1
|
Alghamdi KS, Kassar RH, Farrash WF, Obaid AA, Idris S, Siddig A, Shakoori AM, Alshehre SM, Minshawi F, Mujalli A. Key Disease-Related Genes and Immune Cell Infiltration Landscape in Inflammatory Bowel Disease: A Bioinformatics Investigation. Int J Mol Sci 2024; 25:9751. [PMID: 39273699 PMCID: PMC11396460 DOI: 10.3390/ijms25179751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammatory Bowel Diseases (IBD), which encompass ulcerative colitis (UC) and Crohn's disease (CD), are characterized by chronic inflammation and tissue damage of the gastrointestinal tract. This study aimed to uncover novel disease-gene signatures, dysregulated pathways, and the immune cell infiltration landscape of inflamed tissues. Eight publicly available transcriptomic datasets, including inflamed and non-inflamed tissues from CD and UC patients were analyzed. Common differentially expressed genes (DEGs) were identified through meta-analysis, revealing 180 DEGs. DEGs were implicated in leukocyte transendothelial migration, PI3K-Akt, chemokine, NOD-like receptors, TNF signaling pathways, and pathways in cancer. Protein-protein interaction network and cluster analysis identified 14 central IBD players, which were validated using eight external datasets. Disease module construction using the NeDRex platform identified nine out of 14 disease-associated genes (CYBB, RAC2, GNAI2, ITGA4, CYBA, NCF4, CPT1A, NCF2, and PCK1). Immune infiltration profile assessment revealed a significantly higher degree of infiltration of neutrophils, activated dendritic cells, plasma cells, mast cells (resting/activated), B cells (memory/naïve), regulatory T cells, and M0 and M1 macrophages in inflamed IBD tissue. Collectively, this study identified the immune infiltration profile and nine disease-associated genes as potential modulators of IBD pathogenesis, offering insights into disease molecular mechanisms, and highlighting potential disease modulators and immune cell dynamics.
Collapse
Affiliation(s)
- Kawthar S Alghamdi
- Department of Biology, College of Science, University of Hafr Al Batin, Hafar Al-Batin 39511, Saudi Arabia
| | - Rahaf H Kassar
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Wesam F Farrash
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Ahmad A Obaid
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Shakir Idris
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Alaa Siddig
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Afnan M Shakoori
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Sallwa M Alshehre
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Faisal Minshawi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Abdulrahman Mujalli
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| |
Collapse
|
2
|
Caldiran F, Deveci K, Cacan E. Epigenetic insights into Familial Mediterranean Fever: Increased RGS10 expression and histone modifications accompanies inflammation in familial Mediterranean fever disease. Gene 2024; 906:148222. [PMID: 38331118 DOI: 10.1016/j.gene.2024.148222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Familial Mediterranean fever (FMF) is an autosomal recessive autoinflammatory disease characterized by recurring fever, erythema, joint pain, and abdominal discomfort during acute episodes. While FMF patients typically share MEFV gene mutations, they display varying clinical manifestations, suggesting the involvement of modifying genes, epigenetic mechanisms, or environmental factors. G protein regulator signal 10 (RGS10), a member of the RGS protein family, exhibits anti-inflammatory effects in autoinflammatory diseases. There are no studies on the role of plays in FMF pathogenesis or histone modification in FMF. AIMS This study aimed to shed light on the epigenetic regulation of FMF from several perspectives. The relationship between RGS10 DNA hypermethylation in FMF clinical parameters and the regulation of 22 histone modifications were examined in FMF attack patients and the control group. METHODS Sixty FMF (remission/attack) and thirty healthy individuals were included in the study. First, RNA was isolated from the blood of patients/controls, and the expression of RGS10 was examined. Then, DNA was isolated from the patients, and gene-specific hypermethylation was investigated using the bisulfite conversion method. Finally, histone extraction was performed for FMF patients and controls and 22 histone H3 modifications were determined. In addition, using ADEX bioinformatics tools, RGS10 expression and methylation profiles were detected in different autoinflammatory diseases. RESULTS This study indicate that RGS10 expression decreased in attack-free/attack patients than control, attributed to DNA methylation. In addition, there were a positive correlation between FMF patients and attack, WBC, neutrophil, MCHC and MPV. Moreover, higher H3K4 me3, H3K9 me2, and H3K14ac levels were observed in patients with FMF attacks. This research also showed a consistent decrease in RGS10 expression in patients with SjS, SSc, and T1D compared with controls. I also obtained five prognosis-related CpGs (cg17527393, cg19653161, cg20445950, cg18938673 and cg13975098) of RGS10 in patients with SjS, RA, SSc, SLE and T1D. CONCLUSION The present study provides insights into the complex relationship between RGS10, epigenetic modifications, and immune responses in FMF. While RGS10 may initially enhance immune responses, genetic mutations and epigenetic changes associated with FMF acute episode may override this regulatory effect, resulting in increased inflammation and clinical symptoms. Moreover, our study revealed elevated levels of specific histone modifications in the context of FMF, suggesting significant epigenetic changes that could contribute to the disease pathogenesis. Understanding these associations opens new avenues for research and potential therapeutic interventions, potentially involving epigenetic therapies targeting histone modifications.
Collapse
Affiliation(s)
- Feyzanur Caldiran
- Tokat Gaziosmanpasa University, Faculty of Science and Art, Department of Molecular Biology and Genetics, Tokat, Turkey.
| | - Koksal Deveci
- Tokat Gaziosmanpasa University, Faculty of Medicine, Department of Medical Biochemistry, Tokat, Turkey
| | - Ercan Cacan
- Tokat Gaziosmanpasa University, Faculty of Science and Art, Department of Molecular Biology and Genetics, Tokat, Turkey
| |
Collapse
|
3
|
Lyu M, Xu G, Zhou J, Reboud J, Wang Y, Lai H, Chen Y, Zhou Y, Zhu G, Cooper JM, Ying B. Single-Cell Sequencing Reveals Functional Alterations in Tuberculosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305592. [PMID: 38192178 PMCID: PMC10953544 DOI: 10.1002/advs.202305592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/21/2023] [Indexed: 01/10/2024]
Abstract
Despite its importance, the functional heterogeneity surrounding the dynamics of interactions between mycobacterium tuberculosis and human immune cells in determining host immune strength and tuberculosis (TB) outcomes, remains far from understood. This work now describes the development of a new technological platform to elucidate the immune function differences in individuals with TB, integrating single-cell RNA sequencing and cell surface antibody sequencing to provide both genomic and phenotypic information from the same samples. Single-cell analysis of 23 990 peripheral blood mononuclear cells from a new cohort of primary TB patients and healthy controls enables to not only show four distinct immune phenotypes (TB, myeloid, and natural killer (NK) cells), but also determine the dynamic changes in cell population abundance, gene expression, developmental trajectory, transcriptomic regulation, and cell-cell signaling. In doing so, TB-related changes in immune cell functions demonstrate that the immune response is mediated through host T cells, myeloid cells, and NK cells, with TB patients showing decreased naive, cytotoxicity, and memory functions of T cells, rather than their immunoregulatory function. The platform also has the potential to identify new targets for immunotherapeutic treatment strategies to restore T cells from dysfunctional or exhausted states.
Collapse
Affiliation(s)
- Mengyuan Lyu
- Department of Laboratory MedicineWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Gaolian Xu
- School of Biomedical Engineering/Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Jian Zhou
- Department of Thoracic SurgeryWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Julien Reboud
- Division of Biomedical EngineeringUniversity of GlasgowGlasgowG12 8LTUnited Kingdom
| | - Yili Wang
- Department of Laboratory MedicineWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Hongli Lai
- Department of Laboratory MedicineWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Yi Chen
- Department of Laboratory MedicineWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Yanbing Zhou
- Department of Laboratory MedicineWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Guiying Zhu
- School of Biomedical Engineering/Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Jonathan M. Cooper
- Division of Biomedical EngineeringUniversity of GlasgowGlasgowG12 8LTUnited Kingdom
| | - Binwu Ying
- Department of Laboratory MedicineWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| |
Collapse
|
4
|
Fu R, Zhao L, Guo Y, Qin X, Xu W, Cheng X, Zhang Y, Xu S. AIM2 inflammasome: A potential therapeutic target in ischemic stroke. Clin Immunol 2024; 259:109881. [PMID: 38142900 DOI: 10.1016/j.clim.2023.109881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Ischemic stroke (IS) is a significant global public health issue with a high incidence, disability, and mortality rate. A robust inflammatory cascade with complex and wide-ranging mechanisms occurs following ischemic brain injury. Inflammasomes are multiprotein complexes in the cytoplasm that modulate the inflammatory response by releasing pro-inflammatory cytokines and inducing cellular pyroptosis. Among these inflammasomes, the Absent in Melanoma 2 (AIM2) inflammasome shows the ability to detect a wide range of pathogen DNAs, thereby triggering an inflammatory response. Recent studies have indicated that the aberrant expression of AIM2 inflammasome in various cells is closely associated with the pathological processes of ischemic brain injury. This paper summarizes the expression and regulatory role of AIM2 in CNS and peripheral immune cells and discusses current therapeutic approaches targeting AIM2 inflammasome. These findings aim to serve as a reference for future research in this field.
Collapse
Affiliation(s)
- Rong Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xiaoli Qin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenzhe Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xueqi Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
5
|
Tosh D, Fisher CL, Salmaso V, Wan TC, Campbell RG, Chen E, Gao ZG, Auchampach JA, Jacobson KA. First Potent Macrocyclic A 3 Adenosine Receptor Agonists Reveal G-Protein and β-Arrestin2 Signaling Preferences. ACS Pharmacol Transl Sci 2023; 6:1288-1305. [PMID: 37705595 PMCID: PMC10496144 DOI: 10.1021/acsptsci.3c00126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 09/15/2023]
Abstract
(N)-Methanocarba adenosine derivatives (A3 adenosine receptor (AR) agonists containing bicyclo[3.1.0]hexane replacing furanose) were chain-extended at N6 and C2 positions with terminal alkenes for ring closure. The resulting macrocycles of 17-20 atoms retained affinity, indicating a spatially proximal orientation of these receptor-bound chains, consistent with molecular modeling of 12. C2-Arylethynyl-linked macrocycle 19 was more A3AR-selective than 2-ether-linked macrocycle 12 (both 5'-methylamides, human (h) A3AR affinities (Ki): 22.1 and 25.8 nM, respectively), with lower mouse A3AR affinities. Functional hA3AR comparison of two sets of open/closed analogues in β-arrestin2 and Gi/o protein assays showed certain signaling preferences divergent from reference agonist Cl-IB-MECA 1. The potencies of 1 at all three Gαi isoforms were slightly less than its hA3AR binding affinity (Ki: 1.4 nM), while the Gαi1 and Gαi2 potencies of macrocycle 12 were roughly an order of magnitude higher than its radioligand binding affinity. Gαi2-coupling was enhanced in macrocycle 12 (EC50 2.56 nM, ∼40% greater maximal efficacy than 1). Di-O-allyl precursor 18 cyclized to form 19, increasing the Gαi1 potency by 7.5-fold. The macrocycles 12 and 19 and their open precursors 11 and 18 potently stimulated β-arrestin2 recruitment, with EC50 values (nM) of 5.17, 4.36, 1.30, and 4.35, respectively, and with nearly 50% greater efficacy compared to 1. This example of macrocyclization altering the coupling pathways of small-molecule (nonpeptide) GPCR agonists is the first for potent and selective macrocyclic AR agonists. These initial macrocyclic derivatives can serve as a guide for the future design of macrocyclic AR agonists displaying unanticipated pharmacology.
Collapse
Affiliation(s)
- Dilip
K. Tosh
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - Courtney L. Fisher
- Department
of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Veronica Salmaso
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
- Molecular
Modeling Section, Department of Pharmaceutical and Pharmacological
Sciences, University of Padua, Padua 35131, Italy
| | - Tina C. Wan
- Department
of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Ryan G. Campbell
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - Eric Chen
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - John A. Auchampach
- Department
of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Kenneth A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| |
Collapse
|
6
|
Almutairi F, Sarr D, Tucker SL, Fantone K, Lee JK, Rada B. RGS10 Reduces Lethal Influenza Infection and Associated Lung Inflammation in Mice. Front Immunol 2021; 12:772288. [PMID: 34912341 PMCID: PMC8667315 DOI: 10.3389/fimmu.2021.772288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2023] Open
Abstract
Seasonal influenza epidemics represent a significant global health threat. The exacerbated immune response triggered by respiratory influenza virus infection causes severe pulmonary damage and contributes to substantial morbidity and mortality. Regulator of G-protein signaling 10 (RGS10) belongs to the RGS protein family that act as GTPase activating proteins for heterotrimeric G proteins to terminate signaling pathways downstream of G protein-coupled receptors. While RGS10 is highly expressed in immune cells, in particular monocytes and macrophages, where it has strong anti-inflammatory effects, its physiological role in the respiratory immune system has not been explored yet. Here, we show that Rgs10 negatively modulates lung immune and inflammatory responses associated with severe influenza H1N1 virus respiratory infection in a mouse model. In response to influenza A virus challenge, mice lacking RGS10 experience enhanced weight loss and lung viral titers, higher mortality and significantly faster disease onset. Deficiency of Rgs10 upregulates the levels of several proinflammatory cytokines and chemokines and increases myeloid leukocyte accumulation in the infected lung, markedly neutrophils, monocytes, and inflammatory monocytes, which is associated with more pronounced lung damage. Consistent with this, influenza-infected Rgs10-deficent lungs contain more neutrophil extracellular traps and exhibit higher neutrophil elastase activities than wild-type lungs. Overall, these findings propose a novel, in vivo role for RGS10 in the respiratory immune system controlling myeloid leukocyte infiltration, viral clearance and associated clinical symptoms following lethal influenza challenge. RGS10 also holds promise as a new, potential therapeutic target for respiratory infections.
Collapse
Affiliation(s)
- Faris Almutairi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Samantha L. Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kayla Fantone
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
7
|
Wang M, Wu H, Wang R, Dai X, Deng R, Wang Y, Bu Y, Sun M, Zhang H. Inhibition of sphingosine 1-phosphate (S1P) receptor 1/2/3 ameliorates biological dysfunction in rheumatoid arthritis fibroblast-like synoviocyte MH7A cells through Gαi/Gαs rebalancing. Clin Exp Pharmacol Physiol 2021; 48:1080-1089. [PMID: 33495999 DOI: 10.1111/1440-1681.13460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/25/2020] [Indexed: 11/29/2022]
Abstract
Sphingosine 1-phosphate (S1P) exerts its various physiological and pathological effects by interacting with G protein-coupled receptors. In addition, S1P can induce biological dysfunction in fibroblast-like synoviocytes (FLSs) in the development of rheumatoid arthritis (RA). However, the mechanism underlying this S1P-induced dysfunction remains unclear. An imbalance between Gαi and Gαs can affect the level of cAMP, an important regulator of numerous cell functions. Therefore, we studied the effects of S1P receptor (S1PR) 1-, 2-, and 3-associated Gαi/Gαs imbalance on the biological function of rheumatoid arthritis fibroblast-like synoviocyte (MH7A cells). The results showed that blocking S1PR1/3 and Gαi, and activating Gαs, inhibited the proliferation, migration, invasion, and proinflammatory cytokine release of MH7A cells in a S1P-induced inflammation model, whereas suppressing S1PR2 only affected the invasion and the release of proinflammatory cytokines of these cells. Analysis of the expression of S1PR1/2/3 and Gαi/Gαs further showed that S1PR1/2/3 could regulate the Gαi/Gαs balance. Furthermore, our data suggested that the level of cAMP was also affected. Combined, our results showed that impaired S1PR1/2/3 signalling can affect MH7A cells biological function via Gαi/Gαs-cAMP signalling, which can provide a new idea for the treatment of RA.
Collapse
Affiliation(s)
- Mengdie Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ronghui Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Xuejing Dai
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yanhong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Minghui Sun
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Heng Zhang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R & D of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| |
Collapse
|
8
|
Almutairi F, Tucker SL, Sarr D, Rada B. PI3K/ NF-κB-dependent TNF-α and HDAC activities facilitate LPS-induced RGS10 suppression in pulmonary macrophages. Cell Signal 2021; 86:110099. [PMID: 34339853 PMCID: PMC8406451 DOI: 10.1016/j.cellsig.2021.110099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
Regulator of G-protein signaling 10 (RGS10) is a member of the superfamily of RGS proteins that canonically act as GTPase activating proteins (GAPs). RGS proteins accelerate GTP hydrolysis on the G-protein α subunits and result in termination of signaling pathways downstream of G protein-coupled receptors. Beyond its GAP function, RGS10 has emerged as an anti-inflammatory protein by inhibiting LPS-mediated NF-κB activation and expression of inflammatory cytokines, in particular TNF-α. Although RGS10 is abundantly expressed in resting macrophages, previous studies have shown that RGS10 expression is suppressed in macrophages following Toll-like receptor 4 (TLR4) activation by LPS. However, the molecular mechanism by which LPS induces Rgs10 silencing has not been clearly defined. The goal of the current study was to determine whether LPS silences Rgs10 expression through an NF-κB-mediated proinflammatory mechanism in pulmonary macrophages, a unique type of innate immune cells. We demonstrate that Rgs10 transcript and RGS10 protein levels are suppressed upon LPS treatment in the murine MH-S alveolar macrophage cell line. We show that pharmacological inhibition of PI3K/ NF-κB/p300 (NF-κB co-activator)/TNF-α signaling cascade and the activities of HDAC (1-3) enzymes block LPS-induced silencing of Rgs10 in MH-S cells as well as microglial BV2 cells and BMDMs. Further, loss of RGS10 generated by using CRISPR/Cas9 amplifies NF-κB phosphorylation and inflammatory gene expression following LPS treatment in MH-S cells. Together, our findings strongly provide critical insight into the molecular mechanism underlying RGS10 suppression by LPS in pulmonary macrophages.
Collapse
Affiliation(s)
- Faris Almutairi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Samantha L Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
9
|
Nabar NR, Heijjer CN, Shi CS, Hwang IY, Ganesan S, Karlsson MCI, Kehrl JH. LRRK2 is required for CD38-mediated NAADP-Ca 2+ signaling and the downstream activation of TFEB (transcription factor EB) in immune cells. Autophagy 2021; 18:204-222. [PMID: 34313548 PMCID: PMC8865229 DOI: 10.1080/15548627.2021.1954779] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
CD38 is a cell surface receptor capable of generating calcium-mobilizing second messengers. It has been implicated in host defense and cancer biology, but signaling mechanisms downstream of CD38 remain unclear. Mutations in LRRK2 (leucine-rich repeat kinase 2) are the most common genetic cause of Parkinson disease; it is also a risk factor for Crohn disease, leprosy, and certain types of cancers. The pathogenesis of these diseases involves inflammation and macroautophagy/autophagy, processes both CD38 and LRRK2 are implicated in. Here, we mechanistically and functionally link CD38 and LRRK2 as upstream activators of TFEB (transcription factor EB), a host defense transcription factor and the master transcriptional regulator of the autophagy/lysosome machinery. In B-lymphocytes and macrophages, we show that CD38 and LRRK2 exist in a complex on the plasma membrane. Ligation of CD38 with the monoclonal antibody clone 90 results in internalization of the CD38-LRRK2 complex and its targeting to the endolysosomal system. This generates an NAADP-dependent calcium signal, which requires LRRK2 kinase activity, and results in the downstream activation of TFEB. lrrk2 KO macrophages accordingly have TFEB activation defects following CD38 or LPS stimulation and fail to switch to glycolytic metabolism after LPS treatment. In overexpression models, the pathogenic LRRK2G2019S mutant promotes hyperactivation of TFEB even in the absence of CD38, both by stabilizing TFEB and promoting its nuclear translocation via aberrant calcium signaling. In sum, we have identified a physiological CD38-LRRK2-TFEB signaling axis in immune cells. The common pathogenic mutant, LRRK2G2019S, appears to hijack this pathway. Abbreviations:ADPR: ADP-ribose; AMPK: AMP-activated protein kinase; BMDM: bone marrow-derived macrophage; cADPR: cyclic-ADP-ribose; COR: C-terminal of ROC; CTSD: cathepsin D; ECAR: extracellular acidification rate; EDTA: ethylenediaminetetraacetic acid; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GPN: Gly-Phe β-naphthylamide; GSK3B/GSK3β: glycogen synthase kinase 3 beta; GTP: guanosine triphosphate; KD: knockdown; LAMP1: lysosomal-associated membrane protein 1; LRR: leucine rich repeat; LRRK2: leucine rich repeat kinase 2; mAb: monoclonal antibody; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAPK/ERK: mitogen-activated protein kinase; MCOLN1: mucolipin 1; MFI: mean fluorescence intensity; mRNA: messenger RNA; MTOR: mechanistic target of rapamycin kinase; NAADP: nicotinic acid adenine dinucleotide phosphate; NAD: nicotinamide adenine dinucleotide; NADP: nicotinamide adenine dinucleotide phosphate; PD: Parkinson disease; PPP3CB: protein phosphatase 3, catalytic subunit, beta isoform; q-RT-PCR: quantitative reverse transcription polymerase chain reaction; ROC: Ras of complex; siRNA: small interfering RNA; SQSTM1/p62: sequestome 1; TFEB: transcription factor EB; TPCN: two pore channel; TRPM2: transient receptor potential cation channel, subfamily M, member 2; ZKSCAN3: zinc finger with KRAB and SCAN domains 3
Collapse
Affiliation(s)
- Neel R Nabar
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher N Heijjer
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chong-Shan Shi
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Il-Young Hwang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - John H Kehrl
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Fuentes N, McCullough M, Panettieri RA, Druey KM. RGS proteins, GRKs, and beta-arrestins modulate G protein-mediated signaling pathways in asthma. Pharmacol Ther 2021; 223:107818. [PMID: 33600853 PMCID: PMC8192426 DOI: 10.1016/j.pharmthera.2021.107818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Asthma is a highly prevalent disorder characterized by chronic lung inflammation and reversible airways obstruction. Pathophysiological features of asthma include episodic and reversible airway narrowing due to increased bronchial smooth muscle shortening in response to external and host-derived mediators, excessive mucus secretion into the airway lumen, and airway remodeling. The aberrant airway smooth muscle (ASM) phenotype observed in asthma manifests as increased sensitivity to contractile mediators (EC50) and an increase in the magnitude of contraction (Emax); collectively these attributes have been termed "airways hyper-responsiveness" (AHR). This defining feature of asthma can be promoted by environmental factors including airborne allergens, viruses, and air pollution and other irritants. AHR reduces airway caliber and obstructs airflow, evoking clinical symptoms such as cough, wheezing and shortness of breath. G-protein-coupled receptors (GPCRs) have a central function in asthma through their impact on ASM and airway inflammation. Many but not all treatments for asthma target GPCRs mediating ASM contraction or relaxation. Here we discuss the roles of specific GPCRs, G proteins, and their associated signaling pathways, in asthma, with an emphasis on endogenous mechanisms of GPCR regulation of ASM tone and lung inflammation including regulators of G-protein signaling (RGS) proteins, G-protein coupled receptor kinases (GRKs), and β-arrestin.
Collapse
Affiliation(s)
- Nathalie Fuentes
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH, Bethesda, MD, United States of America
| | - Morgan McCullough
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH, Bethesda, MD, United States of America
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University School of Medicine, New Brunswick, NJ, United States of America
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH, Bethesda, MD, United States of America.
| |
Collapse
|
11
|
Zhao W, Shi CS, Harrison K, Hwang IY, Nabar NR, Wang M, Kehrl JH. AKT Regulates NLRP3 Inflammasome Activation by Phosphorylating NLRP3 Serine 5. THE JOURNAL OF IMMUNOLOGY 2020; 205:2255-2264. [PMID: 32929041 DOI: 10.4049/jimmunol.2000649] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/17/2020] [Indexed: 02/05/2023]
Abstract
The cytosolic pattern recognition receptor NLRP3 senses host-derived danger signals and certain microbe-derived products in both humans and rodents. NLRP3 activation assembles an inflammasome complex that contains the adapter proteins ASC and caspase-1, whose activation triggers the maturation and release of the proinflammatory cytokines IL-1β and IL-18. S5 phosphorylation of NLRP3 prevents its oligomerization and activation, whereas dephosphorylation of this residue by the phosphatase PP2A allows NLRP3 activation. However, the protein kinase that mediates NLRP3 S5 phosphorylation is unknown. In this study, we show that AKT associates with NLRP3 and phosphorylates it on S5, limiting NLRP3 oligomerization. This phosphorylation event also stabilizes NLRP3 by reducing its ubiquitination on lysine 496, which inhibits its proteasome-mediated degradation by the E3 ligase Trim31. Pharmacologic manipulation of AKT kinase activity reciprocally modulates NLRP3 inflammasome-mediated IL-1β production. Inhibition of AKT reduced IL-1β production following the i.p. injection of LPS into mice. We propose that AKT, Trim31, and PP2A together modulate NLRP3 protein levels and the tendency to oligomerize, thereby setting a tightly regulated threshold for NLRP3 activation.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; and.,Department of Prosthodontics, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chong-Shan Shi
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kathleen Harrison
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Il-Young Hwang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Neel R Nabar
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Min Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; and
| | - John H Kehrl
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
12
|
Vural A, Lanier SM. Intersection of two key signal integrators in the cell: activator of G-protein signaling 3 and dishevelled-2. J Cell Sci 2020; 133:jcs247908. [PMID: 32737219 PMCID: PMC7490517 DOI: 10.1242/jcs.247908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022] Open
Abstract
Activator of G-protein signaling 3 (AGS3, encoded by GPSM1) was discovered as a one of several receptor-independent activators of G-protein signaling, which are postulated to provide a platform for divergence between canonical and noncanonical G-protein signaling pathways. Similarly, Dishevelled (DVL) proteins serve as a point of divergence for β-catenin-dependent and -independent signaling pathways involving the family of Frizzled (FZD) ligands and cell-surface WNT receptors. We recently discovered the apparent regulated localization of dishevelled-2 (DVL2) and AGS3 to distinct cellular puncta, suggesting that the two proteins interact as part of various cell signaling systems. To address this hypothesis, we asked the following questions: (1) do AGS3 signaling pathways influence the activation of β-catenin (CTNNB1)-regulated transcription through the WNT-Frizzled-Dishevelled axis, and (2) is the AGS3 and DVL2 interaction regulated? The interaction of AGS3 and DVL2 was regulated by protein phosphorylation, subcellular distribution, and a cell-surface G-protein-coupled receptor. These data, and the commonality of functional system impacts observed for AGS3 and DVL2, suggest that the AGS3-DVL2 complex presents an unexpected path for functional integration within the cell.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ali Vural
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Stephen M Lanier
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
13
|
Almutairi F, Lee JK, Rada B. Regulator of G protein signaling 10: Structure, expression and functions in cellular physiology and diseases. Cell Signal 2020; 75:109765. [PMID: 32882407 PMCID: PMC7579743 DOI: 10.1016/j.cellsig.2020.109765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/22/2023]
Abstract
Regulator of G protein signaling 10 (RGS10) belongs to the superfamily of RGS proteins, defined by the presence of a conserved RGS domain that canonically binds and deactivates heterotrimeric G-proteins. RGS proteins act as GTPase activating proteins (GAPs), which accelerate GTP hydrolysis on the G-protein α subunits and result in termination of signaling pathways downstream of G protein-coupled receptors. RGS10 is the smallest protein of the D/R12 subfamily and selectively interacts with Gαi proteins. It is widely expressed in many cells and tissues, with the highest expression found in the brain and immune cells. RGS10 expression is transcriptionally regulated via epigenetic mechanisms. Although RGS10 lacks multiple of the defined regulatory domains found in other RGS proteins, RGS10 contains post-translational modification sites regulating its expression, localization, and function. Additionally, RGS10 is a critical protein in the regulation of physiological processes in multiple cells, where dysregulation of its expression has been implicated in various diseases including Parkinson's disease, multiple sclerosis, osteopetrosis, chemoresistant ovarian cancer and cardiac hypertrophy. This review summarizes RGS10 features and its regulatory mechanisms, and discusses the known functions of RGS10 in cellular physiology and pathogenesis of several diseases.
Collapse
Affiliation(s)
- Faris Almutairi
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
14
|
Wang H, Shi X, Qiu M, Lv S, Zheng H, Niu B, Liu H. Hydrogen Sulfide Plays an Important Role by Influencing NLRP3 inflammasome. Int J Biol Sci 2020; 16:2752-2760. [PMID: 33110394 PMCID: PMC7586428 DOI: 10.7150/ijbs.47595] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammasome is a complex composed of several proteins and an important part of the natural immune system. Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is composed of NLRP3, apoptosis associated speck like protein (ASC) and pro-caspase-1. It plays an important role in many diseases. Hydrogen sulfide (H2S) is an important signaling molecule that regulates many physiological and pathological processes. Recent studies indicated that H2S played anti-inflammatory and pro-inflammatory roles in many diseases through influencing NLRP3 inflammasome, but its mechanism was not fully understood. This article reviewed the progress about the effects of H2S on NLRP3 inflammasome and its mechanisms involved in recent years to provide theoretical basis for in-depth study.
Collapse
Affiliation(s)
- Honggang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Xingzhuo Shi
- School of Life Science, Henan University, Kaifeng, Henan, 475000, China
| | - Mengyuan Qiu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Shuangyu Lv
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Hong Zheng
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Baohua Niu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Huiyang Liu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| |
Collapse
|
15
|
Zhou Y, Zhu X, Wang X, Peng Y, Du J, Yin H, Yang H, Ni X, Zhang W. H 2S alleviates renal injury and fibrosis in response to unilateral ureteral obstruction by regulating macrophage infiltration via inhibition of NLRP3 signaling. Exp Cell Res 2019; 387:111779. [PMID: 31846625 DOI: 10.1016/j.yexcr.2019.111779] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 10/25/2022]
Abstract
Renal fibrosis is a key pathological feature in chronic kidney diseases (CKDs). Dysregulation of hydrogen sulfide (H2S) homeostasis is implicated in the pathogenesis of CKDs. Here, C57/BL6 mice were allocated to Sham and unilateral ureteral obstruction (UUO) groups, which were treated with NaHS or NLRP3 inflammasome inhibitor 16673-34-0 for 3-14 days. UUO mice displayed downregulation of H2S production and increased macrophage infiltration in obstructed kidneys. H2S donor NaHS treatment attenuated renal damage and fibrosis and inhibited M1 and M2 macrophage infiltration. NLPR3 inflammasome was activated and levels of phosphorylated nuclear factor κB (NF-κB) p65 subunit, phosphorylated signal transducer and activator of transcription 6 (STAT6) and interleukin (IL)-4 protein were increased in the kidneys after UUO. NLRP3 inhibitor inactivated NF-κB and IL-4/STAT6 signaling, suppressed M1 and M2 macrophage infiltration and attenuated renal damage and fibrosis in UUO mice. NaHS treatment also suppressed NLRP3, NF-κB and IL-4/STAT6 activation in the obstructed kidneys. In conclusion, the therapeutic effects of H2S on UUO-induced renal injury and fibrosis are at least in part by inhibition of M1 and M2 macrophage infiltration. H2S suppresses NLRP3 activation and subsequently inactivates NF-κB and IL-4/STAT6 signaling, which may contribute to the anti-inflammatory and anti-fibrotic effects of H2S.
Collapse
Affiliation(s)
- Yueyuan Zhou
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoyan Zhu
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Xuan Wang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Peng
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiankui Du
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, Second Military Medical University, Shanghai, China
| | - Hongling Yin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Yang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Ni
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, Second Military Medical University, Shanghai, China.
| | - Weiru Zhang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Shi CS, Nabar NR, Huang NN, Kehrl JH. SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Dis 2019. [PMID: 31231549 DOI: 10.1038/s41420‐019‐0181‐7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The SARS (severe acute respiratory syndrome) outbreak was caused by a coronavirus (CoV) named the SARS-CoV. SARS pathology is propagated both by direct cytotoxic effects of the virus and aberrant activation of the innate immune response. Here, we identify several mechanisms by which a SARS-CoV open reading frame (ORF) activates intracellular stress pathways and targets the innate immune response. We show that ORF8b forms insoluble intracellular aggregates dependent on a valine at residue 77. Aggregated ORF8b induces endoplasmic reticulum (ER) stress, lysosomal damage, and subsequent activation of the master regulator of the autophagy and lysosome machinery, Transcription factor EB (TFEB). ORF8b causes cell death in epithelial cells, which is partially rescued by reducing its ability to aggregate. In macrophages, ORF8b robustly activates the NLRP3 inflammasome by providing a potent signal 2 required for activation. Mechanistically, ORF8b interacts directly with the Leucine Rich Repeat domain of NLRP3 and localizes with NLRP3 and ASC in cytosolic dot-like structures. ORF8b triggers cell death consistent with pyroptotic cell death in macrophages. While in those cells lacking NLRP3 accumulating ORF8b cytosolic aggregates cause ER stress, mitochondrial dysfunction, and caspase-independent cell death.
Collapse
Affiliation(s)
- Chong-Shan Shi
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Neel R Nabar
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ning-Na Huang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - John H Kehrl
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
17
|
Shi CS, Nabar NR, Huang NN, Kehrl JH. SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov 2019; 5:101. [PMID: 31231549 PMCID: PMC6549181 DOI: 10.1038/s41420-019-0181-7] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022] Open
Abstract
The SARS (severe acute respiratory syndrome) outbreak was caused by a coronavirus (CoV) named the SARS-CoV. SARS pathology is propagated both by direct cytotoxic effects of the virus and aberrant activation of the innate immune response. Here, we identify several mechanisms by which a SARS-CoV open reading frame (ORF) activates intracellular stress pathways and targets the innate immune response. We show that ORF8b forms insoluble intracellular aggregates dependent on a valine at residue 77. Aggregated ORF8b induces endoplasmic reticulum (ER) stress, lysosomal damage, and subsequent activation of the master regulator of the autophagy and lysosome machinery, Transcription factor EB (TFEB). ORF8b causes cell death in epithelial cells, which is partially rescued by reducing its ability to aggregate. In macrophages, ORF8b robustly activates the NLRP3 inflammasome by providing a potent signal 2 required for activation. Mechanistically, ORF8b interacts directly with the Leucine Rich Repeat domain of NLRP3 and localizes with NLRP3 and ASC in cytosolic dot-like structures. ORF8b triggers cell death consistent with pyroptotic cell death in macrophages. While in those cells lacking NLRP3 accumulating ORF8b cytosolic aggregates cause ER stress, mitochondrial dysfunction, and caspase-independent cell death.
Collapse
Affiliation(s)
- Chong-Shan Shi
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Neel R Nabar
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ning-Na Huang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - John H Kehrl
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|