1
|
Burra P, Zanetto A, Schnabl B, Reiberger T, Montano-Loza AJ, Asselta R, Karlsen TH, Tacke F. Hepatic immune regulation and sex disparities. Nat Rev Gastroenterol Hepatol 2024; 21:869-884. [PMID: 39237606 DOI: 10.1038/s41575-024-00974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/07/2024]
Abstract
Chronic liver disease is a major cause of morbidity and mortality worldwide. Epidemiology, clinical phenotype and response to therapies for gastrointestinal and liver diseases are commonly different between women and men due to sex-specific hormonal, genetic and immune-related factors. The hepatic immune system has unique regulatory functions that promote the induction of intrahepatic tolerance, which is key for maintaining liver health and homeostasis. In liver diseases, hepatic immune alterations are increasingly recognized as a main cofactor responsible for the development and progression of chronic liver injury and fibrosis. In this Review, we discuss the basic mechanisms of sex disparity in hepatic immune regulation and how these mechanisms influence and modify the development of autoimmune liver diseases, genetic liver diseases, portal hypertension and inflammation in chronic liver disease. Alterations in gut microbiota and their crosstalk with the hepatic immune system might affect the progression of liver disease in a sex-specific manner, creating potential opportunities for novel diagnostic and therapeutic approaches to be evaluated in clinical trials. Finally, we identify and propose areas for future basic, translational and clinical research that will advance our understanding of sex disparities in hepatic immunity and liver disease.
Collapse
Affiliation(s)
- Patrizia Burra
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy.
| | - Alberto Zanetto
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, Department of Medicine, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Tom Hemming Karlsen
- Department of Transplantation Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
2
|
Tang HW, Voon FL, Sim EUH. Association Between Incense Burning and the Risk of Lung Cancer in Asian Population: Meta-Analysis of Nine Case-Control Studies. Cancer Rep (Hoboken) 2024; 7:e70095. [PMID: 39725665 DOI: 10.1002/cnr2.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/02/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Various studies have explored the potential association between incense burning and the risk of lung cancer. However, the findings from these studies have been inconsistent. OBJECTIVES This study aimed to provide a more comprehensive understanding of the relationship between incense burning and lung cancer risk in the Asian population through a meta-analysis. METHODS This meta-analysis, which includes nine case-control studies conducted in Asia and identified through Google Scholar, PubMed, and ScienceDirect up to January 7, 2024, was performed to evaluate the relevant literature. Using a fixed-effects model, the pooled odds ratio (OR) was calculated to determine the overall association between incense burning and lung cancer. RESULTS The results of the meta-analysis revealed a significant association between incense burning and the development of lung cancer (pooled OR = 1.33, 95% confidence interval [CI]: 1.20-1.48). Furthermore, a subgroup analysis was conducted based on smoking status. It was found that ever-smokers had a significantly higher risk of developing lung cancer when exposed to incense burning (pooled OR = 1.34, 95% CI: 1.09-1.65). Both hospital-based case-control studies (pooled OR = 1.28, 95% CI: 1.10-1.48) and population-based case-control studies (pooled OR = 1.39, 95% CI: 1.21-1.60) yielded significant associations between incense burning and lung cancer. Limitations of this study include the lack of detailed histologic information in most of the selected studies, highlighting the need for future research to include cohort studies that can more accurately assess the association between incense smoke inhalation and specific lung cancer subtypes. CONCLUSION In conclusion, the findings of this meta-analysis, based on nine case-control studies, suggest that the risk of developing lung cancer among Asians may increase with exposure to incense burning.
Collapse
Affiliation(s)
- Hui-Wen Tang
- Faculty of Resource Science and Technology, University Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Fui-Ling Voon
- Faculty of Resource Science and Technology, University Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Edmund Ui-Hang Sim
- Faculty of Resource Science and Technology, University Malaysia Sarawak, Kota Samarahan, Malaysia
| |
Collapse
|
3
|
Allahverdiyeva S, Geyer CE, Veth J, de Vries LM, de Taeye SW, van Gils MJ, den Dunnen J, Chen H. Testosterone and estradiol reduce inflammation of human macrophages induced by anti-SARS-CoV-2 IgG. Eur J Immunol 2024; 54:e2451226. [PMID: 39246165 PMCID: PMC11628899 DOI: 10.1002/eji.202451226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
COVID-19, the disease caused by SARS-CoV-2, particularly causes severe inflammatory disease in elderly, obese, and male patients. Since both aging and obesity are associated with decreased testosterone and estradiol expression, we hypothesized that decreased hormone levels contribute to excessive inflammation in the context of COVID-19. Previously, we and others have shown that hyperinflammation in severe COVID-19 patients is induced by the production of pathogenic anti-spike IgG antibodies that activate alveolar macrophages. Therefore, we developed an in vitro assay in which we stimulated human macrophages with viral stimuli, anti-spike IgG immune complexes, and different sex hormones. Treatment with levels of testosterone reflecting young adults led to a significant reduction in TNF and IFN-γ production by human macrophages. In addition, estradiol significantly attenuated the production of a very broad panel of cytokines, including TNF, IL-1β, IL-6, IL-10, and IFN-γ. Both testosterone and estradiol reduced the expression of Fc gamma receptors IIa and III, the two main receptors responsible for anti-spike IgG-induced inflammation. Combined, these findings indicate that sex hormones reduce the inflammatory response of human alveolar macrophages to specific COVID-19-associated stimuli, thereby providing a potential immunological mechanism for the development of severe COVID-19 in both older male and female patients.
Collapse
Affiliation(s)
- Sona Allahverdiyeva
- Center for Experimental and Molecular MedicineAmsterdam Institute for Infection and ImmunityAmsterdam University Medical CenterAmsterdamthe Netherlands
- Medical Microbiology and Infection PreventionAmsterdam Institute for Infection and ImmunityAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Chiara E. Geyer
- Center for Experimental and Molecular MedicineAmsterdam Institute for Infection and ImmunityAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Jennifer Veth
- Center for Experimental and Molecular MedicineAmsterdam Institute for Infection and ImmunityAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Laura M. de Vries
- Center for Experimental and Molecular MedicineAmsterdam Institute for Infection and ImmunityAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Steven W. de Taeye
- Medical Microbiology and Infection PreventionAmsterdam Institute for Infection and ImmunityAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Marit J. van Gils
- Medical Microbiology and Infection PreventionAmsterdam Institute for Infection and ImmunityAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Jeroen den Dunnen
- Center for Experimental and Molecular MedicineAmsterdam Institute for Infection and ImmunityAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Hung‐Jen Chen
- Center for Experimental and Molecular MedicineAmsterdam Institute for Infection and ImmunityAmsterdam University Medical CenterAmsterdamthe Netherlands
| |
Collapse
|
4
|
Ramirez-Moral I, Schuurman AR, van Linge CCA, Butler JM, Yu X, de Haan K, van Leeuwen S, de Vos AF, de Jong MD, Vieira Braga FA, van der Poll T. Single-cell transcriptomics reveals subset-specific metabolic profiles underpinning the bronchial epithelial response to flagellin. iScience 2024; 27:110662. [PMID: 39252969 PMCID: PMC11381847 DOI: 10.1016/j.isci.2024.110662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/30/2023] [Accepted: 07/31/2024] [Indexed: 09/11/2024] Open
Abstract
Airway epithelial cells represent the first line of defense against respiratory pathogens. Flagellin drives the motility of many mucosal pathogens and has been suggested as an immune enhancing adjunctive therapeutic in infections of the airways. This study leveraged single-cell RNA sequencing to determine cell-specific effects of flagellin in primary human bronchial epithelial cells growing in air-liquid interface. Seven cell clusters were identified, including ciliated cells, ionocytes, and several states of basal and secretory cells, of which only inflammatory basal cells and inflammatory secretory cells demonstrated a proportional increase in response to flagellin. Inflammatory secretory cells showed evidence of metabolic reprogramming toward aerobic glycolysis, while in inflammatory basal cells transcriptome profiles indicated enhanced oxidative phosphorylation. Inhibition of mTOR prevented the shift to glycolysis and reduced inflammatory gene transcription specifically in inflammatory secretory cells. These data demonstrate the functional heterogeneity of the human airway epithelium upon exposure to flagellin.
Collapse
Affiliation(s)
- Ivan Ramirez-Moral
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Alex R Schuurman
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Christine C A van Linge
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Joe M Butler
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Xiao Yu
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Karen de Haan
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Sarah van Leeuwen
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Alex F de Vos
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Menno D de Jong
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Felipe A Vieira Braga
- Laboratory for Experimental Oncology and Radiobiology, Center of Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
5
|
Ak Ç, Sayar Z, Thibault G, Burlingame EA, Kuykendall MJ, Eng J, Chitsazan A, Chin K, Adey AC, Boniface C, Spellman PT, Thomas GV, Kopp RP, Demir E, Chang YH, Stavrinides V, Eksi SE. Multiplex imaging of localized prostate tumors reveals altered spatial organization of AR-positive cells in the microenvironment. iScience 2024; 27:110668. [PMID: 39246442 PMCID: PMC11379676 DOI: 10.1016/j.isci.2024.110668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Mapping the spatial interactions of cancer, immune, and stromal cell states presents novel opportunities for patient stratification and for advancing immunotherapy. While single-cell studies revealed significant molecular heterogeneity in prostate cancer cells, the impact of spatial stromal cell heterogeneity remains poorly understood. Here, we used cyclic immunofluorescent imaging on whole-tissue sections to uncover novel spatial associations between cancer and stromal cells in low- and high-grade prostate tumors and tumor-adjacent normal tissues. Our results provide a spatial map of single cells and recurrent cellular neighborhoods in the prostate tumor microenvironment of treatment-naive patients. We report unique populations of mast cells that show distinct spatial associations with M2 macrophages and regulatory T cells. Our results show disease-specific neighborhoods that are primarily driven by androgen receptor-positive (AR+) stromal cells and identify inflammatory gene networks active in AR+ prostate stroma.
Collapse
Affiliation(s)
- Çiğdem Ak
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Zeynep Sayar
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Guillaume Thibault
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Erik A Burlingame
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - M J Kuykendall
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Jennifer Eng
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Alex Chitsazan
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Koei Chin
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Andrew C Adey
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Christopher Boniface
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Paul T Spellman
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - George V Thomas
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Pathology & Laboratory Medicine, School of Medicine, OHSU, Portland, OR 97239, USA
| | - Ryan P Kopp
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Urology, School of Medicine, Knight Cancer Institute, Portland, OR 97239, USA
| | - Emek Demir
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Division of Oncological Sciences, School of Medicine, OHSU, Portland, OR 97239, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | | | - Sebnem Ece Eksi
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| |
Collapse
|
6
|
Xue JD, Gao J, Tang AF, Feng C. Shaping the immune landscape: Multidimensional environmental stimuli refine macrophage polarization and foster revolutionary approaches in tissue regeneration. Heliyon 2024; 10:e37192. [PMID: 39296009 PMCID: PMC11408064 DOI: 10.1016/j.heliyon.2024.e37192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
In immunology, the role of macrophages extends far beyond their traditional classification as mere phagocytes; they emerge as pivotal architects of the immune response, with their function being significantly influenced by multidimensional environmental stimuli. This review investigates the nuanced mechanisms by which diverse external signals ranging from chemical cues to physical stress orchestrate macrophage polarization, a process that is crucial for the modulation of immune responses. By transitioning between pro-inflammatory (M1) and anti-inflammatory (M2) states, macrophages exhibit remarkable plasticity, enabling them to adapt to and influence their surroundings effectively. The exploration of macrophage polarization provides a compelling narrative on how these cells can be manipulated to foster an immune environment conducive to tissue repair and regeneration. Highlighting cutting-edge research, this review presents innovative strategies that leverage the dynamic interplay between macrophages and their environment, proposing novel therapeutic avenues that harness the potential of macrophages in regenerative medicine. Moreover, this review critically evaluates the current challenges and future prospects of translating macrophage-centered strategies from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Jing-Dong Xue
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jing Gao
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ai-Fang Tang
- Department of Geratology, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Chao Feng
- Department of Reproductive Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| |
Collapse
|
7
|
Liu Y, Ying X, Li Y, Zhu X, Jing W, Wang X, He Z. Age at first sexual intercourse, age at menarche, and age at menopause: a mendelian randomization study on lung cancer risk. Transl Lung Cancer Res 2024; 13:1718-1726. [PMID: 39118897 PMCID: PMC11304150 DOI: 10.21037/tlcr-24-480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Background There is increasing evidence that sex hormones are involved in the development of lung cancer, but the correlation between the reproductive behavior that changes sex hormone levels and lung cancer is not yet clear. Many previous studies have investigated the association between reproductive factors and lung cancer risk, but the results have been inconsistent. Therefore, we conducted a two-sample Mendelian randomization (MR) analysis to explore the potential relationship between age at first sexual intercourse (AFS), age at menarche, and age at menopause, and lung cancer. Methods We performed a MR analysis of the data from the genome-wide association study (GWAS) of European ancestry to evaluate the independent effects of three reproductive behaviors on lung cancer overall (LUCA), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and small cell lung cancer (SCLC). We mainly used the inverse-variance weighting method for the MR analysis. Sensitivity was determined by a MR-pleiotropy residual sum and outlier analysis, a weighted median analysis, a MR-Egger analysis, and a leave-one-out analysis. Results The MR analysis results revealed that older AFS had a causal relationship with LUCA [odds ratio (OR) =0.6283, 95% confidence interval (CI): 0.4959-0.7961, P=0.0001), LUAD (OR =0.7042, 95% CI: 0.4967-0.9984, P=0.049), and LUSC (OR =0.6231, 95% CI: 0.4386-0.8853, P=0.0083). Conclusions Our results revealed a causal relationship between older AFS and a lower risk of lung cancer. Our findings emphasize the importance of providing sex education, as early sexual intercourse may have undesirable effects. In addition, early psychological treatment is also essential.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinxin Ying
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yao Li
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xingyu Zhu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wangwei Jing
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xiaohong Wang
- Zhejiang Provincial Centre for Medical Science, Technology and Education Development, Hangzhou, China
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Kamra K, Zucker IH, Schultz HD, Wang HJ. Chemoreflex sensitization occurs in both male and female rats during recovery from acute lung injury. Front Physiol 2024; 15:1401774. [PMID: 39105084 PMCID: PMC11298475 DOI: 10.3389/fphys.2024.1401774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Sex-specific patterns in respiratory conditions, such as asthma, COPD, cystic fibrosis, obstructive sleep apnea, and idiopathic pulmonary fibrosis, have been previously documented. Animal models of acute lung injury (ALI) have offered insights into sex differences, with male mice exhibiting distinct lung edema and vascular leakage compared to female mice. Our lab has provided evidence that the chemoreflex is sensitized in male rats during the recovery from bleomycin-induced ALI, but whether sex-based chemoreflex changes occur post-ALI is not known. To bridge this gap, the current study employed the bleomycin-induced ALI animal model to investigate sex-based differences in chemoreflex activation during the recovery from ALI. Methods ALI was induced using a single intra-tracheal instillation of bleomycin (bleo, 2.5 mg/Kg) (day 1). Resting respiratory frequency (fR) was measured at 1-2 days pre-bleo, day 7 (D7) post-bleo, and 1 month (1 mth) post-bleo. The chemoreflex responses to hypoxia (10% O2, 0% CO2) and normoxic-hypercapnia (21% O2, 5% CO2) were measured before bleo administration (pre-bleo) and 1 mth post-bleo using whole-body plethysmography. The apnea-hypopnea Index (AHI), post-sigh apneas, and sighs were measured at each time point. Results There were no significant differences in resting fR between male and female rats at the pre-bleo time point or in the increase in resting fR at D7 post-bleo. At 1 mth post-bleo, the resting fR was partially restored in both sexes but the recovery towards normal ranges of resting fR was significantly lower in male rats. The AHI, post-sigh apneas, and sighs were not different between male and female rats pre-bleo and 1 mth post-bleo. However, at D7 post-bleo, the male rats exhibited a higher AHI than female rats. Both male and female rats exhibited a sensitized chemoreflex in response to hypoxia and normoxic-hypercapnia with no significant differences between sexes. Conclusion A sex difference in resting ventilatory parameters occurs post ALI with a prolonged increase in resting fR and larger AHI in male rats. On the other hand, we did not find any sex differences in the chemoreflex sensitization that occurs at 1 mth post-bleo. This work contributes to a better understanding of sex-based variations in lung disorders.
Collapse
Affiliation(s)
- Kajal Kamra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Harold D. Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Han-Jun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
9
|
Martin CS, Crastin A, Sagmeister MS, Kalirai MS, Turner JD, MacDonald L, Kurowska-Stolarska M, Scheel-Toellner D, Taylor AE, Gilligan LC, Storbeck K, Price M, Gorvin CM, A F, Mahida R, Clark AR, Jones SW, Raza K, Hewison M, Hardy RS. Inflammation dynamically regulates steroid hormone metabolism and action within macrophages in rheumatoid arthritis. J Autoimmun 2024; 147:103263. [PMID: 38851089 DOI: 10.1016/j.jaut.2024.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
RATIONALE In inflammatory diseases such as rheumatoid arthritis (RA), steroid metabolism is a central component mediating the actions of immuno-modulatory glucocorticoids and sex steroids. However, the regulation and function of cellular steroid metabolism within key leukocyte populations such as macrophages remain poorly defined. In this study, the inflammatory regulation of global steroid metabolism was assessed in RA macrophages. METHODS Bulk RNA-seq data from RA synovial macrophages was used to assess transcripts encoding key enzymes in steroid metabolism and signalling. Changes in metabolism were assessed in synovial fluids, correlated to measures of disease activity and functionally validated in primary macrophage cultures. RESULTS RNA-seq revealed a unique pattern of differentially expressed genes, including changes in genes encoding the enzymes 11β-HSD1, SRD5A1, AKR1C2 and AKR1C3. These correlated with disease activity, favouring increased glucocorticoid and androgen levels. Synovial fluid 11β-HSD1 activity correlated with local inflammatory mediators (TNFα, IL-6, IL-17), whilst 11β-HSD1, SRD5A1 and AKR1C3 activity correlated with systemic measures of disease and patient pain (ESR, DAS28 ESR, global disease activity). Changes in enzyme activity were evident in inflammatory activated macrophages in vitro and revealed a novel androgen activating role for 11β-HSD1. Together, increased glucocorticoids and androgens were able to suppress inflammation in macrophages and fibroblast-like-synoviocytes. CONCLUSIONS This study underscores the significant increase in androgen and glucocorticoid activation within inflammatory polarized macrophages of the synovium, contributing to local suppression of inflammation. The diminished profile of inactive steroid precursors in postmenopausal women may contribute to disturbances in this process, leading to increased disease incidence and severity.
Collapse
Affiliation(s)
- C S Martin
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - A Crastin
- School of Biomedical Sciences. Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - M S Sagmeister
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - M S Kalirai
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - J D Turner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - L MacDonald
- Centre of Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - M Kurowska-Stolarska
- Centre of Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - D Scheel-Toellner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - A E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - L C Gilligan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - K Storbeck
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - M Price
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - C M Gorvin
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Filer A
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - R Mahida
- University of Birmingham, Birmingham, West Midlands Uk
| | - A R Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - S W Jones
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; School of Biomedical Sciences. Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - K Raza
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK; Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - M Hewison
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - R S Hardy
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; School of Biomedical Sciences. Institute of Clinical Sciences, University of Birmingham, Birmingham, UK; MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
10
|
Sharma S, Rousselle D, Parker E, Ekpruke CD, Alford R, Babayev M, Commodore S, Silveyra P. Sensitivity of Mouse Lung Nuclear Receptors to Electronic Cigarette Aerosols and Influence of Sex Differences: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:810. [PMID: 38929056 PMCID: PMC11203813 DOI: 10.3390/ijerph21060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The emerging concern about chemicals in electronic cigarettes, even those without nicotine, demands the development of advanced criteria for their exposure and risk assessment. This study aims to highlight the sensitivity of lung nuclear receptors (NRs) to electronic cigarette e-liquids, independent of nicotine presence, and the influence of the sex variable on these effects. Adult male and female C57BL/6J mice were exposed to electronic cigarettes with 0%, 3%, and 6% nicotine daily (70 mL, 3.3 s, 1 puff per min/30 min) for 14 days, using the inExpose full body chamber (SCIREQ). Following exposure, lung tissues were harvested, and RNA extracted. The expression of 84 NRs was determined using the RT2 profiler mRNA array (Qiagen). Results exhibit a high sensitivity to e-liquid exposure irrespective of the presence of nicotine, with differential expression of NRs, including one (females) and twenty-four (males) in 0% nicotine groups compared to non-exposed control mice. However, nicotine-dependent results were also significant with seven NRs (females), fifty-three NRs (males) in 3% and twenty-three NRs (female) twenty-nine NRs (male) in 6% nicotine groups, compared to 0% nicotine mice. Sex-specific changes were significant, but sex-related differences were not observed. The study provides a strong rationale for further investigation.
Collapse
Affiliation(s)
- Shikha Sharma
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Dustin Rousselle
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Erik Parker
- Biostatistics Consulting Center, Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN 47405, USA;
| | - Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Rachel Alford
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Maksat Babayev
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Sarah Commodore
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Ainslie RJ, Simitsidellis I, Kirkwood PM, Gibson DA. RISING STARS: Androgens and immune cell function. J Endocrinol 2024; 261:e230398. [PMID: 38579776 PMCID: PMC11103679 DOI: 10.1530/joe-23-0398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Androgens can modulate immune cell function and may contribute to differences in the prevalence and severity of common inflammatory conditions. Although most immune cells are androgen targets, our understanding of how changes in androgen bioavailability can affect immune responses is incomplete. Androgens alter immune cell composition, phenotype, and activation by modulating the expression and secretion of inflammatory mediators or by altering the development and maturation of immune cell precursors. Androgens are generally associated with having suppressive effects on the immune system, but their impacts are cell and tissue context-dependent and can be highly nuanced even within immune cell subsets. In response to androgens, innate immune cells such as neutrophils, monocytes, and macrophages increase the production of the anti-inflammatory cytokine IL-10 and decrease nitric oxide production. Androgens promote the differentiation of T cell subsets and reduce the production of inflammatory mediators, such as IFNG, IL-4 and IL-5. Additionally, androgens/androgen receptor can promote the maturation of B cells. Thus, androgens can be considered as immunomodulatory agents, but further work is required to understand the precise molecular pathways that are regulated at the intersection between endocrine and inflammatory signals. This narrative review focusses on summarising our current understanding of how androgens can alter immune cell function and how this might affect inflammatory responses in health and disease.
Collapse
Affiliation(s)
- Rebecca J Ainslie
- Institute for Regeneration and Repair, the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Ioannis Simitsidellis
- Institute for Regeneration and Repair, the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Phoebe M Kirkwood
- Institute for Regeneration and Repair, the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Douglas A Gibson
- Institute for Regeneration and Repair, the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Zhao J, Wang Q, Tan AF, Loh CJL, Toh HC. Sex differences in cancer and immunotherapy outcomes: the role of androgen receptor. Front Immunol 2024; 15:1416941. [PMID: 38863718 PMCID: PMC11165033 DOI: 10.3389/fimmu.2024.1416941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
Across the wide range of clinical conditions, there exists a sex imbalance where biological females are more prone to autoimmune diseases and males to some cancers. These discrepancies are the combinatory consequence of lifestyle and environmental factors such as smoking, alcohol consumption, obesity, and oncogenic viruses, as well as other intrinsic biological traits including sex chromosomes and sex hormones. While the emergence of immuno-oncology (I/O) has revolutionised cancer care, the efficacy across multiple cancers may be limited because of a complex, dynamic interplay between the tumour and its microenvironment (TME). Indeed, sex and gender can also influence the varying effectiveness of I/O. Androgen receptor (AR) plays an important role in tumorigenesis and in shaping the TME. Here, we lay out the epidemiological context of sex disparity in cancer and then review the current literature on how AR signalling contributes to such observation via altered tumour development and immunology. We offer insights into AR-mediated immunosuppressive mechanisms, with the hope of translating preclinical and clinical evidence in gender oncology into improved outcomes in personalised, I/O-based cancer care.
Collapse
Affiliation(s)
- Junzhe Zhao
- Duke-NUS Medical School, Singapore, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Qian Wang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Medical Oncology Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | | | - Celestine Jia Ling Loh
- Duke-NUS Medical School, Singapore, Singapore
- Sengkang General Hospital, Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Hu YM, Zhao F, Graff JN, Chen C, Zhao X, Thomas GV, Wu H, Kardosh A, Mills GB, Alumkal JJ, Moran AE, Xia Z. Androgen receptor activity inversely correlates with immune cell infiltration and immunotherapy response across multiple cancer lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593181. [PMID: 38798471 PMCID: PMC11118439 DOI: 10.1101/2024.05.08.593181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
There is now increasing recognition of the important role of androgen receptor (AR) in modulating immune function. To gain a comprehensive understanding of the effects of AR activity on cancer immunity, we employed a computational approach to profile AR activity in 33 human tumor types using RNA-Seq datasets from The Cancer Genome Atlas. Our pan-cancer analysis revealed that the genes most negatively correlated with AR activity across cancers are involved in active immune system processes. Importantly, we observed a significant negative correlation between AR activity and IFNγ pathway activity at the pan-cancer level. Indeed, using a matched biopsy dataset from subjects with prostate cancer before and after AR-targeted treatment, we verified that inhibiting AR enriches immune cell abundances and is associated with higher IFNγ pathway activity. Furthermore, by analyzing immunotherapy datasets in multiple cancers, our results demonstrate that low AR activity was significantly associated with a favorable response to immunotherapy. Together, our data provide a comprehensive assessment of the relationship between AR signaling and tumor immunity.
Collapse
Affiliation(s)
- Ya-Mei Hu
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Faming Zhao
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Julie N. Graff
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| | - Canping Chen
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Xiyue Zhao
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - George V. Thomas
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Hui Wu
- Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, Oregon Health & Science University, Portland, OR, USA
| | - Adel Kardosh
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Gordon B. Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joshi J. Alumkal
- Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Amy E. Moran
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Zheng Xia
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Center for Biomedical Data Science, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
14
|
Chen X, Hong L, Diao L, Yin T, Liu S. Hyperandrogenic environment regulates the function of ovarian granulosa cells by modulating macrophage polarization in PCOS. Am J Reprod Immunol 2024; 91:e13854. [PMID: 38716832 DOI: 10.1111/aji.13854] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine-metabolic disorder characterized by oligo-anovulation, hyperandrogenism, and polycystic ovaries, with hyperandrogenism being the most prominent feature of PCOS patients. However, whether excessive androgens also exist in the ovarian microenvironment of patients with PCOS, and their modulatory role on ovarian immune homeostasis and ovarian function, is not clear. METHODS Follicular fluid samples from patients participating in their first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment were collected. Androgen concentration of follicular fluid was assayed by chemiluminescence, and the macrophage M1:M2 ratio was detected by flow cytometry. In an in vitro model, we examined the regulatory effects of different concentrations of androgen on macrophage differentiation and glucose metabolism levels using qRT-PCR, Simple Western and multi-factor flow cytometry assay. In a co-culture model, we assessed the effect of a hyperandrogenic environment in the presence or absence of macrophages on the function of granulosa cells using qRT-PCR, Simple Western, EdU assay, cell cycle assay, and multi-factor flow cytometry assay. RESULTS The results showed that a significantly higher androgen level and M1:M2 ratio in the follicular fluid of PCOS patients with hyperandrogenism. The hyperandrogenic environment promoted the expression of pro-inflammatory and glycolysis-related molecules and inhibited the expression of anti-inflammatory and oxidative phosphorylation-related molecules in macrophages. In the presence of macrophages, a hyperandrogenic environment significantly downregulated the function of granulosa cells. CONCLUSION There is a hyperandrogenic microenvironment in the ovary of PCOS patients with hyperandrogenism. Hyperandrogenic microenvironment can promote the activation of ovarian macrophages to M1, which may be associated with the reprogramming of macrophage glucose metabolism. The increased secretion of pro-inflammatory cytokines by macrophages in the hyperandrogenic microenvironment would impair the normal function of granulosa cells and interfere with normal ovarian follicle growth and development.
Collapse
Affiliation(s)
- Xi Chen
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Hong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
| | - Tailang Yin
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, Wuhan, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
| |
Collapse
|
15
|
Fischetti I, Botti L, Sulsenti R, Cancila V, Enriquez C, Ferri R, Bregni M, Crivelli F, Tripodo C, Colombo MP, Jachetti E. Combined therapy targeting AR and EZH2 curbs castration-resistant prostate cancer enhancing anti-tumor T-cell response. Epigenomics 2024; 16:653-670. [PMID: 38530086 PMCID: PMC11160446 DOI: 10.2217/epi-2023-0374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
Aim: Castration-resistant prostate cancer (CRPC) eventually becomes resistant to androgen receptor pathway inhibitors like enzalutamide. Immunotherapy also fails in CRPC. We propose a new approach to simultaneously revert enzalutamide resistance and rewire anti-tumor immunity. Methods: We investigated in vitro and in subcutaneous and spontaneous mouse models the effects of combining enzalutamide and GSK-126, a drug inhibiting the epigenetic modulator EZH2. Results: Enzalutamide and GSK-126 synergized to reduce CRPC growth, also restraining tumor neuroendocrine differentiation. The anti-tumor activity was lost in immunodeficient mice. Indeed, the combination treatment awoke cytotoxic activity and IFN-γ production of tumor-specific CD8+ T lymphocytes. Conclusion: These results promote the combination of enzalutamide and GSK-126 in CRPC, also offering new avenues for immunotherapy in prostate cancer.
Collapse
Affiliation(s)
- Irene Fischetti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Laura Botti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Roberta Sulsenti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Italy
| | - Claudia Enriquez
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Renata Ferri
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | | | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Italy
| | - Mario P. Colombo
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
16
|
van Genderen MNG, Kneppers J, Zaalberg A, Bekers EM, Bergman AM, Zwart W, Eduati F. Agent-based modeling of the prostate tumor microenvironment uncovers spatial tumor growth constraints and immunomodulatory properties. NPJ Syst Biol Appl 2024; 10:20. [PMID: 38383542 PMCID: PMC10881528 DOI: 10.1038/s41540-024-00344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
Inhibiting androgen receptor (AR) signaling through androgen deprivation therapy (ADT) reduces prostate cancer (PCa) growth in virtually all patients, but response may be temporary, in which case resistance develops, ultimately leading to lethal castration-resistant prostate cancer (CRPC). The tumor microenvironment (TME) plays an important role in the development and progression of PCa. In addition to tumor cells, TME-resident macrophages and fibroblasts express AR and are therefore also affected by ADT. However, the interplay of different TME cell types in the development of CRPC remains largely unexplored. To understand the complex stochastic nature of cell-cell interactions, we created a PCa-specific agent-based model (PCABM) based on in vitro cell proliferation data. PCa cells, fibroblasts, "pro-inflammatory" M1-like and "pro-tumor" M2-like polarized macrophages are modeled as agents from a simple set of validated base assumptions. PCABM allows us to simulate the effect of ADT on the interplay between various prostate TME cell types. The resulting in vitro growth patterns mimic human PCa. Our PCABM can effectively model hormonal perturbations by ADT, in which PCABM suggests that CRPC arises in clusters of resistant cells, as is observed in multifocal PCa. In addition, fibroblasts compete for cellular space in the TME while simultaneously creating niches for tumor cells to proliferate in. Finally, PCABM predicts that ADT has immunomodulatory effects on macrophages that may enhance tumor survival. Taken together, these results suggest that AR plays a critical role in the cellular interplay and stochastic interactions in the TME that influence tumor cell behavior and CRPC development.
Collapse
Affiliation(s)
- Maisa N G van Genderen
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jeroen Kneppers
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Anniek Zaalberg
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Elise M Bekers
- Division of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Division of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Wilbert Zwart
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.
| | - Federica Eduati
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.
| |
Collapse
|
17
|
Niu Y, Cao S, Ma X, Xu Z, Wu H. Multiple cytokine analyses identify CSF1 as a robust biomarker for predicting postoperative recurrence in chronic rhinosinusitis with nasal polyps. Int Immunopharmacol 2024; 127:111430. [PMID: 38142640 DOI: 10.1016/j.intimp.2023.111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
OBJECTIVE Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogeneous disease with a high rate of postoperative recurrence. This study aimed to discover potential biomarkers by analyzing multiple cytokine profiles in serum to predict postoperative recurrence in CRSwNP and to explore the underlying mechanisms. METHODS In this prospective study, we enrolled 18 healthy controls (HC) and 60 CRSwNP patients and analyzed the baseline serum cytokine profiles using the Luminex assay. Patients were followed up for more than 2 years and divided into non-recurrence and Recurrence groups. The differentially expressed cytokines were validated in the serum and tissue samples in a validation cohort, and their predictive values for recurrence were evaluated. RESULTS Fifty-four CRSwNP patients completed the follow-up schedule, including 37 patients in the non-Recurrence group and 17 patients in the Recurrence group. Multiple cytokine analyses showed that serum CD40, CD40L, IL-18, IL-8, MCP1, and CSF1 levels were elevated in the CRSwNP group, especially in the Recurrence group, compared to the HC group. Receiver operating characteristic curves (ROC) and Kaplan-Meier survival analysis showed that serum levels of CD40, CD40L, and CSF1 were closely associated with the risk of postoperative recurrence. Further validation results showed that both serum and tissue mRNA levels of CD40, CD40L, and CSF1 were significantly higher in the Recurrence group in comparison with the non-recurrence and HC groups, and tissue CSF1 mRNA expression exhibited a robust value for predicting the CRSwNP recurrence. Immunofluorescence results revealed that CSF1 was enhanced in the recurrent CRSwNP patients, especially in the epithelial cell area, and CSF1 expressions were augmented when patients suffered postoperative recurrence. CONCLUSIONS Circulating cytokine profiles may affect the risk of postoperative recurrence in CRSwNP patients. Our discovery-validation results suggested that CSF1 might serve as a robust biomarker for predicting CRSwNP recurrence.
Collapse
Affiliation(s)
- Yan Niu
- Department of Otolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shouming Cao
- Department of Otolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoyu Ma
- Department of Otolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhaoxiong Xu
- Department of Otolaryngology Head and Neck Surgery, the Second People's Hospital of Xuanwei City, Xuanwei, China
| | - Haiying Wu
- Department of Otolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
18
|
Enright S, Werstuck GH. Investigating the Effects of Sex Hormones on Macrophage Polarization. Int J Mol Sci 2024; 25:951. [PMID: 38256027 PMCID: PMC10816176 DOI: 10.3390/ijms25020951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Sex differences in the development and progression of cardiovascular disease are well established, but the effects of sex hormones on macrophage polarization and pro-atherogenic functions are not well described. We hypothesize that sex hormones directly modulate macrophage polarization, and thereby regulate the progression of atherosclerosis. Bone marrow-derived monocytes from adult male and female C57BL/6 mice were differentiated into macrophages using macrophage colony-stimulating factor (20 ng/mL) and pre-treated with either 17β-estradiol (100 nM), testosterone (100 nM), or a vehicle control for 24 h. Macrophages were polarized into pro- or anti-inflammatory phenotypes and the effects of sex hormone supplementation on the gene expression of macrophage phenotypic markers were assessed using RT-qPCR. Inflammatory markers, including IL-1β, were quantified using an addressable laser bead immunoassay. A transwell migration assay was used to determine changes in macrophage migration. Sex differences were observed in macrophage polarization, inflammatory responses, and migration. Pre-treatment with 17β-estradiol significantly impaired the gene expression of inflammatory markers and the production of IL-1β in inflammatory macrophages. In anti-inflammatory macrophages, 17β-estradiol significantly upregulated the expression of anti-inflammatory markers and enhanced migration. Pre-treatment with testosterone enhanced anti-inflammatory mRNA expression and impaired the production of IL-1β. Our observations suggest a protective role of 17β-estradiol in atherogenesis that may contribute to the sexual dimorphisms in cardiovascular disease observed in human patients.
Collapse
Affiliation(s)
- Sophie Enright
- Thrombosis and Atherosclerosis Research Institute, 237 Barton Street E, Hamilton, ON L8L 2X2, Canada;
| | - Geoff H. Werstuck
- Thrombosis and Atherosclerosis Research Institute, 237 Barton Street E, Hamilton, ON L8L 2X2, Canada;
- Department of Medicine, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
19
|
Zhu L, Li XJ, Gangadaran P, Jing X, Ahn BC. Tumor-associated macrophages as a potential therapeutic target in thyroid cancers. Cancer Immunol Immunother 2023; 72:3895-3917. [PMID: 37796300 PMCID: PMC10992981 DOI: 10.1007/s00262-023-03549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Macrophages are important precursor cell types of the innate immune system and bridge adaptive immune responses through the antigen presentation system. Meanwhile, macrophages constitute substantial portion of the stromal cells in the tumor microenvironment (TME) (referred to as tumor-associated macrophages, or TAMs) and exhibit conflicting roles in the development, invasion, and metastasis of thyroid cancer (TC). Moreover, TAMs play a crucial role to the behavior of TC due to their high degree of infiltration and prognostic relevance. Generally, TAMs can be divided into two subgroups; M1-like TAMs are capable of directly kill tumor cells, and recruiting and activating other immune cells in the early stages of cancer. However, due to changes in the TME, M2-like TAMs gradually increase and promote tumor progression. This review aims to discuss the impact of TAMs on TC, including their role in tumor promotion, gene mutation, and other factors related to the polarization of TAMs. Finally, we will explore the M2-like TAM-centered therapeutic strategies, including chemotherapy, clinical trials, and combinatorial immunotherapy.
Collapse
Affiliation(s)
- Liya Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Xiu Juan Li
- Department of Radiology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shan-Dong Province, People's Republic of China
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Xiuli Jing
- Center for Life Sciences Research, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shan-Dong Province, 271000, People's Republic of China.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
| |
Collapse
|
20
|
Hoffmann JP, Liu JA, Seddu K, Klein SL. Sex hormone signaling and regulation of immune function. Immunity 2023; 56:2472-2491. [PMID: 37967530 DOI: 10.1016/j.immuni.2023.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 11/17/2023]
Abstract
Immune responses to antigens, including innocuous, self, tumor, microbial, and vaccine antigens, differ between males and females. The quest to uncover the mechanisms for biological sex differences in the immune system has intensified, with considerable literature pointing toward sex hormonal influences on immune cell function. Sex steroids, including estrogens, androgens, and progestins, have profound effects on immune function. As such, drastic changes in sex steroid concentrations that occur with aging (e.g., after puberty or during the menopause transition) or pregnancy impact immune responses and the pathogenesis of immune-related diseases. The effect of sex steroids on immunity involves both the concentration of the ligand and the density and distribution of genomic and nongenomic receptors that serve as transcriptional regulators of immune cellular responses to affect autoimmunity, allergy, infectious diseases, cancers, and responses to vaccines. The next frontier will be harnessing these effects of sex steroids to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Joseph P Hoffmann
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jennifer A Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kumba Seddu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Sim J, O'Guin E, Monahan K, Sugimoto C, McLean SA, Albertorio-Sáez L, Zhao Y, Laumet S, Dagenais A, Bernard MP, Folger JK, Robison AJ, Linnstaedt SD, Laumet G. Interleukin-10-producing monocytes contribute to sex differences in pain resolution in mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565129. [PMID: 37961295 PMCID: PMC10635095 DOI: 10.1101/2023.11.03.565129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pain is closely associated with the immune system, which exhibits sexual dimorphism. For these reasons, neuro-immune interactions are suggested to drive sex differences in pain pathophysiology. However, our understanding of peripheral neuro-immune interactions on sex differences in pain resolution remains limited. Here, we have shown, in both a mouse model of inflammatory pain and in humans following traumatic pain, that males had higher levels of interleukin (IL)-10 than females, which were correlated with faster pain resolution. Following injury, we identified monocytes (CD11b+ Ly6C+ Ly6G-F4/80 mid ) as the primary source of IL-10, with IL-10-producing monocytes being more abundant in males than females. In a mouse model, neutralizing IL-10 signaling through antibodies, genetically ablating IL-10R1 in sensory neurons, or depleting monocytes with clodronate all impaired the resolution of pain hypersensitivity in both sexes. Furthermore, manipulating androgen levels in mice reversed the sexual dimorphism of pain resolution and the levels of IL-10-producing monocytes. These results highlight a novel role for androgen-driven peripheral IL-10-producing monocytes in the sexual dimorphism of pain resolution. These findings add to the growing concept that immune cells play a critical role in resolving pain and preventing the transition into chronic pain. Graphical abstract
Collapse
|
22
|
Yang S, Du P, Cui H, Zheng M, He W, Gao X, Hu Z, Jia S, Lu Q, Zhao M. Regulatory factor X1 induces macrophage M1 polarization by promoting DNA demethylation in autoimmune inflammation. JCI Insight 2023; 8:e165546. [PMID: 37733446 PMCID: PMC10619507 DOI: 10.1172/jci.insight.165546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Abnormal macrophage polarization is generally present in autoimmune diseases. Overwhelming M1 macrophage activation promotes the continuous progression of inflammation, which is one of the reasons for the development of autoimmune diseases. However, the underlying mechanism is still unclear. Here we explore the function of Regulatory factor X1 (RFX1) in macrophage polarization by constructing colitis and lupus-like mouse models. Both in vivo and in vitro experiments confirmed that RFX1 can promote M1 and inhibit M2 macrophage polarization. Furthermore, we found that RFX1 promoted DNA demethylation of macrophage polarization-related genes by increasing APOBEC3A/Apobec3 expression. We identified a potential RFX1 inhibitor, adenosine diphosphate (ADP), providing a potential strategy for treating autoimmune diseases.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Pei Du
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Haobo Cui
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Meiling Zheng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Wei He
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaofei Gao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Zhi Hu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Sujie Jia
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| |
Collapse
|
23
|
Lesnak JB, Nakhla DS, Plumb AN, McMillan A, Saha S, Gupta N, Xu Y, Phruttiwanichakun P, Rasmussen L, Meyerholz DK, Salem AK, Sluka KA. Selective androgen receptor modulator microparticle formulation reverses muscle hyperalgesia in a mouse model of widespread muscle pain. Pain 2023; 164:1512-1523. [PMID: 36508167 PMCID: PMC10250561 DOI: 10.1097/j.pain.0000000000002841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
ABSTRACT Chronic pain is a significant health problem associated with disability and reduced quality of life. Current management of chronic pain is inadequate with only modest effects of pharmacological interventions. Thus, there is a need for the generation of analgesics for treating chronic pain. Although preclinical and clinical studies demonstrate the analgesic effects of testosterone, clinical use of testosterone is limited by adverse androgenic effects. Selective androgen receptor modulators (SARMs) activate androgen receptors and overcome treatment limitations by minimizing androgenic side effects. Thus, we tested whether daily soluble SARMs or a SARM-loaded microparticle formulation alleviated muscle hyperalgesia in a mouse-model of widespread pain (male and female C57BL/6J mice). We tested whether the analgesic effects of the SARM-loaded microparticle formulation was mediated through androgen receptors by blocking androgen receptors with flutamide pellets. In vitro and in vivo release kinetics were determined for SARM-loaded microparticles. Safety and toxicity of SARM treatment was determined using serum cardiac and liver toxicity panels, heart histology, and conditioned place preference testing. Subcutaneous daily SARM administration, and 2 injections, 1 week apart, of SARM-loaded microparticles alleviated muscle hyperalgesia in both sexes and was prevented with flutamide treatment. Sustained release of SARM, from the microparticle formulation, was observed both in vitro and in vivo for 4 weeks. Selective androgen receptor modulator treatment produced no cardiac or liver toxicity and did not produce rewarding behaviors. These studies demonstrate that SARM-loaded microparticles, which release drug for a sustained period, alleviate muscle pain, are safe, and may serve as a potential therapeutic for chronic muscle pain.
Collapse
Affiliation(s)
- Joseph B. Lesnak
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa; Iowa City, IA
| | - David S. Nakhla
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Ashley N. Plumb
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa; Iowa City, IA
| | - Alexandra McMillan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Sanjib Saha
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Nikesh Gupta
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Yan Xu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Pornpoj Phruttiwanichakun
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Lynn Rasmussen
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa; Iowa City, IA
| | | | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa; Iowa City, IA
| | - Kathleen A. Sluka
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa; Iowa City, IA
| |
Collapse
|
24
|
Ogawa K, Isaji O. Testosterone upregulates progesterone production in mouse testicular interstitial macrophages, whose niche likely provides properties of progesterone production to tissue-resident macrophages. Reprod Biol 2023; 23:100767. [PMID: 37201477 DOI: 10.1016/j.repbio.2023.100767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
Abstract
The niche of the macrophages (Mø) residence concept is now accepted; Mø colonize tissue/organ-specific microenvironments (niches) that shape Mø to perform tissue/organ-specific functions. Recently, we developed a simple propagation method for tissue-resident Mø by mixed culture with the respective tissue/organ-residing cells acting as the niche and demonstrated that testicular interstitial Mø propagated by mixed culture with testicular interstitial cells showing properties of Leydig cells in culture (we termed them "testicular Mø niche cells") produce progesterone (P4) de novo. Based on previous evidence of testosterone production downregulation in Leydig cells by P4 and androgen receptor expression in testicular Mø, we proposed a local feedback loop of testosterone production between Leydig cells and testicular interstitial Mø. To verify this hypothesis, we further examined P4 de novo production in propagated testicular interstitial Mø treated with testosterone using ELISA and found that exogenous testosterone upregulates P4 production in testicular interstitial Mø. Thus, testosterone production, which is controlled by the local feedback loop, likely becomes more reliable. Moreover, we examined whether tissue-resident Mø other than testicular interstitial Mø can be transformed into P4-producing cells by mixed culture with testicular Mø niche cells: using RT-PCR and ELISA we found that splenic Mø newly acquired P4 production properties by mixed-culturing with testicular Mø niche cells for 7 days. This likely indicates the substantiative in vitro evidence on the niche concept and possibly opens the door to using P4-secreting Mø as a transplantation tool for clinical application due to the migratory property of Mø into inflammatory sites.
Collapse
Affiliation(s)
- Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan.
| | - Outa Isaji
- Laboratory of Veterinary Anatomy, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
25
|
Sciarra F, Campolo F, Franceschini E, Carlomagno F, Venneri M. Gender-Specific Impact of Sex Hormones on the Immune System. Int J Mol Sci 2023; 24:ijms24076302. [PMID: 37047274 PMCID: PMC10094624 DOI: 10.3390/ijms24076302] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Sex hormones are key determinants of gender-related differences and regulate growth and development during puberty. They also exert a broad range modulation of immune cell functions, and a dichotomy exists in the immune response between the sexes. Both clinical and animal models have demonstrated that androgens, estrogens, and progestogens mediate many of the gender-specific differences in immune responses, from the susceptibility to infectious diseases to the prevalence of autoimmune disorders. Androgens and progestogens mainly promote immunosuppressive or immunomodulatory effects, whereas estrogens enhance humoral immunity both in men and in women. This study summarizes the available evidence regarding the physiological effects of sex hormones on human immune cell function and the underlying biological mechanisms, focusing on gender differences triggered by different amounts of androgens between males and females.
Collapse
|
26
|
Vo T, Saini Y. Case report: Mafb promoter activity may define the alveolar macrophage dichotomy. Front Immunol 2022; 13:1050494. [PMID: 36578483 PMCID: PMC9791191 DOI: 10.3389/fimmu.2022.1050494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Cre-LoxP system has been widely used to induce recombination of floxed genes of interest. Currently available macrophage promoter-specific Cre recombinase mice strains have various limitations that warrants the testing of additional Cre strains. V-maf musculoaponeurotic fibrosarcoma oncogene family, protein b -Cre (Mafb-Cre) mice label macrophages in most organs such as spleen, small intestine, lung, bone marrow, and peritoneal cavity. However, whether Mafb-Cre recombinase targets the gene recombination in alveolar macrophage remains untested. Here, we utilized MafbCre/WTR26mTmG/WT strain that expresses mTOM protein in all the cells of mouse body except for those that express Mafb-Cre-regulated mEGFP. We performed fluorescent microscopy and flow cytometry to analyze mTOM and mEGFP expression in alveolar macrophages from MafbCre/WTR26mTmG/WT mice. Our analyses revealed that the Mafb-Cre is active in only ~40% of the alveolar macrophages in an age-independent manner. While Mafb- (mTOM+/mEGFP-) and Mafb+ (mEGFP+) alveolar macrophages exhibit comparable expression of CD11b and CD11c surface markers, the surface expression of MHCII is elevated in the Mafb+ (mEGFP+) macrophages. The bone marrow-derived macrophages from MafbCre/WTR26mTmG/WT mice are highly amenable to Cre-LoxP recombination in vitro. The bone marrow depletion and reconstitution experiment revealed that ~98% of alveolar macrophages from MafbCre/WTR26mTmG/WT → WT chimera are amenable to the Mafb-Cre-mediated recombination. Finally, the Th2 stimulation and ozone exposure to the MafbCre/WTR26mTmG/WT mice promote the Mafb-Cre-mediated recombination in alveolar macrophages. In conclusion, while the Mafb-/Mafb+ dichotomy thwarts the use of Mafb-Cre for the induction of floxed alleles in the entire alveolar macrophage population, this strain provides a unique tool to induce gene deletion in alveolar macrophages that encounter Th2 microenvironment in the lung airspaces.
Collapse
|
27
|
Micera A, Di Zazzo A, De Piano M, Sharma S, Mori T, De Gregorio C, Coassin M, Fernandes M. Tissue remodeling in adult vernal keratoconjunctivitis. Exp Eye Res 2022; 225:109301. [PMID: 36336099 DOI: 10.1016/j.exer.2022.109301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Our aim is to describe local tissue remodeling in a cohort of adult VKC patients. Male patients diagnosed with active VKC were enrolled in an open pilot study into two groups according disease onset: childhood classic VKC and adult VKC. Visual acuity and ocular surface clinical examination focusing on chronic inflammatory sequelae and impression cytology were performed in all enrolled subjects. Conjunctival imprints were processed for molecular, biochemical and immunofluorescent analysis for tissue remodeling (TGFβ1,2,3 and αSMA) and epigenetic (DNMT3a, Keap1; Nrf2) markers as well as androgen receptors were investigated and compared between groups. Clinical assessment showed increased conjunctival scarring in adult VKC compared to classic VKC. Immunoreactivity for αSMA and expression of TGFβ were higher in adult VKC group. Significantly higher levels of TGFβ3 (3.44 ± 1.66; p < 0.05) were detected in adult VKC compared to childhood VKC, associated with an increasing trend of TGFβ1 (1.58 ± 0.25) and TGFβ2 (1.65 ± 0.20) isoforms levels. Molecular analysis showed a relative increase in tissue remodeling/fibrogenic transcripts (TGFβ isoforms and αSMA) associated to a significant increase of selective epigenetic targets (DNMT3, Nrf2 and keap1) in adult VKC phenotype. Increased local conjunctival androgen receptors was detected in patients with adult variants compared to classic childhood VKC and healthy subjects. Finally, a direct correlation between TGFβ and androgen receptor expression was also detected. A pro-fibrotic clinical and biomolecular trait was unveiled in adult variant of VKC, which causes ocular surface disease and visual impairment.
Collapse
Affiliation(s)
- Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS - Fondazione Bietti, Rome, Italy
| | - Antonio Di Zazzo
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Maria De Piano
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS - Fondazione Bietti, Rome, Italy
| | - Savitri Sharma
- Jhaveri Microbiology Centre, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India
| | - Tommaso Mori
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Chiara De Gregorio
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Marco Coassin
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Merle Fernandes
- Cornea and Anterior Segment Services, LV Prasad Eye Institute, GMR Varalakshmi Campus, Visakhapatnam, India.
| |
Collapse
|
28
|
Wesołowska A. Sex—the most underappreciated variable in research: insights from helminth-infected hosts. Vet Res 2022; 53:94. [PMID: 36397174 PMCID: PMC9672581 DOI: 10.1186/s13567-022-01103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
The sex of a host affects the intensity, prevalence, and severity of helminth infection. In many cases, one sex has been found to be more susceptible than the other, with the prevalence and intensity of helminth infections being generally higher among male than female hosts; however, many exceptions exist. This observed sex bias in parasitism results primarily from ecological, behavioural, and physiological differences between males and females. Complex interactions between these influences modulate the risk of infection. Indeed, an interplay among sex hormones, sex chromosomes, the microbiome and the immune system significantly contributes to the generation of sex bias among helminth-infected hosts. However, sex hormones not only can modulate the course of infection but also can be exploited by the parasites, and helminths appear to have developed molecules and pathways for this purpose. Furthermore, host sex may influence the efficacy of anti-helminth vaccines; however, although little data exist regarding this sex-dependent efficacy, host sex is known to influence the response to vaccines. Despite its importance, host sex is frequently overlooked in parasitological studies. This review focuses on the key contributors to sex bias in the case of helminth infection. The precise nature of the mechanisms/factors determining these sex-specific differences generally remains largely unknown, and this represents an obstacle in the development of control methods. There is an urgent need to identify any protective elements that could be targeted in future therapies to provide optimal disease management with regard to host sex. Hence, more research is needed into the impact of host sex on immunity and protection.
Collapse
|
29
|
Zhao AN, Yang Z, Wang DD, Shi B, Zhang H, Bai Y, Yan BW, Zhang Y, Wen JK, Wang XL, Qu CB. Disturbing NLRP3 acetylation and inflammasome assembly inhibits androgen receptor-promoted inflammatory responses and prostate cancer progression. FASEB J 2022; 36:e22602. [PMID: 36250925 DOI: 10.1096/fj.202200673rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Chronic inflammation is one of the definite factors leading to the occurrence and development of tumors, including prostate cancer (PCa). The androgen receptor (AR) pathway is essential for PCa tumorigenesis and inflammatory response. However, little is known about the AR-regulated NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome pathway in human PCa. In this study, we explored the expression of inflammatory cytokine and AR in high-grade PCa and observed that NLRP3 inflammasome-associated genes were upregulated in high-grade PCa compared with that in low-grade PCa and benign prostatic hyperplasia and were associated with AR expression. In addition, we identified circAR-3-a circRNA derived from the AR gene-which is involved in the AR-regulated inflammatory response and cell proliferation by activating the NLRP3 inflammatory pathway. While circAR-3 overexpression promoted cell proliferation and the inflammatory response, its depletion induced opposite effects. Mechanistically, we noted that circAR-3 mediated the acetylation modification of NLRP3 by KAT2B and then promoted NLRP3 inflammasome complex subcellular distribution and assembly. Disturbing NLRP3 acetylation or blocking inflammasome assembly with an inhibitor suppressed the progression of PCa xenograft tumors. Our findings provide the first evidence that targeting NLRP3 acetylation or inflammasome assembly may be effective in inhibiting PCa progression.
Collapse
Affiliation(s)
- An-Ning Zhao
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan-Dan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bei Shi
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Bai
- Department of Biochemistry and Molecular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, China
| | - Bo-Wen Yan
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Zhang
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Lu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chang-Bao Qu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
30
|
Firdaus F, Kuchakulla M, Qureshi R, Dulce RA, Soni Y, Van Booven DJ, Shah K, Masterson T, Rosete OJ, Punnen S, Hare JM, Ramasamy R, Arora H. S-nitrosylation of CSF1 receptor increases the efficacy of CSF1R blockage against prostate cancer. Cell Death Dis 2022; 13:859. [PMID: 36209194 PMCID: PMC9547886 DOI: 10.1038/s41419-022-05289-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
Abstract
Sustained oxidative stress in castration-resistant prostate cancer (CRPC) cells potentiates the overall tumor microenvironment (TME). Targeting the TME using colony-stimulating factor 1 receptor (CSF1R) inhibition is a promising therapy for CRPC. However, the therapeutic response to sustained CSF1R inhibition (CSF1Ri) is limited as a monotherapy. We hypothesized that one of the underlying causes for the reduced efficacy of CSF1Ri and increased oxidation in CRPC is the upregulation and uncoupling of endothelial nitric oxide synthase (NOS3). Here we show that in high-grade PCa human specimens, NOS3 abundance positively correlates with CSF1-CSF1R signaling and remains uncoupled. The uncoupling diminishes NOS3 generation of sufficient nitric oxide (NO) required for S-nitrosylation of CSF1R at specific cysteine sites (Cys 224, Cys 278, and Cys 830). Exogenous S-nitrosothiol administration (with S-nitrosoglutathione (GSNO)) induces S-nitrosylation of CSF1R and rescues the excess oxidation in tumor regions, in turn suppressing the tumor-promoting cytokines which are ineffectively suppressed by CSF1R blockade. Together these results suggest that NO administration could act as an effective combinatorial partner with CSF1R blockade against CRPC. In this context, we further show that exogenous NO treatment with GSNOR successfully augments the anti-tumor ability of CSF1Ri to effectively reduce the overall tumor burden, decreases the intratumoral percentage of anti-inflammatory macrophages, myeloid-derived progenitor cells and increases the percentage of pro-inflammatory macrophages, cytotoxic T lymphocytes, and effector T cells, respectively. Together, these findings support the concept that the NO-CSF1Ri combination has the potential to act as a therapeutic agent that restores control over TME, which in turn could improve the outcomes of PCa patients.
Collapse
Affiliation(s)
- Fakiha Firdaus
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Manish Kuchakulla
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rehana Qureshi
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Raul Ariel Dulce
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yash Soni
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Derek J Van Booven
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Khushi Shah
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Thomas Masterson
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Omar Joel Rosete
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sanoj Punnen
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Joshua M Hare
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Himanshu Arora
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA.
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA.
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
31
|
Lesnak JB, Fahrion A, Helton A, Rasmussen L, Andrew M, Cunard S, Huey M, Kreber A, Landon J, Siwiec T, Todd K, Frey-Law LA, Sluka KA. Resistance training protects against muscle pain through activation of androgen receptors in male and female mice. Pain 2022; 163:1879-1891. [PMID: 35353765 PMCID: PMC9481652 DOI: 10.1097/j.pain.0000000000002638] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/10/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Resistance training-based exercise is commonly prescribed in the clinic for the treatment of chronic pain. Mechanisms of aerobic exercise for analgesia are frequently studied, while little is known regarding resistance training mechanisms. We developed a resistance training model in mice and hypothesized resistance training would protect against development of muscle pain, mediated through the activation of androgen receptors. Activity-induced muscle hyperalgesia was produced by 2 injections of pH 5.0 stimuli with fatiguing muscle contractions. Resistance training was performed by having mice climb a ladder with attached weights, 3 times per week. Resistance training acutely increased blood lactate and prolonged training increased strength measured via forepaw grip strength and 1 repetition maximum, validating the exercise program as a resistance training model. Eight weeks of resistance training prior to induction of the pain model blocked the development of muscle hyperalgesia in both sexes. Resistance training initiated after induction of the pain model reversed muscle hyperalgesia in male mice only. A single resistance training bout acutely increased testosterone in male but not female mice. Administration of the androgen receptor antagonist flutamide (200 mg pellets) throughout the 8-week training program blocked the exercise-induced protection against muscle pain in both sexes. However, single administration of flutamide (1, 3, 10 mg/kg) in resistance-trained animals had no effect on existing exercise-induced protection against muscle pain. Therefore, resistance training acutely increases lactate and testosterone and strength overtime. Eight weeks of resistance training prevents the development of hyperalgesia through the activation of androgen receptors in an animal model of muscle pain.
Collapse
Affiliation(s)
- Joseph B. Lesnak
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Alexis Fahrion
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Amber Helton
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Lynn Rasmussen
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Megan Andrew
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Stefanie Cunard
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Michaela Huey
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Austin Kreber
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Joseph Landon
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Travis Siwiec
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Kenan Todd
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Laura A. Frey-Law
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| | - Kathleen A. Sluka
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA
| |
Collapse
|
32
|
Chung EJ, Kwon S, Shankavaram U, White AO, Das S, Citrin DE. Natural variation in macrophage polarization and function impact pneumocyte senescence and susceptibility to fibrosis. Aging (Albany NY) 2022; 14:7692-7717. [PMID: 36173617 PMCID: PMC9596223 DOI: 10.18632/aging.204309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
Radiation-induced pulmonary fibrosis (RIPF), a late adverse event of radiation therapy, is characterized by infiltration of inflammatory cells, progressive loss of alveolar structure, secondary to the loss of pneumocytes and accumulation of collagenous extracellular matrix, and senescence of alveolar stem cells. Differential susceptibility to lung injury from radiation and other toxic insults across mouse strains is well described but poorly understood. The accumulation of alternatively activated macrophages (M2) has previously been implicated in the progression of lung fibrosis. Using fibrosis prone strain (C57L), a fibrosis-resistant strain (C3H/HeN), and a strain with intermediate susceptibility (C57BL6/J), we demonstrate that the accumulation of M2 macrophages correlates with the manifestation of fibrosis. A comparison of primary macrophages derived from each strain identified phenotypic and functional differences, including differential expression of NADPH Oxidase 2 and production of superoxide in response to M2 polarization and activation. Further, the sensitivity of primary AECII to senescence after coculture with M2 macrophages was strain dependent and correlated to observations of sensitivity to fibrosis and senescence in vivo. Taken together, these data support that the relative susceptibility of different strains to RIPF is closely related to distinct senescence responses induced through pulmonary M2 macrophages after thoracic irradiation.
Collapse
Affiliation(s)
- Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seokjoo Kwon
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ayla O White
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shaoli Das
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Ejima A, Abe S, Shimba A, Sato S, Uehata T, Tani-ichi S, Munakata S, Cui G, Takeuchi O, Hirai T, Kato S, Ikuta K. Androgens Alleviate Allergic Airway Inflammation by Suppressing Cytokine Production in Th2 Cells. THE JOURNAL OF IMMUNOLOGY 2022; 209:1083-1094. [DOI: 10.4049/jimmunol.2200294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/12/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Asthma is more common in females than males after adolescence. However, the mechanism of the sex bias in the prevalence of asthma remains unknown. To test whether sex steroid hormones have some roles in T cells during development of asthma, we analyzed airway inflammation in T cell–specific androgen receptor (AR)– and estrogen receptor (ER)–deficient mice. T cell–specific AR-deficient male mice developed severer house dust mite–induced allergic airway inflammation than did control male mice, whereas T cell–specific ERα- and ERβ-deficient female mice exhibited a similar degree of inflammation as for control female mice. Furthermore, administration of dihydrotestosterone reduced cytokine production of Th2 cells from control, but not AR-deficient, naive T cells. Transfer of OT-II transgenic AR-deficient Th2 cells into wild-type mice induced severer allergic airway inflammation by OVA than transfer of control Th2 cells. Gene expression profiling suggested that the expression of genes related with cell cycle and Th2 differentiation was elevated in AR-deficient Th2 cells, whereas expression of dual specificity phosphatase (DUSP)-2, a negative regulator of p38, was downregulated. In addition, a chromatin immunoprecipitation assay suggested that AR bound to an AR motif in the 5′ untranslated region of the Dusp2 gene in Th2 cells. Furthermore, the Dusp2 promoter with a wild-type AR motif, but not a mutated motif, was transactivated by dihydrotestosterone in a reporter assay. Finally, forced expression of DUSP-2 by retrovirus vector reduced IL-4 expression in Th2 cells. Thus, these results suggest that androgen signaling suppresses cytokine production of Th2 cells by inducing DUSP-2, explaining, in part, the sex bias of asthma after adolescence.
Collapse
Affiliation(s)
- Aki Ejima
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- †Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiro Shimba
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- ‡Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Sato
- §Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Uehata
- ¶Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shizue Tani-ichi
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- ‡Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoru Munakata
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- †Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Guangwei Cui
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- ¶Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- §Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeaki Kato
- ‖Graduate School of Life Science and Engineering, Iryo Sosei University, Iwaki, Japan
- #Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Japan; and
- **School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Koichi Ikuta
- *Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
34
|
The Roles of Tumor-Associated Macrophages in Prostate Cancer. JOURNAL OF ONCOLOGY 2022; 2022:8580043. [PMID: 36117852 PMCID: PMC9473905 DOI: 10.1155/2022/8580043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
The morbidity of prostate cancer (PCa) is rising year by year, and it has become the primary cause of tumor-related mortality in males. It is widely accepted that macrophages account for 50% of the tumor mass in solid tumors and have emerged as a crucial participator in multiple stages of PCa, with the huge potential for further treatment. Oftentimes, tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) behave like M2-like phenotypes that modulate malignant hallmarks of tumor lesions, ranging from tumorigenesis to metastasis. Several clinical studies indicated that mean TAM density was higher in human PCa cores versus benign prostatic hyperplasia (BPH), and increased biopsy TAM density potentially predicts worse clinicopathological characteristics as well. Therefore, TAM represents a promising target for therapeutic intervention either alone or in combination with other strategies to halt the “vicious cycle,” thus improving oncological outcomes. Herein, we mainly focus on the fundamental aspects of TAMs in prostate adenocarcinoma, while reviewing the mechanisms responsible for macrophage recruitment and polarization, which has clinical translational implications for the exploitation of potentially effective therapies against TAMs.
Collapse
|
35
|
Wypych-Ślusarska A, Grot M, Kujawińska M, Nigowski M, Krupa-Kotara K, Oleksiuk K, Głogowska-Ligus J, Grajek M. Respiratory Symptoms, Allergies, and Environmental Exposures in Children with and without Asthma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11180. [PMID: 36141448 PMCID: PMC9517590 DOI: 10.3390/ijerph191811180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Epidemiological data concerning the level of asthma morbidity indicate that in Poland, asthma is diagnosed in 5-10% of the pediatric population. Aim The purpose of this study was to compare the prevalence of respiratory symptoms and allergies in a group of children with and without asthma and to evaluate the association between exposure to environmental factors and the prevalence of bronchial asthma in a pediatric population. MATERIAL AND METHODS A cross-sectional study was conducted on a group of 995 children attending primary schools in the province of Silesia in 2018-2019. The research tool was an anonymous questionnaire developed based on the form used in The International Study of Asthma and Allergies in Childhood (ISAAC). Children's health status, the prevalence of bronchial asthma, and the performance of allergic skin tests were assessed based on parents' indications in a questionnaire. Environmental exposures such as mold and dampness in apartments or ETS were similarly assessed. Analyses were performed using Statistica 13.0; p < 0.05. RESULTS A total of 88 subjects (8.8%) suffered from bronchial asthma. Parents of children with asthma, compared to parents of children without the disease, were more likely to rate their children's health as rather good (43.2% vs. 38.0%) or average (21.6% vs. 3.1%). All analyzed respiratory symptoms, as well as allergies, were statistically more frequent in children with bronchial asthma. CONCLUSIONS The parent's subjective assessment of the child's health varied significantly according to the asthma diagnosis. Asthma is also associated with other diseases: allergic reactions to pollen, house dust, hay fever, and AD (atopic dermatitis) were statistically significantly more frequent among children diagnosed with bronchial asthma.
Collapse
Affiliation(s)
- Agata Wypych-Ślusarska
- Department of Epidemiology, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Martina Grot
- Department of Epidemiology, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Maria Kujawińska
- Department of Epidemiology, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Maciej Nigowski
- Department of Epidemiology, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Karolina Krupa-Kotara
- Department of Epidemiology, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Klaudia Oleksiuk
- Department of Epidemiology, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Joanna Głogowska-Ligus
- Department of Epidemiology, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Mateusz Grajek
- Department of Public Health, Department of Public Health Policy, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| |
Collapse
|
36
|
Stifel U, Caratti G, Tuckermann J. Novel insights into the regulation of cellular catabolic metabolism in macrophages through nuclear receptors. FEBS Lett 2022; 596:2617-2629. [PMID: 35997656 DOI: 10.1002/1873-3468.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022]
Abstract
Regulation of cellular catabolic metabolism in immune cells has recently become a major concept for resolution of inflammation. Nuclear receptors (NRs), including peroxisome proliferator activator receptors (PPARs), 1,25-dihydroxyvitamin D(3) receptor (VDR), liver X receptors (LXRs), glucocorticoid receptors (GRs), estrogen-related receptor α (ERRα) and Nur77, have been identified as major modulators of inflammation, affecting innate immune cells, such as macrophages. Evidence emerges on how NRs regulate cellular metabolism in macrophages during inflammatory processes and contribute to the resolution of inflammation. This could have new implications for our understanding of how NRs shape immune responses and inform anti-inflammatory drug design. This review will highlight the recent developments about NRs and their role in cellular metabolism in macrophages.
Collapse
Affiliation(s)
- Ulrich Stifel
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Giorgio Caratti
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany.,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| |
Collapse
|
37
|
Ikuta K, Ejima A, Abe S, Shimba A. Control of Immunity and Allergy by Steroid Hormones. Allergol Int 2022; 71:432-436. [PMID: 35973911 DOI: 10.1016/j.alit.2022.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/01/2022] Open
Abstract
Steroid hormones, especially glucocorticoids, androgens, and estrogens, have profound influence on immunity. Recent studies using cell-type specific steroid hormone receptor-deficient mice have revealed the precise roles of some of these hormones in the immune system. Glucocorticoids are known to have strong anti-inflammatory and immunosuppressive effects and pleiotropic effects on innate and adaptive immune responses. They suppress the production of inflammatory cytokines by macrophages and DCs and the production of IFN-γ by NK cells, thus inhibiting innate immunity. By contrast, glucocorticoids enhance the immune response by inducing the expression of IL-7R and CXCR4 in T cells and the accumulation of T cells in lymphoid organs in accordance with the diurnal change of the glucocorticoid concentration. Thus, glucocorticoids suppress innate immunity but enhance adaptive immunity. Androgens suppress the homeostasis and activation of ILC2s and the differentiation of Th2 and Th17 cells and enhance the suppressive function of Tregs, thereby alleviating allergic airway inflammation. Thus, these steroid hormones have pleiotropic functions in the immune system. Further investigations are awaited on the regulation of immunity and allergy by estrogens using cell-specific steroid hormone receptor-deficient mice.
Collapse
Affiliation(s)
- Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Aki Ejima
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan; Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan; Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
Sex Steroids Effects on Asthma: A Network Perspective of Immune and Airway Cells. Cells 2022; 11:cells11142238. [PMID: 35883681 PMCID: PMC9318292 DOI: 10.3390/cells11142238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022] Open
Abstract
A multitude of evidence has suggested the differential incidence, prevalence and severity of asthma between males and females. A compilation of recent literature recognized sex differences as a significant non-modifiable risk factor in asthma pathogenesis. Understanding the cellular and mechanistic basis of sex differences remains complex and the pivotal point of this ever elusive quest, which remains to be clarified in the current scenario. Sex steroids are an integral part of human development and evolution while also playing a critical role in the conditioning of the immune system and thereby influencing the function of peripheral organs. Classical perspectives suggest a pre-defined effect of sex steroids, generalizing estrogens popularly under the “estrogen paradox” due to conflicting reports associating estrogen with a pro- and anti-inflammatory role. On the other hand, androgens are classified as “anti-inflammatory,” serving a protective role in mitigating inflammation. Although considered mainstream and simplistic, this observation remains valid for numerous reasons, as elaborated in the current review. Women appear immune-favored with stronger and more responsive immune elements than men. However, the remarkable female predominance of diverse autoimmune and allergic diseases contradicts this observation suggesting that hormonal differences between the sexes might modulate the normal and dysfunctional regulation of the immune system. This review illustrates the potential relationship between key elements of the immune cell system and their interplay with sex steroids, relevant to structural cells in the pathophysiology of asthma and many other lung diseases. Here, we discuss established and emerging paradigms in the clarification of observed sex differences in asthma in the context of the immune system, which will deepen our understanding of asthma etiopathology.
Collapse
|
39
|
Zhu X, Xu Y, Deng Z. miR-320 Overexpression Affects Lung Cancer Macrophage M2 Polarization Through Targeting Vascular Endothelial Growth Factor A (VEGFA). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
miR-320 overexpression’s effect on macrophages polarization in lung cancer was assessed to seek the related therapeutic target for providing theoretical foundation on drug development. THP-1 and A549 cell was induced into macrophage M2 type and then divided into no-polarization
group (MΦ) and M2 type of macrophage’s polarization group (M2). Cells were transfected with miR-320mimic and assigned into BC group, NC group and miR-320mimic group followed by analysis of TGF-β level by ELISA, TNF-α, IL-1β, CCL22, CCL17
and VEGFA level by real-time PCR, VEGFA, CCL22 and IL-1β protein level by western blot, as well as CD206 level by flow cytometry. The proportion of CD206+ cell was significantly increased after induction with the elevated CCL22 and CCL17 mRNA level. There was no significance
of TNF-α, IL-1β RNA level between two groups (P > 0.05). TGF-β level was significantly increased in macrophage of M2 type. CCL2 and VEGFA level was lower and IL-1β was higher in miR-320 overexpression group than other two groups (P
< 0.05). In conclusion, macrophage polarization in lung cancer influenced by VEGFA could be regulated by miR-320 overexpression.
Collapse
Affiliation(s)
- Xiaodong Zhu
- Department of Oncology, Huanggang Central Hospital, Huanggang, Hubei, 438000, China
| | - Yi Xu
- Department of Thoracic Surgery, Chongqing Jiangjin District Central Hospital, Chongqing, 402260, China
| | - Zhongbiao Deng
- Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| |
Collapse
|
40
|
Webber T, Ronacher K, Conradie-Smit M, Kleynhans L. Interplay Between the Immune and Endocrine Systems in the Lung: Implications for TB Susceptibility. Front Immunol 2022; 13:829355. [PMID: 35273609 PMCID: PMC8901994 DOI: 10.3389/fimmu.2022.829355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/02/2022] [Indexed: 12/25/2022] Open
Abstract
The role of the endocrine system on the immune response, especially in the lung, remains poorly understood. Hormones play a crucial role in the development, homeostasis, metabolism, and response to the environment of cells and tissues. Major infectious and metabolic diseases, such as tuberculosis and diabetes, continue to converge, necessitating the development of a clearer understanding of the immune and endocrine interactions that occur in the lung. Research in bacterial respiratory infections is at a critical point, where the limitations in identifying and developing antibiotics is becoming more profound. Hormone receptors on alveolar and immune cells may provide a plethora of targets for host-directed therapy. This review discusses the interactions between the immune and endocrine systems in the lung. We describe hormone receptors currently identified in the lungs, focusing on the effect hormones have on the pulmonary immune response. Altered endocrine responses in the lung affect the balance between pro- and anti-inflammatory immune responses and play a role in the response to infection in the lung. While some hormones, such as leptin, resistin and lipocalin-2 promote pro-inflammatory responses and immune cell infiltration, others including adiponectin and ghrelin reduce inflammation and promote anti-inflammatory cell responses. Furthermore, type 2 diabetes as a major endocrine disease presents with altered immune responses leading to susceptibility to lung infections, such as tuberculosis. A better understanding of these interactions will expand our knowledge of the mechanisms at play in susceptibility to infectious diseases and may reveal opportunities for the development of host-directed therapies.
Collapse
Affiliation(s)
- Tariq Webber
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Katharina Ronacher
- Translational Research Institute, Mater Research Institute - The University of Queensland, Brisbane, QLD, Australia
| | - Marli Conradie-Smit
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
41
|
Lin SF, Lin HC, Lee MY, Keller JJ, Wang LH. Association between GnRH analogue use and atopic diseases in patients with prostate cancer: A population-based retrospective cohort study. PLoS One 2022; 17:e0266771. [PMID: 35404960 PMCID: PMC9000094 DOI: 10.1371/journal.pone.0266771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/27/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose
Gonadotropin-releasing hormone (GnRH) analogues reduce testosterone levels to castration levels in patients with prostate cancer. However, the role of testosterone in atopic diseases has remained undefined. We aimed to investigate this role.
Materials and methods
This retrospective cohort study was conducted using the National Health Insurance Research Database (NHIRD). Patients with prostate cancer were categorized into two groups according to whether they received GnRH analogue treatment (study group I) or not (study group II), and men without prostate cancer and with no GnRH analogue use were defined to comprise the comparison group after their ages and index years were matched with group II. Cox proportional hazard models were used to assess the hazard ratio (HR) of atopic diseases.
Results
Group I, group II, and the comparison group comprised 663, 2,172, and 8,688 individuals, respectively. Group I had a significantly lower risk of atopic diseases (adjusted HR: 0.66, 95% CI, 0.49–0.89, p < 0.01) than did group II. A reduced risk of atopic diseases was found when GnRH analogues were prescribed for 2 months (adjusted HR 0.53, 95% CI, 0.29–0.97, p = 0.04) and 2–14 months (adjusted HR 0.66, 95% CI, 0.49–0.89, p = 0.007). No significant difference in the risk of atopic diseases between group II and the comparison group was observed.
Conclusions
A decreased risk of atopic diseases was observed in patients with prostate cancer treated with GnRH analogues. Further studies are warranted to verify the association between testosterone levels and atopic diseases.
Collapse
Affiliation(s)
- Sheng-Feng Lin
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsiu-Chen Lin
- Department of Pediatrics, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Clinical Pathology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Mei-Yu Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Joseph Jordan Keller
- College of Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Li-Hsuan Wang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Taipei Medical University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
42
|
Yamauchi S, Yamamoto K, Ogawa K. Testicular Macrophages Produce Progesterone De Novo Promoted by cAMP and Inhibited by M1 Polarization Inducers. Biomedicines 2022; 10:biomedicines10020487. [PMID: 35203696 PMCID: PMC8962427 DOI: 10.3390/biomedicines10020487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Tissue-resident macrophages (Mø) originating from fetal precursors are maintained via self-renewal under tissue-/organ-specific microenvironments. Herein, we developed a propagation method of testicular tissue-resident Mø in mixed primary culture with interstitial cells composed of Leydig cells from the mouse testis. We examined Mø/monocyte marker expression in propagated testicular Mø using flow cytometry; gene expression involved in testosterone production as well as spermatogenesis in testicular Mø and interstitial cells propagated by mixed culture via RT-PCR; and progesterone (P4) de novo production in propagated testicular Mø treated with cyclic adenosine monophosphate, isoproterenol, and M1 polarization inducers using ELISA. Mø marker expression patterns in the propagated Mø were identical to those in testicular interstitial Mø with a CD206-positive/major histocompatibility complex (MHC) II-negative M2 phenotype. We identified the genes involved in P4 production, transcription factors essential for steroidogenesis, and androgen receptors, and showed that P4 production de novo was upregulated by cyclic adenosine monophosphate and β2-adrenergic stimulation and was downregulated by M1 polarization stimulation in Mø. We also demonstrated the formation of gap junctions between Leydig cells and interstitial Mø. This is the first study to demonstrate de novo P4 production in tissue-resident Mø. Based on previous studies revealing inhibition of testosterone production by P4, we propose that local feedback machinery between Leydig cells and adjacent interstitial Mø regulates testosterone production. The results presented in this study can facilitate future studies on immune-endocrine interactions in gonads that are related to infertility and hormonal disorders.
Collapse
Affiliation(s)
- Sawako Yamauchi
- Laboratory of Veterinary Anatomy, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano 598-8531, Osaka, Japan; (S.Y.); (K.Y.)
| | - Kousuke Yamamoto
- Laboratory of Veterinary Anatomy, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano 598-8531, Osaka, Japan; (S.Y.); (K.Y.)
| | - Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano 598-8531, Osaka, Japan
- Correspondence:
| |
Collapse
|
43
|
Chen XY, Wang C, Huang YZ, Zhang LL. Nonalcoholic fatty liver disease shows significant sex dimorphism. World J Clin Cases 2022; 10:1457-1472. [PMID: 35211584 PMCID: PMC8855265 DOI: 10.12998/wjcc.v10.i5.1457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/02/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), which has been renamed metabolic dysfunction-associated fatty liver disease, is a growing global medical problem. The incidence of NAFLD and its associated end-stage liver disease is increasing each year, and many research advancements have been achieved to date. This review focuses on the current knowledge of the sex differences in NAFLD and does not elaborate on areas without differences. Studies have revealed significant sex differences in the prevalence, influencing factors, pathophysiology, complications and therapies of NAFLD. Men have a higher incidence than women. Compared with women, men exhibit increased visceral fat deposition, are more susceptible to leptin resistance, lack estrogen receptors, and tend to synthesize fatty acids into fat storage. Male patients will experience more severe hepatic fibrosis and a higher incidence of liver cancer. However, once NAFLD occurs, women show a faster progression of liver fibrosis, higher levels of liver cell damage and inflammation and are less likely to undergo liver transplantation than men. In general, men have more risk factors and more severe pathophysiological reactions than women, whereas the development of NAFLD is faster in women, and the treatments for women are more limited than those for men. Thus, whether sex differences should be considered in the individualized prevention and treatment of NAFLD in the future is worth considering.
Collapse
Affiliation(s)
- Xing-Yu Chen
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 404100, China
| | - Cong Wang
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 404100, China
| | - Yi-Zhou Huang
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 404100, China
| | - Li-Li Zhang
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 404100, China
| |
Collapse
|
44
|
Kwon OJ, Zhang B, Jia D, Zhang L, Wei X, Zhou Z, Liu D, Huynh KT, Zhang K, Zhang Y, Labhart P, Sboner A, Barbieri C, Haffner MC, Creighton CJ, Xin L. Elevated expression of the colony-stimulating factor 1 (CSF1) induces prostatic intraepithelial neoplasia dependent of epithelial-Gp130. Oncogene 2022; 41:1309-1323. [PMID: 34999736 PMCID: PMC8882147 DOI: 10.1038/s41388-021-02169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022]
Abstract
Macrophages are increased in human benign prostatic hyperplasia and prostate cancer. We generate a Pb-Csf1 mouse model with prostate-specific overexpression of macrophage colony-stimulating factor (M-Csf/Csf1). Csf1 overexpression promotes immune cell infiltration into the prostate, modulates the macrophage polarity in a lobe-specific manner, and induces senescence and low-grade prostatic intraepithelial neoplasia (PIN). The Pb-Csf1 prostate luminal cells exhibit increased stem cell features and undergo an epithelial-to-mesenchymal transition. Human prostate cancer patients with high CSF-1 expression display similar transcriptional alterations with the Pb-Csf1 model. P53 knockout alleviates senescence but fails to progress PIN lesions. Ablating epithelial Gp130 but not Il1r1 substantially blocks PIN lesion formation. The androgen receptor (AR) is downregulated in Pb-Csf1 mice. ChIP-Seq analysis reveals altered AR binding in 2482 genes although there is no significant widespread change in global AR transcriptional activity. Collectively, our study demonstrates that increased macrophage infiltration causes PIN formation but fails to transform prostate cells.
Collapse
Affiliation(s)
- Oh-Joon Kwon
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Boyu Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Deyong Jia
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Li Zhang
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Xing Wei
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Zhicheng Zhou
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Deli Liu
- Sandra and Edward Meyer Cancer Center and Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Khoi Trung Huynh
- Department of Biology, University of Washington, Seattle, WA, 98109, USA
| | - Kai Zhang
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Andrea Sboner
- Sandra and Edward Meyer Cancer Center and Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Chris Barbieri
- Sandra and Edward Meyer Cancer Center and Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Michael C Haffner
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Li Xin
- Department of Urology, University of Washington, Seattle, WA, 98109, USA.
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
45
|
Ray JL, Shaw PK, Postma B, Beamer CA, Holian A. Nanoparticle-Induced Airway Eosinophilia Is Independent of ILC2 Signaling but Associated With Sex Differences in Macrophage Phenotype Development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:110-120. [PMID: 34819391 PMCID: PMC8702462 DOI: 10.4049/jimmunol.2100769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
The majority of lung diseases occur with a sex bias in terms of prevalence and/or severity. Previous studies demonstrated that, compared with males, female mice develop greater eosinophilic inflammation in the airways after multiwalled carbon nanotube (MWCNT) exposure. However, the mechanism by which this sex bias occurs is unknown. Two immune cells that could account for the sex bias are type II innate lymphoid cells (ILC2s) and alveolar macrophages (AMs). In order to determine which immune cell type was responsible for MWCNT-induced airway eosinophil recruitment and subsequent sex differences in inflammation and disease, male and female C57BL/6 mice were exposed to MWCNTs (2 mg/kg) via oropharyngeal aspiration, and the respiratory immune response was assessed 7 d later. Greater eosinophilia and eotaxin 2 levels were observed in MWCNT-treated females and corresponded with greater changes in airway hyperresponsiveness than those in MWCNT-treated males. In MWCNT-treated females, there was a significant increase in the frequency of ILC2s within the lungs compared with control animals. However, depletion of ILC2s via α-CD90.2 administration did not decrease eosinophil recruitment 24 h and 7 d after MWCNT exposure. AMs isolated from control and MWCNT-treated animals demonstrated that M2a macrophage phenotype gene expression, ex vivo cytokine production, and activation of (p)STAT6 were upregulated to a significantly greater degree in MWCNT-treated females than in males. Our findings suggest that sex differences in AM phenotype development, not ILC2 signaling, are responsible for the observed female bias in eosinophilic inflammation after MWCNT inhalation.
Collapse
Affiliation(s)
- Jessica L. Ray
- Center for Environmental Health Sciences, University of Montana, Missoula, MT
| | - Pam K. Shaw
- Center for Environmental Health Sciences, University of Montana, Missoula, MT
| | - Britten Postma
- Center for Environmental Health Sciences, University of Montana, Missoula, MT
| | - Celine A. Beamer
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT
| |
Collapse
|
46
|
Yang Y, Wang Y. Autocrine, Paracrine, and Endocrine Signals That Can Alter Alveolar Macrophages Function. Rev Physiol Biochem Pharmacol 2022; 186:177-198. [PMID: 36472676 DOI: 10.1007/112_2022_76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alveolar macrophages (AMs) are extremely versatile cells with complex functions involved in health or diseases such as pneumonia, asthma, and pulmonary alveolar proteinosis. In recent years, it has been widely identified that the different functions and states of macrophages are the results from the complex interplay between microenvironmental signals and macrophage lineage. Diverse and complicated signals to which AMs respond are mentioned when they are described individually or in a particular state of AMs. In this review, the microenvironmental signals are divided into autocrine, paracrine, and endocrine signals based on their secreting characteristics. This new perspective on classification provides a more comprehensive and systematic introduction to the complex signals around AMs and is helpful for understanding the roles of AMs affected by physiological environment. The existing possible treatments of AMs are also mentioned in it. The thorough understanding of AMs signals modulation may be contributed to the development of more effective therapies for AMs-related lung diseases.
Collapse
Affiliation(s)
- Yue Yang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
47
|
Chowdhury NU, Guntur VP, Newcomb DC, Wechsler ME. Sex and gender in asthma. Eur Respir Rev 2021; 30:210067. [PMID: 34789462 PMCID: PMC8783601 DOI: 10.1183/16000617.0067-2021] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/26/2021] [Indexed: 12/16/2022] Open
Abstract
Asthma is a heterogenous disease, and its prevalence and severity are different in males versus females through various ages. As children, boys have an increased prevalence of asthma. As adults, women have an increased prevalence and severity of asthma. Sex hormones, genetic and epigenetic variations, social and environmental factors, and responses to asthma therapeutics are important factors in the sex differences observed in asthma incidence, prevalence and severity. For women, fluctuations in sex hormone levels during puberty, the menstrual cycle and pregnancy are associated with asthma pathogenesis. Further, sex differences in gene expression and epigenetic modifications and responses to environmental factors, including SARS-CoV-2 infections, are associated with differences in asthma incidence, prevalence and symptoms. We review the role of sex hormones, genetics and epigenetics, and their interactions with the environment in the clinical manifestations and therapeutic response of asthma.
Collapse
Affiliation(s)
- Nowrin U Chowdhury
- Dept of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA
- The NJH Cohen Family Asthma Institute, Denver, CO, USA
- Equal contribution to first authorship
| | - Vamsi P Guntur
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, USA
- The NJH Cohen Family Asthma Institute, Denver, CO, USA
- Equal contribution to first authorship
| | - Dawn C Newcomb
- Dept of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA
- Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael E Wechsler
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, USA
- The NJH Cohen Family Asthma Institute, Denver, CO, USA
| |
Collapse
|
48
|
Gay L, Melenotte C, Lopez A, Desnues B, Raoult D, Leone M, Mezouar S, Mege JL. Impact of Sex Hormones on Macrophage Responses to Coxiella burnetii. Front Immunol 2021; 12:705088. [PMID: 34987498 PMCID: PMC8720845 DOI: 10.3389/fimmu.2021.705088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/03/2021] [Indexed: 01/17/2023] Open
Abstract
Introduction Q fever, a zoonosis caused by Coxiella burnetii, affects more males than females despite a similar level of exposure. A protective role of estradiol has been reported in mice, suggesting that sex hormones are involved in C. burnetii infection. We wondered whether the responses of monocytes and monocyte-derived macrophages (MDMs) to C. burnetii are influenced by sex hormones. Materials and Methods The bacterial intracellular fate in monocytes was studied using quantitative PCR, and monocyte cytokine production in response to C. burnetii was assessed using qRT-PCR and immunoassays. Before infection, MDMs from males and females were incubated with testosterone and estradiol, respectively. Results Bacterial uptake and persistence were similar in monocytes from males and females but were slightly increased in male MDMs. The expression of inflammatory genes, including those encoding TNF and CXCL10, was higher in MDMs from females than in MDMs from males infected by C. burnetii. Adding testosterone to male MDMs amplified their immunoregulatory properties, including increased expression of IL10 and TGFB genes and TGF-β production in response to C. burnetii. In contrast, adding estradiol to MDMs from females had no effect on their inflammatory profile. Conclusion The stronger inflammatory profile of macrophages from females may have a protective role, likely under estrogen control, while testosterone may affect disease progression by promoting an anti-inflammatory response. This finding may have consequences for personalized management of patients with Q fever.
Collapse
Affiliation(s)
- Laetitia Gay
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (APHM), Microbes, Evolution, Phylogeny and Infection (MEPHI), Marseille, France
- Department of Immunology, Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Cléa Melenotte
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (APHM), Microbes, Evolution, Phylogeny and Infection (MEPHI), Marseille, France
- Department of Immunology, Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Alexandre Lopez
- Department of Anesthesia and Intensive Care, Hôpital Nord, Aix-Marseille Univ, Assistance Publique - Hôpitaux de Marseille (APHM), Marseille, France
| | - Benoit Desnues
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (APHM), Microbes, Evolution, Phylogeny and Infection (MEPHI), Marseille, France
- Department of Immunology, Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (APHM), Microbes, Evolution, Phylogeny and Infection (MEPHI), Marseille, France
- Department of Immunology, Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Marc Leone
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (APHM), Microbes, Evolution, Phylogeny and Infection (MEPHI), Marseille, France
- Department of Immunology, Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
- Department of Anesthesia and Intensive Care, Hôpital Nord, Aix-Marseille Univ, Assistance Publique - Hôpitaux de Marseille (APHM), Marseille, France
| | - Soraya Mezouar
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (APHM), Microbes, Evolution, Phylogeny and Infection (MEPHI), Marseille, France
- Department of Immunology, Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (APHM), Microbes, Evolution, Phylogeny and Infection (MEPHI), Marseille, France
- Department of Immunology, Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
- Aix-Marseille University, Assistance Publique - Hôpitaux de Marseille (APHM), Hôpital de la Conception, Laboratoire d’Immunologie, Marseille, France
| |
Collapse
|
49
|
Abstract
Circulation of urate levels is determined by the balance between urate production and excretion, homeostasis regulated by the function of urate transporters in key epithelial tissues and cell types. Our understanding of these physiological processes and identification of the genes encoding the urate transporters has advanced significantly, leading to a greater ability to predict risk for urate-associated diseases and identify new therapeutics that directly target urate transport. Here, we review the identified urate transporters and their organization and function in the renal tubule, the intestinal enterocytes, and other important cell types to provide a fuller understanding of the complicated process of urate homeostasis and its role in human diseases. Furthermore, we review the genetic tools that provide an unbiased catalyst for transporter identification as well as discuss the role of transporters in determining the observed significant gender differences in urate-associated disease risk.
Collapse
Affiliation(s)
| | - Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
50
|
Chidambaram V, Tun NL, Majella MG, Ruelas Castillo J, Ayeh SK, Kumar A, Neupane P, Sivakumar RK, Win EP, Abbey EJ, Wang S, Zimmerman A, Blanck J, Gupte A, Wang JY, Karakousis PC. Male Sex Is Associated With Worse Microbiological and Clinical Outcomes Following Tuberculosis Treatment: A Retrospective Cohort Study, a Systematic Review of the Literature, and Meta-analysis. Clin Infect Dis 2021; 73:1580-1588. [PMID: 34100919 PMCID: PMC8563313 DOI: 10.1093/cid/ciab527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Although the incidence of tuberculosis is higher in men than in women, the relationship of sex with tuberculosis treatment outcomes has not been adequately studied. METHODS We performed a retrospective cohort study and a systematic review and meta-analysis of observational studies during the last 10 years to assess sex differences in clinical and microbiological outcomes in tuberculosis. RESULTS In our cohort of 2894 Taiwanese patients with drug-susceptible pulmonary tuberculosis (1975 male and 919 female), male patients had higher adjusted hazards of 9-month mortality due to all causes (hazard ratio, 1.43 [95% confidence interval (CI), 1.03-1.98]) and infections (1.70 [1.09-2.64]) and higher adjusted odds of 2-month sputum culture positivity (odds ratio [OR], 1.56 [95% CI, 1.05-2.33]) compared with female patients. Smear positivity at 2 months did not differ significantly (OR, 1.27 [95% CI, .71-2.27]) between the sexes. Among 7896 articles retrieved, 398 were included in our systematic review describing a total of 3 957 216 patients. The odds of all-cause mortality were higher in men than in women in the pooled unadjusted (OR, 1.26 [95% CI, 1.19-1.34]) and adjusted (1.31 [1.18-1.45]) analyses. Men had higher pooled odds of sputum culture (OR, 1.44 [95% CI, 1.14-1.81]) and sputum smear (1.58 [1.41-1.77]) positivity, both at the end of the intensive phase and on completion of treatment. CONCLUSIONS Our retrospective cohort showed that male patients with tuberculosis have higher 9-month all-cause and infection-related mortality, with higher 2-month sputum culture positivity after adjustment for confounding factors. In our meta-analysis, male patients showed higher all-cause and tuberculosis-related mortality and higher sputum culture and smear positivity rates during and after tuberculosis treatment.
Collapse
Affiliation(s)
- Vignesh Chidambaram
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nyan Lynn Tun
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Marie Gilbert Majella
- Department of Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Jennie Ruelas Castillo
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Samuel K Ayeh
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Amudha Kumar
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Arkansas, USA
| | - Pranita Neupane
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ranjith Kumar Sivakumar
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Ei Phyo Win
- Department of Pathology, Yangon Children’s Hospital, Yangon, Myanmar
| | - Enoch J Abbey
- Division of Endocrinology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Siqing Wang
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Alyssa Zimmerman
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jaime Blanck
- Welch Medical Library, Johns Hopkins University, Baltimore, Maryland, USA
| | - Akshay Gupte
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Petros C Karakousis
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|