1
|
Furutani M, Suganuma M, Akiyama S, Mitsumori R, Takemura M, Matsui Y, Satake S, Nakano Y, Niida S, Ozaki K, Hosoyama T, Shigemizu D. RNA-Sequencing Analysis Identification of Potential Biomarkers for Diagnosis of Sarcopenia. J Gerontol A Biol Sci Med Sci 2023; 78:1991-1998. [PMID: 37347997 DOI: 10.1093/gerona/glad150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 06/24/2023] Open
Abstract
Sarcopenia is a geriatric disease associated with increased mortality and disability. Early diagnosis and intervention are required to prevent it. This study investigated biomarkers for sarcopenia by using a combination of comprehensive clinical data and messenger RNA-sequencing (RNA-seq) analysis obtained from peripheral blood mononuclear cells. We enrolled a total of 114 older adults aged 66-94 years (52 sarcopenia diagnosed according to the Asian Working Group for Sarcopenia 2019 consensus and 62 normal older people). We used clinical data which were not included diagnosis criteria of sarcopenia, and stride length showed significance by logistic regression analysis (Bonferroni corrected p = .012, odds ratio = 0.14, 95% confidence interval [CI]: 0.05-0.40). RNA-seq analysis detected 6 differential expressed genes (FAR1, GNL2, HERC5, MRPL47, NUBP2, and S100A11). We also performed gene-set enrichment analysis and detected 2 functional modules (ie, hub genes, MYH9, and FLNA). By using any combination of the 9 candidates and basic information (age and sex), risk-prediction models were constructed. The best model by using a combination of stride length, HERC5, S100A11, and FLNA, achieved a high area under the curve (AUC) of 0.91 in a validation cohort (95% CI: 0.78-0.95). The quantitative PCR results of the 3 genes were consistent with the trend observed in the RNA-seq results. When BMI was added, the model achieved a high AUC of 0.95 (95% CI: 0.84-0.99). We have discovered potential biomarkers for the diagnosis of sarcopenia. Further refinement may lead to their future practical use in clinical use.
Collapse
Affiliation(s)
- Motoki Furutani
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Mutsumi Suganuma
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Shintaro Akiyama
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Risa Mitsumori
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Marie Takemura
- Center for Frailty and Locomotive Syndrome, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Yasumoto Matsui
- Center for Frailty and Locomotive Syndrome, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Shosuke Satake
- Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shumpei Niida
- Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tohru Hosoyama
- Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, AichiJapan
| | - Daichi Shigemizu
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
2
|
Cai Y, Su H, Si Y, Ni N. Machine learning-based prediction of diagnostic markers for Graves' orbitopathy. Endocrine 2023:10.1007/s12020-023-03349-z. [PMID: 37059863 PMCID: PMC10293385 DOI: 10.1007/s12020-023-03349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/26/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE The pathogenesis of Graves' orbitopathy/thyroid-associated orbitopathy (TAO) is still unclear, and abnormal DNA methylation in TAO has been reported. Thus, selecting and exploring TAO biomarkers associated with DNA methylation may provide a reference for new therapeutic targets. METHODS The TAO-associated expression data and methylation data were downloaded from The Gene Expression Omnibus database. Firstly, weighted gene co-expression network analysis was used to obtain the TAO-related genes, which were intersected with differentially methylated genes (DMGs), and differentially expressed genes between TAO samples and normal samples to obtain TAO-associated DMGs (TA-DMGs). Thereafter, the functions of the TA-DMGs were analyzed, and diagnostic markers were screened by least absolute shrinkage and selection operator (Lasso) regression analysis and support vector machine (SVM) analysis. The expression levels and diagnostic values of the diagnostic markers were also analyzed. Furthermore, single gene pathway enrichment analysis was performed for each diagnostic marker separately using gene set enrichment analysis (GSEA) software. Next, we also performed immune infiltration analysis for each sample in the GSE58331 dataset using the single-sample GSEA algorithm, and the correlation between diagnostic markers and differential immune cells was explored. Lastly, the expressions of diagnostic markers were explored by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS A total of 125 TA-DMGs were obtained. The enrichment analysis results indicated that these TA-DMGs were mainly involved in immune-related pathways, such as Th1 and Th2 cell differentiation and the regulation of innate immune response. Moreover, two diagnostic markers, including S100A11 and NKD2, were obtained by Lasso regression analysis and SVM analysis. Single gene pathway enrichment analysis showed that S100A11 was involved in protein polyufmylation, pancreatic-mediated proteolysis, and NKD2 was involved in innate immune response in mucosa, Wnt signaling pathway, etc. Meanwhile, immune cell infiltration analysis screened 12 immune cells, including CD56 dim natural killer cells and Neutrophil cells that significantly differed between TAO and normal samples, with the strongest positive correlation between NKD2 and CD56 dim natural killer cells. Finally, the qRT-PCR illustrated the expressions of NKD2 and S100A11 between normal and TAO. CONCLUSION NKD2 and S100A11 were screened as biomarkers of TAO and might be regulated by DNA methylation in TAO, providing a new reference for the diagnosis and treatment of TAO patients.
Collapse
Affiliation(s)
- Yunying Cai
- Department of Endocrinology, The First People's Hospital of Yunnan Province. The Affiliated Hospital of Kunming University of Science and Technology, Kunming City, Yunnan Provence, China
| | - Heng Su
- Department of Endocrinology, The First People's Hospital of Yunnan Province. The Affiliated Hospital of Kunming University of Science and Technology, Kunming City, Yunnan Provence, China.
| | - Yongting Si
- Department of Endocrinology, The First People's Hospital of Yunnan Province. The Affiliated Hospital of Kunming University of Science and Technology, Kunming City, Yunnan Provence, China
| | - Ninghua Ni
- Department of Ophthalmology, The First People's Hospital of Yunnan Province. The Affiliated Hospital of Kunming University of Science and Technology, Kunming City, Yunnan Provence, China
| |
Collapse
|
3
|
Roszkowski L, Jaszczyk B, Plebańczyk M, Ciechomska M. S100A8 and S100A12 Proteins as Biomarkers of High Disease Activity in Patients with Rheumatoid Arthritis That Can Be Regulated by Epigenetic Drugs. Int J Mol Sci 2022; 24:ijms24010710. [PMID: 36614150 PMCID: PMC9820830 DOI: 10.3390/ijms24010710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease that is still not well understood in terms of its pathogenesis and presents diagnostic and therapeutic challenges. Monocytes are key players in initiating and maintaining inflammation through the production of pro-inflammatory cytokines and S100 proteins in RA. This study aimed to test a specific DNA methylation inhibitor (RG108) and activator (budesonide) in the regulation of pro-inflammatory mediators-especially the S100 proteins. We also searched for new biomarkers of high disease activity in RA patients. RNA sequencing analysis of healthy controls (HCs) and RA monocytes was performed. Genes such as the S100 family, TNF, and IL-8 were validated by qRT-PCR following DNA-methylation-targeted drug treatment in a monocytic THP-1 cell line. The concentrations of the S100A8, S100A11, and S100A12 proteins in the sera and synovial fluids of RA patients were tested and correlated with clinical parameters. We demonstrated that RA monocytes had significantly increased levels of S100A8, S100A9, S100A11, S100A12, MYD88, JAK3, and IQGAP1 and decreased levels of IL10RA and TGIF1 transcripts. In addition, stimulation of THP-1 cells with budesonide statistically reduced the expression of the S100 family, IL-8, and TNF genes. In contrast, THP-1 cells treated with RG108 had increased levels of the S100 family and TNF genes. We also revealed a significant upregulation of S100A8, S100A11, and S100A12 in RA patients, especially in early RA compared to HC sera. In addition, protein levels of S100A8, S100A11, and S100A12 in RA synovial fluids compared to HC sera were significantly increased. Overall, our data suggest that the S100A8 and S100A12 proteins are strongly elevated during ongoing inflammation, so they could be used as a better biomarker of disease activity than CRP. Interestingly, epigenetic drugs can regulate these S100 proteins, suggesting their potential use in targeting RA inflammation.
Collapse
Affiliation(s)
- Leszek Roszkowski
- Department of Outpatient Clinics, National Institute of Geriatrics, Rheumatology and Rehabilitation (NIGRiR), 02-637 Warsaw, Poland
| | - Bożena Jaszczyk
- Department of Outpatient Clinics, National Institute of Geriatrics, Rheumatology and Rehabilitation (NIGRiR), 02-637 Warsaw, Poland
| | - Magdalena Plebańczyk
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation (NIGRiR), 02-637 Warsaw, Poland
| | - Marzena Ciechomska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation (NIGRiR), 02-637 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-670-95-63
| |
Collapse
|
4
|
Cheng M, Shi YL, Shang PP, Chen YJ, Xu YD. Inhibitory Effect of S100A11 on Airway Smooth Muscle Contraction and Airway Hyperresponsiveness. Curr Med Sci 2022; 42:333-340. [PMID: 35419674 DOI: 10.1007/s11596-022-2559-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE S100A11 is a member of the S100 calcium-binding protein family and has intracellular and extracellular regulatory activities. We previously reported that S100A11 was differentially expressed in the respiratory tracts of asthmatic rats as compared with normal controls. Here, we aimed to analyze the potential of S100A11 to regulate both allergen-induced airway hyperresponsiveness (AHR) as well as acetylcholine (ACh)-induced hypercontractility of airway smooth muscle (ASM) and contraction of ASM cells (ASMCs). METHODS Purified recombinant rat S100A11 protein (rS100A11) was administered to OVA-sensitized and challenged rats and then the AHR of animals was measured. The relaxation effects of rS100A11 on ASM were detected using isolated tracheal rings and primary ASMCs. The expression levels of un-phosphorylated myosin light chain (MLC) and phosphorylated MLC in ASMCs were analyzed using Western blotting. RESULTS Treatment with rS100A11 attenuated AHR in the rats. ASM contraction assays showed that rS100A11 reduced the contractile responses of isolated tracheal rings and primary ASMCs treated with ACh. In addition, rS100A11 markedly decreased the ACh-induced phosphorylation of the myosin light chain in ASMCs. Moreover, rS100A11 also suppressed the contractile response of tracheal rings in calcium-free buffer medium. CONCLUSION These results indicate that S100A11 protein can relieve AHR by relaxing ASM independently of extracellular calcium. Our data support the idea that S100A11 is a potential therapeutic target for reducing airway resistance in asthma patients.
Collapse
Affiliation(s)
- Mi Cheng
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Yang-Lin Shi
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Pan-Pan Shang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Yan-Jiao Chen
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Yu-Dong Xu
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China.
| |
Collapse
|
5
|
Li J, Wang Y, Chen D, Liu-Bryan R. Oral administration of berberine limits post-traumatic osteoarthritis development and associated pain via AMP-activated protein kinase (AMPK) in mice. Osteoarthritis Cartilage 2022; 30:160-171. [PMID: 34687898 PMCID: PMC8712393 DOI: 10.1016/j.joca.2021.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We investigated the effect of berberine, a natural plant product that can activate AMP-activated protein kinase (AMPK), on Osteoarthritis (OA) development and associated pain in mice. DESIGN Human primary knee chondrocytes were utilized to investigate how AMPK is activated by berberine. Both global knockout (KO) of AMPKα1 and congenic wild type (WT) mice were subjected to the post-traumatic OA through destabilization of medial meniscus (DMM) surgery. Two weeks after surgery, the mice were randomly divided into two groups with one group receiving berberine chloride daily via drinking water and were sacrificed at 6 and 12 weeks after surgery. OA severity was assessed by histological and histomorphometric analyses of cartilage degradation, synovitis, and osteophyte formation. OA-associated pain behavior was also determined. Immunohistochemistry (IHC) analyses were carried out to examine changes in AMPK signaling. RESULTS Berberine induced phosphorylation of AMPKα (Thr172) via liver kinase B1 (LKB1), the major upstream kinase of AMPK, in chondrocytes in vitro. Both WT and AMPKα1KO developed OA and associated pain post DMM surgery. However, treatment with berberine significantly reduced severity of OA and associated pain in WT but not AMPKα1KO mice. IHC analysis of WT DMM knee cartilage further revealed that berberine inhibited concomitant loss of expression and phosphorylation of AMPKα and expression of SIRT1 and SIRT3, suggesting an important role of activation of AMPK signaling in mediating beneficial effect of berberine. CONCLUSIONS Berberine acts through AMPK to reduce joint structural damage and pain associated with post-traumatic OA in mice in vivo.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Yun Wang
- Department of Medicine, University of California San Diego, La Jolla, USA.,Present address: Valo Health, Lexington, MA, USA
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA.,Present address: Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, San Diego, USA.,Department of Medicine, University of California San Diego, La Jolla, USA.,Correspondence to: Ru Liu-Bryan, VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA 92161. Telephone: 858 552 8585. Fax: 858 552 7425. , or Di Chen, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. Telephone: 86-0755-8658-5255. Fax: 86-0755-8639-2299.
| |
Collapse
|
6
|
The S100 Protein Family as Players and Therapeutic Targets in Pulmonary Diseases. Pulm Med 2021; 2021:5488591. [PMID: 34239729 PMCID: PMC8214497 DOI: 10.1155/2021/5488591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The S100 protein family consists of over 20 members in humans that are involved in many intracellular and extracellular processes, including proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation, tissue repair, and migration/invasion. Although there are structural similarities between each member, they are not functionally interchangeable. The S100 proteins function both as intracellular Ca2+ sensors and as extracellular factors. Dysregulated responses of multiple members of the S100 family are observed in several diseases, including the lungs (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cystic fibrosis, pulmonary hypertension, and lung cancer). To this degree, extensive research was undertaken to identify their roles in pulmonary disease pathogenesis and the identification of inhibitors for several S100 family members that have progressed to clinical trials in patients for nonpulmonary conditions. This review outlines the potential role of each S100 protein in pulmonary diseases, details the possible mechanisms observed in diseases, and outlines potential therapeutic strategies for treatment.
Collapse
|
7
|
Zhang L, Zhu T, Miao H, Liang B. The Calcium Binding Protein S100A11 and Its Roles in Diseases. Front Cell Dev Biol 2021; 9:693262. [PMID: 34179021 PMCID: PMC8226020 DOI: 10.3389/fcell.2021.693262] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022] Open
Abstract
The calcium binding protein S100 family in humans contains 21 known members, with each possessing a molecular weight between 10 and 14 kDa. These proteins are characterized by a unique helix-loop-helix EF hand motif, and often form dimers and multimers. The S100 family mainly exists in vertebrates and exerts its biological functions both inside cells as a calcium sensor/binding protein, as well as outside cells. S100A11, a member of the S100 family, may mediate signal transduction in response to internal or external stimuli and it plays various roles in different diseases such as cancers, metabolic disease, neurological diseases, and vascular calcification. In addition, it can function as chemotactic agent in inflammatory disease. In this review, we first detail the discovery of S100 proteins and their structural features, and then specifically focus on the tissue and organ expression of S100A11. We also summarize its biological activities and roles in different disease and signaling pathways, providing an overview of S100A11 research thus far.
Collapse
Affiliation(s)
- Linqiang Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tingting Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Huilai Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of General Surgery, Dongguan Liaobu Hospital, Dongguan, China
| | - Bin Liang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
8
|
S100 proteins in atherosclerosis. Clin Chim Acta 2020; 502:293-304. [DOI: 10.1016/j.cca.2019.11.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
|
9
|
Sreejit G, Flynn MC, Patil M, Krishnamurthy P, Murphy AJ, Nagareddy PR. S100 family proteins in inflammation and beyond. Adv Clin Chem 2020; 98:173-231. [PMID: 32564786 DOI: 10.1016/bs.acc.2020.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.
Collapse
Affiliation(s)
| | - Michelle C Flynn
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
10
|
Losada-Barragán M, Umaña-Pérez A, Durães J, Cuervo-Escobar S, Rodríguez-Vega A, Ribeiro-Gomes FL, Berbert LR, Morgado F, Porrozzi R, Mendes-da-Cruz DA, Aquino P, Carvalho PC, Savino W, Sánchez-Gómez M, Padrón G, Cuervo P. Thymic Microenvironment Is Modified by Malnutrition and Leishmania infantum Infection. Front Cell Infect Microbiol 2019; 9:252. [PMID: 31355153 PMCID: PMC6639785 DOI: 10.3389/fcimb.2019.00252] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/28/2019] [Indexed: 01/23/2023] Open
Abstract
Detrimental effects of malnutrition on immune responses to pathogens have long been recognized and it is considered a main risk factor for various infectious diseases, including visceral leishmaniasis (VL). Thymus is a target of both malnutrition and infection, but its role in the immune response to Leishmania infantum in malnourished individuals is barely studied. Because we previously observed thymic atrophy and significant reduction in cellularity and chemokine levels in malnourished mice infected with L. infantum, we postulated that the thymic microenvironment is severely compromised in those animals. To test this, we analyzed the microarchitecture of the organ and measured the protein abundance in its interstitial space in malnourished BALB/c mice infected or not with L. infantum. Malnourished-infected animals exhibited a significant reduction of the thymic cortex:medulla ratio and altered abundance of proteins secreted in the thymic interstitial fluid. Eighty-one percent of identified proteins are secreted by exosomes and malnourished-infected mice showed significant decrease in exosomal proteins, suggesting that exosomal carrier system, and therefore intrathymic communication, is dysregulated in those animals. Malnourished-infected mice also exhibited a significant increase in the abundance of proteins involved in lipid metabolism and tricarboxylic acid cycle, suggestive of a non-proliferative microenvironment. Accordingly, flow cytometry analysis revealed decreased proliferation of single positive and double positive T cells in those animals. Together, the reduced cortical area, decreased proliferation, and altered protein abundance suggest a dysfunctional thymic microenvironment where T cell migration, proliferation, and maturation are compromised, contributing for the thymic atrophy observed in malnourished animals. All these alterations could affect the control of the local and systemic infection, resulting in an impaired response to L. infantum infection.
Collapse
Affiliation(s)
- Monica Losada-Barragán
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Grupo de Investigación en Biología Celular y Funcional e Ingeniería de Biomoléculas, Departamento de Biologia, Universidad Antonio Nariño, Bogotá, Colombia
| | - Adriana Umaña-Pérez
- Grupo de Investigación en Hormonas, Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jonathan Durães
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Sergio Cuervo-Escobar
- Facultad de Ciencias, Universidad de Ciencias Aplicadas y Ambientales, Bogotá, Colombia
| | - Andrés Rodríguez-Vega
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Flávia L Ribeiro-Gomes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Luiz R Berbert
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Fernanda Morgado
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Renato Porrozzi
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Daniella Arêas Mendes-da-Cruz
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação, Fiocruz, Rio de Janeiro, Brazil
| | | | - Paulo C Carvalho
- Computational Mass Spectrometry and Proteomics Group, Fiocruz, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação, Fiocruz, Rio de Janeiro, Brazil
| | - Myriam Sánchez-Gómez
- Grupo de Investigación en Hormonas, Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Gabriel Padrón
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Regional gene expression analysis of multiple tissues in an experimental animal model of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2019; 27:294-303. [PMID: 30448533 DOI: 10.1016/j.joca.2018.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/04/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To characterize local disease progression of the medial meniscus transection (MMT) model of post-traumatic osteoarthritis (OA) at the molecular level, in order to establish a baseline for therapeutic testing at the preclinical stage. DESIGN Weight-matched male Lewis rats underwent MMT or sham surgery on the left limb with the right leg as contralateral control. At 1 and 3 weeks post-surgery, tissues were harvested from different areas of the articular cartilage (medial and lateral tibial plateaus, and medial osteophyte region) and synovium (medial and lateral), and analyzed separately. RNA was extracted and used for microarray (RT-PCR) analysis. RESULTS Gene expression changes due to surgery were isolated to the medial side of the joint. Gene changes in chondrocyte phenotype of the medial tibial plateau cartilage preceded changes in tissue composition genes. Differences in inflammatory markers were only observed at the osteophyte region at 3 weeks post-surgery. There was surgical noise in the synovium at week 1, which dissipated at week 3. At this later timepoint, meniscal instability resulted in elevated expression of matrix degradation proteins and osteogenic markers in the synovium and cartilage. CONCLUSION These results suggest feedback interactions between joint tissues during disease progression. Regional tissue expression differences found in MMT joints indicated similar pathophysiology to human OA, and provided novel insights about this degeneration model. The examination of gene expression at a localized level in multiple tissues provides a well-characterized baseline to evaluate mechanistic effects of potential therapeutic agents on OA disease progression in the MMT model.
Collapse
|
12
|
Bresnick AR. S100 proteins as therapeutic targets. Biophys Rev 2018; 10:1617-1629. [PMID: 30382555 PMCID: PMC6297089 DOI: 10.1007/s12551-018-0471-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022] Open
Abstract
The human genome codes for 21 S100 protein family members, which exhibit cell- and tissue-specific expression patterns. Despite sharing a high degree of sequence and structural similarity, the S100 proteins bind a diverse range of protein targets and contribute to a broad array of intracellular and extracellular functions. Consequently, the S100 proteins regulate multiple cellular processes such as proliferation, migration and/or invasion, and differentiation, and play important roles in a variety of cancers, autoimmune diseases, and chronic inflammatory disorders. This review focuses on the development of S100 neutralizing antibodies and small molecule inhibitors and their potential therapeutic use in controlling disease progression and severity.
Collapse
Affiliation(s)
- Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
13
|
Chen LY, Wang Y, Terkeltaub R, Liu-Bryan R. Activation of AMPK-SIRT3 signaling is chondroprotective by preserving mitochondrial DNA integrity and function. Osteoarthritis Cartilage 2018; 26:1539-1550. [PMID: 30031925 PMCID: PMC6202232 DOI: 10.1016/j.joca.2018.07.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/11/2018] [Accepted: 07/02/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In osteoarthritis (OA), articular chondrocytes manifest mitochondrial damage, including mitochondrial DNA 4977-bp (mtDNA4977) deletion that impairs mitochondrial function. OA chondrocytes have decreased activity of AMPK, an energy biosensor that promotes mitochondrial biogenesis. Here, we tested if pharmacologic AMPK activation, via downstream activation of predominately mitochondrially localized sirtuin 3 (SIRT3), reverses existing decreases in mitochondrial DNA (mtDNA) integrity and function in human OA chondrocytes and limits mouse knee OA development. DESIGN We assessed mtDNA integrity and function including the common mtDNA4977 deletion and mtDNA content, mitochondrial reactive oxygen species (mtROS) generation, oxygen consumption and intracellular ATP levels. Phosphorylation of AMPKα, expression and activity of SIRT3, acetylation and expression of the mitochondrial antioxidant enzyme SOD2 and DNA repair enzyme 8-oxoguanine glycosylase (OGG1), and expression of subunits of mitochondrial respiratory complexes were examined. We assessed effect of pharmacologic activation of AMPK on age-related spontaneous mouse knee OA. RESULTS The mtDNA4977 deletion was detected in both OA chondrocytes and menadione-treated normal chondrocytes, associated with increased mtROS, decreased SIRT3, and increased acetylation of SOD2 and OGG1. AMPKα1 deficient chondrocytes exhibited significantly reduced SIRT3 activity. AMPK pharmacologic activation attenuated existing mtDNA4977 deletion and improved mitochondrial functions in OA chondrocytes via SIRT3 by reducing acetylation and increasing expression of SOD2 and OGG1, and limited aging-associated mouse knee OA development and progression. CONCLUSIONS AMPK activation, via SIRT3, limits oxidative stress and improves mtDNA integrity and function in OA chondrocytes. These effects likely contribute to chondroprotective effects of AMPK activity.
Collapse
Affiliation(s)
| | | | - Robert Terkeltaub
- VA San Diego Healthcare System, San Diego, CA,Dept. of Medicine, UC San Diego
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, San Diego, CA,Dept. of Medicine, UC San Diego,To Whom Correspondence should be addressed: Ru Liu-Bryan PhD, VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA 92161. Telephone: 858 552 8585. Fax: 858 552 7425,
| |
Collapse
|
14
|
Dowarha D, Chou RH, Yu C. S100B as an Antagonist To Interfere with the Interface Area Flanked by S100A11 and RAGE V Domain. ACS OMEGA 2018; 3:9689-9698. [PMID: 31459098 PMCID: PMC6644751 DOI: 10.1021/acsomega.8b00922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/08/2018] [Indexed: 05/03/2023]
Abstract
The Ca2+-sensing protein S100A11 of the S100 family is an important mediator of numerous biological functions and pathological conditions including cancer. The receptor for advanced glycation end products (RAGE) has been well accepted as the major receptor for several S100 family members. Here, we take the S100B protein as an antagonist to interfere with the interaction flanked by S100A11 and the RAGE V domain. We employed NMR spectroscopy to describe the interactions between the S100A11 and S100B proteins. 1H-15N heteronuclear single-quantum correlation-NMR titrations showed the potential binding dynamics of S100A11 and S100B interactions. In the HADDOCK program, we constructed the S100A11-S100B heterodimer complex that was then superimposed with the S100A11-S100B complex structure in the same orientation as the S100A11-RAGE V domain complex. This overlay analysis showed that S100B could interfere in the binding section of S100A11 and the RAGE V domain. Additionally, water-soluble tetrazolium-1 assay provided a functional read-out of the effects of these proteins in an in vitro cancer model. Our study establishes that the development of an S100B antagonist could perform a vital part in the treatment of S100- and RAGE-dependent human diseases.
Collapse
Affiliation(s)
- Deepu Dowarha
- Department
of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ruey-Hwang Chou
- Graduate
Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Chin Yu
- Department
of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- E-mail: . Fax: 886-35-711082
| |
Collapse
|
15
|
Chen LY, Lotz M, Terkeltaub R, Liu-Bryan R. Modulation of matrix metabolism by ATP-citrate lyase in articular chondrocytes. J Biol Chem 2018; 293:12259-12270. [PMID: 29929979 DOI: 10.1074/jbc.ra118.002261] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/04/2018] [Indexed: 02/04/2023] Open
Abstract
Certain dysregulated chondrocyte metabolic adaptive responses such as decreased activity of the master regulator of energy metabolism AMP-activated protein kinase (AMPK) promote osteoarthritis (OA). Metabolism intersects with epigenetic and transcriptional responses. Hence, we studied chondrocyte ATP-citrate lyase (ACLY), which generates acetyl-CoA from mitochondrial-derived citrate, and modulates acetylation of histones and transcription factors. We assessed ACLY in normal and OA human knee chondrocytes and cartilages by Western blotting and immunohistochemistry, and quantified acetyl-CoA fluorometrically. We examined histone and transcription factor lysine acetylation by Western blotting, and assessed histone H3K9 and H3K27 occupancy of iNOS, MMP3, and MMP13 promoters by chromatin immunoprecipitation (ChIP) and quantitative PCR (qPCR). We analyzed iNOS, MMP3, MMP13, aggrecan (ACAN), and Col2a1 gene expression by RT-qPCR. Glucose availability regulated ACLY expression and function, nucleocytosolic acetyl-CoA, and histone acetylation. Human knee OA chondrocytes exhibited increased ACLY activation (assessed by Ser-455 phosphorylation), associated with increased H3K9 and H3K27 acetylation. Inhibition of ACLY attenuated IL-1β-induced transcription of iNOS, MMP3, and MMP13 by suppressing acetylation of p65 NF-κB, H3K9, and H3K27, blunted release of NO, MMP3, and MMP13, and also reduced SOX9 acetylation that promoted SOX9 nuclear translocation, leading to increased aggrecan and Col2a1 mRNA expression. ACLY is a novel player involved in regulation of cartilage matrix metabolism. Increased ACLY activity in OA chondrocytes increased nucleocytosolic acetyl-CoA, leading to increased matrix catabolism via dysregulated histone and transcription factor acetylation. Pharmacologic ACLY inhibition in OA chondrocytes globally reverses these changes and stimulates matrix gene expression and AMPK activation, supporting translational investigation in OA.
Collapse
Affiliation(s)
- Liang-Yu Chen
- Veterans Affairs San Diego Healthcare System, San Diego, California 92161
| | - Martin Lotz
- The Scripps Research Institute, La Jolla, California 92037
| | - Robert Terkeltaub
- Veterans Affairs San Diego Healthcare System, San Diego, California 92161; Department of Medicine, University of California San Diego, La Jolla, California 92037
| | - Ru Liu-Bryan
- Veterans Affairs San Diego Healthcare System, San Diego, California 92161; Department of Medicine, University of California San Diego, La Jolla, California 92037.
| |
Collapse
|
16
|
Transglutaminase 2 modulation of NF-κB signaling in astrocytes is independent of its ability to mediate astrocytic viability in ischemic injury. Brain Res 2017; 1668:1-11. [PMID: 28522262 DOI: 10.1016/j.brainres.2017.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/14/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022]
Abstract
Transglutaminase 2 (TG2) is a multifunctional protein that can contribute to cell death and cell survival processes in a variety of disease contexts. Within the brain, TG2 has been shown to promote cell death in ischemic injury when expressed in astrocytes (Colak and Johnson, 2012). However, the specific functions and characteristics of astrocytic TG2 that mediate this effect are largely unknown. Therefore, the goal of this study was to investigate the role of astrocytic TG2 in mediating cellular viability processes in the context of ischemic injury, with a specific focus on its contributions to intracellular signaling cascades. We show that, in response to oxygen/glucose deprivation (OGD), acute lentiviral-mediated knockdown of TG2, as well as inhibition with an irreversible TG2 inhibitor, enhances cell survival. We also show that TG2 depletion increases nuclear factor-κB (NF-κB) signaling, whereas inhibition reduces NF-κB activity. Despite its clear contribution to NF-κB signaling, however, TG2 modulation of NF-κB signaling is not likely to be a major contributor to its ability to mediate astrocytic viability in this context. Overall, the results of this study provide insight into the role of TG2 in astrocytes and suggest possible avenues for future study of the relationship between astrocytic TG2 and ischemic injury.
Collapse
|
17
|
Andrés Cerezo L, Šumová B, Prajzlerová K, Veigl D, Damgaard D, Nielsen CH, Pavelka K, Vencovský J, Šenolt L. Calgizzarin (S100A11): a novel inflammatory mediator associated with disease activity of rheumatoid arthritis. Arthritis Res Ther 2017; 19:79. [PMID: 28446208 PMCID: PMC5405489 DOI: 10.1186/s13075-017-1288-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 03/31/2017] [Indexed: 01/09/2023] Open
Abstract
Background Calgizzarin (S100A11) is a member of the S100 protein family that acts in different tumors by regulating a number of biologic functions. Recent data suggest its association with low-grade inflammation in osteoarthritis (OA). The aim of our study is to compare S100A11 expression in the synovial tissues, synovial fluid and serum of patients with rheumatoid arthritis (RA) and osteoarthritis (OA) and to characterize the potential association between S100A11 and disease activity. Methods S100A11 protein expression was detected in synovial tissue from patients with RA (n = 6) and patients with OA (n = 6) by immunohistochemistry and immunofluorescence. Serum and synovial fluid S100A11 levels were measured by ELISA in patients with RA (n = 40) and patients with OA (n = 34). Disease activity scores in 28 joints based on C-reactive protein (DAS28-CRP) were used to assess disease activity. Cytokine content in peripheral blood mononuclear cells (PBMCs), synovial fibroblasts (SFs) and synovial fluid was analysed by ELISA, western blotting or cytometric bead array. Results S100A11 expression was significantly up-regulated in the synovial lining and sublining layers (p < 0.01) and vessels (p < 0.05) of patients with RA compared to patients with OA, and was associated with fibroblasts and T cells. S100A11 was significantly increased in synovial fluid (p < 0.0001) but not in serum (p = 0.158) from patients with RA compared to patients with OA when adjusted for age and sex. Synovial fluid S100A11 correlated with DAS28 (r = 0.350, p = 0.027), serum CRP (r = 0.463, p = 0.003), synovial fluid leukocyte count (r = 0.677, p < 0.001), anti-cyclic citrullinated peptide antibodies (anti-CCP) (r = 0.424, p = 0.006) and IL-6 (r = 0.578, p = 0.002) and IL-8 (r = 0.740, p < 0.001) in synovial fluid from patients with RA. PBMCs and SFs isolated from patients with RA synthesized and spontaneously secreted higher levels of S100A11 in comparison with PBMCs and SFs from patients with OA (p = 0.011 and 0.03, respectively). S100A11 stimulated the production of the pro-inflammatory cytokine IL-6 by PBMCs (p < 0.05) and SFs (p < 0.01). Conclusions Our data provide the first evidence of S100A11 up-regulation and its association with inflammation and disease activity in patients with RA. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1288-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucie Andrés Cerezo
- Institute of Rheumatology, Na Slupi 4, 12850, Prague, Czech Republic. .,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Barbora Šumová
- Institute of Rheumatology, Na Slupi 4, 12850, Prague, Czech Republic.,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Klára Prajzlerová
- Institute of Rheumatology, Na Slupi 4, 12850, Prague, Czech Republic.,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Veigl
- First Orthopaedic Clinic, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dres Damgaard
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Karel Pavelka
- Institute of Rheumatology, Na Slupi 4, 12850, Prague, Czech Republic.,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiří Vencovský
- Institute of Rheumatology, Na Slupi 4, 12850, Prague, Czech Republic.,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ladislav Šenolt
- Institute of Rheumatology, Na Slupi 4, 12850, Prague, Czech Republic. .,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
18
|
Adamczyk M. Transglutaminase 2 in cartilage homoeostasis: novel links with inflammatory osteoarthritis. Amino Acids 2017; 49:625-633. [PMID: 27510997 PMCID: PMC5332500 DOI: 10.1007/s00726-016-2305-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/28/2016] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is highly expressed during chondrocyte maturation and contributes to the formation of a mineralised scaffold by introducing crosslinks between extracellular matrix (ECM) proteins. In healthy cartilage, TG2 stabilises integrity of ECM and likely influences cartilage stiffness and mechanistic properties. At the same time, the abnormal accumulation of TG2 in the ECM promotes chondrocyte hypertrophy and cartilage calcification, which might be an important aspect of osteoarthritis (OA) initiation. Although excessive joint loading and injuries are one of the main causes leading to OA development, it is now being recognised that the presence of inflammatory mediators accelerates OA progression. Inflammatory signalling is known to stimulate the extracellular TG2 activity in cartilage and promote TG2-catalysed crosslinking of molecules that promote chondrocyte osteoarthritic differentiation. It is, however, unclear whether TG2 activity aims to resolve or aggravate damages within the arthritic joint. Better understanding of the complex signalling pathways linking inflammation with TG2 activities is needed to identify the role of TG2 in OA and to define possible avenues for therapeutic interventions.
Collapse
Affiliation(s)
- M Adamczyk
- Matrix Biology and Tissue Repair Research Unit, Oral and Biomedical Sciences, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Heath Park, Cardiff, CF14 4XY, UK.
- Academic Unit of Bone Biology, Department of Oncology and Metabolism, Mellanby Centre For Bone Research, Medical School, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
19
|
|
20
|
Marino S, Staines KA, Brown G, Howard-Jones RA, Adamczyk M. Models of ex vivo explant cultures: applications in bone research. BONEKEY REPORTS 2016; 5:818. [PMID: 27408711 PMCID: PMC4926536 DOI: 10.1038/bonekey.2016.49] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/04/2016] [Indexed: 01/09/2023]
Abstract
Ex vivo explant culture models are powerful tools in bone research. They allow investigation of bone and cartilage responses to specific stimuli in a controlled manner that closely mimics the in vivo processes. Because of limitations in obtaining healthy human bone samples the explant growth of animal tissue serves as a platform to study the complex physico-chemical properties of the bone. Moreover, these models enable preserving important cell-cell and cell-matrix interactions in order to better understand the behaviour of cells in their natural three-dimensional environment. Thus, the use of bone ex vivo explant cultures can frequently be of more physiological relevance than the use of two-dimensional primary cells grown in vitro. Here, we describe isolation and ex vivo growth of different animal bone explant models including metatarsals, femoral heads, calvaria, mandibular slices and trabecular cores. We also describe how these explants are utilised to study bone development, cartilage and bone metabolism, cancer-induced bone diseases, stem cell-driven bone repair and mechanoadaptation. These techniques can be directly used to understand mechanisms linked with bone physiology or bone-associated diseases.
Collapse
Affiliation(s)
- Silvia Marino
- Academic Unit of Bone Biology, Department of Oncology and Metabolism, Mellanby Centre for Bone Research, Medical School, The University of Sheffield, Sheffield, UK
| | | | - Genevieve Brown
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Rachel Anne Howard-Jones
- Oral and Biomedical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Magdalena Adamczyk
- Academic Unit of Bone Biology, Department of Oncology and Metabolism, Mellanby Centre for Bone Research, Medical School, The University of Sheffield, Sheffield, UK
- Oral and Biomedical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
21
|
Saho S, Satoh H, Kondo E, Inoue Y, Yamauchi A, Murata H, Kinoshita R, Yamamoto KI, Futami J, Putranto EW, Ruma IMW, Sumardika IW, Youyi C, Suzawa K, Yamamoto H, Soh J, Tomida S, Sakaguchi Y, Saito K, Iioka H, Huh NH, Toyooka S, Sakaguchi M. Active Secretion of Dimerized S100A11 Induced by the Peroxisome in Mesothelioma Cells. CANCER MICROENVIRONMENT 2016; 9:93-105. [PMID: 27334300 DOI: 10.1007/s12307-016-0185-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022]
Abstract
S100A11, a small Ca2+ binding protein, acts extracellularly as a mediator of cancer progression. That raises the question of how a protein that lacks the classical secretory signal is able to be secreted outside cells without being damaged. Some insights into this question have been obtained, and there has been accumulating evidence indicating a pivotal role of a non-classical vesicle-mediated pathway using lysosomes or peroxisomes for the protein secretion. To obtain a more precise insight into the secretory mechanism of S100A11, we first screened representative cancer cells exhibiting significantly active secretion of S100A11. From the results of profiling, we turned our attention to aggressive cancer mesothelioma cells. In mesothelioma cells, we found that abundant dimeric S100A11 was produced selectively in the peroxisome after transportation of monomeric S100A11 through an interaction with PEX14, a peroxisome membrane protein, resulting in peroxisomal secretion of dimerized S100A11. In an extracellular environment in vitro, dimerized S100A11 promoted mesothelial cell invasion indirectly with the help of fibroblast cells. Overall, the results indicate that the peroxisome functions as an essential vesicle for the production of dimerized S100A11 and the subsequent secretion of the protein from mesothelioma cells and that peroxisome-mediated secretion of dimerized S100A11 might play a critical role in mesothelioma progression in a tumor microenvironment.
Collapse
Affiliation(s)
- Satomi Saho
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Hiroki Satoh
- Department of Thoracic, Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, 757, Ichiban-cho, Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan
| | - Yusuke Inoue
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki-shi, Okayama, 701-0192, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Junichiro Futami
- Department of Medical and Bioengineering Science, Okayama University Graduate School of Natural Science and Technology, 3-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Endy Widya Putranto
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
- Faculty of Medicine, Gajah Mada University, Yogyakarta, 55281, Indonesia
| | - I Made Winarsa Ruma
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
- Faculty of Medicine, Udayana University, Denpasar, 80232, Bali, Indonesia
| | - I Wayan Sumardika
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
- Faculty of Medicine, Udayana University, Denpasar, 80232, Bali, Indonesia
| | - Chen Youyi
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Ken Suzawa
- Department of Thoracic, Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiromasa Yamamoto
- Department of Thoracic, Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Junichi Soh
- Department of Thoracic, Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shuta Tomida
- Department of Biobank, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yoshihiko Sakaguchi
- Department of Microbiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Ken Saito
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, 757, Ichiban-cho, Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan
| | - Hidekazu Iioka
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, 757, Ichiban-cho, Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan
| | - Nam-Ho Huh
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Shinichi Toyooka
- Department of Thoracic, Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
- Department of Clinical Genomic Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
| |
Collapse
|
22
|
Matta C, Zhang X, Liddell S, Smith JR, Mobasheri A. Label-free proteomic analysis of the hydrophobic membrane protein complement in articular chondrocytes: a technique for identification of membrane biomarkers. Biomarkers 2016; 20:572-89. [PMID: 26864288 PMCID: PMC4819840 DOI: 10.3109/1354750x.2015.1130191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CONTEXT There is insufficient knowledge about the chondrocyte membranome and its molecular composition. OBJECTIVE To develop a Triton X-114 based separation technique using nanoLC-MS/MS combined with shotgun proteomics to identify chondrocyte membrane proteins. MATERIALS AND METHODS Articular chondrocytes from equine metacarpophalangeal joints were separated into hydrophobic and hydrophilic fractions; trypsin-digested proteins were analysed by nanoLC-MS/MS. RESULTS A total of 315 proteins were identified. The phase extraction method yielded a high proportion of membrane proteins (56%) including CD276, S100-A6 and three VDAC isoforms. DISCUSSION Defining the chondrocyte membranome is likely to reveal new biomarker targets for conventional and biological drug discovery.
Collapse
Affiliation(s)
- Csaba Matta
- a Department of Veterinary Preclinical Sciences , School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey , Guildford , Surrey , UK .,b Department of Anatomy , Histology and Embryology, Faculty of Medicine, University of Debrecen , Debrecen , Hungary
| | - Xiaofei Zhang
- c Proteomics Laboratory, School of Biosciences, University of Nottingham , Sutton Bonington , UK
| | - Susan Liddell
- c Proteomics Laboratory, School of Biosciences, University of Nottingham , Sutton Bonington , UK
| | | | - Ali Mobasheri
- a Department of Veterinary Preclinical Sciences , School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey , Guildford , Surrey , UK .,e Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen's Medical Centre , Nottingham , UK , and.,f Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Centre (KFMRC), Faculty of Applied Medical Sciences, King AbdulAziz University , Jeddah , Kingdom of Saudi Arabia
| |
Collapse
|
23
|
He Y, Siebuhr AS, Brandt-Hansen NU, Wang J, Su D, Zheng Q, Simonsen O, Petersen KK, Arendt-Nielsen L, Eskehave T, Hoeck HC, Karsdal MA, Bay-Jensen AC. Type X collagen levels are elevated in serum from human osteoarthritis patients and associated with biomarkers of cartilage degradation and inflammation. BMC Musculoskelet Disord 2014; 15:309. [PMID: 25245039 PMCID: PMC4179849 DOI: 10.1186/1471-2474-15-309] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 09/18/2014] [Indexed: 12/14/2022] Open
Abstract
Background Osteoarthritis (OA) is the most common degenerative joint disease, of which the pathogenesis is inadequately understood. Hypertrophy-like changes have been observed as part of the progression of OA. The aim of the study was to develop and characterize a novel biomarker of chondrocytes hypertrophy and investigate how this marker was associated with cartilage degradation and inflammation in patients with various degrees of OA. Methods A competitive ELISA, C-Col10, applying a well-characterized monoclonal antibody was developed as a biomarker of chondrocyte hypertrophy through measurement of type X collagen (ColX). The levels of C-Col10, C2M (matrix metalloproteinase-derived fragments of type II collagen) and hsCRP (high sensitive C-reactive protein) were quantified by ELISAs in serum of 271 OA patients stratified by Kellgren-Lawrence (KL) score 0–4. Associations between serum levels of the three biomarkers (log transformed) were analyzed by Pearson’s correlation and differences in C-Col10 levels between patients with high and low levels of inflammation measured by hsCRP were analyzed by ANOVA. Results We developed a C-Col10 assay measuring the C-terminus of ColX. We found significantly higher levels of ColX in patients with KL score 2 compared to patients with no radiographic evidence of OA (KL0) (p = 0.04). Levels of ColX were significantly elevated in OA patients with above normal hsCRP levels (p < 0.0001), as well as significantly correlated with levels of C2M (r = 0.55, p < 0.0001), which suggested that chondrocyte hypertrophy was associated with inflammation and cartilage degradation. There was no correlation between C2M and hsCRP. Age and BMI adjustment didn’t change the results. Immuno-staining revealed that ColX was predominately located around the hypertrophic chondrocytes and the clustered chondrocytes indicating that C-Col10 measures may be linked to cartilage hypertrophic changes. Conclusions We developed a novel assay, C-Col10, for measurement of chondrocyte hypertrophy and found its levels significantly elevated in OA patients with KL score of 2, and also in OA patients with above normal hsCRP levels. Concentration of C-Col10 strongly correlated with levels of C2M, a marker of cartilage destruction. The data suggest that chondrocyte hypertrophy and subsequent collagen X fragmentation seem to be increased in a subset of patients with inflammatory OA. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-309) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Amin AR, Islam ABMMK. Genomic analysis and differential expression of HMG and S100A family in human arthritis: upregulated expression of chemokines, IL-8 and nitric oxide by HMGB1. DNA Cell Biol 2014; 33:550-65. [PMID: 24905701 DOI: 10.1089/dna.2013.2198] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We applied global gene expression arrays, quantitative real-time PCR, immunostaining, and functional assays to untangle the role of High Mobility Groups proteins (HMGs) in human osteoarthritis (OA)-affected cartilage. Bioinformatics analysis showed increased mRNA expression of Damage-Associated Molecular Patterns (DAMPs): HMGA, HMGB, HMGN, SRY, LEF1, HMGB1, MMPs, and HMG/RAGE-interacting molecules (spondins and S100A4, S100A10, and S100A11) in human OA-affected cartilage as compared with normal cartilage. HMGB2 was down-regulated in human OA-affected cartilage. Immunohistological staining identified HMGB1 in chondrocytes in the superficial cartilage. Cells of the deep cartilage and subchondral bone showed increased expression of HMGB1 in OA-affected cartilage. HMGB1 was expressed in the nucleus, cytosol, and extracellular milieu of chondrocytes in cartilage. Furthermore, HMGB1 was spontaneously released from human OA-affected cartilage in ex vivo conditions. The effects of recombinant HMGB1 was tested on human cartilage and chondrocytes in vitro. HMGB1 stimulated mRNA of 2 NFκB gene enhancers (NFκB1 and NFκB2), 16 CC and CXC chemokines (IL-8, CCL2, CCL20, CCL3, CCL3L1, CCL3L3, CCL4, CCL4L1, CCL4L2, CCL5, CCL8, CXCL1, CXCL10, CXCL2, CXCL3, and CXCL6) by ≥10-fold. Furthermore, HMGB1 and IL-1β and/or tumor necrosis factor α (but not HMGI/Y) also significantly induced inducible nitric oxide synthase, NO, and interleukin (IL)-8 production in human cartilage and chondrocytes. The recombinant HMGB1 utilized in this study shows properties that are similar to disulfide-HMGB1. The differential, stage and/or tissue-specific expression of HMGB1, HMGB2, and S100A in cartilage was associated with regions of pathology and/or cartilage homeostasis in human OA-affected cartilage. Noteworthy similarities in the expression of mouse and human HMGB1 and HMGB2 were conserved in normal and arthritis-affected cartilage. The multifunctional forms of HMGB1 and S100A could perpetuate damage-induced cartilage inflammation in late-stage OA-affected joints similar to sterile inflammation. The paracrine effects of HMGB1 can induce chemokines and NO that are perceived to change cartilage homeostasis in human OA-affected cartilage.
Collapse
Affiliation(s)
- Ashok R Amin
- 1 Department of Bio-Medical Engineering, Virginia Tech and Virginia College of Osteopathic Medicine , RheuMatrix, Inc., Blacksburg, Virginia
| | | |
Collapse
|
25
|
Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GVW, Mehta K. Transglutaminase regulation of cell function. Physiol Rev 2014; 94:383-417. [PMID: 24692352 DOI: 10.1152/physrev.00019.2013] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transglutaminases (TGs) are multifunctional proteins having enzymatic and scaffolding functions that participate in regulation of cell fate in a wide range of cellular systems and are implicated to have roles in development of disease. This review highlights the mechanism of action of these proteins with respect to their structure, impact on cell differentiation and survival, role in cancer development and progression, and function in signal transduction. We also discuss the mechanisms whereby TG level is controlled and how TGs control downstream targets. The studies described herein begin to clarify the physiological roles of TGs in both normal biology and disease states.
Collapse
|
26
|
Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr Rheumatol Rep 2014; 15:375. [PMID: 24072604 DOI: 10.1007/s11926-013-0375-6] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a whole joint disease, in which thinning and disappearance of cartilage is a critical determinant in OA progression. The rupture of cartilage homeostasis whatever its cause (aging, genetic predisposition, trauma or metabolic disorder) induces profound phenotypic modifications of chondrocytes, which then promote the synthesis of a subset of factors that induce cartilage damage and target other joint tissues. Interestingly, among these factors are numerous components of the inflammatory pathways. Chondrocytes produce cytokines, chemokines, alarmins, prostanoids, and adipokines and express numerous cell surface receptors for cytokines and chemokines, as well as Toll-like receptors. These receptors activate intracellular signaling pathways involved in inflammatory and stress responses of chondrocytes in OA joints. This review focuses on mechanisms responsible for the maintenance of cartilage homeostasis and highlights the role of inflammatory processes in OA progression.
Collapse
|
27
|
Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 2013; 25:2185-97. [DOI: 10.1016/j.cellsig.2013.06.013] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/15/2013] [Accepted: 06/25/2013] [Indexed: 01/03/2023]
|
28
|
Abstract
The S100 protein family consists of 24 members functionally distributed into three main subgroups: those that only exert intracellular regulatory effects, those with intracellular and extracellular functions and those which mainly exert extracellular regulatory effects. S100 proteins are only expressed in vertebrates and show cell-specific expression patterns. In some instances, a particular S100 protein can be induced in pathological circumstances in a cell type that does not express it in normal physiological conditions. Within cells, S100 proteins are involved in aspects of regulation of proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation and migration/invasion through interactions with a variety of target proteins including enzymes, cytoskeletal subunits, receptors, transcription factors and nucleic acids. Some S100 proteins are secreted or released and regulate cell functions in an autocrine and paracrine manner via activation of surface receptors (e.g. the receptor for advanced glycation end-products and toll-like receptor 4), G-protein-coupled receptors, scavenger receptors, or heparan sulfate proteoglycans and N-glycans. Extracellular S100A4 and S100B also interact with epidermal growth factor and basic fibroblast growth factor, respectively, thereby enhancing the activity of the corresponding receptors. Thus, extracellular S100 proteins exert regulatory activities on monocytes/macrophages/microglia, neutrophils, lymphocytes, mast cells, articular chondrocytes, endothelial and vascular smooth muscle cells, neurons, astrocytes, Schwann cells, epithelial cells, myoblasts and cardiomyocytes, thereby participating in innate and adaptive immune responses, cell migration and chemotaxis, tissue development and repair, and leukocyte and tumor cell invasion.
Collapse
Affiliation(s)
- R Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
29
|
Purification and characterization of the human cysteine-rich S100A3 protein and its pseudo citrullinated forms expressed in insect cells. Methods Mol Biol 2013; 963:73-86. [PMID: 23296605 DOI: 10.1007/978-1-62703-230-8_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
High quantity and quality of recombinant Ca(2+)-binding proteins are required to study their molecular interactions, self-assembly, posttranslational modifications, and biological activities to elucidate Ca(2+)-dependent cellular signaling pathways. S100A3 is a unique member of the S100 protein family with the highest cysteine content (10%). This protein, derived from human hair follicles and cuticles, is characterized by an N-terminal acetyl group and irreversible posttranslational citrullination by peptidylarginine deiminase causing its homotetramer assembly. Insect cells, capable of introducing eukaryotic N-terminus and disulfide bonds, are an appropriate host in which to express this cysteine-rich protein. Four out of ten cysteines in the recombinant S100A3 form two intramolecular disulfide bridges that modulate its Ca(2+)-affinity. Three free thiol groups located at the C-terminus are predicted to form the high-affinity Zn(2+)-binding site. Citrullination of specific arginine residues in native S100A3 can be mimicked by site-directed mutagenic substitution of Arg/Ala. This chapter details our procedures used for the purification and characterization of the human S100A3 protein and its pseudo citrullinated forms expressed in insect cells.
Collapse
|
30
|
Ashwell MS, Gonda MG, Gray K, Maltecca C, O'Nan AT, Cassady JP, Mente PL. Changes in chondrocyte gene expression following in vitro impaction of porcine articular cartilage in an impact injury model. J Orthop Res 2013; 31:385-91. [PMID: 23027577 PMCID: PMC3553272 DOI: 10.1002/jor.22239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 08/31/2012] [Indexed: 02/04/2023]
Abstract
Our objective was to monitor chondrocyte gene expression at 0, 3, 7, and 14 days following in vitro impaction to the articular surface of porcine patellae. Patellar facets were either axially impacted with a cylindrical impactor (25 mm/s loading rate) to a load level of 2,000 N or not impacted to serve as controls. After being placed in organ culture for 0, 3, 7, or 14 days, total RNA was isolated from full thickness cartilage slices and gene expression measured for 17 genes by quantitative real-time RT-PCR. Targeted genes included those encoding proteins involved with biological stress, inflammation, or anabolism and catabolism of cartilage extracellular matrix. Some gene expression changes were detected on the day of impaction, but most significant changes occurred at 14 days in culture. At 14 days in culture, 10 of the 17 genes were differentially expressed with col1a1 most significantly up-regulated in the impacted samples, suggesting impacted chondrocytes may have reverted to a fibroblast-like phenotype.
Collapse
Affiliation(s)
- Melissa S. Ashwell
- Animal Science Department, North Carolina State University, Raleigh, NC, USA
| | - Michael G. Gonda
- Animal Science Department, North Carolina State University, Raleigh, NC, USA
| | - Kent Gray
- Animal Science Department, North Carolina State University, Raleigh, NC, USA
| | - Christian Maltecca
- Animal Science Department, North Carolina State University, Raleigh, NC, USA
| | - Audrey T. O'Nan
- Animal Science Department, North Carolina State University, Raleigh, NC, USA
| | - Joseph P. Cassady
- Animal Science Department, North Carolina State University, Raleigh, NC, USA
| | - Peter L. Mente
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA and University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
31
|
Velez V F, Romano JA, McKown RL, Green K, Zhang L, Raab RW, Ryan DS, Hutnik CML, Frierson HF, Laurie GW. Tissue transglutaminase is a negative regulator of monomeric lacritin bioactivity. Invest Ophthalmol Vis Sci 2013; 54:2123-32. [PMID: 23425695 DOI: 10.1167/iovs.12-11488] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Molar accounting of bioactive fluids can expose new regulatory mechanisms in the growing proteomic focus on epithelial biology. Essential for the viability of the surface epithelium of the eye and for normal vision is the thin, but protein-rich, tear film in which the small tear glycoprotein lacritin appears to play a prominent prosecretory, cytoprotective, and mitogenic role. Although optimal bioactive levels in cell culture are 1 to 10 nM over a biphasic dose optimum, ELISA suggests a sustained tear lacritin concentration in the midmicromolar range in healthy adults. Here we identify a reconciling mechanism. METHODS Monoclonal anti-lacritin 1F5 antibody was generated, and applied together with a new anti-C-terminal polyclonal antibody to tear and tissue Western blotting. In vitro tissue transglutaminase (Tgm2) cross-linking was monitored and characterized by mass spectrometry. RESULTS Blotting for lacritin in human tears or saliva surprisingly detected immunoreactive material with a higher molecular weight and prominence equal or exceeding the ∼23 to 25 kDa band of monomeric glycosylated lacritin. Exogenous Tgm2 initiated lacritin cross-linking within 1 minute and was complete by 90 minutes-even with as little as 0.1 nM lacritin, and involved the donors lysine 82 and 85 and the acceptor glutamine 106 in the syndecan-1 binding domain. Lacritin spiked into lacritin-depleted tears formed multimers, in keeping with ∼0.6 μM TGM2 in tears. Cross-linking was absent when Tgm2 was inactive, and cross-linked lacritin, unlike recombinant monomer, bound syndecan-1 poorly. CONCLUSIONS Since syndecan-1 binding is necessary for lacritin mitogenic and cytoprotective activities, TGM2 cross-linking negatively regulates lacritin bioactivity.
Collapse
Affiliation(s)
- Francisco Velez V
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908-0732, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Byrne G, Freeley M, Feighery C, Whelan A, Long A. Protein kinase C delta is a substrate of tissue transglutaminase and a novel autoantigen in coeliac disease. Clin Immunol 2013; 147:1-8. [PMID: 23454274 DOI: 10.1016/j.clim.2013.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/13/2012] [Accepted: 01/17/2013] [Indexed: 12/30/2022]
Abstract
Post-translational modification of proteins by deamidation or transamidation by tissue transglutaminase (tTG) has been suggested as a possible mechanism for the development of autoimmunity. Sequence analysis of protein kinase C delta (PKCδ) identified an amino acid motif that suggested the possibility that PKCδ was a glutamine substrate of tTG and MALDI-TOF analysis of synthesised peptides from PKCδ proved that this was the case. Polymerisation experiments using recombinant tTG and biotinylated hexapeptide substrate incorporation assays demonstrated that PKCδ is a substrate for tTG-mediated transamidation. Elevated levels of anti-PKCδ antibodies were detected in sera from patients with coeliac disease (p<0.0001) but not from patients with other autoimmune disorders. These data suggest that a subset of patients with coeliac disease produce autoantibodies against PKCδ and that this response may stem from a tTG-PKCδ substrate interaction.
Collapse
Affiliation(s)
- Greg Byrne
- School of Biological Sciences, Dublin Institute of Technology, Dublin 8, Ireland.
| | - Michael Freeley
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Con Feighery
- Department of Immunology, St. James's Hospital & Trinity College Dublin, Dublin, Ireland
| | - Alex Whelan
- Department of Immunology, St. James's Hospital & Trinity College Dublin, Dublin, Ireland
| | - Aideen Long
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland
| |
Collapse
|
33
|
Schelbergen RFP, Blom AB, van den Bosch MHJ, Slöetjes A, Abdollahi-Roodsaz S, Schreurs BW, Mort JS, Vogl T, Roth J, van den Berg WB, van Lent PLEM. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. ACTA ACUST UNITED AC 2012; 64:1477-87. [PMID: 22127564 DOI: 10.1002/art.33495] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE S100A8 and S100A9 are two Ca(2+) binding proteins classified as damage-associated molecular patterns or alarmins that are found in high amounts in the synovial fluid of osteoarthritis (OA) patients. The purpose of this study was to investigate whether S100A8 and/or S100A9 can interact with chondrocytes from OA patients to increase catabolic mediators. METHODS Using immunohistochemistry, we stained for S100A8 and S100A9 protein, matrix metalloproteinases (MMPs), and a cartilage-breakdown epitope specific for MMPs (VDIPEN) in cartilage from OA donors. Isolated chondrocytes or explants from OA and non-OA donors were stimulated with S100A8 and/or S100A9. Messenger RNA and protein levels of MMPs, cytokines, and cartilage matrix molecules were determined with quantitative reverse transcription-polymerase chain reaction and Luminex techniques, respectively. For receptor blocking studies, specific inhibitors for Toll-like receptor 4 (TLR-4), receptor for advanced glycation end products (RAGE), and carboxylated glycans were used. RESULTS In cartilage from OA patients, the expression of S100A8 and S100A9 protein close to chondrocytes was associated with proteoglycan depletion and expression of MMP-1, MMP-3, and VDIPEN. Stimulation of chondrocytes with S100A8 and S100A9 caused a strong up-regulation of catabolic markers (MMPs 1, 3, 9, and 13, interleukin-6 [IL-6], IL-8, and monocyte chemotactic protein 1) and down-regulation of anabolic markers (aggrecan and type II collagen), thereby favoring cartilage breakdown. Blocking TLR-4, but not carboxylated glycans or RAGE, inhibited the S100 effect. The catabolic S100 effect was significantly more pronounced in chondrocytes from OA patients as compared to those from non-OA patients, possibly due to higher TLR-4 expression. CONCLUSION S100A8 and S100A9 have a catabolic effect on human chondrocytes that is TLR-4 dependent. OA chondrocytes are more sensitive than normal chondrocytes to S100 stimulation.
Collapse
|
34
|
Nakashima M, Sakai T, Hiraiwa H, Hamada T, Omachi T, Ono Y, Inukai N, Ishizuka S, Matsukawa T, Oda T, Takamatsu A, Yamashita S, Ishiguro N. Role of S100A12 in the pathogenesis of osteoarthritis. Biochem Biophys Res Commun 2012; 422:508-14. [PMID: 22609404 DOI: 10.1016/j.bbrc.2012.05.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 01/01/2023]
Abstract
S100A12 is a member of the S100 protein family, which are intracellular calcium-binding proteins. Although there are many reports on the involvement of S100A12 in inflammatory diseases, its presence in osteoarthritic cartilage has not been reported. The purpose of this study was to investigate the expression of S100A12 in human articular cartilage in osteoarthritis (OA) and to evaluate the role of S100A12 in human OA chondrocytes. We analyzed S100A12 expression by immunohistochemical staining of cartilage samples obtained from OA and non-OA patients. In addition, chondrocytes were isolated from knee cartilage of OA patients and treated with recombinant human S100A12. Real-time RT-PCR was performed to analyze mRNA expression. Protein production of matrix metalloproteinase 13 (MMP-13) and vascular endothelial growth factor (VEGF) in the culture medium were measured by ELISA. Immunohistochemical analyses revealed that S100A12 expression was markedly increased in OA cartilages. Protein production and mRNA expression of MMP-13 and VEGF in cultured OA chondrocytes were significantly increased by treatment with exogenous S100A12. These increases in mRNA expression and protein production were suppressed by administration of soluble receptor for advanced glycation end products (RAGE). Both p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) inhibitors also suppressed the increases in mRNA expression and protein production of MMP-13 and VEGF. We demonstrated marked up-regulation of S100A12 expression in human OA cartilages. Exogenous S100A12 increased the production of MMP-13 and VEGF in human OA chondrocytes. Our data indicate the possible involvement of S100A12 in the development of OA by up-regulating MMP-13 and VEGF via p38 MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Motoshige Nakashima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
RAGE signaling mediates post-injury arterial neointima formation by suppression of liver kinase B1 and AMPK activity. Atherosclerosis 2012; 222:417-25. [PMID: 22552116 DOI: 10.1016/j.atherosclerosis.2012.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/21/2012] [Accepted: 04/02/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Intima formation involves smooth muscle cell (SMC) proliferation and migration that ultimately drives arterial stenosis, thrombosis, and ischemia in atherosclerosis, hypertension, and arterial revascularization. Receptor for advanced glycation endproducts (RAGE) is a transmembrane signaling receptor implicated in diabetic renal and vascular complications, and post-injury intima formation, partly via Signal transducer and activator of transcription 3 (STAT3) activation. The metabolic super-regulator Adenosine monophosphate kinase (AMPK) inhibits SMC proliferation and intima formation. AMPK activation is promoted by liver kinase B1 (LKB1), and LKB1 inhibits STAT3 activation. Here, we tested the hypothesis that RAGE promotes arterial intima formation by modulating both LKB1 and AMPK. METHODS AND RESULTS RAGE ligands (the calgranulin S100A11, and glycated albumin) suppressed AMPK activation in conjunction with increased proliferation and migration of cultured SMCs. These effects were inhibited both by RAGE deficiency and by prior AMPK activation. In SMCs, RAGE ligands decreased LKB1 activity. Moreover, knockdown of both LKB1 and AMPK were associated with increased STAT3 phosphorylation levels. In response to murine carotid artery ligation, expression of RAGE and S100A11 increased, whereas AMPK and LKB1 activity decreased in situ. Conversely, LKB1 and AMPK activity increased in situ, and neointima formation was attenuated in Rage(-/-) mice. CONCLUSION The linkage of decreased LKB1 and AMPK activity with increased STAT3 in SMCs mediates the capacity of RAGE ligand-induced signaling to promote neointima formation in response to arterial injury.
Collapse
|
36
|
van der Kraan PM, van den Berg WB. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis Cartilage 2012; 20:223-32. [PMID: 22178514 DOI: 10.1016/j.joca.2011.12.003] [Citation(s) in RCA: 488] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 11/21/2011] [Accepted: 12/04/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To review the literature on the role and regulation of chondrocyte terminal differentiation (hypertrophy-like changes) in osteoarthritis (OA) and to integrate this in a conceptual model of primary OA development. METHODS Papers investigating chondrocyte terminal differentiation in human OA cartilage and experimental models of OA were recapitulated and discussed. Focus has been on the occurrence of hypertrophy-like changes in chondrocytes and the factors described to play a role in regulation of chondrocyte hypertrophy-like changes in OA. RESULTS Chondrocyte hypertrophy-like changes are reported in both human OA and experimental OA models by most investigators. These changes play a crucial part in the OA disease process by protease-mediated cartilage degradation. We propose that altered chondrocyte behavior and concomitant cartilage degradation result in a disease-amplifying loop, leading to a mixture of disease stages and cellular responses within an OA joint. CONCLUSION Chondrocyte hypertrophy-like changes play a role in early and late stage OA. Since not all cells in an OA joint are synchronized, inhibition of hypertrophy-like changes might be a therapeutic target to slow down further OA progression.
Collapse
Affiliation(s)
- P M van der Kraan
- Department of Rheumatology, Radboud University, Medical Centre, Geert Grooteplein 28, 6525 Nijmegen, The Netherlands.
| | | |
Collapse
|
37
|
Putative multifunctional signature of lung metastases in dedifferentiated chondrosarcoma. Sarcoma 2012; 2012:820254. [PMID: 22448124 PMCID: PMC3289931 DOI: 10.1155/2012/820254] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 10/21/2011] [Accepted: 11/03/2011] [Indexed: 12/22/2022] Open
Abstract
Chondrosarcomas are among the most malignant skeletal tumors. Dedifferentiated chondrosarcoma is a highly aggressive subtype of chondrosarcoma, with lung metastases developing within a few months of diagnosis in 90% of patients. In this paper we performed comparative analyses of the transcriptomes of five individual metastatic lung lesions that were surgically resected from a patient with dedifferentiated chondrosarcoma. We document for the first time a high heterogeneity of gene expression profiles among the individual lung metastases. Moreover, we reveal a signature of “multifunctional” genes that are expressed in all metastatic lung lesions. Also, for the first time, we document the occurrence of massive macrophage infiltration in dedifferentiated chondrosarcoma lung metastases.
Collapse
|
38
|
Yammani RR. S100 proteins in cartilage: role in arthritis. Biochim Biophys Acta Mol Basis Dis 2012; 1822:600-6. [PMID: 22266138 DOI: 10.1016/j.bbadis.2012.01.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 12/20/2011] [Accepted: 01/05/2012] [Indexed: 01/15/2023]
Abstract
S100 proteins are low molecular weight calcium binding proteins expressed in vertebrates. The family constitutes 21 known members that are expressed in several tissues and cell types and play a major role in various cellular functions. Uniquely, members of the S100 family have both intracellular and extracellular functions. Several members of the S100 family (S100A1, S100A2, S100A4, S1008, S100A9, S100A11, and S100B) have been identified in human articular cartilage, and their expression is upregulated in diseased tissue. These S100 proteins elicit a catabolic signaling pathway via receptor for advanced glycation end products (RAGE) in cartilage and may promote progression of arthritis. This review summarizes our current understanding of the role of S100 proteins in cartilage biology and in the development of arthritis.
Collapse
Affiliation(s)
- Raghunatha R Yammani
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| |
Collapse
|
39
|
Nurminskaya MV, Belkin AM. Cellular functions of tissue transglutaminase. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:1-97. [PMID: 22364871 PMCID: PMC3746560 DOI: 10.1016/b978-0-12-394305-7.00001-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transglutaminase 2 (TG2 or tissue transglutaminase) is a highly complex multifunctional protein that acts as transglutaminase, GTPase/ATPase, protein disulfide isomerase, and protein kinase. Moreover, TG2 has many well-documented nonenzymatic functions that are based on its noncovalent interactions with multiple cellular proteins. A vast array of biochemical activities of TG2 accounts for its involvement in a variety of cellular processes, including adhesion, migration, growth, survival, apoptosis, differentiation, and extracellular matrix organization. In turn, the impact of TG2 on these processes implicates this protein in various physiological responses and pathological states, contributing to wound healing, inflammation, autoimmunity, neurodegeneration, vascular remodeling, tumor growth and metastasis, and tissue fibrosis. TG2 is ubiquitously expressed and is particularly abundant in endothelial cells, fibroblasts, osteoblasts, monocytes/macrophages, and smooth muscle cells. The protein is localized in multiple cellular compartments, including the nucleus, cytosol, mitochondria, endolysosomes, plasma membrane, and cell surface and extracellular matrix, where Ca(2+), nucleotides, nitric oxide, reactive oxygen species, membrane lipids, and distinct protein-protein interactions in the local microenvironment jointly regulate its activities. In this review, we discuss the complex biochemical activities and molecular interactions of TG2 in the context of diverse subcellular compartments and evaluate its wide ranging and cell type-specific biological functions and their regulation.
Collapse
Affiliation(s)
- Maria V Nurminskaya
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
40
|
Transglutaminase 2 as a biomarker of osteoarthritis: an update. Amino Acids 2011; 44:199-207. [PMID: 22139411 DOI: 10.1007/s00726-011-1181-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/22/2011] [Indexed: 01/05/2023]
Abstract
Osteoarthritis is a progressive joint disease characterized by cartilage degradation and bone remodelling. Under physiologic conditions, articular cartilage displays a stable chondrocyte phenotype, whereas in osteoarthritis a chondrocyte hypertrophy develops near the sites of cartilage surface damage and associates to the pathologic expression of type X collagen. Transglutaminases (TGs) include a family of Ca(2+)-dependent enzymes that catalyze the formation of γ-glutamyl cross-links. Their substrates include a variety of intracellular and extracellular macromolecular components. TGs are ubiquitously and abundantly expressed and implicated in a variety of physiopathological processes. TGs activity is modulated by inflammatory cytokines. TG2 (also known as tissue transglutaminase) mediates the hypertrophic differentiation of joint chondrocytes and interleukin-1-induced calcification. Histomorphometrical and biomolecular investigations document increased TG2 expression in human and experimental osteoarthritis. Consequently, the level of TG2 expression may represent an adjuvant additional marker to monitor tissue remodelling occurring in osteoarthritic joint tissue. Experimental induction of osteoarthritis in TG2 knockout mice is followed from reduced cartilage destruction and increased osteophyte formation compared to wild-type mice, suggesting a different influence on joint bone and cartilage remodelling. The capacity of transamidation by TG2 to regulate activation of latent TGF-β seems to have a potential impact on the regulation of inflammatory response in osteoarthritic tissues. Additional studies are needed to define TG2-regulated pathways that are differently modulated in osteoblasts and chondrocytes during osteoarthritis.
Collapse
|
41
|
Curran CS, Bertics PJ. Human eosinophils express RAGE, produce RAGE ligands, exhibit PKC-delta phosphorylation and enhanced viability in response to the RAGE ligand, S100B. Int Immunol 2011; 23:713-28. [PMID: 22025532 DOI: 10.1093/intimm/dxr083] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study tested the hypothesis that human eosinophils produce ligands for the receptor for advanced glycation end-products (RAGE), express RAGE and exhibit RAGE-mediated responses. In examining our microarray data, we identified the presence of RAGE and RAGE ligand (S100A4, S100A6, S100A8, S100A9, S100A11, S100P, HMGB1) transcripts. Expression of eosinophil RAGE mRNA was also compared with a known positive control and further assessed via bioinformatics and sequence analysis of RAGE cDNA. Positive and negative controls were used to identify RAGE, S100A8 and S100A9 protein in human primary eosinophils. Immunoblot assessment of eosinophils treated with cytokines (IL-5 or granulocyte macrophage colony-stimulating factor) indicated an up-regulation of S100A8 and S100A9 production, whereas co-treatment of eosinophils with a RAGE ligand and cytokines displayed a down-regulation in the levels of RAGE. Analysis of eosinophil-conditioned media revealed that eosinophils are capable of releasing RAGE, S100A8 and S100A9. To test the eosinophil response to RAGE activation, the most well-characterized RAGE ligand, S100B, was examined. Treatment of eosinophils with S100B resulted in RAGE-mediated PKC-delta phosphorylation, a 3-fold dose-dependent increase in cell survival and an increase in the level of cellular RAGE. Combined, these studies reveal eosinophil expression of RAGE, RAGE ligands and RAGE-mediated responses. The expression of eosinophil RAGE, soluble RAGE and RAGE ligands may be pivotal to the functions of eosinophils in various human diseases involving RAGE and S100 ligands.
Collapse
Affiliation(s)
- Colleen S Curran
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
42
|
Gentile V. Physiopathological roles of human transglutaminase 2. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:47-95. [PMID: 22220472 DOI: 10.1002/9781118105771.ch2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Vittorio Gentile
- Department of Biochemistry and Biophysics, Medical School, Second University of Naples, Naples, Italy
| |
Collapse
|
43
|
Kim SY. Transglutaminase 2: a new paradigm for NF-kappaB involvement in disease. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:161-95. [PMID: 22220474 DOI: 10.1002/9781118105771.ch4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Soo-Youl Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Kyonggi-do, Republic of Korea
| |
Collapse
|
44
|
Terkeltaub R, Yang B, Lotz M, Liu-Bryan R. Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to proinflammatory cytokines interleukin-1β and tumor necrosis factor α. ACTA ACUST UNITED AC 2011; 63:1928-37. [PMID: 21400477 DOI: 10.1002/art.30333] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) stimulate chondrocyte matrix catabolic responses, thereby compromising cartilage homeostasis in osteoarthritis (OA). AMP-activated protein kinase (AMPK), which regulates energy homeostasis and cellular metabolism, also exerts antiinflammatory effects in multiple tissues. This study was undertaken to test the hypothesis that AMPK activity limits chondrocyte matrix catabolic responses to IL-1β and TNFα. METHODS Expression of AMPK subunits was examined, and AMPKα activity was ascertained by the phosphorylation status of AMPKα Thr(172) in human knee articular chondrocytes and cartilage by Western blotting and immunohistochemistry, respectively. Procatabolic responses to IL-1β and TNFα, such as release of glycosaminoglycan, nitric oxide, and matrix metalloproteinases 3 and 13 were determined by dimethylmethylene blue assay, Griess reaction, and Western blotting, respectively, in cartilage explants and chondrocytes with and without knockdown of AMPKα by small interfering RNA. RESULTS Normal human knee articular chondrocytes expressed AMPKα1, α2, β1, β2, and γ1 subunits. AMPK activity was constitutively present in normal articular chondrocytes and cartilage, but decreased in OA articular chondrocytes and cartilage and in normal chondrocytes treated with IL-1β and TNFα. Knockdown of AMPKα resulted in enhanced catabolic responses to IL-1β and TNFα in chondrocytes. Moreover, AMPK activators suppressed cartilage/chondrocyte procatabolic responses to IL-1β and TNFα and the capacity of TNFα and CXCL8 (IL-8) to induce type X collagen expression. CONCLUSION Our findings indicate that AMPK activity is reduced in OA cartilage and in chondrocytes following treatment with IL-1β or TNFα. AMPK activators attenuate dephosphorylation of AMPKα and procatabolic responses in chondrocytes induced by these cytokines. These observations suggest that maintenance of AMPK activity supports cartilage homeostasis by protecting cartilage matrix from inflammation-induced degradation.
Collapse
Affiliation(s)
- Robert Terkeltaub
- VA San Diego Medical Center and University of California, San Diego, CA, USA
| | | | | | | |
Collapse
|
45
|
Abstract
The receptor for advanced glycation end products (RAGE), a member of the immunoglobulin super-family transmembrane proteins, has multiple ligands, thus, is implicated in the pathogenesis of various diseases, including diabetic complications, neurodegenerative disorders, and inflammatory responses. Its function in normal physiology is beginning to be defined, and recent studies have pointed to an important role for RAGE and its ligands (e.g., HMGB1 (high mobility group box 1)) in innate immune response. In addition, RAGE and its ligands are also implicated in osteoclast activation and bone remodeling. Understanding how RAGE and its ligands regulate bone remodeling may provide insight into the pathogenesis of diabetes and chronic inflammation associated bone loss. Recent progress relevant to the functions of RAGE and its ligands in bone remodeling is discussed in this review.
Collapse
Affiliation(s)
- Zheng Zhou
- Institute of Molecular Medicine and Genetics and Department of Neurology, Medical College of Georgia, Augusta, GA 30912
| | - Wen-Cheng Xiong
- Institute of Molecular Medicine and Genetics and Department of Neurology, Medical College of Georgia, Augusta, GA 30912
| |
Collapse
|
46
|
Cecil DL, Terkeltaub RA. Arterial calcification is driven by RAGE in Enpp1-/- mice. J Vasc Res 2010; 48:227-35. [PMID: 21099228 PMCID: PMC2997448 DOI: 10.1159/000318805] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 06/14/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND/AIMS Ectopic osteochondral differentiation, driven by ENPP1-catalyzed generation of the chondrogenesis and calcification inhibitor inorganic pyrophosphate (PP(i)), promotes generalized arterial calcification of infancy. The multiligand receptor for advanced glycation end-products (RAGE), which promotes atherosclerosis and diabetic cardiovascular and renal complications, also mediates chondrocyte differentiation in response to RAGE ligand calgranulins such as S100A11. Here, we tested RAGE involvement in ENPP1 deficiency-associated arterial calcification. METHODS Because ectopic artery calcification in Enpp1-/- mice is P(i)-dependent and mediated by PP(i) deficiency, in vitro studies on effects of S100A11 and RAGE on mouse aortic explants were conducted using exogenous P(i), as well as alkaline phosphatase to hydrolyze ambient PP(i). RESULTS S100A11 induced cartilage-specific collagen IX/XI expression and calcification dependent on RAGE in mouse aortic explants that was inhibited by the endogenous RAGE signaling inhibitor soluble RAGE (sRAGE). Enpp1-/- aortic explants demonstrated decreased P(i)-stimulated release of sRAGE, and increased calcification and type IX/XI collagen expression that were suppressed by exogenous sRAGE and by Rage knockout. Last, Rage knockout suppressed spontaneous aortic calcification in situ in Enpp1-/- mice. CONCLUSION Cultured Enpp1-/- aortic explants have decreased P(i)-stimulated release of sRAGE, and RAGE promotes ectopic chondrogenic differentiation and arterial calcification in Enpp1-/- mice.
Collapse
Affiliation(s)
| | - Robert A. Terkeltaub
- Department of Medicine, Rheumatology Section, VA Health Care System/UCSD, San Diego, Calif., USA
| |
Collapse
|
47
|
Sakaguchi M, Huh NH. S100A11, a dual growth regulator of epidermal keratinocytes. Amino Acids 2010; 41:797-807. [PMID: 20872027 DOI: 10.1007/s00726-010-0747-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/06/2010] [Indexed: 12/31/2022]
Abstract
S100A11, a member of the family of S100 proteins, is a dimmer, each monomer of which has two EF-hands. Expression of S100A11 is ubiquitous in various tissues at different levels, with a high expression level in the skin. We have analyzed functions of S100A11 mainly in normal human keratinocytes (NHK) as a model cell system of human epithelial cells. High Ca(2+) and transforming growth factor-β (TGF-β), two representative growth suppressors for NHK, need a common S100A11-mediated pathway in addition to unique pathways (NFAT1-mediated pathway for high Ca(2+) and Smad-mediated pathway for TGF-β) for exhibiting a growth inhibitory effect. S100A11 has another action point for growth suppression in NHK. Annexin A1 (ANXA1) complexed with S100A11 efficiently binds to and inhibits cytosolic phospholipase A2 (cPLA2), the activity of which is needed for the growth of NHK. On exposure of NHK to epidermal growth factor (EGF), ANXA1 is cleaved at 12Trp, and this truncated ANXA1 loses binding capacity to S100A11, resulting in maintenance of an active state of cPLA2. On the other hand, we found that S100A11 is actively secreted by NHK. Extracellular S100A11 acts on NHK to enhance the production of EGF family proteins, resulting in growth stimulation. These findings indicate that S100A11 plays a dual role in growth regulation, being suppressive in cells and being promotive from outside of cells.
Collapse
Affiliation(s)
- Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kita-ku, Okayama, 700-8558, Japan
| | | |
Collapse
|
48
|
Miranda KJ, Loeser RF, Yammani RR. Sumoylation and nuclear translocation of S100A4 regulate IL-1beta-mediated production of matrix metalloproteinase-13. J Biol Chem 2010; 285:31517-24. [PMID: 20685652 DOI: 10.1074/jbc.m110.125898] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S100A4, a member of the S100 family of proteins, plays an important role in matrix remodeling by up-regulating the expression of matrix metalloproteinases (MMPs). We have previously shown that S100A4 is overexpressed in diseased cartilage and that extracellular S100A4 stimulates MMP-13 production, a major type II collagen-degrading enzyme, via activation of receptor for advanced glycation end product signaling. In the present study, using human articular chondrocytes, we show that intracellular S100A4 translocated into the nucleus upon interleukin-1β (IL-1β) stimulation and translocation required post-translational modification of S100A4 by the sumo-1 protein. Two sumoylation sites were identified on the S100A4 molecule, Lys(22) and Lys(96). Mutation of these lysine residues abolished the ability of S100A4 to be sumoylated and to translocate into the nucleus. Blocking of sumoylation and nuclear transport of S100A4 inhibited the IL-1β-induced production of MMP-13. Nuclear S100A4 was bound to the promoter region of MMP-13 in IL-1β-treated cells. Thus, we demonstrate a novel mechanism for sumoylated S100A4 as a regulator of expression of the MMP-13 gene.
Collapse
Affiliation(s)
- Keally J Miranda
- Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
49
|
Liu-Bryan R, Terkeltaub R. Chondrocyte innate immune myeloid differentiation factor 88-dependent signaling drives procatabolic effects of the endogenous Toll-like receptor 2/Toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice. ACTA ACUST UNITED AC 2010; 62:2004-12. [PMID: 20506365 DOI: 10.1002/art.27475] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Toll-like receptor 2 (TLR-2)/TLR-4-mediated innate immunity serves as a frontline antimicrobial host defense, but also modulates tissue remodeling and repair responses to endogenous ligands released during low-grade inflammation. We undertook the present study to assess whether the endogenous TLR-2/TLR-4 ligands low molecular weight hyaluronan (LMW-HA) and high mobility group box chromosomal protein 1 (HMGB-1), which are increased in osteoarthritic (OA) joints, drive procatabolic chondrocyte responses dependent on TLR-2 and TLR-4 signaling through the cytosolic adaptor myeloid differentiation factor 88 (MyD88). METHODS We studied mature femoral head cap cartilage explants and immature primary knee articular chondrocytes from TLR-2/TLR-4-double-knockout, MyD88-knockout, and congenic wild-type mice. Generation of nitric oxide (NO), degradation of hyaluronan, release of HMGB-1, matrix metalloproteinase 3 (MMP-3), and MMP-13, and protein expression of type X collagen were assessed by Griess reaction and Western blotting analyses. Expression of messenger RNA for type II and type X collagen, MMP-13, and RUNX-2 was examined by real-time quantitative reverse transcription-polymerase chain reaction. RESULTS Interleukin-1beta and TLR-2 and TLR-4 ligands induced both HMGB-1 release from chondrocytes and extracellular LMW-HA generation in normal chondrocytes. TLR-2/TLR-4(-/-) and MyD88(-/-) mouse cartilage explants and chondrocytes lost the capacity to mount procatabolic responses to both LMW-HA and HMGB-1, demonstrated by >95% suppression of NO production (P < 0.01), and attenuated induction of MMP-3 and MMP-13. Combined deficiency of TLR-2/TLR-4, or of MyD88 alone, also attenuated release of NO and blunted induction of MMP-3 and MMP-13 release. MyD88 was necessary for HMGB-1 and hyaluronidase 2 (which generates LMW-HA) to induce chondrocyte hypertrophy, which is implicated in OA progression. CONCLUSION MyD88-dependent TLR-2/TLR-4 signaling is essential for procatabolic responses to LMW-HA and HMGB-1, and MyD88 drives chondrocyte hypertrophy. Therefore, LMW-HA and HMGB-1 act as innate immune cytokine-like signals with the potential to modulate chondrocyte differentiation and function in OA progression.
Collapse
Affiliation(s)
- Ru Liu-Bryan
- VA Medical Center, San Diego, California 92161, USA.
| | | |
Collapse
|
50
|
The role of lithium in modulation of brain genes: relevance for aetiology and treatment of bipolar disorder. Biochem Soc Trans 2009; 37:1090-5. [PMID: 19754458 DOI: 10.1042/bst0371090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bipolar disorder is a debilitating disorder of the brain with a lifetime prevalence of 1.0% for bipolar I, 1.1% for bipolar II disorder and 2.4-4.7% for subthreshold bipolar disorder. Medications, including lithium, have demonstrated efficacy in the treatment of bipolar disorder, but their molecular targets and mode of action are largely unknown. A few studies have begun to shed light on potential targets of lithium treatment that may be involved in lithium's therapeutic effect. We have recently conducted a microarray study of rat frontal cortex following chronic treatment (21 days) with lithium. Chronic treatment with lithium led to a significant (at least 1.5-fold) down-regulation of 151 genes and up-regulation of 57 genes. We discuss our results in the context of previous microarray studies involving lithium and gene-association studies to identify key genes associated with chronic lithium treatment. A number of genes associated with bipolar disorder, including Comt (catechol-O-methyltransferase), Vapa (vesicle-associated membrane protein-associated protein A), Dtnb (dystrobrevin beta) and Pkd1 (polycystic kidney disease 1), were significantly altered in our microarray dataset along with genes associated with synaptic transmission, apoptosis and transport among other functions.
Collapse
|