1
|
Monadi T, Mohajer Z, Soltani A, Khazeei Tabari MA, Manayi A, Azadbakht M. The influence of apigenin on cellular responses to radiation: From protection to sensitization. Biofactors 2025; 51:e2113. [PMID: 39134426 DOI: 10.1002/biof.2113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/24/2024] [Indexed: 12/29/2024]
Abstract
Apigenin, a dietary flavonoid, has gained increasing attention for its potential therapeutic applications in radiation protection and radiosensitization. Ionizing radiation (IR) can harm healthy cells, but as radiotherapy remains crucial in cancer treatment. Owing to the remarkable application of radiotherapy in the treatment of cancers, it is vital to protect healthy cells from radiation hazards while increasing the sensitivity of cancer cells to radiation. This article reviews the current understanding of apigenin's radioprotective and radiosensitive properties with a focuses on the involved signaling pathways and key molecular targets. When exposed to irradiation, apigenin reduces inflammation via cyclooxygenase-2 inhibition and modulates proapoptotic and antiapoptotic biomarkers. Apigenin's radical scavenging abilities and antioxidant enhancement mitigate oxidative DNA damage. It inhibits radiation-induced mammalian target of rapamycin activation, vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP), and STAT3 expression, while promoting AMPK, autophagy, and apoptosis, suggesting potential in cancer prevention. As a radiosensitizer, apigenin inhibits tumor growth by inducing apoptosis, suppressing VEGF-C, tumor necrosis factor alpha, and STAT3, reducing MMP-2/9 activity, and inhibiting cancer cell glucose uptake. Cellular and animal studies support apigenin's radioprotective and anticancer potential, making it a potential candidate for further research. Investigation into apigenin's therapeutic efficacy in diverse cancer types and radiation damage is essential.
Collapse
Affiliation(s)
- Taha Monadi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohajer
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Soltani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Azadbakht
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Yue L, Li N, Ye X, Xiu Y, Wang B. Polymethoxylated flavones for modulating signaling pathways in inflammation. Int Immunopharmacol 2024; 143:113522. [PMID: 39515044 DOI: 10.1016/j.intimp.2024.113522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Aberrant signaling pathways play a crucial role in the pathogenesis of various diseases, including inflammatory disorders and autoimmune conditions. Polymethoxylated flavones (PMFs), a class of natural compounds found in citrus fruits, have obtained increasing attention for their potential therapeutic effects in modulating inflammatory responses. Although significant progress has been made in the pharmacological research of PMFs, the mechanisms by which they modulate signaling pathways to treat inflammation have not been systematically reviewed or analyzed. To address this gap in the literature, this review explores the mechanisms underlying the anti-inflammatory properties of PMFs and their prospects as drugs for treating inflammatory diseases. We discuss the molecular targets and signaling pathways through which PMFs exert their anti-inflammatory effects, including NF-κB pathway, PI3K/Akt pathway, MAPK pathway, Nrf2 pathway, and regulation of inflammatory cytokine production. Furthermore, we highlight preclinical studies evaluating the efficacy of PMFs in various inflammatory conditions, such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD), and osteoarthritis (OA). Despite promising findings, challenges remain in optimizing the pharmacokinetic properties and therapeutic efficacy of PMFs for clinical use. Future research directions include elucidating the structure-activity relationships of PMFs, developing novel delivery strategies, and conducting large-scale clinical trials to validate their efficacy and safety profiles. Overall, PMFs represent a promising class of natural compounds with potential applications as anti-inflammatory drugs, offering novel therapeutic opportunities for managing inflammatory diseases.
Collapse
Affiliation(s)
- Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning Li
- Shenzhen Research Institute, the Hong Kong University of Science and Technology, Shenzhen 518054, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanfeng Xiu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Yenigun S, Basar Y, Ipek Y, Behcet L, Demirtas I, Ozen T. DNA protection, molecular docking, molecular dynamic, enzyme inhibition, and kinetics studies of apigenin isolated from Nepeta baytopii Hedge & Lamond by bioactivity-guided fractionation. J Biomol Struct Dyn 2024:1-12. [PMID: 39692135 DOI: 10.1080/07391102.2024.2442753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/29/2024] [Indexed: 12/19/2024]
Abstract
Plant-derived bioactive substances have demonstrated significant qualities that suggest they may be crucial in preventing various chronic diseases. Flavonoids, which include apigenin, are the biggest group of polyphenols. In our study, we aimed to obtain the methanol-chloroform (1:1) extract from the aerial parts of Nepeta baytopii Hedge & Lamond and purify the apigenin using bioactivity-guided isolation to separate the active fraction. The current in vitro study provides updated knowledge on apigenin regarding its previously unresearched DNA protection activity and enzyme inhibition, enzyme inhibition kinetics, and enzyme-apigenin interactions. In this context, these studies will be the first and will contribute to the literature. Apigenin had high urease (IC50-5.00 ± 0.00 µM), butyrlcholinesterase (BChE:IC50-10.48 ± 0.00 µM), and tyrosinase (IC50-177.82 ± 14.40 µM) inhibition activities, while inhibition binding constants were high in urease (Ki-0.05 mM), tyrosinase (Ki-0.06 mM), and carbonic anhydrase (Ki-0.08 mM). The binding affinities and constants of the interaction were also ascertained to be high for BChE (-9.50 kcal/mol, and Ki-0.11 µM), and tyrosinase (-8.80 kcal/mol, and Ki, 0.62 µM) with apigenin. In summary, apigenin can be used as an inhibitor for five enzymes. These results will give priority to further studies. Apigenin showed high DNA protection activity with a Form I value of 67.37%. These data demonstrated that the interaction formed by BChE-apigenin gave the best results regarding enzyme inhibition and enzyme-molecule interaction. The stability of this complex was evaluated using molecular dynamics modeling.
Collapse
Affiliation(s)
- Semiha Yenigun
- Department of Chemistry, Faculty of Science, Kurupelit Campus, Ondokuz Mayıs University, Samsun, Turkey
| | - Yunus Basar
- Department of Biochemistry, Faculty of Arts and Sciences, Iğdır University, Iğdır, Turkey
| | - Yasar Ipek
- Department of Chemistry, Faculty of Science, Uluyazı Campus, Çankırı Karatekin University, Çankırı, Turkey
| | - Lutfi Behcet
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingöl University, Bingöl, Turkey
| | - Ibrahim Demirtas
- Department of Biochemistry, Faculty of Arts and Sciences, Iğdır University, Iğdır, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, Turkey
| | - Tevfik Ozen
- Department of Chemistry, Faculty of Science, Kurupelit Campus, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
4
|
Vanshita, Rawal T, Bhati H, Bansal K. Harnessing the power of novel drug delivery systems for effective delivery of apigenin: an updated review. J Microencapsul 2024:1-24. [PMID: 39670876 DOI: 10.1080/02652048.2024.2437375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Phytochemicals as dietary components are being extensively explored in order to prevent and treat a wide range of diseases. Apigenin is among the most studied flavonoids found in significant amount in fruits (oranges), vegetables (celery, parsley, onions), plant-based beverages (beer, tea, wine) and herbs (thyme, chamomile, basil, oregano) that has recently gained interest due to its promising pharmacological effects. However, the poor solubility and extended first pass metabolism of apigenin limits its clinical use. Various advantages have been demonstrated by nanocarrier-based platforms in the delivery of hydrophobic drugs like apigenin to diseased tissues. Apigenin nanoformulations have been reported to have better stability, high encapsulation efficiency, prolonged circulation time, sustained release, enhanced accumulation at targeted sites and better therapeutic efficacy. An overview of the major nanocarriers based delivery including liposomes, niosomes, solid lipid nanoparticles, micelles, dendrimers etc., is described. This review sheds insight into the therapeutic effects and advanced drug delivery strategies for the delivery of apigenin.
Collapse
Affiliation(s)
- Vanshita
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Tanu Rawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Hemant Bhati
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Keshav Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
5
|
Otálora-Alcaraz A, Reilly T, Oró-Nolla M, Sun MC, Costelloe L, Kearney H, Patra PH, Downer EJ. The NLRP3 inflammasome: A central player in multiple sclerosis. Biochem Pharmacol 2024; 232:116667. [PMID: 39647604 DOI: 10.1016/j.bcp.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
Multiple sclerosis (MS) is a neurological autoimmune condition associated with many symptoms including spasticity, pain, limb numbness and weakness. It is characterised by inflammatory demyelination and axonal degeneration of the brain and spinal cord. A range of disease-modifying therapies (DMTs) are available to suppress inflammatory disease activity in MS, however, there is a pressing need for new therapeutic avenues as DMTs have a limited ability to suppress confirmed disability progression. A body of literature indicates that innate immune inflammation is linked to MS progression. The nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome has a well-established function in innate immunity which is closely associated with the pathogenesis of neuroinflammatory conditions. Evidence suggests that the inflammasome may be a therapeutic target in disorders such as MS and at present, inhibitors of the NLRP3 inflammasome are in pre-clinical development. Therefore, this review systematically highlights the pathogenic role of inflammasomes in MS, presenting an overview of research evidence linking inflammasome-related polymorphisms to MS susceptibility, and gathering evidence investigating NLRP3 biomarkers in MS. The role of the NLRP3 inflammasome in murine models of MS is furthermore discussed. Finally, a significant component of this review focuses on evidence that NLRP3 signalling components are novel drug targets in MS. Overall this review defines the role of the inflammasome in MS pathogenesis and identifies inflammasome inhibitor targets that warrant full investigation in MS and related disorders.
Collapse
Affiliation(s)
- Almudena Otálora-Alcaraz
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Thomas Reilly
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Martí Oró-Nolla
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Melody Cui Sun
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Lisa Costelloe
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Hugh Kearney
- MS Unit, Department of Neurology, St. James's Hospital, Dublin, Ireland; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Pabitra H Patra
- Transpharmation Ltd., London Biosciences Innovation Centre, London, United Kingdom
| | - Eric J Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
6
|
Liu Y, Chen H, Yang G, Feng F. Metabolomics and serum pharmacochemistry combined with network pharmacology uncover the potential effective ingredients and mechanisms of Yin-Chen-Si-Ni Decoction treating ANIT-induced cholestatic liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118713. [PMID: 39163894 DOI: 10.1016/j.jep.2024.118713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/22/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yin-Chen-Si-Ni Decoction is a classical traditional Chinese medicine (TCM) prescription that is used clinically for treating cholestatic liver injury (CLI) and other hepatic diseases. However, the material basis and underlying mechanisms of YCSND are not clear. AIM OF THE STUDY To investigate effective components and mechanisms of YCSND in the treatment of CLI using serum pharmacochemistry, metabolomics, and network pharmacology. MATERIALS AND METHODS Biochemical indicators, liver index, and histopathology analysis were adopted to evaluate the protective effect of YCSND on ANIT-induced CLI rats. Then, a UPLC-Q-Exactive Orbitrap MS/MS analysis of the migrant components in serum and liver including prototype and metabolic components was performed in YCSND. In addition, a study of the endogenous metabolites using serum and liver metabolomics was performed to discover potential biomarkers, metabolic pathways, and associated mechanisms. Further, the network pharmacology oriented by in vivo migrant components was also used to pinpoint the active ingredients, core targets, and signaling pathways of YCSND. Finally, molecular docking and molecular dynamics simulation (MDS) were used to predict the binding ability between components and core targets, and a real-time qPCR (RT-qPCR) experiment was used to measure the mRNA expression of the core target genes. RESULTS Pharmacodynamic studies suggest that YCSND could exert obvious hepatoprotective effects on CLI rats. Furthermore, 68 compounds, comprising 32 prototype components and 36 metabolic components from YCSND, were found by serum pharmacochemistry analysis. Network pharmacology combining molecular docking and MDS showed that apigenin, naringenin, 18β-glycyrrhetinic acid, and isoformononetin have better binding ability to 6 core targets (EGFR, AKT1, IL6, MMP9, CASP3, PPARG). Additionally, PI3K, TNF-α, MAPK3, and six core target genes in liver tissues were validated with RT-qPCR. Metabolomics revealed the anti-CLI effects of YCSND by regulating four metabolic pathways of primary bile acid and biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, and arachidonic acid metabolism. Integrating metabolomics and network pharmacology identified four pathways related to CLI, including the PI3K-Akt, HIF-1, MAPK, and TNF signaling pathway, which revealed multiple mechanisms of YCSND against CLI that might involve anti-inflammatory and apoptosis. CONCLUSION The research based on serum pharmacochemistry, network pharmacology, and metabolomics demonstrates the beneficial hepatoprotective effects of YCSND on CLI rats by regulating multiple components, multiple targets, and multiple pathways, and provides a potent means of illuminating the material basis and mechanisms of TCM prescriptions.
Collapse
Affiliation(s)
- Yanru Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hui Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Gongjun Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Fang Feng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Jeon H, Lee D, Kim JY, Shim JJ, Lee JH. Limosilactobacillus reuteri HY7503 and Its Cellular Proteins Alleviate Endothelial Dysfunction by Increasing Nitric Oxide Production and Regulating Cell Adhesion Molecule Levels. Int J Mol Sci 2024; 25:11326. [PMID: 39457107 PMCID: PMC11509054 DOI: 10.3390/ijms252011326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Endothelial dysfunction, which is marked by a reduction in nitric oxide (NO) production or an imbalance in relaxing and contracting factor levels, exacerbates atherosclerosis by promoting the production of cell adhesion molecules and cytokines. This study aimed to investigate the effects of Limosilactobacillus reuteri HY7503, a novel probiotic isolated from raw milk, on endothelial dysfunction. Five lactic acid bacterial strains were screened for their antioxidant, anti-inflammatory, and endothelium-protective properties; L. reuteri HY7503 had the most potent effect. In a mouse model of angiotensin II-induced endothelial dysfunction, L. reuteri HY7503 reduced vascular thickening (19.78%), increased serum NO levels (226.70%), upregulated endothelial NO synthase (eNOS) expression in the aortic tissue, and decreased levels of cell adhesion molecules (intercellular adhesion molecule-1 [ICAM-1] and vascular cell adhesion molecule-1 [VCAM-1]) and serum cytokines (tumor necrosis factor-alpha [TNF-α] and interleukin-6 [IL-6]). In TNF-α-treated human umbilical vein endothelial cells (HUVECs), L. reuteri HY7503 enhanced NO production and reduced cell adhesion molecule levels. In HUVECs, surface-layer proteins (SLPs) were more effective than extracellular vesicles (exosomes) in increasing NO production and decreasing cell adhesion molecule levels. These findings suggested that L. reuteri HY7503 may serve as a functional probiotic that alleviates endothelial dysfunction.
Collapse
Affiliation(s)
| | | | - Joo-Yun Kim
- R&BD Center, Hy Co., Ltd., 22 Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Gyeonggi-do, Republic of Korea; (H.J.); (D.L.); (J.-J.S.); (J.-H.L.)
| | | | | |
Collapse
|
8
|
Zare F, Laplante P, Greschner AA, Cailhier JF, Gauthier MA. Stability of a Multiresponsive Sulfonium Vinyl Sulfide Linker toward Nucleophilic/Radical Thiols, Reactive Nitrogen Species, and in Cells under Pro-inflammatory Stimulation. Biomacromolecules 2024; 25:6017-6025. [PMID: 39166922 DOI: 10.1021/acs.biomac.4c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Chemical linkages that respond to biological stimuli are important for many pharmaceutical and biotechnological applications, making it relevant to explore new variants with different responsivity profiles. This work explores the responsiveness of a TAT peptide-based sulfonium vinyl sulfide probe that responds to nucleophilic thiols, radical thiol species (RTS), and reactive nitrogen species (RNS). Under model conditions, response to nucleophilic thiols was very slow (hours/days), though fast with down to molar equivalents of either RTS or RNS (minutes). These reactions led to the traceless release of a methionine-containing peptide in the first two cases and to a hydroxy nitration adduct in the third case. Despite the sensitive nature of the probe, it remained stable for at least ∼2 h in the presence of cells during TAT-mediated trafficking, even under pro-inflammatory stimulation. The thiol-responsiveness is intermediate to that observed for disulfide linkers and conventional cysteine-maleimide linkers, presenting opportunities for biotechnological applications.
Collapse
Affiliation(s)
- Fatemeh Zare
- EMT Research Center, Institut National de la Recherche Scientifique (INRS), Varennes J3X 1P7, Canada
| | - Patrick Laplante
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montreal H2X 0A9, Canada
| | - Andrea A Greschner
- EMT Research Center, Institut National de la Recherche Scientifique (INRS), Varennes J3X 1P7, Canada
| | - Jean-François Cailhier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montreal H2X 0A9, Canada
| | - Marc A Gauthier
- EMT Research Center, Institut National de la Recherche Scientifique (INRS), Varennes J3X 1P7, Canada
| |
Collapse
|
9
|
Saha P, Talwar P. Idiopathic pulmonary fibrosis (IPF): disease pathophysiology, targets, and potential therapeutic interventions. Mol Cell Biochem 2024; 479:2181-2194. [PMID: 37707699 DOI: 10.1007/s11010-023-04845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, degenerative pulmonary condition. Transforming growth factor (TGF)-β, platelet-derived growth factor (PDGF), and tumor necrosis factor-α (TNF-α) are the major modulators of IPF that mediate myofibroblast differentiation and promote fibrotic remodeling of the lung. Cigarette smoke, asbestos fiber, drugs, and radiation are known to favor fibrotic remodeling of the lungs. Oxidative stress in the endoplasmic reticulum (ER) also leads to protein misfolding and promotes ER stress, which is predominant in IPF. This phenomenon further results in excess reactive oxygen species (ROS) aggregation, increasing oxidative stress. During protein folding in the ER, thiol groups on the cysteine residue are oxidized and disulfide bonds are formed, which leads to the production of hydrogen peroxide (H2O2) as a by-product. With the accumulation of misfolded proteins in the ER, multiple signaling cascades are initiated by the cell, collectively termed as the unfolded protein response (UPR). UPR also induces ROS production within the ER and mitochondria and promotes both pro-apoptotic and pro-survival pathways. The prevalence of post-COVID-19 pulmonary fibrosis (PCPF) is 44.9%, along with an alarming increase in "Coronavirus Disease 2019" (COVID-19) comorbidities. Fibrotic airway remodeling and declined lung function are the common endpoints of SARS-CoV-2 infection and IPF. Flavonoids are available in our dietary supplements and exhibit medicinal properties. Apigenin is a flavonoid found in plants, including chamomile, thyme, parsley, garlic, guava, and broccoli, and regulates several cellular functions, such as oxidative stress, ER stress, and fibrotic responses. In this study, we focus on the IPF and COVID-19 pathogenesis and the potential role of Apigenin in addressing disease progression.
Collapse
Affiliation(s)
- Pritha Saha
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
- Apoptosis and Cell Survival Research Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
10
|
Singh A, Singh J, Parween G, Khator R, Monga V. A comprehensive review of apigenin a dietary flavonoid: biological sources, nutraceutical prospects, chemistry and pharmacological insights and health benefits. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 39154213 DOI: 10.1080/10408398.2024.2390550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
A multitude of plant-derived bioactive compounds have shown significant promise in preventing chronic illnesses, with flavonoids constituting a substantial class of naturally occurring polyphenolic compounds. Apigenin, a flavone identified as 4',5,7-trihydroxyflavone, holds immense promise as a preventative agent against chronic illnesses. Despite its extensive research and recognized nutraceutical value, its therapeutic application remains underexplored, necessitating further clinical investigations. This review delves into the biological sources, nutraceutical prospects, chemistry, pharmacological insights, and health benefits of apigenin. Through multifaceted analytical studies, we explore its diverse pharmacological profile and potential therapeutic applications across various health domains. The manuscript comprehensively examines apigenin's role as a neuroprotective , anti-inflammatory compound, and a potent antioxidant agent. Additionally, its efficacy in combating cardiovascular diseases, anti-diabetic properties, and anticancer potential has been discussed. Furthermore, the antimicrobial attributes and the challenges surrounding its bioavailability, particularly from herbal supplements have been addressed. Available in diverse forms including tablets, capsules, solid dispersions, co-crystals, inclusion complexes and nano formulations. Additionally, it is prevalent as a nutraceutical supplement in herbal formulations. While strides have been made in overcoming pharmacokinetic hurdles, further research into apigenin's clinical effectiveness and bioavailability from herbal supplements remains imperative for its widespread utilization in preventive medicine.
Collapse
Affiliation(s)
- Abhinav Singh
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Jagjit Singh
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Gulistan Parween
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Rakesh Khator
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Vikramdeep Monga
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| |
Collapse
|
11
|
Charrière K, Schneider V, Perrignon-Sommet M, Lizard G, Benani A, Jacquin-Piques A, Vejux A. Exploring the Role of Apigenin in Neuroinflammation: Insights and Implications. Int J Mol Sci 2024; 25:5041. [PMID: 38732259 PMCID: PMC11084463 DOI: 10.3390/ijms25095041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Neuroinflammation, a hallmark of various central nervous system disorders, is often associated with oxidative stress and neuronal or oligodendrocyte cell death. It is therefore very interesting to target neuroinflammation pharmacologically. One therapeutic option is the use of nutraceuticals, particularly apigenin. Apigenin is present in plants: vegetables (parsley, celery, onions), fruits (oranges), herbs (chamomile, thyme, oregano, basil), and some beverages (tea, beer, and wine). This review explores the potential of apigenin as an anti-inflammatory agent across diverse neurological conditions (multiple sclerosis, Parkinson's disease, Alzheimer's disease), cancer, cardiovascular diseases, cognitive and memory disorders, and toxicity related to trace metals and other chemicals. Drawing upon major studies, we summarize apigenin's multifaceted effects and underlying mechanisms in neuroinflammation. Our review underscores apigenin's therapeutic promise and calls for further investigation into its clinical applications.
Collapse
Affiliation(s)
- Karine Charrière
- Université de Franche-Comté, CHU Besançon, UMR 1322 LINC, INSERM CIC 1431, 25000 Besançon, France;
| | - Vincent Schneider
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
- Neurology and Clinical Neurophysiology Department, CHU F. Mitterrand, 21000 Dijon, France
| | - Manon Perrignon-Sommet
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
| | - Gérard Lizard
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne, 21000 Dijon, France;
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
| | - Agnès Jacquin-Piques
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
- Neurology and Clinical Neurophysiology Department, CHU F. Mitterrand, 21000 Dijon, France
- Memory Resource and Research Center (CMRR), CHU F. Mitterrand, 21000 Dijon, France
| | - Anne Vejux
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne, 21000 Dijon, France;
| |
Collapse
|
12
|
Alarabei AA, Abd Aziz NAL, AB Razak NI, Abas R, Bahari H, Abdullah MA, Hussain MK, Abdul Majid AMS, Basir R. Immunomodulating Phytochemicals: An Insight Into Their Potential Use in Cytokine Storm Situations. Adv Pharm Bull 2024; 14:105-119. [PMID: 38585461 PMCID: PMC10997936 DOI: 10.34172/apb.2024.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/17/2023] [Accepted: 07/14/2023] [Indexed: 04/09/2024] Open
Abstract
Phytochemicals are compounds found in plants that possess a variety of bioactive properties, including antioxidant and immunomodulatory properties. Recent studies have highlighted the potential of phytochemicals in targeting specific signalling pathways involved in cytokine storm, a life-threatening clinical condition resulting from excessive immune cell activation and oversupply of proinflammatory cytokines. Several studies have documented the immunomodulatory effects of phytochemicals on immune function, including their ability to regulate essential cellular and molecular interactions of immune system cells. This makes them a promising alternative for cytokine storm management, especially when combined with existing chemotherapies. Furthermore, phytochemicals have been found to target multiple signalling pathways, including the TNF-α/NF-κB, IL-1/NF-κB, IFN-γ/JAK/STAT, and IL-6/JAK-STAT. These pathways play critical roles in the development and progression of cytokine storm, and targeting them with phytochemicals represents a promising strategy for controlling cytokine release and the subsequent inflammation. Studies have also investigated certain families of plant-related constituents and their potential immunomodulatory actions. In vivo and in vitro studies have reported the immunomodulatory effects of phytochemicals, which provide viable alternatives in the management of cytokine storm syndrome. The collective data from previous studies suggest that phytochemicals represent a potentially functional source of cytokine storm treatment and promote further exploration of these compounds as immunomodulatory agents for suppressing specific signalling cascade responses. Overall, the previous research findings support the use of phytochemicals as a complementary approach in managing cytokine storm and improving patient outcomes.
Collapse
Affiliation(s)
- Abdusalam Abdullah Alarabei
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Aimi Liyana Abd Aziz
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Izah AB Razak
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Khairi Hussain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amin Malik Shah Abdul Majid
- Natureceuticals Sdn Bhd, Kedah Halal Park, Kawasan Perindustrian Sg. Petani, 08000 Sg. Petani, Kedah, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
13
|
Kramer DJ, Johnson AA. Apigenin: a natural molecule at the intersection of sleep and aging. Front Nutr 2024; 11:1359176. [PMID: 38476603 PMCID: PMC10929570 DOI: 10.3389/fnut.2024.1359176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
NAD+, a pivotal coenzyme central to metabolism, exhibits a characteristic decline with age. In mice, NAD+ levels can be elevated via treatment with apigenin, a natural flavonoid that inhibits the NAD+-consuming glycoprotein CD38. In animal models, apigenin positively impacts both sleep and longevity. For example, apigenin improves learning and memory in older mice, reduces tumor proliferation in a mouse xenograft model of triple-negative breast cancer, and induces sedative effects in mice and rats. Moreover, apigenin elongates survival in fly models of neurodegenerative disease and apigenin glycosides increase lifespan in worms. Apigenin's therapeutic potential is underscored by human clinical studies using chamomile extract, which contains apigenin as an active ingredient. Collectively, chamomile extract has been reported to alleviate anxiety, improve mood, and relieve pain. Furthermore, dietary apigenin intake positively correlates with sleep quality in a large cohort of adults. Apigenin's electron-rich flavonoid structure gives it strong bonding capacity to diverse molecular structures across receptors and enzymes. The effects of apigenin extend beyond CD38 inhibition, encompassing agonistic and antagonistic modulation of various targets, including GABA and inflammatory pathways. Cumulatively, a large body of evidence positions apigenin as a unique molecule capable of influencing both aging and sleep. Further studies are warranted to better understand apigenin's nuanced mechanisms and clinical potential.
Collapse
|
14
|
Aziel Alvarado-Ojeda Z, Zamilpa A, Costet-Mejia A, Méndez-Martínez M, Trejo-Moreno C, Jiménez-Ferrer JE, Salazar-Martínez AM, Cruz-Muñoz ME, Fragoso G, Rosas-Salgado G. Hydroalcoholic extract from Sechium edule (Jacq.) S.w. root reverses oleic acid-induced steatosis and insulin resistance in vitro. Heliyon 2024; 10:e24567. [PMID: 38312619 PMCID: PMC10835324 DOI: 10.1016/j.heliyon.2024.e24567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/17/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Steatosis is characterized by fat accumulation and insulin resistance (IR) in hepatocytes, which triggers a pro-oxidant, pro-inflammatory environment that may eventually lead to cirrhosis or liver carcinoma. This work was aimed to assess the effect of Sechium edule root hydroalcoholic extract (rSe-HA) (rich in cinnamic and coumaric acid, among other phenolic compounds) on triglyceride esterification, lipid degradation, AMPK expression, and the phosphorylation of insulin receptor in a Ser312 residue, as well as on the redox status, malondialdehyde (MDA) production, and the production of proinflammatory cytokines in an in vitro model of steatosis induced by oleic acid, to help develop a phytomedicine that could reverse this pathology. rSe-HA reduced triglyceride levels in hepatocyte lysates, increased lipolysis by activating AMPK at Thr172, and improved the redox status, as evidenced by the concentration of glycerol and formazan, respectively. It also prevented insulin resistance (IR), as measured by glucose consumption and the phosphorylation of the insulin receptor at Ser312. It also prevented TNFα and IL6 production and decreased the levels of MDA and nitric oxide (ON). Our results indicate that rSe-HA reversed steatosis and controlled the proinflammatory and prooxidant environment in oleic acid-induced dysfunctional HepG2 hepatocytes, supporting its potential use to control this disorder.
Collapse
Affiliation(s)
- Zimri Aziel Alvarado-Ojeda
- Facultad de Medicina, Universidad Autónoma Del Estado de Morelos, Leñeros S/N, Cuernavaca, Morelos, 62350, Mexico
| | - Alejandro Zamilpa
- Laboratorio de Farmacología, Centro de Investigaciones Biomédicas Del Sur, Instituto Mexicano Del Seguro Social, Xochitepec, Morelos, 62790, Mexico
| | - Alejandro Costet-Mejia
- Laboratorio de Farmacología, Centro de Investigaciones Biomédicas Del Sur, Instituto Mexicano Del Seguro Social, Xochitepec, Morelos, 62790, Mexico
| | - Marisol Méndez-Martínez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico
| | - Celeste Trejo-Moreno
- Facultad de Medicina, Universidad Autónoma Del Estado de Morelos, Leñeros S/N, Cuernavaca, Morelos, 62350, Mexico
| | - Jesús Enrique Jiménez-Ferrer
- Laboratorio de Farmacología, Centro de Investigaciones Biomédicas Del Sur, Instituto Mexicano Del Seguro Social, Xochitepec, Morelos, 62790, Mexico
| | - Ana Maria Salazar-Martínez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
| | - Mario Ernesto Cruz-Muñoz
- Facultad de Medicina, Universidad Autónoma Del Estado de Morelos, Leñeros S/N, Cuernavaca, Morelos, 62350, Mexico
| | - Gladis Fragoso
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
| | - Gabriela Rosas-Salgado
- Facultad de Medicina, Universidad Autónoma Del Estado de Morelos, Leñeros S/N, Cuernavaca, Morelos, 62350, Mexico
| |
Collapse
|
15
|
Simanjuntak MV, Jauhar MM, Syaifie PH, Arda AG, Mardliyati E, Shalannanda W, Hermanto BR, Anshori I. Revealing Propolis Potential Activity on Inhibiting Estrogen Receptor and Heat Shock Protein 90 Overexpressed in Breast Cancer by Bioinformatics Approaches. Bioinform Biol Insights 2024; 18:11779322231224187. [PMID: 38274992 PMCID: PMC10809879 DOI: 10.1177/11779322231224187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Breast cancer is the most commonly diagnosed cancer globally, with the highest incidence of breast cancer occurring in Asian countries including Indonesia. Among the types of breast cancer, the estrogen receptor (ER)-positive subtype which is prominent with estrogen receptor alpha (ERα) and heat shock protein 90 (HSP90) overexpression genes becomes the most prevalent than the others, approximately 75% of all breast cancer cases. ERα and HSP90 play a role in breast cancer activities including breast tumor growth, invasion, and metastasis mechanism. Propolis, a natural bee product, has been explored for its anticancer activity. However, there is lack of studies that evaluated the potential inhibitor from propolis compounds to the ERα and HSP90 proteins. Therefore, this article focuses on examining the correlation between ERα and HSP90's role in breast cancer and investigating the potential of 93 unique propolis compositions in inhibiting these genes in breast cancer using in silico approaches. This study revealed the positive correlation between ERα and HSP90 genes in breast cancer disease development. Furthermore, we also found novel potential bioactive compounds of propolis against breast cancer through binding with ERα and HSP90; they were 3',4',7-trihydroxyisoflavone and baicalein-7-O-β-D glucopyranoside, respectively. Further research on these compounds is needed to elucidate deeper mechanisms and activity in the real biological system to develop new breast cancer drug treatments.
Collapse
Affiliation(s)
- Masriana Vivi Simanjuntak
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Muhammad Miftah Jauhar
- Center of Excellences Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
- Biomedical Engineering, The Graduate School of Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Putri Hawa Syaifie
- Center of Excellences Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | - Adzani Gaisani Arda
- Center of Excellences Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Etik Mardliyati
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Wervyan Shalannanda
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Beni Rio Hermanto
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Isa Anshori
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
16
|
Zhao X, Dai R, Wang J, Cao L, Chen P, Yao W, Cheng F, Bao B, Zhang L. Analysis of the permeable and retainable components of Cayratia japonica ointment through intact or broken skin after topical application by UPLC-Q-TOF-MS/MS combined with in vitro transdermal assay. J Pharm Biomed Anal 2024; 238:115853. [PMID: 37976992 DOI: 10.1016/j.jpba.2023.115853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Cayratia japonica ointment has been used for many years to promote wound healing after perianal abscess surgery. This study aimed to determine the skin-permeable and skin-retainable components of Cayratia japonica ointment after topical application to intact or broken skin via UPLC-Q-TOF-MS/MS analysis and in vitro transdermal assay. Moreover, a combination of semi-quantitative and molecular docking analyses was performed to identify the main active components of the Cayratia japonica ointment and the probable phases of the wound healing process that they act on. Modified vertical Franz diffusion cells and abdominal skin of rats were selected for the in vitro transdermal study. Mass spectrometry data were collected in both positive and negative ion modes. A total of 7 flavonoids (schaftoside, luteolin-7-O-glucuronide, luteolin-7-O-glucoside, apigenin-7-O-glucuronide, luteolin, apigenin, and chrysin) and 1 coumarin (esculetin), were found to permeate and/or retained by intact or broken skin. Among them, the flavonoids were more permeable through intact/broken skin and exhibited stronger binding affinities for targets related to the inflammatory and proliferative phases of wound healing. This study suggests that the flavonoids in Cayratia japonica ointment are most likely the main active components and are crucial at the inflammatory and proliferative phases of wound healing.
Collapse
Affiliation(s)
- Xuelong Zhao
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, China
| | - Ruixue Dai
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, China
| | - Jing Wang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, Jiangsu Province, China
| | - Liangliang Cao
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, China
| | - Peidong Chen
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, Jiangsu Province, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, Jiangsu Province, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Fangfang Cheng
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, Jiangsu Province, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Beihua Bao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, Jiangsu Province, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| | - Li Zhang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, Jiangsu Province, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
17
|
Noor G, Badruddeen, Akhtar J, Singh B, Ahmad M, Khan MI. An outlook on the target-based molecular mechanism of phytoconstituents as immunomodulators. Phytother Res 2023; 37:5058-5079. [PMID: 37528656 DOI: 10.1002/ptr.7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
The immune system is one of the essential defense mechanisms. Immune system inadequacy increases the risk of infections and cancer diseases, whereas over-activation of the immune system causes allergies or autoimmune disorders. Immunomodulators have been used in the treatment of immune-related diseases. There is growing interest in using herbal medicines as multicomponent agents to modulate the complex immune system in immune-related diseases. Many therapeutic phytochemicals showed immunomodulatory effects by various mechanisms. This mechanism includes stimulation of lymphoid cell, phagocytosis, macrophage, and cellular immune function enhancement. In addition increased antigen-specific immunoglobulin production, total white cell count, and inhibition of TNF-α, IFN-γ, NF-kB, IL-2, IL-6, IL-1β, and other cytokines that influenced the immune system. This review aims to overview, widely investigated plant-derived phytoconstituents by targeting cells to modulate cellular and humoral immunity in in vivo and in vitro. However, further high-quality research is needed to confirm the clinical efficacy of plant-based immunomodulators.
Collapse
Affiliation(s)
- Gazala Noor
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Badruddeen
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Juber Akhtar
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Bhuwanendra Singh
- Department of Pharmacognosy, S.D. College of Pharmacy and Vocational Studies, Muzaffarnagar, India
| | - Mohammad Ahmad
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohammad Irfan Khan
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
18
|
Zhu L, Zhang H, Zhang X, Xia L, Zhang J. Research progress on antisepsis effect of apigenin and its mechanism of action. Heliyon 2023; 9:e22290. [PMID: 38045180 PMCID: PMC10689953 DOI: 10.1016/j.heliyon.2023.e22290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Sepsis is an abnormal immune response to infections and can trigger MODS. Despite the availability of advanced clinical techniques and monitoring methods, the mortality rate of the disease is still high, posing a heavy burden to patients and the whole society. Hence, the research on novel drugs and targets is particularly important. As a natural phyto-flavonoid, apigenin boasts anti-inflammatory, antioxidant, anti-cancer, anti-viral, and anti-bacterial effects. Besides, in-vitro experiments and animal models have also revealed the crucial role of apigenin in the treatment of infectious diseases and sepsis. In this context, this paper reviews the pharmacological activity and underlying mechanisms of action of apigenin in sepsis treatment and organ protection, as well as the potential apigenin-based therapeutic strategies against sepsis. Therefore, this review will shed new light on the scientific research and clinical treatment of sepsis.
Collapse
Affiliation(s)
- Lin Zhu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Hairong Zhang
- Shandong Provincial Third Hospital, Shandong University, Jinan 250031, PR China
| | - Xiaoyu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - JiaJia Zhang
- Shandong Provincial Third Hospital, Shandong University, Jinan 250031, PR China
| |
Collapse
|
19
|
Smith E, Lewis A, Narine SS, Emery RJN. Unlocking Potentially Therapeutic Phytochemicals in Capadulla ( Doliocarpus dentatus) from Guyana Using Untargeted Mass Spectrometry-Based Metabolomics. Metabolites 2023; 13:1050. [PMID: 37887375 PMCID: PMC10608729 DOI: 10.3390/metabo13101050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Doliocarpus dentatus is thought to have a wide variety of therapeutic phytochemicals that allegedly improve libido and cure impotence. Although a few biomarkers have been identified with potential antinociceptive and cytotoxic properties, an untargeted mass spectrometry-based metabolomics approach has never been undertaken to identify therapeutic biofingerprints for conditions, such as erectile dysfunction, in men. This study executes a preliminary phytochemical screening of the woody vine of two ecotypes of D. dentatus with renowned differences in therapeutic potential for erectile dysfunction. Liquid chromatography-mass spectrometry-based metabolomics was used to screen for flavonoids, terpenoids, and other chemical classes found to contrast between red and white ecotypes. Among the metabolite chemodiversity found in the ecotype screens, using a combination of GNPS, MS-DIAL, and SIRIUS, approximately 847 compounds were annotated at levels 2 to 4, with the majority of compounds falling under lipid and lipid-like molecules, benzenoids and phenylpropanoids, and polyketides, indicative of the contributions of the flavonoid, shikimic acid, and terpenoid biosynthesis pathways. Despite the extensive annotation, we report on 138 tentative compound identifications of potentially therapeutic compounds, with 55 selected compounds at a level-2 annotation, and 22 statistically significant therapeutic biomarkers, the majority of which were polyphenols. Epicatechin methyl gallate, catechin gallate, and proanthocyanidin A2 had the greatest significant differences and were also relatively abundant among the red and white ecotypes. These putatively identified compounds reportedly act as antioxidants, neutralizing damaging free radicals, and lowering cell oxidative stress, thus aiding in potentially preventing cellular damage and promoting overall well-being, especially for treating erectile dysfunction (ED).
Collapse
Affiliation(s)
- Ewart Smith
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 0G2, Canada
| | - Ainsely Lewis
- Department of Biology, Trent University, Peterborough, ON K9J 0G2, Canada
| | - Suresh S. Narine
- Trent Centre for Biomaterials Research, Trent University, Peterborough, ON K9J 0G2, Canada
- Departments of Physics & Astronomy and Chemistry, Trent University, Peterborough, ON K9J 0G2, Canada
| | - R. J. Neil Emery
- Department of Biology, Trent University, Peterborough, ON K9J 0G2, Canada
| |
Collapse
|
20
|
Pratelli G, Tamburini B, Carlisi D, De Blasio A, D’Anneo A, Emanuele S, Notaro A, Affranchi F, Giuliano M, Seidita A, Lauricella M, Di Liberto D. Foodomics-Based Approaches Shed Light on the Potential Protective Effects of Polyphenols in Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:14619. [PMID: 37834065 PMCID: PMC10572570 DOI: 10.3390/ijms241914619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and progressive inflammatory disorder affecting the gastrointestinal tract (GT) caused by a wide range of genetic, microbial, and environmental factors. IBD is characterized by chronic inflammation and decreased gut microbial diversity, dysbiosis, with a lower number of beneficial bacteria and a concomitant increase in pathogenic species. It is well known that dysbiosis is closely related to the induction of inflammation and oxidative stress, the latter caused by an imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity, leading to cellular ROS accumulation. ROS are responsible for intestinal epithelium oxidative damage and the increased intestinal permeability found in IBD patients, and their reduction could represent a potential therapeutic strategy to limit IBD progression and alleviate its symptoms. Recent evidence has highlighted that dietary polyphenols, the natural antioxidants, can maintain redox equilibrium in the GT, preventing gut dysbiosis, intestinal epithelium damage, and radical inflammatory responses. Here, we suggest that the relatively new foodomics approaches, together with new technologies for promoting the antioxidative properties of dietary polyphenols, including novel delivery systems, chemical modifications, and combination strategies, may provide critical insights to determine the clinical value of polyphenols for IBD therapy and a comprehensive perspective for implementing natural antioxidants as potential IBD candidate treatment.
Collapse
Affiliation(s)
- Giovanni Pratelli
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, 90128 Palermo, Italy;
| | - Bartolo Tamburini
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy;
| | - Daniela Carlisi
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Antonella D’Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Sonia Emanuele
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Antonietta Notaro
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Federica Affranchi
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Aurelio Seidita
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy;
| | - Marianna Lauricella
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Diana Di Liberto
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| |
Collapse
|
21
|
Chen P, Chen F, Guo Z, Lei J, Zhou B. Recent advancement in bioeffect, metabolism, stability, and delivery systems of apigenin, a natural flavonoid compound: challenges and perspectives. Front Nutr 2023; 10:1221227. [PMID: 37565039 PMCID: PMC10410563 DOI: 10.3389/fnut.2023.1221227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Apigenin is a bioflavonoid compound that is widely present in dietary plant foods and possesses biological activities that protect against immune, cardiovascular, and neurodegenerative diseases and cancer. Therefore, apigenin is widely used in food and medicine, and increasing attention has been drawn to developing new delivery systems for apigenin. This review highlights the biological effects, metabolism, stability, and bioactivity of apigenin. In addition, we summarized advancements in the delivery of apigenin, which provides some references for its widespread use in food and medicine. Better stability of apigenin may enhance digestion and absorption and provide health benefits. Constructing delivery systems (such as emulsions, nanostructured lipid carriers, hydrogels, and liposomes) for apigenin is an effective strategy to improve its bioavailability, but more animal and cell experiments are needed to verify these findings. Developing apigenin delivery systems for food commercialization is still challenging, and further research is needed to promote their in-depth development and utilization.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fuchao Chen
- Department of Pharmacy, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - ZhiLei Guo
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Jiexin Lei
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
22
|
Geana EI, Ciucure CT, Tamaian R, Marinas IC, Gaboreanu DM, Stan M, Chitescu CL. Antioxidant and Wound Healing Bioactive Potential of Extracts Obtained from Bark and Needles of Softwood Species. Antioxidants (Basel) 2023; 12:1383. [PMID: 37507922 PMCID: PMC10376860 DOI: 10.3390/antiox12071383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Interest in the extraction of phytochemical bioactive compounds, especially polyphenols from biomass, has recently increased due to their valuable biological potential as natural sources of antioxidants, which could be used in a wide range of applications, from foods and pharmaceuticals to green polymers and bio-based materials. The present research study aimed to provide a comprehensive chemical characterization of the phytochemical composition of forest biomass (bark and needles) of softwood species (Picea abies L., H. Karst., and Abies alba Mill.) and to investigate their in vitro antioxidant and antimicrobial activities to assess their potential in treating and healing infected chronic wounds. The DPPH radical-scavenging method and P-LD were used for a mechanistic explanation of the biomolecular effects of the investigated bioactive compounds. (+)-Catechin, epicatechin, rutin, myricetin, 4 hydroxybenzoic and p-cumaric acids, kaempherol, and apigenin were the main quantified polyphenols in coniferous biomass (in quantities around 100 µg/g). Also, numerous phenolic acids, flavonoids, stilbenes, terpenes, lignans, secoiridoids, and indanes with antioxidant, antimicrobial, anti-inflammatory, antihemolytic, and anti-carcinogenic potential were identified. The Abies alba needle extract was more toxic to microbial strains than the eukaryotic cells that provide its active wound healing principles. In this context, developing industrial upscaling strategies is imperative for the long-term success of biorefineries and incorporating them as part of a circular bio-economy.
Collapse
Affiliation(s)
- Elisabeta-Irina Geana
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 240050 Ramnicu Valcea, Romania;
| | - Corina Teodora Ciucure
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 240050 Ramnicu Valcea, Romania;
| | - Radu Tamaian
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 240050 Ramnicu Valcea, Romania;
| | - Ioana Cristina Marinas
- Department of Microbiology and Biochemistry, Research Institute of the University of Bucharest-ICUB, 050567 Bucharest, Romania; (D.M.G.); (M.S.)
| | - Diana Mădălina Gaboreanu
- Department of Microbiology and Biochemistry, Research Institute of the University of Bucharest-ICUB, 050567 Bucharest, Romania; (D.M.G.); (M.S.)
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Miruna Stan
- Department of Microbiology and Biochemistry, Research Institute of the University of Bucharest-ICUB, 050567 Bucharest, Romania; (D.M.G.); (M.S.)
| | - Carmen Lidia Chitescu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania;
| |
Collapse
|
23
|
Jamieson PE, Carbonero F, Stevens JF. Dietary (poly)phenols mitigate inflammatory bowel disease: Therapeutic targets, mechanisms of action, and clinical observations. Curr Res Food Sci 2023; 6:100521. [PMID: 37266414 PMCID: PMC10230173 DOI: 10.1016/j.crfs.2023.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, are a rapidly growing public health concern worldwide. These diseases are heterogeneous at the clinical, immunological, molecular, genetic, and microbial level, but characteristically involve a disrupted immune-microbiome axis. Shortcomings in conventional treatment options warrant the need for novel therapeutic strategies to mitigate these life-long and relapsing disorders of the gastrointestinal tract. Polyphenols, a diverse group of phytochemicals, have gained attention as candidate treatments due to their array of biological effects. Polyphenols exert broad anti-inflammatory and antioxidant effects through the modulation of cellular signaling pathways and transcription factors important in IBD progression. Polyphenols also bidirectionally modulate the gut microbiome, supporting commensals and inhibiting pathogens. One of the primary means by which gut microbiota interface with the host is through the production of metabolites, which are small molecules produced as intermediate or end products of metabolism. There is growing evidence to support that modulation of the gut microbiome by polyphenols restores microbially derived metabolites critical to the maintenance of intestinal homeostasis that are adversely disrupted in IBD. This review aims to define the therapeutic targets of polyphenols that may be important for mitigation of IBD symptoms, as well as to collate evidence for their clinical use from randomized clinical trials.
Collapse
Affiliation(s)
- Paige E. Jamieson
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Franck Carbonero
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, WA, 99202, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
24
|
Lu Z, Liu L, Zhao S, Zhao J, Li S, Li M. Apigenin attenuates atherosclerosis and non-alcoholic fatty liver disease through inhibition of NLRP3 inflammasome in mice. Sci Rep 2023; 13:7996. [PMID: 37198205 DOI: 10.1038/s41598-023-34654-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
Apigenin (APN), a flavone found in several plant foods with various biological properties such as anti-obesity, anti-inflammation and other abilities, alleviates atherosclerosis and non-alcoholic fatty liver disease (NAFLD) induced by a high fat diet (HFD) in mice. However, the underlying mechanisms have not been fully understood. In this study, we investigated the role of NLRP3 in anti-atherosclerosis and anti-NAFLD effect of APN in mouse models with NLRP3 deficiency. Atherosclerosis and NAFLD models were established by treatment of low density lipoprotein receptor-deficient (Ldlr-/-) mice and NLRP3-/- Ldlr-/- mice with a HFD diet (20% fat and 0.5% cholesterol) with or without APN. En face lipid accumulation analysis, plasma lipid levels, hepatic lipid accumulation and inflammation were analyzed and quantified. For in vitro experiments, HepG2 cells were stimulated by LPS plus oleic acid (OA) in the absence or presence of APN (50 μM). Lipid accumulation and the effect of APN on the NLRP3/NF-κB signaling pathway were investigated. APN administration partly reversed atherosclerosis and hepatic lipid accumulation, and decreased body weight and plasma lipid levels in Ldlr-/- mice when fed a HFD. Compared with Ldlr-/- mice, NLRP3-/- Ldlr-/- mice showed more severe atherosclerosis and hepatic lipid accumulation. Treating the HepG2 cells with APN reduced lipid accumulation. APN also inhibited activation of the NLRP3/ NF-κB signaling pathway stimulated by OA together with LPS. Our results indicate that APN supplementation prevents atherosclerosis and NAFLD via NLRP3 inhibition in mice, and suggest that APN might be a potential therapeutic agent for the prevention of atherosclerosis and NAFLD.
Collapse
Affiliation(s)
- Zheng Lu
- Medical Department of Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| | - Lu Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shunxin Zhao
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiangtao Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sujun Li
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingyang Li
- Department of Emergency, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| |
Collapse
|
25
|
Nisar A, Jagtap S, Vyavahare S, Deshpande M, Harsulkar A, Ranjekar P, Prakash O. Phytochemicals in the treatment of inflammation-associated diseases: the journey from preclinical trials to clinical practice. Front Pharmacol 2023; 14:1177050. [PMID: 37229273 PMCID: PMC10203425 DOI: 10.3389/fphar.2023.1177050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Advances in biomedical research have demonstrated that inflammation and its related diseases are the greatest threat to public health. Inflammatory action is the pathological response of the body towards the external stimuli such as infections, environmental factors, and autoimmune conditions to reduce tissue damage and improve patient comfort. However, when detrimental signal-transduction pathways are activated and inflammatory mediators are released over an extended period of time, the inflammatory process continues and a mild but persistent pro-inflammatory state may develop. Numerous degenerative disorders and chronic health issues including arthritis, diabetes, obesity, cancer, and cardiovascular diseases, among others, are associated with the emergence of a low-grade inflammatory state. Though, anti-inflammatory steroidal, as well as non-steroidal drugs, are extensively used against different inflammatory conditions, they show undesirable side effects upon long-term exposure, at times, leading to life-threatening consequences. Thus, drugs targeting chronic inflammation need to be developed to achieve better therapeutic management without or with a fewer side effects. Plants have been well known for their medicinal use for thousands of years due to their pharmacologically active phytochemicals belonging to diverse chemical classes with a number of these demonstrating potent anti-inflammatory activity. Some typical examples include colchicine (alkaloid), escin (triterpenoid saponin), capsaicin (methoxy phenol), bicyclol (lignan), borneol (monoterpene), and quercetin (flavonoid). These phytochemicals often act via regulating molecular mechanisms that synergize the anti-inflammatory pathways such as increased production of anti-inflammatory cytokines or interfere with the inflammatory pathways such as to reduce the production of pro-inflammatory cytokines and other modulators to improve the underlying pathological condition. This review describes the anti-inflammatory properties of a number of biologically active compounds derived from medicinal plants, and their mechanisms of pharmacological intervention to alleviate inflammation-associated diseases. The emphasis is given to information on anti-inflammatory phytochemicals that have been evaluated at the preclinical and clinical levels. Recent trends and gaps in the development of phytochemical-based anti-inflammatory drugs have also been included.
Collapse
Affiliation(s)
- Akib Nisar
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Suresh Jagtap
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Suresh Vyavahare
- Shatayu Ayurved and Research Centre, Solapur, Maharashtra, India
| | - Manasi Deshpande
- Department of Dravyagun Vigyan, College of Ayurved, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Abhay Harsulkar
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
- Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | | | - Om Prakash
- Department of Microbiology, Immunology and Parasitology, University Health Sciences Center, New Orleans, LA, United States
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
26
|
Farhan M, Rizvi A, Aatif M, Ahmad A. Current Understanding of Flavonoids in Cancer Therapy and Prevention. Metabolites 2023; 13:metabo13040481. [PMID: 37110140 PMCID: PMC10142845 DOI: 10.3390/metabo13040481] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer is a major cause of death worldwide, with multiple pathophysiological manifestations. In particular, genetic abnormalities, inflammation, bad eating habits, radiation exposure, work stress, and toxin consumption have been linked to cancer disease development and progression. Recently, natural bioactive chemicals known as polyphenols found in plants were shown to have anticancer capabilities, destroying altered or malignant cells without harming normal cells. Flavonoids have demonstrated antioxidant, antiviral, anticancer, and anti-inflammatory effects. Flavonoid type, bioavailability, and possible method of action determine these biological actions. These low-cost pharmaceutical components have significant biological activities and are beneficial for several chronic disorders, including cancer. Recent research has focused primarily on isolating, synthesizing, and studying the effects of flavonoids on human health. Here we have attempted to summarize our current knowledge of flavonoids, focusing on their mode of action to better understand their effects on cancer.
Collapse
|
27
|
Tsirigotis-Maniecka M, Zaczyńska E, Czarny A, Jadczyk P, Umińska-Wasiluk B, Gancarz R, Pawlaczyk-Graja I. Antioxidant and Protective Effects of the Polyphenolic Glycoconjugate from Agrimonia eupatoria L. Herb in the Prevention of Inflammation in Human Cells. J Funct Biomater 2023; 14:jfb14040182. [PMID: 37103272 PMCID: PMC10142550 DOI: 10.3390/jfb14040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Herein, structural and biological studies of a complex biopolymer (polyphenolic glycoconjugate) isolated from the flowering parts of Agrimonia eupatoria L. (AE) are presented. Spectroscopic analyses (UV–Vis and 1H NMR) of the aglycone component of AE confirmed that it consists mainly of aromatic and aliphatic structures characteristic of polyphenols. AE showed significant free radical elimination activity, i.e., ABTS+ and DPPH·, and was an effective copper reducing agent in the CUPRAC test, eventually proving that AE is a powerful antioxidant. AE was nontoxic to human lung adenocarcinoma cells (A549) and mouse fibroblasts (L929) and was nongenotoxic to S. typhimurium bacterial strains TA98 and TA100. Moreover, AE did not induce the release of proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor (TNF-α) by human pulmonary vein (HPVE-26) endothelial cells or human peripheral blood mononuclear cells (PBMCs). These findings correlated with the low activation of the transcription factor NF-κB in these cells, which plays an important role in the regulation of the expression of genes responsible for inflammatory mediator synthesis. The AE properties described here suggest that it may be useful for protecting cells from the adverse consequences of oxidative stress and could be valuable as a biomaterial for surface functionalization.
Collapse
Affiliation(s)
- Marta Tsirigotis-Maniecka
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 29, 50-370 Wrocław, Poland
- Correspondence: ; Tel.: +48-713203849
| | - Ewa Zaczyńska
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Immunobiology, R. Weigla Str. 12, 53-114 Wrocław, Poland
| | - Anna Czarny
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Immunobiology, R. Weigla Str. 12, 53-114 Wrocław, Poland
| | - Piotr Jadczyk
- Department of Environmental Protection Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Barbara Umińska-Wasiluk
- Department of Environmental Protection Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Roman Gancarz
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 29, 50-370 Wrocław, Poland
| | - Izabela Pawlaczyk-Graja
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 29, 50-370 Wrocław, Poland
| |
Collapse
|
28
|
Fehaid A, Al-Ghamdi MS, Alzahrani KJ, Theyab A, Al-Amer OM, Al-Shehri SS, Algahtani M, A Oyouni AA, Alnfiai MM, Aly MH, Alsharif KF, Albrakati A, Kassab RB, Althagafi HA, Alharthi F, Abdel Moneim AE, Lokman MS. Apigenin protects from hepatorenal damage caused by lead acetate in rats. J Biochem Mol Toxicol 2023; 37:e23275. [PMID: 36550699 DOI: 10.1002/jbt.23275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/25/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Exposure to lead (Pb) is associated with serious health problems including hepatorenal toxicity. Apigenin is a natural-sourced flavonoid with promising antioxidant and anti-inflammatory effects. In this research, we investigated the potential protective role of apigenin against lead acetate (PbAc)-induced hepatorenal damage. Thus, this experiment studied the exposure of male Wistar Albino rats to apigenin and/or PbAc and their effects in comparison to the control rats. Apigenin administration decreased the levels of Pb and prevented the histopathological deformations in liver and kidney tissues following PbAc exposure. This was confirmed by the normalized levels of liver and kidney function markers. Additionally, apigenin inhibited significantly oxidative reactions through upregulating Nrf2 and HO-1, and activating their downstreamed antioxidants accompanied by a marked depletion of pro-oxidants. Moreover, apigenin decreased the elevated pro-inflammatory cytokines and inhibited cell loss in liver and kidney tissues in response to PbAc intoxication in both tissues. The obtained results demonstrated that apigenin could be used to attenuate the molecular, biochemical, and histological alterations associated with Pb exposure due to its potent antioxidant, anti-inflammatory, and antiapoptotic effects.
Collapse
Affiliation(s)
- Alaa Fehaid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Dakahlia, Egypt
| | - Mohammad S Al-Ghamdi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Osama M Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.,Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Saad S Al-Shehri
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Atif Abdulwahab A Oyouni
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia.,Department of Biology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mrim M Alnfiai
- Department of Information Technology, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Mohamed H Aly
- Internal Medicine Department, Security Forces Hospital, Mekkah, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.,Department of Biology, Faculty of Science and Arts, Al-Baha University, Al-Baha, Saudi Arabia
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Al-Baha, Saudi Arabia
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
| |
Collapse
|
29
|
Wen SY, Wei BY, Ma JQ, Wang L, Chen YY. Phytochemicals, Biological Activities, Molecular Mechanisms, and Future Prospects of Plantago asiatica L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:143-173. [PMID: 36545763 DOI: 10.1021/acs.jafc.2c07735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plantago asiatica L. has been used as a vegetable and nutritious food in Asia for thousands of years. According to recent phytochemical and pharmacological research, the active compositions of the plant contribute to various health benefits, such as antioxidant, anti-inflammatory, antibacterial, antiviral, and anticancer. This article reviews the 87 components of the plant and their structures, as well as their biological activities and molecular research progress, in detail. This review provides valuable reference material for further study, production, and application of P. asiatica, as well as its components in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Bing-Yan Wei
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Jie-Qiong Ma
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
30
|
Sánchez-Ramos M, Marquina-Bahena S, Alvarez L, Bernabé-Antonio A, Cabañas-García E, Román-Guerrero A, Cruz-Sosa F. Obtaining 2,3-Dihydrobenzofuran and 3-Epilupeol from Ageratina pichinchensis (Kunth) R.King & Ho.Rob. Cell Cultures Grown in Shake Flasks under Photoperiod and Darkness, and Its Scale-Up to an Airlift Bioreactor for Enhanced Production. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020578. [PMID: 36677637 PMCID: PMC9865622 DOI: 10.3390/molecules28020578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
Ageratina pichinchensis (Kunth) R.King & Ho.Rob. is a plant used in traditional Mexican medicine, and some biotechnological studies have shown that its calluses and cell suspension cultures can produce important anti-inflammatory compounds. In this study, we established a cell culture of A. pichinchensis in a 2 L airlift bioreactor and evaluated the production of the anti-inflammatory compounds 2,3-dihydrobenzofuran (1) and 3-epilupeol (2). The maximum biomass production (11.90 ± 2.48 g/L) was reached at 11 days of culture and cell viability was between 80% and 90%. Among kinetic parameters, the specific growth rate (µ) was 0.2216 days-1 and doubling time (td) was 3.13 days. Gas chromatography coupled with mass spectrometry (GC-MS) analysis of extracts showed the maximum production of compound 1 (903.02 ± 41.06 µg/g extract) and compound 2 (561.63 ± 10.63 µg/g extract) at 7 and 14 days, respectively. This study stands out for the significant production of 2,3-dihydrobenzofuran and 3-epilupeol and by the significant reduction in production time compared to callus and cell suspension cultures, previously reported. To date, these compounds have not been found in the wild plant, i.e., its production has only been reported in cell cultures of A. pichinchensis. Therefore, plant cell cultured in an airlift reactor can be an alternative for the improved production of these anti-inflammatory compounds.
Collapse
Affiliation(s)
- Mariana Sánchez-Ramos
- Department of Biotechnology, Metropolitan Autonomous University-Iztapalapa Campus, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Mexico City 09310, Distrito Federal, Mexico
- Correspondence: (M.S.-R.); (F.C.-S.)
| | - Silvia Marquina-Bahena
- Chemical Research Center-IICBA, Autonomous University of the State of Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Laura Alvarez
- Chemical Research Center-IICBA, Autonomous University of the State of Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Antonio Bernabé-Antonio
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45100, Jalisco, Mexico
| | - Emmanuel Cabañas-García
- Scientific and Technological Studies Center No. 18, National Polytechnic Institute, Blvd. del Bote 202 Cerro del Gato, Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Zacatecas, Mexico
| | - Angélica Román-Guerrero
- Department of Biotechnology, Metropolitan Autonomous University-Iztapalapa Campus, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Mexico City 09310, Distrito Federal, Mexico
| | - Francisco Cruz-Sosa
- Department of Biotechnology, Metropolitan Autonomous University-Iztapalapa Campus, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Mexico City 09310, Distrito Federal, Mexico
- Correspondence: (M.S.-R.); (F.C.-S.)
| |
Collapse
|
31
|
Mei X, Wang J, Zhang C, Zhu J, Liu B, Xie Q, Yuan T, Wu Y, Chen R, Xie X, Wei Y, Wang L, Shao G, Xiong Q, Xu Y, Feng Z, Zhang Z. Apigenin suppresses mycoplasma-induced alveolar macrophages necroptosis via enhancing the methylation of TNF-α promoter by PPARγ-Uhrf1 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154504. [PMID: 36332388 DOI: 10.1016/j.phymed.2022.154504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Mycoplasma-associated pneumonia is characterized by severe lung inflammation and immunological dysfunction. However, current anti-mycoplasma agents used in clinical practice do not prevent dysfunction of alveolar macrophages caused by the high level of the cytokine tumor necrosis factor-α (TNF-α) after mycoplasma infection. Apigenin inhibits the production of TNF-α in variet inflammation associated disease. PURPOSE This study aimed to investigate apigenin's effect on mycoplasma-induced alveolar immune cell injury and the mechanism by which it inhibits TNF-α transcription. METHODS In this study, we performed a mouse model of Mycoplasma hyopneumoniae infection to evaluate the effect of apigenin on reducing mycoplasma-induced alveolar immune cell injury. Furthermore, we carried out transcriptome analysis, RNA interference assay, methylated DNA bisulfite sequencing assay, and chromatin immunoprecipitation assay to explore the mechanism of action for apigenin in reducing TNF-α. RESULTS We discovered that M. hyopneumoniae infection-induced necroptosis in alveolar macrophages MH-S cells and primary mouse alveolar macrophages, which was activated by TNF-α autocrine. Apigenin inhibited M. hyopneumoniae-induced elevation of TNF-α and necroptosis in alveolar macrophages. Apigenin inhibited TNF-a mRNA production via increasing ubiquitin-like with PHD and RING finger domains 1 (Uhrf1)-dependent DNA methylation of the TNF-a promotor. Finally, we demonstrated that apigenin regulated Uhrf1 transcription via peroxisome proliferator activated receptor gamma (PPARγ) activation, which acts as a transcription factor binding to the Uhrf1 promoter and protected infected mice's lungs, and promoted alveolar macrophage survival. CONCLUTSION This study identified a novel mechanism of action for apigenin in reducing alveolar macrophage necroptosis via the PPARγ/ Uhrf1/TNF-α pathway, which may have implications for the treatment of Mycoplasma pneumonia.
Collapse
Affiliation(s)
- Xiuzhen Mei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, China
| | - Chao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiale Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Beibei Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qingyun Xie
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ting Yuan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuzi Wu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xing Xie
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanna Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Li Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guoqing Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yefen Xu
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, China.
| | - Zhixin Feng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, China.
| | - Zhenzhen Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
32
|
Huang Q, Yang Y, Yuan L, Zhao Y, Qin A. Oil-based contrast for hysterosalpingography-regulated Th1/Th2-type cytokines and alleviated inflammation in rats with LPS-induced chronic endometritis. J Obstet Gynaecol Res 2023; 49:243-252. [PMID: 36281209 DOI: 10.1111/jog.15451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/21/2022] [Accepted: 09/19/2022] [Indexed: 01/19/2023]
Abstract
AIM The chronic endometritis (CE) prevalence in people experiencing infertility is 2.8-56.8%, pregnancy rates in patients with infertility increase after hysterosalpingography with oil-based contrast, but the effect and mechanism are not clear. Here, we analyzed the effects of intrauterine ethiodized poppyseed oil (EPO) bathing on a rat model of CE and the possible underlying mechanism. METHODS CE rats were induced by lipopolysaccharide (LPS) exposure, and rats were subjected to intrauterine bathing with EPO or phosphate-buffered saline (PBS) after model verification. Serum and uterus levels of IFN-γ, IL-4, TNF-α, and IL-1β were detected by ELISA kit, and the number of CD138+ and CD68+ cells and uterine IFN-γ, IL-4, TNF-α, IL-1β, and NF-κB P65 expression were detected by immunohistochemistry after bathing. RESULTS LPS exposure induced the typical CE phenotype with CD138+ phagocyte infiltration of the endometrial stroma. Compared with PBS bathing, bathing with EPO in CE rats showed decreases in the CD138+ and CD68+ cells populations and significant decreases in serum and uterine IFN-γ levels, moreover, uterine IL-4 levels were slightly higher, and the IFN-γ/IL-4(Th1/Th2-type cytokine ratio) in the uterus was significantly lower. Local IFN-γ, TNF-α, and NF-κB P65 expression in the endometrium was significantly downregulated, while IL-4 expression was upregulated. CONCLUSION Intrauterine oil-based contrast bathing significantly alleviated local inflammation in the rat CE model by downregulating NF-κB P65 expression, reducing IFN-γ (Th1), increasing IL-4 levels (Th2) in the endometrium, and regulating the Th1/Th2-type cytokine trends toward Th2.
Collapse
Affiliation(s)
- Qiuyan Huang
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.,Reproductive Medicine Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yihua Yang
- Reproductive Medicine Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lifang Yuan
- Reproductive Medicine Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yunxiao Zhao
- Reproductive Medicine Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Aiping Qin
- Reproductive Medicine Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
33
|
Anti-Inflammatory Mechanisms of Dietary Flavones: Tapping into Nature to Control Chronic Inflammation in Obesity and Cancer. Int J Mol Sci 2022; 23:ijms232415753. [PMID: 36555392 PMCID: PMC9779861 DOI: 10.3390/ijms232415753] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Flavones are natural phytochemicals broadly distributed in our diet. Their anti-inflammatory properties provide unique opportunities to control the innate immune system and inflammation. Here, we review the role of flavones in chronic inflammation with an emphasis on their impact on the molecular mechanisms underlying inflammatory diseases including obesity and cancer. Flavones can influence the innate immune cell repertoire restoring the immune landscape. Flavones impinge on NF-κB, STAT, COX-2, or NLRP3 inflammasome pathways reestablishing immune homeostasis. Devoid of adverse side effects, flavones could present alternative opportunities for the treatment and prevention of chronic inflammation that contributes to obesity and cancer.
Collapse
|
34
|
LINC00629, a KLF10-responsive lncRNA, promotes the anticancer effects of apigenin by decreasing Mcl1 stability in oral squamous cell carcinoma. Aging (Albany NY) 2022; 14:9149-9166. [PMID: 36445338 PMCID: PMC9740369 DOI: 10.18632/aging.204396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022]
Abstract
Apigenin, a naturally occurring flavonoid, is known to exhibit antitumor activity in many cancers. However, the regulatory mechanism of apigenin and the long noncoding RNAs (lncRNAs) altered upon apigenin treatment in oral squamous cell carcinoma (OSCC) remain unclear. In this study, we found that LINC00629 was significantly upregulated in response to apigenin treatment. Upregulated LINC00629 enhanced the growth-suppressive and proapoptotic effects of apigenin on OSCC cells by interacting with Mcl1 and facilitating its degradation. Subsequently, our data indicated that KLF10, an important transcription factor, directly bound to the promoter of LINC00629, facilitating its transcription and contributing to apigenin-induced LINC00629 expression. Collectively, these results suggest that the KLF10-LINC00629-Mcl1 axis plays an important role in the anticancer effects of apigenin.
Collapse
|
35
|
Kuru Bektaşoğlu P, Demir D, Koyuncuoğlu T, Yüksel M, Peker Eyüboğlu İ, Karagöz Köroğlu A, Akakın D, Yıldırım A, Çelikoğlu E, Gürer B. Possible anti-inflammatory, antioxidant and neuroprotective effects of apigenin in the setting of mild traumatic brain injury: an investigation. Immunopharmacol Immunotoxicol 2022; 45:185-196. [PMID: 36168996 DOI: 10.1080/08923973.2022.2130076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Apigenin is a plant flavone proven with biological properties such as anti-inflammatory, antioxidant, and antimicrobial effects. This study, it was aimed to examine the possible anti-inflammatory, antioxidant and neuroprotective effects of apigenin in the setting of mild traumatic brain injury (TBI) model. METHODS Wistar albino male rats were randomly assigned to groups: control (n = 9), TBI (n = 9), TBI + vehicle (n = 8), and TBI + Apigenin (20 and 40 mg/kg, immediately after trauma; n = 6 and n = 7). TBI was performed by dropping a 300 g weight from a height of 1 meter onto the skull under anesthesia. Neurological examination and tail suspension test applied before and 24 hours after trauma, as well as Y-maze and object recognition tests, after that rats were decapitated. In brain tissue, luminol- and lucigenin-enhanced chemiluminescence levels and cytokine ELISA levels were measured. Histological damage was scored. Data was analyzed with one-way ANOVA. RESULTS After TBI, luminol (p < 0.001) and lucigenin (p < 0.001) levels increased, and luminol and lucigenin levels decreased with apigenin treatments (p < 0.01-0.001). The tail suspension test score increased with trauma (p < 0.01). According to the pre-traumatic values, the number of entrances to the arms (p < 0.01) in the Y-maze decreased after trauma (p < 0.01). In the object recognition test, discrimination (p < 0.05) and recognition indexes (p < 0.05) decreased with trauma. There was no significant difference among trauma apigenin groups in behavioral tests. Interleukin (IL)-10 levels, one of the anti-inflammatory cytokines, decreased with trauma (p < 0.05), and increased with 20 and 40 mg apigenin treatment (p < 0.001 and p < 0.01, respectively). The histological damage score in cortex were decreased in apigenin 20 mg treatment group significantly (p < 0.05), the decrease observed in apigenin 40 mg group was not significant. CONCLUSION The results of this study revelead that apigenin 20 and 40 mg treatment may have neuroprotective effects in mild TBI via decreasing the the level of luminol and lucigenin and increasing the IL-10 levels. Additionally, apigenin 20 mg treatment ameliorated the trauma-induced cortical tissue damage.
Collapse
Affiliation(s)
| | - Dilan Demir
- University of Health Sciences, Kartal Dr. Lutfi Kırdar Education and Research Hospital, Department of Neurosurgery, Istanbul, Türkiye
| | - Türkan Koyuncuoğlu
- Biruni University Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Meral Yüksel
- Marmara University Vocational School of Health-Related Services, Department of Medical Laboratory, Istanbul, Türkiye
| | - İrem Peker Eyüboğlu
- Marmara University School of Medicine, Department of Medical Biology, Istanbul, Türkiye
| | - Ayça Karagöz Köroğlu
- Marmara University School of Medicine, Department of Histology and Embryology, Istanbul, Türkiye
| | - Dilek Akakın
- Marmara University School of Medicine, Department of Histology and Embryology, Istanbul, Türkiye
| | - Alper Yıldırım
- Marmara University School of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Erhan Çelikoğlu
- University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, Istanbul, Türkiye
| | - Bora Gürer
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Türkiye
| |
Collapse
|
36
|
Li Z, Zhou J, Ji L, Liang Y, Xie S. Recent Advances in the Pharmacological Actions of Apigenin, Its Complexes, and Its Derivatives. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2122989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Zhuoxi Li
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou, P. R. China
| | - Jinfeng Zhou
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou, P. R. China
| | - Lianru Ji
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou, P. R. China
| | - Yingye Liang
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou, P. R. China
| | - Shaoqu Xie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
37
|
Sufianova G, Gareev I, Beylerli O, Wu J, Shumadalova A, Sufianov A, Chen X, Zhao S. Modern aspects of the use of natural polyphenols in tumor prevention and therapy. Front Cell Dev Biol 2022; 10:1011435. [PMID: 36172282 PMCID: PMC9512088 DOI: 10.3389/fcell.2022.1011435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Polyphenols are secondary plant metabolites or organic compounds synthesized by them. In other words, these are molecules that are found in plants. Due to the wide variety of polyphenols and the plants in which they are found, these compounds are divided according to the source of origin, the function of the polyphenols, and their chemical structure; where the main ones are flavonoids. All the beneficial properties of polyphenols have not yet been studied, since this group of substances is very extensive and diverse. However, most polyphenols are known to be powerful antioxidants and have anti-inflammatory effects. Polyphenols help fight cell damage caused by free radicals and immune system components. In particular, polyphenols are credited with a preventive effect that helps protect the body from certain forms of cancer. The onset and progression of tumors may be related directly to oxidative stress, or inflammation. These processes can increase the amount of DNA damage and lead to loss of control over cell division. A number of studies have shown that oxidative stress uncontrolled by antioxidants or an uncontrolled and prolonged inflammatory process increases the risk of developing sarcoma, melanoma, and breast, lung, liver, and prostate cancer. Therefore, a more in-depth study of the effect of polyphenolic compounds on certain signaling pathways that determine the complex cascade of oncogenesis is a promising direction in the search for new methods for the prevention and treatment of tumors.
Collapse
Affiliation(s)
- Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Ilgiz Gareev
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Jianing Wu
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Russia
| | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| | - Xin Chen
- Department of Neurosurgical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| | - Shiguang Zhao
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
- Department of Neurosurgical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| |
Collapse
|
38
|
Qin S, Wang Y, Wang S, Ning B, Huai J, Yang H. Gut microbiota in women with gestational diabetes mellitus has potential impact on metabolism in pregnant mice and their offspring. Front Microbiol 2022; 13:870422. [PMID: 35992705 PMCID: PMC9389115 DOI: 10.3389/fmicb.2022.870422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Studies have shown that gestational diabetes mellitus (GDM) is closely related to abnormalities in the gut microbiota, and the offspring of these women have an increased risk of diabetes. There is no direct evidence of whether bacteria in women with GDM colonize the intestinal tract of offspring and cause hyperglycemia. In this fecal microbiota transplantation (FMT), pregnant mouse model study, two groups of germ-free (GF) mice after FMT showed different colonization patterns of gut microbiota and phenotype. Compared with the control group (healthy-FMT), we found in the GDM-FMT group as a lower relative abundance of Akkermansia and Faecalibacterium; a lower content of short-chain fatty acids and naringenin in feces; an elevated blood glucose; an inflammatory factor expression (TNF-α, CXCL-15, and IL-6), and a hepatic fat deposition. In addition, the influence of the gut microbiota continued in offspring. The gut microbiota of the offspring of GDM-FMT mice was still different from that of the control group as a lower relative abundance of Akkermansia and Parvibacter; and a higher relative abundance of bacteria such as Oscillibacter, Romboutsia, and Harryflintia. In addition, the offspring of GDM-FMT mice had higher body weight and blood glucose levels than the control offspring.
Collapse
Affiliation(s)
- Shengtang Qin
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Yutong Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Shuxian Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Bohan Ning
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Jing Huai
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
- *Correspondence: Huixia Yang,
| |
Collapse
|
39
|
ÖZSOY S, YARIM GF. In Vitro Assessment of Anti-inflammatory Effect of Apigenin on Renal Cell Inflammation. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022. [DOI: 10.33808/clinexphealthsci.1018335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective: The aim of this study was to evaluate in vitro effect of apigenin on anti-inflammatory cytokines interleukin (IL)-10 and transforming growth factor beta (TGF-β) levels in an in vitro model of renal cell inflammation induced with lipopolysaccharide (LPS).
Methods: Renal cell inflammation was formed in the African green monkey kidney cell line (Vero). Four groups as NC (negative control group, any application was not done), LPS (treatment with 10 μg/ml of lipopolysaccharide during 4 hours), API (treatment with 5 μg/ml of apigenin during 12 hours) and LPS+API (treatment with 10 μg/ml of lipopolysaccharide during 4 hours+5 μg/ml of apigenin during 12 hours) were formed. Cytotoxic effect of apigenin in Vero cells was evaluated by cell count test. Inflammation dose of lipopolysaccharide was determined by measuring Tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) concentrations in cell culture supernatants. TNF-α, IL-6, IL-10 and TGF-β concentrations in cell culture medium were measured by ELISA using ELISA test kits. Results: IL-6 and TNF-α concentrations of LPS group increased compared to NC, API and LPS+API groups (p
Collapse
|
40
|
Thanh Le T, Tuan Ha M, Han KH, Kim YB, Ah Kim J, Sun Min B. Anti-Inflammatory Lignans from the Roots of Asarum heterotropoides var. mandshuricum and Their Mechanism of Action. Chem Biodivers 2022; 19:e202100986. [PMID: 35502747 DOI: 10.1002/cbdv.202100986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/02/2022] [Indexed: 11/09/2022]
Abstract
Bioassay-guided fractionation of Asarum heterotropoides var. mandshuricum F. Maekawa (Aristolochiaceae) root extract led to the isolation and characterization of one new ferulic acid glucose ester (1) and nine known lignans (2-10). Their structures were elucidated using extensive spectroscopic methods, including 1D and 2D NMR, and MS spectra. The anti-inflammatory effects of the isolated compounds were investigated via their inhibition against nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 mouse macrophage cells. Among them, compound 7 ((1R,2S,5R,6R)-5'-O-methylpluviatilol) showed the most effective inhibitory activity against NO production and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein in an exceedingly dose-dependent manner. In addition, further study revealed that the mechanism of anti-inflammatory activity of the most active lignan (7) might be associated with the inhibition of extracellular-signal-regulated kinase (ERK) and nuclear factor kappa B (NF-κB) phosphorylation.
Collapse
Affiliation(s)
- Thi Thanh Le
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk, 38430, Republic of Korea
| | - Manh Tuan Ha
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk, 38430, Republic of Korea
| | - Kang-Hyun Han
- Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Yong-Bum Kim
- Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Jeong Ah Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk, 38430, Republic of Korea
| |
Collapse
|
41
|
Anticancer Effects and Molecular Mechanisms of Apigenin in Cervical Cancer Cells. Cancers (Basel) 2022; 14:cancers14071824. [PMID: 35406599 PMCID: PMC8998024 DOI: 10.3390/cancers14071824] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is the fourth most frequent malignancy in women. Apigenin is a natural plant-derived flavonoid present in common fruit, vegetables, and herbs, and has been found to possess antioxidant and anti-inflammatory properties as a health-promoting agent. It also exhibits important anticancer effects in various cancers, but its effects are not widely accepted by clinical practitioners. The present study investigated the anticancer effects and molecular mechanisms of apigenin in cervical cancer in vitro and in vivo. HeLa and C33A cells were treated with different concentrations of apigenin. The effects of apigenin on cell viability, cell cycle distribution, migration potential, phosphorylation of PI3K/AKT, the integrin β1-FAK signaling pathway, and epithelial-to-mesenchymal transition (EMT)-related protein levels were investigated. Mechanisms identified from the in vitro study were further validated in a cervical tumor xenograft mouse model. Apigenin effectively inhibited the growth of cervical cancer cells and cervical tumors in xenograft mice. Furthermore, the apigenin down-regulated FAK signaling (FAK, paxillin, and integrin β1) and PI3K/AKT signaling (PI3K, AKT, and mTOR), inactivated or activated various signaling targets, such as Bcl-2, Bax, p21cip1, CDK1, CDC25c, cyclin B1, fibronectin, N-cadherin, vimentin, laminin, and E-cadherin, promoted mitochondrial-mediated apoptosis, induced G2/M-phase cell cycle arrest, and reduced EMT to inhibit HeLa and C33A cancer cell migration, producing anticancer effects in cervical cancer. Thus, apigenin may act as a chemotherapeutic agent for cervical cancer treatment.
Collapse
|
42
|
Zhu M, Li Y, Zhou J, Wang T, Li X, Zhang J, Qiao Y, Han J, Xu Z, Lou H. Pinguisane Sesquiterpenoids from the Chinese Liverwort Trocholejeunea sandvicensis and Their Anti-Inflammatory Activity. JOURNAL OF NATURAL PRODUCTS 2022; 85:205-214. [PMID: 34961313 DOI: 10.1021/acs.jnatprod.1c00964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nine new pinguisane sesquiterpenoid compounds, 1-9, including a highly oxygenated compound (1) and two amides (7 and 8), along with three known compounds (10, 11, and 12), were isolated from the Chinese liverwort Trocholejeunea sandvicensis Mizut (Lejeuneaceae). The structures of these compounds were determined by analysis of IR, UV, HRESIMS, NMR spectroscopic data, electronic circular dichroism calculations, and single-crystal X-ray diffraction analysis. Inhibitory effects against lipopolysaccharide (LPS)-induced NO production in RAW 264.7 murine macrophages indicated that the maximum inhibition rates of NO production of compounds 1, 9, and 10 were 83.15%, 83.54%, and 96.28% under the nontoxic tested concentration, respectively. Compound 9 also displayed moderate anti-inflammatory activity in vivo in a CuSO4-induced transgenic zebrafish model.
Collapse
Affiliation(s)
- Mingzhu Zhu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| | - Yi Li
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| | - Jinchuan Zhou
- School of Pharmacy, Linyi University, Linyi 27600, People's Republic of China
| | - Tian Wang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, People's Republic of China
| | - Jiaozhen Zhang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| | - Yanan Qiao
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| | - Jingjing Han
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| | - Zejun Xu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| | - Hongxiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
43
|
Singh S, Sahu K, Singh C, Singh A. Lipopolysaccharide induced altered signaling pathways in various neurological disorders. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:285-294. [PMID: 34989812 DOI: 10.1007/s00210-021-02198-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
Neuroinflammation is defined as an inflammatory response within the brain or spinal cord, whereas the brain's innate immune system is triggered by various inflammatory challenges such as injury, infection, exposure to toxin (LPS) and ageing, which result in cognitive impairment and neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). Lipopolysaccharide (LPS) is a main structural component of the outer membrane of gram-negative bacteria, widely used systematically to stimulate the immune system and to generate profound physiological and behavioural changes. It consists of three parts: lipid A, a core oligosaccharide and an O side chain. It is reported by several scientists that, besides the systemic alteration, LPS also induces neurodegeneration by promoting neuroinflammation upon binding with the stimulation of Toll-like receptor-4 (TLR4) receptors present on glial cells. The mammalian Toll-like receptor (TLR) family consists of 13 membranes and TLR was discovered as a crucial pattern recognition receptor (PPR) involved in the recognition of pathogen-associated molecular patterns (PAMPs). Future studies will show that damage/danger-associated molecular patterns (DAMPs) are recognised by the involvement of PPRs, generated by the host itself. The stimulation of TLR4 by lipopolysaccharide phosphorylates two signalling pathways, namely the MyD88-dependent pathway and the MyD88-independent pathway. This activation subsequently triggers the release of various pro-inflammatory cytokines that are necessary to activate innate immune responses, and then promotes neuroinflammation. In this review, we critically demonstrated the epidemiology of neuroinflammation, types of TLRs, the molecular mechanism of TLR4 and management of neuroinflammation.
Collapse
Affiliation(s)
- Sukhdev Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.,Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Kuleshwar Sahu
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.,Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India.,Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India. .,Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| |
Collapse
|
44
|
Jia G, Mao H, Zhang Y, Ni Y, Chen Y. Apigenin alleviates neomycin-induced oxidative damage via the Nrf2 signaling pathway in cochlear hair cells. Front Med 2021; 16:637-650. [PMID: 34921675 DOI: 10.1007/s11684-021-0864-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/25/2021] [Indexed: 10/19/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of aminoglycoside-induced hearing loss and represents a promising target for treatment. We tested the potential effect of apigenin, a natural flavonoid with anticancer, anti-inflammatory, and antioxidant activities, on neomycin-induced ototoxicity in cochlear hair cells in vitro. Results showed that apigenin significantly ameliorated the loss of hair cells and the accumulation of reactive oxygen species upon neomycin injury. Further evidence suggested that the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway was activated by apigenin treatment. Disruption of the Nrf2 axis abolished the effects of apigenin on the alleviation of oxidative stress and subsequent apoptosis of hair cells. This study provided evidence of the protective effect of apigenin on cochlear hair cells and its underlying mechanism.
Collapse
Affiliation(s)
- Gaogan Jia
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Huanyu Mao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Yanping Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Yusu Ni
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
45
|
Preparation of W/O Hypaphorine-Chitosan Nanoparticles and Its Application on Promoting Chronic Wound Healing via Alleviating Inflammation Block. NANOMATERIALS 2021; 11:nano11112830. [PMID: 34835594 PMCID: PMC8625710 DOI: 10.3390/nano11112830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022]
Abstract
Chronic wound repair is a common complication in patients with diabetes mellitus, which causes a heavy burden on social medical resources and the economy. Hypaphorine (HYP) has good anti-inflammatory effect, and chitosan (CS) is used in the treatment of wounds because of its good antibacterial effect. The purpose of this research was to investigate the role and mechanism of HYP-nano-microspheres in the treatment of wounds for diabetic rats. The morphology of HYP-NPS was observed by transmission electron microscopy (TEM). RAW 264.7 macrophages were used to assess the bio-compatibility of HYP-NPS. A full-thickness dermal wound in a diabetic rat model was performed to evaluate the wound healing function of HYP-NPS. The results revealed that HYP-NPS nanoparticles were spherical with an average diameter of approximately 50 nm. The cell experiments hinted that HYP-NPS had the potential as a trauma material. The wound test in diabetic rats indicated that HYP-NPS fostered the healing of chronic wounds. The mechanism was through down-regulating the expression of pro-inflammatory cytokines IL-1β and TNF-α in the skin of the wound, and accelerating the transition of chronic wound from inflammation to tissue regeneration. These results indicate that HYP-NPS has a good application prospect in the treatment of chronic wounds.
Collapse
|
46
|
Alam W, Rocca C, Khan H, Hussain Y, Aschner M, De Bartolo A, Amodio N, Angelone T, Cheang WS. Current Status and Future Perspectives on Therapeutic Potential of Apigenin: Focus on Metabolic-Syndrome-Dependent Organ Dysfunction. Antioxidants (Basel) 2021; 10:antiox10101643. [PMID: 34679777 PMCID: PMC8533599 DOI: 10.3390/antiox10101643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome and its associated disorders such as obesity, insulin resistance, atherosclerosis and type 2 diabetes mellitus are globally prevalent. Different molecules showing therapeutic potential are currently available for the management of metabolic syndrome, although their efficacy has often been compromised by their poor bioavailability and side effects. Studies have been carried out on medicinal plant extracts for the treatment and prevention of metabolic syndrome. In this regard, isolated pure compounds have shown promising efficacy for the management of metabolic syndrome, both in preclinical and clinical settings. Apigenin, a natural bioactive flavonoid widely present in medicinal plants, functional foods, vegetables and fruits, exerts protective effects in models of neurological disorders and cardiovascular diseases and most of these effects are attributed to its antioxidant action. Various preclinical and clinical studies carried out so far show a protective effect of apigenin against metabolic syndrome. Herein, we provide a comprehensive review on both in vitro and in vivo evidence related to the promising antioxidant role of apigenin in cardioprotection, neuroprotection and renoprotection, and to its beneficial action in metabolic-syndrome-dependent organ dysfunction. We also provide evidence on the potential of apigenin in the prevention and/or treatment of metabolic syndrome, analysing the potential and limitation of its therapeutic use.
Collapse
Affiliation(s)
- Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 221400, China;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
- National Institute of Cardiovascular Research I.N.R.C., 40126 Bologna, Italy
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China;
| |
Collapse
|
47
|
Dejani NN, Elshabrawy HA, Bezerra Filho CDSM, de Sousa DP. Anticoronavirus and Immunomodulatory Phenolic Compounds: Opportunities and Pharmacotherapeutic Perspectives. Biomolecules 2021; 11:biom11081254. [PMID: 34439920 PMCID: PMC8394099 DOI: 10.3390/biom11081254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
In 2019, COVID-19 emerged as a severe respiratory disease that is caused by the novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The disease has been associated with high mortality rate, especially in patients with comorbidities such as diabetes, cardiovascular and kidney diseases. This could be attributed to dysregulated immune responses and severe systemic inflammation in COVID-19 patients. The use of effective antiviral drugs against SARS-CoV-2 and modulation of the immune responses could be a potential therapeutic strategy for COVID-19. Studies have shown that natural phenolic compounds have several pharmacological properties, including anticoronavirus and immunomodulatory activities. Therefore, this review discusses the dual action of these natural products from the perspective of applicability at COVID-19.
Collapse
Affiliation(s)
- Naiara Naiana Dejani
- Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA;
| | - Carlos da Silva Maia Bezerra Filho
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
- Correspondence: ; Tel.: +55-83-3216-7347
| |
Collapse
|
48
|
Chesworth R, Gamage R, Ullah F, Sonego S, Millington C, Fernandez A, Liang H, Karl T, Münch G, Niedermayer G, Gyengesi E. Spatial Memory and Microglia Activation in a Mouse Model of Chronic Neuroinflammation and the Anti-inflammatory Effects of Apigenin. Front Neurosci 2021; 15:699329. [PMID: 34393713 PMCID: PMC8363202 DOI: 10.3389/fnins.2021.699329] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/29/2021] [Indexed: 11/26/2022] Open
Abstract
Chronic neuroinflammation characterized by microglia reactivity is one of the main underlying processes in the initiation and progression of neurodegenerative diseases such as Alzheimer’s disease. This project characterized spatial memory during healthy aging and prolonged neuroinflammation in the chronic neuroinflammatory model, glial fibrillary acidic protein-interleukin 6 (GFAP-IL6). We investigated whether chronic treatment with the natural flavonoid, apigenin, could reduce microglia activation in the hippocampus and improve spatial memory. GFAP-IL6 transgenic and wild-type-like mice were fed with apigenin-enriched or control chow from 4 months of age and tested for spatial memory function at 6 and 22 months using the Barnes maze. Brain tissue was collected at 22 months to assess microgliosis and morphology using immunohistochemistry, stereology, and 3D single cell reconstruction. GFAP-IL6 mice showed age-dependent loss of spatial memory recall compared with wild-type-like mice. Chronic apigenin treatment decreased the number of Iba-1+ microglia in the hippocampus of GFAP-IL6 mice and changed microglial morphology. Apigenin did not reverse spatial memory recall impairment in GFAP-IL6 mice at 22 months of age. GFAP-IL6 mice may represent a suitable model for age-related neurodegenerative disease. Chronic apigenin supplementation significantly reduced microglia activation, but this did not correspond with spatial memory improvement in the Barnes Maze.
Collapse
Affiliation(s)
- Rose Chesworth
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Rashmi Gamage
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Faheem Ullah
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Translational Neuroscience Lab, Center for Translational Science, Department of Environmental Sciences, Robert Stempel College of Public Health, Florida International University, Port St. Lucie, FL, United States
| | - Sandra Sonego
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Christopher Millington
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Amanda Fernandez
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Huazheng Liang
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Garry Niedermayer
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Erika Gyengesi
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
49
|
Nam HH, Yang S, Kim HS, Kim MJ, Kim JS, Lee JH. Role of Semisulcospira gottschei extract as medicinal food on reflux esophagitis in rats. Food Sci Nutr 2021; 9:3114-3122. [PMID: 34136176 PMCID: PMC8194936 DOI: 10.1002/fsn3.2270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Gastroesophageal reflux disease (GERD) is a globally prevalent disease and results from a reflux of gastric contents into the esophagus. Existing synthetic drug-based treatments for GERD have various drawbacks including refractory symptoms, relapse, or resistance due to long-term use or may result in mucosal degeneration, polyps, and osteoporosis. Semisulcospira gottschei (SE), a freshwater snail, has been generally consumed as a food source due to its excellent flavor and nutritional value in Korea and considered to have therapeutic properties for various diseases including dyspepsia, stomachache, and hepatic diseases. The present study aims to investigate whether Semisulcospira gottschei extract (SGE) has a protective effect on reflux esophagitis-induced rat models. The anti-inflammatory effects of SGE were evaluated via NO production in LPS-induced Raw 264.7 macrophage. And the protection effects of SGE were analyzed by assessing the amelioration of mucosal damage and expression of inflammation-associated proteins in reflux esophagitis (RE) rats. Our results indicate that SGE significantly suppressed NO production in LPS-induced raw 264.7 cells without any cytotoxicity. We observed mucosal lesions and histological changes in the esophagus of RE control rats. However, SGE treatment markedly ameliorated mucosal lesion ratio indicated through histological changes. SGE administration suppressed the expression of proteins related to inflammation, such as p-NF-κB, p-IκBα, COX-2, and TNF-α, in esophageal tissue. Moreover, SGE elevated the expression of claudin-5, which is a tight junction protein, involved in barrier function of epithelium and endothelium. The results suggest that SGE is useful as a medicinal food in esophagitis and may be helpful in developing effective treatment protocols for GERD.
Collapse
Affiliation(s)
- Hyeon Hwa Nam
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNajuKorea
| | - Sungyu Yang
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNajuKorea
| | - Hyo Seon Kim
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNajuKorea
| | - Min Jee Kim
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNajuKorea
| | - Joong Sun Kim
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNajuKorea
| | - Ji Hye Lee
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNajuKorea
- Present address:
College of Korean MedicineSemyung University College of Korean MedicineJecheon-siChungcheongbuk-do
| |
Collapse
|
50
|
Azimi A, Eidi A, Mortazavi P, Rohani AH. Protective effect of apigenin on ethylene glycol-induced urolithiasis via attenuating oxidative stress and inflammatory parameters in adult male Wistar rats. Life Sci 2021; 279:119641. [PMID: 34043992 DOI: 10.1016/j.lfs.2021.119641] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/30/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
AIMS Apigenin (4',5,7-trihydroxyflavone) is one of the subclasses of flavonoids and has various pharmacological effects. The present work was carried out to study the effect of apigenin on ethylene glycol-induced kidney damage in male Wistar rats. MAIN METHODS We evaluated the effects of apigenin orally administrated in normal and urolithiatic rats. Animals were assigned to nine groups in random: normal control; apigenin alone (0.005, 0.01, and 0.02 g/kg bw); urolithiatic control (0.75% ethylene glycol and 1.0% ammonium chloride in drinking water); apigenin (0.005, 0.01, and 0.02 g/kg bw) plus ethylene glycol and ammonium chloride; and cystone (0.75 g/kg bw) plus ethylene glycol and ammonium chloride. At the end of 28th day of treatment, animals were sacrificed for biochemical and histopathological assays. KEY FINDINGS Our results indicated that the apigenin treatment decreased the formation of urinary stones in urolithiatic rats. Also, apigenin reduced the generation of malondialdehyde and enhanced antioxidant enzymes activities in the kidney homogenate of rats. It also caused a significant decrease in the calcium oxalate crystals numbers in urinary sample of rats with ethylene glycol-induced hyperoxaluria. These findings were supported by histopathological examinations. SIGNIFICANCE Based on the results obtained, apigenin attenuate ethylene glycol-related kidney damage in male Wistar rats. Although the underlying mechanism of apigenin effect has not been determined, reduction of urinary levels of stone-producing constituents, antioxidant activities, and inhibition of TGF-β signaling may be involved.
Collapse
Affiliation(s)
- Atefeh Azimi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Pejman Mortazavi
- Department of Pathology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Haeri Rohani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|