1
|
Kruk L, Mamtimin M, Braun A, Anders HJ, Andrassy J, Gudermann T, Mammadova-Bach E. Inflammatory Networks in Renal Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15082212. [PMID: 37190141 DOI: 10.3390/cancers15082212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Cancer-associated inflammation has been established as a hallmark feature of almost all solid cancers. Tumor-extrinsic and intrinsic signaling pathways regulate the process of cancer-associated inflammation. Tumor-extrinsic inflammation is triggered by many factors, including infection, obesity, autoimmune disorders, and exposure to toxic and radioactive substances. Intrinsic inflammation can be induced by genomic mutation, genome instability and epigenetic remodeling in cancer cells that promote immunosuppressive traits, inducing the recruitment and activation of inflammatory immune cells. In RCC, many cancer cell-intrinsic alterations are assembled, upregulating inflammatory pathways, which enhance chemokine release and neoantigen expression. Furthermore, immune cells activate the endothelium and induce metabolic shifts, thereby amplifying both the paracrine and autocrine inflammatory loops to promote RCC tumor growth and progression. Together with tumor-extrinsic inflammatory factors, tumor-intrinsic signaling pathways trigger a Janus-faced tumor microenvironment, thereby simultaneously promoting or inhibiting tumor growth. For therapeutic success, it is important to understand the pathomechanisms of cancer-associated inflammation, which promote cancer progression. In this review, we describe the molecular mechanisms of cancer-associated inflammation that influence cancer and immune cell functions, thereby increasing tumor malignancy and anti-cancer resistance. We also discuss the potential of anti-inflammatory treatments, which may provide clinical benefits in RCCs and possible avenues for therapy and future research.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Joachim Andrassy
- Division of General, Visceral, Vascular and Transplant Surgery, Hospital of LMU, 81377 Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- German Center for Lung Research (DZL), 80336 Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| |
Collapse
|
2
|
Zhang T, de Waard AA, Wuhrer M, Spaapen RM. The Role of Glycosphingolipids in Immune Cell Functions. Front Immunol 2019; 10:90. [PMID: 30761148 PMCID: PMC6361815 DOI: 10.3389/fimmu.2019.00090] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023] Open
Abstract
Glycosphingolipids (GSLs) exhibit a variety of functions in cellular differentiation and interaction. Also, they are known to play a role as receptors in pathogen invasion. A less well-explored feature is the role of GSLs in immune cell function which is the subject of this review article. Here we summarize knowledge on GSL expression patterns in different immune cells. We review the changes in GSL expression during immune cell development and differentiation, maturation, and activation. Furthermore, we review how immune cell GSLs impact membrane organization, molecular signaling, and trans-interactions in cellular cross-talk. Another aspect covered is the role of GSLs as targets of antibody-based immunity in cancer. We expect that recent advances in analytical and genome editing technologies will help in the coming years to further our knowledge on the role of GSLs as modulators of immune cell function.
Collapse
Affiliation(s)
- Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Antonius A de Waard
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Dewald JH, Cavdarli S, Steenackers A, Delannoy CP, Mortuaire M, Spriet C, Noël M, Groux-Degroote S, Delannoy P. TNF differentially regulates ganglioside biosynthesis and expression in breast cancer cell lines. PLoS One 2018; 13:e0196369. [PMID: 29698439 PMCID: PMC5919650 DOI: 10.1371/journal.pone.0196369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/11/2018] [Indexed: 12/26/2022] Open
Abstract
Gangliosides are glycosphingolipids concentrated in glycolipid-enriched membrane microdomains. Mainly restricted to the nervous system in healthy adult, complex gangliosides such as GD3 and GD2 have been shown to be involved in aggressiveness and metastasis of neuro-ectoderm derived tumors such as melanoma and neuroblastoma. GD3 synthase (GD3S), the key enzyme that controls the biosynthesis of complex gangliosides, was shown to be over-expressed in Estrogen Receptor (ER)-negative breast cancer tumors, and associated with a decreased overall survival of patients. We previously demonstrated that GD3S expression in ER-negative breast cancer cells induced a proliferative phenotype and an increased tumor growth. In addition, our results clearly indicate that Tumor Necrosis Factor (TNF) induced GD3S over-expression in breast cancer cells via NFκB pathway. In this study, we analyzed the effect of TNF on ganglioside biosynthesis and expression in breast cancer cells from different molecular subtypes. We showed that TNF up-regulated the expression of GD3S in MCF-7 and Hs578T cells, whereas no change was observed for MDA-MB-231. We also showed that TNF induced an increased expression of complex gangliosides at the cell surface of a small proportion of MCF-7 cells. These results demonstrate that TNF differentially regulates gangliosides expression in breast cancer cell lines and establish a possible link between inflammation at the tumor site environment, expression of complex gangliosides and tumor development.
Collapse
Affiliation(s)
- Justine H. Dewald
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Sumeyye Cavdarli
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Agata Steenackers
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Clément P. Delannoy
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Marlène Mortuaire
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Corentin Spriet
- University of Lille, Bio Imaging Center Lille, Lille, France
| | - Maxence Noël
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Sophie Groux-Degroote
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
| | - Philippe Delannoy
- University of Lille, Structural and Functional Glycobiology Unit, UMR CNRS 8576, Lille, France
- * E-mail:
| |
Collapse
|
4
|
Groux-Degroote S, Rodríguez-Walker M, Dewald JH, Daniotti JL, Delannoy P. Gangliosides in Cancer Cell Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:197-227. [DOI: 10.1016/bs.pmbts.2017.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Bonavida B, Chouaib S. Resistance to anticancer immunity in cancer patients: potential strategies to reverse resistance. Ann Oncol 2017; 28:457-467. [PMID: 27864216 DOI: 10.1093/annonc/mdw615] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the 1990s, the application of immunotherapy approaches to target cancer cells resulted in significant clinical responses in patients with advanced malignancies who were refractory to conventional therapies. While early immunotherapeutics were focused on T cell-mediated cytotoxic activity, subsequent efforts were centered on targeted antibody-mediated anticancer therapy. The initial success with antibody therapy encouraged further studies and, consequently, there are now more than 25 FDA-approved antibodies directed against a range of targets. Although both T cell and antibody therapies continue to result in significant clinical responses with minimal toxicity, a significant subset of patients does not respond to immunotherapy and another subset develops resistance following an initial response. This review is focused on describing examples showing that cancer resistance to immunotherapies indeed occurs. In addition, it reviews the mechanisms being used to overcome the resistance to immunotherapies by targeting the tumor cell directly and/or the tumor microenvironment.
Collapse
Affiliation(s)
- B Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center and David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, USA
| | - S Chouaib
- Institut de Cancérologie Gustave Roussy, Inserm U1186, Immunologie Intégrative et Oncogénétique, Institut Gustave Roussy, Université Paris-Sud, Université Paris-Saclay Villejuif, France
| |
Collapse
|
6
|
Role of Cytokine-Induced Glycosylation Changes in Regulating Cell Interactions and Cell Signaling in Inflammatory Diseases and Cancer. Cells 2016; 5:cells5040043. [PMID: 27916834 PMCID: PMC5187527 DOI: 10.3390/cells5040043] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022] Open
Abstract
Glycosylation is one of the most important modifications of proteins and lipids, and cell surface glycoconjugates are thought to play important roles in a variety of biological functions including cell-cell and cell-substrate interactions, bacterial adhesion, cell immunogenicity and cell signaling. Alterations of glycosylation are observed in number of diseases such as cancer and chronic inflammation. In that context, pro-inflammatory cytokines have been shown to modulate cell surface glycosylation by regulating the expression of glycosyltransferases involved in the biosynthesis of carbohydrate chains. These changes in cell surface glycosylation are also known to regulate cell signaling and could contribute to disease pathogenesis. This review summarizes our current knowledge of the glycosylation changes induced by pro-inflammatory cytokines, with a particular focus on cancer and cystic fibrosis, and their consequences on cell interactions and signaling.
Collapse
|
7
|
Kundu M, Mahata B, Banerjee A, Chakraborty S, Debnath S, Ray SS, Ghosh Z, Biswas K. Ganglioside GM2 mediates migration of tumor cells by interacting with integrin and modulating the downstream signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1472-89. [PMID: 27066976 DOI: 10.1016/j.bbamcr.2016.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 11/19/2022]
Abstract
The definitive role of ganglioside GM2 in mediating tumor-induced growth and progression is still unknown. Here we report a novel role of ganglioside GM2 in mediating tumor cell migration and uncovered its mechanism. Data shows differential expression levels of GM2-synthase as well as GM2 in different human cancer cells. siRNA mediated knockdown of GM2-synthase in CCF52, A549 and SK-RC-26B cells resulted in significant inhibition of tumor cell migration as well as invasion in vitro without affecting cellular proliferation. Over-expression of GM2-synthase in low-GM2 expressing SK-RC-45 cells resulted in a consequent increase in migration thus confirming the potential role GM2 and its downstream partners play in tumor cell migration and motility. Further, treatment of SK-RC-45 cells with exogenous GM2 resulted in a dramatic increase in migratory and invasive capacity with no change in proliferative capacity, thereby confirming the role of GM2 in tumorigenesis specifically by mediating tumor migration and invasion. Gene expression profiling of GM2-synthase silenced cells revealed altered expression of several genes involved in cell migration primarily those controlling the integrin mediated signaling. GM2-synthase knockdown resulted in decreased phosphorylation of FAK, Src as well as Erk, while over-expression and/or exogenous GM2 treatment caused increased FAK and Erk phosphorylation respectively. Again, GM2 mediated invasion and Erk phosphorylation is blocked in integrin knockdown SK-RC-45 cells, thus confirming that GM2 mediated migration and phosphorylation of Erk is integrin dependent. Finally, confocal microscopy suggested co-localization while co-immunoprecipitation and surface plasmon resonance (SPR) confirmed direct interaction of membrane bound ganglioside, GM2 with the integrin receptor.
Collapse
Affiliation(s)
- Manjari Kundu
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India
| | - Barun Mahata
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India
| | - Avisek Banerjee
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India
| | - Sohini Chakraborty
- The Bioinformatics Center, Bose Institute, Kolkata, West Bengal 700054, India
| | - Shibjyoti Debnath
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India
| | | | - Zhumur Ghosh
- The Bioinformatics Center, Bose Institute, Kolkata, West Bengal 700054, India
| | - Kaushik Biswas
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India.
| |
Collapse
|
8
|
Daniotti JL, Lardone RD, Vilcaes AA. Dysregulated Expression of Glycolipids in Tumor Cells: From Negative Modulator of Anti-tumor Immunity to Promising Targets for Developing Therapeutic Agents. Front Oncol 2016; 5:300. [PMID: 26779443 PMCID: PMC4703717 DOI: 10.3389/fonc.2015.00300] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/14/2015] [Indexed: 12/14/2022] Open
Abstract
Glycolipids are complex molecules consisting of a ceramide lipid moiety linked to a glycan chain of variable length and structure. Among these are found the gangliosides, which are sialylated glycolipids ubiquitously distributed on the outer layer of vertebrate plasma membranes. Changes in the expression of certain species of gangliosides have been described to occur during cell proliferation, differentiation, and ontogenesis. However, the aberrant and elevated expression of gangliosides has been also observed in different types of cancer cells, thereby promoting tumor survival. Moreover, gangliosides are actively released from the membrane of tumor cells, having a strong impact on impairing anti-tumor immunity. Beyond the undesirable effects of gangliosides in cancer cells, a substantial number of cancer immunotherapies have been developed in recent years that have used gangliosides as the main target. This has resulted in successful immune cell- or antibody-responses against glycolipids, with promising results having been obtained in clinical trials. In this review, we provide a general overview on the metabolism of glycolipids, both in normal and tumor cells, as well as examining glycolipid-mediated immune modulation and the main successes achieved in immunotherapies using gangliosides as molecular targets.
Collapse
Affiliation(s)
- Jose Luis Daniotti
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Ricardo D Lardone
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute at Providence Saint John's Health Center , Santa Monica, CA , USA
| | - Aldo A Vilcaes
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba , Argentina
| |
Collapse
|
9
|
Wu AA, Drake V, Huang HS, Chiu S, Zheng L. Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology 2015; 4:e1016700. [PMID: 26140242 DOI: 10.1080/2162402x.2015.1016700] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 02/08/2023] Open
Abstract
It has become evident that tumor-induced immuno-suppressive factors in the tumor microenvironment play a major role in suppressing normal functions of effector T cells. These factors serve as hurdles that limit the therapeutic potential of cancer immunotherapies. This review focuses on illustrating the molecular mechanisms of immunosuppression in the tumor microenvironment, including evasion of T-cell recognition, interference with T-cell trafficking, metabolism, and functions, induction of resistance to T-cell killing, and apoptosis of T cells. A better understanding of these mechanisms may help in the development of strategies to enhance the effectiveness of cancer immunotherapies.
Collapse
Key Words
- 1MT, 1-methyltryptophan
- COX2, cyclooxygenase-2
- GM-CSF, granulocyte macrophage colony-stimulating factor
- GPI, glycosylphosphatidylinositol
- Gal1, galectin-1
- HDACi, histone deacetylase inhibitor
- HLA, human leukocyte antigen
- IDO, indoleamine-2,3- dioxygenase
- IL-10, interleukin-10
- IMC, immature myeloid cell
- MDSC, myeloid-derived suppressor cells
- MHC, major histocompatibility
- MICA, MHC class I related molecule A
- MICB, MHC class I related molecule B
- NO, nitric oxide
- PARP, poly ADP-ribose polymerase
- PD-1, program death receptor-1
- PD-L1, programmed death ligand 1
- PGE2, prostaglandin E2
- RCAS1, receptor-binding cancer antigen expressed on Siso cells 1
- RCC, renal cell carcinoma
- SOCS, suppressor of cytokine signaling
- STAT3, signal transducer and activator of transcription 3
- SVV, survivin
- T cells
- TCR, T-cell receptor
- TGF-β, transforming growth factor β
- TRAIL, TNF-related apoptosis-inducing ligand
- VCAM-1, vascular cell adhesion molecule-1
- XIAP, X-linked inhibitor of apoptosis protein
- iNOS, inducible nitric-oxide synthase
- immunosuppression
- immunosuppressive factors
- immunotherapy
- tumor microenvironment
Collapse
Affiliation(s)
- Annie A Wu
- Department of Oncology; The Johns Hopkins University School of Medicine ; Baltimore, MD USA
| | - Virginia Drake
- School of Medicine; University of Maryland ; Baltimore, MD USA
| | | | - ShihChi Chiu
- College of Medicine; National Taiwan University ; Taipei, Taiwan
| | - Lei Zheng
- Department of Oncology; The Johns Hopkins University School of Medicine ; Baltimore, MD USA
| |
Collapse
|
10
|
Abstract
Receptors expressed on the host cell surface adhere viruses to target cells and serve as determinants of viral tropism. Several viruses bind cell surface glycans to facilitate entry, but the contribution of specific glycan moieties to viral disease is incompletely understood. Reovirus provides a tractable experimental model for studies of viral neuropathogenesis. In newborn mice, serotype 1 (T1) reovirus causes hydrocephalus, whereas serotype 3 (T3) reovirus causes encephalitis. T1 and T3 reoviruses engage distinct glycans, suggesting that glycan-binding capacity contributes to these differences in pathogenesis. Using structure-guided mutagenesis, we engineered a mutant T1 reovirus incapable of binding the T1 reovirus-specific glycan receptor, GM2. The mutant virus induced substantially less hydrocephalus than wild-type virus, an effect phenocopied by wild-type virus infection of GM2-deficient mice. In comparison to wild-type virus, yields of mutant virus were diminished in cultured ependymal cells, the cell type that lines the brain ventricles. These findings suggest that GM2 engagement targets reovirus to ependymal cells in mice and illuminate the function of glycan engagement in reovirus serotype-dependent disease. Receptor utilization strongly influences viral disease, often dictating host range and target cell selection. Different reovirus serotypes bind to different glycans, but a precise function for these molecules in pathogenesis is unknown. We used type 1 (T1) reovirus deficient in binding the GM2 glycan and mice lacking GM2 to pinpoint a role for glycan engagement in hydrocephalus caused by T1 reovirus. This work indicates that engagement of a specific glycan can lead to infection of specific cells in the host and consequent disease at that site. Since reovirus is being developed as a vaccine vector and oncolytic agent, understanding reovirus-glycan interactions may allow manipulation of reovirus glycan-binding properties for therapeutic applications.
Collapse
|
11
|
Abstract
Viral infections are initiated by attachment of the virus to host cell surface receptors, including sialic acid-containing glycans. It is now possible to rapidly identify specific glycan receptors using glycan array screening, to define atomic-level structures of virus-glycan complexes and to alter the glycan-binding site to determine the function of glycan engagement in viral disease. This Review highlights general principles of virus-glycan interactions and provides specific examples of sialic acid binding by viruses with stalk-like attachment proteins, including influenza virus, reovirus, adenovirus and rotavirus. Understanding virus-glycan interactions is essential to combating viral infections and designing improved viral vectors for therapeutic applications.
Collapse
|
12
|
Abo-ouf H, Hooper AWM, White EJ, Janse van Rensburg HJ, Trigatti BL, Igdoura SA. Deletion of tumor necrosis factor-α ameliorates neurodegeneration in Sandhoff disease mice. Hum Mol Genet 2013; 22:3960-75. [DOI: 10.1093/hmg/ddt250] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
| | | | | | | | | | - Suleiman A Igdoura
- Department of Biology,
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Reiss K, Stencel JE, Liu Y, Blaum BS, Reiter DM, Feizi T, Dermody TS, Stehle T. The GM2 glycan serves as a functional coreceptor for serotype 1 reovirus. PLoS Pathog 2012; 8:e1003078. [PMID: 23236285 PMCID: PMC3516570 DOI: 10.1371/journal.ppat.1003078] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/23/2012] [Indexed: 01/13/2023] Open
Abstract
Viral attachment to target cells is the first step in infection and also serves as a determinant of tropism. Like many viruses, mammalian reoviruses bind with low affinity to cell-surface carbohydrate receptors to initiate the infectious process. Reoviruses disseminate with serotype-specific tropism in the host, which may be explained by differential glycan utilization. Although α2,3-linked sialylated oligosaccharides serve as carbohydrate receptors for type 3 reoviruses, neither a specific glycan bound by any reovirus serotype nor the function of glycan binding in type 1 reovirus infection was known. We have identified the oligosaccharide portion of ganglioside GM2 (the GM2 glycan) as a receptor for the attachment protein σ1 of reovirus strain type 1 Lang (T1L) using glycan array screening. The interaction of T1L σ1 with GM2 in solution was confirmed using NMR spectroscopy. We established that GM2 glycan engagement is required for optimal infection of mouse embryonic fibroblasts (MEFs) by T1L. Preincubation with GM2 specifically inhibited type 1 but not type 3 reovirus infection of MEFs. To provide a structural basis for these observations, we defined the mode of receptor recognition by determining the crystal structure of T1L σ1 in complex with the GM2 glycan. GM2 binds in a shallow groove in the globular head domain of T1L σ1. Both terminal sugar moieties of the GM2 glycan, N-acetylneuraminic acid and N-acetylgalactosamine, form contacts with the protein, providing an explanation for the observed specificity for GM2. Viruses with mutations in the glycan-binding domain display diminished hemagglutination capacity, a property dependent on glycan binding, and reduced capacity to infect MEFs. Our results define a novel mode of virus-glycan engagement and provide a mechanistic explanation for the serotype-dependent differences in glycan utilization by reovirus.
Collapse
MESH Headings
- Animals
- Cricetinae
- Embryo, Mammalian/metabolism
- Embryo, Mammalian/pathology
- Embryo, Mammalian/virology
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Fibroblasts/virology
- Gangliosidoses, GM2/genetics
- Gangliosidoses, GM2/metabolism
- L Cells
- Mice
- Mutation
- Orthoreovirus, Mammalian/genetics
- Orthoreovirus, Mammalian/metabolism
- Protein Structure, Tertiary
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Reoviridae Infections/genetics
- Reoviridae Infections/metabolism
- Reoviridae Infections/pathology
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Kerstin Reiss
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jennifer E. Stencel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Yan Liu
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Bärbel S. Blaum
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Dirk M. Reiter
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Ten Feizi
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Terence S. Dermody
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
14
|
Pham T, Bachelez H, Berthelot JM, Blacher J, Bouhnik Y, Claudepierre P, Constantin A, Fautrel B, Gaudin P, Goëb V, Gossec L, Goupille P, Guillaume-Czitrom S, Hachulla E, Huet I, Jullien D, Launay O, Lemann M, Maillefert JF, Marolleau JP, Martinez V, Masson C, Morel J, Mouthon L, Pol S, Puéchal X, Richette P, Saraux A, Schaeverbeke T, Soubrier M, Sudre A, Tran TA, Viguier M, Vittecoq O, Wendling D, Mariette X, Sibilia J. TNF alpha antagonist therapy and safety monitoring. Joint Bone Spine 2011; 78 Suppl 1:15-185. [PMID: 21703545 DOI: 10.1016/s1297-319x(11)70001-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To develop and/or update fact sheets about TNFα antagonists treatments, in order to assist physicians in the management of patients with inflammatory joint disease. METHODS 1. selection by a committee of rheumatology experts of the main topics of interest for which fact sheets were desirable; 2. identification and review of publications relevant to each topic; 3. development and/or update of fact sheets based on three levels of evidence: evidence-based medicine, official recommendations, and expert opinion. The experts were rheumatologists and invited specialists in other fields, and they had extensive experience with the management of chronic inflammatory diseases, such as rheumatoid. They were members of the CRI (Club Rhumatismes et Inflammation), a section of the Société Francaise de Rhumatologie. Each fact sheet was revised by several experts and the overall process was coordinated by three experts. RESULTS Several topics of major interest were selected: contraindications of TNFα antagonists treatments, the management of adverse effects and concomitant diseases that may develop during these therapies, and the management of everyday situations such as pregnancy, surgery, and immunizations. After a review of the literature and discussions among experts, a consensus was developed about the content of the fact sheets presented here. These fact sheets focus on several points: 1. in RA and SpA, initiation and monitoring of TNFα antagonists treatments, management of patients with specific past histories, and specific clinical situations such as pregnancy; 2. diseases other than RA, such as juvenile idiopathic arthritis; 3. models of letters for informing the rheumatologist and general practitioner; 4. and patient information. CONCLUSION These TNFα antagonists treatments fact sheets built on evidence-based medicine and expert opinion will serve as a practical tool for assisting physicians who manage patients on these therapies. They will be available continuously at www.cri-net.com and updated at appropriate intervals.
Collapse
Affiliation(s)
- Thao Pham
- Rheumatology Department, CHU Sainte-Marguerite, Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Matin SF, Sharma P, Gill IS, Tannenbaum C, Hobart MG, Novick AC, Finke JH. Immunological response to renal cryoablation in an in vivo orthotopic renal cell carcinoma murine model. J Urol 2010; 183:333-8. [PMID: 19914660 DOI: 10.1016/j.juro.2009.08.110] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Indexed: 01/05/2023]
Abstract
PURPOSE The immunological consequences of cryoablation for renal cell carcinoma are largely unknown. Cryoablation is an attractive therapeutic option for tumors due to its minimally invasive nature. Cryoablation is also potentially immunogenic. We describe the development of an animal model to deliver in vivo renal cryotherapy to orthotopically implanted renal cell carcinoma and the results of multiple immunological interrogations after cryoablation. MATERIALS AND METHODS Four to 6-week-old female Balb/c mice (Jackson Laboratories, Bar Harbor, Maine) underwent renal subcapsular implantation of the syngeneic murine renal cell carcinoma Renca. Two weeks later contact cryoablation was done in tumor bearing kidneys. Another group of animals underwent cryoablation of normal kidneys. Animals were sacrificed 2 weeks after tumor injection or 1 and 2 weeks after cryoablation, respectively. Kidneys, spleens and draining lymph nodes were harvested. Evaluation consisted of immunohistochemistry, immunofluorescence and gene expression profiling using reverse-transcriptase polymerase chain reaction. RESULTS Subcapsular tumor implantation was successful in all cases and confirmed histologically. No significant lymphocytic infiltrate was seen in tumor only animals but those treated with cryoablation (tumor and nontumor bearing) had a significant inflammatory response primarily in sublethal tissue injury and perivascular areas. After cryoablation most infiltrating cells were neutrophils, macrophages and T cells. Polymerase chain reaction showed increased interferon-gamma production in kidneys after cryoablation. CONCLUSIONS This study shows the potential feasibility of this animal model for studying cryo-immunology. We confirm the absence of any significant immune cell infiltration in tumor bearing kidneys and report a significant inflammatory infiltrate after cryoablation, consisting primarily of neutrophils, macrophages, and CD4+ and CD8+ T cells with an increase in the T helper type 1/2 ratio. This orthotopic murine model can form the basis of future studies of additional immunological aspects of renal cryoablation.
Collapse
Affiliation(s)
- Surena F Matin
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Sa G, Das T, Moon C, Hilston CM, Rayman PA, Rini BI, Tannenbaum CS, Finke JH. GD3, an overexpressed tumor-derived ganglioside, mediates the apoptosis of activated but not resting T cells. Cancer Res 2009; 69:3095-104. [PMID: 19276353 DOI: 10.1158/0008-5472.can-08-3776] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We previously elucidated an important role for gangliosides in renal cell carcinoma-mediated T lymphocyte apoptosis, although the mechanism by which they mediated lymphocyte death remained unclear. Here, we show that when added in purified form, GD3 is internalized by activated T cells, initiating a series of proapoptotic events, including the induction of reactive oxygen species (ROS), an enhancement of p53 and Bax accumulation, an increase in mitochondrial permeability, cytochrome c release, and the activation of caspase-9. GD3-induced apoptosis of activated T cells was dose dependent and inhibitable by pretreating the lymphocytes with N-acetylcysteine, cyclosporin A, or bongkrekic acid, emphasizing the essential role of ROS and mitochondrial permeability to the process. Ganglioside-induced T-cell killing was associated with the caspase-dependent degradation of nuclear factor-kappaB-inducible, antiapoptotic proteins, including RelA; this suggests that their loss is initiated only after the cascade is activated and that their disappearance amplifies but not triggers GD3 susceptibility. Resting T cells did not internalize appreciable levels of GD3 and did not undergo any of the proapoptotic changes that characterize activated T lymphocytes exposed to the ganglioside. RelA overexpression endows Jurkat cells with resistance to GD3-mediated apoptosis, verifying the role of the intact transcription factor in mediating protection from the ganglioside.
Collapse
Affiliation(s)
- Gaurisankar Sa
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The immune response to cancer has been long recognized, including both innate and adaptive responses, showing that the immune system can recognize protein products of genetic and epigenetic changes in transformed cells. The accumulation of antigen-specific T cells within the tumor, the draining lymph node, and the circulation, either in newly diagnosed patients or resultant from experimental immunotherapy, proves that tumors produce antigens and that priming occurs. Unfortunately, just as obviously, tumors grow, implying that anti-tumor immune responses are either not sufficiently vigorous to eliminate the cancer or that anti-tumor immunity is suppressed. Both possibilities are supported by current data. In experimental animal models of cancer and also in patients, systemic immunity is usually not dramatically suppressed, because tumor-bearing animals and patients develop T-cell-dependent immune responses to microbes and to either model antigens or experimental cancer vaccines. However, inhibition of specific anti-tumor immunity is common, and several possible explanations of tolerance to tumor antigens or tumor-induced immunesuppression have been proposed. Inhibition of effective anti-tumor immunity results from the tumor or the host response to tumor growth, inhibiting the activation, differentiation, or function of anti-tumor immune cells. As a consequence, anti-tumor T cells cannot respond productively to developmental, targeting, or activation cues. While able to enhance the number and phenotype of anti-tumor T cells, the modest success of immunotherapy has shown the necessity to attempt to reverse tolerance in anti-tumor T cells, and the vanguard of experimental therapy now focuses on vaccination in combination with blockade of immunosuppressive mechanisms. This review discusses several potential mechanisms by which anti-tumor T cells may be inhibited in function.
Collapse
Affiliation(s)
- Alan B Frey
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
18
|
Das T, Sa G, Paszkiewicz-Kozik E, Hilston C, Molto L, Rayman P, Kudo D, Biswas K, Bukowski RM, Finke JH, Tannenbaum CS. Renal cell carcinoma tumors induce T cell apoptosis through receptor-dependent and receptor-independent pathways. THE JOURNAL OF IMMUNOLOGY 2008; 180:4687-96. [PMID: 18354192 DOI: 10.4049/jimmunol.180.7.4687] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumors can promote their own progressive growth by inducing T cell apoptosis. Though previous studies suggested that tumor-mediated T cell killing is receptor dependent, we recently showed that tumor gangliosides also participate, a notion consistent with reports indicating that, in some cell types, gangliosides can activate the intrinsic apoptotic pathway by stimulating reactive oxygen species production, cytochrome c release, and caspase-9 activation. In this study, we used normal peripheral blood T cells, as well as caspase-8-, caspase-9-, and Fas-associated death domain protein-deficient Jurkat cells, to assess whether the death ligands and gangliosides overexpressed by the renal cell carcinoma (RCC) cell line SK-RC-45 can independently stimulate T cell apoptosis as a mechanism of immune escape. Anti-FasL Abs and the glycosylceramide synthase inhibitor 1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (PPPP) each partially inhibited the ability of SK-RC-45 to kill cocultured activated T cells; together, as purified molecules, RCC gangliosides and rFasL induced a more extensive mitochondrial permeability transition and greater levels of apoptosis than either agent alone, equivalent to that induced by the FasL- and ganglioside-expressing RCC line itself. rFasL-mediated apoptosis was completely inhibited in caspase-8- and Fas-associated death domain protein-negative Jurkat cells, though apoptosis induced by purified gangliosides remained intact, findings that correlate with the observed partial inhibition of SK-RC-45-induced apoptosis in the Jurkat lines with defective death receptor signaling. Western blot analysis performed on lysates made from wild-type and mutant Jurkat cells cocultured with SK-RC-45 revealed caspase activation patterns and other biochemical correlates which additionally supported the concept that tumor-associated gangliosides and FasL independently activate the caspase cascade in T cells through the intrinsic and extrinsic pathways, respectively.
Collapse
Affiliation(s)
- Tanya Das
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Das T, Sa G, Hilston C, Kudo D, Rayman P, Biswas K, Molto L, Bukowski R, Rini B, Finke JH, Tannenbaum C. GM1 and Tumor Necrosis Factor-α, Overexpressed in Renal Cell Carcinoma, Synergize to Induce T-Cell Apoptosis. Cancer Res 2008; 68:2014-23. [DOI: 10.1158/0008-5472.can-07-6037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|