cells were transfected with SR-AI/II, and phagocytosis assays revealed that SR-AI/II was important for S. aureus uptake but not for P. aeruginosa. Conversely, AMs treated in vitro with soluble MARCO exhibited similar defects in P. aeruginosa internalization as did BMT AMs. The 3'-untranslated region of SR-AI contains a putative target region for microRNA-155 (miR-155), and miR-155 expression is decreased post-BMT. Anti-miR-155-transfected AMs exhibited an increase in SR-AI/II expression and S. aureus phagocytosis. Elevated PGE2 has been implicated in driving an impaired innate immune response post-BMT. In vitro treatment of AMs with PGE2 increased SR-AI/II and decreased MARCO and miR-155. Despite a difference in phagocytic ability, BMT AMs harbor a killing defect to both P. aeruginosa and S. aureus. Thus, our data suggest that PGE2-driven alterations in SR and miR-155 expression account for the differential phagocytosis of P. aeruginosa and S. aureus, but impaired killing ultimately confers increased susceptibility to pulmonary infection.
Collapse
|
33
|
Cholera toxin induces a shift from inactive to active cyclooxygenase 2 in alveolar macrophages activated by Mycobacterium bovis BCG. Infect Immun 2012; 81:373-80. [PMID: 23147035 DOI: 10.1128/iai.01031-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intranasal vaccination stimulates formation of cyclooxygenases (COX) and release of prostaglandin E(2) (PGE(2)) by lung cells, including alveolar macrophages. PGE(2) plays complex pro- or anti-inflammatory roles in facilitating mucosal immune responses, but the relative contributions of COX-1 and COX-2 remain unclear. Previously, we found that Mycobacterium bovis BCG, a human tuberculosis vaccine, stimulated increased release of PGE(2) by macrophages activated in vitro; in contrast, intranasal BCG activated no PGE(2) release in the lungs, because COX-1 and COX-2 in alveolar macrophages were subcellularly dissociated from the nuclear envelope (NE) and catalytically inactive. This study tested the hypothesis that intranasal administration of BCG with cholera toxin (CT), a mucosal vaccine component, would shift the inactive, NE-dissociated COX-1/COX-2 to active, NE-associated forms. The results showed increased PGE(2) release in the lungs and NE-associated COX-2 in the majority of COX-2(+) macrophages. These COX-2(+) macrophages were the primary source of PGE(2) release in the lungs, since there was only slight enhancement of NE-associated COX-1 and there was no change in COX-1/COX-2 levels in alveolar epithelial cells following treatment with CT and/or BCG. To further understand the effect of CT, we investigated the timing of BCG versus CT administration for in vivo and in vitro macrophage activations. When CT followed BCG treatment, macrophages in vitro had elevated COX-2-mediated PGE(2) release, but macrophages in vivo exhibited less activation of NE-associated COX-2. Our results indicate that inclusion of CT in the intranasal BCG vaccination enhances COX-2-mediated PGE(2) release by alveolar macrophages and further suggest that the effect of CT in vivo is mediated by other lung cells.
Collapse
|
34
|
Domingo-Gonzalez R, Huang SK, Laouar Y, Wilke CA, Moore BB. COX-2 expression is upregulated by DNA hypomethylation after hematopoietic stem cell transplantation. THE JOURNAL OF IMMUNOLOGY 2012; 189:4528-36. [PMID: 23008450 DOI: 10.4049/jimmunol.1201116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cell transplant therapy is limited by pulmonary infections. Mice with fully reconstituted hematopoietic compartments, including alveolar macrophages (AMs), after bone marrow transplantation (BMT) have impaired host defense against Gram-negative Pseudomonas aeruginosa. Impaired innate immunity is related to increased production of PGE(2) by AMs. Cyclooxygenase (COX)-2 is the rate-limiting enzyme for synthesis of PGE(2) from arachidonic acid, and COX-2 expression is elevated in AMs post-BMT. We hypothesized that epigenetic mechanisms may be responsible for upregulation of COX-2 in AMs. Using bisulfite sequencing, we observed the 5'-untranslated region and exon 1 of the COX-2 gene is hypomethylated in the AMs of BMT mice compared with control. COX-2 expression was increased in primary AMs and in the AM cell line (MHS) after treatment with 5-aza-2'-deoxycytidine (a methyltransferase inhibitor). Methylation by SssI methyltransferase of a 698-bp region of the COX-2 promoter including the beginning of exon 1 driving a luciferase reporter silenced luciferase expression. Because TGF-β1 is elevated in lungs post-BMT, we tested whether TGF-β1 could promote expression of COX-2 in a hypermethylated COX-2 vector, and observed TGF-β1-induced modest expression of COX-2, suggesting an ability to demethylate the promoter. Finally, BMTs performed with marrow from mice expressing a dominant-negative form of the TGF-βRII on CD11c-expressing cells (which includes AMs) demonstrated improved host defense and AM function. Our findings suggest impaired innate immunity and PGE(2) elevation post-BMT are due to hypomethylation of the COX-2 gene, which is at least partly regulated by TGF-β1.
Collapse
|
35
|
Prostaglandin E2 and the suppression of phagocyte innate immune responses in different organs. Mediators Inflamm 2012; 2012:327568. [PMID: 23024463 PMCID: PMC3449139 DOI: 10.1155/2012/327568] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/19/2012] [Accepted: 05/03/2012] [Indexed: 12/15/2022] Open
Abstract
The local and systemic production of prostaglandin E2 (PGE2) and its actions in phagocytes lead to immunosuppressive conditions. PGE2 is produced at high levels during inflammation, and its suppressive effects are caused by the ligation of the E prostanoid receptors EP2 and EP4, which results in the production of cyclic AMP. However, PGE2 also exhibits immunostimulatory properties due to binding to EP3, which results in decreased cAMP levels. The various guanine nucleotide-binding proteins (G proteins) that are coupled to the different EP receptors account for the pleiotropic roles of PGE2 in different disease states. Here, we discuss the production of PGE2 and the actions of this prostanoid in phagocytes from different tissues, the relative contribution of PGE2 to the modulation of innate immune responses, and the novel therapeutic opportunities that can be used to control inflammatory responses.
Collapse
|
36
|
Bourdonnay E, Serezani CH, Aronoff DM, Peters-Golden M. Regulation of alveolar macrophage p40phox: hierarchy of activating kinases and their inhibition by PGE2. J Leukoc Biol 2012; 92:219-31. [PMID: 22544939 PMCID: PMC3382311 DOI: 10.1189/jlb.1211590] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/26/2012] [Accepted: 04/10/2012] [Indexed: 11/24/2022] Open
Abstract
PGE(2), produced in the lung during infection with microbes such as Klebsiella pneumoniae, inhibits alveolar macrophage (AM) antimicrobial functions by preventing H(2)O(2) production by NADPH oxidase (NADPHox). Activation of the NADPHox complex is poorly understood in AMs, although in neutrophils it is known to be mediated by kinases including PI3K/Akt, protein kinase C (PKC) δ, p21-activated protein kinase (PAK), casein kinase 2 (CK2), and MAPKs. The p40phox cytosolic subunit of NADPHox has been recently recognized to function as a carrier protein for other subunits and a positive regulator of oxidase activation, a role previously considered unique to another subunit, p47phox. The regulation of p40phox remains poorly understood, and the effect of PGE(2) on its activation is completely undefined. We addressed these issues in rat AMs activated with IgG-opsonized K. pneumoniae. The kinetics of kinase activation and the consequences of kinase inhibition and silencing revealed a critical role for a PKCδ-PAK-class I PI3K/Akt1 cascade in the regulation of p40phox activation upon bacterial challenge in AMs; PKCα, ERK, and CK2 were not involved. PGE(2) inhibited the activation of p40phox, and its effects were mediated by protein kinase A type II, were independent of interactions with anchoring proteins, and were directed at the distal class I PI3K/Akt1 activation step. Defining the kinases that control AM p40phox activation and that are the targets for inhibition by PGE(2) provides new insights into immunoregulation in the infected lung.
Collapse
Affiliation(s)
| | | | - David M. Aronoff
- Division of Infectious Diseases, Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan Health Systems, Ann Arbor, Michigan, USA
| | | |
Collapse
|
37
|
Mancuso P, Myers MG, Goel D, Serezani CH, O'Brien E, Goldberg J, Aronoff DM, Peters-Golden M. Ablation of leptin receptor-mediated ERK activation impairs host defense against Gram-negative pneumonia. THE JOURNAL OF IMMUNOLOGY 2012; 189:867-75. [PMID: 22685316 DOI: 10.4049/jimmunol.1200465] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adipocyte-derived hormone leptin plays an important role in regulation of energy homeostasis and the innate immune response against bacterial infections. Leptin's actions are mediated by signaling events initiated by phosphorylation of tyrosine residues on the long form of the leptin receptor. We recently reported that disruption of leptin receptor-mediated STAT3 activation augmented host defense against pneumococcal pneumonia. In this report, we assessed leptin receptor-mediated ERK activation, a pathway that was ablated in the l/l mouse through a mutation of the tyrosine 985 residue in the leptin receptor, to determine its role in host defense against bacterial pneumonia in vivo and in alveolar macrophage (AM) antibacterial functions in vitro. l/l mice exhibited increased mortality and impaired pulmonary bacterial clearance after intratracheal challenge with Klebsiella pneumoniae. The synthesis of cysteinyl-leukotrienes was reduced and that of PGE(2) enhanced in AMs in vitro and the lungs of l/l mice after infection with K. pneumoniae in vivo. We also observed reduced phagocytosis and killing of K. pneumoniae in AMs from l/l mice that was associated with reduced reactive oxygen intermediate production in vitro. cAMP, known to suppress phagocytosis, bactericidal capacity, and reactive oxygen intermediate production, was also increased 2-fold in AMs from l/l mice. Pharmacologic blockade of PGE(2) synthesis reduced cAMP levels and overcame the defective phagocytosis and killing of bacteria in AMs from l/l mice in vitro. These results demonstrate that leptin receptor-mediated ERK activation plays an essential role in host defense against bacterial pneumonia and in leukocyte antibacterial effector functions.
Collapse
Affiliation(s)
- Peter Mancuso
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ballinger MN, Newstead MW, Zeng X, Bhan U, Horowitz JC, Moore BB, Pinsky DJ, Flavell RA, Standiford TJ. TLR signaling prevents hyperoxia-induced lung injury by protecting the alveolar epithelium from oxidant-mediated death. THE JOURNAL OF IMMUNOLOGY 2012; 189:356-64. [PMID: 22661086 DOI: 10.4049/jimmunol.1103124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mechanical ventilation using high oxygen tensions is often necessary to treat patients with respiratory failure. Recently, TLRs were identified as regulators of noninfectious oxidative lung injury. IRAK-M is an inhibitor of MyD88-dependent TLR signaling. Exposure of mice deficient in IRAK-M (IRAK-M(-/-)) to 95% oxygen resulted in reduced mortality compared with wild-type mice and occurred in association with decreased alveolar permeability and cell death. Using a bone marrow chimera model, we determined that IRAK-M's effects were mediated by structural cells rather than bone marrow-derived cells. We confirmed the expression of IRAK-M in alveolar epithelial cells (AECs) and showed that hyperoxia can induce the expression of this protein. In addition, IRAK-M(-/-) AECs exposed to hyperoxia experienced a decrease in cell death. IRAK-M may potentiate hyperoxic injury by suppression of key antioxidant pathways, because lungs and AECs isolated from IRAK-M(-/-) mice have increased expression/activity of heme oxygenase-1, a phase II antioxidant, and NF (erythroid-derived)-related factor-2, a transcription factor that initiates antioxidant generation. Treatment of IRAK-M(-/-) mice in vivo and IRAK-M(-/-) AECs in vitro with the heme oxygenase-1 inhibitor, tin protoporphyrin, substantially decreased survival and significantly reduced the number of live cells after hyperoxia exposure. Collectively, our data suggest that IRAK-M inhibits the induction of antioxidants essential for protecting the lungs against cell death, resulting in enhanced susceptibility to hyperoxic lung injury.
Collapse
Affiliation(s)
- Megan N Ballinger
- Division of Pulmonary and Critical Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
McCarthy MK, Weinberg JB. Eicosanoids and respiratory viral infection: coordinators of inflammation and potential therapeutic targets. Mediators Inflamm 2012; 2012:236345. [PMID: 22665949 PMCID: PMC3362132 DOI: 10.1155/2012/236345] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 03/12/2012] [Indexed: 12/20/2022] Open
Abstract
Viruses are frequent causes of respiratory infection, and viral respiratory infections are significant causes of hospitalization, morbidity, and sometimes mortality in a variety of patient populations. Lung inflammation induced by infection with common respiratory pathogens such as influenza and respiratory syncytial virus is accompanied by increased lung production of prostaglandins and leukotrienes, lipid mediators with a wide range of effects on host immune function. Deficiency or pharmacologic inhibition of prostaglandin and leukotriene production often results in a dampened inflammatory response to acute infection with a respiratory virus. These mediators may, therefore, serve as appealing therapeutic targets for disease caused by respiratory viral infection.
Collapse
Affiliation(s)
- Mary K. McCarthy
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason B. Weinberg
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
40
|
Aronoff DM, Bergin IL, Lewis C, Goel D, O'Brien E, Peters-Golden M, Mancuso P. E-prostanoid 2 receptor signaling suppresses lung innate immunity against Streptococcus pneumoniae. Prostaglandins Other Lipid Mediat 2012; 98:23-30. [PMID: 22575745 DOI: 10.1016/j.prostaglandins.2012.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
Pneumonia is a major global health problem. Prostaglandin (PG) E(2) is an immunomodulatory lipid with anti-inflammatory, immunosuppressive, and pro-resolving actions. Data suggest that the E-prostanoid (EP) 2 receptor mediates immunomodulatory effects of PGE(2), but the extent to which this occurs in Streptococcus pneumoniae infection is unknown. Intratracheal lung infection of C57BL/6 mice possessing (EP2(+/+)) or lacking (EP2(-/-)) the EP2 receptor was performed, as were in vitro studies of alveolar macrophage (AM) host defense functions. Bacterial clearance and survival were significantly improved in vivo in EP2(-/-) mice and it correlated with greater neutrophilic inflammation and higher lung IL-12 levels. Upon ex vivo challenge with pneumococcus, EP2(-/-)cells expressed greater amounts of TNF-α and MIP-2 than did EP2(+/+) AMs, and had improved phagocytosis, intracellular killing, and reactive oxygen intermediate generation. These data suggest that PGE(2)-EP2 signaling may provide a novel pharmacological target for treating pneumococcal pneumonia in combination with antimicrobials.
Collapse
Affiliation(s)
- David M Aronoff
- Divisions of Infectious Diseases, The University of Michigan, Ann Arbor, MI 48109-5680, United States.
| | | | | | | | | | | | | |
Collapse
|
41
|
Kalinski P. Regulation of immune responses by prostaglandin E2. THE JOURNAL OF IMMUNOLOGY 2012; 188:21-8. [PMID: 22187483 DOI: 10.4049/jimmunol.1101029] [Citation(s) in RCA: 1293] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PGE(2), an essential homeostatic factor, is also a key mediator of immunopathology in chronic infections and cancer. The impact of PGE(2) reflects the balance between its cyclooxygenase 2-regulated synthesis and 15-hydroxyprostaglandin dehydrogenase-driven degradation and the pattern of expression of PGE(2) receptors. PGE(2) enhances its own production but suppresses acute inflammatory mediators, resulting in its predominance at late/chronic stages of immunity. PGE(2) supports activation of dendritic cells but suppresses their ability to attract naive, memory, and effector T cells. PGE(2) selectively suppresses effector functions of macrophages and neutrophils and the Th1-, CTL-, and NK cell-mediated type 1 immunity, but it promotes Th2, Th17, and regulatory T cell responses. PGE(2) modulates chemokine production, inhibiting the attraction of proinflammatory cells while enhancing local accumulation of regulatory T cells cells and myeloid-derived suppressor cells. Targeting the production, degradation, and responsiveness to PGE(2) provides tools to modulate the patterns of immunity in a wide range of diseases, from autoimmunity to cancer.
Collapse
Affiliation(s)
- Pawel Kalinski
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
42
|
Peters-Golden M, VanHook AM. Science Signaling
Podcast: 14 February 2012. Sci Signal 2012. [DOI: 10.1126/scisignal.2002905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The protein phosphatase activity of PTEN impairs macrophage phagocytosis of a fungal pathogen by promoting actin depolymerization.
Collapse
Affiliation(s)
- Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109 USA
| | - Annalisa M. VanHook
- Web Editor, Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005, USA
| |
Collapse
|
43
|
Serezani CH, Kane S, Medeiros AI, Cornett AM, Kim SH, Marques MM, Lee SP, Lewis C, Bourdonnay E, Ballinger MN, White ES, Peters-Golden M. PTEN directly activates the actin depolymerization factor cofilin-1 during PGE2-mediated inhibition of phagocytosis of fungi. Sci Signal 2012; 5:ra12. [PMID: 22317922 DOI: 10.1126/scisignal.2002448] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophage ingestion of the yeast Candida albicans requires its recognition by multiple receptors and the activation of diverse signaling programs. Synthesis of the lipid mediator prostaglandin E(2) (PGE(2)) and generation of cyclic adenosine monophosphate (cAMP) also accompany this process. Here, we characterized the mechanisms underlying PGE(2)-mediated inhibition of phagocytosis and filamentous actin (F-actin) polymerization in response to ingestion of C. albicans by alveolar macrophages. PGE(2) suppressed phagocytosis and F-actin formation through the PGE(2) receptors EP2 and EP4, cAMP, and activation of types I and II protein kinase A. Dephosphorylation and activation of the actin depolymerizing factor cofilin-1 were necessary for these inhibitory effects of PGE(2). PGE(2)-dependent activation of cofilin-1 was mediated by the protein phosphatase activity of PTEN (phosphatase and tensin homolog deleted on chromosome 10), with which it directly associated. Because enhanced production of PGE(2) accompanies many immunosuppressed states, the PTEN-dependent pathway described here may contribute to impaired antifungal defenses.
Collapse
Affiliation(s)
- C Henrique Serezani
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Naik PN, Horowitz JC, Moore TA, Wilke CA, Toews GB, Moore BB. Pulmonary fibrosis induced by γ-herpesvirus in aged mice is associated with increased fibroblast responsiveness to transforming growth factor-β. J Gerontol A Biol Sci Med Sci 2011; 67:714-25. [PMID: 22193547 DOI: 10.1093/gerona/glr211] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Young (4 month) and aged (15-18 months) mice were given intranasal saline or γ--herpesvirus-68 infection. After 21 days, aged, but not young mice, showed significant increases in collagen content and fibrosis. There were no differences in viral clearance or inflammatory cells (including fibrocytes) between infected aged and young mice. Enzyme-linked immunosorbent assays showed increased transforming growth factor-β in whole lung homogenates of infected aged mice compared with young mice. When fibroblasts from aged and young mice were infected in vitro, aged, but not young, fibroblasts upregulate alpha-smooth muscle actin and collagen I protein. Infection with virus in vivo also demonstrates increased alpha-smooth muscle actin and collagen I protein and collagen I, collagen III, and fibronectin messenger RNA in aged fibroblasts. Furthermore, evaluation revealed that aged fibroblasts at baseline have increased transforming growth factor-β receptor 1 and 2 levels compared with young fibroblasts and are resistant to apoptosis. Increased responsiveness to transforming growth factor-β was verified by increased collagen III and fibronectin messenger RNA after treatment in vitro with transforming growth factor-β.
Collapse
Affiliation(s)
- Payal N Naik
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | |
Collapse
|
45
|
Mason KL, Aronoff DM. Postpartum group a Streptococcus sepsis and maternal immunology. Am J Reprod Immunol 2011; 67:91-100. [PMID: 22023345 DOI: 10.1111/j.1600-0897.2011.01083.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Group A Streptococcus (GAS) is an historically important agent of puerperal infections and sepsis. The inception of hand-washing and improved hospital hygiene drastically reduced the incidence of puerperal sepsis, but recently the incidence and severity of postpartum GAS infections has been rising for uncertain reasons. Several epidemiological, host, and microbial factors contribute to the risk for GAS infection and mortality in postpartum women. These include the mode of delivery (vaginal versus cesarean section), the location where labor and delivery occurred, exposure to GAS carriers, the altered immune status associated with pregnancy, the genetic background of the host, the virulence of the infecting GAS strain, and highly specialized immune responses associated with female reproductive tract tissues and organs. This review will discuss the complicated factors that contribute to the increased susceptibility to GAS after delivery and potential reasons for the recent increase observed in morbidity and mortality.
Collapse
Affiliation(s)
- Katie L Mason
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-5680, USA
| | | |
Collapse
|
46
|
Fredenburgh LE, Velandia MMS, Ma J, Olszak T, Cernadas M, Englert JA, Chung SW, Liu X, Begay C, Padera RF, Blumberg RS, Walsh SR, Baron RM, Perrella MA. Cyclooxygenase-2 deficiency leads to intestinal barrier dysfunction and increased mortality during polymicrobial sepsis. THE JOURNAL OF IMMUNOLOGY 2011; 187:5255-67. [PMID: 21967897 DOI: 10.4049/jimmunol.1101186] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sepsis remains the leading cause of death in critically ill patients, despite modern advances in critical care. Intestinal barrier dysfunction may lead to secondary bacterial translocation and the development of the multiple organ dysfunction syndrome during sepsis. Cyclooxygenase (COX)-2 is highly upregulated in the intestine during sepsis, and we hypothesized that it may be critical in the maintenance of intestinal epithelial barrier function during peritonitis-induced polymicrobial sepsis. COX-2(-/-) and COX-2(+/+) BALB/c mice underwent cecal ligation and puncture (CLP) or sham surgery. Mice chimeric for COX-2 were derived by bone marrow transplantation and underwent CLP. C2BBe1 cells, an intestinal epithelial cell line, were treated with the COX-2 inhibitor NS-398, PGD(2), or vehicle and stimulated with cytokines. COX-2(-/-) mice developed exaggerated bacteremia and increased mortality compared with COX-2(+/+) mice following CLP. Mice chimeric for COX-2 exhibited the recipient phenotype, suggesting that epithelial COX-2 expression in the ileum attenuates bacteremia following CLP. Absence of COX-2 significantly increased epithelial permeability of the ileum and reduced expression of the tight junction proteins zonula occludens-1, occludin, and claudin-1 in the ileum following CLP. Furthermore, PGD(2) attenuated cytokine-induced hyperpermeability and zonula occludens-1 downregulation in NS-398-treated C2BBe1 cells. Our findings reveal that absence of COX-2 is associated with enhanced intestinal epithelial permeability and leads to exaggerated bacterial translocation and increased mortality during peritonitis-induced sepsis. Taken together, our results suggest that epithelial expression of COX-2 in the ileum is a critical modulator of tight junction protein expression and intestinal barrier function during sepsis.
Collapse
Affiliation(s)
- Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Coomes SM, Farmen S, Wilke CA, Laouar Y, Moore BB. Severe gammaherpesvirus-induced pneumonitis and fibrosis in syngeneic bone marrow transplant mice is related to effects of transforming growth factor-β. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2382-96. [PMID: 21924228 DOI: 10.1016/j.ajpath.2011.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 06/29/2011] [Accepted: 08/01/2011] [Indexed: 11/17/2022]
Abstract
Pulmonary infections and pneumonitis occur frequently after hematopoietic stem cell transplantation. Using a syngeneic mouse model of bone marrow transplantation (BMT), we have previously demonstrated that BMT mice are more susceptible to acute gammaherpesvirus 68 (MHV-68) replication at day 7 after infection. By day 21, the virus is latent in lungs of BMT and control mice, and there is no difference in viral load. Despite similar latent viral load, BMT mice develop severe pneumonitis associated with reduced oxygen saturation, fibrosis, peripheral inflammation, hyaline membranes, and foamy alveolar macrophages, a phenotype that persists for 7 weeks after infection. BMT mice demonstrate increased bronchoalveolar lavage (BAL) cells, and this population is enriched in neutrophils and T cells. Alternatively, activated macrophages appear earlier than do classically activated macrophages. BAL fluid from BMT mice at day 21 after infection contains increased levels of hydrogen peroxide, nitrite, and transforming growth factor-β (TGF-β). Mice expressing the dominant-negative transgene dn-TGFβRII in multiple cell types were used as BMT donors. BMT mice with T-cell dnTGFβRII are largely protected from the pneumonitis phenotype, whereas mice with CD11c-dnTGFβRII BMT mice are only modestly protected from pneumonitis. Protection in BMT mice with T-cell dnTGFβRII is associated with decreased TGF-β derived from parenchymal cells in the BAL fluid, lower nitrite levels, and reduced apoptosis, whereas alternatively activated macrophage markers are unchanged.
Collapse
Affiliation(s)
- Stephanie M Coomes
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
48
|
TLR9-induced interferon β is associated with protection from gammaherpesvirus-induced exacerbation of lung fibrosis. FIBROGENESIS & TISSUE REPAIR 2011; 4:18. [PMID: 21810214 PMCID: PMC3163187 DOI: 10.1186/1755-1536-4-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 08/02/2011] [Indexed: 11/10/2022]
Abstract
Background We have shown previously that murine gammaherpesvirus 68 (γHV68) infection exacerbates established pulmonary fibrosis. Because Toll-like receptor (TLR)-9 may be important in controlling the immune response to γHV68 infection, we examined how TLR-9 signaling effects exacerbation of fibrosis in response to viral infection, using models of bleomycin- and fluorescein isothiocyanate-induced pulmonary fibrosis in wild-type (Balb/c) and TLR-9-/- mice. Results We found that in the absence of TLR-9 signaling, there was a significant increase in collagen deposition following viral exacerbation of fibrosis. This was not associated with increased viral load in TLR-9-/- mice or with major alterations in T helper (Th)1 and Th2 cytokines. We examined alveolar epithelial-cell apoptosis in both strains, but this could not explain the altered fibrotic outcomes. As expected, TLR-9-/- mice had a defect in the production of interferon (IFN)-β after viral infection. Balb/c fibroblasts infected with γHV68 in vitro produced more IFN-β than did infected TLR-9-/- fibroblasts. Accordingly, in vitro infection of Balb/c fibroblasts resulted in reduced proliferation rates whereas infection of TLR-9-/- fibroblasts did not. Finally, therapeutic administration of CpG oligodeoxynucleotides ameliorated bleomycin-induced fibrosis in wild-type mice. Conclusions These results show a protective role for TLR-9 signaling in murine models of lung fibrosis, and highlight differences in the biology of TLR-9 between mice and humans.
Collapse
|
49
|
Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell 2011; 8:445-58. [PMID: 21474107 DOI: 10.1016/j.stem.2011.02.003] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 11/18/2010] [Accepted: 01/28/2011] [Indexed: 11/21/2022]
Abstract
Hematopoietic stem cells (HSCs) are used in transplantation therapy to reconstitute the hematopoietic system. Human cord blood (hCB) transplantation has emerged as an attractive alternative treatment option when traditional HSC sources are unavailable; however, the absolute number of hCB HSCs transplanted is significantly lower than bone marrow or mobilized peripheral blood stem cells (MPBSCs). We previously demonstrated that dimethyl-prostaglandin E2 (dmPGE2) increased HSCs in vertebrate models. Here, we describe preclinical analyses of the therapeutic potential of dmPGE2 treatment by using human and nonhuman primate HSCs. dmPGE2 significantly increased total human hematopoietic colony formation in vitro and enhanced engraftment of unfractionated and CD34(+) hCB after xenotransplantation. In nonhuman primate autologous transplantation, dmPGE2-treated CD34(+) MPBSCs showed stable multilineage engraftment over 1 year postinfusion. Together, our analyses indicated that dmPGE2 mediates conserved responses in HSCs from human and nonhuman primates and provided sufficient preclinical information to support proceeding to an FDA-approved phase 1 clinical trial.
Collapse
|
50
|
Abstract
Infectious complications are a serious cause of morbidity and mortality following hematopoietic stem cell transplantation (HSCT), and the lung is a particular target organ post-transplant. Our laboratory has used a murine bone marrow transplant model to study alterations in immunity that occur as a result of transplantation. Our studies focus on immune responses that occur following immune cell reconstitution in the absence of immunosuppressive drug therapy or graft-versus-host disease. We have found that impaired clearance of both bacterial and viral pulmonary infections is related to specific alterations in immune cell function and cytokine production. Our data offer insight into mechanisms that contribute to opportunistic infections in HSCT recipients.
Collapse
Affiliation(s)
- Stephanie M. Coomes
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Leah L. N. Hubbard
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Bethany B. Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, 4053 BSRB, 109 Zina Pitcher Pl., Ann Arbor, MI 48109-2200, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|