1
|
Hanzawa S, Sugiura M, Nakae S, Masuo M, Morita H, Matsumoto K, Takeda K, Okumura K, Nakamura M, Ohno T, Miyazaki Y. The Prostaglandin D2 Receptor CRTH2 Contributes to Airway Hyperresponsiveness during Airway Inflammation Induced by Sensitization without an Adjuvant in Mice. Int Arch Allergy Immunol 2024; 185:752-760. [PMID: 38599205 DOI: 10.1159/000537840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/13/2024] [Indexed: 04/12/2024] Open
Abstract
INTRODUCTION Prostaglandin D2 (PGD2), which is produced mainly by Th2 cells and mast cells, promotes a type-2 immune response by activating Th2 cells, mast cells, eosinophils, and group 2 innate lymphoid cells (ILC2s) via its receptor, chemoattractant receptor-homologous molecules on Th2 cells (CRTH2). However, the role of CRTH2 in models of airway inflammation induced by sensitization without adjuvants, in which both IgE and mast cells may play major roles, remain unclear. METHODS Wild-type (WT) and CRTH2-knockout (KO) mice were sensitized with ovalbumin (OVA) without an adjuvant and then challenged intranasally with OVA. Airway inflammation was assessed based on airway hyperresponsiveness (AHR), lung histology, number of leukocytes, and levels of type-2 cytokines in the bronchoalveolar lavage fluid (BALF). RESULTS AHR was significantly reduced after OVA challenge in CRTH2 KO mice compared to WT mice. The number of eosinophils, levels of type-2 cytokines (IL-4, IL-5, and IL-13) in BALF, and IgE concentration in serum were decreased in CRTH2 KO mice compared to WT mice. However, lung histological changes were comparable between WT and CRTH2 KO mice. CONCLUSION CRTH2 is responsible for the development of asthma responses in a mouse model of airway inflammation that features prominent involvement of both IgE and mast cells.
Collapse
Affiliation(s)
- Satoshi Hanzawa
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Respiratory Medicine, Shuuwa General Hospital, Saitama, Japan
| | - Makiko Sugiura
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Respiratory Medicine, Tokyo Metropolitan Ohtsuka Hospital, Tokyo, Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, Japan
| | - Masahiro Masuo
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Respiratory Medicine, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuyoshi Takeda
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Laboratory of Cell Biology, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ko Okumura
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Atopy Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsukuni Ohno
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
2
|
Townsend EA, Guadarrama A, Shi L, Roti Roti E, Denlinger LC. P2X 7 signaling influences the production of pro-resolving and pro-inflammatory lipid mediators in alveolar macrophages derived from individuals with asthma. Am J Physiol Lung Cell Mol Physiol 2023; 325:L399-L410. [PMID: 37581221 PMCID: PMC10639011 DOI: 10.1152/ajplung.00070.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
Few new therapeutics exist to target airway inflammation in mild-to-moderate asthma. Alveolar macrophages regulate airway inflammation by producing proresolving eicosanoids. We hypothesized that stimulation of the purinergic receptor P2X7 in macrophages from individuals with asthma produces eicosanoids associated with airway inflammation and resolution, and that these responses are predicted, in part, by P2X7 pore function. Study subjects were recruited in an Institutional Review Board (IRB)-approved study. Alveolar macrophages were recovered from bronchoalveolar lavage fluid following bronchoscopy. Purinergic receptor classification was performed using flow cytometry and fluorescent cell assay. Macrophages were stimulated in vitro and eicosanoids were measured via ELISA or enzyme immunoassay (EIA) in the presence and absence of P2X7-specific agonist [2'(3')-O-(4-Benzoylbenzoyl)adenosine-5'-triphosphate tri(triethylammonium) salt (Bz-ATP)] and antagonist (AZD9056). Functional P2X7 pore status was confirmed in a live cell assay using P2X7-specific agonists and antagonists. Alveolar macrophages produced increased quantities of the oxylipins lipoxin A4 (LXA4), resolvin D1 (RvD1), and 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) following stimulation with Bz-ATP compared with vehicle controls, responses that were attenuated in the presence of the P2X7-selective antagonist, AZD9056. LXA4 and RvD1 production was greatest at 1 h, whereas 15(S)-HETE was maximally produced 24 h. Prostaglandin E-2 and resolvin E1 were minimally produced by P2X7 activation, indicating differential signaling pathways involved in eicosanoid production in alveolar macrophages derived from individuals with asthma. The early production of the proresolving eicosanoids, LXA4 and resolvin D1, is regulated by P2X7, whereas generation of the proinflammatory eicosanoid, 15(S)-HETE, is only partially regulated through P2X7 signaling and reaches maximal production after the peak in proresolving eicosanoids.NEW & NOTEWORTHY Alveolar macrophages obtained from individuals with asthma produce soluble lipid mediators in response to P2X7 purinergic receptor signaling. Proinflammatory mediators may contribute to asthma exacerbations but proresolving mediators may help with resolution of asthma loss of control. These specialized proresolving lipid mediators may serve as future potential therapeutics for asthma exacerbation resolution and recovery.
Collapse
Affiliation(s)
- Elizabeth A Townsend
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Arturo Guadarrama
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Lei Shi
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Elon Roti Roti
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Loren C Denlinger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
| |
Collapse
|
3
|
Significance of Pulmonary Endothelial Injury and the Role of Cyclooxygenase-2 and Prostanoid Signaling. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010117. [PMID: 36671689 PMCID: PMC9855370 DOI: 10.3390/bioengineering10010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The endothelium plays a key role in the dynamic balance of hemodynamic, humoral and inflammatory processes in the human body. Its central importance and the resulting therapeutic concepts are the subject of ongoing research efforts and form the basis for the treatment of numerous diseases. The pulmonary endothelium is an essential component for the gas exchange in humans. Pulmonary endothelial dysfunction has serious consequences for the oxygenation and the gas exchange in humans with the potential of consecutive multiple organ failure. Therefore, in this review, the dysfunction of the pulmonary endothel due to viral, bacterial, and fungal infections, ventilator-related injury, and aspiration is presented in a medical context. Selected aspects of the interaction of endothelial cells with primarily alveolar macrophages are reviewed in more detail. Elucidation of underlying causes and mechanisms of damage and repair may lead to new therapeutic approaches. Specific emphasis is placed on the processes leading to the induction of cyclooxygenase-2 and downstream prostanoid-based signaling pathways associated with this enzyme.
Collapse
|
4
|
Farne H, Glanville N, Johnson N, Kebadze T, Aniscenko J, Regis E, Zhu J, Trujillo-Torralbo MB, Kon OM, Mallia P, Prevost AT, Edwards MR, Johnston SL, Singanayagam A, Jackson DJ. Effect of CRTH2 antagonism on the response to experimental rhinovirus infection in asthma: a pilot randomised controlled trial. Thorax 2022; 77:950-959. [PMID: 34716281 PMCID: PMC9510426 DOI: 10.1136/thoraxjnl-2021-217429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/24/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND AIMS The chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) antagonist timapiprant improved lung function and asthma control in a phase 2 study, with evidence suggesting reduced exacerbations. We aimed to assess whether timapiprant attenuated or prevented asthma exacerbations induced by experimental rhinovirus (RV) infection. We furthermore hypothesised that timapiprant would dampen RV-induced type 2 inflammation and consequently improve antiviral immune responses. METHODS Atopic patients with partially controlled asthma on maintenance inhaled corticosteroids were randomised to timapiprant (n=22) or placebo (n=22) and challenged with RV-A16 3 weeks later. The primary endpoint was the cumulative lower respiratory symptom score over the 14 days post infection. Upper respiratory symptoms, spirometry, airway hyperresponsiveness, exhaled nitric oxide, RV-A16 virus load and soluble mediators in upper and lower airways samples, and CRTH2 staining in bronchial biopsies were additionally assessed before and during RV-A16 infection. RESULTS Six subjects discontinued the study and eight were not infected; outcomes were assessed in 16 timapiprant-treated and 14 placebo-treated, successfully infected subjects. There were no differences between treatment groups in clinical exacerbation severity including cumulative lower respiratory symptom score day 0-14 (difference 3.0 (95% CI -29.0 to 17.0), p=0.78), virus load, antiviral immune responses, or RV-A16-induced airway inflammation other than in the bronchial biopsies, where CRTH2 staining was increased during RV-A16 infection in the placebo-treated but not the timapiprant-treated group. Timapiprant had a favourable safety profile, with no deaths, serious adverse events or drug-related withdrawals. CONCLUSION Timapiprant treatment had little impact on the clinicopathological changes induced by RV-A16 infection in partially controlled asthma.
Collapse
Affiliation(s)
- Hugo Farne
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Nicholas Johnson
- Imperial Clinical Trials Unit, Imperial College London, London, UK
| | - Tata Kebadze
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Julia Aniscenko
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Eteri Regis
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jie Zhu
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Onn Min Kon
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Patrick Mallia
- National Heart and Lung Institute, Imperial College London, London, UK
| | - A Toby Prevost
- Imperial Clinical Trials Unit, Imperial College London, London, UK
| | - Michael R Edwards
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Aran Singanayagam
- National Heart and Lung Institute, Imperial College London, London, UK
| | - David J Jackson
- Guy’s Severe Asthma Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, London, UK
| |
Collapse
|
5
|
Fonseka CL, Hardman CS, Woo J, Singh R, Nahler J, Yang J, Chen YL, Kamaladasa A, Silva T, Salimi M, Gray N, Dong T, Malavige GN, Ogg GS. Dengue virus co-opts innate type 2 pathways to escape early control of viral replication. Commun Biol 2022; 5:735. [PMID: 35869167 PMCID: PMC9306424 DOI: 10.1038/s42003-022-03682-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/06/2022] [Indexed: 12/13/2022] Open
Abstract
Mast cell products and high levels of type 2 cytokines are associated with severe dengue disease. Group 2 innate lymphoid cells (ILC2) are type-2 cytokine-producing cells that are activated by epithelial cytokines and mast cell-derived lipid mediators. Through ex vivo RNAseq analysis, we observed that ILC2 are activated during acute dengue viral infection, and show an impaired type I-IFN signature in severe disease. We observed that circulating ILC2 are permissive for dengue virus infection in vivo and in vitro, particularly when activated through prostaglandin D2 (PGD2). ILC2 underwent productive dengue virus infection, which was inhibited through CRTH2 antagonism. Furthermore, exogenous IFN-β induced expression of type I-IFN responsive anti-viral genes by ILC2. PGD2 downregulated type I-IFN responsive gene and protein expression; and urinary prostaglandin D2 metabolite levels were elevated in severe dengue. Moreover, supernatants from activated ILC2 enhanced monocyte infection in a GM-CSF and mannan-dependent manner. Our results indicate that dengue virus co-opts an innate type 2 environment to escape early type I-IFN control and facilitate viral dissemination. PGD2 downregulates type I-IFN induced anti-viral responses in ILC2. CRTH2 antagonism may be a therapeutic strategy for dengue-associated disease.
Collapse
Affiliation(s)
- Chathuranga L Fonseka
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Medicine, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | - Clare S Hardman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jeongmin Woo
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Randeep Singh
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Janina Nahler
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jiahe Yang
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yi-Ling Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Achala Kamaladasa
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Tehani Silva
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka
| | - Maryam Salimi
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicki Gray
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Gathsaurie N Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Graham S Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Taketomi Y, Murakami M. Regulatory Roles of Phospholipase A2 Enzymes and Bioactive Lipids in Mast Cell Biology. Front Immunol 2022; 13:923265. [PMID: 35833146 PMCID: PMC9271868 DOI: 10.3389/fimmu.2022.923265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Lipids play fundamental roles in life as an essential component of cell membranes, as a major source of energy, as a body surface barrier, and as signaling molecules that transmit intracellular and intercellular signals. Lipid mediators, a group of bioactive lipids that mediates intercellular signals, are produced via specific biosynthetic enzymes and transmit signals via specific receptors. Mast cells, a tissue-resident immune cell population, produce several lipid mediators that contribute to exacerbation or amelioration of allergic responses and also non-allergic inflammation, host defense, cancer and fibrosis by controlling the functions of microenvironmental cells as well as mast cell themselves in paracrine and autocrine fashions. Additionally, several bioactive lipids produced by stromal cells regulate the differentiation, maturation and activation of neighboring mast cells. Many of the bioactive lipids are stored in membrane phospholipids as precursor forms and released spatiotemporally by phospholipase A2 (PLA2) enzymes. Through a series of studies employing gene targeting and lipidomics, several enzymes belonging to the PLA2 superfamily have been demonstrated to participate in mast cell-related diseases by mobilizing unique bioactive lipids in multiple ways. In this review, we provide an overview of our current understanding of the regulatory roles of several PLA2-driven lipid pathways in mast cell biology.
Collapse
|
7
|
Sokolowska M, Rovati GE, Diamant Z, Untersmayr E, Schwarze J, Lukasik Z, Sava F, Angelina A, Palomares O, Akdis C, O'Mahony L, Jesenak M, Pfaar O, Torres MJ, Sanak M, Dahlén S, Woszczek G. Effects of non-steroidal anti-inflammatory drugs and other eicosanoid pathway modifiers on antiviral and allergic responses: EAACI task force on eicosanoids consensus report in times of COVID-19. Allergy 2022; 77:2337-2354. [PMID: 35174512 PMCID: PMC9111413 DOI: 10.1111/all.15258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Non‐steroidal anti‐inflammatory drugs (NSAIDs) and other eicosanoid pathway modifiers are among the most ubiquitously used medications in the general population. Their broad anti‐inflammatory, antipyretic, and analgesic effects are applied against symptoms of respiratory infections, including SARS‐CoV‐2, as well as in other acute and chronic inflammatory diseases that often coexist with allergy and asthma. However, the current pandemic of COVID‐19 also revealed the gaps in our understanding of their mechanism of action, selectivity, and interactions not only during viral infections and inflammation, but also in asthma exacerbations, uncontrolled allergic inflammation, and NSAIDs‐exacerbated respiratory disease (NERD). In this context, the consensus report summarizes currently available knowledge, novel discoveries, and controversies regarding the use of NSAIDs in COVID‐19, and the role of NSAIDs in asthma and viral asthma exacerbations. We also describe here novel mechanisms of action of leukotriene receptor antagonists (LTRAs), outline how to predict responses to LTRA therapy and discuss a potential role of LTRA therapy in COVID‐19 treatment. Moreover, we discuss interactions of novel T2 biologicals and other eicosanoid pathway modifiers on the horizon, such as prostaglandin D2 antagonists and cannabinoids, with eicosanoid pathways, in context of viral infections and exacerbations of asthma and allergic diseases. Finally, we identify and summarize the major knowledge gaps and unmet needs in current eicosanoid research.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - G Enrico Rovati
- Department of Pharmaceutical Sciences Section of Pharmacology and Biosciences University of Milan Milano Italy
| | - Zuzana Diamant
- Department of Respiratory Medicine and Allergology Skane University Hospital Lund Sweden
- Department Microbiology Immunology and Transplantation Ku Leuven, Catholic University of Leuven Belgium
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Jürgen Schwarze
- Child Life and Health and Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Zuzanna Lukasik
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- VIB Center for Inflammation Research Ghent University Ghent Belgium
| | - Florentina Sava
- London North Genomic Laboratory Hub Great Ormond Street Hospital for Children NHS Foundation Trust London UK
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Liam O'Mahony
- Departments of Medicine and Microbiology APC Microbiome IrelandUniversity College Cork Cork Ireland
| | - Milos Jesenak
- Department of Pulmonology and Phthisiology Department of Allergology and Clinical Immunology Department of Pediatrics Jessenius Faculty of Medicine in Martin Comenius University in BratislavaUniversity Teaching Hospital in Martin Slovakia
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital MarburgPhilipps‐Universität Marburg Marburg Germany
| | - María José Torres
- Allergy Unit Málaga Regional University Hospital‐IBIMA‐UMA Málaga Spain
| | - Marek Sanak
- Department of Medicine Jagiellonian University Medical College Krakow Poland
| | - Sven‐Erik Dahlén
- Institute of Environmental Medicine and the Centre for Allergy Research, Karolinska Institute, and the Department of Respiratory Medicine Karolinska University Hospital Stockholm Sweden
| | - Grzegorz Woszczek
- Asthma UK Centre in Allergic Mechanisms of Asthma School of Immunology and Microbial Sciences King's College London London UK
| |
Collapse
|
8
|
Rai SK, Ganeshan S, Mariappan R, Rajendran AP, Balasubramaniem A, Pugazhendhi A, Varalakshmi P. Mesoporous nanoparticles for the delivery of (9S,E)-8-ethyl-9-methylnonadec-6-en-3-one (EME): A study of anti-inflammatory and tumor suppressing potential in RAW 264.7, He La and HepG2 cell lines. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Wang H, Aloe C, McQualter J, Papanicolaou A, Vlahos R, Wilson N, Bozinovski S. G-CSFR antagonism reduces mucosal injury and airways fibrosis in a virus-dependent model of severe asthma. Br J Pharmacol 2021; 178:1869-1885. [PMID: 33609280 DOI: 10.1111/bph.15415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/26/2021] [Accepted: 02/14/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Asthma is a chronic disease that displays heterogeneous clinical and molecular features. A phenotypic subset of late-onset severe asthmatics has debilitating fixed airflow obstruction, increased neutrophilic inflammation and a history of pneumonia. Influenza A virus (IAV) is an important viral cause of pneumonia and asthmatics are frequently hospitalised during IAV epidemics. This study aims to determine whether antagonising granulocyte colony stimulating factor receptor (G-CSFR) prevents pneumonia-associated severe asthma. EXPERIMENTAL APPROACH Mice were sensitised to house dust mite (HDM) to establish allergic airway inflammation and subsequently infected with IAV (HKx31/H3N2 subtype). A neutralising monoclonal antibody against G-CSFR was therapeutically administered. KEY RESULTS In IAV-infected mice with prior HDM sensitisation, a significant increase in airway fibrotic remodelling and airways hyper-reactivity was observed. A mixed granulocytic inflammatory profile consisting of neutrophils, macrophages and eosinophils was prominent and at a molecular level, G-CSF expression was significantly increased in HDMIAV-treated mice. Blockage of G-CSFR reduced neutrophilic inflammation in the bronchoalveolar and lungs by over 80% in HDMIAV-treated mice without altering viral clearance. Markers of NETosis (dsDNA and myeloperoxidase in bronchoalveolar), tissue injury (LDH activity in bronchoalveolar) and oedema (total bronchoalveolar-fluid protein) were also significantly reduced with anti-G-CSFR treatment. In addition, anti-G-CSFR antagonism significantly reduced bronchoalveolar gelatinase activity, active TFGβ lung levels, collagen lung expression, airways fibrosis and airways hyper-reactivity in HDMIAV-treated mice. CONCLUSIONS AND IMPLICATIONS We have shown that antagonising G-CSFR-dependent neutrophilic inflammation reduced pathological disruption of the mucosal barrier and airways fibrosis in an IAV-induced severe asthma model.
Collapse
Affiliation(s)
- Hao Wang
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Christian Aloe
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Jonathan McQualter
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Angelica Papanicolaou
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | | | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
10
|
Gupta A, Kalantar-Zadeh K, Reddy ST. Ramatroban as a Novel Immunotherapy for COVID-19. J Mol Genet Med 2020; 14:10.37421/jmgm.2020.14.457. [PMID: 32952595 PMCID: PMC7500620 DOI: 10.37421/jmgm.2020.14.457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
SARS-CoV-2 virus suppresses host innate and adaptive immune responses, thereby allowing the virus to proliferate, and cause multiorgan failure, especially in the elderly. Respiratory viruses stimulate cyclooxygenase-2 (COX-2) to generate prostanoids including Prostaglandin D2 (PGD2) and thromboxane A2. Furthermore, PGD2 concentrations in the airways increase with aging. PGD2 action mediated via DP2 receptors suppresses both innate and adaptive immune responses, by inhibiting interferon-λ and stimulation of myeloid monocyte-derived suppressor cells respectively. PGD2 and thromboxane A2 actions via the TP receptors activate platelets leading to a prothrombotic state. Ramatroban, a small-molecule antagonist of DP2 and TP receptors, reverses viremia-associated proinflammatory, immunosuppressive5 and prothrombotic processes which are similar to those induced by SARS-Cov-2. Ramatroban, used for the treatment of allergic rhinitis in Japan for the past 20 years has an excellent safety profile. Therefore, Ramatroban merits investigation as a novel immunotherapy for the treatment of COVID-19 disease.
Collapse
Affiliation(s)
- Ajay Gupta
- Division of Nephrology, Hypertension and Kidney Transplantation and Department of Medicine, University of California Irvine (UCI) School of Medicine, United States
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Hypertension and Kidney Transplantation and Department of Medicine, University of California Irvine (UCI) School of Medicine, United States
| | - Srinivasa T. Reddy
- Departments of Medicine, and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| |
Collapse
|
11
|
Brightling CE, Brusselle G, Altman P. The impact of the prostaglandin D 2 receptor 2 and its downstream effects on the pathophysiology of asthma. Allergy 2020; 75:761-768. [PMID: 31355946 DOI: 10.1111/all.14001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/24/2019] [Accepted: 07/17/2019] [Indexed: 02/03/2023]
Abstract
Current research suggests that the prostaglandin D2 (PGD2 ) receptor 2 (DP2 ) is a principal regulator in the pathophysiology of asthma, because it stimulates and amplifies the inflammatory response in this condition. The DP2 receptor can be activated by both allergic and nonallergic stimuli, leading to several pro-inflammatory events, including eosinophil activation and migration, release of the type 2 cytokines interleukin (IL)-4, IL-5 and IL-13 from T helper 2 (Th2) cells and innate lymphoid cells type 2 (ILCs), and increased airway smooth muscle mass via recruitment of mesenchymal progenitors to the airway smooth muscle bundle. Activation of the DP2 receptor pathway has potential downstream effects on asthma pathophysiology, including on airway epithelial cells, mucus hypersecretion, and airway remodelling, and consequently might impact asthma symptoms and exacerbations. Given the broad distribution of DP2 receptors on immune and structural cells involved in asthma, this receptor is being explored as a novel therapeutic target.
Collapse
Affiliation(s)
| | - Guy Brusselle
- Department of Respiratory Diseases Ghent University Hospital Ghent Belgium
| | - Pablo Altman
- Novartis Pharmaceuticals Corporation East Hanover NJ USA
| |
Collapse
|
12
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
13
|
Pelaia C, Crimi C, Vatrella A, Busceti MT, Gaudio A, Garofalo E, Bruni A, Terracciano R, Pelaia G. New treatments for asthma: From the pathogenic role of prostaglandin D 2 to the therapeutic effects of fevipiprant. Pharmacol Res 2019; 155:104490. [PMID: 31682916 DOI: 10.1016/j.phrs.2019.104490] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022]
Abstract
Prostaglandin D2 (PGD2) is a pleiotropic mediator, significantly involved in the pathogenesis of type 2 (T2) asthma because of its biologic actions exerted on both immune/inflammatory and airway structural cells. In particular, the pro-inflammatory and pro-remodelling effects of PGD2 are mainly mediated by stimulation of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). This receptor is the target of the oral competitive antagonist fevipiprant, which on the basis of recent phase II studies is emerging as a potential very promising anti-asthma drug. Indeed, fevipiprant appears to be safe and effective, especially in consideration of its ability to inhibit eosinophilic bronchial inflammation and improve forced expiratory volume in one second (FEV1). Further ongoing phase III trials will definitely clarify if fevipiprant can prospectively become a valid option for an efficacious add-on treatment of moderate-to-severe T2-high asthma.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Maria Teresa Busceti
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Achille Gaudio
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Eugenio Garofalo
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Andrea Bruni
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy.
| |
Collapse
|
14
|
Dileepan M, Rastle-Simpson S, Greenberg Y, Wijesinghe DS, Kumar NG, Yang J, Hwang SH, Hammock BD, Sriramarao P, Rao SP. Effect Of Dual sEH/COX-2 Inhibition on Allergen-Induced Airway Inflammation. Front Pharmacol 2019; 10:1118. [PMID: 31611798 PMCID: PMC6777353 DOI: 10.3389/fphar.2019.01118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022] Open
Abstract
Arachidonic acid metabolites resulting from the cyclooxygenase (COX), lipoxygenase, and cytochrome P450 oxidase enzymatic pathways play pro- and anti-inflammatory roles in allergic airway inflammation (AAI) and asthma. Expression of COX-2 and soluble epoxide hydrolase (sEH) are elevated in allergic airways and their enzymatic products (e.g., prostaglandins and diols of epoxyeicosatrienoic acids, respectively) have been shown to participate in the pathogenesis of AAI. Here, we evaluated the outcome of inhibiting the COX-2 and sEH enzymatic pathways with a novel dual inhibitor, PTUPB, in A. alternata-induced AAI. Allergen-challenged mice were administered with 10 or 30 mg/kg of PTUPB, celecoxib (selective COX-2 inhibitor), t-TUCB (selective sEH inhibitor) or vehicle daily by gavage and evaluated for various features of AAI. PTUPB and t-TUCB at 30 mg/kg, but not celecoxib, inhibited eosinophilic infiltration and significantly increased levels of anti-inflammatory EETs in the lung tissue of allergen-challenged mice. t-TUCB significantly inhibited allergen-induced IL-4 and IL-13, while a less pronounced reduction was noted with PTUPB and celecoxib. Additionally, t-TUCB markedly inhibited eotaxin-2, an eosinophil-specific chemokine, which was only marginally reduced by PTUPB and remained elevated in celecoxib-treated mice. PTUPB or t-TUCB administration reversed allergen-induced reduction in levels of various lipid mediators in the lungs, with only a minimal effect noted with celecoxib. Despite the anti-inflammatory effects, PTUPB or t-TUCB did not reduce allergen-induced airway hyperresponsiveness (AHR). However, development of structural changes in the allergic airways, such as mucus hypersecretion and smooth muscle hypertrophy, was significantly inhibited by both inhibitors. Celecoxib, on the other hand, inhibited only airway smooth muscle hypertrophy, but not mucus hypersecretion. In conclusion, dual inhibition of COX-2 and sEH offers no additional advantage relative to sEH inhibition alone in attenuating various features associated with A. alternata-induced AAI, while COX-2 inhibition exerts only moderate or no effect on several of these features. Dual sEH/COX-2 inhibition may be useful in treating conditions where eosinophilic inflammation co-exists with pain-associated inflammation.
Collapse
Affiliation(s)
- Mythili Dileepan
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Stephanie Rastle-Simpson
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Yana Greenberg
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Dayanjan S Wijesinghe
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Naren Gajenthra Kumar
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Jun Yang
- Department of Entomology, Nematology and Comprehensive Cancer Center, University of California, Davis, CA, United States
| | - Sung Hee Hwang
- Department of Entomology, Nematology and Comprehensive Cancer Center, University of California, Davis, CA, United States
| | - Bruce D Hammock
- Department of Entomology, Nematology and Comprehensive Cancer Center, University of California, Davis, CA, United States
| | - P Sriramarao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Savita P Rao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
15
|
She L, Alanazi HH, Yan L, Zou Y, Sun Y, Dube PH, Brooks EG, Barrera GD, Lai Z, Chen Y, Liu Y, Zhang X, Li XD. Immune Sensing of Aeroallergen-Associated Double-Stranded RNA Triggers an IFN Response and Modulates Type 2 Lung Inflammation. THE JOURNAL OF IMMUNOLOGY 2019; 203:2520-2531. [PMID: 31562213 DOI: 10.4049/jimmunol.1900720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/26/2019] [Indexed: 01/10/2023]
Abstract
The innate immune sensing of allergens or allergen-associated components regulate the development of type 2 inflammatory responses. However, the underlying molecular basis by which allergens or allergen-associated components are detected by innate immune receptors remains elusive. In this study, we report that the most common aeroallergen, house dust mite (HDM), harbors a dsRNA species (HDM-dsRNA) that can activate TLR3-mediated IFN responses and counteract the development of an uncontrolled type 2 immune response. We demonstrate that the mouse strains defective in the dsRNA-sensing pathways show aggravated type 2 inflammation defined by severe eosinophilia, elevated level of type 2 cytokines, and mucus overproduction in a model of allergic lung inflammation. The inability to sense HDM-dsRNA resulted in significant increases in airway hyperreactivity. We further show that the administration of the purified HDM-dsRNA at a low dose is sufficient to induce an immune response to prevent the onset of a severe type 2 lung inflammation. Collectively, these results unveil a new role for the HDM-dsRNA/TLR3-signaling axis in the modulation of a type 2 lung inflammation in mice.
Collapse
Affiliation(s)
- Li She
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229.,Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hamad H Alanazi
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229
| | - Liping Yan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229
| | - Yi Zou
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229; and
| | - Yilun Sun
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229
| | - Peter H Dube
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229
| | - Edward G Brooks
- Division of Immunology and Infectious Disease, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229
| | - Gema D Barrera
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229; and
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229; and
| | - Yong Liu
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xin Zhang
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiao-Dong Li
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229;
| |
Collapse
|
16
|
Domingo C, Palomares O, Sandham DA, Erpenbeck VJ, Altman P. The prostaglandin D 2 receptor 2 pathway in asthma: a key player in airway inflammation. Respir Res 2018; 19:189. [PMID: 30268119 PMCID: PMC6162887 DOI: 10.1186/s12931-018-0893-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022] Open
Abstract
Asthma is characterised by chronic airway inflammation, airway obstruction and hyper-responsiveness. The inflammatory cascade in asthma comprises a complex interplay of genetic factors, the airway epithelium, and dysregulation of the immune response.Prostaglandin D2 (PGD2) is a lipid mediator, predominantly released from mast cells, but also by other immune cells such as TH2 cells and dendritic cells, which plays a significant role in the pathophysiology of asthma. PGD2 mainly exerts its biological functions via two G-protein-coupled receptors, the PGD2 receptor 1 (DP1) and 2 (DP2). The DP2 receptor is mainly expressed by the key cells involved in type 2 immune responses, including TH2 cells, type 2 innate lymphoid cells and eosinophils. The DP2 receptor pathway is a novel and important therapeutic target for asthma, because increased PGD2 production induces significant inflammatory cell chemotaxis and degranulation via its interaction with the DP2 receptor. This interaction has serious consequences in the pulmonary milieu, including the release of pro-inflammatory cytokines and harmful cationic proteases, leading to tissue remodelling, mucus production, structural damage, and compromised lung function. This review will discuss the importance of the DP2 receptor pathway and the current understanding of its role in asthma.
Collapse
Affiliation(s)
- Christian Domingo
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonary Service, Corporació Sanitària Parc Taulí, Sabadell, Barcelona, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | | | | | - Pablo Altman
- Novartis Pharmaceuticals Corporation, One Health Plaza East Hanover, East Hanover, NJ 07936-1080 USA
| |
Collapse
|
17
|
Debeuf N, Lambrecht BN. Eicosanoid Control Over Antigen Presenting Cells in Asthma. Front Immunol 2018; 9:2006. [PMID: 30233591 PMCID: PMC6131302 DOI: 10.3389/fimmu.2018.02006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Asthma is a common lung disease affecting 300 million people worldwide. Allergic asthma is recognized as a prototypical Th2 disorder, orchestrated by an aberrant adaptive CD4+ T helper (Th2/Th17) cell immune response against airborne allergens, that leads to eosinophilic inflammation, reversible bronchoconstriction, and mucus overproduction. Other forms of asthma are controlled by an eosinophil-rich innate ILC2 response driven by epithelial damage, whereas in some patients with more neutrophilia, the disease is driven by Th17 cells. Dendritic cells (DCs) and macrophages are crucial regulators of type 2 immunity in asthma. Numerous lipid mediators including the eicosanoids prostaglandins and leukotrienes influence key functions of these cells, leading to either pro- or anti-inflammatory effects on disease outcome. In this review, we will discuss how eicosanoids affect the functions of DCs and macrophages in the asthmatic lung and how this leads to aberrant T cell differentiation that causes disease.
Collapse
Affiliation(s)
- Nincy Debeuf
- Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
18
|
Veerapandian R, Snyder JD, Samarasinghe AE. Influenza in Asthmatics: For Better or for Worse? Front Immunol 2018; 9:1843. [PMID: 30147697 PMCID: PMC6095982 DOI: 10.3389/fimmu.2018.01843] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022] Open
Abstract
Asthma and influenza are two pathologic conditions of the respiratory tract that affect millions worldwide. Influenza virus of the 2009 pandemic was highly transmissible and caused severe respiratory disease in young and middle-aged individuals. Asthma was discovered to be an underlying co-morbidity that led to hospitalizations during this influenza pandemic albeit with less severe outcomes. However, animal studies that investigated the relationship between allergic inflammation and pandemic (p)H1N1 infection, showed that while characteristics of allergic airways disease were exacerbated by this virus, governing immune responses that cause exacerbations may actually protect the host from severe outcomes associated with influenza. To better understand the relationship between asthma and severe influenza during the last pandemic, we conducted a systematic literature review of reports on hospitalized patients with asthma as a co-morbid condition during the pH1N1 season. Herein, we report that numerous other underlying conditions, such as cardiovascular, neurologic, and metabolic diseases may have been underplayed as major drivers of severe influenza during the 2009 pandemic. This review synopses, (1) asthma and influenza independently, (2) epidemiologic data surrounding asthma during the 2009 influenza pandemic, and (3) recent advances in our understanding of allergic host–pathogen interactions in the context of allergic airways disease and influenza in mouse models. Our goal is to showcase possible immunological benefits of allergic airways inflammation as countermeasures for influenza virus infections as a learning tool to discover novel pathways that can enhance our ability to hinder influenza virus replication and host pathology induced thereof.
Collapse
Affiliation(s)
- Raja Veerapandian
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Children's Foundation Research Institute, University of Tennessee Health Science Center, Memphis, TN, United States
| | - John D Snyder
- Children's Foundation Research Institute, University of Tennessee Health Science Center, Memphis, TN, United States.,College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amali E Samarasinghe
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Children's Foundation Research Institute, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
19
|
MacLean Scott E, Solomon LA, Davidson C, Storie J, Palikhe NS, Cameron L. Activation of Th2 cells downregulates CRTh2 through an NFAT1 mediated mechanism. PLoS One 2018; 13:e0199156. [PMID: 29969451 PMCID: PMC6029763 DOI: 10.1371/journal.pone.0199156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/02/2018] [Indexed: 01/07/2023] Open
Abstract
CRTh2 (encoded by PTGDR2) is a G-protein coupled receptor expressed by Th2 cells as well as eosinophils, basophils and innate lymphoid cells (ILC)2s. Activation of CRTh2, by its ligand prostaglandin (PG)D2, mediates production of type 2 cytokines (IL-4, IL-5 and IL-13), chemotaxis and inhibition of apoptosis. As such, the PGD2-CRTh2 pathway is considered important to the development and maintenance of allergic inflammation. Expression of CRTh2 is mediated by the transcription factor GATA3 during Th2 cell differentiation and within ILC2s. Other than this, relatively little is known regarding the cellular and molecular mechanisms regulating expression of CRTh2. Here, we show using primary human Th2 cells that activation (24hrs) through TCR crosslinking (αCD3/αCD28) reduced expression of both mRNA and surface levels of CRTh2 assessed by flow cytometry and qRT-PCR. This effect took more than 4 hours and expression was recovered following removal of activation. EMSA analysis revealed that GATA3 and NFAT1 can bind independently to overlapping sites within a CRTh2 promoter probe. NFAT1 over-expression resulted in loss of GATA3-mediated CRTh2 promoter activity, while inhibition of NFAT using a peptide inhibitor (VIVIT) coincided with recovery of CRTh2 expression. Collectively these data indicate that expression of CRTh2 is regulated through the competitive action of GATA3 and NFAT1. Though prolonged activation led to NFAT1-mediated downregulation, CRTh2 was re-expressed when stimulus was removed suggesting this is a dynamic mechanism and may play a role in PGD2-CRTh2 mediated allergic inflammation.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Base Sequence
- Binding Sites
- Binding, Competitive
- CD28 Antigens/antagonists & inhibitors
- CD28 Antigens/genetics
- CD28 Antigens/immunology
- CD3 Complex/antagonists & inhibitors
- CD3 Complex/genetics
- CD3 Complex/immunology
- GATA3 Transcription Factor/genetics
- GATA3 Transcription Factor/immunology
- Gene Expression Regulation/immunology
- Humans
- Jurkat Cells
- Lymphocyte Activation/drug effects
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/immunology
- Primary Cell Culture
- Promoter Regions, Genetic
- Prostaglandin D2/metabolism
- Prostaglandin D2/pharmacology
- Protein Binding
- Receptors, Immunologic/agonists
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Prostaglandin/agonists
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/immunology
- Signal Transduction
- Th2 Cells/cytology
- Th2 Cells/drug effects
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Emily MacLean Scott
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, CANADA
| | - Lauren A. Solomon
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, CANADA
| | - Courtney Davidson
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, CANADA
| | - Jessica Storie
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, CANADA
| | - Nami Shrestha Palikhe
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, CANADA
| | - Lisa Cameron
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, CANADA
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, CANADA
| |
Collapse
|
20
|
Targeting the PGD 2/CRTH2/DP1 Signaling Pathway in Asthma and Allergic Disease: Current Status and Future Perspectives. Drugs 2018; 77:1281-1294. [PMID: 28612233 PMCID: PMC5529497 DOI: 10.1007/s40265-017-0777-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostaglandin D2 (PGD2) released by degranulating mast cells is believed to play a key role in orchestrating mechanisms of inflammation in allergies and asthma. The biological effects of PGD2 are mediated by D-prostanoid (DP1), CRTH2 (DP2), and thromboxane prostanoid (TP) receptors. The CRTH2 receptor is involved in induction of migration and activation of T helper type 2 (Th2) lymphocytes, eosinophils, and basophils; up-regulation of adhesion molecules; and promotion of pro-inflammatory Th2-type cytokines (interleukin [IL]-4, 5, 13), whereas the DP receptor is associated with relaxation of smooth muscles, vasodilation, inhibition of cell migration, and apoptosis of eosinophils. A number of CRTH2/PGD2 receptor antagonists have been investigated in asthma and allergic diseases. The CRTH2 antagonist (OC000459) or dual CRTH2 and TP receptor antagonist (ramatroban) were effective in reducing eosinophilia, nasal mucosal swelling, and clinical symptoms of allergic rhinitis, with the latter drug registered for clinical use in this indication. OC000459 and setipiprant reduced the late but not early phase of response in an allergen challenge in atopic asthmatics. In persistent asthma, some molecules induced limited improvement in lung function, quality of life, and asthma symptoms (OC000459, BI671800), but in other trials with AMG 853 and AZ1981 these findings were not confirmed. The clear discrepancy between animal studies and clinical efficacy of CRTH2 antagonism in allergic rhinitis, and lack of efficacy in a general cohort of asthmatics, highlight the issue of patient phenotyping. There is no doubt that the PGD2/CATH2/DP1 pathway plays a key role in allergic inflammation and further studies with selective or combined antagonisms in well defined cohorts of patients are needed.
Collapse
|
21
|
Wechsler JB, Hirano I. Biological therapies for eosinophilic gastrointestinal diseases. J Allergy Clin Immunol 2018; 142:24-31.e2. [PMID: 29859203 DOI: 10.1016/j.jaci.2018.05.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023]
Abstract
The scientific basis and the clinical application of mAb therapies that target specific immunologic pathways for eosinophilic gastrointestinal diseases are areas of active interest. There is a growing recognition of a subset of patients with eosinophilic esophagitis whose disease does not respond well to topical steroids or elimination diets. In addition, long-term use of corticosteroids presents possible risks that are currently being evaluated. Systemic therapy with a biologic agent offers potential advantages as a global approach that could limit the need for multiple, locally active medical therapies and allergen avoidance. The identification of novel biologic strategies is ongoing, and the recent validation of instruments and outcome measures to assess disease activity has proved essential in demonstrating efficacy. Studies using biologics that target IL-13 pathways in the treatment of eosinophilic esophagitis have demonstrated substantial promise.
Collapse
Affiliation(s)
- Joshua B Wechsler
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill.
| | - Ikuo Hirano
- Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| |
Collapse
|
22
|
Palikhe NS, Laratta C, Nahirney D, Vethanayagam D, Bhutani M, Vliagoftis H, Cameron L. Elevated levels of circulating CD4(+) CRTh2(+) T cells characterize severe asthma. Clin Exp Allergy 2017; 46:825-36. [PMID: 27079298 DOI: 10.1111/cea.12741] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/31/2016] [Accepted: 04/08/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTh2) is a receptor for PGD2 and expressed by T cells, eosinophils, basophils, and ILC2 cells. CRTh2 expression by CD4(+) T cells identifies the Th2 subset, and these cells have been characterized as allergen-specific central memory Th2 cells. Recently, activation of the PGD2 -CRTh2 pathway in the lungs was associated with severe asthma. OBJECTIVE To assess circulating levels of Th2 cells and related mediators in severe asthma and those who experience asthma exacerbations. METHODS Peripheral blood cells expressing CRTh2 were characterized by flow cytometry and qRT-PCR. Serum IL-13 and PGD2 were measured by ELISA and compared with asthma severity and tendency to exacerbate. RESULTS Severe asthmatics had more circulating CD4(+) CRTh2(+) T cells, CRTh2 and GATA3 mRNA, and a higher level of serum IL-13 compared to mild/moderate asthmatics. The proportion of CD4(+) CRTh2(+) T cells was associated with lower lung function and was highest in severe asthmatics that exacerbated in the last year. Circulating CD4(+) CRTh2(+) T cells, unlike eosinophils, were positively correlated with inhaled steroid dose. CONCLUSIONS AND CLINICAL RELEVANCE Elevated levels of circulating CD4(+) CRTh2(+) T cells are a feature of severe asthma, despite high-dose corticosteroids. Tracking the systemic level of these cells may help identify type 2 severe asthmatics at risk of exacerbation.
Collapse
Affiliation(s)
- N S Palikhe
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - C Laratta
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - D Nahirney
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - D Vethanayagam
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - M Bhutani
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - H Vliagoftis
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - L Cameron
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
23
|
Ye Z, Ren L, Tang Z, Deng Y, Xie X, Fu Z, Luo Z, Xu F, Zang N, Liu E. Pulmonary C-fiber degeneration downregulates IFN-γ receptor 1 via IFN-α induction to attenuate RSV-induced airway hyperresponsiveness. Virology 2017; 510:262-272. [PMID: 28772166 DOI: 10.1016/j.virol.2017.06.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/25/2017] [Accepted: 06/29/2017] [Indexed: 12/19/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of respiratory infection in infants. Unfortunately, no effective vaccine or treatment against RSV is currently available. Pulmonary C-fibers (PCFs) are critical for regulating pulmonary inflammation and airway hyperresponsiveness (AHR). We previously reported that IFN-γ partially mediated RSV-induced airway disorders. In this study, we found that PCF degeneration alleviated RSV-induced airway inflammation, especially AHR by downregulating IFN-γ receptor 1 (IFNGR1), but had no effect on IFN-γ induction. In contrast, PCF degeneration actually increased IFN-α/β levels, as were the levels of STAT1 and phosphorylated STAT1 (pSTAT1). Exogenous IFN-α treatment induced STAT1 activation and downregulated IFNGR1 expression. These results suggest that PCFs affect IFNGR1 expression by inducing IFN-α to regulate IFN-γ-mediated airway inflammation and AHR. Thus, targeting PCFs activation may help control RSV-induced airway disorders, especially AHR, even with the presence of inflammation.
Collapse
Affiliation(s)
- Zhixu Ye
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Luo Ren
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Zhengzhen Tang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yu Deng
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiaohong Xie
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Zhou Fu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - ZhengXiu Luo
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Fadi Xu
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
| | - Na Zang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
24
|
Grigg J, Whitehouse A, Pandya H, Turner S, Griffiths CJ, Vulliamy T, T Walton R, Price DB, Sanak M, Holloway JW, Noimark L, Lesosky M, Brugha R, Koh L, Nwokoro C. Urinary prostanoids in preschool wheeze. Eur Respir J 2017; 49:13993003.01390-2016. [PMID: 28153869 DOI: 10.1183/13993003.01390-2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/31/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Jonathan Grigg
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Blizard Institute, Queen Mary University of London, London, UK
| | - Abigail Whitehouse
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Blizard Institute, Queen Mary University of London, London, UK
| | - Hitesh Pandya
- Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Stephen Turner
- Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - Christopher J Griffiths
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Blizard Institute, Queen Mary University of London, London, UK
| | - Tom Vulliamy
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Blizard Institute, Queen Mary University of London, London, UK
| | - Robert T Walton
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Blizard Institute, Queen Mary University of London, London, UK
| | - David B Price
- Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - Marek Sanak
- Dept of Medicine, Jagiellonian University Medical School, Krakow, Poland
| | - John W Holloway
- Human Development and Health, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Lee Noimark
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Blizard Institute, Queen Mary University of London, London, UK
| | - Maia Lesosky
- Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Rossa Brugha
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Blizard Institute, Queen Mary University of London, London, UK
| | - Lee Koh
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Blizard Institute, Queen Mary University of London, London, UK
| | - Chinedu Nwokoro
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
25
|
Papaioannou AI, Spathis A, Kostikas K, Karakitsos P, Papiris S, Rossios C. The role of endosomal toll-like receptors in asthma. Eur J Pharmacol 2016; 808:14-20. [PMID: 27677226 DOI: 10.1016/j.ejphar.2016.09.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/06/2016] [Accepted: 09/23/2016] [Indexed: 01/04/2023]
Abstract
Asthma is a heterogeneous inflammatory disease caused by association of genetic and environmental factors and its incidence has significantly increased over the latest years. The clinical manifestations of asthma are the result of airway hyper-reactivity to a variety of triggers such as aeroallergens, viral and bacterial components. Toll-like receptors (TLRs) are pathogen associated molecular pattern receptors, which are also expressed in the lung tissue as well as in several cells of the innate and adaptive immune system. Ligation of TLRs results in alterations in the expression of several inflammatory and anti-inflammatory mediators, which are known to be involved in the pathogenesis of asthma. The endosomal TLRs have been shown to be associated with the induction of asthmatic inflammation (TLR3), and with disease exacerbations (TLR7, TLR8 and TLR9). Targeting these receptors seems to be an effective choice for suppressing airway inflammation, eosinophilia and airway hyperresponsiveness in asthmatic patients. In this review we provide information regarding endosomal TLRs and their role in the pathogenesis of asthma as well as their potential use as targets for the development of novel treatments for the therapy of asthma.
Collapse
Affiliation(s)
- Andriana I Papaioannou
- 2nd Respiratory Medicine Department, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece.
| | - Aris Spathis
- Department of Cytopathology, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece
| | - Konstantinos Kostikas
- 2nd Respiratory Medicine Department, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece
| | - Petros Karakitsos
- Department of Cytopathology, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece
| | - Spyros Papiris
- 2nd Respiratory Medicine Department, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece
| | - Christos Rossios
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
26
|
Santini G, Mores N, Malerba M, Mondino C, Macis G, Montuschi P. Investigational prostaglandin D2 receptor antagonists for airway inflammation. Expert Opin Investig Drugs 2016; 25:639-52. [PMID: 27094922 DOI: 10.1080/13543784.2016.1175434] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION By activating DP1 and DP2 receptors on immune and non-immune cells, prostaglandin D2 (PGD2), a major metabolic product of cyclo-oxygenase pathway released after IgE-mediated mast cell activation, has pro-inflammatory effects, which are relevant to the pathophysiology of allergic airway disease. At least 15 selective, orally active, DP2 receptor antagonists and one DP1 receptor antagonist (asapiprant) are under development for asthma and/or allergic rhinitis. AREAS COVERED In this review, the authors cover the pharmacology of PGD2 and PGD2 receptor antagonists and look at the preclinical, phase I and phase II studies with selective DP1 and DP2 receptor antagonists. EXPERT OPINION Future research should aim to develop once daily compounds and increase the drug clinical potency which, apart from OC000459 and ADC-3680, seems to be relatively low. Further research and development of DP2 receptor antagonists is warranted, particularly in patients with severe uncontrolled asthma, whose management is a top priority. Pediatric studies, which are not available, are required for assessing the efficacy and safety of this novel drug class in children with asthma and allergic rhinitis. Studies on the efficacy of DP2 receptor antagonists in various asthma phenotypes including: smokers, obese subjects, early vs late asthma onset, fixed vs reversible airflow limitation, are required for establishing their pharmacotherapeutic role.
Collapse
Affiliation(s)
- Giuseppe Santini
- a Department of Pharmacology, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| | - Nadia Mores
- a Department of Pharmacology, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| | - Mario Malerba
- b Department of Internal Medicine , University of Brescia , Brescia , Italy
| | - Chiara Mondino
- c Department of Allergology , 'Bellinzona e Valli' Hospital , Bellinzona , Switzerland
| | - Giuseppe Macis
- d Department of Radiological Sciences, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| | - Paolo Montuschi
- a Department of Pharmacology, Faculty of Medicine , Catholic University of the Sacred Heart , Rome , Italy
| |
Collapse
|
27
|
Undem BJ, Zaccone E, McGarvey L, Mazzone SB. Neural dysfunction following respiratory viral infection as a cause of chronic cough hypersensitivity. Pulm Pharmacol Ther 2015; 33:52-6. [PMID: 26141017 DOI: 10.1016/j.pupt.2015.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/16/2015] [Accepted: 06/26/2015] [Indexed: 02/03/2023]
Abstract
Respiratory viral infections are a common cause of acute coughing, an irritating symptom for the patient and an important mechanism of transmission for the virus. Although poorly described, the inflammatory consequences of infection likely induce coughing by chemical (inflammatory mediator) or mechanical (mucous) activation of the cough-evoking sensory nerves that innervate the airway wall. For some individuals, acute cough can evolve into a chronic condition, in which cough and aberrant airway sensations long outlast the initial viral infection. This suggests that some viruses have the capacity to induce persistent plasticity in the neural pathways mediating cough. In this brief review we present the clinical evidence of acute and chronic neural dysfunction following viral respiratory tract infections and explore possible mechanisms by which the nervous system may undergo activation, sensitization and plasticity.
Collapse
Affiliation(s)
- Bradley J Undem
- Department of Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA.
| | - Eric Zaccone
- Department of Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA
| | - Lorcan McGarvey
- Centre of Infection and Immunity, The Queen's University of Belfast, Belfast, Northern Ireland, BT12 6BJ, UK.
| | - Stuart B Mazzone
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
28
|
Kwon Y, Kim Y, Eom S, Kim M, Park D, Kim H, Noh K, Lee H, Lee YS, Choe J, Kim YM, Jeoung D. MicroRNA-26a/-26b-COX-2-MIP-2 Loop Regulates Allergic Inflammation and Allergic Inflammation-promoted Enhanced Tumorigenic and Metastatic Potential of Cancer Cells. J Biol Chem 2015; 290:14245-66. [PMID: 25907560 DOI: 10.1074/jbc.m115.645580] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Indexed: 12/30/2022] Open
Abstract
Cyclooxgenase-2 (COX-2) knock-out mouse experiments showed that COX-2 was necessary for in vivo allergic inflammation, such as passive cutaneous anaphylaxis, passive systemic anaphylaxis, and triphasic cutaneous allergic reaction. TargetScan analysis predicted COX-2 as a target of miR-26a and miR-26b. miR-26a/-26b decreased luciferase activity associated with COX-2-3'-UTR. miR-26a/-26b exerted negative effects on the features of in vitro and in vivo allergic inflammation by targeting COX-2. ChIP assays showed the binding of HDAC3 and SNAIL, but not COX-2, to the promoter sequences of miR-26a and miR-26b. Cytokine array analysis showed that the induction of chemokines, such as MIP-2, in the mouse passive systemic anaphylaxis model occurred in a COX-2-dependent manner. ChIP assays showed the binding of HDAC3 and COX-2 to the promoter sequences of MIP-2. In vitro and in vivo allergic inflammation was accompanied by the increased expression of MIP-2. miR-26a/-26b negatively regulated the expression of MIP-2. Allergic inflammation enhanced the tumorigenic and metastatic potential of cancer cells and induced positive feedback involving cancer cells and stromal cells, such as mast cells, macrophages, and endothelial cells. miR-26a mimic and miR-26b mimic negatively regulated the positive feedback between cancer cells and stromal cells and the positive feedback among stromal cells. miR-26a/-26b negatively regulated the enhanced tumorigenic potential by allergic inflammation. COX-2 was necessary for the enhanced metastatic potential of cancer cells by allergic inflammation. Taken together, our results indicate that the miR26a/-26b-COX-2-MIP-2 loop regulates allergic inflammation and the feedback relationship between allergic inflammation and the enhanced tumorigenic and metastatic potential.
Collapse
Affiliation(s)
| | | | | | - Misun Kim
- From the Departments of Biochemistry and
| | | | - Hyuna Kim
- From the Departments of Biochemistry and
| | | | - Hansoo Lee
- Biological Sciences, College of Natural Sciences, and
| | - Yun Sil Lee
- the College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jongseon Choe
- the Graduate School of Medicine, Kangwon National University, Chunchon 200-701, Korea, and
| | - Young Myeong Kim
- the Graduate School of Medicine, Kangwon National University, Chunchon 200-701, Korea, and
| | | |
Collapse
|
29
|
Shiraishi Y, Takeda K, Domenico J, Gelfand EW. Role of prostaglandin D2and CRTH2 blockade in early- and late-phase nasal responses. Clin Exp Allergy 2014; 44:1076-82. [DOI: 10.1111/cea.12280] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/27/2013] [Accepted: 01/08/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Y. Shiraishi
- Department of Pediatrics; Division of Cell Biology; National Jewish Health; Denver CO USA
| | - K. Takeda
- Department of Pediatrics; Division of Cell Biology; National Jewish Health; Denver CO USA
| | - J. Domenico
- Department of Pediatrics; Division of Cell Biology; National Jewish Health; Denver CO USA
| | - E. W. Gelfand
- Department of Pediatrics; Division of Cell Biology; National Jewish Health; Denver CO USA
| |
Collapse
|
30
|
Aryan Z, Holgate ST, Radzioch D, Rezaei N. A new era of targeting the ancient gatekeepers of the immune system: toll-like agonists in the treatment of allergic rhinitis and asthma. Int Arch Allergy Immunol 2014; 164:46-63. [PMID: 24853609 DOI: 10.1159/000362553] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptors (TLR) belong to a large family of pattern recognition receptors known as the ancient 'gatekeepers' of the immune system. TLRs are located at the first line of defense against invading pathogens as well as aeroallergens, making them interesting targets to modulate the natural history of respiratory allergy. Agonists of TLRs have been widely employed in therapeutic or prophylactic preparations useful for asthma/allergic rhinitis (AR) patients. MPL® (a TLR4 agonist) and the CpG oligodeoxynucleotide of 1018 ISS, a TLR9 agonist, show strong immunogenicity effects that make them appropriate adjuvants for allergy vaccines. Targeting the TLRs can enhance the efficacy of specific allergen immunotherapy, currently the only available 'curative' treatment for respiratory allergies. In addition, intranasal administration of AZD8848 (a TLR7 agonist) and VTX-1463 (a TLR8 agonist) as stand-alone therapeutics have revealed efficacy in the relief of the symptoms of AR patients. No anaphylaxis has been so far reported with such compounds targeting TLRs, with the most common adverse effects being transient and local irritation (e.g. redness, swelling and pruritus). Many other compounds that target TLRs have been found to suppress airway inflammation, eosinophilia and airway hyper-responsiveness in various animal models of allergic inflammation. Indeed, in the future a wide variability of TLR agonists and even antagonists that exhibit anti-asthma/AR effects are likely to emerge.
Collapse
Affiliation(s)
- Zahra Aryan
- Molecular Immunology Research Center and Department of Immunology, School of Medicine, Tehran, Iran
| | | | | | | |
Collapse
|
31
|
Sayers BC, Taylor AJ, Glista-Baker EE, Shipley-Phillips JK, Dackor RT, Edin ML, Lih FB, Tomer KB, Zeldin DC, Langenbach R, Bonner JC. Role of cyclooxygenase-2 in exacerbation of allergen-induced airway remodeling by multiwalled carbon nanotubes. Am J Respir Cell Mol Biol 2014; 49:525-35. [PMID: 23642096 DOI: 10.1165/rcmb.2013-0019oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The emergence of nanotechnology has produced a multitude of engineered nanomaterials such as carbon nanotubes (CNTs), and concerns have been raised about their effects on human health, especially for susceptible populations such as individuals with asthma. Multiwalled CNTs (MWCNTs) have been shown to exacerbate ovalbumin (OVA)-induced airway remodeling in mice. Moreover, cyclooxygenase-2 (COX-2) has been described as a protective factor in asthma. We postulated that COX-2-deficient (COX-2(-/-)) mice would be susceptible to MWCNT-induced exacerbations of allergen-induced airway remodeling, including airway inflammation, fibrosis, and mucus-cell metaplasia (i.e., the formation of goblet cells). Wild-type (WT) or COX-2(-/-) mice were sensitized to OVA to induce allergic airway inflammation before a single dose of MWCNTs (4 mg/kg) delivered to the lungs by oropharyngeal aspiration. MWCNTs significantly increased OVA-induced lung inflammation and mucus-cell metaplasia in COX-2(-/-) mice compared with WT mice. However, airway fibrosis after exposure to allergen and MWCNTs was no different between WT and COX-2(-/-) mice. Concentrations of certain prostanoids (prostaglandin D2 and thromboxane B2) were enhanced by OVA or MWCNTs in COX-2(-/-) mice. No differences in COX-1 mRNA concentrations were evident between WT and COX-2(-/-) mice treated with OVA and MWCNTs. Interestingly, MWCNTs significantly enhanced allergen-induced cytokines involved in Th2 (IL-13 and IL-5), Th1 (CXCL10), and Th17 (IL-17A) inflammatory responses in COX-2(-/-) mice, but not in WT mice. We conclude that exacerbations of allergen-induced airway inflammation and mucus-cell metaplasia by MWCNTs are enhanced by deficiencies in COX-2, and are associated with the activation of a mixed Th1/Th2/Th17 immune response.
Collapse
Affiliation(s)
- Brian C Sayers
- 1 Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Xue L, Salimi M, Panse I, Mjösberg JM, McKenzie ANJ, Spits H, Klenerman P, Ogg G. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol 2013; 133:1184-94. [PMID: 24388011 PMCID: PMC3979107 DOI: 10.1016/j.jaci.2013.10.056] [Citation(s) in RCA: 373] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/14/2013] [Accepted: 10/28/2013] [Indexed: 12/28/2022]
Abstract
Background Activation of the group 2 innate lymphoid cell (ILC2) population leads to production of the classical type 2 cytokines, thus promoting type 2 immunity. Chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2), a receptor for prostaglandin D2 (PGD2), is expressed by human ILC2s. However, the function of CRTH2 in these cells is unclear. Objectives We sought to determine the role of PGD2 and CRTH2 in human ILC2s and compare it with that of the established ILC2 activators IL-25 and IL-33. Methods The effects of PGD2, IL-25, and IL-33 on the cell migration, cytokine production, gene regulation, and receptor expression of ILC2s were measured with chemotaxis, ELISA, Luminex, flow cytometry, quantitative RT-PCR, and QuantiGene assays. The effects of PGD2 under physiologic conditions were evaluated by using the supernatant from activated mast cells. Results PGD2 binding to CRTH2 induced ILC2 migration and production of type 2 cytokines and many other cytokines. ILC2 activation through CRTH2 also upregulated the expression of IL-33 and IL-25 receptor subunits (ST2 and IL-17RA). The effects of PGD2 on ILC2s could be mimicked by the supernatant from activated human mast cells and inhibited by a CRTH2 antagonist. Conclusions PGD2 is an important and potent activator of ILC2s through CRTH2 mediating strong proallergic inflammatory responses. Through IgE-mediated mast cell degranulation, these innate cells can also contribute to adaptive type 2 immunity; thus CRTH2 bridges the innate and adaptive pathways in human ILC2s.
Collapse
Affiliation(s)
- Luzheng Xue
- Oxford NIHR Biomedical Research Centre, Translational Immunology Laboratory, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.
| | - Maryam Salimi
- Oxford NIHR Biomedical Research Centre, Translational Immunology Laboratory, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Isabel Panse
- Oxford NIHR Biomedical Research Centre, Translational Immunology Laboratory, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Jenny M Mjösberg
- Department of Medicine, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - Hergen Spits
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Klenerman
- Oxford NIHR Biomedical Research Centre, Translational Immunology Laboratory, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Peter Medawar Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Graham Ogg
- Oxford NIHR Biomedical Research Centre, Translational Immunology Laboratory, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
33
|
Matsumoto K, Inoue H. Viral infections in asthma and COPD. Respir Investig 2013; 52:92-100. [PMID: 24636264 DOI: 10.1016/j.resinv.2013.08.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/01/2013] [Indexed: 12/20/2022]
Abstract
Airway viral infections are associated with the pathogenesis of asthma and COPD. It has been argued that respiratory syncytial virus (RSV) infection in infancy is a probable causal factor in the development of pediatric asthma. RSV infections tend to induce Th2-biased immune responses in the host airways. RSV infection, atopy, and low pulmonary function in neonates may work synergistically toward the development of pediatric asthma. Human rhinovirus (HRV) is a representative virus associated with the exacerbation of asthma in both children and adults. Viral infections trigger innate immune responses including granulocytic inflammation and worsen the underlying inflammation due to asthma and COPD. The innate immune responses involve type-I and -III interferon (IFN) production, which plays an important role in anti-viral responses, and the airway epithelia of asthmatics reportedly exhibit defects in the virus-induced IFN responses, which renders these individuals more susceptible to viral infection. A similarly impaired IFN response is seen in COPD, and several investigators propose that latent adenoviral infection may be involved in COPD development. Persistent RSV infections were detected in a sub-population of patients with COPD and were associated with the accelerated decline of lung function. The virus-induced upregulation of co-inhibitory molecules in the airway epithelium partly accounts for the persistent infections. Experimental animal models for virus-asthma/COPD interactions have shed light on the underlying immune mechanisms and are expected to help develop novel approaches to treat respiratory diseases.
Collapse
Affiliation(s)
- Koichiro Matsumoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| |
Collapse
|
34
|
Islam MN, Ishita IJ, Jin SE, Choi RJ, Lee CM, Kim YS, Jung HA, Choi JS. Anti-inflammatory activity of edible brown alga Saccharina japonica and its constituents pheophorbide a and pheophytin a in LPS-stimulated RAW 264.7 macrophage cells. Food Chem Toxicol 2013; 55:541-8. [PMID: 23402855 DOI: 10.1016/j.fct.2013.01.054] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/08/2013] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
Abstract
Anti-inflammatory activity of Saccharina japonica and its active components was evaluated via in vitro inhibitory activities against lipopolysaccharide (LPS)-induced nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) expression in RAW 264.7 murine macrophage cells. Since the methanolic extract of S. japonica showed strong anti-inflammatory activity, it was fractionated with several solvents. Among the fractions, the ethyl acetate fraction demonstrated the highest inhibition of LPS-induced NO production (IC50=25.32μg/mL), followed by the CH2Cl2 fraction (IC50=75.86μg/mL). Considering the yield and anti-inflammatory potential together, the CH2Cl2 fraction was selected for chromatographic separation to yield two active porphyrin derivatives, pheophorbide a and pheophytin a, together with an inactive fucoxanthin. In contrast to fucoxanthin, pheophorbide a and pheophytin a showed dose-dependent inhibition against LPS-induced NO production at nontoxic concentrations in RAW 264.7 cells. Both compounds also suppressed the expression of iNOS proteins, while they did not inhibit the COX-2 expression in LPS-stimulated macrophages. These results indicate that pheophorbide a and pheophytin a are two important candidates of S. japonica as anti-inflammatory agents which can inhibit the production of NO via inhibition of iNOS protein expression. Thus, these compounds hold great promise for use in the treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Md Nurul Islam
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kan-o K, Matsunaga Y, Fukuyama S, Moriwaki A, Hirai-Kitajima H, Yokomizo T, Aritake K, Urade Y, Nakanishi Y, Inoue H, Matsumoto K. Mast cells contribute to double-stranded RNA-induced augmentation of airway eosinophilia in a murine model of asthma. Respir Res 2013; 14:28. [PMID: 23452625 PMCID: PMC3599763 DOI: 10.1186/1465-9921-14-28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/26/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Clinical studies showed the contribution of viral infection to the development of asthma. Although mast cells have multiple roles in the pathogenesis of allergic asthma, their role of in the virus-associated pathogenesis of asthma remains unknown. Most respiratory viruses generate double-stranded (ds) RNA during their replication. dsRNA provokes innate immune responses. We recently showed that an administration of polyinocinic polycytidilic acid (poly IC), a mimetic of viral dsRNA, during allergen sensitization augments airway eosinophilia and hyperresponsiveness in mice via enhanced production of IL-13. METHODS The effect of poly IC on allergen-induced airway eosinophilia was investigated for mast cell-conserved Kit+/+ mice and -deficient KitW/KitW-v mice. The outcome of mast cell reconstitution was further investigated. RESULTS Airway eosinophilia and IL-13 production were augmented by poly IC in Kit+/+ mice but not in KitW/KitW-v mice. When KitW/KitW-v mice were reconstituted with bone marrow-derived mast cells (BMMCs), the augmentation was restored. The augmentation was not induced in the mice systemically deficient for TIR domain-containing adaptor-inducing IFN-β (TRIF) or interferon regulatory factor (IRF)-3, both mediate dsRNA-triggered innate immune responses. The augmentation was, however, restored in KitW/KitW-v mice reconstituted with TRIF-deficient or IRF-3-deficient BMMCs. Although leukotriene B4 and prostaglandin D2 are major lipid mediators released from activated mast cells, no their contribution was shown to the dsRNA-induced augmentation of airway eosinophilia. CONCLUSIONS We conclude that mast cells contribute to dsRNA-induced augmentation of allergic airway inflammation without requiring direct activation of mast cells with dsRNA or involvement of leukotriene B4 or prostaglandin D2.
Collapse
Affiliation(s)
- Keiko Kan-o
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuko Matsunaga
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoru Fukuyama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Moriwaki
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroko Hirai-Kitajima
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8431, Japan
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kosuke Aritake
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka 565-0874, Japan
| | - Yoshihiro Urade
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka 565-0874, Japan
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiromasa Inoue
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Koichiro Matsumoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
36
|
Nelson AM, Loy DE, Lawson JA, Katseff AS, Fitzgerald GA, Garza LA. Prostaglandin D2 inhibits wound-induced hair follicle neogenesis through the receptor, Gpr44. J Invest Dermatol 2012. [PMID: 23190891 PMCID: PMC3593761 DOI: 10.1038/jid.2012.398] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Prostaglandins (PGs) are key inflammatory mediators involved in wound healing and regulating hair growth; however, their role in skin regeneration after injury is unknown. Using wound-induced hair follicle neogenesis (WIHN) as a marker of skin regeneration, we hypothesized that PGD2 decreases follicle neogenesis. PGE2 and PGD2 were elevated early and late respectively during wound healing. The levels of WIHN, lipocalin-type prostaglandin D2 synthase (Ptgds) and its product PGD2 each varied significantly among background strains of mice after wounding and all correlated such that the highest Ptgds and PGD2 levels were associated with the lowest amount of regeneration. Additionally, an alternatively spliced transcript variant of Ptgds missing exon 3 correlated with high regeneration in mice. Exogenous application of PGD2 decreased WIHN in wild type mice and PGD2 receptor Gpr44 null mice showed increased WIHN compared to strain-matched control mice. Furthermore, Gpr44 null mice were resistant to PGD2-induced inhibition of follicle neogenesis. In all, these findings demonstrate that PGD2 inhibits hair follicle regeneration through the Gpr44 receptor and imply that inhibition of PGD2 production or Gpr44 signaling will promote skin regeneration.
Collapse
Affiliation(s)
- Amanda M Nelson
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Prostaglandin D2 (PGD2) plays a key role in many of the physiological markings of allergic inflammation including vasodilation, bronchoconstriction, vascular permeability and lymphocyte recruitment. The action of this molecule is elicited through its two primary receptors, DP and CRTH2. Activation of CRTH2 leads to lymphocyte chemotaxis, potentiation of histamine release from basophils, production of inflammatory cytokines (IL-4, IL-5 and IL-13) by Th2 cells, eosinophil degranulation and prevention of Th2 cell apoptosis. As such, antagonism of CRTH2 has been reported to ameliorate the symptoms associated with various allergen challenge animal models including murine antigen induced lung inflammation, murine cigarette smoke induced lung inflammation, murine allergic rhinitis, guinea pig PGD2-induced airflow obstruction, guinea pig airway hyper-responsiveness, sheep airway hyper-responsiveness and murine contact hypersensitivity. CRTH2 antagonists fall into four broad categories: tricyclic ramatroban analogues, indole acetic acids, phenyl/phenoxy acetic acids and non-acid-containing tetrahydroquinolines. Numerous CRTH2 antagonists have been advanced into the clinic and early reports from two Phase II trials suggest promising activity in the alleviation of atopic symptoms.
Collapse
Affiliation(s)
- L. NATHAN TUMEY
- Pfizer Global R&D Worldwide Medicinal Chemistry, MS 8220-3563, 445 Eastern Point Rd Groton, CT 06340 USA
| |
Collapse
|
38
|
Ishii M, Asano K, Namkoong H, Tasaka S, Mizoguchi K, Asami T, Kamata H, Kimizuka Y, Fujiwara H, Funatsu Y, Kagawa S, Miyata J, Ishii K, Nakamura M, Hirai H, Nagata K, Kunkel SL, Hasegawa N, Betsuyaku T. CRTH2 is a critical regulator of neutrophil migration and resistance to polymicrobial sepsis. THE JOURNAL OF IMMUNOLOGY 2012; 188:5655-64. [PMID: 22544936 DOI: 10.4049/jimmunol.1102330] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although arachidonic acid cascade has been shown to be involved in sepsis, little is known about the role of PGD(2) and its newly found receptor, chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2), on the septic response. Severe sepsis is associated with the failure of neutrophil migration. To investigate whether CRTH2 influences neutrophil recruitment and the lethality during sepsis, sepsis was induced by cecal ligation and puncture (CLP) surgery in mice. CRTH2 knockout (CRTH2(-/-)) mice were highly resistant to CLP-induced sepsis, which was associated with lower bacterial load and lower production of TNF-α, IL-6, and CCL3. IL-10, an anti-inflammatory cytokine, was higher in CRTH2(-/-) mice, blunting CLP-induced lethality in CRTH2(-/-) mice. Neutrophil accumulation in the peritoneum was more pronounced after CLP in CRTH2(-/-) mice, which was associated with higher CXCR2 levels in circulating neutrophils. Furthermore, sepsis caused a decrease in the level of acetylation of histone H3, an activation mark, at the CXCR2 promoter in wild-type neutrophils, suggesting that CXCR2 expression levels are epigenetically regulated. Finally, both pharmacological depletion of neutrophils and inhibition of CXCR2 abrogated the survival benefit in CRTH2(-/-) mice. These results demonstrate that genetic ablation of CRTH2 improved impaired neutrophil migration and survival during severe sepsis, which was mechanistically associated with epigenetic-mediated CXCR2 expression. Thus, CRTH2 is a potential therapeutic target for polymicrobial sepsis.
Collapse
Affiliation(s)
- Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Aoki T, Narumiya S. Prostaglandins and chronic inflammation. Trends Pharmacol Sci 2012; 33:304-11. [PMID: 22464140 DOI: 10.1016/j.tips.2012.02.004] [Citation(s) in RCA: 395] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/21/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
Abstract
Chronic inflammation is the basis of various chronic illnesses including cancer and vascular diseases. However, much has yet to be learned how inflammation becomes chronic. Prostaglandins (PGs) are well established as mediators of acute inflammation, and recent studies in experimental animals have provided evidence that they also function in transition to and maintenance of chronic inflammation. One role PGs play in such processes is amplification of cytokine signaling. As such, PGs can facilitate acquired immunity and induce long-lasting immune inflammation. PGs also contribute to chronic inflammation by making a positive feedback loop and/or by inducing chemokines and recruiting inflammatory cells to alternate active cell populations at affected sites. PGs also contribute to tissue remodeling as seen in angiogenesis and fibrosis. Although such roles of PGs should be verified in human diseases, these findings suggest that PG signaling is a promising therapeutic target of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Tomohiro Aoki
- Department of Pharmacology, Kyoto University Graduate School of Medicine, and Core Research for Evolutional Science and Technology-CREST, Kyoto 606-8501, Japan
| | | |
Collapse
|
40
|
PGH1, the precursor for the anti-inflammatory prostaglandins of the 1-series, is a potent activator of the pro-inflammatory receptor CRTH2/DP2. PLoS One 2012; 7:e33329. [PMID: 22442685 PMCID: PMC3307725 DOI: 10.1371/journal.pone.0033329] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/07/2012] [Indexed: 12/19/2022] Open
Abstract
Prostaglandin H1 (PGH1) is the cyclo-oxygenase metabolite of dihomo-γ-linolenic acid (DGLA) and the precursor for the 1-series of prostaglandins which are often viewed as “anti-inflammatory”. Herein we present evidence that PGH1 is a potent activator of the pro-inflammatory PGD2 receptor CRTH2, an attractive therapeutic target to treat allergic diseases such as asthma and atopic dermatitis. Non-invasive, real time dynamic mass redistribution analysis of living human CRTH2 transfectants and Ca2+ flux studies reveal that PGH1 activates CRTH2 as PGH2, PGD2 or PGD1 do. The PGH1 precursor DGLA and the other PGH1 metabolites did not display such effect. PGH1 specifically internalizes CRTH2 in stable CRTH2 transfectants as assessed by antibody feeding assays. Physiological relevance of CRTH2 ligation by PGH1 is demonstrated in several primary human hematopoietic lineages, which endogenously express CRTH2: PGH1 mediates migration of and Ca2+ flux in Th2 lymphocytes, shape change of eosinophils, and their adhesion to human pulmonary microvascular endothelial cells under physiological flow conditions. All these effects are abrogated in the presence of the CRTH2 specific antagonist TM30089. Together, our results identify PGH1 as an important lipid intermediate and novel CRTH2 agonist which may trigger CRTH2 activation in vivo in the absence of functional prostaglandin D synthase.
Collapse
|
41
|
Takayama S, Tamaoka M, Takayama K, Okayasu K, Tsuchiya K, Miyazaki Y, Sumi Y, Martin JG, Inase N. Synthetic double-stranded RNA enhances airway inflammation and remodelling in a rat model of asthma. Immunology 2011; 134:140-50. [PMID: 21896009 PMCID: PMC3194222 DOI: 10.1111/j.1365-2567.2011.03473.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Respiratory viral infections are frequently associated with exacerbations of asthma. Double-stranded RNA (dsRNA) produced during viral infections may be one of the stimuli for exacerbation. We aimed to assess the potential effect of dsRNA on certain aspects of chronic asthma through the administration of polyinosine-polycytidylic acid (poly I:C), synthetic dsRNA, to a rat model of asthma. Brown Norway rats were sensitized to ovalbumin and challenged three times to evoke airway remodelling. The effect of poly I:C on the ovalbumin-induced airway inflammation and structural changes was assessed from bronchoalveolar lavage fluid and histological findings. The expression of cytokines and chemokines was evaluated by real-time quantitative reverse transcription PCR and ELISA. Ovalbumin-challenged animals showed an increased number of total cells and eosinophils in bronchoalveolar lavage fluid compared with PBS-challenged controls. Ovalbumin-challenged animals treated with poly I:C showed an increased number of total cells and neutrophils in bronchoalveolar lavage fluid compared with those without poly I:C treatment. Ovalbumin-challenged animals showed goblet cell hyperplasia, increased airway smooth muscle mass, and proliferation of both airway epithelial cells and airway smooth muscle cells. Treatment with poly I:C enhanced these structural changes. Among the cytokines and chemokines examined, the expression of interleukins 12 and 17 and of transforming growth factor-β(1) in ovalbumin-challenged animals treated with poly I:C was significantly increased compared with those of the other groups. Double-stranded RNA enhanced airway inflammation and remodelling in a rat model of bronchial asthma. These observations suggest that viral infections may promote airway remodelling.
Collapse
Affiliation(s)
- Satoshi Takayama
- Department of Integrated Pulmonology, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Stebbins KJ, Broadhead AR, Musiyenko A, Barik S, Scott JM, Truong YP, Stearns BA, Hutchinson JH, Prasit P, Evans JF, Lorrain DS. DP2 (CRTh2) antagonism reduces ocular inflammation induced by allergen challenge and respiratory syncytial virus. Int Arch Allergy Immunol 2011; 157:259-68. [PMID: 22042170 DOI: 10.1159/000328769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 04/20/2011] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Allergic conjunctivitis is characterized by itchy, watery and swollen eyes which occur in response to exposure to seasonal or environmental allergens. The early phase reaction of allergic conjunctivitis is primarily mediated by mast cell degranulation while the late phase reaction is driven by Th2 cells and eosinophils. Prostaglandin D(2) (PGD(2)), released from mast cells, is present in allergic conjunctival tears and may elicit classical allergic responses via interaction with the high-affinity DP2 receptor (chemoattractant receptor-homologous molecule expressed on Th2 cells, CRTh2). Furthermore, antagonism of this receptor is well known to inhibit eosinophil chemotaxis, basophil activation and Th2 cytokine production. PGD(2), therefore, may be involved in both early and late phase reactions in response to allergen challenge. METHODS Thus, we explored whether our novel and selective DP2 antagonist AM156 would be efficacious in animal models of allergic conjunctivitis. Furthermore, as respiratory syncytial virus (RSV) has been implicated in the pathogenesis of allergic conjunctivitis, we examined the effects of DP2 antagonism in a murine model of RSV ocular infection. RESULTS Utilizing a guinea pig ovalbumin model and a murine ragweed model we demonstrated that AM156 reduces redness, discharge and swelling in response to allergen challenge. These effects were equal to or greater than those of current clinical treatment options for allergic conjunctivitis including topical corticosteroids and a dual-mechanism antihistamine and decongestant. AM156 significantly reduced RSV-induced ocular inflammation and IL-4 production. CONCLUSION These results suggest that a topical DP2 antagonist such as AM156 may represent a novel therapeutic for allergic conjunctivitis.
Collapse
|
43
|
Matsushima Y, Satoh T, Yamamoto Y, Nakamura M, Yokozeki H. Distinct roles of prostaglandin D2 receptors in chronic skin inflammation. Mol Immunol 2011; 49:304-10. [DOI: 10.1016/j.molimm.2011.08.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/31/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
|
44
|
Ueno N, Taketomi Y, Yamamoto K, Hirabayashi T, Kamei D, Kita Y, Shimizu T, Shinzawa K, Tsujimoto Y, Ikeda K, Taguchi R, Murakami M. Analysis of two major intracellular phospholipases A(2) (PLA(2)) in mast cells reveals crucial contribution of cytosolic PLA(2)α, not Ca(2+)-independent PLA(2)β, to lipid mobilization in proximal mast cells and distal fibroblasts. J Biol Chem 2011; 286:37249-63. [PMID: 21880721 DOI: 10.1074/jbc.m111.290312] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mast cells release a variety of mediators, including arachidonic acid (AA) metabolites, to regulate allergy, inflammation, and host defense, and their differentiation and maturation within extravascular microenvironments depend on the stromal cytokine stem cell factor. Mouse mast cells express two major intracellular phospholipases A(2) (PLA(2)s), namely group IVA cytosolic PLA(2) (cPLA(2)α) and group VIA Ca(2+)-independent PLA(2) (iPLA(2)β), and the role of cPLA(2)α in eicosanoid synthesis by mast cells has been well documented. Lipidomic analyses of mouse bone marrow-derived mast cells (BMMCs) lacking cPLA(2)α (Pla2g4a(-/-)) or iPLA(2)β (Pla2g6(-/-)) revealed that phospholipids with AA were selectively hydrolyzed by cPLA(2)α, not by iPLA(2)β, during FcεRI-mediated activation and even during fibroblast-dependent maturation. Neither FcεRI-dependent effector functions nor maturation-driven phospholipid remodeling was impaired in Pla2g6(-/-) BMMCs. Although BMMCs did not produce prostaglandin E(2) (PGE(2)), the AA released by cPLA(2)α from BMMCs during maturation was converted to PGE(2) by microsomal PGE synthase-1 (mPGES-1) in cocultured fibroblasts, and accordingly, Pla2g4a(-/-) BMMCs promoted microenvironmental PGE(2) synthesis less efficiently than wild-type BMMCs both in vitro and in vivo. Mice deficient in mPGES-1 (Ptges(-/-)) had an augmented local anaphylactic response. These results suggest that cPLA(2)α in mast cells is functionally coupled, through the AA transfer mechanism, with stromal mPGES-1 to provide anti-anaphylactic PGE(2). Although iPLA(2)β is partially responsible for PGE(2) production by macrophages and dendritic cells, it is dispensable for mast cell maturation and function.
Collapse
Affiliation(s)
- Noriko Ueno
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 256-8506, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Barnes N, Pavord I, Chuchalin A, Bell J, Hunter M, Lewis T, Parker D, Payton M, Collins LP, Pettipher R, Steiner J, Perkins CM. A randomized, double-blind, placebo-controlled study of the CRTH2 antagonist OC000459 in moderate persistent asthma. Clin Exp Allergy 2011; 42:38-48. [DOI: 10.1111/j.1365-2222.2011.03813.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Woodward DF, Jones RL, Narumiya S. International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 2011; 63:471-538. [PMID: 21752876 DOI: 10.1124/pr.110.003517] [Citation(s) in RCA: 321] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is now more than 15 years since the molecular structures of the major prostanoid receptors were elucidated. Since then, substantial progress has been achieved with respect to distribution and function, signal transduction mechanisms, and the design of agonists and antagonists (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=58). This review systematically details these advances. More recent developments in prostanoid receptor research are included. The DP(2) receptor, also termed CRTH2, has little structural resemblance to DP(1) and other receptors described in the original prostanoid receptor classification. DP(2) receptors are more closely related to chemoattractant receptors. Prostanoid receptors have also been found to heterodimerize with other prostanoid receptor subtypes and nonprostanoids. This may extend signal transduction pathways and create new ligand recognition sites: prostacyclin/thromboxane A(2) heterodimeric receptors for 8-epi-prostaglandin E(2), wild-type/alternative (alt4) heterodimers for the prostaglandin FP receptor for bimatoprost and the prostamides. It is anticipated that the 15 years of research progress described herein will lead to novel therapeutic entities.
Collapse
Affiliation(s)
- D F Woodward
- Dept. of Biological Sciences RD3-2B, Allergan, Inc., 2525 Dupont Dr., Irvine, CA 92612, USA.
| | | | | |
Collapse
|
47
|
Ahmed SR, McGettrick HM, Yates CM, Buckley CD, Ratcliffe MJ, Nash GB, Rainger GE. Prostaglandin D2 regulates CD4+ memory T cell trafficking across blood vascular endothelium and primes these cells for clearance across lymphatic endothelium. THE JOURNAL OF IMMUNOLOGY 2011; 187:1432-9. [PMID: 21715691 DOI: 10.4049/jimmunol.1100299] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Memory lymphocytes support inflammatory and immune responses. To do this, they enter tissue via blood vascular endothelial cells (BVEC) and leave tissue via lymphatic vascular endothelial cells (LVEC). In this study, we describe a hierarchy of signals, including novel regulatory steps, which direct the sequential migration of human T cells across the blood and the lymphatic EC. Cytokine-stimulated (TNF and IFN) human BVEC preferentially recruited memory T cells from purified PBL. Lymphocyte recruitment from flow could be blocked using a function-neutralizing Ab against CXCR3. However, a receptor antagonist directed against the PGD(2) receptor DP2 (formerly chemoattractant receptor-homologous molecule expressed on Th2 cells) inhibited transendothelial migration, demonstrating that the sequential delivery of the chemokine and prostanoid signals was required for efficient lymphocyte recruitment. CD4(+) T cells recruited by BVEC migrated with significantly greater efficiency across a second barrier of human LVEC, an effect reproduced by the addition of exogenous PGD(2) to nonmigrated cells. Migration across BVEC or exogenous PGD(2) modified the function, but not the expression, of CCR7, so that chemotaxis toward CCL21 was significantly enhanced. Thus, chemokines may not regulate all stages of lymphocyte migration during inflammation, and paradigms describing their trafficking may need to account for the role of PGD(2).
Collapse
Affiliation(s)
- S Rumel Ahmed
- School of Clinical and Experimental Medicine, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
48
|
Guan SP, Kong LR, Cheng C, Lim JCW, Wong WSF. Protective role of 14-deoxy-11,12-didehydroandrographolide, a noncytotoxic analogue of andrographolide, in allergic airway inflammation. JOURNAL OF NATURAL PRODUCTS 2011; 74:1484-1490. [PMID: 21598983 DOI: 10.1021/np2002572] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Our group recently reported novel anti-inflammatory effects of andrographolide (2), a bioactive molecule isolated from Andrographis paniculata, in a mouse asthma model. However, 2 has been shown to possess cytotoxic activity. 14-Deoxy-11,12-didehydroandrographolide (1) is an analogue of 2 that can be isolated from A. paniculata. We hypothesized that 1 retains the anti-inflammatory effects for asthma but is devoid of cytotoxicity. In contrast to 2, 1 did not elicit any cytotoxic activity in A549 and BEAS-2B human lung epithelial cells and rat basophilic leukemia (RBL)-2H3 cells using a MTS assay. Compound 1 dose-dependently inhibited ovalbumin (OVA)-induced increases in total and eosinophil counts, IL-4, IL-5, and IL-13 levels in lavage fluid, and serum OVA-specific IgE level in a mouse asthma model. Compound 1 attenuated OVA-induced airway eosinophilia, mucus production, mast cell degranulation, pro-inflammatory biomarker expression in lung tissues, and airway hyper-responsiveness. This substance also blocked p65 nuclear translocation and DNA-binding activity in the OVA-challenged lung and in TNF-α-stimulated human lung epithelial cells. The present findings reveal for the first time that 1 retains the anti-inflammatory activities of 2 for asthma probably through the inhibition of NF-κB. 14-Deoxy-11,12-didehydroandrographolide (1) may be considered as a safer analogue of 2 for the potential treatment of asthma.
Collapse
Affiliation(s)
- Shou-Ping Guan
- Department of Pharmacology, Yong Loo Lin School of Medicine , National University Health System, Singapore
| | | | | | | | | |
Collapse
|
49
|
Calvén J, Yudina Y, Hallgren O, Westergren-Thorsson G, Davies DE, Brandelius A, Uller L. Viral stimuli trigger exaggerated thymic stromal lymphopoietin expression by chronic obstructive pulmonary disease epithelium: role of endosomal TLR3 and cytosolic RIG-I-like helicases. J Innate Immun 2011; 4:86-99. [PMID: 21691053 DOI: 10.1159/000329131] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/05/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Rhinovirus (RV)-induced chronic obstructive pulmonary disease (COPD) exacerbations exhibit TH(2)-like inflammation. We hypothesized that RV-infected bronchial epithelial cells (BEC) overproduce TH(2)-switching hub cytokine, thymic stromal lymphopoietin (TSLP) in COPD. METHODS Primary BEC from healthy (HBEC) and from COPD donors (COPD-BEC) were grown in 12-well plates, infected with RV16 (0.5-5 MOI) or stimulated with agonists for either toll-like receptor (TLR) 3 (dsRNA, 0.1-10 μg/ml) or RIG-I-like helicases (dsRNA-LyoVec, 0.1-10 μg/ml). Cytokine mRNA and protein were determined (RTqPCR; ELISA). RESULTS dsRNA dose-dependently evoked cytokine gene overproduction of TSLP, CXCL8 and TNF-α in COPD-BEC compared to HBEC. This was confirmed using RV16 infection. IFN-β induction did not differ between COPD-BEC and HBEC. Endosomal TLR3 inhibition by chloroquine dose-dependently inhibited dsRNA-induced TSLP generation and reduced generation of CXCL8, TNF-α, and IFN-β. Stimulation of cytosolic viral sensors (RIG-I-like helicases) with dsRNA-LyoVec increased production of CXCL8, TNF-α, and IFN-β, but not TSLP. CONCLUSIONS Endosomal TLR3-stimulation, by dsRNA or RV16, induces overproduction of TSLP in COPD-BEC. dsRNA- and RV-induced overproduction of TNF-α and CXCL8 involves endosomal TLR3 and cytosolic RIG-I-like helicases and so does the generation of IFN-β in COPD-BEC. RV16 and dsRNA-induced epithelial TSLP may contribute to pathogenic effects at exacerbations and development of COPD.
Collapse
Affiliation(s)
- Jenny Calvén
- Unit of Respiratory Immunopharmacology, Lund University Sweden, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
50
|
Kagawa S, Fukunaga K, Oguma T, Suzuki Y, Shiomi T, Sayama K, Kimura T, Hirai H, Nagata K, Nakamura M, Asano K. Role of prostaglandin D2 receptor CRTH2 in sustained eosinophil accumulation in the airways of mice with chronic asthma. Int Arch Allergy Immunol 2011; 155 Suppl 1:6-11. [PMID: 21646789 DOI: 10.1159/000327257] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The prostaglandin D(2) (PGD(2))/CRTH2 pathway is important for eosinophil trafficking in vitro; however, genetic deficiency of CRTH2 does not suppress in vivo eosinophilic airway inflammation in acute models of asthma, and the role of CRTH2 in the pathogenesis of asthma is still ambiguous. Therefore, in the present study we explored whether the PGD(2)/CRTH2 pathway could affect the phenotypes of chronic asthma. Either CRTH2-deficient (CRTH2-/-) or wild-type mice were sensitized and exposed to ovalbumin (OVA) for 3 days (acute model) or 6 weeks (chronic model). While the magnitude of the acute eosinophilic inflammation was equivalent between CRTH2-/- and wild-type mice, the number of inflammatory cells and eosinophils in bronchoalveolar lavage fluid after chronic OVA exposure was significantly reduced in CRTH2-/- mice (18.0 ± 2.6 × 10(4) cells and 2.0 ± 0.5 × 10(4) cells) compared to wild-type mice (27.9 ± 2.5 × 10(4) cells and 6.8 ± 1.1 × 10(4) cells, p < 0.001). On the contrary, no difference was observed between CRTH2-/- and wild-type mice in terms of airway hyperresponsiveness or remodeling (goblet cell hyperplasia) in the chronic model of asthma. In conclusion, CRTH2 that mediates PGD(2) activity is essential for sustained eosinophilic inflammation in the airways, and its antagonists could exert an anti-inflammatory effect in chronic asthma.
Collapse
Affiliation(s)
- Shizuko Kagawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|